JP5664679B2 - Power module substrate manufacturing method - Google Patents

Power module substrate manufacturing method Download PDF

Info

Publication number
JP5664679B2
JP5664679B2 JP2013045999A JP2013045999A JP5664679B2 JP 5664679 B2 JP5664679 B2 JP 5664679B2 JP 2013045999 A JP2013045999 A JP 2013045999A JP 2013045999 A JP2013045999 A JP 2013045999A JP 5664679 B2 JP5664679 B2 JP 5664679B2
Authority
JP
Japan
Prior art keywords
copper circuit
circuit board
ceramic
board
power module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013045999A
Other languages
Japanese (ja)
Other versions
JP2014175425A (en
JP2014175425A5 (en
Inventor
智哉 大開
智哉 大開
宗太郎 大井
宗太郎 大井
仁人 西川
仁人 西川
浩正 林
浩正 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013045999A priority Critical patent/JP5664679B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to KR1020157024050A priority patent/KR102162780B1/en
Priority to EP14760896.2A priority patent/EP2966679B1/en
Priority to CN201480008651.3A priority patent/CN104995730B/en
Priority to PCT/JP2014/055088 priority patent/WO2014136683A1/en
Priority to US14/768,041 priority patent/US9579739B2/en
Priority to TW103107675A priority patent/TWI601465B/en
Publication of JP2014175425A publication Critical patent/JP2014175425A/en
Publication of JP2014175425A5 publication Critical patent/JP2014175425A5/ja
Application granted granted Critical
Publication of JP5664679B2 publication Critical patent/JP5664679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/207Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a prefabricated paste pattern, ink pattern or powder pattern
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/128The active component for bonding being silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/202Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using self-supporting metal foil pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、大電流、高電圧を制御する半導体装置に用いられるパワーモジュール用基板の製造方法に関する。   The present invention relates to a method for manufacturing a power module substrate used in a semiconductor device that controls a large current and a high voltage.

従来、パワーモジュール用基板として、セラミックス基板の一方の面に回路板が積層状態に接合されるとともに、他方の面に放熱板が積層状態に接合されたものが知られており、回路板の上に半導体チップ(パワー素子)等の電子部品がはんだ付けされ、放熱板にヒートシンクが接合されることにより、パワーモジュールとして供される。   Conventionally, a power module substrate is known in which a circuit board is bonded to one surface of a ceramic substrate in a laminated state and a heat sink is bonded to the other surface in a stacked state. An electronic component such as a semiconductor chip (power element) is soldered to the heat sink, and a heat sink is joined to the heat radiating plate to provide a power module.

このようなパワーモジュール用基板において、セラミックス基板に回路板や放熱板となる金属板を積層状態に接合する方法として、たとえば特許文献1や特許文献2記載の技術がある。
特許文献1には、複数の回路要素を厚さの薄いブリッジ部で相互に接続した状態の銅回路組立体を調整する一方、セラミックス基板にTiなどの活性金属を含有するAg−Cu−Ti等の接合材を銅回路組立体の形状パターンで印刷しておき、これらを積層して加熱することにより接合し、その後、エッチング処理によりブリッジ部を除去することが開示されている。
特許文献2には、セラミックス母板と金属板とをろう材箔を介して積層して接合した後、金属板をエッチングして回路パターンを形成し、セラミックス母板の回路パターン間に溝を形成してセラミックス母板を溝に沿って分割することにより、複数のパワーモジュール用基板を製造する方法が開示されている。
In such a power module substrate, there are techniques described in Patent Document 1 and Patent Document 2, for example, as a method of joining a ceramic substrate with a metal plate serving as a circuit board or a heat sink.
In Patent Document 1, a copper circuit assembly in which a plurality of circuit elements are connected to each other with a thin bridge portion is adjusted, while an ceramic such as Ag—Cu—Ti containing an active metal such as Ti is used. It is disclosed that the bonding material is printed in the shape pattern of the copper circuit assembly, these are laminated and heated to be bonded, and then the bridge portion is removed by an etching process.
In Patent Document 2, a ceramic base plate and a metal plate are laminated and joined via a brazing foil, and then the metal plate is etched to form a circuit pattern, and a groove is formed between the circuit patterns of the ceramic base plate. A method of manufacturing a plurality of power module substrates by dividing the ceramic mother board along the groove is disclosed.

特開平6−216499号公報JP-A-6-216499 特開2010−50164号公報JP 2010-50164 A

いずれの方法も複数のパワーモジュール用基板を製造することが可能で、量産性に優れるが、これら複数のパワーモジュール用基板を並べて形成し得る大きさのセラミックス板と金属板との大板どうしを接合すると、接合材が回路要素以外の部分にも濡れ広がる。金属板が銅の場合には活性金属法による接合となり、その接合材にはAgが含まれるため、濡れ広がり部分をエッチング等により除去することは困難である。
この場合、金属板を予め個片化しておき、その個片の形状に合わせた形状パターンのろう材を使用することが考えられるが、これらを積層して、加圧、加熱処理する際の位置ずれ防止の技術が望まれる。
Either method can produce a plurality of power module substrates, and is excellent in mass productivity. However, a large plate of a ceramic plate and a metal plate having a size capable of forming a plurality of power module substrates side by side is formed. When bonded, the bonding material spreads out even on parts other than the circuit elements. When the metal plate is copper, bonding is performed by an active metal method, and since the bonding material contains Ag, it is difficult to remove the wet and spread portion by etching or the like.
In this case, it is conceivable to separate the metal plate in advance and use a brazing material having a shape pattern that matches the shape of the individual piece. Deviation prevention technology is desired.

本発明は、このような事情に鑑みてなされたもので、銅回路板を活性金属ろう付法によりセラミックス板に接合する際のセラミックス板、接合材及び銅回路板の位置決めずれを防止し、複数のパワーモジュール用基板を効率的に製造することができる方法の提供を目的とする。   The present invention has been made in view of such circumstances, and prevents misalignment of a ceramic board, a bonding material, and a copper circuit board when a copper circuit board is joined to a ceramic board by an active metal brazing method. An object of the present invention is to provide a method capable of efficiently manufacturing a power module substrate.

本発明のパワーモジュール用基板の製造方法は、複数のセラミックス基板を並べて形成し得る面積のセラミックス板に、複数の銅回路板を相互間隔をおいて接合した後、これら銅回路板の間で前記セラミックス板を分割して複数のパワーモジュール用基板を製造する方法であって、前記セラミックス板又は前記銅回路板のいずれか一方に前記銅回路板の外形と同形状の活性金属ろう材からなる接合材層を形成するとともに、他方に常温で固体のポリエチレングリコールを主成分とする仮止め材を溶融状態で塗布しておき、該仮止め材により前記セラミックス板の上に前記接合材層と前記銅回路板とを位置合わせして積層した状態で常温に冷却して仮止めする積層工程と、その積層体を積層方向に加圧して加熱することにより、前記セラミックス板と前記銅回路板とを接合する接合工程とを有することを特徴とする。 According to the method for manufacturing a power module substrate of the present invention, a plurality of copper circuit boards are joined to a ceramic board having an area where a plurality of ceramic boards can be formed side by side with a space therebetween, and then the ceramic board is interposed between the copper circuit boards. Is a method of manufacturing a plurality of power module substrates, wherein a bonding material layer is made of an active metal brazing material having the same shape as the outer shape of the copper circuit board on either the ceramic plate or the copper circuit board In addition, a temporary fixing material mainly composed of polyethylene glycol that is solid at room temperature is applied in a molten state to the other, and the bonding material layer and the copper circuit board are formed on the ceramic plate by the temporary fixing material. was cooled to room temperature in a laminated state by aligning the door and temporarily fixed to the laminating step, by heating under pressure the laminate in the laminating direction, the ceramic And having a bonding step of bonding the plate-copper circuit board.

