WO2024111259A1 - 発熱体 - Google Patents

発熱体 Download PDF

Info

Publication number
WO2024111259A1
WO2024111259A1 PCT/JP2023/036367 JP2023036367W WO2024111259A1 WO 2024111259 A1 WO2024111259 A1 WO 2024111259A1 JP 2023036367 W JP2023036367 W JP 2023036367W WO 2024111259 A1 WO2024111259 A1 WO 2024111259A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
heating element
structure unit
cells
element according
Prior art date
Application number
PCT/JP2023/036367
Other languages
English (en)
French (fr)
Inventor
幸春 森田
義幸 笠井
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2024111259A1 publication Critical patent/WO2024111259A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • B01J35/57Honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic

Definitions

  • the present invention relates to a heating element.
  • honeycomb structure used as a catalyst carrier, etc.
  • heat For example, as disclosed in Patent Document 1, when treating harmful substances in exhaust gas emitted from a vehicle engine, if the catalyst temperature is low, the catalyst does not heat up to the specified temperature, and the exhaust gas is not sufficiently purified.
  • a honeycomb structure has been proposed that can be used as a catalyst carrier and also function as a heating element.
  • heating elements are desired for applications other than exhaust gas purification for internal combustion engines.
  • the present invention provides a heating element that has excellent heat generation characteristics and whose shape can be easily adjusted.
  • a heating element is a heating element including a plurality of honeycomb structure units having partition walls that define a plurality of cells extending from a first end face to a second end face and serve as a fluid flow path, the honeycomb structure units having a honeycomb structure portion that generates heat when electricity is applied, the plurality of honeycomb structure units including a first honeycomb structure unit and a second honeycomb structure unit, and a fluid that has passed through the first honeycomb structure unit passes through an insulating portion formed between the first honeycomb structure unit and the second honeycomb structure unit, and then passes through the second honeycomb structure unit.
  • each of the honeycomb structure units may have a pair of electrode parts for electrically heating the honeycomb structure part.
  • the honeycomb structure section may have an outer peripheral wall surrounding the partition wall.
  • the pair of electrode sections may be provided on the outer peripheral wall, and when the honeycomb structure section is viewed from the extending direction of the cells, the pair of electrode sections may be disposed on one side of the center of the honeycomb structure section. 4.
  • the extending direction of the cells of the first honeycomb structure unit may be aligned with the extending direction of the cells of the second honeycomb structure unit.
  • the insulating portion may include an insulating member made of an insulating material. 6.
  • the insulating member may be disposed in contact with the first honeycomb structure unit and the second honeycomb structure unit. 7. In the heating element according to the above item 5 or 6, the insulating member may be bonded to the first honeycomb structure unit and the second honeycomb structure unit. 8. In the heating element according to any one of the above items 5 to 7, the insulating member may have partition walls that define a plurality of cells that serve as flow paths for a fluid. 9. In the heating element described in 8 above, an opening ratio per unit area of a face of the honeycomb structure portion perpendicular to the cell extension direction may be smaller than an opening ratio per unit area of a face of the insulating member perpendicular to the cell extension direction. 10.
  • a hydraulic diameter of the cells of the honeycomb structure portion may be smaller than a hydraulic diameter of the cells of the insulating member. 11.
  • a region may be formed in which the honeycomb structure portion of the first honeycomb structure unit does not overlap with the insulating member. 12.
  • a region in which the insulating member is not present may be formed in a central portion of the honeycomb structure portion of the first honeycomb structure unit. 13.
  • the insulating member may be made of ceramics. 14. In the heating element according to any one of the above items 5 to 13, the insulating member may contain a catalyst. 15. In the heating element according to any one of 1 to 14 above, the honeycomb structure portion may be made of ceramics. 16. In the heating element according to any one of 1 to 15 above, the honeycomb structure portion may contain a catalyst.
  • Embodiments of the present invention can provide a heating element that has excellent heat generation characteristics and whose shape can be easily adjusted.
  • FIG. 1 is a schematic diagram illustrating a general configuration of a heating element according to a first embodiment of the present invention when viewed from above.
  • FIG. 2 is a perspective view showing a schematic configuration of a first honeycomb structure unit constituting the heating element shown in FIG. 1 .
  • FIG. 2 is a diagram showing an example of a cross section taken along line III-III of FIG.
  • FIG. 2 is a diagram showing an example of a cross section of the heating element shown in FIG. 1 .
  • FIG. 11 is a cross-sectional view showing a schematic configuration of a modified example of the honeycomb structure unit.
  • FIG. 4 is a cross-sectional view illustrating a schematic configuration of a heating element according to a second embodiment of the present invention.
  • the heating element according to an embodiment of the present invention comprises a plurality of honeycomb structure units.
  • Fig. 1 is a schematic diagram of the general configuration of a heating element according to a first embodiment of the present invention, as viewed from above.
  • Fig. 2 is a perspective view showing the general configuration of a first honeycomb structure unit constituting the heating element shown in Fig. 1.
  • Fig. 3 is a diagram showing an example of a cross section taken along line III-III in Fig. 1.
  • Fig. 4 is a diagram showing an example of a cross section of the heating element shown in Fig. 1.
  • the heating element 100 comprises a first honeycomb structure unit 1 and a second honeycomb structure unit 2.
  • the first honeycomb structure unit 1 and the second honeycomb structure unit 2 each have a honeycomb structure section 10 that can generate heat when electricity is passed through it, and a pair of electrode sections 20, 20 that heat the honeycomb structure section 10 by passing electricity through it.
  • the first honeycomb structure unit 1 has a honeycomb structure portion 10 and a pair of electrode portions 20, 20.
  • the honeycomb structure portion 10 has partition walls 14 that extend (in the length direction) from the first end face 10a to the second end face 10b and define a plurality of cells 12 that can serve as fluid flow paths, and an outer peripheral wall 16 that is located on the outer periphery and surrounds the partition walls 14.
  • FIG. 2 shows the first honeycomb structure unit 1 shown in FIG. 1 as a representative example, but the second honeycomb structure unit 2 has a similar configuration.
  • the first honeycomb structure unit 1 and the second honeycomb structure unit 2 are arranged so that the extension direction (length direction) of the cells 12 of each honeycomb structure part 10 is aligned.
  • the arrows in FIG. 1 indicate the direction of fluid flow.
  • the fluid that has passed through the first honeycomb structure unit 1 can pass through the second honeycomb structure unit 2.
  • the first honeycomb structure unit 1 and the second honeycomb structure unit 2 are arranged at a distance.
  • the heating element 100 has an insulating section 30 formed between the first honeycomb structure unit 1 and the second honeycomb structure unit 2.
  • the fluid that has passed through the first honeycomb structure unit 1 passes through the insulating section 30 formed between the first honeycomb structure unit 1 and the second honeycomb structure unit 2, and passes through the second honeycomb structure unit 2.
  • the heating element has two honeycomb structure units, but it may have three or more honeycomb structure units.
  • an insulating section 30 may be provided in advance on the end face of the second honeycomb structure unit 2 on the side where the first honeycomb structure unit 1 is not arranged, and another honeycomb structure unit may be provided via this insulating section 30.
  • Three or more honeycomb structure units may be arranged with the extension directions of the respective cells aligned.
  • Three or more honeycomb structure units may be arranged spaced apart from each other.
