WO2024111507A1 - Method for manufacturing bonded body, aggregate substrate, and power module - Google Patents

Method for manufacturing bonded body, aggregate substrate, and power module Download PDF

Info

Publication number
WO2024111507A1
WO2024111507A1 PCT/JP2023/041332 JP2023041332W WO2024111507A1 WO 2024111507 A1 WO2024111507 A1 WO 2024111507A1 JP 2023041332 W JP2023041332 W JP 2023041332W WO 2024111507 A1 WO2024111507 A1 WO 2024111507A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
plate
main surface
ceramic plate
joint
Prior art date
Application number
PCT/JP2023/041332
Other languages
French (fr)
Japanese (ja)
Inventor
篤士 酒井
朋幸 原田
賢久 上島
賢太郎 中山
智也 山口
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2024519885A priority Critical patent/JPWO2024111507A1/ja
Publication of WO2024111507A1 publication Critical patent/WO2024111507A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • This disclosure relates to a joint and its manufacturing method, an assembly substrate, and a power module.
  • Patent Document 1 proposes a method for manufacturing an insulated circuit substrate, which includes a laminate formation process in which a laminate is formed by arranging the ceramic substrate on one side thereof via the brazing material, and a bonding process in which a circuit layer metal plate is bonded to one side of the ceramic substrate by applying pressure and heat in the lamination direction to the laminate to form a circuit layer.
  • Patent Document 2 proposes providing a recessed portion with a predetermined depth on the surface of the metal layer and using this recessed portion as a positioning marker for image recognition processing.
  • Image recognition technology is expected to be used not only when manufacturing power modules as in Patent Document 2, but also for alignment when manufacturing various electronic devices. Therefore, the present disclosure provides a bonded body that allows for highly accurate alignment using image recognition technology, and a manufacturing method thereof. The present disclosure also provides an assembly substrate that allows for efficient production of such a bonded body. The present disclosure also provides a power module with excellent reliability by using such a bonded body.
  • the joint portion has a creeping portion that covers the entire peripheral portion of a second main surface of the metal plate opposite to a first main surface on the ceramic plate side.
  • the above-mentioned joint comprises a joint having a creeping portion that covers the entire peripheral portion of the second main surface of the metal plate. Since this creeping portion covers the peripheral portion of the second main surface of the metal plate without interruption, the outline of the metal plate can be clearly identified. Furthermore, since the creeping portion contains a brazing material component, it is a different color from the metal plate that does not contain the brazing material component. For this reason, the position of the metal plate (joint) can be identified using image recognition technology, and the metal plate (joint) can be aligned with high precision. If such a joint is used as a component of a semiconductor device, etc., the reliability of the semiconductor device, etc. can be improved.
  • the bonded body of [2] above may be any of the following [2] to [5].
  • the joint of [2] above uses the creeping portion to identify the position of the joint.
  • the creeping portion may be used as a position identification means.
  • the bonded body of [3] above can make the width L of the creeping portion sufficiently large, so that the position of the metal plate can be detected with higher reliability using image recognition technology.
  • the bonded body of [4] above can prevent the width L of the creeping portion from becoming excessive, thereby preventing an increase in electrical resistance caused by a component such as a semiconductor chip mounted on the second main surface of the metal plate being connected to the creeping portion. This can further improve the reliability of a semiconductor device including a semiconductor chip or the like.
  • the bonded body of [5] above can prevent the width of the creeping portion from becoming excessive. This can further improve the reliability of a semiconductor device including a semiconductor chip or the like.
  • One aspect of the present disclosure provides the following assembly substrate:
  • An aggregate substrate comprising a multi-cavity ceramic plate, a plurality of metal plates, and a plurality of joints that join the ceramic plate and the plurality of metal plates and contain a brazing material component, at least one of the joints having a creeping portion that covers the entire peripheral portion of a second main surface of the metal plate that is joined at the joint, the second main surface being opposite to the first main surface on the ceramic plate side.
  • At least one joint has a creeping portion that covers the entire peripheral portion of the second main surface of the metal plate. Since this creeping portion covers the peripheral portion of the second main surface of the metal plate without interruption, the outline of the metal plate can be clearly identified. Furthermore, since the creeping portion contains a brazing material component, it is a different color from the metal plate that does not contain the brazing material component. For this reason, the position of the metal plate can be identified using image recognition technology, and the metal plate can be aligned with high precision. If the joint obtained from such a collective substrate is used as a component of a semiconductor device, etc., the reliability of the semiconductor device, etc. can be improved.
  • One aspect of the present disclosure provides the following method for producing a joint body:
  • a method for manufacturing a joint wherein, in the coating process, the thickness of the end portion of the coating layer is made thicker than that of the center portion, and, in the joining process, the joint is formed having a creeping portion that covers the entire peripheral portion of a second main surface of the metal plate opposite to a first main surface on the ceramic plate side.
  • the bonded body obtained by the manufacturing method [7] above has a bonded part having a creeping part that covers the entire peripheral part of the second main surface of the metal plate. Since this creeping part covers the peripheral part of the second main surface of the metal plate without interruption, the outline of the metal plate can be clearly identified. Furthermore, since the creeping part contains a brazing material component, it is a different color from the metal plate that does not contain the brazing material component. For this reason, the position of the metal plate can be identified by image recognition technology, and the metal plate can be aligned with high precision. If such a bonded body is used as a component of a semiconductor device, etc., the reliability of the semiconductor device, etc. can be improved.
  • the manufacturing method of the above [7] may be the following [8].
  • the ceramic plate is a first ceramic plate for a multi-cavity molding,
  • a plurality of the coating layers are provided on the main surface of the first ceramic plate,
  • the lamination step the first ceramic plate and the plurality of metal plates are laminated so as to sandwich the plurality of coating layers therebetween to prepare the laminate;
  • image recognition technology can be used to simultaneously manufacture multiple joined bodies, allowing the metal plates to be aligned with high precision. This results in excellent production efficiency for joined bodies.
  • One aspect of the present disclosure provides the following power module:
  • a power module comprising a bonded body according to any one of [1] to [5] above, or a bonded body obtained by the manufacturing method according to [7] or [8] above, and a semiconductor element electrically connected to the metal plate of the bonded body.
  • the power module of [9] above comprises any of the above-mentioned joined bodies or a joined body obtained by any of the above-mentioned manufacturing methods, and a semiconductor element electrically connected to the metal plate of the joined body.
  • a power module comprises any of the above-mentioned joined bodies or a joined body obtained by any of the above-mentioned manufacturing methods.
  • Such a joined body allows for highly accurate alignment of the metal plate when manufacturing the power module, using image recognition technology or the like.
  • the present disclosure By using image recognition technology, it is possible to provide a bonded body that allows for highly accurate alignment, and a method for manufacturing the same.
  • the present disclosure also provides an assembly substrate that allows for efficient production of such a bonded body.
  • the present disclosure also provides a highly reliable power module by using such a bonded body.
  • FIG. FIG. 2 is a cross-sectional view of the joint body taken along the thickness direction of the metal plates.
  • FIG. FIG. 2 is a cross-sectional view of a power module.
  • FIG. 2 is a diagram showing a support plate and a temporary fastening material attached thereto.
  • FIG. 13 is a diagram showing a support plate and a metal plate temporarily fixed thereto.
  • 13A and 13B are diagrams showing a grid jig and a metal plate temporarily fixed to a support plate using the grid jig; 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7.
  • 13 is a diagram showing a state in which a coating layer formed on a ceramic plate and a support plate to which a metal plate is temporarily attached are laminated.
  • FIG. 2 is a perspective view showing a portion of a first stack.
  • 1 is a cross-sectional view taken along the thickness direction of a ceramic plate provided with a coating layer and a metal plate bonded to the coating layer.
  • 3 is a cross-sectional view of a plurality of first laminates and a second laminate formed by stacking the first laminates.
  • FIG. FIG. 4 is a cross-sectional view showing a state in which the second laminate is pressed by a pressing device.
  • FIG. 4 is a cross-sectional view showing a state when a second stack is introduced into a heating device.
  • 11 is a cross-sectional view showing a state in which a support plate is removed from the collective substrate.
  • a numerical range that combines a numerical range having only an upper limit and a numerical range having only a lower limit is also included in this disclosure.
  • a numerical range in which the upper limit or lower limit of each numerical range is replaced with the numerical value of any of the examples is also included in this disclosure.
  • the joint includes a ceramic plate, a metal plate, and a joint portion that joins the ceramic plate and the metal plate and contains a brazing material component.
  • the joint portion covers the peripheral portion of a second main surface of the metal plate opposite the first main surface on the ceramic plate side.
  • the joint may be, for example, a circuit board.
  • the metal plate may form an electric circuit or may be a heat sink.
  • There may be one or more metal plates joined to one main surface of a ceramic plate.
  • the metal plate may be joined to only one main surface of the ceramic plate, or to both main surfaces.
  • the material of the ceramic plate is not particularly limited, and may be, for example, a sintered nitride, a sintered carbide, or a sintered oxide. Specific examples include silicon nitride sintered body, aluminum nitride sintered body, aluminum oxide sintered body, and silicon carbide sintered body. If the joint and the ceramic plate are different colors, the accuracy of image recognition can be sufficiently high. From this perspective, the ceramic plate may be, for example, a sintered silicon nitride.
  • the thickness of the ceramic plate may be, for example, 0.2 to 2 mm, or 0.25 to 1.5 mm.
  • the metal plate may be, for example, a copper plate.
  • the copper plate usually has a different color from the bonding layer, so that the creeping portion can be image-recognized with high accuracy.
  • the metal plate may be obtained by punching. If the metal plate has a sag (sag surface) and a burr (burr surface), it may be bonded to the ceramic plate via a joint so that the burr is located closer to the ceramic plate than the sag. This allows the creeping portion to cover the peripheral portion of the second main surface of the metal plate with high uniformity.
  • the shape of the metal plate is not particularly limited, and may be a prismatic or quadrangular prism shape. At least some of the corners of the metal plate may be chamfered.
  • the thickness of the metal plate may be 0.5 mm or more, 0.6 mm or more, 0.7 mm or more, or 0.8 mm or more. This prevents the width L of the creeping portion on the second main surface of the metal plate from becoming too large.
  • the thickness of the metal plate may be 3 mm or less, 2 mm or less, or 1.5 mm or less. This allows the joint to be made smaller and lighter.
  • An example of the thickness range of the metal plate is 0.5 to 3 mm.
  • the bonding layer is a layer that bonds the ceramic plate and the metal plate, and contains a brazing material component. For this reason, it is sometimes called a brazing material layer.
  • the bonding layer may contain, for example, silver derived from the brazing material, or silver and copper.
  • the bonding layer may further contain one or more metals selected from the group consisting of tin and active metals derived from the brazing material. In the bonding layer, the two or more metals may be an alloy.
  • the active metal may contain one or more metals selected from the group consisting of titanium, hafnium, zirconium, and niobium.
  • the silver and copper contained in the bonding layer may be contained as an alloy such as an Ag-Cu eutectic alloy.
  • the silver content in the bonding layer may be 45 to 95 mass% or 50 to 95 mass% in terms of Ag.
  • the total content of silver and copper in the bonding layer may be 65 to 100 mass%, 70 to 99 mass%, or 90 to 98 mass% in terms of Ag and Cu, respectively. This makes it possible to sufficiently reduce residual stress in the bonding layer while improving the density of the bonding layer.
  • the content of the active metal in the bonding layer may be 0.5 to 8 parts by mass per 100 parts by mass of the total of Ag and Cu. By making the content of the active metal 0.5 parts by mass or more, it is possible to improve the bond between the ceramic plate and the bonding layer. On the other hand, by making the content of the active metal 8 parts by mass or less, it is possible to suppress the formation of a brittle alloy layer at the bonding interface.
  • the metal contained in the bonding layer may be contained as a nitride, oxide, carbide, or hydride.
  • the bonding layer may contain titanium nitride and/or titanium hydride (TiH 2 ). This allows the bonding strength between the ceramic plate and the metal plate to be sufficiently high.
  • TiH 2 titanium nitride and/or titanium hydride
  • the content of TiH 2 relative to a total of 100 parts by mass of Ag and Cu may be, for example, 1 to 8 parts by mass.
  • Figure 1 is a plan view of an example of a joint
  • Figure 2 is a cross-sectional view taken along line II-II in Figure 1.
  • the joint 100 comprises a ceramic plate 20, a metal plate 60, and a joint 40 that joins the ceramic plate 20 and the metal plate 60 and contains a brazing material component.
  • the joint 40 has a creeping portion 46 that covers the entire peripheral portion of the second main surface 60A of the metal plate 60 opposite the first main surface 60B on the ceramic plate 20 side.
  • the minimum value of the width L of the creeping portion 46 may be 0.1 mm or more, or 0.2 mm or more.
  • the maximum value of the width L of the creeping portion 46 may be 2.0 mm or less, 1.9 mm or less, 1.8 mm or less, or 1.5 mm or less. This makes it possible to suppress poor connection and increased electrical resistance caused by the semiconductor chip mounted on the second main surface 60A of the metal plate 60 being connected to the creeping portion 46.
  • the width L can be measured in an observation image obtained by observing a planar image such as that in FIG. 1 with an optical microscope and focusing on the main surface 60A of the metal plate 60.
  • the average value of the width L may be 0.2 mm or more, 0.3 mm or more, 0.4 mm or more, or 0.5 mm or more. By increasing the average value of the width L, the position of the metal plate 60 can be identified with even higher accuracy.
  • the average value of the width L may be 1.8 mm or less, 1.5 mm or less, or 1.3 mm or less. By preventing the average value of the width L from becoming excessive, it is possible to prevent poor connection and increased electrical resistance caused by the semiconductor chip mounted on the second main surface 60A of the metal plate 60 being connected to the creeping portion 46. In addition, the metal plate 60 can be made smaller, thereby reducing the size of the joint 100.
  • An example of the numerical range of the average value of the width L is 0.2 to 1.8 mm.
  • the average value of the width L is the arithmetic mean value of the measured values of the width L at 20 points arbitrarily selected in the image observed by the optical microscope described above.
  • the maximum, minimum and average values of width L can be adjusted by the amount of brazing material applied when joining the ceramic plate 20 and the metal plate 60, the pressure during joining, and the heating temperature and heating time during joining.
  • the difference between the maximum and minimum values of width L may be 1.7 mm or less, 1.5 mm or less, 1.3 mm or less, or 1.0 mm or less. By reducing this difference, the variation in width L of the creeping portion 46 is reduced, and the position of the metal plate 60 can be detected with higher reliability using image recognition technology.
  • the difference between the maximum and minimum values of width L may be 0.1 mm or more from the viewpoint of making it easier to manufacture the joined body 100.
  • An example of the numerical range of the difference in width L is 0.1 to 1.7 mm.
  • the joint 40 covers the side surface 62 of the metal plate 60 and may have a skirt portion 44 that widens away from the side surface 62 of the metal plate 60 as it approaches the main surface 20A of the ceramic plate 20 from the main surface 60A of the metal plate 60.
  • the inclined surface 44S that defines the outline of the skirt portion 44 extends to the main surface 20A of the ceramic plate 20.
  • the bottom of the skirt portion 44 is in contact with the main surface 20A of the ceramic plate 20 and forms the outer edge 45 of the joint 40.
  • a metal plate 60 (first metal plate) is joined to one main surface 20A of the ceramic plate 20 by a joint 40 (first joint).
  • a second metal plate may be joined to the other main surface 20B of the ceramic plate 20 by a second joint.
  • the second joint may have a shape similar to that of the first joint.
  • the size and shape of the first metal plate and the second metal plate may be the same or different.
  • the number of first metal plates 60 (second metal plates) joined to the main surface 20A (main surface 20B) is not limited to one, and may be multiple.
  • the size and shape of the multiple first metal plates 60 (second metal plates) may be the same or different. In this way, when multiple metal plates are joined to the ceramic plate 20, it is sufficient that the entire periphery of the second main surface of at least one metal plate is covered by the creeping portion 46.
  • the assembly substrate includes a ceramic plate (first ceramic plate) for multiple pieces, a plurality of metal plates having side surfaces formed by cut surfaces, and a plurality of joints that join the ceramic plate and each of the plurality of metal plates and contain a brazing material component.
  • At least one of the plurality of joints has a creeping portion that covers the entire peripheral portion of the second main surface opposite the first main surface on the ceramic plate side of the metal plate joined at the joint.
  • the metal plate whose peripheral portion of the second main surface is covered by such a creeping portion can be smoothly located by image recognition technology.
  • All of the plurality of joints may have a creeping portion that covers the entire peripheral portion of the second main surface opposite the first main surface on the ceramic plate side of the metal plate joined at these joints.
  • the minimum value, maximum value, and average value of the width L of each creeping portion are as described above.
  • FIG. 3 is a perspective view showing an example of an aggregate substrate.
  • the aggregate substrate 200 comprises a ceramic plate 21 and a plurality of metal plates 60 joined to each of the main surface 21A and the main surface 21B of the ceramic plate 21.
  • the ceramic plate 21 is divided into a plurality of sections by division lines SL1, SL2 formed on the main surface 21A.
  • the main surface 21A is provided with a plurality of division lines SL1 extending along a first direction and arranged at equal intervals, and a plurality of division lines SL2 extending along a second direction perpendicular to the first direction and arranged at equal intervals.
  • the division lines SL1 and SL2 are perpendicular to each other.
  • the demarcation lines SL1, SL2 may be, for example, a number of depressions arranged in a straight line, or may have linear grooves. Specifically, they may be scribe lines formed with laser light. Examples of laser sources include carbon dioxide lasers and YAG lasers. Scribe lines can be formed by intermittently irradiating laser light from such laser sources. Note that the demarcation lines SL1, SL2 do not have to be arranged at equal intervals, and are not limited to being perpendicular. Furthermore, they may be curved rather than straight, or bent.
  • the ceramic plate 21 has a plurality of partition regions DR defined by partition lines SL1 and SL2.
  • a metal plate 60 is provided in each of the plurality of partition regions DR.
  • the plurality of metal plates 60 are independent of each other.
  • Each of the multiple metal plates 60 on the main surface 21A of the ceramic plate 21 is joined to the ceramic plate 21 by a joint 40.
  • the multiple joints 40 each have a skirt portion 44 on the side surface 62 of the metal plate 60, similar to the joint 40 shown in FIG. 1.
  • the skirt portion 44 covers part or all of the side surface 62 of the metal plate 60 and part of the main surface 21A of the ceramic plate 21.
  • Each of the multiple joints 40 has a creeping portion 46 that covers the entire peripheral portion of the main surface 60A of the metal plate 60.
  • the creeping portion 46 extends continuously from the top of the skirt portion 44 to the peripheral portion of the main surface 60A.
  • the minimum, maximum, and average value of the width L of each creeping portion 46 may be the same as the numerical range described for the joint 100.
  • Such an aggregate substrate 200 can be aligned or dimensionally measured with high accuracy using image recognition technology. Furthermore, by dividing the substrate assembly 200 along the dividing lines SL1 and SL2, nine bonded bodies can be obtained that can be aligned or dimensionally measured with high precision using image recognition technology.
  • Each of the multiple metal plates 60 on the main surface 21B of the ceramic plate 21 may also be joined to the ceramic plate 21 by a joint having a shape similar to that of the joint 40 that joins the metal plates 60.
  • This joint may have a creeping portion similar to the joint 40, covering the entire peripheral portion of the main surface of the multiple metal plates 60 opposite the main surface on the ceramic plate 21 side. If a creeping portion is also formed on the peripheral portion of the main surface of the metal plate 60 on the main surface 21B of the ceramic plate 21, alignment using image recognition technology can be performed using the creeping portions on the front and back, further improving alignment accuracy.
  • the joint 100 can be aligned with high precision using image recognition technology, and therefore may be mounted on a power module as a circuit board.
  • the metal plate 60 may function as a circuit board having the function of transmitting electrical signals, or as a heat sink having the function of transmitting heat.
  • the metal plate 60 may also have both the function of transmitting heat and the function of transmitting electrical signals.
  • the joint 100 can be aligned with high precision using image recognition technology, and therefore a power module with excellent reliability can be manufactured. In this way, the joint 100 is suitable as a component to be mounted on a power module that requires high reliability.
  • the multiple metal plates 60 and multiple joints 40 in the collective substrate 200 in FIG. 3 all have the same size and shape.
  • the multiple metal plates 60 and multiple joints 40 may have different sizes and shapes.
  • the power module includes a joint (circuit board) and a semiconductor element electrically connected to the metal plate of the joint.
  • the joint may be the joint 100 described above or a modified version thereof.
  • the description of the joint 100 and its modified versions applies to the power module of this embodiment.
  • Such a power module has excellent reliability because the joint, which is a component, is aligned with high accuracy by image recognition technology.
  • the power module can be efficiently manufactured by using image recognition technology.
  • the joint and the semiconductor element may be sealed with resin.
  • the image recognition technology for example, a normal image recognition device including an image acquisition unit such as a CCD camera and an information processing unit that obtains position information from the acquired image information may be used. High-precision alignment can be achieved using a positioning device that adjusts the position of the joint based on the position information from such an image recognition device.
  • FIG. 4 is a cross-sectional view showing an example of a power module.
  • the power module 300 includes a base plate 90 and a joint 101 that is joined to one side of the base plate 90 via solder 82.
  • a metal plate 61 on one side of the joint 101 is joined to the base plate 90 via the solder 82.
  • a semiconductor element 80 is attached to the metal plate 60 on the other side of the joint 101 via solder 81.
  • the semiconductor element 80 is connected to a predetermined location of the metal plate 60 with a metal wire 84 such as an aluminum wire. In this way, the semiconductor element 80 and the metal plate 60 are electrically connected.
  • a metal wire 84 such as an aluminum wire.
  • the semiconductor element 80 and the metal plate 60 are electrically connected.
  • one of the metal plates, metal plate 60a is connected to an electrode 83 that penetrates the housing 86 via solder 85.
  • a housing 86 is disposed on one of the main surfaces of the base plate 90, and is integrated with the main surface to house the joint 101.
  • the housing space formed by the one of the main surfaces of the base plate 90 and the housing 86 is filled with resin 95.
  • the resin 95 seals the joint 101 and the semiconductor element 80.
  • the resin may be, for example, a thermosetting resin or a photocurable resin.
  • a cooling fin 92 which serves as a heat dissipation member, is joined to the other main surface of the base plate 90 via grease 94. Screws 93 are attached to the ends of the base plate 90 to secure the cooling fin 92 to the base plate 90.
  • the base plate 90 and the cooling fin 92 may be made of aluminum. The base plate 90 and the cooling fin 92 function well as heat dissipation parts due to their high thermal conductivity.
  • the metal plate 60 and the metal plate 61 are electrically insulated by the ceramic plate 20.
  • the metal plate 60 (60a) may form an electrical circuit.
  • the metal plate 60 and the metal plate 61 are respectively joined to the main surface 20A and the main surface 20B of the ceramic plate 20 by a joint (not shown) containing a brazing material component.
  • the joint has a skirt portion 44 and a creeping portion 46 as shown in Figures 1 and 2.
  • the average value and standard deviation of the width L of the creeping portion 46 are as described above.
  • the metal plate 60 (metal plate 61) is aligned and dimensionally measured using such a creeping portion 46. Therefore, the power module 300 has excellent reliability.
  • the manufacturing method of the bonded body includes a punching process in which a metal substrate is punched to obtain a plurality of metal plates 60, a temporary fixing process in which the plurality of metal plates 60 are temporarily fixed to each of a pair of support plates using a first positioning jig, a coating process in which a brazing material is applied to the main surface 21A and the main surface 21B of a ceramic plate 21 for multiple pieces and dried to provide a plurality of coating layers on each of the main surface 21A and the main surface 21B, a lamination process in which the ceramic plate 21 is sandwiched between the pair of support plates using a second positioning jig so that the plurality of coating layers and the plurality of metal plates 60 face each other to produce a laminate, a bonding process in which the laminate is heated to bond the metal plate 60 and the ceramic plate 21, and a finishing process in which the ceramic plate 21 to which the metal plate 60 is bonded is divided to obtain a plurality of bonded bodies 100.
  • the metal base material is punched out using, for example, a die. This results in a metal plate 60 whose side surfaces are cut surfaces. If the metal plate 60 has a rectangular prism shape, all four side surfaces may be cut surfaces.
  • the metal plate 60 may have a sag on one main surface 60A and a burr on the other main surface 60B. This allows the rising portion 46 to be formed smoothly in the joining process.
  • the metal plate 60 is fixed to a predetermined position A1 on the support plate TP by a temporary fixing material 11 shown in FIG. 5.
  • the support plate TP may be, for example, a carbon plate.
  • the temporary fixing material 11 may disappear when heated in the joining process.
  • the predetermined position A1 on the support plate TP is a position corresponding to the intended joining position A2 (see FIG. 9) of the metal plate 60 fixed on the ceramic plate 21. Specifically, it is a position where the metal plate 60 is placed at the intended joining position A2 on the ceramic plate 21 when the support plate TP is placed in an appropriate position on the ceramic plate 21.
  • a single support plate TP is divided into a plurality of regions for the purpose of forming a plurality of joints.
  • a temporary fixing material 11 for temporarily fixing the metal plate 60 is provided in each of the plurality of regions.
  • a sheet-type adhesive can be used.
  • the sheet-type adhesive is an adhesive tape that can bond the metal plate 60 to the support plate TP at room temperature.
  • the adhesive tape can be bonded on both sides, and includes an adhesive layer made of an organic component and a release film that covers both sides of the adhesive layer.
  • the release film is a member that protects both sides of the adhesive layer and is peeled off when used.
  • the release film may be, for example, a transparent PET film.