この製造方法においては、ポリエチレングリコールを主成分とする仮止め材により銅回路板とセラミックス板とを接合材層を介して仮止めするので、その後の接合工程においても、銅回路板と接合材層とがセラミックス板の上でずれることがなく、これらが位置決めされた状態に保持され、したがって、銅回路板の外側への接合材のはみ出しを防止することができる。
なお、ポリエチレングリコールは、常温で固体であり、加熱により溶融するが、低融点の高分子化合物であるため、セラミックス板又は銅回路板への塗布作業が容易であるとともに、常温に冷却することにより固化してセラミックス板と銅回路板とを接合材層を介して接着状態とすることができ、また、接合工程においては接合温度に達する前に速やかに分解するので、接合面に影響を及ぼすこともない。
In this manufacturing method, the copper circuit board and the ceramic board are temporarily fixed via the bonding material layer with the temporary fixing material mainly composed of polyethylene glycol, so that the copper circuit board and the bonding material layer are also used in the subsequent bonding process. Are not displaced on the ceramic plate, and are held in a positioned state. Therefore, it is possible to prevent the bonding material from protruding to the outside of the copper circuit board.
Polyethylene glycol is solid at room temperature and melts by heating. However, since it is a low melting polymer compound, it can be easily applied to ceramic plates or copper circuit boards and cooled to room temperature. It can be solidified to bring the ceramic plate and copper circuit board into a bonded state via the bonding material layer, and in the bonding process, it quickly decomposes before reaching the bonding temperature, affecting the bonding surface Nor.

本発明のパワーモジュール用基板の製造方法において、前記接合材層が前記セラミックス板の表面にペーストを塗布して形成されたものであり、前記積層工程は、前記仮止め材を前記銅回路板に塗布して前記セラミックス板上の各接合材層にそれぞれ積層するものとしてもよい。
活性金属ろう材は、その中に含まれるTi等の活性金属がセラミックスに含まれるN、O又はCと反応するため、セラミックス板に塗布した方が、セラミックス板との濡れ性が良く、接合性が良好となる。
In the method for manufacturing a power module substrate of the present invention, the bonding material layer is formed by applying a paste to the surface of the ceramic plate, and the laminating step uses the temporary fixing material as the copper circuit board. It is good also as what is apply | coated and laminated | stacked on each joining material layer on the said ceramic board, respectively.
The active metal brazing material reacts with N, O, or C contained in the ceramics such as Ti contained in the active metal brazing material, so that the wettability with the ceramic plate is better when applied to the ceramic plate. Becomes better.

本発明のパワーモジュール用基板の製造方法において、前記銅回路板のうちの少なくとも一部は、複数の回路要素をブリッジ部により接続してなり、前記ブリッジ部の裏面は前記回路要素の裏面に対して凹部となるように形成されているものとしてもよい。
複数の回路要素を一括して接合できるとともに、ブリッジ部の裏面が回路要素の裏面(接合面)に対して凹部となっているので、接合面から接合材が濡れ広がることが抑制される。
また、複数の回路要素をブリッジ部により接続しているので、複数の回路要素を一度にセラミックス板に位置合わせして積層することが可能である。
In the method for manufacturing a power module substrate of the present invention, at least a part of the copper circuit board is formed by connecting a plurality of circuit elements by a bridge portion, and the back surface of the bridge portion is connected to the back surface of the circuit element. It is good also as what is formed so that it may become a recessed part.
A plurality of circuit elements can be bonded together, and the back surface of the bridge portion is a recess with respect to the back surface (bonding surface) of the circuit element, so that the bonding material is prevented from spreading from the bonding surface.
In addition, since the plurality of circuit elements are connected by the bridge portion, the plurality of circuit elements can be aligned and laminated on the ceramic plate at a time.

本発明のパワーモジュール用基板の製造方法によれば、ポリエチレングリコールを主成分とする仮止め材により銅回路板とセラミックス板とを接合材層を介して仮止めするので、その後の取り扱いを容易にして生産性が向上するとともに、各部材を正確に位置決めした状態で接合することができ、銅回路板からの接合材のはみ出しを防止して、商品価値の高いパワーモジュール用基板を製造することができる。   According to the method for manufacturing a power module substrate of the present invention, the copper circuit board and the ceramic board are temporarily fixed via the bonding material layer with the temporary fixing material mainly composed of polyethylene glycol, so that subsequent handling is facilitated. As a result, productivity can be improved, and each member can be bonded in an accurately positioned state, preventing the protrusion of the bonding material from the copper circuit board, and producing a power module substrate with high commercial value. it can.

本発明のパワーモジュール用基板の製造方法の第1実施形態において、セラミックス板の片面に接合材層を形成し、銅回路板に仮止め材を付着して積層する途中の状態を模式的に示した断面図である。In 1st Embodiment of the manufacturing method of the board | substrate for power modules of this invention, the joining material layer is formed in the single side | surface of a ceramic board, and the state in the middle of laminating | attaching a temporary fixing material on a copper circuit board is shown typically. FIG. 図1に示す状態からセラミックス板に銅回路板を積層した後の状態を模式的に示した断面図である。It is sectional drawing which showed typically the state after laminating | stacking a copper circuit board on the ceramic board from the state shown in FIG. 図2に示すように積層したセラミックス板と銅回路板とを複数組積み重ねて接合している工程を模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically showing a process of stacking and joining a plurality of laminated ceramic plates and copper circuit boards as shown in FIG. 2. 図3に示す接合工程後にセラミックス板の反対面に放熱板を積層する途中の状態を模式的に示した断面図である。It is sectional drawing which showed typically the state in the middle of laminating | stacking a heat sink on the opposite surface of a ceramic board after the joining process shown in FIG. 図4に示す状態から放熱板をセラミックス板に接合した後の状態を模式的に示す断面図である。It is sectional drawing which shows typically the state after joining a heat sink to the ceramic board from the state shown in FIG. 第1実施形態の方法により得られたパワーモジュール用基板の断面図である。It is sectional drawing of the board | substrate for power modules obtained by the method of 1st Embodiment. 本発明の第2実施形態の方法において、銅回路板をブリッジ部で連結した複数の回路要素により構成した例を示す銅回路板の平面図である。In the method of 2nd Embodiment of this invention, it is a top view of the copper circuit board which shows the example comprised by the some circuit element which connected the copper circuit board by the bridge part. 図7における銅回路板をセラミックス板上の接合材層に積層している途中の状態を模式的に示す一部を断面にした正面図である。It is the front view which made the cross section the part which shows typically the state in the middle of laminating | stacking the copper circuit board in FIG. 7 on the joining material layer on a ceramic board. 本発明の第3実施形態の方法において、銅回路板に形成した位置決め片をセラミックス板に係合して積層した状態を模式的に示す断面図である。In the method of 3rd Embodiment of this invention, it is sectional drawing which shows typically the state which engaged and laminated | stacked the positioning piece formed in the copper circuit board with the ceramic board. 従来例の接合面の超音波測定画像である。It is an ultrasonic measurement image of the joint surface of a prior art example. 本発明の実施例で仮止め材を銅回路板に点状に付着した場合の接合面の超音波測定画像である。It is an ultrasonic measurement image of a joint surface at the time of attaching the temporary fix | stop material to a copper circuit board in the spot form in the Example of this invention. 本発明の実施例で仮止め材を銅回路板の全面に付着した場合の接合面の超音波測定画像である。It is an ultrasonic measurement image of a joint surface when the temporary fix | stop material adheres to the whole surface of a copper circuit board in the Example of this invention. 各種の仮止め材を用いて接合した際の評価結果を示す表である。It is a table | surface which shows the evaluation result at the time of joining using various temporary fix | stop materials.