  • the heating element can have extremely excellent heat generation characteristics. Specifically, the energy applied to each honeycomb structure unit can be efficiently used to raise the temperature of the honeycomb structure parts that serve as the fluid flow paths. Normally, a temperature difference occurs between the upstream and downstream sides of the honeycomb structure parts of the fluid (for example, the downstream side may be hotter than the upstream side), but in each honeycomb structure unit, the temperature of the fluid flow path can be well controlled. Also, it is possible to prevent short circuits between the honeycomb structure parts, and to prevent malfunctions such as damage to the device or circuit that supplies power to the heating element. In addition, by arranging multiple honeycomb structure parts through insulating parts, the shape of the resulting heating element can be adjusted depending on the application.
  • the outer peripheral wall 16 of the honeycomb structure section 10 extends in the length direction.
  • Each of the multiple cells 12 is a space extending in the length direction.
  • the cross-sectional shape of each cell 12 perpendicular to the length direction is a rectangle in the illustrated example, but may be another polygon, or may be another shape such as a circle.
  • the thickness of the partition walls 14 is, for example, 70 ⁇ m to 500 ⁇ m.
  • the number of cells 12 per unit area in a plane perpendicular to the extension direction of the cells 12 is, for example, 15 cells/cm 2 to 150 cells/cm 2.
  • the thickness of the partition walls 14 and the number of the cells 12 can be measured, for example, by a digital microscope.
  • the aperture ratio of the honeycomb structure section 10 is, for example, 65% to 90%.
  • the aperture ratio of the honeycomb structure section 10 refers to the aperture ratio per unit area in a plane perpendicular to the extension direction of the cells 12 of the honeycomb structure section 10.
  • the aperture ratio of the honeycomb structure section 10 is the ratio of the sum of the areas of the void portions of the cells 12 to the total area of the plane perpendicular to the extension direction of the cells 12 of the honeycomb structure section 10.
  • the aperture ratio of the honeycomb structure section 10 can be measured, for example, by a digital microscope.
  • the hydraulic diameter of the cells 12 of the honeycomb structure section 10 is, for example, 0.7 mm to 1.8 mm.
  • the hydraulic diameter of the cells 12 of the honeycomb structure section 10 is calculated based on the circumferential length (unit: mm) surrounded by the partition walls 14 and the cross-sectional area (unit: mm 2 ) of the cells 12 by the formula: 4 ⁇ (cross-sectional area)/(circumferential length).
  • the circumferential length surrounded by the partition walls 14 and the cross-sectional area of the cells 12 can be measured, for example, by a digital microscope.
  • the cross-sectional shape of the outer peripheral wall 16 perpendicular to the length direction is a rectangle, but it may be another polygon, or may be another shape such as a circle.
  • the thickness of the outer peripheral wall 16 is, for example, 0.5 mm to 5 mm.
  • the honeycomb structure parts of the two honeycomb structure units that make up the heating element have the same shape and size, but the heating element may also be made up of multiple honeycomb structure unit parts having different shapes and sizes.
  • the thickness of the outer peripheral wall 16 can be measured, for example, by a digital microscope.
  • the pair of electrode parts 20, 20 are provided on the outer peripheral wall 16 of the honeycomb structure part 10.
  • Each of the pair of electrode parts 20, 20 may be composed of an electrode terminal, one electrode terminal may be connected to the positive pole of a power source, and the other electrode terminal may be connected to the negative pole of the power source.
  • the pair of electrode parts 20, 20 are arranged on one side of the center of the honeycomb structure part 10. This arrangement can provide excellent assembly of the heating element. It can also contribute to space saving when installing the heating element.
  • the arrangement of the pair of electrode parts 20, 20 is not particularly limited.
  • the pair of electrode parts 20, 20 may be arranged on either side of the center of the honeycomb structure part 10 when the honeycomb structure part 10 is viewed from the direction in which the cells 12 extend.
  • a cylindrical electrode terminal is provided as the electrode section 20, but the shape and size of the electrode terminal are not particularly limited.
  • the electrode terminal may be shaped like a rectangular column or a comb tooth.
  • the electrode section 20 may be constructed by forming an electrode layer (not illustrated) on the outer peripheral wall 16 of the honeycomb structure section 10 and providing an electrode terminal via this electrode layer.
  • the thickness of the electrode layer is, for example, 100 ⁇ m to 5 mm.
  • the insulating section 30 may be provided with an insulating member 31 made of an insulating material.
  • the insulating member 31 is arranged in contact with the first honeycomb structure unit 1 and the second honeycomb structure unit 2, for example, from the viewpoint of space saving.
  • the insulating member 31 is preferably joined to the first honeycomb structure unit 1 and the second honeycomb structure unit 2.
  • the joining method of the insulating member 31 is not particularly limited.
  • the insulating member 31 may be joined to the honeycomb structure unit using an adhesive material or joining parts.
  • the insulating member 31 may be formed integrally when the honeycomb structure unit (honeycomb structure section 10) is manufactured.
  • the insulating section 30 may have a region 40 where the honeycomb structure section 10 of the first honeycomb structure unit 1 does not overlap with the insulating member 31.
  • a region 40 where the insulating member 31 does not exist is formed in the center of the honeycomb structure section 10 of the first honeycomb structure unit 1.
  • the insulating section 30 has a space 42 surrounded by the inner wall 38 of the insulating member 31.
  • the insulating member 31 has partition walls 34 that extend (in the length direction) from the first end face 31a to the second end face 31b and define a number of cells 32 that can serve as fluid flow paths, and an outer peripheral wall 36 that is located on the periphery and surrounds the partition walls 34.
  • the insulating member 31 is arranged so that the extension direction of its cells 32 is aligned with the extension direction of the cells 12 of the first honeycomb structure unit 1 and the extension direction of the cells 12 of the second honeycomb structure unit 2.
  • the insulating member 31 has a honeycomb structure, which can reduce pressure loss caused by fluid passing through the insulating section 30. Note that the details of the honeycomb structure of the insulating member 31 can be explained in the same manner as for the honeycomb structure section 10 described above.
  • the opening ratio of the honeycomb structure portion 10 described above can be designed to be smaller than the opening ratio of the insulating member 31. Specifically, from the viewpoint of ensuring the contact area with the fluid, the opening ratio of the honeycomb structure portion 10 can be designed to be small. On the other hand, from the viewpoint of reducing the pressure loss caused by the fluid passing through the insulating portion 30, the opening ratio of the insulating member 31 can be designed to be large.
  • the opening ratio of the insulating member 31 is preferably 70% to 92%.
  • the opening ratio of the insulating member 31 refers to the opening ratio per unit area in a plane perpendicular to the extension direction of the cells 32 of the insulating member 31.
  • the opening ratio of the insulating member 31 is the ratio of the sum of the areas of the void portions of the cells 32 to the total area of the plane perpendicular to the extension direction of the cells 32 of the insulating member 31.
  • the aperture ratio of the insulating member 31 is the ratio of the total area of the gaps in the cells 32 to the area of the region surrounded by the outer wall 36 excluding the space 42 in a plane perpendicular to the extension direction of the cells 32 of the insulating member 31.
  • the hydraulic diameter of the cells 12 of the honeycomb structure section 10 described above can be designed to be smaller than the hydraulic diameter of the cells 32 of the insulating member 31.
  • the hydraulic diameter of the cells 12 of the honeycomb structure section 10 can be designed to be small.
  • the hydraulic diameter of the cells 32 of the insulating member 31 can be designed to be large.
  • the hydraulic diameter of the cells 32 of the insulating member 31 is preferably 0.9 mm to 2 mm.
  • the hydraulic diameter of the cells 32 of the insulating member 31 is calculated based on the perimeter (unit: mm) surrounded by the partition walls 34 and the cross-sectional area (unit: mm 2 ) of the cells 32 by the formula: 4 ⁇ (cross-sectional area)/(perimeter).