  • One side of the adhesive layer of the temporary fixing material 11 may be adhered to a predetermined position A1 of the support plate TP. Then, as shown in FIG. 6, the metal plate 60 is adhered to the other side of the adhesive layer of the temporary fixing material 11.
  • the adhesive component forming the adhesive layer can be a material capable of bonding the support plate TP and the metal plate 60.
  • the adhesive component can be, for example, an acrylic adhesive, a urethane adhesive, or a rubber adhesive. These adhesives are composed of organic components. Therefore, they are decomposed during heating in the bonding process. By adjusting the amount used, it is possible to adjust the amount so that no residue remains in the bonded body 100.
  • An acrylic adhesive is an adhesive made of acrylic polymer.
  • a urethane adhesive is an adhesive made of polyurethane (a condensation polymerization product of a compound with an isocyanate group and a compound with a hydroxyl group).
  • a rubber adhesive is an adhesive made of natural or synthetic rubber. Examples of synthetic rubber include acrylic rubber and styrene butadiene rubber.
  • the temporary fixing material 11 may be an adhesive tape that does not have a base layer that supports the adhesive layer.
  • the temporary fixing material 11 may be a spray-type adhesive.
  • a spray-type adhesive is a liquid adhesive that is capable of adhering the metal plate 60 to the support plate TP at room temperature and is made of organic components. This adhesive is intended to be used by spraying. For example, the adhesive can be sprayed onto a predetermined position A1 of the support plate TP, and the metal plate 60 can be adhered and fixed to the support plate TP via the adhesive as shown in FIG. 6.
  • the spray-type adhesive may be a solvent-based adhesive, a rubber-based adhesive, or a synthetic resin-based adhesive.
  • the adhesive component is an organic solvent, and for example, hexane, isohexane, toluene, acetone, butane, etc. can be used.
  • the adhesive component may be natural rubber or synthetic rubber.
  • acrylic rubber, styrene butadiene rubber, etc. can be used as the synthetic rubber.
  • the adhesive component is a synthetic resin, and acrylic polymer, etc. can be used.
  • the spray-type adhesive is placed at a predetermined position A1 on the support plate TP by an injector or the like.
  • the injector has, for example, a container and a nozzle part that sprays the adhesive in the container.
  • the container contains liquid adhesive containing a tackifying component and a propellant that sprays the adhesive.
  • the propellant for example, dimethyl ether or LPG can be used.
  • the adhesive in the container is sprayed or stopped from inside the container by operating a lever or the like attached to the nozzle part.
  • FIG. 7 is a plan view showing the metal plate 60 being temporarily fixed with the temporary fixing material 11 while aligning the metal plate 60 to the predetermined position A1 using the lattice jig 3 installed on the support plate TP.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7.
  • the lattice jig 3 may be removed from the support plate TP before being introduced into the heating furnace 8 (see FIG. 15) for the joining process. This allows for a high degree of freedom in selecting the material for the lattice jig 3.
  • materials for the lattice jig 3 include polyethylene (e.g., high-density polyethylene), polypropylene, polyvinyl chloride, AS resin, acrylic resin, A2017 (duralumin), A5052 (aluminum alloy), etc. These materials have excellent workability.
  • the lattice jig 3 has a frame portion 31, a number of alignment holes 32 formed in the frame portion 31, and a pair of handle portions 33 extending outward from the frame portion 31.
  • the frame 31 has a rectangular shape that is substantially aligned with the outer periphery of the support plate TP, except for the handle portion 33.
  • the lattice jig 3 can be set in an appropriate position relative to the support plate TP.
  • a rectangular hole 32 is formed by the frame 31, the vertical wall portions 31a, and the horizontal wall portions 31b, or by the vertical wall portions 31a and the horizontal wall portions 31b.
  • the multiple holes 32 are each positioned so that they are aligned with the outer edge Ed of a predetermined position A1 on the support plate TP.
  • Each of the multiple holes 32 is larger than the metal plate 60 and has a rectangular shape that can accommodate the metal plate 60.
  • the main surface of the metal plate 60 is generally rectangular, with four corners 64 where adjacent side surfaces 62 are bent and connected.
  • the hole 32 is a rectangular hole into which the metal plate 60 fits, with four (multiple) corners 32a.
  • the metal plate 60 is positioned at a predetermined position A1 when the corners 64 come into contact with a reference corner 32x among the multiple corners 32a of the hole 32.
  • the lower right corner 32a is set as the reference corner 32x (see Figure 7).
  • the hole portion 32 has a gap forming portion 32b.
  • the gap forming portion 32b is a portion that forms a gap Sp between the metal plate 60 and the corner portion 64 of the metal plate 60 when the corner portion 64 of the metal plate 60 abuts against the reference corner portion 32x.
  • a gap Sp is formed between the left side of the metal plate 60 and the alignment hole portion 32.
  • the portion of the hole portion 32 that forms this gap Sp is the gap forming portion 32b.
  • the lattice jig 3 is placed at an appropriate position on the support plate TP.
  • the temporary fixing material 11 is placed in the hole portion 32 of the lattice jig 3.
  • the metal plate 60 is inserted into the hole portion 32. At this time, the metal plate 60 is aligned to the predetermined position A1 using the lattice jig 3, and the metal plate 60 is fixed to the support plate TP by the temporary fixing material 11.
  • a coating process is performed in which a coating layer 12 containing a brazing material is provided on the main surface 21A of the ceramic plate 21.
  • Partition lines SL1, SL2 are formed on the main surface 21A of the ceramic plate 21.
  • the parting lines SL1, SL2 may be scribe lines formed by irradiating a laser beam, for example. Examples of laser beams include a carbon dioxide laser and a YAG laser. Such parting lines SL1, SL2 can be used as cutting lines when dividing the assembly substrate in a later process.
  • the brazing filler metal may contain Ag in the form of a metal element or a metal compound (alloy), and may contain, in addition to Ag, one or more metals selected from the group consisting of Cu, Sn, and active metals. The two or more metals may be alloyed.
  • the active metal may contain one or more metals selected from the group consisting of Ti, Hf, Zr, and Nb.
  • the brazing filler metal may contain 80 parts by mass or more of Ag per 100 parts by mass of Ag and Cu in total, 90 parts by mass or more, or 95 parts by mass or more.
  • the brazing filler metal does not need to contain Cu.
  • the content of the active metal in the brazing filler metal may be 0.5 to 8 parts by mass per 100 parts by mass of the total of Ag and Cu. By making the content of the active metal 0.5 parts by mass or more, it is possible to improve the bond between the ceramic plate and the brazing filler metal. On the other hand, by making the content of the active metal 8 parts by mass or less, it is possible to suppress the formation of a brittle alloy layer at the bonded interface.
  • the active metal contained in the brazing material may be contained as a nitride, oxide, carbide, or hydride.
  • the brazing material may contain titanium nitride and/or titanium hydride (TiH 2 ). This allows the bonding strength between the ceramic plate and the metal plate to be sufficiently high.
  • TiH 2 titanium nitride and/or titanium hydride
  • the content of TiH 2 relative to a total of 100 parts by mass of Ag and Cu may be, for example, 1 to 8 parts by mass.
  • the brazing filler metal may contain, in addition to the metal or metal compound described above, an organic solvent, a binder, etc.
  • the viscosity of the brazing filler metal may be, for example, 5 to 20 Pa ⁇ s.
  • the organic solvent content in the brazing filler metal may be, for example, 5 to 25 mass %, and the binder content may be, for example, 2 to 15 mass %.
  • a brazing material is applied to one of the main surfaces 21A of the ceramic plate 21 at the intended joining position A2 of the metal plate 60 to form a coating layer 12.
  • the application method may be a roll coater method, a screen printing method, a transfer method, or the like.
  • the intended joining position A2 corresponds to a predetermined position A1 of the support plate TP.
  • the support plate TP is laminated on the ceramic plate 21 so that the metal plate 60 faces the main surface 21A of the ceramic plate 21. At this time, the metal plate 60 faces the intended joining position A2 of the ceramic plate 21.
  • the solder material is applied to the intended joining position A2 of the metal plate 60 to form a coating layer 12.
  • the application method is as described above.
  • This intended joining position A2 corresponds to a predetermined position A1 of another support plate TP.
  • This other support plate TP is laminated on the ceramic plate 21 so that the metal plate 60 faces the main surface 21B of the ceramic plate 21. At this time, the metal plate 60 faces the ceramic plate 21 at the intended joining position A2. In this way, a first laminate Xa as shown in FIG. 10 is formed.
  • FIG. 11 shows a part of a cross section of a ceramic plate 21 provided with a coating layer 12 when cut along the thickness direction.
  • the coating layer 12 is thicker at the ends surrounding the center than at the center. That is, the coating layer 12 has a thin coating portion 12B in the center and a thick coating portion 12A at the end (periphery).
  • the brazing material is sufficiently filled between the end 65 of the metal plate 60 and the ceramic plate 21. If such a laminate is heated in the joining process described later, the brazing material component can be sufficiently caused to creep up to the side surface 62 and main surface 60A of the metal plate 60. In addition, it is possible to sufficiently prevent the joining between the metal plate 60 and the ceramic plate 21 from becoming insufficient.
  • the other coating layers 12 may have the same shape.
  • the width of the coating layer 12 in FIG. 11 is the same as the width of the metal plate 60, but is not limited to this.
  • the coating layer 12 may have a protruding portion that extends outward from the side surface 62 of the metal plate 60 along the main surface 21A of the ceramic plate 21. In this way, if the coating layer 12 has a protruding portion at the end, the width L of the creeping portion 46 on the main surface 60A of the metal plate 60 shown in FIG. 1 and FIG. 2 can be sufficiently increased.
  • the skirt portion 44 on the side surface 62 of the metal plate 60 can be sufficiently increased to further improve the joining reliability.
  • the width L of the creeping portion 46 shown in FIG. 1 and FIG. 2 can be increased.
  • the width L of the creeping portion 46 shown in FIG. 1 and FIG. 2 can be reduced.
  • the ceramic plate 21 on which the coating layer 12 is formed and a pair of support plates TP to which the metal plate 60 is temporarily attached are laminated while being aligned using an enclosing jig 5 to obtain the first laminate Xa of Figure 10.
  • a similar procedure is repeated to obtain a plurality of first laminates Xa, which are then stacked.
  • a second laminate XA is obtained in which a plurality of first laminates Xa are stacked.
  • an enclosing jig 5 as shown in Figures 12 and 13 can be used.
  • the enclosing jig 5 is a frame-shaped device that surrounds the rectangular periphery of the second laminate XA, and is an example of a second alignment jig that aligns the metal plate 60 and the ceramic plate 21 when stacking them.
  • the enclosing jig 5 has an abutting wall portion 50 that is arranged along the periphery of the multiple first laminates Xa (FIG. 13).
  • the abutting wall portion 50 has multiple partition walls 51, 52 that can be separated.
  • the abutting wall portion 50 has a first partition wall portion 51 that is L-shaped in a plan view and a second partition wall portion 52 that is L-shaped in a plan view.
  • the first laminate Xa forming the second laminate XA is rectangular in plan view, so the second laminate XA has four corners Xb.
  • the first dividing wall 51 has a corner 51m bent to fit along the corner Xb of the second laminate XA.
  • the second dividing wall 52 has a corner 52m bent to fit along the corner Xb of the second laminate XA.
  • the first dividing wall 51 has a first alignment wall 51a and a second alignment wall 51b.
  • the second dividing wall 52 has a third alignment wall 52a and a fourth alignment wall 52b.
  • the first alignment wall 51a and the third alignment wall 52a are arranged opposite each other to sandwich the second laminate XA (first laminate Xa) accommodated in the storage space.
  • the second alignment wall 51b and the fourth alignment wall 52b are arranged opposite each other to sandwich the second laminate XA (first laminate Xa) accommodated in the storage space.
  • the enclosure jig 5 has an adjustment section 53 that connects the first partition wall section 51 and the second partition wall section 52.
  • the adjustment section 53 is configured to be able to adjust the volume of the storage space enclosed by the first partition wall section 51 and the second partition wall section 52.
  • the adjustment portion 53 includes, for example, a plurality of slits 53a (through holes) formed in the first dividing wall portion 51, a plurality of screw portions 54 inserted into the plurality of slits 53a, and a plurality of screw holes 55 formed in the second dividing wall portion 52.
  • the second dividing wall portion 52 includes an end portion 52c that can abut against the first dividing wall portion 51, and the end portion 52c is provided with a screw hole 55 so as to overlap the slit 53a of the first dividing wall portion 51.
  • the screw portion 54 includes a shaft portion 54a and a head portion 54b (locking portion). The shaft portion 54a is inserted into the slit 53a and is screwed into the screw hole 55.
  • the head portion 54b is formed at one end of the shaft portion 54a and interferes with the periphery of the slit 53a of the first dividing wall portion 51.
  • the periphery of the slit 53a is an engagement receiving portion 53b that receives the interference of the head portion 54b.
  • the storage space shrinks when the screw part 54 is tightened, and expands when it is loosened.
  • the enclosing jig 5 is placed on the base 71 of the pressure device 7.
  • the multiple first laminates Xa are stacked in the storage space of the enclosing jig 5.
  • the multiple first laminates Xa are stacked on the base 71 while being aligned by the enclosing jig 5.
  • This results in a second laminate XA in which the multiple first laminates Xa are stacked in the storage space of the enclosing jig 5.
  • the enclosing jig 5 may be placed around the second laminate XA to align them. This results in a second laminate XA in which the stacked positions of the multiple first laminates Xa are aligned with each other.
  • the pressure device 7 includes a base 71 that supports the second laminate XA, multiple pillars 72 erected from the base 71, a cover plate 73 that abuts against the upper surface of the second laminate XA, multiple elastic bodies 74 arranged on the cover plate 73, a pressure plate 75 that is installed on the elastic bodies 74 and presses the elastic bodies 74, and a nut 76 (holding part) that holds the pressure plate 75 in a predetermined position.
  • the column 72 has a screw groove formed therein.
  • the column 72 penetrates the cover plate 73 and the pressure plate 75.
  • the nut 76 is screwed onto the upper end of the column 72 and abuts against the upper surface of the pressure plate 75.
  • An elastic body 74 is disposed between the cover plate 73 and the pressure plate 75. When the nut 76 is tightened, the pressure plate 75 is pressed down, compressing the elastic body 74. As a result, the second laminate XA is pressurized via the cover plate 73. This allows the metal plate 60 and the ceramic plate 21, which are aligned with high precision, to be sufficiently bonded via the coating layer 12.
  • the width L of the creeping layer can be adjusted by changing the pressure applied here.
  • the enclosing jig 5 is divided and separated from the second laminate XA while the second laminate XA is kept pressurized by the pressure device 7.
  • the pressurized second laminate XA is stable, and even if the enclosing jig 5 is separated, there is no misalignment between the multiple first laminates Xa and between the ceramic plate 21 and the metal plate 60 that constitute the first laminate Xa. In this way, if the jig is removed before the joining process, there is no need to consider the heat resistance of the material that constitutes the enclosing jig 5. This allows for a high degree of freedom in material selection.
  • Examples of materials that can be used to constitute the enclosing jig 5 include polyethylene (e.g., high-density polyethylene), polypropylene, polyvinyl chloride, AS resin, acrylic resin, A2017 (duralumin), and A5052 (aluminum alloy). These materials have the advantage of being highly processable.
  • polyethylene e.g., high-density polyethylene
  • polypropylene polypropylene
  • polyvinyl chloride polyvinyl chloride
  • AS resin acrylic resin
  • A2017 diuralumin
  • A5052 aluminum alloy
  • the enclosing jig 5 may be introduced into the heating furnace 8 together with the second laminate XA while the enclosing jig 5 holds the second laminate XA without removing the enclosing jig 5.
  • the enclosing jig 5 is made of a heat-resistant material.
  • Such materials include carbon-based materials, boron nitride, iron-based S45C and SS400, stainless steel-based SUS304 and SUS303, and cemented carbide.
  • Carbon-based materials include carbon graphite, C/C composites, glassy carbon, etc.
  • Cemented carbide includes those containing tungsten carbide as the main component.
  • the second laminate XA is introduced into the heating furnace 8 while being held under pressure by the pressure device 7.
  • the heating furnace 8 is equipped with a heater 8a.
  • the heater 8a heats the inside of the heating furnace 8 to a temperature at which the metal plate 60 and the ceramic plate 21 are joined by the joint.
  • the metal plate 60 is a copper material
  • the inside of the heating furnace 8 is heated to 600°C to 900°C.
  • the metal plate 60 is an aluminum plate
  • the inside of the heating furnace 8 is heated to 550°C to 650°C.
  • the coating layer 12 containing the brazing material melts at this atmospheric temperature, and becomes the joint 40 that joins the metal plate 60 and the ceramic plate 21 by cooling and solidifying after heating.
  • the temporary fixing material 11 that temporarily fixed the metal plate 60 to the support plate TP disappears by volatilization, etc.
  • the multiple first laminates Xa that constituted the second laminate XA are each turned into an aggregate substrate 200, for example, as shown in FIG. 3, through a bonding process.
  • the aggregate substrate 200 removed from the heating furnace 8 includes a ceramic plate 21 and multiple metal plates 60 bonded to the ceramic plate 21.
  • Each of the multiple metal plates 60 is bonded to the ceramic plate 21 by a bonding portion 40.
  • the temporary fixing material 11 that fixed the metal plate 60 to the support plate TP has disappeared inside the heating furnace 8. Therefore, the support plate TP can be easily removed from the aggregate substrate 200, as shown in FIG. 16.
  • the collective substrate 200 is divided along the division lines SL1 and SL2. Then, a finishing process is performed as necessary to obtain a plurality of independent bonded bodies 100.
  • the entire peripheral portion of the main surface of the metal plate 60 in the collective substrate 200 opposite the ceramic plate 21 side is covered with the creeping portion 46 as in FIG. 1 and FIG. 2.
  • the dimensions of the metal plate 60 and the width L of the creeping portion 46 may be detected using image recognition technology to perform a quality inspection of the collective substrate 200.
  • the bonded bodies may be sorted into those whose dimensions of the metal plate 60 or the width L of the creeping portion 46 meet a standard and those whose dimensions do not meet a standard.
  • the standard may be a numerical range for the dimensions of the metal plate 60 and the width L of the creeping portion 46.
  • the assembly substrate 200 and the joint body 100 can be manufactured by mounting a metal plate obtained by punching onto a multi-piece ceramic plate.
  • This mounting method allows the assembly substrate 200 and the joint body 100 to be obtained efficiently.
  • the metal plate is temporarily fixed to the support plate while being aligned using a first alignment jig (lattice jig 3), and the support plate (metal plate) and the ceramic plate are aligned using a second alignment jig (enclosure jig 5) and stacked to obtain the first laminate Xa (second laminate XA).
  • This first laminate Xa (second laminate XA) is heated while being pressurized by the pressure device 7. This makes it difficult for the coating layer and the metal plate to shift from each other.
  • a joint 40 can be formed having a creeping up portion 46 that covers the entire peripheral portion of the second main surface 60A of the metal plate 60 opposite the first main surface 60B on the ceramic plate 20 side.
  • the joint 100 having such a joint 40 can perform highly accurate alignment when manufacturing semiconductor devices such as power modules by detecting the creeping up portion 46 using an image recognition device.
  • the dimensions of the metal plate 60 can be measured with high accuracy. Therefore, the joint 100 and the assembly substrate 200 are extremely useful as components for manufacturing semiconductor devices such as highly reliable power modules.
  • the aggregate substrate 200 is manufactured, but the present invention is not limited to this.
  • an aggregate substrate different from the aggregate substrate 200 may be manufactured.
  • the bonded body 100 may be manufactured without manufacturing the aggregate substrate 200.
  • the first positioning jig is not limited to a lattice jig, and may be any jig that can improve the alignment accuracy when the metal plate is temporarily fixed.
  • the second positioning jig is also not limited to an enclosure jig, and may be any jig that can improve the alignment accuracy when stacking the metal plate and the ceramic plate.
  • the manufacturing method of the joined body 100 and the collective substrate 200 is not limited to the above. It is not necessary to use all of the temporary fixing material, the first alignment jig, and the second alignment jig, and the joined body 100 and the collective substrate 200 may be manufactured using at least one of them. Also, the joined body 100 and the collective substrate 200 may be manufactured using an alignment jig of a different form.
  • the bonded body obtained by the above-mentioned manufacturing method may be used to manufacture a power module as shown in Figure 4.
  • the power module may be manufactured by mounting a semiconductor element on the bonded body using solder and wire bonding, etc., housing the bonded body and the semiconductor element in the housing space of a case, and then sealing with resin.
  • an image recognition device is used to image-recognize the creeping portion, and the metal plate and bonded body are aligned based on this, thereby efficiently manufacturing a highly reliable power module.
  • the present disclosure is in no way limited to the above-described embodiments.
  • the structures and shapes of the metal plates and joints joined to each of the pair of main surfaces of the ceramic plate may be different from each other.
  • the ceramic plate is not limited to one obtained by dividing an aggregate substrate.
  • Example 1 [Preparation of aggregate substrate and bonded body]
  • the sides of these copper plates were composed of cut surfaces.
  • a silicon nitride ceramic plate (silicon nitride plate, thickness: 0.25 mm) and a brazing material were prepared.
  • a brazing filler metal containing Ag, Sn, and TiH2 was prepared.
  • the brazing filler metal contained 3 parts by mass of Sn and 3.5 parts by mass of TiH2 per 100 parts by mass of Ag. This brazing filler metal did not contain Cu.
  • the main surface of the ceramic plate was divided into 24 separate regions by scribe lines.
  • a brazing filler metal was applied to each region by screen printing to form a coating layer.
  • the coating area of the coating layer was the same as the area of the main surface of the copper plate to be joined to the ceramic plate.
  • the coating layer had a thin coating portion in the center and a thick coating portion at the end (around the thin coating portion) as shown in Figure 11.
  • the thickness of the thick coating portion was 1.5 times that of the thin coating portion.
  • the width of the thick coating portion surrounding the thick coating portion was constant at 1.5 mm.
  • the amount of brazing filler metal applied when forming the thick coating portion and the thin coating portion was as shown in Table 1.
  • a carbon plate was prepared as a support plate.
  • Adhesive tape was applied to 24 places on the carbon plate to create a temporary fixing material. These adhesive tapes were applied at positions corresponding to the positions of the coating layer on the main surface of the ceramic plate.
  • 24 copper plates were temporarily fixed onto the carbon plate with the temporary fixing material while being positioned using a grid jig 3 as shown in Figure 7.
  • the ceramic plate and carbon plate were laminated so that the copper plate and the coating layer faced each other while being aligned using an enclosure jig 5. At this time, the copper plates were laminated so that the burrs were on the coating layer side and the sagging was on the carbon plate side.
  • the laminate was heated in a vacuum (1.0 ⁇ 10 ⁇ 3 Pa) at 790° C. for 1 hour while being pressurized at 0.015 MPa using a pressure device as shown in FIG. 14.
  • a pressure device as shown in FIG. 14.
  • an assembly substrate was obtained in which 24 copper plates were bonded to the ceramic plate via a bonding layer containing a brazing material component.
  • electroless plating was performed using a Ni—P plating solution (phosphorus concentration: 8 to 12 mass%) to form an assembly substrate (multiple-piece circuit substrate) having a plating film on the copper plate.
  • the assembly substrate was divided along the scribe line to obtain 24 bonded bodies.
  • Example 2 A joint was obtained in the same manner as in Example 1, except that a punched copper plate having the thickness shown in Table 1 was used.
  • Example 4 A bonded body was obtained in the same manner as in Example 2, except that no grid jig was used when temporarily fixing the 24 copper plates on the carbon plate with the temporary fixing material.
  • Example 5 A bonded body was obtained in the same manner as in Example 3, except that no enclosing jig for alignment was used when laminating the ceramic plate and the carbon plate with the copper plate and the coating layer facing each other.
  • Example 6 A joint was obtained in the same manner as in Example 1, except that the coating amount when forming the thick coating portion at the end of the coating layer was as shown in Table 2.
  • Example 7 A joint was obtained in the same manner as in Example 2, except that the coating amount when forming the thick coating portion at the end of the coating layer was as shown in Table 2.
  • Example 8 A joint was obtained in the same manner as in Example 3, except that the coating amount when forming the thick coating portion at the end of the coating layer was as shown in Table 2.
  • Example 1 A bonded body was obtained in the same manner as in Example 3, except that a grid jig and an enclosure jig were not used. That is, in the same manner as in Example 3, a brazing material was applied to each partitioned area of the main surface of the ceramic plate by screen printing to form a coating layer. A copper plate was laminated on this coating layer so that the burr was on the coating layer side and the sagging was on the carbon plate side to obtain a laminate. An aggregate substrate and a bonded body were obtained in the same manner as in Example 3, except that the above-mentioned laminate was used as the laminate to be pressed by the pressing device as shown in FIG.
  • Example 2 A joint was obtained in the same manner as in Example 3, except that the coating layer had no thick or thin coating portions and was of a uniform thickness. That is, the coating layer had no thick or thin coating portions and was of a uniform thickness.
  • the amount of brazing material applied when forming the coating layer was as shown in Table 2.
  • width L of the rising part The width L of the creeping portion covering the peripheral portion of the main surface of the metal plate was measured using a photograph taken under magnification with an optical microscope.
  • the maximum and minimum values of the width L were determined by visually determining the positions where the width was maximum and minimum, and photographs of the periphery of these positions were taken with an optical microscope, and the maximum and minimum values of the width L were measured using the photographs.
  • the maximum and minimum values of the width L were as shown in Tables 1 and 2.
  • the difference between the maximum and minimum values was as shown in Tables 1 and 2.
  • the average value of width L was calculated by measuring the width L of the rising part at 20 randomly selected points and taking the arithmetic average of the measured values.
  • the average values of width L are shown in Tables 1 and 2.
  • the shortest distance of one or more metal plates could not be accurately measured by the image dimension measuring device. In other words, the position of the metal plate could not be correctly recognized, and there was one or more metal plates for which the actual measurement value a did not match the measured value b.
  • Comparative Example 1 which did not use any temporary fixing material, a lattice jig, or an enclosure jig, and Comparative Example 2, in which the thickness of the brazing material coating layer was made uniform, neither was able to form a creep-up portion that covered the entire peripheral portion of the main surface of the metal plate.
  • Comparative Example 1 the alignment accuracy between the copper plate and the coating layer was low, and the positions of the two were misaligned, which is thought to have led to the formation of a creep-up portion that covered only a part of the peripheral portion of the main surface of the metal plate.
  • the joints of Comparative Examples 1 and 2 have a higher proportion of metal plates whose positions cannot be accurately identified by image recognition than Examples 1 to 8. For this reason, the joints of Comparative Examples 1 and 2 are considered to have inferior positioning accuracy compared to Examples 1 to 8.
  • the present disclosure provides a bonded body and a manufacturing method thereof that can be aligned or measured with high precision using image recognition technology.
  • the present disclosure also provides an assembly substrate that can efficiently obtain such a bonded body.
  • the present disclosure also provides a highly reliable power module by using such a bonded body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Products (AREA)