以下、本発明の実施形態に係るヒートシンク付パワーモジュール用基板の製造方法について説明する。
まず、第1実施形態の製造方法により製造されるパワーモジュール用基板を説明すると、図6に示すように、このパワーモジュール用基板10は、セラミックス基板20と、このセラミックス基板20の片面に接合された銅回路板30と、セラミックス基板20の反対側の表面に接合された放熱板40とを備えている。この場合、セラミックス基板20及び放熱板40は矩形平板状に形成されるが、銅回路板30は、所望の回路パターンに形成される。
Hereinafter, the manufacturing method of the board | substrate for power modules with a heat sink which concerns on embodiment of this invention is demonstrated.
First, the power module substrate manufactured by the manufacturing method of the first embodiment will be described. As shown in FIG. 6, the power module substrate 10 is bonded to a ceramic substrate 20 and one surface of the ceramic substrate 20. The copper circuit board 30 and the heat radiating plate 40 bonded to the opposite surface of the ceramic substrate 20 are provided. In this case, the ceramic substrate 20 and the heat sink 40 are formed in a rectangular flat plate shape, but the copper circuit board 30 is formed in a desired circuit pattern.

そして、このパワーモジュール用基板10は、図6の二点鎖線で示すように、放熱板40のセラミックス基板20とは反対側の表面にヒートシンク50が接合されるとともに、銅回路板30の上に半導体チップ等の電子部品60がはんだ層61により接合され、この電子部品60と銅回路板40との間がボンディングワイヤ(図示略)によって接続されるなどにより、パワーモジュールが構成される。また、必要に応じてモールド樹脂(図示略)により全体が封止される。はんだ層61は、Sn−Cu系、Sn−Ag−Cu系、Zn−Al系若しくはPb−Sn系等のはんだにより形成される。   As shown by a two-dot chain line in FIG. 6, the power module substrate 10 has a heat sink 50 bonded to the surface of the heat radiating plate 40 opposite to the ceramic substrate 20 and is mounted on the copper circuit board 30. A power module is configured by joining an electronic component 60 such as a semiconductor chip by a solder layer 61 and connecting the electronic component 60 and the copper circuit board 40 by a bonding wire (not shown). Further, the whole is sealed with a mold resin (not shown) as necessary. The solder layer 61 is made of Sn-Cu, Sn-Ag-Cu, Zn-Al, or Pb-Sn solder.

セラミックス基板20は、例えばAlN(窒化アルミニウム)、Si(窒化珪素)等の窒化物系セラミックス、若しくはAl(アルミナ)等の酸化物系セラミックスを母材として矩形状に形成されている。セラミックス基板20の厚さは0.3mm〜1.0mmとされる。
銅回路板30は、無酸素銅やタフピッチ銅等の純銅又は銅合金(本発明では単に銅と称す)により形成され、板材をプレスで打ち抜くことにより、所望の回路パターンに形成されている。銅回路板30の厚さは0.3mm〜4mmとされる。この銅回路板30は、後述するように、セラミックス基板にTi等の活性金属を含有するAg−TiやAg−Ti−Cuなどの活性金属ろう材からなる接合材によって接合される。
放熱板40は、純度99.90%以上の純アルミニウム又はアルミニウム合金(単にアルミニウムと称す)により形成され、厚さ0.5mm〜2mmで、通常はセラミックス基板10より小さい矩形の平板状に形成される。この放熱板40は、セラミックス基板20にAl−Si系、Al−Ge系、Al−Cu系、Al−Mg系またはAl−Mn系等のろう材を接合材として接合される。
The ceramic substrate 20 is formed in a rectangular shape using, for example, a nitride ceramic such as AlN (aluminum nitride) or Si 3 N 4 (silicon nitride) or an oxide ceramic such as Al 2 O 3 (alumina) as a base material. ing. The thickness of the ceramic substrate 20 is 0.3 mm to 1.0 mm.
The copper circuit board 30 is formed of pure copper such as oxygen-free copper or tough pitch copper or a copper alloy (in the present invention, simply referred to as copper), and is formed into a desired circuit pattern by punching a plate material with a press. The thickness of the copper circuit board 30 is set to 0.3 mm to 4 mm. As will be described later, the copper circuit board 30 is bonded to a ceramic substrate with a bonding material made of an active metal brazing material such as Ag-Ti or Ag-Ti-Cu containing an active metal such as Ti.
The heat radiating plate 40 is formed of pure aluminum or aluminum alloy (simply referred to as aluminum) having a purity of 99.90% or more, and has a thickness of 0.5 mm to 2 mm and is usually formed in a rectangular flat plate shape smaller than the ceramic substrate 10. The The heat radiating plate 40 is bonded to the ceramic substrate 20 with a brazing material such as Al—Si, Al—Ge, Al—Cu, Al—Mg, or Al—Mn as a bonding material.

次に、このように構成されるパワーモジュール用基板10の製造方法について説明する。
セラミックス基板20を複数並べて形成し得る面積のセラミックス板21を用意する。銅回路板30及び放熱板40は、個々のパワーモジュール用基板10に用いられる製品寸法のものを用意する。セラミックス板21の片面にまず銅回路板30を複数並べて積層し、その積層体を加圧加熱して接合した後、セラミックス板21の反対面に放熱板40をそれぞれ接合し、その後、セラミックス板21を分割してパワーモジュール用基板10に個片化する。以下、工程順に詳述する。
Next, a method for manufacturing the power module substrate 10 thus configured will be described.
A ceramic plate 21 having an area capable of forming a plurality of ceramic substrates 20 side by side is prepared. The copper circuit board 30 and the heat sink 40 are prepared in the product dimensions used for each power module substrate 10. First, a plurality of copper circuit boards 30 are stacked side by side on one side of the ceramic plate 21, and the laminated body is pressurized and heated, and then the heat radiating plate 40 is bonded to the opposite surface of the ceramic plate 21. Is divided into power module substrates 10. Hereinafter, it explains in full detail in order of a process.

(銅回路板積層工程)
この銅回路板積層工程においては、図1に示すように、銅回路板30とセラミックス板21とを積層する際の位置決めを補助するための位置決め治具100が用いられる。この位置決め治具100は、各銅回路板30を配置するための複数の凹部101を有する基台102と、これら凹部101に配置された銅回路板30に対してセラミックス板21を位置決めしながら案内するガイド壁103とが設けられている。
凹部101は、銅回路板30の厚さよりも小さい深さを有しており、基台102の上面に相互間隔をおいて配置されている。この凹部101に銅回路板30を収容することにより、各銅回路板30の上面が水平面に沿って面一に配置される。
ガイド壁103は、基台102の上面の例えば3箇所に、複数の凹部101の配置箇所を3方から囲むように立設されている。そして、これらガイド壁103の内側面が垂直方向に沿って形成されており、これら内側面にセラミックス板21の3辺を接触させた状態で上下方向に案内する構成である。
なお、ガイド壁103は、少なくともセラミックス板21の一つの隅部で直交する2辺を案内するように設けられていればよい。
(Copper circuit board lamination process)
In this copper circuit board lamination process, as shown in FIG. 1, a positioning jig 100 for assisting positioning when the copper circuit board 30 and the ceramic board 21 are laminated is used. The positioning jig 100 guides the base plate 102 having a plurality of recesses 101 for arranging the copper circuit boards 30 and positioning the ceramic plate 21 with respect to the copper circuit board 30 arranged in the recesses 101. The guide wall 103 is provided.
The recess 101 has a depth smaller than the thickness of the copper circuit board 30, and is disposed on the upper surface of the base 102 with a mutual interval. By accommodating the copper circuit board 30 in the recess 101, the upper surface of each copper circuit board 30 is disposed flush with the horizontal plane.
The guide wall 103 is erected so as to surround, for example, three places on the upper surface of the base 102 so as to surround the places where the plurality of recesses 101 are arranged from three directions. The inner surfaces of the guide walls 103 are formed along the vertical direction, and the guide walls 103 are guided in the vertical direction in a state where the three sides of the ceramic plate 21 are in contact with the inner surfaces.
The guide wall 103 may be provided so as to guide at least two sides orthogonal to each other at one corner of the ceramic plate 21.