  • FIG. 5 is a cross-sectional view showing the schematic configuration of a modified honeycomb structure unit.
  • the honeycomb structure section 10 has a first slit 17 and a second slit 18.
  • the first slit 17 extends from the first portion P1 of the outer peripheral wall 16 (the side surface of the honeycomb structure section 10) facing each other toward the second portion P2.
  • the second slit 18 extends from the second portion P2 of the outer peripheral wall 16 facing each other toward the first portion P1.
  • Such a slit can function as an electrical insulator.
  • first slit 17 By forming the first slit 17 from the first portion P1 located between the pair of electrode sections 20, 20, it is possible to effectively prevent a short circuit between the pair of electrode sections 20, 20, and the honeycomb structure section 10 can generate heat stably.
  • second slit 18 located between the adjacent first slits 17, 17, it is possible to generate heat more uniformly throughout the honeycomb structure section 10.
  • the volume resistivity of the honeycomb structure section 10 is, for example, 0.001 ⁇ cm or more, preferably 0.01 ⁇ cm or more, and more preferably 0.1 ⁇ cm or more. Such a volume resistivity can suppress problems such as excessive current flow depending on the applied voltage.
  • the volume resistivity of the honeycomb structure section 10 is, for example, 200 ⁇ cm or less, and preferably 100 ⁇ cm or less. Such a volume resistivity can generate sufficient heat when electricity is passed through it.
  • the volume resistivity can be a value measured at a temperature of 25°C using the four-terminal method.
  • the honeycomb structure 10 is preferably made of ceramics. By using ceramics, the volume resistivity can be satisfactorily satisfied. Ceramics also have a low thermal expansion coefficient and excellent shape stability.
  • the honeycomb structure 10 is made of a material that contains, for example, silicon carbide.
  • the honeycomb structure 10 is preferably made of a material that contains, as its main component, a silicon carbide material or a silicon-silicon carbide composite material.
  • "containing as its main component” means that it contains, for example, 80% by mass or more, and preferably 90% by mass or more.
  • the silicon carbide material may be a material impregnated with silicon (silicon-impregnated silicon carbide).
  • the silicon-silicon carbide composite material may be a material in which a plurality of silicon carbide particles are bonded together by metallic silicon.
  • the silicon carbide particles may function as aggregates, and the silicon may function as a binder.
  • the honeycomb structure 10 can be obtained by drying and firing a molded body obtained by molding a molding material containing ceramic raw materials.
  • the molding material can contain silicon carbide (e.g., silicon carbide powder) and metallic silicon (e.g., metallic silicon powder).
  • Other raw materials that can be contained in the molding material include, for example, a binder, a dispersion medium, and additives.
  • the honeycomb structure 10 can be used as a catalyst carrier, and a catalyst can be supported on the partition walls 14.
  • a catalyst can be supported on the partition walls 14.
  • the catalyst may preferably contain a precious metal (e.g., platinum, rhodium, palladium, ruthenium, indium, silver, gold), aluminum, nickel, zirconium, titanium, cerium, cobalt, manganese, zinc, copper, tin, iron, niobium, magnesium, lanthanum, samarium, bismuth, barium, or a combination thereof.
  • the volume resistivity of the electrode portion 20 varies depending on its configuration and constituent materials, but is typically 1 ⁇ 10 ⁇ 6 ⁇ cm to 10 ⁇ cm, and preferably 0.01 ⁇ cm to 10 ⁇ cm.
  • the electrode portion 20 may be made of any suitable material.
  • the material of the electrode portion 20 include metals, conductive ceramics, and composites (cermets) of metals and conductive ceramics.
  • metals include Cr, Fe, Co, Ni, Si, and Ti. These may be used alone or in combination of two or more. When used in combination of two or more, an alloy of two or more metals may be used.
  • conductive ceramics include metal compounds such as silicon carbide (SiC); metal silicides such as tantalum silicide (TaSi 2 ) and chromium silicide (CrSi 2 ).
  • composites (cermets) of metals and conductive ceramics include composites of metal silicon and silicon carbide, and composites of the above metal silicides, metal silicon, and silicon carbide.
  • composite materials (cermets) of metals and conductive ceramics include composite materials in which one or more of the above-mentioned metals are added with one or more of insulating ceramics such as alumina, mullite, zirconia, cordierite, silicon nitride, and aluminum nitride from the viewpoint of reducing thermal expansion.
  • the shape of the electrode terminal is preferably comb-shaped. If the material of the electrode terminal is conductive ceramics or a composite material (cermet) of metal and conductive ceramics, the shape of the electrode terminal is preferably cylindrical or prismatic. If the material of the electrode terminal is conductive ceramics or a composite material (cermet) of metal and conductive ceramics, a metal part may be joined to each of its two ends. The ceramic electrode terminal and the metal part can be joined, for example, by crimping, welding, or using a conductive adhesive. Examples of materials for the metal parts include conductive metals such as iron alloys and nickel alloys.
  • the electrode section 20 is made of the same material as the honeycomb structure section 10. This configuration reduces the difference in thermal expansion coefficient between the honeycomb structure section 10 and the electrode section 20, and increases the bonding strength between them. This can also contribute to improving productivity.
  • the volume resistivity of the electrode section 20 can also be controlled by adjusting its porosity.
  • the volume resistivity of the insulating member 31 is preferably 1 ⁇ 10 ⁇ cm or more, and more preferably 1 ⁇ 10 ⁇ cm or more. On the other hand, the volume resistivity of the insulating member 31 is, for example, 1 ⁇ 10 ⁇ cm or less.
  • the insulating member 31 may be made of any suitable material that satisfies the above volume resistivity.
  • the insulating member 31 is preferably made of ceramics. By using ceramics, the above volume resistivity can be satisfactorily satisfied. Ceramics also have a low thermal expansion coefficient and can have excellent shape stability. Furthermore, by using ceramics, the difference in thermal expansion coefficient with the honeycomb structure portion 10 can be reduced, and thermal shock resistance can be improved. Examples of ceramics include cordierite, mullite, alumina, spinel, silicon carbide, silicon nitride, and aluminum titanate. These can be used alone or in combination of two or more types.
  • a catalyst may be supported on the partition 34 of the insulating member 31.
  • CO, NO x , hydrocarbons, and the like in the fluid (e.g., gas) passing through the cell 32 can be converted into harmless substances by catalytic reaction.
  • specific examples of the catalyst are as described above.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a heating element according to a second embodiment of the present invention.
  • the heating element 200 differs from the heating element 100 of the first embodiment in that the insulating portion 30 does not have a space 42 (the inner peripheral wall 38 of the insulating member 31).
  • the heating element 200 differs from the heating element 100 of the first embodiment in that, when the first honeycomb structure unit 1 is viewed from the extension direction of the cells 12, the insulating portion 30 does not have a region 40 formed therein where the honeycomb structure portion 10 of the first honeycomb structure unit 1 does not overlap with the insulating member 31.
  • the absence of a space 42 in the insulating portion 30 can provide excellent mechanical strength. Furthermore, there are cases where even better insulation can be achieved.
  • the present invention is not limited to the above-described embodiment, and various modifications are possible.
  • the configurations shown in the above-described embodiments can be replaced with configurations that are substantially the same as those shown in the above-described embodiments, that have the same effects, or that can achieve the same purpose.
  • the heating element of the embodiment of the present invention can be used, for example, as a catalyst carrier that supports a catalyst.
  • honeycomb structure unit 1 honeycomb structure unit, 2 honeycomb structure unit, 10 honeycomb structure portion, 12 cell, 14 partition wall, 16 outer peripheral wall, 17 first slit, 18 second slit, 20 electrode portion, 30 insulating portion, 31 insulating member, 32 cell, 34 partition wall, 36 outer peripheral wall, 42 space portion, 100 heating element, 200 heating element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