Abstract

Provided is a bonded body 100 comprising a ceramic plate, a metal plate, and a bonding portion that includes a brazing material component and bonds the ceramic plate and the metal plate. The bonding portion has a creep-up portion that covers the entirety of an edge portion of a second main surface that is on the opposite side from a first main surface on the ceramic plate-side of the metal plate. Also provided is an aggregate substrate comprising a ceramic plate for multiple pieces, a plurality of metal plates, and a plurality of bonding portions that include a brazing material component and bond the ceramic plate and the plurality of metal plates. At least one of the plurality of bonding portions has a creep-up portion that covers the entirety of an edge portion of a second main surface that is on the opposite side from a first main surface on the ceramic plate-side of the metal plate that is bonded by the bonding portion.

Description

接合体及びその製造方法、集合基板、並びにパワーモジュールJoint body and manufacturing method thereof, aggregate substrate, and power module
 本開示は、接合体及びその製造方法、集合基板、並びにパワーモジュールに関する。 This disclosure relates to a joint and its manufacturing method, an assembly substrate, and a power module.
 ロボット及びモータ等の産業機器の高性能化に伴い、大電流及び高電圧を制御するパワーモジュールが使用されている。このようなパワーモジュールに備えられる回路基板は、セラミック基板と銅板とを備えており、これらは活性金属を含有するろう材を介して接合される。特許文献1では、ろう材を介してセラミックス基板の一方の面に配置して積層体を形成する積層体形成工程と、積層体を積層方向に加圧及び加熱することにより、セラミックス基板の一方の面に回路層用金属板を接合して回路層を形成する接合工程と、を備える絶縁回路基板の製造方法が提案されている。 As industrial equipment such as robots and motors become more sophisticated, power modules that control large currents and high voltages are being used. The circuit boards included in such power modules include a ceramic substrate and a copper plate, which are joined via a brazing material containing an active metal. Patent Document 1 proposes a method for manufacturing an insulated circuit substrate, which includes a laminate formation process in which a laminate is formed by arranging the ceramic substrate on one side thereof via the brazing material, and a bonding process in which a circuit layer metal plate is bonded to one side of the ceramic substrate by applying pressure and heat in the lamination direction to the laminate to form a circuit layer.
 このような回路基板は小型化が進んでいるため、半導体デバイス等に実装される際には、画像認識装置を用いて位置決めされる場合がある。例えば、特許文献2では、金属層の表面に所定の深さを有する凹状部を設け、この凹状部を画像認識処理の位置決めマーカーとして用いることが提案されている。 Since such circuit boards are becoming smaller, they may be positioned using an image recognition device when mounted on a semiconductor device or the like. For example, Patent Document 2 proposes providing a recessed portion with a predetermined depth on the surface of the metal layer and using this recessed portion as a positioning marker for image recognition processing.
特開2020-155444号公報JP 2020-155444 A 特開2005-294668号公報JP 2005-294668 A
 画像認識技術は、特許文献2のようにパワーモジュールを製造するときのみならず、種々の電子機器を製造する際の位置合わせに利用されると考えられる。そこで、本開示は、画像認識技術によって、位置合わせを高い精度で行うことが可能な接合体及びその製造方法を提供する。また、本開示は、このような接合体を効率よく得ることが可能な集合基板を提供する。また、本開示は、このような接合体を用いることによって、信頼性に優れるパワーモジュールを提供する。 Image recognition technology is expected to be used not only when manufacturing power modules as in Patent Document 2, but also for alignment when manufacturing various electronic devices. Therefore, the present disclosure provides a bonded body that allows for highly accurate alignment using image recognition technology, and a manufacturing method thereof. The present disclosure also provides an assembly substrate that allows for efficient production of such a bonded body. The present disclosure also provides a power module with excellent reliability by using such a bonded body.
 本開示の一側面は、以下の接合体を提供する。 One aspect of the present disclosure provides the following conjugate:
[1]セラミック板と、金属板と、前記セラミック板と前記金属板とを接合し、ろう材成分を含む接合部と、を備え、
 前記接合部は、前記金属板の前記セラミック板側の第1主面とは反対側の第2主面の周縁部の全体を覆う這い上がり部を有する、接合体。
[1] A ceramic plate, a metal plate, and a joint portion that joins the ceramic plate and the metal plate and contains a brazing material component;
The joint portion has a creeping portion that covers the entire peripheral portion of a second main surface of the metal plate opposite to a first main surface on the ceramic plate side.
 上記接合体は、金属板の第2主面の周縁部の全体を覆う這い上がり部を有する接合部を備える。このような這い上がり部は金属板の第2主面の周縁部を途切れることなく覆っていることから、金属板の輪郭を明瞭に識別することができる。そして、這い上がり部はろう材成分を含むことから、ろう材成分を含まない金属板とは色が異なる。このため、画像認識技術で金属板(接合体)の位置を特定して、金属板(接合体)の位置合わせを高い精度で行うことができる。このような接合体を半導体デバイス等の部材として用いれば、半導体デバイス等の信頼性を向上することができる。 The above-mentioned joint comprises a joint having a creeping portion that covers the entire peripheral portion of the second main surface of the metal plate. Since this creeping portion covers the peripheral portion of the second main surface of the metal plate without interruption, the outline of the metal plate can be clearly identified. Furthermore, since the creeping portion contains a brazing material component, it is a different color from the metal plate that does not contain the brazing material component. For this reason, the position of the metal plate (joint) can be identified using image recognition technology, and the metal plate (joint) can be aligned with high precision. If such a joint is used as a component of a semiconductor device, etc., the reliability of the semiconductor device, etc. can be improved.
 上記[2]の接合体は、以下の[2]~[5]のいずれかであってもよい。 The bonded body of [2] above may be any of the following [2] to [5].
[2]前記這い上がり部を、前記接合体の位置の特定に用いる、[1]に記載の接合体。
[3]前記第2主面における前記這い上がり部の幅Lの最小値が0.1mm以上である、[1]又は[2]に記載の接合体。
[4]前記第2主面における前記這い上がりの部の幅Lの最大値が2.0mm以下である、[1]~[3]のいずれか一つに記載の接合体。
[5]前記金属板の厚みが0.5mm以上である、[1]~[4]のいずれか一つに記載の接合体。
[2] The bonded body according to [1], wherein the creeping-up portion is used to identify the position of the bonded body.
[3] The bonded body according to [1] or [2], wherein the minimum value of the width L of the rising portion on the second main surface is 0.1 mm or more.
[4] The bonded body according to any one of [1] to [3], wherein the maximum value of the width L of the raised portion on the second main surface is 2.0 mm or less.
[5] The joined body according to any one of [1] to [4], wherein the metal plate has a thickness of 0.5 mm or more.
 上記[2]の接合体は、這い上がり部を、前記接合体の位置の特定に用いる。すなわち、這い上がり部を位置特定手段としてもよい。このような接合体は、半導体デバイス等の部材として用いたときに、金属板の位置合わせを高精度且つ円滑に行うことができるため、半導体デバイスの信頼性及び製造効率を向上することができる。 The joint of [2] above uses the creeping portion to identify the position of the joint. In other words, the creeping portion may be used as a position identification means. When such a joint is used as a component of a semiconductor device or the like, it is possible to align the metal plate with high precision and smoothly, thereby improving the reliability and manufacturing efficiency of the semiconductor device.
 上記[3]の接合体は、這い上がり部の幅Lを十分に大きくできるため、画像認識技術によって金属板の位置をより高い確実性で検知することができる。上記[4]の接合体は、這い上がり部の幅Lが過大になるのを抑制することによって、金属板の第2主面上に搭載される半導体チップ等の部品が這い上がり部に接続されることによる電気抵抗の増大を抑制することができる。これによって、半導体チップ等を備える半導体デバイスの信頼性を一層向上することができる。上記[5]の接合体は、這い上がり部の幅が大きくなり過ぎることを抑制できる。これによって、半導体チップ等を備える半導体デバイスの信頼性を一層向上することができる。 The bonded body of [3] above can make the width L of the creeping portion sufficiently large, so that the position of the metal plate can be detected with higher reliability using image recognition technology. The bonded body of [4] above can prevent the width L of the creeping portion from becoming excessive, thereby preventing an increase in electrical resistance caused by a component such as a semiconductor chip mounted on the second main surface of the metal plate being connected to the creeping portion. This can further improve the reliability of a semiconductor device including a semiconductor chip or the like. The bonded body of [5] above can prevent the width of the creeping portion from becoming excessive. This can further improve the reliability of a semiconductor device including a semiconductor chip or the like.
 本開示の一側面は、以下の集合基板を提供する。 One aspect of the present disclosure provides the following assembly substrate:
[6]多数個取り用のセラミック板と、複数の金属板と、前記セラミック板と前記複数の金属板とを接合し、ろう材成分を含む複数の接合部と、を備え、前記複数の接合部の少なくとも一つの接合部は、当該接合部で接合される前記金属板の前記セラミック板側の第1主面とは反対側の第2主面の周縁部の全体を覆う這い上がり部を有する、集合基板。 [6] An aggregate substrate comprising a multi-cavity ceramic plate, a plurality of metal plates, and a plurality of joints that join the ceramic plate and the plurality of metal plates and contain a brazing material component, at least one of the joints having a creeping portion that covers the entire peripheral portion of a second main surface of the metal plate that is joined at the joint, the second main surface being opposite to the first main surface on the ceramic plate side.
 上記[6]の集合基板は、少なくとも一つの接合部が金属板の第2主面の周縁部の全体を覆う這い上がり部を有する。このような這い上がり部は金属板の第2主面の周縁部を途切れることなく覆っていることから、金属板の輪郭を明瞭に識別することができる。そして、這い上がり部はろう材成分を含むことから、ろう材成分を含まない金属板とは色が異なる。このため、画像認識技術で金属板の位置を特定して、金属板の位置合わせを高い精度で行うことができる。このような集合基板から得られる接合体を半導体デバイス等の部材として用いれば、半導体デバイス等の信頼性を向上することができる。 In the collective substrate of [6] above, at least one joint has a creeping portion that covers the entire peripheral portion of the second main surface of the metal plate. Since this creeping portion covers the peripheral portion of the second main surface of the metal plate without interruption, the outline of the metal plate can be clearly identified. Furthermore, since the creeping portion contains a brazing material component, it is a different color from the metal plate that does not contain the brazing material component. For this reason, the position of the metal plate can be identified using image recognition technology, and the metal plate can be aligned with high precision. If the joint obtained from such a collective substrate is used as a component of a semiconductor device, etc., the reliability of the semiconductor device, etc. can be improved.
 本開示の一側面は、以下の接合体の製造方法を提供する。 One aspect of the present disclosure provides the following method for producing a joint body:
[7]セラミック板の主面にろう材を塗布して塗布層を設ける塗布工程と、
 金属板と前記塗布層とが対向するように、前記塗布層と前記金属板とを積層して積層体を作製する積層工程と、
 前記積層体を加熱して、前記金属板と前記セラミック板とをろう材成分を含む接合部によって接合する接合工程と、を有し、
 前記塗布工程では、前記塗布層の中央部よりも端部の厚みを大きくして、前記接合工程では前記金属板の前記セラミック板側の第1主面とは反対側の第2主面の周縁部の全体を覆う這い上がり部を有する前記接合部を形成する、接合体の製造方法。
[7] a coating step of coating a brazing material on a main surface of a ceramic plate to provide a coating layer;
a lamination step of laminating the coating layer and the metal plate so that the metal plate and the coating layer face each other to produce a laminate;
a joining step of heating the laminate to join the metal plate and the ceramic plate with a joint portion containing a brazing material component,
A method for manufacturing a joint, wherein, in the coating process, the thickness of the end portion of the coating layer is made thicker than that of the center portion, and, in the joining process, the joint is formed having a creeping portion that covers the entire peripheral portion of a second main surface of the metal plate opposite to a first main surface on the ceramic plate side.
 上記[7]の製造方法で得られる接合体は、金属板の第2主面の周縁部の全体を覆う這い上がり部を有する接合部を備える。このような這い上がり部は金属板の第2主面の周縁部を途切れることなく覆っていることから、金属板の輪郭を明瞭に識別することができる。そして、這い上がり部はろう材成分を含むことから、ろう材成分を含まない金属板とは色が異なる。このため、画像認識技術で金属板の位置を特定して、金属板の位置合わせを高い精度で行うことができる。このような接合体を半導体デバイス等の部材として用いれば、半導体デバイス等の信頼性を向上することができる。 The bonded body obtained by the manufacturing method [7] above has a bonded part having a creeping part that covers the entire peripheral part of the second main surface of the metal plate. Since this creeping part covers the peripheral part of the second main surface of the metal plate without interruption, the outline of the metal plate can be clearly identified. Furthermore, since the creeping part contains a brazing material component, it is a different color from the metal plate that does not contain the brazing material component. For this reason, the position of the metal plate can be identified by image recognition technology, and the metal plate can be aligned with high precision. If such a bonded body is used as a component of a semiconductor device, etc., the reliability of the semiconductor device, etc. can be improved.
 上記[7]の製造方法は、以下の[8]であってもよい。 The manufacturing method of the above [7] may be the following [8].
[8]前記セラミック板は、多数個取り用の第1セラミック板であり、
 前記塗布工程では、前記第1セラミック板の前記主面に複数の前記塗布層を設け、
 前記積層工程では、複数の前記塗布層のそれぞれを挟むようにして前記第1セラミック板と複数の前記金属板とを積層して前記積層体を作製し、
 前記接合工程の後に、前記第1セラミック板を分割して、前記接合体を複数得る、[7]に記載の接合体の製造方法。
[8] The ceramic plate is a first ceramic plate for a multi-cavity molding,
In the coating step, a plurality of the coating layers are provided on the main surface of the first ceramic plate,
In the lamination step, the first ceramic plate and the plurality of metal plates are laminated so as to sandwich the plurality of coating layers therebetween to prepare the laminate;
The method for producing a bonded body according to [7], further comprising the steps of: dividing the first ceramic plate after the bonding step to obtain a plurality of the bonded bodies.
 上記[8]の製造方法では、画像認識技術によって、金属板の位置合わせを高い精度で行うことが可能な複数の接合体を同時に製造することができる。したがって、接合体の生産効率に優れる。 In the manufacturing method [8] above, image recognition technology can be used to simultaneously manufacture multiple joined bodies, allowing the metal plates to be aligned with high precision. This results in excellent production efficiency for joined bodies.
 本開示の一側面は、以下のパワーモジュールを提供する。 One aspect of the present disclosure provides the following power module:
[9]上記[1]~[5]のいずれか一つの接合体、或いは、上記[7]又は[8]の製造方法で得られる接合体と、当該接合体の前記金属板に電気的に接続される半導体素子と、を備えるパワーモジュール。 [9] A power module comprising a bonded body according to any one of [1] to [5] above, or a bonded body obtained by the manufacturing method according to [7] or [8] above, and a semiconductor element electrically connected to the metal plate of the bonded body.
 上記[9]のパワーモジュールは、上述のいずれかの接合体又は上述のいずれかの製造方法で得られる接合体と、当該接合体の金属板に電気的に接続される半導体素子と、を備える。このようなパワーモジュールは、上述のいずれかの接合体又はいずれかの製造方法で得られる接合体を備える。このような接合体は、画像認識技術等によって、パワーモジュールを製造する際の金属板の位置合わせを高い精度で行うことができる。 The power module of [9] above comprises any of the above-mentioned joined bodies or a joined body obtained by any of the above-mentioned manufacturing methods, and a semiconductor element electrically connected to the metal plate of the joined body. Such a power module comprises any of the above-mentioned joined bodies or a joined body obtained by any of the above-mentioned manufacturing methods. Such a joined body allows for highly accurate alignment of the metal plate when manufacturing the power module, using image recognition technology or the like.
 画像認識技術によって、位置合わせを高い精度で行うことが可能な接合体及びその製造方法を提供することができる。また、本開示は、このような接合体を効率よく得ることが可能な集合基板を提供することができる。また、本開示は、このような接合体を用いることによって、信頼性に優れるパワーモジュールを提供することができる。 By using image recognition technology, it is possible to provide a bonded body that allows for highly accurate alignment, and a method for manufacturing the same. The present disclosure also provides an assembly substrate that allows for efficient production of such a bonded body. The present disclosure also provides a highly reliable power module by using such a bonded body.
接合体の平面図である。FIG. 金属板の厚さ方向に沿う接合体の断面図である。FIG. 2 is a cross-sectional view of the joint body taken along the thickness direction of the metal plates. 集合基板の斜視図である。FIG. パワーモジュールの断面図である。FIG. 2 is a cross-sectional view of a power module. 支持板とこれに取り付けられた仮止め材を示す図である。FIG. 2 is a diagram showing a support plate and a temporary fastening material attached thereto. 支持板とこれに仮止めされた金属板を示す図である。FIG. 13 is a diagram showing a support plate and a metal plate temporarily fixed thereto. 格子治具と、これを用いて支持板に仮止めされる金属板を示す図である。13A and 13B are diagrams showing a grid jig and a metal plate temporarily fixed to a support plate using the grid jig; 図7のVIII-VIII線断面図である。8 is a cross-sectional view taken along line VIII-VIII in FIG. 7. セラミック板に形成された塗布層と、金属板が仮止めされた支持板とを積層する様子を示す図である。13 is a diagram showing a state in which a coating layer formed on a ceramic plate and a support plate to which a metal plate is temporarily attached are laminated. FIG. 第1積層体の一部を示す斜視図である。FIG. 2 is a perspective view showing a portion of a first stack. 塗布層が設けられたセラミック板と、塗布層に貼り合わせられる金属板の厚さ方向に沿う断面図である。1 is a cross-sectional view taken along the thickness direction of a ceramic plate provided with a coating layer and a metal plate bonded to the coating layer. 複数の第1積層体と、これらを積層することによって形成される第2積層体の断面図である。3 is a cross-sectional view of a plurality of first laminates and a second laminate formed by stacking the first laminates. FIG. 囲い治具の斜視図である。FIG. 第2積層体が加圧装置で加圧された状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state in which the second laminate is pressed by a pressing device. 第2積層体が加熱装置に導入されたときの状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state when a second stack is introduced into a heating device. 集合基板から支持板を取り外したときの状態を示す断面図である。11 is a cross-sectional view showing a state in which a support plate is removed from the collective substrate. FIG.
 以下、場合により図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、各要素の寸法比率は図示の比率に限られるものではない。本開示において、「~」の記号で示される各数値範囲は、下限値及び上限値を含む。すなわち、「A~B」で示される数値範囲は、A以上且つB以下を意味する。上限値のみを有する数値範囲と下限値のみを有する数値範囲を組み合わせた数値範囲も本開示に含まれる。各数値範囲の上限又は下限をいずれかの実施例の数値で置き換えたものも、本開示に含まれる。複数の材料が例示されている場合、そのうちの一種を単独で用いてもよいし、複数を組み合わせて用いてもよい。 Below, embodiments of the present disclosure will be described with reference to the drawings as needed. However, the following embodiments are merely examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. In the description, the same reference numerals are used for the same elements or elements having the same functions, and overlapping descriptions are omitted as needed. Furthermore, unless otherwise specified, the positional relationships, such as up, down, left, right, etc., are based on the positional relationships shown in the drawings. Furthermore, the dimensional ratios of each element are not limited to the ratios shown. In this disclosure, each numerical range indicated by the symbol "~" includes a lower limit and an upper limit. In other words, a numerical range indicated by "A~B" means A or more and B or less. A numerical range that combines a numerical range having only an upper limit and a numerical range having only a lower limit is also included in this disclosure. A numerical range in which the upper limit or lower limit of each numerical range is replaced with the numerical value of any of the examples is also included in this disclosure. When multiple materials are exemplified, one of them may be used alone, or multiple materials may be used in combination.
 一実施形態において、接合体は、セラミック板と、金属板と、セラミック板と金属板とを接合し、ろう材成分を含む接合部と、を備える。接合部は、金属板のセラミック板側の第1主面とは反対側の第2主面の周縁部を覆っている。接合体は例えば回路基板であってよい。金属板は、電気回路を構成してもよいし、放熱板であってもよい。一枚のセラミック板の一方の主面に接合される金属板は、一つであってもよいし、複数であってもよい。セラミック板の一方の主面にのみ金属板が接合されてもよいし、両方の主面に金属板が接合されてもよい。 In one embodiment, the joint includes a ceramic plate, a metal plate, and a joint portion that joins the ceramic plate and the metal plate and contains a brazing material component. The joint portion covers the peripheral portion of a second main surface of the metal plate opposite the first main surface on the ceramic plate side. The joint may be, for example, a circuit board. The metal plate may form an electric circuit or may be a heat sink. There may be one or more metal plates joined to one main surface of a ceramic plate. The metal plate may be joined to only one main surface of the ceramic plate, or to both main surfaces.
 セラミック板の材質は特に制限されず、例えば、窒化物焼結体、炭化物焼結体、又は酸化物焼結体で構成されていてよい。具体的には、窒化ケイ素焼結体、窒化アルミニウム焼結体、酸化アルミニウム焼結体、及び炭化ケイ素焼結体等が挙げられる。接合部とセラミック板の色が異なっていれば、画像認識の精度を十分に高くすることができる。このような観点から、セラミック板は、例えば、窒化ケイ素焼結体であってよい。セラミック板の厚みは、例えば0.2~2mmであってよく、0.25~1.5mmであってもよい。 The material of the ceramic plate is not particularly limited, and may be, for example, a sintered nitride, a sintered carbide, or a sintered oxide. Specific examples include silicon nitride sintered body, aluminum nitride sintered body, aluminum oxide sintered body, and silicon carbide sintered body. If the joint and the ceramic plate are different colors, the accuracy of image recognition can be sufficiently high. From this perspective, the ceramic plate may be, for example, a sintered silicon nitride. The thickness of the ceramic plate may be, for example, 0.2 to 2 mm, or 0.25 to 1.5 mm.
 金属板は、例えば銅板であってよい。銅板は、通常、接合層との色が異なるため、這い上がり部を高い精度で画像認識することができる。金属板は、打ち抜き加工で得られたものであってよい。金属板がダレ(ダレ面)及びバリ(バリ面)を有する場合、ダレよりもバリの方がセラミック板寄りに位置するように接合部を介してセラミック板に接合されていてよい。これによって、這い上がり部が金属板の第2主面の周縁部を高い均一性で覆うことができる。金属板の形状は特に限定されず、角柱形状又は四角柱形状であってよい。金属板の少なくとも一部の角は面取り加工されていてもよい。 The metal plate may be, for example, a copper plate. The copper plate usually has a different color from the bonding layer, so that the creeping portion can be image-recognized with high accuracy. The metal plate may be obtained by punching. If the metal plate has a sag (sag surface) and a burr (burr surface), it may be bonded to the ceramic plate via a joint so that the burr is located closer to the ceramic plate than the sag. This allows the creeping portion to cover the peripheral portion of the second main surface of the metal plate with high uniformity. The shape of the metal plate is not particularly limited, and may be a prismatic or quadrangular prism shape. At least some of the corners of the metal plate may be chamfered.
 金属板の厚みは、0.5mm以上であってよく、0.6mm以上、0.7mm以上又は0.8mm以上であってよい。これによって、金属板の第2主面における這い上がり部の幅Lが大きくなり過ぎることを抑制できる。金属板の厚みは、3mm以下、2mm以下又は1.5mm以下であってよい。これによって、接合体の小型化及び軽量化を図ることができる。金属板の厚み範囲の一例は、0.5~3mmである。 The thickness of the metal plate may be 0.5 mm or more, 0.6 mm or more, 0.7 mm or more, or 0.8 mm or more. This prevents the width L of the creeping portion on the second main surface of the metal plate from becoming too large. The thickness of the metal plate may be 3 mm or less, 2 mm or less, or 1.5 mm or less. This allows the joint to be made smaller and lighter. An example of the thickness range of the metal plate is 0.5 to 3 mm.
 接合層は、セラミック板と金属板とを接合する層であり、ろう材成分を含む。このため、ろう材層と称されることもある。接合層は、例えば、ろう材に由来する銀、又は銀及び銅を含んでよい。接合層は、さらに、ろう材に由来する錫及び活性金属からなる群より選ばれる一種又は二種以上の金属を含有してよい。接合層において、二種以上の金属は合金となっていてもよい。活性金属は、チタン、ハフニウム、ジルコニウム、及びニオブからなる群より選ばれる一種又は二種以上を含んでいてよい。接合層に含まれる銀及び銅は、例えばAg-Cu共晶合金等の合金として含まれていてもよい。接合層における銀の含有量は、Ag換算で45~95質量%であってよく、50~95質量%であってもよい。接合層における銀及び銅の合計含有量は、それぞれAg及びCuに換算して65~100質量%であってよく、70~99質量%であってよく、90~98質量%であってもよい。これによって、接合層における残留応力を十分に低減しつつ、接合層の緻密性を向上することができる。 The bonding layer is a layer that bonds the ceramic plate and the metal plate, and contains a brazing material component. For this reason, it is sometimes called a brazing material layer. The bonding layer may contain, for example, silver derived from the brazing material, or silver and copper. The bonding layer may further contain one or more metals selected from the group consisting of tin and active metals derived from the brazing material. In the bonding layer, the two or more metals may be an alloy. The active metal may contain one or more metals selected from the group consisting of titanium, hafnium, zirconium, and niobium. The silver and copper contained in the bonding layer may be contained as an alloy such as an Ag-Cu eutectic alloy. The silver content in the bonding layer may be 45 to 95 mass% or 50 to 95 mass% in terms of Ag. The total content of silver and copper in the bonding layer may be 65 to 100 mass%, 70 to 99 mass%, or 90 to 98 mass% in terms of Ag and Cu, respectively. This makes it possible to sufficiently reduce residual stress in the bonding layer while improving the density of the bonding layer.
 接合層における活性金属の含有量は、Ag及びCuの合計100質量部に対して、0.5~8質量部であってよい。活性金属の含有量を0.5質量部以上とすることで、セラミック板と接合層との接合性を向上することができる。一方、活性金属の含有量を8質量部以下とすることで、接合界面に脆弱な合金層が形成されることを抑制できる。 The content of the active metal in the bonding layer may be 0.5 to 8 parts by mass per 100 parts by mass of the total of Ag and Cu. By making the content of the active metal 0.5 parts by mass or more, it is possible to improve the bond between the ceramic plate and the bonding layer. On the other hand, by making the content of the active metal 8 parts by mass or less, it is possible to suppress the formation of a brittle alloy layer at the bonding interface.
 接合層に含有される上記金属は、窒化物、酸化物、炭化物又は水素化物として含まれていてもよい。一例として、接合層は、窒化チタン及び/又は水素化チタン(TiH)を含んでいてよい。これによって、セラミック板と金属板との接合強度を十分に高くすることができる。AgとCuの合計100質量部に対するTiHの含有量は例えば1~8質量部であってよい。 The metal contained in the bonding layer may be contained as a nitride, oxide, carbide, or hydride. As an example, the bonding layer may contain titanium nitride and/or titanium hydride (TiH 2 ). This allows the bonding strength between the ceramic plate and the metal plate to be sufficiently high. The content of TiH 2 relative to a total of 100 parts by mass of Ag and Cu may be, for example, 1 to 8 parts by mass.
 図1は、接合体の一例の平面図であり、図2は図1のII-II線断面図である。接合体100は、セラミック板20と、金属板60と、セラミック板20と金属板60とを接合し、ろう材成分を含む接合部40と、を備える。接合部40は、金属板60のセラミック板20側の第1主面60Bとは反対側の第2主面60Aの周縁部の全体を覆う這い上がり部46を有する。 Figure 1 is a plan view of an example of a joint, and Figure 2 is a cross-sectional view taken along line II-II in Figure 1. The joint 100 comprises a ceramic plate 20, a metal plate 60, and a joint 40 that joins the ceramic plate 20 and the metal plate 60 and contains a brazing material component. The joint 40 has a creeping portion 46 that covers the entire peripheral portion of the second main surface 60A of the metal plate 60 opposite the first main surface 60B on the ceramic plate 20 side.