積層工程に際して、予め、セラミックス板21の片面には、活性金属ろう材のペーストを塗布して接合材層71を形成する。
活性金属ろう材は、Ag及び活性金属(例えばTi)を含む金属粉末と、エチルセルロース、メチルセルロース、ポリメチルメタクリレート、アクリル樹脂、アルキッド樹脂等の有機バインダと、トルエン、 シクロヘキサノン、ジアセトンアルコール、メチルセルソルブ、エチルセルソルブ、テルピネオール、テキサノ−ル、トリエチルシトレート等の溶剤と、分散剤、可塑剤、還元剤等を混合してペースト状に形成したものであり、金属粉末として、Ag−8.8質量%Ti、Ag−27.4質量%Cu−2.0質量%Tiが好適に用いられる。
この活性金属ろう材をスクリーン印刷法等によりセラミックス板21の表面における各銅回路板30の接合予定位置にそれぞれ塗布することにより、銅回路板30の外形と同じ形状パターンの接合材層71をセラミックス板21の表面に形成する。
In the laminating process, a paste of an active metal brazing material is applied in advance to one surface of the ceramic plate 21 to form a bonding material layer 71.
The active metal brazing material includes a metal powder containing Ag and an active metal (for example, Ti), an organic binder such as ethyl cellulose, methyl cellulose, polymethyl methacrylate, acrylic resin, alkyd resin, toluene, cyclohexanone, diacetone alcohol, methyl cellosolve. , Ethyl cellosolve, terpineol, texanol, triethyl citrate and the like and a dispersant, a plasticizer, a reducing agent and the like are mixed to form a paste. As a metal powder, Ag-8.8 Mass% Ti, Ag-27.4 mass% Cu-2.0 mass% Ti are preferably used.
The active metal brazing material is applied to the bonding position of each copper circuit board 30 on the surface of the ceramic board 21 by screen printing or the like, so that the bonding material layer 71 having the same shape pattern as the outer shape of the copper circuit board 30 is formed on the ceramics. It is formed on the surface of the plate 21.

一方、銅回路板30の片面にはポリエチレングリコール(PEG)を主成分として含有する仮止め材72を塗布する。このポリエチレングリコールは、常温(25℃)で固体であり、比較的低融点で液体へと相変態する。平均重量分子量が800〜20000のものが好ましい。平均重量分子量が800未満では常温で液体となるため取り扱い性が悪く、20000を超えると、融点が高くなるため、銅回路板30への塗布作業性が悪い。平均重量分子量800〜1000のものは融点が約40℃、平均重量分子量6000でも融点60℃程度である。
この仮止め材72を加温して溶融状態とし、例えば銅回路板30の表面における隅部等の複数箇所に滴下することにより、銅回路板30表面に塗布する。
On the other hand, a temporary fixing material 72 containing polyethylene glycol (PEG) as a main component is applied to one side of the copper circuit board 30. This polyethylene glycol is solid at room temperature (25 ° C.) and undergoes phase transformation to a liquid with a relatively low melting point. Those having an average weight molecular weight of 800 to 20,000 are preferred. When the average weight molecular weight is less than 800, it becomes liquid at room temperature, so the handling property is bad. When it exceeds 20000, the melting point becomes high, so that the workability of application to the copper circuit board 30 is bad. Those having an average weight molecular weight of 800 to 1000 have a melting point of about 40 ° C. and an average weight molecular weight of 6000 has a melting point of about 60 ° C.
The temporary fixing material 72 is heated to be in a molten state, and is applied to the surface of the copper circuit board 30 by, for example, dropping at a plurality of locations such as corners on the surface of the copper circuit board 30.

そして、この仮止め材72を付着した銅回路板30を位置決め治具100の各凹部101に仮止め材72を上方に向けた状態に配置する。位置決め治具100に配置した状態の銅回路板30に仮止め材72を滴下するようにしてもよい。
そして、位置決め治具100の基台102を加熱するなどにより、仮止め材72を溶融状態としておき、その上から接合材層71を形成したセラミックス板21をガイド壁103に沿って案内しながら積層することにより、これら銅回路板30とセラミックス板21とを位置決め状態に積層する。
Then, the copper circuit board 30 to which the temporary fixing material 72 is attached is arranged in each concave portion 101 of the positioning jig 100 with the temporary fixing material 72 facing upward. The temporary fixing material 72 may be dropped on the copper circuit board 30 in the state of being placed on the positioning jig 100.
Then, by temporarily heating the base 102 of the positioning jig 100, the temporary fixing material 72 is set in a molten state, and the ceramic plate 21 on which the bonding material layer 71 is formed is laminated while being guided along the guide wall 103. As a result, the copper circuit board 30 and the ceramic board 21 are laminated in a positioning state.

図2はセラミックス板21と銅回路板30とが積層された状態を示しており(図1とは上下を逆にして示している)、銅回路板30に付着した仮止め材72は積層により銅回路板30と接合材層71との間で薄く延ばされ層状になって両者を固着する。このとき、接合材層71と銅回路板30とは同じ外形に形成されているので、これらがずれることなく正確な位置決め状態に積層される。仮止め材72は、常温に冷却されれば固化し、銅回路板30とセラミックス板21との積層体11を位置決め状態に保持する。
なお、大量生産等の際には、銅回路板30に滴下した仮止め材72を一旦常温まで冷却して固化させておくことにより、仮止め材72を塗布した銅回路板30を多数用意しておき、これら銅回路板30をセラミックス板21に積層する際に、銅回路板30を順次加温して仮止め材72を再溶融した後にセラミックス板21に積層するようにしてもよい。
FIG. 2 shows a state in which the ceramic plate 21 and the copper circuit board 30 are laminated (shown upside down from FIG. 1), and the temporary fixing material 72 attached to the copper circuit board 30 is laminated. The copper circuit board 30 and the bonding material layer 71 are thinly extended to form a layer and to fix them together. At this time, since the bonding material layer 71 and the copper circuit board 30 are formed in the same outer shape, they are laminated in an accurate positioning state without shifting. The temporary fixing material 72 is solidified when cooled to room temperature, and holds the laminated body 11 of the copper circuit board 30 and the ceramic board 21 in a positioning state.
In the case of mass production or the like, a large number of the copper circuit boards 30 coated with the temporary fixing material 72 are prepared by once cooling the temporary fixing material 72 dropped on the copper circuit board 30 to room temperature and solidifying it. In addition, when laminating the copper circuit board 30 on the ceramic board 21, the copper circuit board 30 may be sequentially heated to remelt the temporary fixing material 72 and then laminated on the ceramic board 21.

(銅回路板接合工程)
このようにして積層状態としたセラミックス板21と銅回路板30との積層体11を図3に示すように当て板80を介在させて複数組積み重ねた状態で積層方向に加圧し、その加圧状態のまま真空中で加熱することにより、セラミックス板21と銅回路板30とをその間に介在させた接合材層71により接合する。この接合材71には、活性金属が含まれているので、真空中で加熱すると、セラミックス板21の表面に活性金属であるTiがセラミックス板21に含まれるN又はOと反応して窒化物や酸化物等を形成するとともに、Agが銅回路板30のCuとの反応により溶融金属層を形成し、これが冷却凝固することによりAg‐Cu共晶層を介して銅回路板30とセラミックス板21とが接合される。
(Copper circuit board joining process)
The laminated body 11 of the ceramic plate 21 and the copper circuit board 30 thus laminated is pressed in the laminating direction in a state where a plurality of sets are stacked with the contact plate 80 interposed therebetween as shown in FIG. By heating in a vacuum in the state, the ceramic plate 21 and the copper circuit board 30 are bonded together by the bonding material layer 71 interposed therebetween. Since this bonding material 71 contains an active metal, when it is heated in a vacuum, Ti, which is an active metal, reacts with N or O contained in the ceramic plate 21 on the surface of the ceramic plate 21 to cause a nitride or While forming oxide etc., Ag forms a molten metal layer by reaction with Cu of the copper circuit board 30, and this solidifies by cooling, whereby the copper circuit board 30 and the ceramic board 21 are passed through the Ag-Cu eutectic layer. And are joined.