発熱特性に優れ、形状を容易に調整可能である発熱体を提供する。本発明の実施形態による発熱体は、第一端面から第二端面まで延びて流体の流路となる複数のセルを区画形成する隔壁を有し、通電により発熱するハニカム構造部を有するハニカム構造ユニットを複数備える発熱体であって、前記複数のハニカム構造ユニットは、第1のハニカム構造ユニットおよび第2のハニカム構造ユニットを含み、前記第1のハニカム構造ユニットを通過した流体は、前記第1のハニカム構造ユニットと前記第2のハニカム構造ユニットとの間に形成される絶縁部を通過し、前記第2のハニカム構造ユニットを通過する。

Description

発熱体
 本発明は、発熱体に関する。
 触媒担体等として用いられるハニカム構造体を通電して発熱させることが提案されている。例えば、特許文献1に開示されているとおり、車両エンジンから排出された排ガス中の有害物質の処理の際、触媒温度が低いと、触媒が所定の温度まで昇温されず、排ガスが十分に浄化されないという問題がある。このような問題を解決するために、触媒担体として使用できるとともに発熱体としても機能し得るハニカム構造体が提案されている。
特許第6438939号公報
 ところで、内燃機関の排ガス浄化以外の用途においても、発熱体の利用が望まれる場合がある。例えば、用途に応じて、発熱体の形状を容易に調整可能であることが望まれている。
 上記に鑑み、本発明は、発熱特性に優れ、形状を容易に調整可能である発熱体を提供する。
 1.本発明の実施形態による発熱体は、第一端面から第二端面まで延びて流体の流路となる複数のセルを区画形成する隔壁を有し、通電により発熱するハニカム構造部を有するハニカム構造ユニットを複数備える発熱体であって、前記複数のハニカム構造ユニットは、第1のハニカム構造ユニットおよび第2のハニカム構造ユニットを含み、前記第1のハニカム構造ユニットを通過した流体は、前記第1のハニカム構造ユニットと前記第2のハニカム構造ユニットとの間に形成される絶縁部を通過し、前記第2のハニカム構造ユニットを通過する。
 2.上記1に記載の発熱体において、上記複数のハニカム構造ユニットは、それぞれ、上記ハニカム構造部を通電加熱する一対の電極部を有していてもよい。
 3.上記2に記載の発熱体において、上記ハニカム構造部は上記隔壁を囲む外周壁を有していてもよい。上記一対の電極部は上記外周壁に設けられてもよく、上記ハニカム構造部を上記セルの延びる方向から見たとき、上記一対の電極部は、上記ハニカム構造部の中心よりも一方側に配置されてもよい。
 4.上記1から3のいずれかに記載の発熱体において、上記第1のハニカム構造ユニットの上記セルが延びる方向と上記第2のハニカム構造ユニットの上記セルが延びる方向とは揃っていてもよい。
 5.上記1から4のいずれかに記載の発熱体において、上記絶縁部は、絶縁材料で構成される絶縁部材を含んでいてもよい。
 6.上記5に記載の発熱体において、上記絶縁部材は、上記第1のハニカム構造ユニットおよび上記第2のハニカム構造ユニットに接して配置されていてもよい。
 7.上記5または6に記載の発熱体において、上記絶縁部材は、上記第1のハニカム構造ユニットおよび上記第2のハニカム構造ユニットに接合されていてもよい。
 8.上記5から7のいずれかに記載の発熱体において、上記絶縁部材は、流体の流路となる複数のセルを区画形成する隔壁を有していてもよい。
 9.上記8に記載の発熱体において、上記ハニカム構造部の上記セルが延びる方向に直交する面の単位面積当たりの開口率は、上記絶縁部材の上記セルが延びる方向に直交する面の単位面積当たりの開口率よりも小さくてもよい。
 10.上記8または9に記載の発熱体において、上記ハニカム構造部の上記セルの水力直径は、上記絶縁部材の上記セルの水力直径より小さくてもよい。
 11.上記5から10のいずれかに記載の発熱体において、上記第1のハニカム構造ユニットを上記セルの延びる方向から見たとき、上記第1のハニカム構造ユニットの上記ハニカム構造部と上記絶縁部材とが重ならない領域が形成されていてもよい。
 12.上記11に記載の発熱体において、上記第1のハニカム構造ユニットを上記セルの延びる方向から見たとき、上記第1のハニカム構造ユニットの上記ハニカム構造部の中央部に上記絶縁部材が存在しない領域が形成されていてもよい。
 13.上記5から12のいずれかに記載の発熱体において、上記絶縁部材はセラミックスで構成されていてもよい。
 14.上記5から13のいずれかに記載の発熱体において、上記絶縁部材は触媒を含んでいてもよい。
 15.上記1から14のいずれかに記載の発熱体において、上記ハニカム構造部はセラミックスで構成されていてもよい。
 16.上記1から15のいずれかに記載の発熱体において、上記ハニカム構造部は触媒を含んでいてもよい。
 本発明の実施形態によれば、発熱特性に優れ、形状を容易に調整可能である発熱体を提供し得る。
本発明の第一実施形態に係る発熱体の概略の構成を上から見たときの模式図である。 図1に示す発熱体を構成する第1のハニカム構造ユニットの概略の構成を示す斜視図である。 図1のIII-III断面の一例を示す図である。 図1に示す発熱体の断面の一例を示す図である。 ハニカム構造ユニットの変形例の概略の構成を示す断面図である。 本発明の第二実施形態に係る発熱体の概略の構成を模式的に示す断面図である。
 以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚み、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、図面については、同一または同等の要素には同一の符号を付し、重複する説明は省略することがある。
 本発明の実施形態による発熱体は、ハニカム構造ユニットを複数備える。図1は本発明の第一実施形態に係る発熱体の概略の構成を上から見たときの模式図であり、図2は図1に示す発熱体を構成する第1のハニカム構造ユニットの概略の構成を示す斜視図であり、図3は図1のIII-III断面の一例を示す図であり、図4は図1に示す発熱体の断面の一例を示す図である。