 図1のように平面視したときに、這い上がり部46の幅Lの最小値は、0.1mm以上、又は0.2mm以上であってもよい。このように幅Lの最小値を大きくすることによって、画像認識技術によって、十分高い精度で金属板60の位置を特定することができる。また、金属板60の形状を高い精度で検知し、金属板60の寸法を高い精度で測定することができる。這い上がり部46の幅Lの最大値は、2.0mm以下、1.9mm以下、1.8mm以下、又は1.5mm以下であってよい。これによって、金属板60の第2主面60A上に搭載される半導体チップが這い上がり部46に接続されることによる接続不良、電気抵抗の増大を抑制することができる。幅Lは、図1のような平面画像を光学顕微鏡で観察し、金属板60の主面60Aにピントを合わせて得られる観察画像において測定することができる。 When viewed in a plan view as in FIG. 1, the minimum value of the width L of the creeping portion 46 may be 0.1 mm or more, or 0.2 mm or more. By increasing the minimum value of the width L in this way, the position of the metal plate 60 can be identified with sufficiently high accuracy by image recognition technology. In addition, the shape of the metal plate 60 can be detected with high accuracy, and the dimensions of the metal plate 60 can be measured with high accuracy. The maximum value of the width L of the creeping portion 46 may be 2.0 mm or less, 1.9 mm or less, 1.8 mm or less, or 1.5 mm or less. This makes it possible to suppress poor connection and increased electrical resistance caused by the semiconductor chip mounted on the second main surface 60A of the metal plate 60 being connected to the creeping portion 46. The width L can be measured in an observation image obtained by observing a planar image such as that in FIG. 1 with an optical microscope and focusing on the main surface 60A of the metal plate 60.
 幅Lの平均値は、0.2mm以上、0.3mm以上、0.4mm以上、又は0.5mm以上であってよい。幅Lの平均値を大きくすることによって、一層高い精度で金属板60の位置を特定することができる。幅Lの平均値は、1.8mm以下、1.5mm以下、又は1.3mm以下であってよい。幅Lの平均値が過大になるのを抑制することによって、金属板60の第2主面60A上に搭載される半導体チップが這い上がり部46に接続されることによる接続不良、電気抵抗の増大を抑制することができる。また、金属板60を小さくして、接合体100を小型化することができる。幅Lの平均値の数値範囲の一例は、0.2~1.8mmである。これによって、上述の特性をバランスよく両立することができる。幅Lの平均値は、上述の光学顕微鏡の観察画像において、任意に選択される20箇所の幅Lの測定値の算術平均値である。 The average value of the width L may be 0.2 mm or more, 0.3 mm or more, 0.4 mm or more, or 0.5 mm or more. By increasing the average value of the width L, the position of the metal plate 60 can be identified with even higher accuracy. The average value of the width L may be 1.8 mm or less, 1.5 mm or less, or 1.3 mm or less. By preventing the average value of the width L from becoming excessive, it is possible to prevent poor connection and increased electrical resistance caused by the semiconductor chip mounted on the second main surface 60A of the metal plate 60 being connected to the creeping portion 46. In addition, the metal plate 60 can be made smaller, thereby reducing the size of the joint 100. An example of the numerical range of the average value of the width L is 0.2 to 1.8 mm. This allows the above-mentioned characteristics to be achieved in a well-balanced manner. The average value of the width L is the arithmetic mean value of the measured values of the width L at 20 points arbitrarily selected in the image observed by the optical microscope described above.
 幅Lの最大値、最小値及び平均値は、セラミック板20と金属板60とを接合する際のろう材の塗布量、接合時の圧力、及び接合時の加熱温度及び加熱時間等によって調整することができる。幅Lの最大値と最小値の差は、1.7mm以下、1.5mm以下、1.3mm以下、又は1.0mm以下であってよい。当該差を小さくすることによって、這い上がり部46の幅Lのばらつきが小さくなり、画像認識技術を用いてより高い確実性で金属板60の位置を検知することができる。幅Lの最大値と最小値の差は、接合体100を製造し易くする観点から、0.1mm以上であってよい。幅Lの差の数値範囲の一例は、0.1~1.7mmである。 The maximum, minimum and average values of width L can be adjusted by the amount of brazing material applied when joining the ceramic plate 20 and the metal plate 60, the pressure during joining, and the heating temperature and heating time during joining. The difference between the maximum and minimum values of width L may be 1.7 mm or less, 1.5 mm or less, 1.3 mm or less, or 1.0 mm or less. By reducing this difference, the variation in width L of the creeping portion 46 is reduced, and the position of the metal plate 60 can be detected with higher reliability using image recognition technology. The difference between the maximum and minimum values of width L may be 0.1 mm or more from the viewpoint of making it easier to manufacture the joined body 100. An example of the numerical range of the difference in width L is 0.1 to 1.7 mm.
 図2に示すように、接合部40は、金属板60の側面62を覆っており、金属板60の主面60Aからセラミック板20の主面20Aに近づくにつれて、金属板60の側面62から離れるように拡がるスカート部44を有していてよい。スカート部44の輪郭をなす傾斜面44Sは、セラミック板20の主面20Aまで延びている。スカート部44の裾は、セラミック板20の主面20Aに接しており、接合部40の外縁45をなしている。接合部40は、スカート部44を有することによって、金属板の外縁部とセラミック板との接合部分における局所的な応力集中を抑制することができる。したがって、セラミック板20と金属板60の接続信頼性を十分に高くすることができる。 2, the joint 40 covers the side surface 62 of the metal plate 60 and may have a skirt portion 44 that widens away from the side surface 62 of the metal plate 60 as it approaches the main surface 20A of the ceramic plate 20 from the main surface 60A of the metal plate 60. The inclined surface 44S that defines the outline of the skirt portion 44 extends to the main surface 20A of the ceramic plate 20. The bottom of the skirt portion 44 is in contact with the main surface 20A of the ceramic plate 20 and forms the outer edge 45 of the joint 40. By having the skirt portion 44, the joint 40 can suppress local stress concentration at the joint between the outer edge of the metal plate and the ceramic plate. Therefore, the connection reliability between the ceramic plate 20 and the metal plate 60 can be sufficiently increased.
 図1及び図2の接合体100では、セラミック板20の一方の主面20Aに金属板60(第1の金属板)が接合部40(第1の接合部)によって接合されている。変形例では、セラミック板20の他方の主面20Bに第2の金属板が第2の接合部によって接合されていてよい。第2の接合部は第1の接合部と同様の形状を有してもよい。第1の金属板と第2の金属板のサイズ及び形状は同じであってもよいし、異なっていてもよい。主面20A(主面20B)に接合される第1の金属板60(第2の金属板)の数は一つに限定されず、複数であってよい。複数ある第1の金属板60(第2の金属板)のサイズ及び形状は同じであってもよいし、異なっていてもよい。このように、セラミック板20に複数の金属板が接合されている場合、少なくとも一つの金属板の第2主面の周辺部の全体が這い上がり部46によって覆われていればよい。 In the joined body 100 of FIG. 1 and FIG. 2, a metal plate 60 (first metal plate) is joined to one main surface 20A of the ceramic plate 20 by a joint 40 (first joint). In a modified example, a second metal plate may be joined to the other main surface 20B of the ceramic plate 20 by a second joint. The second joint may have a shape similar to that of the first joint. The size and shape of the first metal plate and the second metal plate may be the same or different. The number of first metal plates 60 (second metal plates) joined to the main surface 20A (main surface 20B) is not limited to one, and may be multiple. The size and shape of the multiple first metal plates 60 (second metal plates) may be the same or different. In this way, when multiple metal plates are joined to the ceramic plate 20, it is sufficient that the entire periphery of the second main surface of at least one metal plate is covered by the creeping portion 46.
 一実施形態において、集合基板は、多数個取り用のセラミック板(第1セラミック板)と、切断面で構成される側面を有する複数の金属板と、セラミック板と複数の金属板のそれぞれとを接合し、ろう材成分を含む複数の接合部と、を備える。複数の接合部の少なくとも一つの接合部は、当該接合部で接合される金属板のセラミック板側の第1主面とは反対側の第2主面の周縁部の全体を覆う這い上がり部を有する。このような這い上がり部で第2主面の周縁が覆われる金属板は、画像認識技術によって、位置の特定を円滑に行うことができる。複数の接合部の全てが、これらの接合部で接合される金属板のセラミック板側の第1主面とは反対側の第2主面の周縁部の全体を覆う這い上がり部を有していてよい。各這い上がり部の幅Lの最小値、最大値及び平均値は、上述したとおりである。 In one embodiment, the assembly substrate includes a ceramic plate (first ceramic plate) for multiple pieces, a plurality of metal plates having side surfaces formed by cut surfaces, and a plurality of joints that join the ceramic plate and each of the plurality of metal plates and contain a brazing material component. At least one of the plurality of joints has a creeping portion that covers the entire peripheral portion of the second main surface opposite the first main surface on the ceramic plate side of the metal plate joined at the joint. The metal plate whose peripheral portion of the second main surface is covered by such a creeping portion can be smoothly located by image recognition technology. All of the plurality of joints may have a creeping portion that covers the entire peripheral portion of the second main surface opposite the first main surface on the ceramic plate side of the metal plate joined at these joints. The minimum value, maximum value, and average value of the width L of each creeping portion are as described above.
 図3は、集合基板の一例を示す斜視図である。集合基板200は、セラミック板21と、セラミック板21の主面21A及び主面21Bのそれぞれに接合される複数の金属板60を備える。セラミック板21は主面21Aに形成された区画線SL1,SL2によって複数に区画されている。主面21Aには、区画線として、第1の方向に沿って延在し且つ等間隔で並ぶ複数の区画線SL1と、第1の方向に直交する第2の方向に沿って延在し且つ等間隔で並ぶ複数の区画線SL2と、が設けられている。区画線SL1と区画線SL2とは互いに直交している。 Figure 3 is a perspective view showing an example of an aggregate substrate. The aggregate substrate 200 comprises a ceramic plate 21 and a plurality of metal plates 60 joined to each of the main surface 21A and the main surface 21B of the ceramic plate 21. The ceramic plate 21 is divided into a plurality of sections by division lines SL1, SL2 formed on the main surface 21A. The main surface 21A is provided with a plurality of division lines SL1 extending along a first direction and arranged at equal intervals, and a plurality of division lines SL2 extending along a second direction perpendicular to the first direction and arranged at equal intervals. The division lines SL1 and SL2 are perpendicular to each other.
 区画線SL1,SL2は、例えば、複数の凹みが直線状に並んで構成されていてもよいし、線状に溝が形成されていてもよい。具体的には、レーザー光で形成されるスクライブラインであってよい。レーザー源としては、例えば、炭酸ガスレーザー及びYAGレーザー等が挙げられる。このようなレーザー源からレーザー光を間欠的に照射することによってスクライブラインを形成することができる。なお、区画線SL1,SL2は、等間隔で並んでいなくてもよく、また、直交するものに限定されない。また、直線状ではなく、曲線状であってもよいし、折れ曲がっていてもよい。 The demarcation lines SL1, SL2 may be, for example, a number of depressions arranged in a straight line, or may have linear grooves. Specifically, they may be scribe lines formed with laser light. Examples of laser sources include carbon dioxide lasers and YAG lasers. Scribe lines can be formed by intermittently irradiating laser light from such laser sources. Note that the demarcation lines SL1, SL2 do not have to be arranged at equal intervals, and are not limited to being perpendicular. Furthermore, they may be curved rather than straight, or bent.
 セラミック板21は、区画線SL1及び区画線SL2によって画定される複数の区画領域DRを有する。複数の区画領域DRのそれぞれに、金属板60が設けられている。複数の金属板60は、それぞれ互いに独立している。集合基板200を、区画線SL1,SL2に沿って分割すれば、セラミック板20を備える接合体100を得ることができる。 The ceramic plate 21 has a plurality of partition regions DR defined by partition lines SL1 and SL2. A metal plate 60 is provided in each of the plurality of partition regions DR. The plurality of metal plates 60 are independent of each other. By dividing the aggregate substrate 200 along the partition lines SL1 and SL2, a joint body 100 including the ceramic plate 20 can be obtained.
 セラミック板21の主面21A上の複数の金属板60のそれぞれは、接合部40によってセラミック板21に接合されている。複数の接合部40は、図1に示す接合部40と同様に、いずれも金属板60の側面62上にスカート部44を有する。スカート部44は、金属板60の側面62の一部又は全部とセラミック板21の主面21Aの一部とを被覆している。複数の接合部40は、それぞれ、金属板60の主面60Aの周縁部の全体を覆う這い上がり部46を有する。這い上がり部46はスカート部44の頂部から主面60Aの周縁部まで連続的に延びている。各這い上がり部46の幅Lの最小値、最大値及び平均値は、接合体100で説明した数値範囲と同じであってよい。このような集合基板200は、画像認識技術によって位置合わせ又は寸法測定を高い精度で行うことができる。また、集合基板200を、区画線SL1,SL2に沿って分割すれば、画像認識技術によって位置合わせ又は寸法測定を高い精度で行うことが可能な9個の接合体を得ることができる。 Each of the multiple metal plates 60 on the main surface 21A of the ceramic plate 21 is joined to the ceramic plate 21 by a joint 40. The multiple joints 40 each have a skirt portion 44 on the side surface 62 of the metal plate 60, similar to the joint 40 shown in FIG. 1. The skirt portion 44 covers part or all of the side surface 62 of the metal plate 60 and part of the main surface 21A of the ceramic plate 21. Each of the multiple joints 40 has a creeping portion 46 that covers the entire peripheral portion of the main surface 60A of the metal plate 60. The creeping portion 46 extends continuously from the top of the skirt portion 44 to the peripheral portion of the main surface 60A. The minimum, maximum, and average value of the width L of each creeping portion 46 may be the same as the numerical range described for the joint 100. Such an aggregate substrate 200 can be aligned or dimensionally measured with high accuracy using image recognition technology. Furthermore, by dividing the substrate assembly 200 along the dividing lines SL1 and SL2, nine bonded bodies can be obtained that can be aligned or dimensionally measured with high precision using image recognition technology.
 セラミック板21の主面21B上の複数の金属板60のそれぞれも、金属板60を接合する接合部40と同様の形状を有する接合部によってセラミック板21に接合されてよい。この接合部は、複数の金属板60のセラミック板21側の主面とは反対側の主面の周縁部の全体を覆う、接合部40と同様の這い上がり部を有していてもよい。セラミック板21の主面21B上の金属板60の主面の周縁部にも這い上がり部が形成されていれば、画像認識技術による位置合わせを表裏の這い上がり部によって行うことができるため、位置合わせ精度を一層向上することができる。 Each of the multiple metal plates 60 on the main surface 21B of the ceramic plate 21 may also be joined to the ceramic plate 21 by a joint having a shape similar to that of the joint 40 that joins the metal plates 60. This joint may have a creeping portion similar to the joint 40, covering the entire peripheral portion of the main surface of the multiple metal plates 60 opposite the main surface on the ceramic plate 21 side. If a creeping portion is also formed on the peripheral portion of the main surface of the metal plate 60 on the main surface 21B of the ceramic plate 21, alignment using image recognition technology can be performed using the creeping portions on the front and back, further improving alignment accuracy.
 接合体100は、画像認識技術によって高い精度で位置合わせをすることが可能であるため、回路基板としてパワーモジュールに搭載されてもよい。金属板60は、電気信号を伝達する機能を有する回路基板、又は熱を伝達する機能を有する放熱板として機能してよい。また、金属板60は、熱を伝達する機能と、電気信号を伝達する機能を兼ね備えていてもよい。接合体100は、画像認識技術によって位置合わせを高い精度で行うことができるため、優れた信頼性を有するパワーモジュールを製造することができる。このように、接合体100は、高い信頼性が求められるパワーモジュールに搭載される部品として好適である。 The joint 100 can be aligned with high precision using image recognition technology, and therefore may be mounted on a power module as a circuit board. The metal plate 60 may function as a circuit board having the function of transmitting electrical signals, or as a heat sink having the function of transmitting heat. The metal plate 60 may also have both the function of transmitting heat and the function of transmitting electrical signals. The joint 100 can be aligned with high precision using image recognition technology, and therefore a power module with excellent reliability can be manufactured. In this way, the joint 100 is suitable as a component to be mounted on a power module that requires high reliability.
 図3の集合基板200における複数の金属板60及び複数の接合部40は、全て同じサイズ及び形状を有している。変形例では、複数の金属板60及び複数の接合部40は互いに異なるサイズ及び形状を有していてよい。この場合、複数の接合部40の全てが這い上がり部46を有する必要はなく、少なくとも一つの接合部40が這い上がり部46を有していればよい。ただし、複数の接合部40の全てが這い上がり部46を有していれば、画像認識技術によって位置合わせを高い精度で行うことが可能な接合体を量産することができる。 The multiple metal plates 60 and multiple joints 40 in the collective substrate 200 in FIG. 3 all have the same size and shape. In a modified example, the multiple metal plates 60 and multiple joints 40 may have different sizes and shapes. In this case, it is not necessary for all of the multiple joints 40 to have the creeping portion 46, as long as at least one joint 40 has the creeping portion 46. However, if all of the multiple joints 40 have the creeping portion 46, it is possible to mass-produce joints that can be aligned with high precision using image recognition technology.
 一実施形態に係るパワーモジュールは、接合体(回路基板)と、接合体の金属板に電気的に接続される半導体素子と、を備える。接合体は、上述の接合体100又はその変形例であってよい。接合体100及びその変形例に関する説明内容は、本実施形態のパワーモジュールに適用される。このようなパワーモジュールは、部品である接合体が画像認識技術によって高い精度で位置合わせされているため、信頼性に優れる。また、画像認識技術を用いることによって効率よく製造することができる。接合体及び半導体素子は、樹脂によって封止されていてもよい。画像認識技術としては、例えば、CCDカメラ等の画像取得部と、取得した画像情報から位置情報を得る情報処理部と、を備える通常の画像認識装置を用いればよい。このような画像認識装置からの位置情報に基づいて、接合体の位置を調整する位置決め装置を用いて、高精度に位置合わせをすることができる。 The power module according to one embodiment includes a joint (circuit board) and a semiconductor element electrically connected to the metal plate of the joint. The joint may be the joint 100 described above or a modified version thereof. The description of the joint 100 and its modified versions applies to the power module of this embodiment. Such a power module has excellent reliability because the joint, which is a component, is aligned with high accuracy by image recognition technology. In addition, the power module can be efficiently manufactured by using image recognition technology. The joint and the semiconductor element may be sealed with resin. As the image recognition technology, for example, a normal image recognition device including an image acquisition unit such as a CCD camera and an information processing unit that obtains position information from the acquired image information may be used. High-precision alignment can be achieved using a positioning device that adjusts the position of the joint based on the position information from such an image recognition device.
 図4は、パワーモジュールの一例を示す断面図である。パワーモジュール300は、ベース板90と、ハンダ82を介してベース板90の一方面と接合される接合体101とを備える。接合体101の一方面側における金属板61がハンダ82を介してベース板90と接合している。 Figure 4 is a cross-sectional view showing an example of a power module. The power module 300 includes a base plate 90 and a joint 101 that is joined to one side of the base plate 90 via solder 82. A metal plate 61 on one side of the joint 101 is joined to the base plate 90 via the solder 82.
 接合体101の他方面側における金属板60には、ハンダ81を介して半導体素子80が取り付けられている。半導体素子80は、アルミワイヤ(アルミ線)等の金属ワイヤ84で金属板60の所定箇所に接続されている。このようにして、半導体素子80と金属板60とは電気的に接続されている。筐体86の外部と金属板60とを電気的に接続するため、金属板の一つである金属板60aは、ハンダ85を介して筐体86を貫通して設けられる電極83に接続されている。 A semiconductor element 80 is attached to the metal plate 60 on the other side of the joint 101 via solder 81. The semiconductor element 80 is connected to a predetermined location of the metal plate 60 with a metal wire 84 such as an aluminum wire. In this way, the semiconductor element 80 and the metal plate 60 are electrically connected. To electrically connect the outside of the housing 86 to the metal plate 60, one of the metal plates, metal plate 60a, is connected to an electrode 83 that penetrates the housing 86 via solder 85.
 ベース板90の一方の主面上には、当該主面と一体になって接合体101を収容する筐体86が配置されている。ベース板90の一方の主面と筐体86とで形成される収容空間には樹脂95が充填されている。樹脂95は、接合体101及び半導体素子80を封止している。樹脂は、例えば、熱硬化型樹脂であってよく、光硬化型樹脂であってもよい。 A housing 86 is disposed on one of the main surfaces of the base plate 90, and is integrated with the main surface to house the joint 101. The housing space formed by the one of the main surfaces of the base plate 90 and the housing 86 is filled with resin 95. The resin 95 seals the joint 101 and the semiconductor element 80. The resin may be, for example, a thermosetting resin or a photocurable resin.
 ベース板90の他方の主面には、グリース94を介して放熱部材をなす冷却フィン92が接合されている。ベース板90の端部には冷却フィン92をベース板90に固定するネジ93が取り付けられている。ベース板90及び冷却フィン92はアルミニウムで構成されていてもよい。ベース板90及び冷却フィン92は、高い熱伝導率を有することによって放熱部として良好に機能する。 A cooling fin 92, which serves as a heat dissipation member, is joined to the other main surface of the base plate 90 via grease 94. Screws 93 are attached to the ends of the base plate 90 to secure the cooling fin 92 to the base plate 90. The base plate 90 and the cooling fin 92 may be made of aluminum. The base plate 90 and the cooling fin 92 function well as heat dissipation parts due to their high thermal conductivity.
 セラミック板20によって、金属板60と金属板61は電気的に絶縁される。金属板60(60a)は電気回路を形成していてよい。金属板60及び金属板61は、ろう材成分を含む接合部(不図示)によってセラミック板20の主面20A及び主面20Bにそれぞれ接合されている。接合部は、図1及び図2に示すようなスカート部44及び這い上がり部46を有する。這い上がり部46の幅Lの平均値及び標準偏差は上述したとおりである。金属板60(金属板61)は、このような這い上がり部46を用いて、位置合わせ及び寸法測定が行われている。したがって、パワーモジュール300は信頼性に優れる。 The metal plate 60 and the metal plate 61 are electrically insulated by the ceramic plate 20. The metal plate 60 (60a) may form an electrical circuit. The metal plate 60 and the metal plate 61 are respectively joined to the main surface 20A and the main surface 20B of the ceramic plate 20 by a joint (not shown) containing a brazing material component. The joint has a skirt portion 44 and a creeping portion 46 as shown in Figures 1 and 2. The average value and standard deviation of the width L of the creeping portion 46 are as described above. The metal plate 60 (metal plate 61) is aligned and dimensionally measured using such a creeping portion 46. Therefore, the power module 300 has excellent reliability.
 一実施形態に係る接合体の製造方法は、金属基材を打ち抜いて複数の金属板60を得る打ち抜き工程と、第1位置決め治具を用いて複数の金属板60を一対の支持板のそれぞれに仮止めする仮止め工程と、多数個取り用のセラミック板21の主面21A及び主面21Bにろう材を塗布及び乾燥して、主面21A及び主面21Bのそれぞれに複数の塗布層を設ける塗布工程と、複数の塗布層と複数の金属板60とがそれぞれ対向するように、第2位置決め治具を用いてセラミック板21を一対の支持板で挟んで積層体を作製する積層工程と、積層体を加熱して金属板60とセラミック板21とを接合する接合工程と、金属板60が接合されたセラミック板21を分割して複数の接合体100を得る仕上げ工程と、を有する。 The manufacturing method of the bonded body according to one embodiment includes a punching process in which a metal substrate is punched to obtain a plurality of metal plates 60, a temporary fixing process in which the plurality of metal plates 60 are temporarily fixed to each of a pair of support plates using a first positioning jig, a coating process in which a brazing material is applied to the main surface 21A and the main surface 21B of a ceramic plate 21 for multiple pieces and dried to provide a plurality of coating layers on each of the main surface 21A and the main surface 21B, a lamination process in which the ceramic plate 21 is sandwiched between the pair of support plates using a second positioning jig so that the plurality of coating layers and the plurality of metal plates 60 face each other to produce a laminate, a bonding process in which the laminate is heated to bond the metal plate 60 and the ceramic plate 21, and a finishing process in which the ceramic plate 21 to which the metal plate 60 is bonded is divided to obtain a plurality of bonded bodies 100.
 打ち抜き工程では、金属基材を例えば金型を用いて打ち抜く。これによって、側面が切断面で構成される金属板60が得られる。金属板60が四角柱形状である場合、4つの側面の全てが切断面であってよい。金属板60は一方の主面60A側にダレを有し、他方の主面60B側にバリを有していてよい。これによって、接合工程において這い上がり部46を円滑に形成することができる。 In the punching process, the metal base material is punched out using, for example, a die. This results in a metal plate 60 whose side surfaces are cut surfaces. If the metal plate 60 has a rectangular prism shape, all four side surfaces may be cut surfaces. The metal plate 60 may have a sag on one main surface 60A and a burr on the other main surface 60B. This allows the rising portion 46 to be formed smoothly in the joining process.
 仮止め工程では、図5に示す仮止め材11によって支持板TPの所定位置A1に金属板60を固定する。支持板TPは例えばカーボン板であってよい。仮止め材11は、接合工程での加熱によって消失するものであってよい。支持板TPの所定位置A1とは、セラミック板21上に固定される金属板60の接合予定位置A2(図9参照)に対応した位置である。具体的には、支持板TPをセラミック板21上の適切な位置に重ねた際に、セラミック板21上の接合予定位置A2に金属板60が配置されるような位置である。 In the temporary fixing process, the metal plate 60 is fixed to a predetermined position A1 on the support plate TP by a temporary fixing material 11 shown in FIG. 5. The support plate TP may be, for example, a carbon plate. The temporary fixing material 11 may disappear when heated in the joining process. The predetermined position A1 on the support plate TP is a position corresponding to the intended joining position A2 (see FIG. 9) of the metal plate 60 fixed on the ceramic plate 21. Specifically, it is a position where the metal plate 60 is placed at the intended joining position A2 on the ceramic plate 21 when the support plate TP is placed in an appropriate position on the ceramic plate 21.
 図5に示されるように、一枚の支持板TPは、複数の接合体を形成するため、便宜上、複数の領域に区画されている。複数の領域には、それぞれ金属板60を仮止めするための仮止め材11が設置される。仮止め材11の一例として、シートタイプの接着剤を使用することができる。シートタイプの接着剤とは、常温で金属板60を支持板TPに接着可能な接着テープである。接着テープは、両面で接着可能であり、且つ有機成分からなる粘着層と、粘着層の両面を覆う剥離フィルムとを備えている。剥離フィルムは粘着層の両面を保護する部材であり、使用時には剥離される。剥離フィルムは、例えば、透明なPETフィルムであってよい。仮止め材11の粘着層の一方の面が支持板TPの所定位置A1に接着されてよい。その後、図6に示すように、仮止め材11の粘着層の他方の面に金属板60が接着される。 As shown in FIG. 5, a single support plate TP is divided into a plurality of regions for the purpose of forming a plurality of joints. A temporary fixing material 11 for temporarily fixing the metal plate 60 is provided in each of the plurality of regions. As an example of the temporary fixing material 11, a sheet-type adhesive can be used. The sheet-type adhesive is an adhesive tape that can bond the metal plate 60 to the support plate TP at room temperature. The adhesive tape can be bonded on both sides, and includes an adhesive layer made of an organic component and a release film that covers both sides of the adhesive layer. The release film is a member that protects both sides of the adhesive layer and is peeled off when used. The release film may be, for example, a transparent PET film. One side of the adhesive layer of the temporary fixing material 11 may be adhered to a predetermined position A1 of the support plate TP. Then, as shown in FIG. 6, the metal plate 60 is adhered to the other side of the adhesive layer of the temporary fixing material 11.
 粘着層を形成する粘着成分は、支持板TPと金属板60とを接着できる材料を使用できる。粘着成分は、例えば、アクリル系粘着剤、ウレタン系粘着剤、又はゴム系粘着剤等であってよい。これらの粘着剤は、有機成分で構成されている。したがって、接合工程での加熱中に分解される。その使用量を調整すれば、接合体100中にその残渣が残らないように調整することができる。 The adhesive component forming the adhesive layer can be a material capable of bonding the support plate TP and the metal plate 60. The adhesive component can be, for example, an acrylic adhesive, a urethane adhesive, or a rubber adhesive. These adhesives are composed of organic components. Therefore, they are decomposed during heating in the bonding process. By adjusting the amount used, it is possible to adjust the amount so that no residue remains in the bonded body 100.
 アクリル系粘着剤とは、アクリルポリマーからなる粘着剤である。ウレタン系粘着剤とは、ポリウレタン(イソシアネート基を有する化合物とヒドロキシ基を有する化合物が縮合重合したもの)からなる粘着剤である。ゴム系粘着剤は天然ゴム又は合成ゴムからなる粘着剤である。合成ゴムとしては、例えば、アクリルゴム、スチレンブタジエンゴム等が挙げられる。 An acrylic adhesive is an adhesive made of acrylic polymer. A urethane adhesive is an adhesive made of polyurethane (a condensation polymerization product of a compound with an isocyanate group and a compound with a hydroxyl group). A rubber adhesive is an adhesive made of natural or synthetic rubber. Examples of synthetic rubber include acrylic rubber and styrene butadiene rubber.