具体的には、10−3Paの真空中でセラミックス板21と銅回路板30との積層体11を積層方向に10N/cm(1kgf/cm)〜334N/cm(35kgf/cm)の圧力で加圧する。当て板80は、この接合工程時に銅回路板30やセラミックス板21に固着しないようにカーボンにより構成される。そして、この加圧状態で全体を真空加熱炉に装入し、790℃〜850℃で10分以上加熱して冷却する。仮止め材72は、この加熱の初期の段階で分解して消失する。
この銅回路板接合工程により、セラミックス板21の上に複数の銅回路板30が接合された接合体12が作製される。
Specifically, 10 -3 ceramic plate 21 in a vacuum of Pa and the copper circuit board 30 stacked direction a laminate 11 with the 10N / cm 2 (1kgf / cm 2) ~334N / cm 2 (35kgf / cm 2 ). The backing plate 80 is made of carbon so that it does not adhere to the copper circuit board 30 or the ceramic board 21 during this joining step. And in this pressurization state, the whole is inserted into a vacuum heating furnace, and is cooled by heating at 790 ° C. to 850 ° C. for 10 minutes or more. The temporary fixing material 72 is decomposed and disappears in the initial stage of the heating.
By this copper circuit board joining step, the joined body 12 in which a plurality of copper circuit boards 30 are joined onto the ceramic board 21 is produced.

(放熱板接合工程)
放熱板40は、Al−Si系、Al−Ge系、Al−Cu系、Al−Mg系またはAl−Mn系等のろう材を接合材73としてセラミックス板21に接合される。融点降下元素であるSiを含有したAl−Si系ろう材が好適であり、厚さ5μm〜50μmの箔の形態で用いられる。
接合方法としては、放熱板40とセラミックス板21との間に接合材(ろう材箔)73を介在させて積層する、あるいは放熱板40を形成するためのアルミニウム板に接合材73を溶接等により仮止めしておき、プレスで打ち抜くことにより、接合材73が仮止めされた放熱板40を形成し、その放熱板40の接合材73側をセラミックス板21に重ねて積層する、などの方法とすることができる。この放熱板40の積層作業においても、図1に示したような位置決め治具を用いてもよい。
(Heat sink joining process)
The heat radiating plate 40 is bonded to the ceramic plate 21 with a brazing material such as Al—Si, Al—Ge, Al—Cu, Al—Mg, or Al—Mn as a bonding material 73. An Al—Si brazing material containing Si as a melting point lowering element is suitable, and is used in the form of a foil having a thickness of 5 μm to 50 μm.
As a joining method, a joining material (brazing material foil) 73 is interposed between the heat radiating plate 40 and the ceramic plate 21, or the joining material 73 is welded to an aluminum plate for forming the heat radiating plate 40. Temporarily fastened and punched with a press to form the heat dissipation plate 40 with the bonding material 73 temporarily fixed, and the bonding material 73 side of the heat dissipation plate 40 is stacked on the ceramic plate 21 and laminated. can do. Also in the stacking operation of the heat sink 40, a positioning jig as shown in FIG. 1 may be used.

この放熱板40は、図4に示すようにセラミックス板21の銅回路板30の接合側とは反対面に、各銅回路板30の接合位置に対応するように1個ずつ積層する。そして、前述の銅回路板接合工程と同様に、放熱板40を積層した積層体を複数組積み重ね、積層方向に加圧した状態で真空加熱炉内で加熱することにより、接合材(ろう材)73と放熱板40の一部のアルミニウムを溶融させ、冷却凝固することによりセラミックス板21に放熱板40を接合する。加圧力は10N/cm(1kgf/cm)〜334N/cm(35kgf/cm)、加熱温度は550℃〜650℃とされる。加圧の際に、カーボンからなる当て板80が用いられるのも、銅回路板接合工程と同様である。
この放熱板接合工程により、図5に示すように、セラミックス板21の片面に銅回路板30、反対面に放熱板40がそれぞれ接合された接合体13が得られる。
As shown in FIG. 4, the heat radiating plates 40 are laminated one by one on the surface of the ceramic plate 21 opposite to the bonding side of the copper circuit board 30 so as to correspond to the bonding positions of the copper circuit boards 30. And like the above-mentioned copper circuit board joining process, a laminated material which laminated | stacked the heat sink 40 was stacked | stacked, and it heats in a vacuum heating furnace in the state pressurized in the lamination direction, thereby joining material (brazing material). 73 and a part of the aluminum of the heat sink 40 are melted and cooled and solidified to join the heat sink 40 to the ceramic plate 21. Pressure is 10N / cm 2 (1kgf / cm 2) ~334N / cm 2 (35kgf / cm 2), the heating temperature is set to 550 ° C. to 650 ° C.. The pressing plate 80 made of carbon is used at the time of pressurization, as in the copper circuit board bonding step.
By this heat radiating plate joining step, as shown in FIG. 5, a joined body 13 is obtained in which the ceramic circuit plate 30 is joined to the copper circuit board 30 on one side and the heat radiating plate 40 is joined to the opposite side.

(分割工程)
セラミックス板21の銅回路板30間に図5の鎖線で示すようにレーザー加工等によって溝90を形成し、その溝90に沿ってセラミックス板21を分割することにより、図6に示すように、セラミックス基板20の片面に銅回路板30、反対面に放熱板40が接合された個々のパワーモジュール用基板10が形成される。
セラミックス板21の溝90は、銅回路板30を接合する前に形成しておいてもよい。
(Division process)
As shown in FIG. 6, by forming grooves 90 by laser processing or the like between the copper circuit boards 30 of the ceramic plates 21 by laser processing or the like, and dividing the ceramic plates 21 along the grooves 90, as shown in FIG. Each power module substrate 10 is formed by bonding the copper circuit board 30 on one side of the ceramic substrate 20 and the heat sink 40 on the opposite side.
The groove 90 of the ceramic plate 21 may be formed before the copper circuit board 30 is bonded.

このようにして製造されるパワーモジュール用基板10は、銅回路板接合工程の前に、銅合金板積層工程において銅回路板30を仮止め材72によりセラミックス板21上の接合材層71に仮止めしておくので、その後の銅回路板接合工程での接合作業中等において銅回路板30とセラミックス板21の接合材層71との位置ずれが防止され、銅回路板30をセラミックス板21の所定位置に正確に位置決めした状態で接合することができる。   The power module substrate 10 manufactured in this manner is temporarily attached to the bonding material layer 71 on the ceramic plate 21 by the temporary fixing material 72 in the copper alloy plate lamination step before the copper circuit plate bonding step. Therefore, the positional deviation between the copper circuit board 30 and the bonding material layer 71 of the ceramic board 21 is prevented during the joining operation in the subsequent copper circuit board joining process, and the copper circuit board 30 is fixed to the ceramic board 21 in a predetermined manner. It can join in the state positioned correctly at the position.