 発熱体100は、第1のハニカム構造ユニット1および第2のハニカム構造ユニット2を備えている。第1のハニカム構造ユニット1および第2のハニカム構造ユニット2は、それぞれ、通電により発熱し得るハニカム構造部10とハニカム構造部10を通電加熱する一対の電極部20、20を有している。
 図2に示すとおり、第1のハニカム構造ユニット1は、ハニカム構造部10と一対の電極部20、20を有している。ハニカム構造部10は、第一端面10aから第二端面10bまで(長さ方向に)延びて流体の流路となり得る複数のセル12を区画形成する隔壁14と、外周に位置して隔壁14を囲む外周壁16とを有している。なお、図2では、代表して、図1に示す第1のハニカム構造ユニット1を示しているが、第2のハニカム構造ユニット2も同様の構成を有している。
 図4に示すとおり、発熱体100において、第1のハニカム構造ユニット1と第2のハニカム構造ユニット2とは、それぞれのハニカム構造部10のセル12が延びる方向(長さ方向)が揃うように配置されている。図1中の矢印は流体の流れる方向を示している。第1のハニカム構造ユニット1を通過した流体は、第2のハニカム構造ユニット2を通過し得る。発熱体100においては、第1のハニカム構造ユニット1と第2のハニカム構造ユニット2とは離間して配置されている。発熱体100は、第1のハニカム構造ユニット1と第2のハニカム構造ユニット2との間に形成された絶縁部30を備えている。第1のハニカム構造ユニット1を通過した流体は、第1のハニカム構造ユニット1と第2のハニカム構造ユニット2との間に形成される絶縁部30を通過し、第2のハニカム構造ユニット2を通過する。
 図示例では、発熱体は二つのハニカム構造ユニットを備えているが、三つ以上のハニカム構造ユニットを備えていてもよい。例えば、第2のハニカム構造ユニット2の第1のハニカム構造ユニット1が配置されていない側の端面には予め絶縁部30が設けられており、この絶縁部30を介してさらに別のハニカム構造ユニットを設けてもよい。三つ以上のハニカム構造ユニットは、それぞれのセルが延びる方向を揃えて配置され得る。三つ以上のハニカム構造ユニットは、互いに離間して配置され得る。
 絶縁部を介して通電により発熱し得る複数のハニカム構造部を配置させることにより、発熱体は発熱特性に極めて優れ得る。具体的には、各ハニカム構造ユニットにおいて加えるエネルギーを流体の流路となるハニカム構造部の昇温に効率良く利用することができる。通常、流体の上流側と下流側とでハニカム構造部の温度差が生じ得るが(例えば、上流側よりも下流側が高温になり得るが)、各ハニカム構造ユニットにおいて、流体の流路の温度を良好に制御し得る。そして、ハニカム構造部間での短絡を防止することができ、例えば、発熱体に電力を供給している装置または回路が破損する等の不具合を防止することができる。また、絶縁部を介して複数のハニカム構造部を配置させることにより、用途に応じて、得られる発熱体の形状を調整することができる。
 ハニカム構造部10の外周壁16は、長さ方向に延びる。複数のセル12はそれぞれ、長さ方向に延びる空間とされる。長さ方向に垂直な各セル12の断面形状は、図示例では四角形であるが、他の多角形であってもよく、円形等の他の形状であってもよい。隔壁14の厚みは、例えば70μm~500μmである。セル12の延びる方向に直交する面における単位面積当たりのセル12の数は、例えば15セル/cm~150セル/cmである。隔壁14の厚みおよびセル12の数は、例えば、デジタルマイクロスコープによって測定することができる。
 ハニカム構造部10の開口率は、例えば65%~90%である。ここで、ハニカム構造部10の開口率とは、ハニカム構造部10のセル12の延びる方向に直交する面における単位面積当たりの開口率をいう。具体的には、ハニカム構造部10の開口率は、ハニカム構造部10のセル12の延びる方向に直交する面の総面積に対する、セル12の空隙部分の面積の合計の比である。ハニカム構造部10の開口率は、例えば、デジタルマイクロスコープによって測定することができる。
 ハニカム構造部10のセル12の水力直径は、例えば0.7mm~1.8mmである。ここで、ハニカム構造部10のセル12の水力直径は、隔壁14に囲まれる周長(単位:mm)およびセル12の断面積(単位:mm)に基づき、式:4×(断面積)/(周長)によって算出される。そして、隔壁14に囲まれる周長およびセル12の断面積は、例えば、デジタルマイクロスコープによって測定することができる。
 図示例では、長さ方向に垂直な外周壁16の断面形状は四角形であるが、他の多角形であってもよく、円形等の他の形状であってもよい。外周壁16の厚みは、例えば0.5mm~5mmである。図1に示す例では、発熱体を構成する二つのハニカム構造ユニットのハニカム構造部は同じ形状、サイズを有しているが、異なる形状、サイズを有する複数のハニカム構造ユニット部で発熱体を構成してもよい。外周壁16の厚みは、例えば、デジタルマイクロスコープによって測定することができる。
 一対の電極部20、20は、ハニカム構造部10の外周壁16に設けられている。一対の電極部20、20は、それぞれ、電極端子で構成され得、一方の電極端子は電源のプラス極に接続され、他方の電極端子は電源のマイナス極に接続され得る。ハニカム構造部10をセル12の延びる方向から見たとき、一対の電極部20、20は、ハニカム構造部10の中心よりも一方側に配置されている。このような配置によれば、発熱体の組付け性に極めて優れ得る。また、発熱体を設置する際の省スペース化にも寄与し得る。なお、ハニカム構造部10を通電加熱し得る限り、一対の電極部20、20の配置は特に限定されない。例えば、一対の電極部20、20は、ハニカム構造部10をセル12の延びる方向から見たとき、ハニカム構造部10の中心を挟んで配置されてもよい。
 図示例では、電極部20として円柱状の電極端子を設けているが、電極端子の形状およびサイズは特に限定されない。例えば、電極端子の形状を角柱状や櫛歯状とすることができる。図示しないが、電極部20は、ハニカム構造部10の外周壁16上に図示しない電極層を形成し、この電極層を介して、電極端子を設けることにより構成されてもよい。電極層の厚みは、例えば100μm~5mmである。