 仮止め材11は、粘着層を支持する基材層を備えていない粘着テープであってよい。仮止め材11は、スプレータイプの接着剤であってよい。スプレータイプの接着剤とは、常温で金属板60を支持板TPに接着可能な液状で、且つ有機成分からなる接着剤である。この接着剤は、噴霧による使用を想定されている。例えば、支持板TPの所定位置A1に接着剤を噴霧し、その接着剤を介して図6に示すように金属板60を支持板TPに接着させて固定することができる。 The temporary fixing material 11 may be an adhesive tape that does not have a base layer that supports the adhesive layer. The temporary fixing material 11 may be a spray-type adhesive. A spray-type adhesive is a liquid adhesive that is capable of adhering the metal plate 60 to the support plate TP at room temperature and is made of organic components. This adhesive is intended to be used by spraying. For example, the adhesive can be sprayed onto a predetermined position A1 of the support plate TP, and the metal plate 60 can be adhered and fixed to the support plate TP via the adhesive as shown in FIG. 6.
 スプレータイプの接着剤は、溶剤系接着剤、ゴム系接着剤、又は合成樹脂系接着剤等であってよい。溶剤系接着剤の場合、その粘着成分は有機溶剤であり、例えば、ヘキサン、イソヘキサン、トルエン、アセトン、ブタン等を使用することができる。ゴム系接着剤の場合、その粘着成分は天然ゴム又は合成ゴムであってよい。合成ゴムとしては、例えば、アクリルゴム、スチレンブタジエンゴム等を使用することができる。合成樹脂系接着剤の場合、その粘着成分は合成樹脂であり、アクリルポリマー等を使用することができる。 The spray-type adhesive may be a solvent-based adhesive, a rubber-based adhesive, or a synthetic resin-based adhesive. In the case of a solvent-based adhesive, the adhesive component is an organic solvent, and for example, hexane, isohexane, toluene, acetone, butane, etc. can be used. In the case of a rubber-based adhesive, the adhesive component may be natural rubber or synthetic rubber. For example, acrylic rubber, styrene butadiene rubber, etc. can be used as the synthetic rubber. In the case of a synthetic resin-based adhesive, the adhesive component is a synthetic resin, and acrylic polymer, etc. can be used.
 スプレータイプの接着剤は、噴射器等によって支持板TPの所定位置A1に設置される。噴射器は、例えば、容器と、容器内の接着剤を噴射するノズル部とを備えている。容器内には、粘着成分を含む液状の接着剤と接着剤を噴射させる噴射剤とが収容されている。噴射剤としては、例えば、ジメチルエーテル、LPGを使用することができる。ノズル部に取り付けられているレバー等の操作により、容器内の接着剤は容器内から噴射または停止される。 The spray-type adhesive is placed at a predetermined position A1 on the support plate TP by an injector or the like. The injector has, for example, a container and a nozzle part that sprays the adhesive in the container. The container contains liquid adhesive containing a tackifying component and a propellant that sprays the adhesive. As the propellant, for example, dimethyl ether or LPG can be used. The adhesive in the container is sprayed or stopped from inside the container by operating a lever or the like attached to the nozzle part.
 金属板60を支持板TP上の仮止め材11に仮止めする際、図7に示すような格子治具3を使用してよい。格子治具3は、支持板TP上の所定位置A1に金属板60を位置決めする第1位置決め治具の一例である。図7は、支持板TP上に設置された格子治具3を利用して金属板60を所定位置A1に位置合わせしながら、金属板60を仮止め材11で仮止めすることを示す平面図である。図8は、図7のVIII-VIII線断面図である。 When temporarily fixing the metal plate 60 to the temporary fixing material 11 on the support plate TP, a lattice jig 3 as shown in FIG. 7 may be used. The lattice jig 3 is an example of a first positioning jig that positions the metal plate 60 at a predetermined position A1 on the support plate TP. FIG. 7 is a plan view showing the metal plate 60 being temporarily fixed with the temporary fixing material 11 while aligning the metal plate 60 to the predetermined position A1 using the lattice jig 3 installed on the support plate TP. FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7.
 格子治具3は、接合工程の加熱炉8(図15参照)に導入する前に支持板TPから取り外してよい。これによって、格子治具3の材質を高い自由度で選択することができる。例えば、格子治具3の材質の例としては、ポリエチレン(例えば高密度ポリエチレン)、ポリプロピレン、ポリ塩化ビニル、AS樹脂、アクリル樹脂、A2017(ジュラルミン)、A5052(アルミニウム合金)等が挙げられる。これらの材料は加工性に優れる。 The lattice jig 3 may be removed from the support plate TP before being introduced into the heating furnace 8 (see FIG. 15) for the joining process. This allows for a high degree of freedom in selecting the material for the lattice jig 3. Examples of materials for the lattice jig 3 include polyethylene (e.g., high-density polyethylene), polypropylene, polyvinyl chloride, AS resin, acrylic resin, A2017 (duralumin), A5052 (aluminum alloy), etc. These materials have excellent workability.
 図7及び図8に示すように、格子治具3は、枠部31と、枠部31内に形成された位置合わせ用の複数の孔部32と、枠部31から外方に張り出すように設けられた一対の取っ手部33とを備えている。 As shown in Figures 7 and 8, the lattice jig 3 has a frame portion 31, a number of alignment holes 32 formed in the frame portion 31, and a pair of handle portions 33 extending outward from the frame portion 31.
 枠部31は、取っ手部33を除いて実質的に支持板TPの外周に揃うような矩形状を有している。枠部31を支持板TPの外周に揃うように設置することで、支持板TPに対して格子治具3を適切な位置に設置できる。枠部31で囲まれた内側には、互いに直交する複数の縦壁部31aと、複数の横壁部31bとが設けられている。枠部31と縦壁部31aと横壁部31bとによって、あるいは縦壁部31aと横壁部31bとによって、矩形状の孔部32(孔部)が形成されている。 The frame 31 has a rectangular shape that is substantially aligned with the outer periphery of the support plate TP, except for the handle portion 33. By setting the frame 31 so that it is aligned with the outer periphery of the support plate TP, the lattice jig 3 can be set in an appropriate position relative to the support plate TP. Inside the area surrounded by the frame 31, multiple vertical wall portions 31a and multiple horizontal wall portions 31b that are perpendicular to each other are provided. A rectangular hole 32 (hole) is formed by the frame 31, the vertical wall portions 31a, and the horizontal wall portions 31b, or by the vertical wall portions 31a and the horizontal wall portions 31b.
 格子治具3を支持板TPの適切な位置に設置すると、複数の孔部32は、それぞれ支持板TP上の所定位置A1の外縁Edに揃うように配置される。複数の孔部32のそれぞれは、金属板60よりも大きく、且つ金属板60を収容可能な矩形状である。 When the lattice jig 3 is placed at an appropriate position on the support plate TP, the multiple holes 32 are each positioned so that they are aligned with the outer edge Ed of a predetermined position A1 on the support plate TP. Each of the multiple holes 32 is larger than the metal plate 60 and has a rectangular shape that can accommodate the metal plate 60.
 金属板60の主面は、略矩形状であり、隣接する側面62が屈曲して接続された四か所の角部64を備えている。孔部32は、金属板60が収まるような矩形状の孔部であり、四か所(複数)の角隅部32aを備えている。金属板60は、孔部32の複数の角隅部32aのうち、基準の角隅部32xに角部64が当接することで所定位置A1に位置決めされる。一つの例では、孔部32は四か所の角隅部32aのうち、右下の角隅部32aが基準の角隅部32xとして設定されている(図7参照)。 The main surface of the metal plate 60 is generally rectangular, with four corners 64 where adjacent side surfaces 62 are bent and connected. The hole 32 is a rectangular hole into which the metal plate 60 fits, with four (multiple) corners 32a. The metal plate 60 is positioned at a predetermined position A1 when the corners 64 come into contact with a reference corner 32x among the multiple corners 32a of the hole 32. In one example, of the four corners 32a of the hole 32, the lower right corner 32a is set as the reference corner 32x (see Figure 7).
 孔部32は、隙間形成部32bを備えている。隙間形成部32bは、基準の角隅部32xに金属板60の角部64が当接した状態において、金属板60との間に隙間Spを形成する部分である。例えば、図7及び図8に示されるように、基準の角隅部32aに金属板60の角部64を当接させると、金属板60の左側には、位置合わせ用の孔部32との間に隙間Spが形成される。孔部32において、この隙間Spを形成する部分が隙間形成部32bである。 The hole portion 32 has a gap forming portion 32b. The gap forming portion 32b is a portion that forms a gap Sp between the metal plate 60 and the corner portion 64 of the metal plate 60 when the corner portion 64 of the metal plate 60 abuts against the reference corner portion 32x. For example, as shown in Figures 7 and 8, when the corner portion 64 of the metal plate 60 abuts against the reference corner portion 32a, a gap Sp is formed between the left side of the metal plate 60 and the alignment hole portion 32. The portion of the hole portion 32 that forms this gap Sp is the gap forming portion 32b.
 例えば、支持板TP上の所定位置A1に仮止め材11を設置した後、支持板TP上の適切な位置に格子治具3を設置する。または、支持板TP上の適切な位置に格子治具3を設置した後で、格子治具3の孔部32内に仮止め材11を設置する。支持板TP上の適切な位置に格子治具3を設置した後、孔部32内に金属板60を挿入する。このとき、格子治具3を利用して金属板60を所定位置A1に位置合わせし、仮止め材11によって金属板60を支持板TPに固定する。 For example, after placing the temporary fixing material 11 at a predetermined position A1 on the support plate TP, the lattice jig 3 is placed at an appropriate position on the support plate TP. Alternatively, after placing the lattice jig 3 at an appropriate position on the support plate TP, the temporary fixing material 11 is placed in the hole portion 32 of the lattice jig 3. After placing the lattice jig 3 at the appropriate position on the support plate TP, the metal plate 60 is inserted into the hole portion 32. At this time, the metal plate 60 is aligned to the predetermined position A1 using the lattice jig 3, and the metal plate 60 is fixed to the support plate TP by the temporary fixing material 11.
 金属板60の仮止めとは別に、セラミック板21の主面21Aにろう材を含む塗布層12を設ける塗布工程を行う。セラミック板21の主面21Aには区画線SL1,SL2が形成されている。区画線SL1,SL2は、例えば、レーザー光を照射することによって形成されるスクライブラインであってよい。レーザー光としては、例えば、炭酸ガスレーザー及びYAGレーザー等が挙げられる。このような区画線SL1,SL2は、後工程において、集合基板を分割する際の切断線として利用することができる。 In addition to temporarily fixing the metal plate 60, a coating process is performed in which a coating layer 12 containing a brazing material is provided on the main surface 21A of the ceramic plate 21. Partition lines SL1, SL2 are formed on the main surface 21A of the ceramic plate 21. The parting lines SL1, SL2 may be scribe lines formed by irradiating a laser beam, for example. Examples of laser beams include a carbon dioxide laser and a YAG laser. Such parting lines SL1, SL2 can be used as cutting lines when dividing the assembly substrate in a later process.
 ろう材は、金属単体又は金属化合物(合金)の形態で、Agを含んでよく、Agに加えて、Cu、Sn、及び活性金属からなる群より選ばれる一種又は二種以上の金属を含有してよい。二種以上の金属は合金となっていてもよい。活性金属は、Ti、Hf、Zr、及びNbからなる群より選ばれる一種又は二種以上を含んでいてよい。ろう材は、Ag及びCuの合計100質量部に対してAgを80質量部以上含んでよく、90質量部以上含んでいてよく、95質量部以上含んでいてよい。このようにCuに対するAgの割合を十分に高くすることによって、接合工程で積層体を昇温する際、ろう材の溶融のタイミングを遅くすることができる。したがって、ろう材の過剰な這い上がりを抑制することができる。また、AgとCuは72:28の質量割合付近に共晶点を有する。このため、溶融したろう材は、金属板に含まれるCuと円滑に反応して共晶合金を形成する。したがって、接合層とセラミック板及び金属板との接触面積を大きくして、這い上がり部46を円滑に形成することができる。ろう材はCuを含有していなくてもよい。 The brazing filler metal may contain Ag in the form of a metal element or a metal compound (alloy), and may contain, in addition to Ag, one or more metals selected from the group consisting of Cu, Sn, and active metals. The two or more metals may be alloyed. The active metal may contain one or more metals selected from the group consisting of Ti, Hf, Zr, and Nb. The brazing filler metal may contain 80 parts by mass or more of Ag per 100 parts by mass of Ag and Cu in total, 90 parts by mass or more, or 95 parts by mass or more. By sufficiently increasing the ratio of Ag to Cu in this way, the timing of melting of the brazing filler metal can be delayed when the laminate is heated in the joining process. Therefore, excessive creeping of the brazing filler metal can be suppressed. In addition, Ag and Cu have a eutectic point near a mass ratio of 72:28. Therefore, the molten brazing filler metal reacts smoothly with the Cu contained in the metal plate to form a eutectic alloy. Therefore, the contact area between the bonding layer and the ceramic plate and the metal plate can be increased, and the creeping portion 46 can be smoothly formed. The brazing material does not need to contain Cu.
 ろう材における活性金属の含有量は、Ag及びCuの合計100質量部に対して、0.5~8質量部であってよい。活性金属の含有量を0.5質量部以上とすることで、セラミック板とろう材との接合性を向上することができる。一方、活性金属の含有量を8質量部以下とすることで、接合界面に脆弱な合金層が形成されることを抑制できる。 The content of the active metal in the brazing filler metal may be 0.5 to 8 parts by mass per 100 parts by mass of the total of Ag and Cu. By making the content of the active metal 0.5 parts by mass or more, it is possible to improve the bond between the ceramic plate and the brazing filler metal. On the other hand, by making the content of the active metal 8 parts by mass or less, it is possible to suppress the formation of a brittle alloy layer at the bonded interface.
 ろう材に含有される上記活性金属は、窒化物、酸化物、炭化物又は水素化物として含まれていてもよい。一例として、ろう材は、窒化チタン及び/又は水素化チタン(TiH)を含んでいてよい。これによって、セラミック板と金属板との接合強度を十分に高くすることができる。AgとCuの合計100質量部に対するTiHの含有量は例えば1~8質量部であってよい。 The active metal contained in the brazing material may be contained as a nitride, oxide, carbide, or hydride. As an example, the brazing material may contain titanium nitride and/or titanium hydride (TiH 2 ). This allows the bonding strength between the ceramic plate and the metal plate to be sufficiently high. The content of TiH 2 relative to a total of 100 parts by mass of Ag and Cu may be, for example, 1 to 8 parts by mass.
 ろう材は、上述の金属又は金属化合物の他に、有機溶媒、及びバインダ等を含有してよい。ろう材の粘度は、例えば5~20Pa・sであってよい。ろう材における有機溶媒の含有量は、例えば、5~25質量%、バインダ量の含有量は、例えば、2~15質量%であってよい。 The brazing filler metal may contain, in addition to the metal or metal compound described above, an organic solvent, a binder, etc. The viscosity of the brazing filler metal may be, for example, 5 to 20 Pa·s. The organic solvent content in the brazing filler metal may be, for example, 5 to 25 mass %, and the binder content may be, for example, 2 to 15 mass %.
 図9に示すように、セラミック板21の一方の主面21Aには、金属板60の接合予定位置A2にろう材が塗布されて塗布層12が形成される。塗布方法は、ロールコーター法、スクリーン印刷法、又は転写法等であってよい。接合予定位置A2は、支持板TPの所定位置A1に対応している。支持板TPは、金属板60がセラミック板21の主面21Aに対向するようにセラミック板21に積層される。このとき、金属板60と、セラミック板21の接合予定位置A2とが向かい合う。 As shown in FIG. 9, a brazing material is applied to one of the main surfaces 21A of the ceramic plate 21 at the intended joining position A2 of the metal plate 60 to form a coating layer 12. The application method may be a roll coater method, a screen printing method, a transfer method, or the like. The intended joining position A2 corresponds to a predetermined position A1 of the support plate TP. The support plate TP is laminated on the ceramic plate 21 so that the metal plate 60 faces the main surface 21A of the ceramic plate 21. At this time, the metal plate 60 faces the intended joining position A2 of the ceramic plate 21.
 セラミック板21の他方の主面21Bには、金属板60の接合予定位置A2にろう材が塗布されて塗布層12が形成されている。塗布方法は上述したとおりである。この接合予定位置A2は、別の支持板TPの所定位置A1に対応している。この別の支持板TPは、金属板60がセラミック板21の主面21Bに対向するようにセラミック板21に積層される。このとき、金属板60は、セラミック板21と接合予定位置A2とが向かい合う。このようにして、図10に示すような第1積層体Xaが形成される。 On the other main surface 21B of the ceramic plate 21, the solder material is applied to the intended joining position A2 of the metal plate 60 to form a coating layer 12. The application method is as described above. This intended joining position A2 corresponds to a predetermined position A1 of another support plate TP. This other support plate TP is laminated on the ceramic plate 21 so that the metal plate 60 faces the main surface 21B of the ceramic plate 21. At this time, the metal plate 60 faces the ceramic plate 21 at the intended joining position A2. In this way, a first laminate Xa as shown in FIG. 10 is formed.
 図11は、塗布層12が設けられたセラミック板21を厚さ方向に沿って切断したときの断面の一部を示している。塗布層12は、中央部の厚みよりも当該中央部を取り囲む端部の厚みの方が大きくなっている。すなわち、塗布層12は、中央部に薄塗り部12Bを有し、端部(周縁部)に厚塗り部12Aを有する。このような塗布層12を用いることによって、金属板60の端部65とセラミック板21との間にろう材が十分に充填される。このような積層体を後述する接合工程で加熱すれば、ろう材成分を金属板60の側面62及び主面60Aに十分に這い上がらせることができる。また、金属板60とセラミック板21との接合が不十分になることを十分に抑制することができる。図11には一つの塗布層12のみを示しているが、他の塗布層12も同様の形状を有していてよい。 FIG. 11 shows a part of a cross section of a ceramic plate 21 provided with a coating layer 12 when cut along the thickness direction. The coating layer 12 is thicker at the ends surrounding the center than at the center. That is, the coating layer 12 has a thin coating portion 12B in the center and a thick coating portion 12A at the end (periphery). By using such a coating layer 12, the brazing material is sufficiently filled between the end 65 of the metal plate 60 and the ceramic plate 21. If such a laminate is heated in the joining process described later, the brazing material component can be sufficiently caused to creep up to the side surface 62 and main surface 60A of the metal plate 60. In addition, it is possible to sufficiently prevent the joining between the metal plate 60 and the ceramic plate 21 from becoming insufficient. Although only one coating layer 12 is shown in FIG. 11, the other coating layers 12 may have the same shape.
 図11における塗布層12の横幅は、金属板60の横幅と同じになっているが、これに限定されない。例えば、塗布層12は、セラミック板21の主面21Aに沿って金属板60の側面62よりも外方に延在するはみ出し部を有していてよい。このように、塗布層12が端部にはみ出し部を有していれば、図1及び図2に示す金属板60の主面60Aにおける這い上がり部46の幅Lを十分に大きくすることができる。また、金属板60の側面62上のスカート部44を十分に大きくして接合信頼性を一層向上することができる。また、塗布層12の端部における厚塗り部12Aの幅及び厚さを大きくすれば、図1及び図2に示す這い上がり部46の幅Lを大きくすることができる。塗布層12の端部における厚塗り部12Aの幅及び厚さを小さくすれば、図1及び図2に示す這い上がり部46の幅Lを小さくすることができる。 The width of the coating layer 12 in FIG. 11 is the same as the width of the metal plate 60, but is not limited to this. For example, the coating layer 12 may have a protruding portion that extends outward from the side surface 62 of the metal plate 60 along the main surface 21A of the ceramic plate 21. In this way, if the coating layer 12 has a protruding portion at the end, the width L of the creeping portion 46 on the main surface 60A of the metal plate 60 shown in FIG. 1 and FIG. 2 can be sufficiently increased. In addition, the skirt portion 44 on the side surface 62 of the metal plate 60 can be sufficiently increased to further improve the joining reliability. In addition, by increasing the width and thickness of the thick coating portion 12A at the end of the coating layer 12, the width L of the creeping portion 46 shown in FIG. 1 and FIG. 2 can be increased. By reducing the width and thickness of the thick coating portion 12A at the end of the coating layer 12, the width L of the creeping portion 46 shown in FIG. 1 and FIG. 2 can be reduced.
 図12に示すように、積層工程では、塗布層12が形成されたセラミック板21と金属板60が仮止めされた一対の支持板TPとを、囲い治具5を用いて位置合わせをしながら積層して図10の第1積層体Xaを得る。同様の手順を繰り返して得た複数の第1積層体Xaを積み重ねる。これによって、第1積層体Xaが複数積み重ねられた第2積層体XAを得る。積層の際の位置合わせには、図12及び図13に示すような囲い治具5を用いることができる。 As shown in Figure 12, in the lamination process, the ceramic plate 21 on which the coating layer 12 is formed and a pair of support plates TP to which the metal plate 60 is temporarily attached are laminated while being aligned using an enclosing jig 5 to obtain the first laminate Xa of Figure 10. A similar procedure is repeated to obtain a plurality of first laminates Xa, which are then stacked. In this way, a second laminate XA is obtained in which a plurality of first laminates Xa are stacked. For alignment during lamination, an enclosing jig 5 as shown in Figures 12 and 13 can be used.
 囲い治具5は、第2積層体XAの矩形状の周囲を囲む枠状の器具であり、金属板60とセラミック板21とを積層する際に位置合わせする第2位置合わせ治具の一例である。囲い治具5は、複数の第1積層体Xaの周縁に沿うように配置される当接壁部50を備えている(図13)。当接壁部50は、分割可能な複数の分割壁部51,52を備えている。例えば、当接壁部50は、平面視でL字状の第1の分割壁部51と、平面視でL字状の第2の分割壁部52とを備えている。第1の分割壁部51と第2の分割壁部52とを組み合わせることで、内部に複数の第1積層体Xaが収まる立方体又は直方体の収容空間が形成される。 The enclosing jig 5 is a frame-shaped device that surrounds the rectangular periphery of the second laminate XA, and is an example of a second alignment jig that aligns the metal plate 60 and the ceramic plate 21 when stacking them. The enclosing jig 5 has an abutting wall portion 50 that is arranged along the periphery of the multiple first laminates Xa (FIG. 13). The abutting wall portion 50 has multiple partition walls 51, 52 that can be separated. For example, the abutting wall portion 50 has a first partition wall portion 51 that is L-shaped in a plan view and a second partition wall portion 52 that is L-shaped in a plan view. By combining the first partition wall portion 51 and the second partition wall portion 52, a cubic or rectangular storage space is formed in which the multiple first laminates Xa can be stored.
 第2積層体XAを形成する第1積層体Xaは平面視で矩形状であるため、第2積層体XAは四か所の角部Xbを備えている。第1の分割壁部51は、第2積層体XAの角部Xbに沿うように屈曲した角隅部51mを備えている。第2の分割壁部52は、第2積層体XAの角部Xbに沿うように屈曲した角隅部52mを備えている。 The first laminate Xa forming the second laminate XA is rectangular in plan view, so the second laminate XA has four corners Xb. The first dividing wall 51 has a corner 51m bent to fit along the corner Xb of the second laminate XA. The second dividing wall 52 has a corner 52m bent to fit along the corner Xb of the second laminate XA.
 第1の分割壁部51は、第1の位置合わせ壁面51aと第2の位置合わせ壁面51bとを備えている。第2の分割壁部52は、第3の位置合わせ壁面52aと第4の位置合わせ壁面52bとを備えている。第1の位置合わせ壁面51aと第3の位置合わせ壁面52aとは、収容空間に収容される第2積層体XA(第1積層体Xa)を挟むように対向配置されている。第2の位置合わせ壁面51bと第4の位置合わせ壁面52bとは、収容空間に収容される第2積層体XA(第1積層体Xa)を挟むように対向配置されている。 The first dividing wall 51 has a first alignment wall 51a and a second alignment wall 51b. The second dividing wall 52 has a third alignment wall 52a and a fourth alignment wall 52b. The first alignment wall 51a and the third alignment wall 52a are arranged opposite each other to sandwich the second laminate XA (first laminate Xa) accommodated in the storage space. The second alignment wall 51b and the fourth alignment wall 52b are arranged opposite each other to sandwich the second laminate XA (first laminate Xa) accommodated in the storage space.
 囲い治具5は、第1の分割壁部51と第2の分割壁部52とを接続する調整部53を備えている。調整部53は、第1の分割壁部51と第2の分割壁部52とによって囲まれる収容空間の容積を調整可能に構成される。 The enclosure jig 5 has an adjustment section 53 that connects the first partition wall section 51 and the second partition wall section 52. The adjustment section 53 is configured to be able to adjust the volume of the storage space enclosed by the first partition wall section 51 and the second partition wall section 52.
 調整部53は、例えば、第1の分割壁部51に形成された複数のスリット53a(貫通孔)と、複数のスリット53aに挿通される複数のネジ部54と、第2の分割壁部52に形成された複数のネジ孔55とを備えている。第2の分割壁部52は、第1の分割壁部51に当接可能な端部52cを備えており、端部52cには、第1の分割壁部51のスリット53aに重なるようにネジ孔55が設けられている。ネジ部54は、軸部54aと頭部54b(係止部)とを備えている。軸部54aは、スリット53aに挿通され、ネジ孔55に螺合される。頭部54bは、軸部54aの一端に形成されており、第1の分割壁部51のスリット53aの周囲に干渉する。スリット53aの周囲は、頭部54bの干渉を受ける係止受け部53bである。ネジ部54を締め付けることで収容空間は縮小し、緩めることで拡張する。 The adjustment portion 53 includes, for example, a plurality of slits 53a (through holes) formed in the first dividing wall portion 51, a plurality of screw portions 54 inserted into the plurality of slits 53a, and a plurality of screw holes 55 formed in the second dividing wall portion 52. The second dividing wall portion 52 includes an end portion 52c that can abut against the first dividing wall portion 51, and the end portion 52c is provided with a screw hole 55 so as to overlap the slit 53a of the first dividing wall portion 51. The screw portion 54 includes a shaft portion 54a and a head portion 54b (locking portion). The shaft portion 54a is inserted into the slit 53a and is screwed into the screw hole 55. The head portion 54b is formed at one end of the shaft portion 54a and interferes with the periphery of the slit 53a of the first dividing wall portion 51. The periphery of the slit 53a is an engagement receiving portion 53b that receives the interference of the head portion 54b. The storage space shrinks when the screw part 54 is tightened, and expands when it is loosened.
 図12に示すように、囲い治具5は加圧装置7の土台71上に載置される。複数の第1積層体Xaを積層するようにして、囲い治具5の収容空間に積層する。複数の第1積層体Xaは、囲い治具5によって位置合わせされながら土台71上に積層される。これによって、囲い治具5の収容空間に複数の第1積層体Xaが積層された第2積層体XAが得られる。変形例では、全ての第1積層体Xaを積層した後で、囲い治具5を第2積層体XAの周囲に配置して位置合わせを行ってもよい。これによって、積層された複数の第1積層体Xaの位置が互いに揃った第2積層体XAを得ることができる。 As shown in FIG. 12, the enclosing jig 5 is placed on the base 71 of the pressure device 7. The multiple first laminates Xa are stacked in the storage space of the enclosing jig 5. The multiple first laminates Xa are stacked on the base 71 while being aligned by the enclosing jig 5. This results in a second laminate XA in which the multiple first laminates Xa are stacked in the storage space of the enclosing jig 5. In a modified example, after all the first laminates Xa have been stacked, the enclosing jig 5 may be placed around the second laminate XA to align them. This results in a second laminate XA in which the stacked positions of the multiple first laminates Xa are aligned with each other.
 図14に示すように、複数の第1積層体Xaを積層後、土台71とカバープレート73との間で第2積層体XAを挟持するようにして加圧する。加圧装置7は、第2積層体XAを支える土台71と、土台71から立設された複数の柱部72と、第2積層体XAの上面に当接するカバープレート73と、カバープレート73上に配置された複数の弾性体74と、弾性体74上に設置され、弾性体74を押圧する加圧プレート75と、加圧プレート75を所定位置に保持するナット76(保持部)とを備えている。 As shown in Figure 14, after stacking the multiple first laminates Xa, the second laminate XA is sandwiched between a base 71 and a cover plate 73 and pressurized. The pressure device 7 includes a base 71 that supports the second laminate XA, multiple pillars 72 erected from the base 71, a cover plate 73 that abuts against the upper surface of the second laminate XA, multiple elastic bodies 74 arranged on the cover plate 73, a pressure plate 75 that is installed on the elastic bodies 74 and presses the elastic bodies 74, and a nut 76 (holding part) that holds the pressure plate 75 in a predetermined position.
 柱部72には、ネジ溝が形成されている。柱部72は、カバープレート73及び加圧プレート75を貫通している。ナット76は、柱部72の上端に螺合し、加圧プレート75の上面に当接している。カバープレート73と加圧プレート75との間には、弾性体74が配置されている。ナット76を締め付けると加圧プレート75が押し下げられ、弾性体74を圧縮する。その結果、カバープレート73を介して第2積層体XAが加圧される。これによって、高い精度で位置合わせされた金属板60とセラミック板21とを、塗布層12を介して十分に接着することができる。なお、ここでの加圧圧力を変えることで、這い上がり層の幅Lを調整することができる。 The column 72 has a screw groove formed therein. The column 72 penetrates the cover plate 73 and the pressure plate 75. The nut 76 is screwed onto the upper end of the column 72 and abuts against the upper surface of the pressure plate 75. An elastic body 74 is disposed between the cover plate 73 and the pressure plate 75. When the nut 76 is tightened, the pressure plate 75 is pressed down, compressing the elastic body 74. As a result, the second laminate XA is pressurized via the cover plate 73. This allows the metal plate 60 and the ceramic plate 21, which are aligned with high precision, to be sufficiently bonded via the coating layer 12. The width L of the creeping layer can be adjusted by changing the pressure applied here.