図7及び図8は本発明の第2実施形態を示している。前述の第1実施形態と共通要素には同一符号を付して説明を簡略化する。
図7は、セラミックス板21に接合される前の銅回路板33を示しており、この銅回路板33は複数の回路要素33aがブリッジ部35bにより接続された状態に形成されている。このブリッジ部33bは、回路要素33aよりも薄肉に形成されるとともに、図8に示すように回路要素33aの裏面(接合面)に対して凹部となるように回路要素33aの上面側に配置されている。
そして、セラミックス板21に前述の第1実施形態における銅回路板積層工程と同様に、銅回路板33の裏面にポリエチレングリコールを主成分として含む仮止め材72を付着しておき、セラミックス板21表面の接合材層71上に仮止めされる。セラミックス板21の接合材層71も、銅回路板33の各回路要素33aの形状、配置に対応して形成される。
そして、第1実施形態と同様に、銅回路板接合工程、放熱層接合工程、分割工程を実施するが、銅回路板接合工程の後、銅回路板33のブリッジ部33bを除去するためのエッチング処理が施される。ブリッジ部33bはセラミックス板21の表面から離間して、接合されていない状態であるので、エッチング処理により容易に除去することができる。
7 and 8 show a second embodiment of the present invention. The same elements as those in the first embodiment described above are denoted by the same reference numerals to simplify the description.
FIG. 7 shows the copper circuit board 33 before being bonded to the ceramic board 21, and the copper circuit board 33 is formed in a state where a plurality of circuit elements 33 a are connected by a bridge portion 35 b. The bridge portion 33b is formed thinner than the circuit element 33a, and is disposed on the upper surface side of the circuit element 33a so as to be a recess with respect to the back surface (joint surface) of the circuit element 33a as shown in FIG. ing.
Then, similarly to the copper circuit board laminating step in the first embodiment described above, a temporary fixing material 72 containing polyethylene glycol as a main component is attached to the back surface of the copper circuit board 33 on the ceramic board 21, and the surface of the ceramic board 21. The bonding material layer 71 is temporarily fixed. The bonding material layer 71 of the ceramic board 21 is also formed corresponding to the shape and arrangement of each circuit element 33a of the copper circuit board 33.
And like a 1st embodiment, although a copper circuit board joining process, a heat dissipation layer joining process, and a division process are carried out, etching for removing bridge part 33b of copper circuit board 33 is carried out after a copper circuit board joining process. Processing is performed. Since the bridge portion 33b is separated from the surface of the ceramic plate 21 and is not joined, it can be easily removed by etching.

この実施形態のように、銅回路板33が複数の回路要素33aからなる場合でも、ポリエチレングリコールを主成分とする仮止め材72によりセラミックス板21と各銅回路板板33とを正確に位置決めした状態に積層することができ、その取り扱いを容易にすることができるとともに、接合材71とのずれが防止されるので、不要部分が確実に除去された銅回路板を得ることができる。   As in this embodiment, even when the copper circuit board 33 is composed of a plurality of circuit elements 33a, the ceramic board 21 and each copper circuit board board 33 are accurately positioned by the temporary fixing material 72 mainly composed of polyethylene glycol. The copper circuit board can be laminated in a state, the handling thereof can be facilitated, and the deviation from the bonding material 71 is prevented, so that a copper circuit board from which unnecessary portions have been reliably removed can be obtained.

図9は第3実施形態を示している。
この実施形態においては、複数の銅回路板30をブリッジ部35により連結状態とした銅回路板構成体36が形成され、この銅回路板構成体36の端部に直角に屈曲した位置決め片37が設けられており、銅回路板積層工程において銅回路板30をセラミックス板21に積層する際に、位置決め片37がセラミックス板21の側面に当接することにより、銅回路板構成体36の各銅回路板30とセラミックス板21とが一括して位置決めされるようになっている。この場合、位置決め片37は、セラミックス板21の隅部で直角に交差する2辺に当接するように2箇所に設けられる。
銅回路板構成体32をセラミックス板21に積層した後は、銅回路板接合工程、放熱板接合工程、分割工程を経てパワーモジュール用基板が製造されるが、その途中で、銅回路板構成体36の各ブリッジ部35及び位置決め片37がエッチング処理等によって除去される。
FIG. 9 shows a third embodiment.
In this embodiment, a copper circuit board structure 36 in which a plurality of copper circuit boards 30 are connected by a bridge portion 35 is formed, and a positioning piece 37 bent at a right angle at an end of the copper circuit board structure 36 is formed. When the copper circuit board 30 is laminated on the ceramic board 21 in the copper circuit board laminating step, the positioning pieces 37 come into contact with the side surfaces of the ceramic board 21, so that each copper circuit of the copper circuit board constituting body 36 is provided. The plate 30 and the ceramic plate 21 are positioned together. In this case, the positioning pieces 37 are provided at two locations so as to come into contact with two sides intersecting at right angles at the corners of the ceramic plate 21.
After the copper circuit board structure 32 is laminated on the ceramic board 21, the power module substrate is manufactured through the copper circuit board bonding process, the heat sink bonding process, and the dividing process. The 36 bridge portions 35 and the positioning pieces 37 are removed by etching or the like.

31mm四方×厚さ2mmの銅回路板に平均重量分子量1000のポリエチレングリコールからなる仮止め材を滴下し、33mm四方×厚さ0.635mmの窒化アルミニウム製セラミックス基板にはAg−8.8質量%Tiからなる接合材層を形成し、これらを積層して10−3Paの真空中で10N/cm(1kgf/cm)〜334N/cm(35kgf/cm)の圧力で加圧し、850℃で30分間加熱した。
仮止め材をスポット的に付着したものと、銅回路板の全面に塗布したものとで、接合状態を評価した。評価は超音波画像測定機により、接合面における未接合部の有無を観察した。仮止め材を使用しない従来例のものも作製した。
図10が仮止め材を使用しなかった従来例、図11が仮止め材を銅回路板の四隅に直径3mm〜4mmの点状に塗布した実施例、図12は銅回路板の全面に仮止め材を塗布した実施例を示す。仮止め材の塗布量は、図11が合計6.9mg〜9.2mg、図12が37.3mg〜41.5mgであった。
これらの図において、黒い矩形部分が接合面であり、未接合部は白くなるが、仮止め材を用いたものは周縁まで明確であり、したがって仮止め材を用いたとしても接合性には影響がないことがわかる。
A temporary fixing material made of polyethylene glycol having an average weight molecular weight of 1000 is dropped on a copper circuit board having a thickness of 31 mm square and a thickness of 2 mm, and Ag-8.8 mass% is applied to an aluminum nitride ceramic substrate having a thickness of 33 mm square and a thickness of 0.635 mm. forming a bonding material layer formed of Ti, pressed at a pressure of the lamination 10 -3 Pa 10N / cm 2 in vacuum (1kgf / cm 2) ~334N / cm 2 (35kgf / cm 2), Heated at 850 ° C. for 30 minutes.
The bonding state was evaluated with the spot-fixed material attached to the spot and the one coated on the entire surface of the copper circuit board. In the evaluation, the presence or absence of an unjoined portion on the joint surface was observed with an ultrasonic image measuring machine. The thing of the prior art example which does not use a temporary fixing material was also produced.
FIG. 10 shows a conventional example in which no temporary fixing material is used, FIG. 11 shows an example in which the temporary fixing material is applied to the four corners of the copper circuit board in the form of dots having a diameter of 3 mm to 4 mm, and FIG. An example in which a stopper is applied will be described. The total application amount of the temporary fixing material was 6.9 mg to 9.2 mg in FIG. 11 and 37.3 to 41.5 mg in FIG. 12.
In these figures, the black rectangular part is the joining surface, and the unjoined part is white, but the one using the temporary fixing material is clear to the periphery, so even if the temporary fixing material is used, the bonding property is affected. You can see that there is no.