 絶縁部30には、絶縁材料で構成される絶縁部材31が配置されてもよい。絶縁部材31は、例えば、省スペース化の観点から、第1のハニカム構造ユニット1および第2のハニカム構造ユニット2に接して配置されている。例えば、組付け性の観点から、絶縁部材31は、第1のハニカム構造ユニット1および第2のハニカム構造ユニット2に接合されていることが好ましい。絶縁部材31の接合方法は、特に限定されない。例えば、絶縁部材31は、接着材料や接合部品を用いてハニカム構造ユニットに接合されてもよい。また例えば、ハニカム構造ユニット(ハニカム構造部10)の作製時に、一体的に絶縁部材31を形成してもよい。
 第1のハニカム構造ユニット1をセル12の延びる方向から見たとき、絶縁部30には、第1のハニカム構造ユニット1のハニカム構造部10と絶縁部材31とが重ならない領域40が形成されてもよい。図示例では、第1のハニカム構造ユニット1をセル12の延びる方向から見たとき、第1のハニカム構造ユニット1のハニカム構造部10の中央部に絶縁部材31が存在しない領域40が形成されている。図4に示すとおり、絶縁部30には、絶縁部材31の内周壁38に囲まれた空間部42が形成されている。絶縁部30に空間部42が形成されていることにより、流体が絶縁部30を通過することによる圧力損失を低減し得る。
 絶縁部材31は、第一端面31aから第二端面31bまで(長さ方向に)延びて流体の流路となり得る複数のセル32を区画形成する隔壁34と、外周に位置して隔壁34を囲む外周壁36とを有している。絶縁部材31は、そのセル32が延びる方向が、第1のハニカム構造ユニット1のセル12が延びる方向および第2のハニカム構造ユニット2のセル12が延びる方向と揃うように配置されている。絶縁部材31がハニカム構造を有することにより、流体が絶縁部30を通過することによる圧力損失を低減し得る。なお、絶縁部材31のハニカム構造の詳細については、上記ハニカム構造部10と同様の説明を適用することができる。
 絶縁部材31がハニカム構造を有する場合、上述のハニカム構造部10の開口率は、絶縁部材31の開口率よりも小さくなるように設計され得る。具体的には、流体との接触面積を確保する観点から、ハニカム構造部10の開口率は小さく設計され得る。一方で、流体が絶縁部30を通過することによる圧力損失を低減させる観点から、絶縁部材31の開口率は大きく設計され得る。絶縁部材31の開口率は、好ましくは70%~92%である。ここで、絶縁部材31の開口率とは、絶縁部材31のセル32の延びる方向に直交する面における単位面積当たり開口率をいう。具体的には、絶縁部材31の開口率は、絶縁部材31のセル32の延びる方向に直交する面の総面積に対する、セル32の空隙部分の面積の合計の比である。図示例では、絶縁部材31の開口率は、絶縁部材31のセル32の延びる方向に直交する面において、空間部42を除く外周壁36に囲まれる領域の面積に対する、セル32の空隙部分の面積の合計の比である。
 絶縁部材31がハニカム構造を有する場合、上述のハニカム構造部10のセル12の水力直径は、絶縁部材31のセル32の水力直径よりも小さくなるように設計され得る。具体的には、流体との接触面積を確保する観点から、ハニカム構造部10のセル12の水力直径は小さく設計され得る。一方で、流体が絶縁部30を通過することによる圧力損失を低減させる観点から、絶縁部材31のセル32の水力直径は大きく設計され得る。絶縁部材31のセル32の水力直径は、好ましくは0.9mm~2mmである。ここで、絶縁部材31のセル32の水力直径は、隔壁34に囲まれる周長(単位:mm)およびセル32の断面積(単位:mm)に基づき、式:4×(断面積)/(周長)によって算出される。
 図5は、ハニカム構造ユニットの変形例の概略の構成を示す断面図である。本変形例においては、ハニカム構造部10は第一スリット17および第二スリット18を有している。具体的には、第一スリット17は、外周壁16(ハニカム構造部10の側面)の対向する第一部分P1から第二部分P2に向かって延びている。第二スリット18は、外周壁16の対向する第二部分P2から第一部分P1に向かって延びている。このようなスリットは、電気絶縁部として機能し得る。一対の電極部20、20間に位置する第一部分P1から第一スリット17を形成することにより、一対の電極部20、20の短絡を効果的に防止し得、ハニカム構造部10を安定して発熱させ得る。また、隣り合う第一スリット17、17の間に位置する第二スリット18を形成することにより、ハニカム構造部10全体をより均一に発熱させ得る。
 ハニカム構造部10の体積抵抗率は、例えば0.001Ω・cm以上であり、好ましくは0.01Ω・cm以上であり、より好ましくは0.1Ω・cm以上である。このような体積抵抗率によれば、印加する電圧によっては電流が過剰に流れる等の不具合を抑制し得る。一方、ハニカム構造部10の体積抵抗率は、例えば200Ω・cm以下であり、好ましくは100Ω・cm以下である。このような体積抵抗率によれば、通電により十分に発熱し得る。なお、体積抵抗率は、四端子法を用いて温度25℃にて測定される値であり得る。
 ハニカム構造部10は、好ましくは、セラミックスで構成される。セラミックスを採用することにより、上記体積抵抗率を良好に満足させ得る。また、セラミックスは、熱膨張係数が低く、形状安定性にも優れ得る。
 ハニカム構造部10は、例えば、炭化珪素を含む材料により構成される。ハニカム構造部10は、好ましくは、炭化珪素材料または珪素-炭化珪素複合材料を主成分とする材料により構成される。ここで、「主成分とする」とは、例えば80質量%以上含むことをいい、好ましくは90質量%以上含むことをいう。
 上記炭化珪素材料は、珪素を含浸した材料(シリコン含浸炭化珪素)であり得る。珪素-炭化珪素複合材料は、複数の炭化珪素粒子が、金属珪素によって結合された材料であり得る。珪素-炭化珪素複合材料において、炭化珪素粒子は骨材として機能し得、珪素は結合材として機能し得る。このような材料を用いることにより、上記体積抵抗率を良好に達成し得る。なお、ハニカム構造部10の体積抵抗率は、その気孔率を調整することによっても制御され得る。