 十分に接着したら、第2積層体XAが加圧装置7によって加圧されている状態を保持したまま、囲い治具5を分割して第2積層体XAから離す。加圧された状態の第2積層体XAは安定しており、囲い治具5を離しても複数の第1積層体Xa同士及び第1積層体Xaを構成するセラミック板21と金属板60の位置ズレは生じない。このように、接合工程の前に治具を離脱すれば、囲い治具5を構成する材料の耐熱性を考慮する必要性がなくなる。これによって、材料選択の自由度を高くすることができる。囲い治具5を構成する材料としては、例えばポリエチレン(例えば高密度ポリエチレン)、ポリプロピレン、ポリ塩化ビニル、AS樹脂、アクリル樹脂、A2017(ジュラルミン)、A5052(アルミニウム合金)等を用いることができる。これらの材料は、加工性に優れるという利点がある。 When sufficient adhesion has been achieved, the enclosing jig 5 is divided and separated from the second laminate XA while the second laminate XA is kept pressurized by the pressure device 7. The pressurized second laminate XA is stable, and even if the enclosing jig 5 is separated, there is no misalignment between the multiple first laminates Xa and between the ceramic plate 21 and the metal plate 60 that constitute the first laminate Xa. In this way, if the jig is removed before the joining process, there is no need to consider the heat resistance of the material that constitutes the enclosing jig 5. This allows for a high degree of freedom in material selection. Examples of materials that can be used to constitute the enclosing jig 5 include polyethylene (e.g., high-density polyethylene), polypropylene, polyvinyl chloride, AS resin, acrylic resin, A2017 (duralumin), and A5052 (aluminum alloy). These materials have the advantage of being highly processable.
 変形例では、囲い治具5を離脱することなく、囲い治具5で第2積層体XAを保持したまま、囲い治具5を第2積層体XAと一緒に加熱炉8内に導入してもよい。囲い治具5を加熱炉8内に導入する場合、囲い治具5は、耐熱性を有する材料で構成される。このような材料としては、炭素系の材料、窒化ホウ素、鉄系のS45C及びSS400、ステンレス系のSUS304及びSUS303、並びに、超硬が挙げられる。炭素系の材料としては、カーボングラファイト、C/Cコンポジット、グラッシーカーボン等が挙げられる。超硬としては主成分としてタングステンカーバイドを含むものが挙げられる。 In a modified example, the enclosing jig 5 may be introduced into the heating furnace 8 together with the second laminate XA while the enclosing jig 5 holds the second laminate XA without removing the enclosing jig 5. When the enclosing jig 5 is introduced into the heating furnace 8, the enclosing jig 5 is made of a heat-resistant material. Such materials include carbon-based materials, boron nitride, iron-based S45C and SS400, stainless steel-based SUS304 and SUS303, and cemented carbide. Carbon-based materials include carbon graphite, C/C composites, glassy carbon, etc. Cemented carbide includes those containing tungsten carbide as the main component.
 接合工程では、図15に示すように、第2積層体XAを、加圧装置7で加圧保持したまま、加熱炉8に導入する。加熱炉8は、ヒータ8aを備えている。ヒータ8aは、金属板60とセラミック板21とが接合部によって接合される温度となるように、加熱炉8内を加熱する。例えば、金属板60が銅材の場合には、加熱炉8内を600℃~900℃に加熱する。金属板60がアルミニウム板である場合には、加熱炉8内を550℃~650℃に加熱する。ろう材を含む塗布層12は、この雰囲気温度下で溶融等し、加熱後の冷却固化により、金属板60とセラミック板21とを接合する接合部40となる。加熱炉8内での加熱に伴い、金属板60を支持板TPに仮止めしていた仮止め材11は、揮発等して消失する。 In the joining process, as shown in FIG. 15, the second laminate XA is introduced into the heating furnace 8 while being held under pressure by the pressure device 7. The heating furnace 8 is equipped with a heater 8a. The heater 8a heats the inside of the heating furnace 8 to a temperature at which the metal plate 60 and the ceramic plate 21 are joined by the joint. For example, if the metal plate 60 is a copper material, the inside of the heating furnace 8 is heated to 600°C to 900°C. If the metal plate 60 is an aluminum plate, the inside of the heating furnace 8 is heated to 550°C to 650°C. The coating layer 12 containing the brazing material melts at this atmospheric temperature, and becomes the joint 40 that joins the metal plate 60 and the ceramic plate 21 by cooling and solidifying after heating. As the metal plate 60 is heated in the heating furnace 8, the temporary fixing material 11 that temporarily fixed the metal plate 60 to the support plate TP disappears by volatilization, etc.
 第2積層体XAを構成していた複数の第1積層体Xaは、それぞれ、接合工程によって例えば図3に示すような集合基板200となる。加熱炉8から取り出された集合基板200は、セラミック板21と、セラミック板21に接合された複数の金属板60と、を備える。複数の金属板60のそれぞれは、接合部40によってセラミック板21に接合されている。ここで、金属板60を支持板TPに固定していた仮止め材11は、加熱炉8内で消失している。したがって、図16に示すように、集合基板200から、支持板TPを容易に取り外すことができる。 The multiple first laminates Xa that constituted the second laminate XA are each turned into an aggregate substrate 200, for example, as shown in FIG. 3, through a bonding process. The aggregate substrate 200 removed from the heating furnace 8 includes a ceramic plate 21 and multiple metal plates 60 bonded to the ceramic plate 21. Each of the multiple metal plates 60 is bonded to the ceramic plate 21 by a bonding portion 40. Here, the temporary fixing material 11 that fixed the metal plate 60 to the support plate TP has disappeared inside the heating furnace 8. Therefore, the support plate TP can be easily removed from the aggregate substrate 200, as shown in FIG. 16.
 支持板TPを取り外した後、集合基板200は、区画線SL1,SL2に沿って分割される。その後、必要に応じて仕上げ処理が施されて複数の独立した接合体100が得られる。なお、図16では示されていないが、集合基板200における金属板60のセラミック板21側とは反対側の主面の周縁部の全体は、図1及び図2と同様に這い上がり部46で覆われている。例えば、集合基板200を、区画線SL1,SL2に沿って分割する前に、画像認識技術を用いて金属板60の寸法及び這い上がり部46の幅Lを検知し、集合基板200の品質検査を行ってもよい。これによって、分割後に、金属板60の寸法又は這い上がり部46の幅Lが規格を満たす接合体と満たさない接合体とに仕分けるようにしてもよい。規格は、金属板60の寸法、這い上がり部46の幅Lの数値範囲であってよい。 After removing the support plate TP, the collective substrate 200 is divided along the division lines SL1 and SL2. Then, a finishing process is performed as necessary to obtain a plurality of independent bonded bodies 100. Although not shown in FIG. 16, the entire peripheral portion of the main surface of the metal plate 60 in the collective substrate 200 opposite the ceramic plate 21 side is covered with the creeping portion 46 as in FIG. 1 and FIG. 2. For example, before dividing the collective substrate 200 along the division lines SL1 and SL2, the dimensions of the metal plate 60 and the width L of the creeping portion 46 may be detected using image recognition technology to perform a quality inspection of the collective substrate 200. In this way, after division, the bonded bodies may be sorted into those whose dimensions of the metal plate 60 or the width L of the creeping portion 46 meet a standard and those whose dimensions do not meet a standard. The standard may be a numerical range for the dimensions of the metal plate 60 and the width L of the creeping portion 46.
 上記製造方法では、打ち抜き加工によって得られた金属板を多数個取りのセラミック板に搭載する搭載法で集合基板200及び接合体100を製造することができる。このような搭載法によれば、集合基板200及び接合体100を効率よく得ることができる。この製造方法では、金属板を、第1位置合わせ治具(格子治具3)を用いて位置合わせしながら支持板に仮止めし、この支持板(金属板)とセラミック板とを、第2位置合わせ治具(囲い治具5)を用いて位置合わせしながら積層して第1積層体Xa(第2積層体XA)を得る。このため、金属板とセラミック板とを接合する際の位置合わせ精度を高くすることができる。そして、この第1積層体Xa(第2積層体XA)を加圧装置7で加圧しながら加熱する。したがって、塗布層と金属板の互いの位置がずれにくくなる。 In the above manufacturing method, the assembly substrate 200 and the joint body 100 can be manufactured by mounting a metal plate obtained by punching onto a multi-piece ceramic plate. This mounting method allows the assembly substrate 200 and the joint body 100 to be obtained efficiently. In this manufacturing method, the metal plate is temporarily fixed to the support plate while being aligned using a first alignment jig (lattice jig 3), and the support plate (metal plate) and the ceramic plate are aligned using a second alignment jig (enclosure jig 5) and stacked to obtain the first laminate Xa (second laminate XA). This makes it possible to improve the alignment accuracy when joining the metal plate and the ceramic plate. Then, this first laminate Xa (second laminate XA) is heated while being pressurized by the pressure device 7. This makes it difficult for the coating layer and the metal plate to shift from each other.
 このようにして、金属板60のセラミック板20側の第1主面60Bとは反対側の第2主面60Aの周縁部の全体を覆う這い上がり部46を有する接合部40を形成することができる。このような接合部40を備える接合体100は、画像認識装置を用いて這い上がり部46を検知することによって、パワーモジュール等の半導体デバイスを作製する際の位置合わせを高い精度で行うことができる。また、金属板60の寸法測定を高精度に行うことができる。したがって、接合体100及び集合基板200は、高い信頼性を有するパワーモジュール等の半導体デバイスを製造する部材として極めて有用である。 In this way, a joint 40 can be formed having a creeping up portion 46 that covers the entire peripheral portion of the second main surface 60A of the metal plate 60 opposite the first main surface 60B on the ceramic plate 20 side. The joint 100 having such a joint 40 can perform highly accurate alignment when manufacturing semiconductor devices such as power modules by detecting the creeping up portion 46 using an image recognition device. In addition, the dimensions of the metal plate 60 can be measured with high accuracy. Therefore, the joint 100 and the assembly substrate 200 are extremely useful as components for manufacturing semiconductor devices such as highly reliable power modules.
 上述の製造方法の例では、集合基板200を製造したが、これに限定されない。例えば、集合基板200とは異なる集合基板を製造してもよい。また、多数個取りのセラミック板21の代わりにセラミック板20を用い、格子治具3及び囲い治具5を用いて集合基板200を製造するときと同様の位置合わせを行うことによって、集合基板200を製造せずに接合体100を製造してもよい。第1位置決め治具は、格子治具に限定されず、金属板の仮止め時の位置合わせ精度を向上できるものであればよい。第2位置決め治具も、囲い治具に限定されず、金属板とセラミック板とを積層する際の位置合わせ精度を向上できるものであればよい。 In the above-mentioned example of the manufacturing method, the aggregate substrate 200 is manufactured, but the present invention is not limited to this. For example, an aggregate substrate different from the aggregate substrate 200 may be manufactured. Also, by using a ceramic plate 20 instead of the multi-piece ceramic plate 21 and performing the same alignment as when manufacturing the aggregate substrate 200 using the lattice jig 3 and the enclosure jig 5, the bonded body 100 may be manufactured without manufacturing the aggregate substrate 200. The first positioning jig is not limited to a lattice jig, and may be any jig that can improve the alignment accuracy when the metal plate is temporarily fixed. The second positioning jig is also not limited to an enclosure jig, and may be any jig that can improve the alignment accuracy when stacking the metal plate and the ceramic plate.
 接合体100及び集合基板200の製造方法は上述のものに限定されない。仮止め材、第1位置合わせ治具、及び第2位置合わせ治具の全てを用いることは必須ではなく、少なくとも一つを用いて、接合体100及び集合基板200を製造してもよい。また、別の形態の位置合わせ治具を用いて、接合体100及び集合基板200を製造してもよい。 The manufacturing method of the joined body 100 and the collective substrate 200 is not limited to the above. It is not necessary to use all of the temporary fixing material, the first alignment jig, and the second alignment jig, and the joined body 100 and the collective substrate 200 may be manufactured using at least one of them. Also, the joined body 100 and the collective substrate 200 may be manufactured using an alignment jig of a different form.
 上述の製造方法で得られた接合体を用いて、図4に示すようなパワーモジュールを製造してもよい。パワーモジュールは、接合体に、ハンダとワイヤボンディング等を用いて半導体素子を搭載し、接合体及び半導体素子を筐体の収容空間内に収容したうえで樹脂封止を行って製造してもよい。このとき、画像認識装置を用いて這い上がり部を画像認識し、これに基づいて金属板及び接合体の位置合わせを行うことによって信頼性に優れるパワーモジュールを効率よく製造することができる。 The bonded body obtained by the above-mentioned manufacturing method may be used to manufacture a power module as shown in Figure 4. The power module may be manufactured by mounting a semiconductor element on the bonded body using solder and wire bonding, etc., housing the bonded body and the semiconductor element in the housing space of a case, and then sealing with resin. In this case, an image recognition device is used to image-recognize the creeping portion, and the metal plate and bonded body are aligned based on this, thereby efficiently manufacturing a highly reliable power module.
 以上、本開示の実施形態を説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、セラミック板の一対の主面のそれぞれに接合される金属板及び接合部の構造及び形状は、互いに異なっていてもよい。また、セラミック板は、集合基板を分割して得られるものに限定されない。 Although the embodiments of the present disclosure have been described above, the present disclosure is in no way limited to the above-described embodiments. For example, the structures and shapes of the metal plates and joints joined to each of the pair of main surfaces of the ceramic plate may be different from each other. Furthermore, the ceramic plate is not limited to one obtained by dividing an aggregate substrate.
 実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。 The contents of this disclosure will be explained in more detail with reference to examples and comparative examples, but this disclosure is not limited to the following examples.
(実施例1)
[集合基板及び接合体の作製]
 銅の母材を金型で打ち抜いて、24枚の銅板(材質:無酸素銅、サイズ:縦×横×厚さ=17mm×38mm×1.2mm)を得た。これらの銅板の側面は切断面で構成されていた。窒化ケイ素製のセラミック板(窒化ケイ素板、厚さ:0.25mm)、及びろう材を準備した。
Example 1
[Preparation of aggregate substrate and bonded body]
The copper base material was punched with a die to obtain 24 copper plates (material: oxygen-free copper, size: length x width x thickness = 17 mm x 38 mm x 1.2 mm). The sides of these copper plates were composed of cut surfaces. A silicon nitride ceramic plate (silicon nitride plate, thickness: 0.25 mm) and a brazing material were prepared.
 Ag、Sn、及びTiHを含むろう材を準備した。ろう材は、Ag100質量に対し、Snを3質量部、及びTiHを3.5質量部含んでいた。このろう材はCuを含んでいなかった。 A brazing filler metal containing Ag, Sn, and TiH2 was prepared. The brazing filler metal contained 3 parts by mass of Sn and 3.5 parts by mass of TiH2 per 100 parts by mass of Ag. This brazing filler metal did not contain Cu.
 セラミック板の主面をスクライブラインによって24個の区画領域に区画した。各区画に、スクリーン印刷でろう材を塗布して塗布層を形成した。塗布層の塗布面積は、セラミック板と接合される銅板の主面の面積と同じとした。また、塗布層には、図11に示すように中央部に薄塗り部を、端部(薄塗り部の周囲)に厚塗り部を形成した。厚塗り部の厚さは、薄塗り部の厚さの1.5倍とした。また、厚塗り部を取り囲む厚塗り部の幅は1.5mmで一定とした。厚塗り部及び薄塗り部を形成する際のろう材の塗布量は、表1に示すとおりとした。 The main surface of the ceramic plate was divided into 24 separate regions by scribe lines. A brazing filler metal was applied to each region by screen printing to form a coating layer. The coating area of the coating layer was the same as the area of the main surface of the copper plate to be joined to the ceramic plate. In addition, the coating layer had a thin coating portion in the center and a thick coating portion at the end (around the thin coating portion) as shown in Figure 11. The thickness of the thick coating portion was 1.5 times that of the thin coating portion. In addition, the width of the thick coating portion surrounding the thick coating portion was constant at 1.5 mm. The amount of brazing filler metal applied when forming the thick coating portion and the thin coating portion was as shown in Table 1.
 支持板として、カーボン板を準備した。このカーボン板の24箇所に接着テープを貼り付けて、仮止め材とした。これらの接着テープは、セラミック板の主面に設けられた塗布層の位置に対応する位置に貼り付けた。図7に示すような格子治具3を用いて位置決めしながら仮止め材でカーボン板上に24枚の銅板を仮止めした。図12に示すように、囲い治具5を用いて位置合わせをしながら、銅板と塗布層とが向かい合うようにして、セラミック板とカーボン板とを積層した。このとき、銅板は、バリが塗布層側に、ダレがカーボン板側になるように積層した。 A carbon plate was prepared as a support plate. Adhesive tape was applied to 24 places on the carbon plate to create a temporary fixing material. These adhesive tapes were applied at positions corresponding to the positions of the coating layer on the main surface of the ceramic plate. 24 copper plates were temporarily fixed onto the carbon plate with the temporary fixing material while being positioned using a grid jig 3 as shown in Figure 7. As shown in Figure 12, the ceramic plate and carbon plate were laminated so that the copper plate and the coating layer faced each other while being aligned using an enclosure jig 5. At this time, the copper plates were laminated so that the burrs were on the coating layer side and the sagging was on the carbon plate side.
 図14に示すような加圧装置を用いて積層体を0.015MPaで加圧しながら、真空中(1.0×10-3Pa)、790℃で1時間加熱した。このようにしてセラミック板にろう材成分を含む接合層を介して24枚の銅板が接合された集合基板を得た。その後、Ni-Pめっき液(リン濃度:8~12質量%)を用いて無電解メッキ処理を行い、銅板上にめっき膜を有する集合基板(多数個取り回路基板)を形成した。スクライブラインに沿って集合基板を分割し、24個の接合体を得た。一つの接合体のセラミック板のサイズは、縦×横×厚さ=20mm×41mm×0.25mmであった。 The laminate was heated in a vacuum (1.0×10 −3 Pa) at 790° C. for 1 hour while being pressurized at 0.015 MPa using a pressure device as shown in FIG. 14. In this way, an assembly substrate was obtained in which 24 copper plates were bonded to the ceramic plate via a bonding layer containing a brazing material component. Then, electroless plating was performed using a Ni—P plating solution (phosphorus concentration: 8 to 12 mass%) to form an assembly substrate (multiple-piece circuit substrate) having a plating film on the copper plate. The assembly substrate was divided along the scribe line to obtain 24 bonded bodies. The size of the ceramic plate of one bonded body was length×width×thickness=20 mm×41 mm×0.25 mm.
(実施例2,3)
 表1に示す厚さを有する打ち抜き銅板を用いたこと以外は、実施例1と同じ手順で接合体を得た。
(Examples 2 and 3)
A joint was obtained in the same manner as in Example 1, except that a punched copper plate having the thickness shown in Table 1 was used.
(実施例4)
 仮止め材でカーボン板上に24枚の銅板を仮止めする際に格子治具を用いなかったこと以外は、実施例2と同じ手順で接合体を得た。
Example 4
A bonded body was obtained in the same manner as in Example 2, except that no grid jig was used when temporarily fixing the 24 copper plates on the carbon plate with the temporary fixing material.
(実施例5)
 銅板と塗布層とが向かい合うようにしてセラミック板とカーボン板とを積層する際に、位置合わせ用の囲い治具を用いなかったこと以外は、実施例3と同じ手順で接合体を得た。
Example 5
A bonded body was obtained in the same manner as in Example 3, except that no enclosing jig for alignment was used when laminating the ceramic plate and the carbon plate with the copper plate and the coating layer facing each other.
(実施例6)
 塗布層の端部に厚塗り部を形成する際の塗布量を表2に示すとおりにしたこと以外は、実施例1と同じ手順で接合体を得た。
Example 6
A joint was obtained in the same manner as in Example 1, except that the coating amount when forming the thick coating portion at the end of the coating layer was as shown in Table 2.
(実施例7)
 塗布層の端部に厚塗り部を形成する際の塗布量を表2に示すとおりにしたこと以外は、実施例2と同じ手順で接合体を得た。
(Example 7)
A joint was obtained in the same manner as in Example 2, except that the coating amount when forming the thick coating portion at the end of the coating layer was as shown in Table 2.
(実施例8)
 塗布層の端部に厚塗り部を形成する際の塗布量を表2に示すとおりにしたこと以外は、実施例3と同じ手順で接合体を得た。
(Example 8)
A joint was obtained in the same manner as in Example 3, except that the coating amount when forming the thick coating portion at the end of the coating layer was as shown in Table 2.
(比較例1)
 格子治具及び囲い治具を用いなかったこと以外は、実施例3と同じ手順で接合体を得た。すなわち、実施例3と同じ手順で、セラミック板の主面の各区画領域にスクリーン印刷でろう材を塗布して塗布層を形成した。この塗布層の上に、銅板を、バリが塗布層側に、ダレがカーボン板側になるように積層して積層体を得た。図14に示すような加圧装置で加圧される積層体として、上述の積層体を用いたこと以外は、実施例3と同じ手順で集合基板及び接合体を得た。
(Comparative Example 1)
A bonded body was obtained in the same manner as in Example 3, except that a grid jig and an enclosure jig were not used. That is, in the same manner as in Example 3, a brazing material was applied to each partitioned area of the main surface of the ceramic plate by screen printing to form a coating layer. A copper plate was laminated on this coating layer so that the burr was on the coating layer side and the sagging was on the carbon plate side to obtain a laminate. An aggregate substrate and a bonded body were obtained in the same manner as in Example 3, except that the above-mentioned laminate was used as the laminate to be pressed by the pressing device as shown in FIG.
(比較例2)
 塗布層に厚塗り部及び薄塗り部を設けず、厚みを一定としたこと以外は、実施例3と同じ手順で接合体を得た。すなわち、塗布層には、厚塗り部及び薄塗り部を設けず、均一な厚みとした。塗布層を形成する際のろう材の塗布量は、表2に示すとおりとした。
(Comparative Example 2)
A joint was obtained in the same manner as in Example 3, except that the coating layer had no thick or thin coating portions and was of a uniform thickness. That is, the coating layer had no thick or thin coating portions and was of a uniform thickness. The amount of brazing material applied when forming the coating layer was as shown in Table 2.
[接合体の評価]
<這い上がり部の有無>
 各実施例及び各比較例の接合体において、金属板の主面の周縁部がろう材成分を含む接合部で覆われているか否かを目視で以下の基準で評価した。結果は、表1及び表2に示すとおりであった。なお、以下の数値(%)は、金属板の主面の周縁全体の長さを基準(100%)とする比率である。
 A:金属板の主面の周縁部の全体が接合部で覆われている。
 B:金属板の主面の周縁部の95%以上且つ100%未満が接合部で覆われている。
 C:金属板の主面の周縁部の95%未満の一部のみが接合部で覆われている。
 D:金属板の主面の周縁部が接合部で全く覆われていない。
[Evaluation of the conjugate]
<Whether or not there is a climbing part>
In each of the joints in the Examples and Comparative Examples, whether or not the periphery of the main surface of the metal plate was covered with a joint containing a brazing material component was visually evaluated according to the following criteria. The results are shown in Tables 1 and 2. The following numerical values (%) are ratios based on the entire periphery length of the main surface of the metal plate as the reference (100%).
A: The entire peripheral portion of the main surface of the metal plate is covered with the joint.
B: 95% or more and less than 100% of the periphery of the main surface of the metal plate is covered with the joint.
C: Only a portion of less than 95% of the periphery of the main surface of the metal plate is covered with the joint.
D: The peripheral portion of the main surface of the metal plate is not covered at all by the joint.
<這い上がり部の幅Lの測定>
 金属板の主面の周縁部を覆う這い上がり部の幅Lを、光学顕微鏡で拡大して撮影した写真を用いて測定した。幅Lの最大値及び最小値は、目視で幅が最大となっている位置及び幅が最小になっている位置を確定し、これらの位置周辺の光学顕微鏡写真を撮影し、写真を用いて測定した。幅Lの最大値及び最小値は、表1及び表2に示すとおりであった。また、最大値と最小値の差は、表1及び表2に示すとおりであった。
<Measurement of width L of the rising part>
The width L of the creeping portion covering the peripheral portion of the main surface of the metal plate was measured using a photograph taken under magnification with an optical microscope. The maximum and minimum values of the width L were determined by visually determining the positions where the width was maximum and minimum, and photographs of the periphery of these positions were taken with an optical microscope, and the maximum and minimum values of the width L were measured using the photographs. The maximum and minimum values of the width L were as shown in Tables 1 and 2. The difference between the maximum and minimum values was as shown in Tables 1 and 2.
 幅Lの平均値は、任意に選択した20箇所において這い上がり部の幅Lを測定し、得られた測定値を算術平均して導出した。幅Lの平均値は、表1及び表2に示すとおりであった。 The average value of width L was calculated by measuring the width L of the rising part at 20 randomly selected points and taking the arithmetic average of the measured values. The average values of width L are shown in Tables 1 and 2.
<画像認識による位置特定の評価>
 画像寸法測定機を用いてセラミック板上に設けられた24個の金属板の各辺とセラミック板の外縁との最短距離を測定した。測定は、各金属板の各辺当たり20箇所で行った。実際に測定した最短距離(実測値a)と画像寸法機を用いて測定した最短距離(計測値b)とを対比して、画像認識による金属板の位置特定の精度を以下の基準で評価した。
A:画像寸法測定機でセラミック板の外縁から各金属板までの最短距離を正確に測定することができた。すなわち、24個の金属板の全てにおいて、実測値aと計測値bとが一致していた。
B:24個の金属板のうち、1個以上の金属板の上記最短距離を画像寸法測定機で正確に測定することができなかった。すなわち、金属板の位置を正しく認識できず、実測値aと計測値bとが一致しない金属板が1個以上あった。
<Evaluation of location identification using image recognition>
Using an image dimension measuring machine, the shortest distance between each side of 24 metal plates placed on a ceramic plate and the outer edge of the ceramic plate was measured. Measurements were performed at 20 points on each side of each metal plate. The accuracy of identifying the position of the metal plate by image recognition was evaluated according to the following criteria by comparing the shortest distance actually measured (actual measurement value a) with the shortest distance measured using the image dimension measuring machine (measurement value b).
A: The image dimension measuring device was able to accurately measure the shortest distance from the outer edge of the ceramic plate to each metal plate. In other words, the actual measurement value a and the measurement value b were consistent for all 24 metal plates.
B: Of the 24 metal plates, the shortest distance of one or more metal plates could not be accurately measured by the image dimension measuring device. In other words, the position of the metal plate could not be correctly recognized, and there was one or more metal plates for which the actual measurement value a did not match the measured value b.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すとおり、仮止め材、格子治具及び囲い治具のいずれかを用いて位置合わせ精度を上げるとともに、ろう材の塗布層の端部を中央部よりも厚くして作製した実施例1~8の接合体は、金属板の主面の周縁部の全体を覆う這い上がり部が形成されていた。これらの接合体の金属板は、高い精度で画像認識可能であり、高い精度で位置合わせ及び寸法測定をすることができる。一方、仮止め材、格子治具及び囲い治具のいずれをも用いなかった比較例1、並びに、ろう材の塗布層の厚みを均一にした比較例2は、どちらも、金属板の主面の周縁部の全体を覆うような這い上がり部を形成することができなかった。比較例1では、銅板と塗布層との位置合わせ精度が低く、両者の位置がずれたために、金属板の主面の周縁部の一部のみを覆う這い上がり部が形成されたものと考えられる。比較例1,2の接合体は、実施例1~8よりも、画像認識で正確な位置の特定ができない金属板の割合が高い。このため、比較例1,2の接合体は、実施例1~8よりも、位置決め精度が劣ると考えられる。 As shown in Tables 1 and 2, in the joints of Examples 1 to 8, which were produced by increasing the alignment accuracy using either a temporary fixing material, a lattice jig, or an enclosure jig, and by making the ends of the brazing material coating layer thicker than the center, a creep-up portion was formed that covered the entire peripheral portion of the main surface of the metal plate. The metal plates of these joints can be image-recognized with high accuracy, and alignment and dimensional measurement can be performed with high accuracy. On the other hand, in Comparative Example 1, which did not use any temporary fixing material, a lattice jig, or an enclosure jig, and Comparative Example 2, in which the thickness of the brazing material coating layer was made uniform, neither was able to form a creep-up portion that covered the entire peripheral portion of the main surface of the metal plate. In Comparative Example 1, the alignment accuracy between the copper plate and the coating layer was low, and the positions of the two were misaligned, which is thought to have led to the formation of a creep-up portion that covered only a part of the peripheral portion of the main surface of the metal plate. The joints of Comparative Examples 1 and 2 have a higher proportion of metal plates whose positions cannot be accurately identified by image recognition than Examples 1 to 8. For this reason, the joints of Comparative Examples 1 and 2 are considered to have inferior positioning accuracy compared to Examples 1 to 8.
 画像認識技術によって、位置合わせ又は寸法測定を高い精度で行うことが可能な接合体及びその製造方法を提供する。また、本開示は、このような接合体を効率よく得ることが可能な集合基板を提供する。また、本開示は、このような接合体を用いることによって、信頼性に優れるパワーモジュールを提供することができる。 The present disclosure provides a bonded body and a manufacturing method thereof that can be aligned or measured with high precision using image recognition technology. The present disclosure also provides an assembly substrate that can efficiently obtain such a bonded body. The present disclosure also provides a highly reliable power module by using such a bonded body.
 3…格子治具、5…囲い治具、7…加圧装置、8…加熱炉、8a…ヒータ、11…仮止め材、12…塗布層、12A…厚塗り部、12B…薄塗り部、20…セラミック板、20A,20B,21A,21B,60A,60B…主面、21…セラミック板、31…枠部、31a…縦壁部、31b…横壁部、32…孔部、32a…角隅部、32b…隙間形成部、32x…角隅部、33…取っ手部、40…接合部、44…スカート部、44S…傾斜面、45…外縁、46…這い上がり部、50…当接壁部、51…分割壁部、51,52…分割壁部、51m…角隅部、52…分割壁部、52c…端部、52m…角隅部、53…調整部、53a…スリット、53b…係止受け部、54…ネジ部、54a…軸部、54b…頭部、55…ネジ孔、60,60a,61…金属板、62…側面、64…角部、65…端部、71…土台、72…柱部、73…カバープレート、74…弾性体、75…加圧プレート、76…ナット、80…半導体素子、81,82…ハンダ、83…電極、84…金属ワイヤ、86…筐体、90…ベース板、92…冷却フィン、93…ネジ、94…グリース、95…樹脂、100,101…接合体、200…集合基板、300…パワーモジュール、DR…区画領域、L…幅、SL1,SL2…区画線、Sp…隙間、TP…支持板、Xa…第1積層体、XA…第2積層体、Xb…角部。