次に、仮止め材として、ポリエチレングリコール(PEG)、セメダイン社製シアノアクリレート系瞬間接着剤(3000RX)、三菱レイヨン社製樹脂シート(BR101)、グリセリン、流動パラフィンを用いた評価を行った。
これらの仮止め材を用い、銅回路板をセラミックス板の接合材層上に積層し、真空中で加圧加熱して得られた接合体に対し、横ズレ、ペースト剥離、Cu/AlN接合性を評価した。
横ズレは、銅回路板に仮止め材をそれぞれ付着してセラミックス板の接合層に積層し、冷却後にセラミックス板を横に約30mm/sの速度で振って銅回路板にずれが生じるか否かを目視により確認することにより評価した。横ズレが認められなかったものを○、横ズレが生じていたものを×とした。
ペースト剥離は、銅回路板を接合材層に積層した後、接合材層のAg−Tiペーストが仮止め材との反応により溶解することによって、剥離が生じないか否かを目視により評価した。ペースト剥離が認められなかったものを○、剥離が認められたものを×とした。
Cu/AlN接合性は、接合後の初期状態、及び−40℃と100℃との間の冷熱サイクルを3000回負荷した後の状態で、それぞれ前述した超音波画像測定機により、接合面の未接合部の有無を観察することにより評価した。接合面に2%以上の未接合部が認められなかったものを○、5%以上の未接合部または直径2mm以上のボイドが認められたものを×とし、いずれにも該当しない軽微な未接合部が認められるものを△とした。
これらの結果を図13に示す。
Next, evaluation using polyethylene glycol (PEG), a cyanoacrylate instantaneous adhesive (3000RX) manufactured by Cemedine, a resin sheet (BR101) manufactured by Mitsubishi Rayon, glycerin, and liquid paraffin was performed as a temporary fixing material.
Using these temporary fixing materials, a copper circuit board is laminated on a bonding material layer of a ceramic plate and subjected to pressurization and heating in a vacuum. Lateral displacement, paste peeling, Cu / AlN bondability Evaluated.
Lateral misalignment is whether the copper circuit board is displaced by attaching a temporary fixing material to the copper circuit board and laminating it on the bonding layer of the ceramic board, and after cooling, shaking the ceramic board laterally at a speed of about 30 mm / s. This was evaluated by visually confirming. A case where no lateral deviation was observed was indicated by ○, and a case where lateral deviation occurred was indicated by ×.
For paste peeling, after laminating the copper circuit board on the bonding material layer, the Ag-Ti paste of the bonding material layer was dissolved by reaction with the temporary fixing material, and it was visually evaluated whether peeling occurred. The case where no peeling of the paste was observed was rated as “◯”, and the case where the peeling was observed was marked as “X”.
Cu / AlN bondability is determined by the above-described ultrasonic image measuring machine in the initial state after bonding and after 3000 cycles of a cooling cycle between −40 ° C. and 100 ° C. It evaluated by observing the presence or absence of a junction part. The case where 2% or more unbonded part was not recognized on the joint surface was ○, the case where 5% or more unjoined part or void 2 mm or more in diameter was recognized was x, and light unjoined which did not correspond to any The part where the part was recognized was marked with Δ.
These results are shown in FIG.

図13に示されるように、本実施例の方法においては、セラミックス板と銅回路板とを仮止め材により積層状態とすることにより、これらセラミックス板と銅回路板との横ズレがなく、その後の取り扱い作業性が良好であることがわかる。また、接合材層を剥離するなどの悪影響を及ぼさず、信頼性の高い接合面を得ることができる。   As shown in FIG. 13, in the method of the present embodiment, the ceramic plate and the copper circuit board are laminated with the temporary fixing material, so that there is no lateral deviation between the ceramic board and the copper circuit board, and thereafter It can be seen that the handling workability is good. In addition, a highly reliable bonding surface can be obtained without adversely affecting the bonding material layer.

なお、本発明は前記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
実施形態では銅回路板にポリエチレングリコールを主成分とする仮止め材を付着し、セラミックス板に活性金属ろう材からなる接合材層を形成したが、逆に、セラミックス板に仮止め材を付着し、銅回路板に接合材層を形成してもよい。
In addition, this invention is not limited to the thing of the structure of the said embodiment, In a detailed structure, it is possible to add a various change in the range which does not deviate from the meaning of this invention.
In the embodiment, a temporary fixing material mainly composed of polyethylene glycol is attached to a copper circuit board, and a bonding material layer made of an active metal brazing material is formed on the ceramic board, but conversely, the temporary fixing material is attached to the ceramic board. A bonding material layer may be formed on the copper circuit board.

10 パワーモジュール用基板
20 セラミックス基板
21 セラミックス板
30 銅回路板
35 銅回路板
35a 回路要素
35b ブリッジ部
40 放熱板
50 ヒートシンク
60 電子部品
61 はんだ層
71 接合材層
72 仮止め材
80 当て板
90 溝
100 位置決め治具
101 凹部
102 ガイド壁
DESCRIPTION OF SYMBOLS 10 Power module board 20 Ceramic board 21 Ceramic board 30 Copper circuit board 35 Copper circuit board 35a Circuit element 35b Bridge part 40 Heat sink 50 Heat sink 60 Electronic component 61 Solder layer 71 Bonding material layer 72 Temporary fixing material 80 Applying plate 90 Groove 100 Positioning jig 101 Recess 102 Guide wall

Claims (3)

複数のセラミックス基板を並べて形成し得る面積のセラミックス板に、複数の銅回路板を相互間隔をおいて接合した後、これら銅回路板の間で前記セラミックス板を分割して複数のパワーモジュール用基板を製造する方法であって、
前記セラミックス板又は前記銅回路板のいずれか一方に前記銅回路板の外形と同形状の活性金属ろう材からなる接合材層を形成するとともに、他方に常温で固体のポリエチレングリコールを主成分とする仮止め材を溶融状態で塗布しておき、該仮止め材により前記セラミックス板の上に前記接合材層と前記銅回路板とを位置合わせして積層した状態で常温に冷却して仮止めする積層工程と、
その積層体を積層方向に加圧して加熱することにより、前記セラミックス板と前記銅回路板とを接合する接合工程と
を有することを特徴とするパワーモジュール用基板の製造方法。
After a plurality of copper circuit boards are joined to a ceramic board having an area that can be formed by arranging a plurality of ceramic boards at intervals, the ceramic boards are divided between the copper circuit boards to produce a plurality of power module boards. A way to
A bonding material layer made of an active metal brazing material having the same shape as the outer shape of the copper circuit board is formed on either the ceramic board or the copper circuit board, and the other is mainly composed of polyethylene glycol that is solid at room temperature. Temporary fixing material is applied in a molten state, and the bonding material layer and the copper circuit board are aligned and laminated on the ceramic plate with the temporary fixing material, and then cooled to room temperature and temporarily fixed. Lamination process;
A method for manufacturing a power module substrate, comprising: a step of joining the ceramic plate and the copper circuit board by pressing and heating the laminated body in a laminating direction.
前記接合材層が前記セラミックス板の表面にペーストを塗布して形成されたものであり、前記積層工程は、前記仮止め材を前記銅回路板に塗布して前記セラミックス板上の各接合材層にそれぞれ積層する
ことを特徴とする請求項1記載のパワーモジュール用基板の製造方法。
The bonding material layer is formed by applying a paste to the surface of the ceramic plate, and in the laminating step, the bonding material layer on the ceramic plate is formed by applying the temporary fixing material to the copper circuit board. The method for manufacturing a power module substrate according to claim 1, wherein the power module substrate is laminated.
前記銅回路板のうちの少なくとも一部は、複数の回路要素をブリッジ部により接続してなり、前記ブリッジ部の裏面は前記回路要素の裏面に対して凹部となるように形成されていることを特徴とする請求項1又は2記載のパワーモジュール用基板の製造方法。   At least a part of the copper circuit board is formed by connecting a plurality of circuit elements by a bridge portion, and the back surface of the bridge portion is formed to be a recess with respect to the back surface of the circuit element. The method for manufacturing a power module substrate according to claim 1 or 2,
JP2013045999A 2013-03-07 2013-03-07 Power module substrate manufacturing method Active JP5664679B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013045999A JP5664679B2 (en) 2013-03-07 2013-03-07 Power module substrate manufacturing method
EP14760896.2A EP2966679B1 (en) 2013-03-07 2014-02-28 Method for manufacturing power-module substrate
CN201480008651.3A CN104995730B (en) 2013-03-07 2014-02-28 The manufacturing method of power module substrate
PCT/JP2014/055088 WO2014136683A1 (en) 2013-03-07 2014-02-28 Method for manufacturing power-module substrate
KR1020157024050A KR102162780B1 (en) 2013-03-07 2014-02-28 Method for manufacturing power-module substrate
US14/768,041 US9579739B2 (en) 2013-03-07 2014-02-28 Manufacturing method of power-module substrate
TW103107675A TWI601465B (en) 2013-03-07 2014-03-06 A method of manufacturing a power module substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013045999A JP5664679B2 (en) 2013-03-07 2013-03-07 Power module substrate manufacturing method