 ハニカム構造部10は、代表的には、セラミック原料を含む成形材料を成形して得られる成形体を乾燥および焼成して得ることができる。ハニカム構造部10が上記珪素-炭化珪素複合材料により構成される場合、上記成形材料は、炭化珪素(例えば、炭化珪素粉末)および金属珪素(例えば、金属珪素粉末)を含み得る。成形材料に含まれ得る他の原料としては、例えば、バインダー、分散媒、添加剤が挙げられる。
 代表的には、ハニカム構造部10は触媒担体として用いられ得、その隔壁14には触媒が担持され得る。例えば、セル12を通過する流体(例えば、ガス)中のCO、NO、炭化水素などを触媒反応によって無害な物質にすることが可能となる。触媒は、好ましくは、貴金属(例えば、白金、ロジウム、パラジウム、ルテニウム、インジウム、銀、金)、アルミニウム、ニッケル、ジルコニウム、チタン、セリウム、コバルト、マンガン、亜鉛、銅、スズ、鉄、ニオブ、マグネシウム、ランタン、サマリウム、ビスマス、バリウム、およびこれらの組み合わせを含有し得る。
 電極部20の体積抵抗率は、その構成および構成材料により異なるが、代表的には1×10-6Ω・cm~10Ω・cmであり、好ましくは0.01Ω・cm~10Ω・cmである。
 電極部20は、任意の適切な材料で構成され得る。電極部20の構成材料としては、例えば、金属、導電性セラミックス、または、金属と導電性セラミックスとの複合材(サーメット)を用いることができる。金属としては、例えば、Cr、Fe、Co、Ni、Si、Tiが挙げられる。これらは単独で、または、二種以上組み合わせて用いられ得る。二種以上組み合わせて用いる場合、二種以上の金属の合金を用いてもよい。導電性セラミックスとしては、例えば、炭化珪素(SiC);珪化タンタル(TaSi)、珪化クロム(CrSi)等の金属珪化物等の金属化合物が挙げられる。金属と導電性セラミックスとの複合材(サーメット)の具体例としては、金属珪素と炭化珪素との複合材、上記金属珪化物と金属珪素と炭化珪素との複合材が挙げられる。また、金属と導電性セラミックスとの複合材(サーメット)の具体例としては、熱膨張低減の観点から、上記の一種または二種以上の金属に、アルミナ、ムライト、ジルコニア、コージェライト、窒化珪素、窒化アルミ等の絶縁性セラミックスを一種または二種以上添加した複合材が挙げられる。
 電極部20を構成する電極端子の構成材料が金属である場合、電極端子の形状は、櫛歯状であることが好ましい。電極端子の構成材料が導電性セラミックスまたは金属と導電性セラミックスとの複合材(サーメット)である場合、電極端子の形状は、円柱状または角柱状であることが好ましい。電極端子の構成材料が導電性セラミックスまたは金属と導電性セラミックスとの複合材(サーメット)である場合、その両端部に、それぞれ金属部が接合されていてもよい。セラミックス製の電極端子と金属部との接合は、例えば、かしめ加工、溶接、導電性接着剤を採用することにより行われ得る。金属部の材質としては、例えば、鉄合金、ニッケル合金等の導電性金属が挙げられる。
 電極部20は、その少なくとも一部は、ハニカム構造部10と同質の材料で構成されることが好ましい。このような構成によれば、ハニカム構造部10と電極部20との熱膨張係数の差を小さくし、両者の接合強度を高くすることができる。また、生産性の向上にも寄与し得る。なお、電極部20の体積抵抗率は、その気孔率を調整することによっても制御され得る。
 絶縁部材31の体積抵抗率は、優れた絶縁性を確保する観点から、好ましくは1×1010Ω・cm以上であり、より好ましくは1×1012Ω・cm以上である。一方、絶縁部材31の体積抵抗率は、例えば1×1016Ω・cm以下である。
 絶縁部材31は、上記体積抵抗率を満足し得る、任意の適切な材料で構成され得る。絶縁部材31は、好ましくは、セラミックスで構成される。セラミックスを採用することにより、上記体積抵抗率を良好に満足させ得る。また、セラミックスは、熱膨張係数が低く、形状安定性にも優れ得る。さらに、セラミックスを採用することにより、ハニカム構造部10との熱膨張係数の差を小さくし得、耐熱衝撃性を向上させ得る。セラミックスとしては、例えば、コージェライト、ムライト、アルミナ、スピネル、炭化珪素、窒化珪素、チタン酸アルミニウムが挙げられる。これらは単独で、または、二種以上組み合わせて用いられ得る。
 絶縁部材31の隔壁34には触媒が担持され得る。例えば、セル32を通過する流体(例えば、ガス)中のCO、NO、炭化水素などを触媒反応によって無害な物質にすることができる。触媒の具体例としては、上述のとおりである。
 図6は、本発明の第二実施形態に係る発熱体の概略の構成を模式的に示す断面図である。発熱体200は、絶縁部30に空間部42(絶縁部材31に内周壁38)が形成されていない点が第一実施形態の発熱体100と異なる。具体的には、発熱体200は、第1のハニカム構造ユニット1をセル12の延びる方向から見たとき、絶縁部30には、第1のハニカム構造ユニット1のハニカム構造部10と絶縁部材31とが重ならない領域40が形成されていない点が第一実施形態の発熱体100と異なる。絶縁部30に空間部42が形成されていないことで、機械的強度に優れ得る。また、さらに優れた絶縁性を実現し得る場合がある。
 本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成または同一の目的を達成することができる構成で置き換えることができる。
 本発明の実施形態の発熱体は、例えば、触媒を担持させた触媒担体として用いられ得る。
 1 ハニカム構造ユニット、2 ハニカム構造ユニット、10 ハニカム構造部、12 セル、14 隔壁、16 外周壁、17 第一スリット、18 第二スリット、20 電極部、30 絶縁部、31 絶縁部材、32 セル、34 隔壁、36 外周壁、42 空間部、100 発熱体、200 発熱体。