 
3: Lattice jig, 5: Enclosure jig, 7: Pressure device, 8: Heating furnace, 8a: Heater, 11: Temporary fixing material, 12: Coating layer, 12A: Thick coating portion, 12B: Thin coating portion, 20: Ceramic plate, 20A, 20B, 21A, 21B, 60A, 60B: Main surface, 21: Ceramic plate, 31: Frame portion, 31a: Vertical wall portion, 31b: Horizontal wall portion, 32: Hole portion, 32 a...corner portion, 32b...gap forming portion, 32x...corner portion, 33...handle portion, 40...joint portion, 44...skirt portion, 44S...inclined surface, 45...outer edge, 46...creeping portion, 50...contact wall portion, 51...dividing wall portion, 51, 52...dividing wall portion, 51m...corner portion, 52...dividing wall portion, 52c...end portion, 52m...corner portion, 53...adjustment portion, 53a...slit , 53b...engagement receiving portion, 54...screw portion, 54a...shaft portion, 54b...head portion, 55...screw hole, 60, 60a, 61...metal plate, 62...side, 64...corner portion, 65...end portion, 71...base, 72...column portion, 73...cover plate, 74...elastic body, 75...pressure plate, 76...nut, 80...semiconductor element, 81, 82...solder, 83...electrode, 84...metal wire, 86...housing, 90...base plate, 92...cooling fin, 93...screw, 94...grease, 95...resin, 100, 101...bonded body, 200...aggregate substrate, 300...power module, DR...partition area, L...width, SL1, SL2...partition line, Sp...gap, TP...support plate, Xa...first stack, XA...second stack, Xb...corner portion.