Publications (3)

Publication Number Publication Date
JP2014175425A JP2014175425A (en) 2014-09-22
JP2014175425A5 JP2014175425A5 (en) 2014-10-30
JP5664679B2 true JP5664679B2 (en) 2015-02-04

Family

ID=51491202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013045999A Active JP5664679B2 (en) 2013-03-07 2013-03-07 Power module substrate manufacturing method

Country Status (7)

Country Link
US (1) US9579739B2 (en)
EP (1) EP2966679B1 (en)
JP (1) JP5664679B2 (en)
KR (1) KR102162780B1 (en)
CN (1) CN104995730B (en)
TW (1) TWI601465B (en)
WO (1) WO2014136683A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111764B2 (en) * 2013-03-18 2017-04-12 三菱マテリアル株式会社 Power module substrate manufacturing method
JP5672324B2 (en) 2013-03-18 2015-02-18 三菱マテリアル株式会社 Manufacturing method of joined body and manufacturing method of power module substrate
JP6314567B2 (en) * 2013-03-29 2018-04-25 三菱マテリアル株式会社 Metal-ceramic plate laminate manufacturing apparatus and manufacturing method, power module substrate manufacturing apparatus and manufacturing method
DE102014211558A1 (en) * 2014-06-17 2015-12-17 Robert Bosch Gmbh Microelectromechanical system and method for manufacturing a microelectromechanical system
EP3234988A4 (en) * 2014-12-17 2018-09-12 Alpha Assembly Solutions Inc. Method for die and clip attachment
EP3086361A3 (en) * 2015-04-02 2017-01-25 Heraeus Deutschland GmbH & Co. KG Method for producing a substrate arrangement with a prefixing means, corresponding substrate arrangement, method for connecting an electronic component with a substrate arrangement using a prefixing means formed on the electronic component and/or the substrate arrangement and an electronic component bonded with a substrate arrangement
DE102015108668B4 (en) * 2015-06-02 2018-07-26 Rogers Germany Gmbh Method for producing a composite material
EP3154079A1 (en) * 2015-10-08 2017-04-12 Heraeus Deutschland GmbH & Co. KG Method for connecting a substrate arrangement with an electronic component using a pre-fixing agent on a contact material layer, corresponding substrate arrangement and method of manufacturing thereof
JP6564944B2 (en) * 2016-06-10 2019-08-21 田中貴金属工業株式会社 Ceramic circuit board and method for manufacturing ceramic circuit board
EP3481163A4 (en) * 2016-07-12 2020-03-04 Hitachi Chemical Company, Ltd. Circuit board manufacturing method and circuit board
JP6682403B2 (en) * 2016-08-31 2020-04-15 昭和電工株式会社 Insulating substrate manufacturing method and insulating substrate
JP6801501B2 (en) * 2017-02-23 2020-12-16 三菱マテリアル株式会社 Manufacturing method of insulated circuit board
JP6717245B2 (en) 2017-03-17 2020-07-01 三菱マテリアル株式会社 Method for manufacturing joined body, method for manufacturing insulated circuit board, and method for manufacturing insulated circuit board with heat sink
DE102017114893B4 (en) * 2017-07-04 2023-11-23 Rogers Germany Gmbh Soldering material for active soldering and method for active soldering
US11278978B2 (en) * 2019-06-21 2022-03-22 International Business Machines Corporation Pattern bonded finned cold plate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283630A (en) * 1989-04-24 1990-11-21 Kenseidou Kagaku Kogyo Kk Production of precision part by cutting metal or glass plate
JPH05111789A (en) * 1991-10-16 1993-05-07 Tanaka Kikinzoku Kogyo Kk Tack adhesive agent-containing brazer
JPH06216499A (en) * 1993-01-19 1994-08-05 Toshiba Corp Manufacture of copper circuit board
JP2741362B2 (en) * 1995-12-05 1998-04-15 日化精工株式会社 Temporary adhesive for wafer
JPH11238961A (en) * 1998-02-19 1999-08-31 Matsushita Electric Ind Co Ltd Soldering method for electronic component
KR100535301B1 (en) * 2003-05-13 2005-12-08 연세대학교 산학협력단 Hollow fiber membrane module and Method for making thereof
JP2005131759A (en) * 2003-10-31 2005-05-26 Denso Corp Fusible/solidifiable composition, fusible/solidifiable workpiece fixative, and sheathed body made thereof
EP1791176B1 (en) 2004-08-17 2019-07-03 Mitsubishi Materials Corporation Method of manufacturing a power module substrate
JP4311303B2 (en) * 2004-08-17 2009-08-12 三菱マテリアル株式会社 Power module substrate manufacturing method
JP2010050164A (en) 2008-08-19 2010-03-04 Mitsubishi Materials Corp Method of manufacturing board for power module
JP6011074B2 (en) * 2012-01-20 2016-10-19 富士通株式会社 Electronic device manufacturing method and electronic device manufacturing apparatus

Also Published As

Publication number Publication date
EP2966679A1 (en) 2016-01-13
JP2014175425A (en) 2014-09-22
TW201509253A (en) 2015-03-01
WO2014136683A1 (en) 2014-09-12
KR20150126845A (en) 2015-11-13
CN104995730A (en) 2015-10-21
EP2966679A4 (en) 2016-12-07
CN104995730B (en) 2018-08-10
US9579739B2 (en) 2017-02-28
US20160001388A1 (en) 2016-01-07
KR102162780B1 (en) 2020-10-07
TWI601465B (en) 2017-10-01
EP2966679B1 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
JP5664679B2 (en) Power module substrate manufacturing method
JP6314567B2 (en) Metal-ceramic plate laminate manufacturing apparatus and manufacturing method, power module substrate manufacturing apparatus and manufacturing method
CN106575639A (en) Method for manufacturing substrate for power module
JP7484268B2 (en) METHOD FOR TEMPORARY FIXING OF METAL MEMBER, METHOD FOR MANUFACTURING JOINT BODY, AND METHOD FOR MANUFACTURING INSULATED CIRCUIT BOARD
JP5884291B2 (en) Power module board unit with heat sink
JP2012146801A (en) Heat sink, substrate for power module with heat sink, power module, and manufacturing method of heat sink
JP6020256B2 (en) Manufacturing method of power module substrate with heat sink
JP5146296B2 (en) Power module substrate manufacturing method
JP2016039181A (en) Method of manufacturing module
JP2007311528A (en) Power module, substrate thereof, and manufacturing method thereof
JP5131205B2 (en) Power module substrate manufacturing method
JP6255659B2 (en) Power module substrate manufacturing method
JP6782375B1 (en) Metal circuit pattern and manufacturing method of metal circuit pattern
JP5887907B2 (en) Power module substrate manufacturing method and manufacturing apparatus
JP6152681B2 (en) Power module substrate and manufacturing method thereof
JP2010183013A (en) Method of manufacturing circuit board
JP2011108947A (en) Manufacturing method of semiconductor device
JP2012119580A (en) Chip component mounting wiring board and manufacturing method of the same
JP2006165284A (en) Package for electronic component, package assembly for electronic component, and method of manufacturing the assembly
JP2013232691A (en) Manufacture intermediate product of power module substrate, and manufacturing method of power module substrate
JP2010114166A (en) Manufacture intermediate of power module substrate, and power module substrate manufacturing method
JP2010278236A (en) Method of manufacturing electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140730

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R150 Certificate of patent or registration of utility model

Ref document number: 5664679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150