Claims (16)

  1.  第一端面から第二端面まで延びて流体の流路となる複数のセルを区画形成する隔壁を有し、通電により発熱するハニカム構造部を有するハニカム構造ユニットを複数備える発熱体であって、
     前記複数のハニカム構造ユニットは、第1のハニカム構造ユニットおよび第2のハニカム構造ユニットを含み、
     前記第1のハニカム構造ユニットを通過した流体は、前記第1のハニカム構造ユニットと前記第2のハニカム構造ユニットとの間に形成される絶縁部を通過し、前記第2のハニカム構造ユニットを通過する、
     発熱体。
  2.  前記複数のハニカム構造ユニットは、それぞれ、前記ハニカム構造部を通電加熱する一対の電極部を有する、請求項1に記載の発熱体。
  3.  前記ハニカム構造部は前記隔壁を囲む外周壁を有し、前記一対の電極部は前記外周壁に設けられ、
     前記ハニカム構造部を前記セルの延びる方向から見たとき、前記一対の電極部は、前記ハニカム構造部の中心よりも一方側に配置されている、
     請求項2に記載の発熱体。
  4.  前記第1のハニカム構造ユニットの前記セルが延びる方向と前記第2のハニカム構造ユニットの前記セルが延びる方向とは揃っている、請求項1または2に記載の発熱体。
  5.  前記絶縁部は、絶縁材料で構成される絶縁部材を含む、請求項1に記載の発熱体。
  6.  前記絶縁部材は、前記第1のハニカム構造ユニットおよび前記第2のハニカム構造ユニットに接して配置される、請求項5に記載の発熱体。
  7.  前記絶縁部材は、前記第1のハニカム構造ユニットおよび前記第2のハニカム構造ユニットに接合される、請求項5に記載の発熱体。
  8.  前記絶縁部材は、流体の流路となる複数のセルを区画形成する隔壁を有する、請求項5に記載の発熱体。
  9.  前記ハニカム構造部の前記セルが延びる方向に直交する面の単位面積当たりの開口率は、前記絶縁部材の前記セルが延びる方向に直交する面の単位面積当たりの開口率よりも小さい、請求項8に記載の発熱体。
  10.  前記ハニカム構造部の前記セルの水力直径は、前記絶縁部材の前記セルの水力直径より小さい、請求項8に記載の発熱体。
  11.  前記第1のハニカム構造ユニットを前記セルの延びる方向から見たとき、前記第1のハニカム構造ユニットの前記ハニカム構造部と前記絶縁部材とが重ならない領域が形成されている、請求項5に記載の発熱体。
  12.  前記第1のハニカム構造ユニットを前記セルの延びる方向から見たとき、前記第1のハニカム構造ユニットの前記ハニカム構造部の中央部に前記絶縁部材が存在しない領域が形成されている、請求項11に記載の発熱体。
  13.  前記絶縁部材はセラミックスで構成される、請求項5に記載の発熱体。
  14.  前記絶縁部材は触媒を含む、請求項5に記載の発熱体。
  15.  前記ハニカム構造部はセラミックスで構成される、請求項1または5に記載の発熱体。
  16.  前記ハニカム構造部は触媒を含む、請求項1または5に記載の発熱体。
PCT/JP2023/036367 2022-11-21 2023-10-05 発熱体 WO2024111259A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022185922 2022-11-21
JP2022-185922 2022-11-21

Publications (1)

Publication Number Publication Date
WO2024111259A1 true WO2024111259A1 (ja) 2024-05-30

Family

ID=91195423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036367 WO2024111259A1 (ja) 2022-11-21 2023-10-05 発熱体

Country Status (1)

Country Link
WO (1) WO2024111259A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246315A (ja) * 1990-02-23 1991-11-01 Nissan Motor Co Ltd 触媒コンバータ
JP2001293377A (ja) * 2000-04-13 2001-10-23 Nippon Yakin Kogyo Co Ltd 自己発熱可能なメタルハニカム構造体
JP2005194935A (ja) * 2004-01-07 2005-07-21 Isuzu Motors Ltd 排気ガス浄化装置
JP2011098306A (ja) * 2009-11-06 2011-05-19 Gifu Univ 揮発性有機化合物処理装置
JP2016001529A (ja) * 2014-06-11 2016-01-07 東海高熱工業株式会社 発熱構造体
JP2022053219A (ja) * 2020-09-24 2022-04-05 イビデン株式会社 電気加熱式触媒
JP2022109861A (ja) * 2021-01-15 2022-07-28 日本碍子株式会社 セラミックス体及びその製造方法、ヒーターエレメント、ヒーターユニット、ヒーターシステム並びに浄化システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03246315A (ja) * 1990-02-23 1991-11-01 Nissan Motor Co Ltd 触媒コンバータ
JP2001293377A (ja) * 2000-04-13 2001-10-23 Nippon Yakin Kogyo Co Ltd 自己発熱可能なメタルハニカム構造体
JP2005194935A (ja) * 2004-01-07 2005-07-21 Isuzu Motors Ltd 排気ガス浄化装置
JP2011098306A (ja) * 2009-11-06 2011-05-19 Gifu Univ 揮発性有機化合物処理装置
JP2016001529A (ja) * 2014-06-11 2016-01-07 東海高熱工業株式会社 発熱構造体
JP2022053219A (ja) * 2020-09-24 2022-04-05 イビデン株式会社 電気加熱式触媒
JP2022109861A (ja) * 2021-01-15 2022-07-28 日本碍子株式会社 セラミックス体及びその製造方法、ヒーターエレメント、ヒーターユニット、ヒーターシステム並びに浄化システム

Similar Documents

Publication Publication Date Title
JP5692198B2 (ja) ハニカム構造体
US10280819B2 (en) Honeycomb-type heating device and method of using same
JP6626377B2 (ja) ハニカム型加熱装置並びにその使用方法及び製造方法
JP6161685B2 (ja) 電気的に加熱可能なハニカム体の複数の薄板金属層の電気的接続構造、及び関連するハニカム体
EP3574984B1 (en) Electrically heated catalyst device
US4671058A (en) Heating device
US9962652B2 (en) Honeycomb type heating device and method of using the same
JP2014054934A (ja) ヒーター
US10287942B2 (en) Honeycomb type heating device and method for using the same
US5764850A (en) Silicon carbide foam electric heater for heating gas directed therethrough
JP5531925B2 (ja) 電気加熱型触媒
WO2024111259A1 (ja) 発熱体
JP2013158714A (ja) 電気加熱式触媒装置
WO2024111260A1 (ja) 発熱体
JP6093130B2 (ja) ヒーター
JP3119280B2 (ja) 加熱式ハニカム構造体
KR102292906B1 (ko) 히터 코어, 히터 및 이를 포함하는 히팅 시스템
JP6890045B2 (ja) プラズマリアクタ
CN113756914B (zh) 电加热式催化剂装置
US11964254B2 (en) Catalyst device
JP7146439B2 (ja) プラズマリアクタ
KR100581182B1 (ko) 허니컴히터
CN112648050B (zh) 电加热式催化剂装置
JP2024075356A (ja) 電気加熱式担体
JP2022093013A (ja) 電気加熱型担体及び排気ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23894271

Country of ref document: EP

Kind code of ref document: A1