Claims (9)

  1.  セラミック板と、金属板と、前記セラミック板と前記金属板とを接合し、ろう材成分を含む接合部と、を備え、
     前記接合部は、前記金属板の前記セラミック板側の第1主面とは反対側の第2主面の周縁部の全体を覆う這い上がり部を有する、接合体。
    A ceramic plate, a metal plate, and a joint portion that joins the ceramic plate and the metal plate and contains a brazing material component,
    The joint has a creeping portion that covers the entire peripheral portion of a second main surface of the metal plate opposite to a first main surface on the ceramic plate side.
  2.  前記這い上がり部を、前記接合体の位置の特定に用いる、請求項1に記載の接合体。 The joint according to claim 1, in which the creeping portion is used to identify the position of the joint.
  3.  前記第2主面における前記這い上がり部の幅Lの最小値が0.1mm以上である、請求項1又は2に記載の接合体。 The bonded body according to claim 1 or 2, wherein the minimum width L of the rising portion on the second main surface is 0.1 mm or more.
  4.  前記第2主面における前記這い上がりの部の幅Lの最大値が2.0mm以下である、請求項1又は2に記載の接合体。 The joint body according to claim 1 or 2, wherein the maximum width L of the raised portion on the second main surface is 2.0 mm or less.
  5.  前記金属板の厚みが0.5mm以上である、請求項1又は2に記載の接合体。 The joint body according to claim 1 or 2, wherein the thickness of the metal plate is 0.5 mm or more.
  6.  多数個取り用のセラミック板と、複数の金属板と、前記セラミック板と前記複数の金属板とを接合し、ろう材成分を含む複数の接合部と、を備え、
     前記複数の接合部の少なくとも一つの接合部は、当該接合部で接合される前記金属板の前記セラミック板側の第1主面とは反対側の第2主面の周縁部の全体を覆う這い上がり部を有する、集合基板。
    The multi-cavity ceramic plate includes a plurality of metal plates, and a plurality of bonding portions that bond the ceramic plate and the plurality of metal plates and that contain a brazing material component;
    An aggregate substrate, wherein at least one of the plurality of joints has a creeping portion covering the entire peripheral portion of a second main surface of the metal plate joined at the joint, the second main surface being opposite to the first main surface on the ceramic plate side.
  7.  セラミック板の主面にろう材を塗布して塗布層を設ける塗布工程と、
     金属板と前記塗布層とが対向するように、前記塗布層と前記金属板とを積層して積層体を作製する積層工程と、
     前記積層体を加熱して、前記金属板と前記セラミック板とをろう材成分を含む接合部によって接合する接合工程と、を有し、
     前記塗布工程では、前記塗布層の中央部よりも端部の厚みを大きくして、前記接合工程では前記金属板の前記セラミック板側の第1主面とは反対側の第2主面の周縁部の全体を覆う這い上がり部を有する前記接合部を形成する、接合体の製造方法。
    a coating step of coating a brazing material on a main surface of the ceramic plate to form a coating layer;
    a lamination step of laminating the coating layer and the metal plate so that the metal plate and the coating layer face each other to produce a laminate;
    a joining step of heating the laminate to join the metal plate and the ceramic plate with a joint portion containing a brazing material component,
    A method for manufacturing a joint, wherein, in the coating process, the thickness of the end portion of the coating layer is made thicker than that of the center portion, and, in the joining process, the joint is formed having a creeping portion that covers the entire peripheral portion of a second main surface of the metal plate opposite to a first main surface on the ceramic plate side.
  8.  前記セラミック板は、多数個取り用の第1セラミック板であり、
     前記塗布工程では、前記第1セラミック板の前記主面に複数の前記塗布層を設け、
     前記積層工程では、複数の前記塗布層のそれぞれを挟むようにして前記第1セラミック板と複数の前記金属板とを積層して前記積層体を作製し、
     前記接合工程の後に、前記第1セラミック板を分割して、前記接合体を複数得る、請求項7に記載の接合体の製造方法。
    the ceramic plate is a first ceramic plate for multiple cavity molding,
    In the coating step, a plurality of the coating layers are provided on the main surface of the first ceramic plate,
    In the lamination step, the first ceramic plate and the metal plates are laminated so as to sandwich the coating layers therebetween to prepare the laminate;
    The method for producing a bonded body according to claim 7 , further comprising the step of dividing the first ceramic plate into a plurality of bonded bodies after the bonding step.
  9.  請求項1又は2に記載の接合体と、当該接合体の前記金属板に電気的に接続される半導体素子と、を備える、パワーモジュール。

     
    A power module comprising: the bonded body according to claim 1 or 2; and a semiconductor element electrically connected to the metal plate of the bonded body.

PCT/JP2023/041332 2022-11-25 2023-11-16 Method for manufacturing bonded body, aggregate substrate, and power module WO2024111507A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024519885A JPWO2024111507A1 (en) 2022-11-25 2023-11-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022188502 2022-11-25
JP2022-188502 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024111507A1 true WO2024111507A1 (en) 2024-05-30

Family

ID=91195656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041332 WO2024111507A1 (en) 2022-11-25 2023-11-16 Method for manufacturing bonded body, aggregate substrate, and power module

Country Status (2)

Country Link
JP (1) JPWO2024111507A1 (en)
WO (1) WO2024111507A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283554A (en) * 1992-04-03 1993-10-29 Ibiden Co Ltd Manufacture of board for mounting electronic component
JP2001110953A (en) * 1999-10-07 2001-04-20 Sumitomo Metal Electronics Devices Inc Semiconductor module substrate and manufacturing method thereof
JP2001332854A (en) * 2000-05-24 2001-11-30 Toshiba Corp Ceramic circuit board
JP2018011020A (en) * 2016-07-15 2018-01-18 京セラ株式会社 Composite substrate and electronic device
JP2022132865A (en) * 2021-03-01 2022-09-13 三菱マテリアル株式会社 Method for manufacturing insulation circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283554A (en) * 1992-04-03 1993-10-29 Ibiden Co Ltd Manufacture of board for mounting electronic component
JP2001110953A (en) * 1999-10-07 2001-04-20 Sumitomo Metal Electronics Devices Inc Semiconductor module substrate and manufacturing method thereof
JP2001332854A (en) * 2000-05-24 2001-11-30 Toshiba Corp Ceramic circuit board
JP2018011020A (en) * 2016-07-15 2018-01-18 京セラ株式会社 Composite substrate and electronic device
JP2022132865A (en) * 2021-03-01 2022-09-13 三菱マテリアル株式会社 Method for manufacturing insulation circuit board

Also Published As

Publication number Publication date
JPWO2024111507A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
JP5664679B2 (en) Power module substrate manufacturing method
US6924429B2 (en) Electronic device and production method therefor
JP3452678B2 (en) Manufacturing method of wiring structure
JPH07240582A (en) Multilayer interconnection board and method and device for manufacturing multilayer interconnection board
US10779415B2 (en) Component embedding in thinner core using dielectric sheet
CN110139504A (en) Flexible and hard combined circuit board and preparation method thereof
JP6314567B2 (en) Metal-ceramic plate laminate manufacturing apparatus and manufacturing method, power module substrate manufacturing apparatus and manufacturing method
US7685707B2 (en) Method for manufacturing circuit forming substrate
EP2654079A2 (en) Heat dissipation device and method for manufacturing the same
CN104347267A (en) Method of producing electronic components and method of producing substrate-type terminals
CN111565523A (en) Manufacturing method of second-order copper block-buried circuit board
TW200926917A (en) Method of dicing a circuit board sheet and package circuit board
WO2024111507A1 (en) Method for manufacturing bonded body, aggregate substrate, and power module
US20150319870A1 (en) Monolithic ltcc seal frame and lid
US20040007770A1 (en) Semiconductor-mounting substrate used to manufacture electronic packages, and production process for producing such semiconductor-mounting substrate
JP7545615B1 (en) Joint body and manufacturing method thereof, aggregate substrate, and power module
TWI785795B (en) Substrate for light source, substrate array for light source, substrate array lower plate for light source and manufacturing method thereof
WO2013125033A1 (en) Circuit board manufacturing method
CN111566807B (en) Method for manufacturing substrate for power module and ceramic-copper junction body
WO2019198551A1 (en) Ceramics-metal bonded body and method of manufacturing same, and multi-piece ceramics-metal bonded body and method of manufacturing same
JP7535198B2 (en) Circuit board, manufacturing method thereof, and power module
JP2016115694A (en) Mounting structure of optical module and manufacturing method
JP2019207952A (en) Substrate for mounting electronic element, electronic apparatus, and electronic module
JPH02137392A (en) Printed wiring board
JP2011073194A (en) Metal-ceramics joint base and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23894516

Country of ref document: EP

Kind code of ref document: A1