WO2024111071A1 - Plasma treatment device and method for assembling same - Google Patents
Plasma treatment device and method for assembling same Download PDFInfo
- Publication number
- WO2024111071A1 WO2024111071A1 PCT/JP2022/043249 JP2022043249W WO2024111071A1 WO 2024111071 A1 WO2024111071 A1 WO 2024111071A1 JP 2022043249 W JP2022043249 W JP 2022043249W WO 2024111071 A1 WO2024111071 A1 WO 2024111071A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- support member
- processing chamber
- dielectric plate
- recess
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 14
- 238000009832 plasma treatment Methods 0.000 title abstract 2
- 230000000149 penetrating effect Effects 0.000 claims abstract description 3
- 230000004308 accommodation Effects 0.000 claims description 3
- 238000005452 bending Methods 0.000 abstract description 10
- 239000000758 substrate Substances 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 239000012809 cooling fluid Substances 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 5
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- 238000004380 ashing Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- -1 or Co Inorganic materials 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
Definitions
- the present invention relates to a plasma processing apparatus that uses plasma to process objects and a method for assembling the same.
- Patent Document 1 discloses such a plasma processing apparatus in which an antenna is placed outside a vacuum vessel, and a high-frequency magnetic field generated from the antenna is transmitted into the vacuum vessel through a dielectric plate that is provided to cover an opening in the wall of the vacuum vessel, thereby generating plasma within the processing chamber.
- the present invention was made in consideration of these problems, and its main objective is to increase the plasma density generated in the processing chamber and broaden its distribution in a plasma processing apparatus in which an antenna is placed outside the processing chamber, while preventing the dielectric plate from shifting or falling off during assembly.
- the present invention makes it possible to increase the plasma density generated in the processing chamber and broaden its distribution in a plasma processing apparatus in which an antenna is placed outside the processing chamber, while preventing the dielectric plate from shifting or falling off during assembly.
- FIG. 11 is a perspective view showing a schematic configuration of a support member according to another embodiment.
- FIG. 11 is a perspective view showing a schematic configuration of a support member according to another embodiment.
- FIG. 11 is a perspective view showing a schematic configuration of a support member according to another embodiment.
- FIG. 11 is a perspective view showing a schematic configuration of a support member according to another embodiment.
- the plasma processing apparatus 100 comprises a vacuum vessel 2 which forms inside the processing chamber 1 which is evacuated to a vacuum and into which gas G is introduced, an antenna 3 which is provided outside the processing chamber 1, and a high frequency power supply 4 which applies high frequency to the antenna 3.
- a magnetic field transmission window 5 which allows the high frequency magnetic field generated from the antenna 3 to pass through into the processing chamber 1 is formed in the vacuum vessel 2 at a position facing the antenna 3.
- the high frequency magnetic field generated from the antenna 3 passes through the magnetic field transmission window 5 and is formed inside the processing chamber 1, generating an induced electric field in the space within the processing chamber 1, thereby generating an inductively coupled plasma P.
- the container body 21 is, for example, a metal container, and its walls (inner walls) form the processing chamber 1 on the inside.
- An opening 2a is formed in the wall of the container body 21, penetrating in the thickness direction.
- the window member 22 is removably attached to the container body 21 so as to cover this opening 2a.
- the container body 21 is electrically grounded, and the space between the window member 22 and the container body 21 is vacuum sealed with a gasket such as an O-ring or an adhesive.
- the window member 22 comprises a metal plate (slit plate) 221 in which multiple slits 221s are formed, and a dielectric plate 222.
- the metal plate 221 and the dielectric plate 222 are provided in this order from the processing chamber 1 side toward the atmosphere side (antenna side), and both are provided to extend along the longitudinal direction of the antenna 3.
- the slits 221s of the metal plate 221 and the dielectric plate 222 that covers them form a magnetic field transmission window 5 that allows a high-frequency magnetic field to pass into the processing chamber 1.
- a Si film can be formed on the substrate, when the source gas is SiH 4 +NH 3 , a SiN film can be formed, when the source gas is SiH 4 +O 2 , a SiO 2 film can be formed, and when the source gas is SiF 4 +N 2 , a SiN:F film (fluorinated silicon nitride film) can be formed.
- a substrate holder 7 for holding a substrate W is provided within the vacuum vessel 2.
- a bias voltage may be applied to the substrate holder 7 from a bias power supply 8.
- the bias voltage may be, for example, a negative DC voltage, a negative bias voltage, etc., but is not limited to these.
- a heater 71 for heating the substrate W may be provided within the substrate holder 7.
- Each antenna 3 is disposed outside the processing chamber 1 so as to face the magnetic field transmission window 5.
- Each antenna 3 is disposed so as to be substantially parallel to the surface of the substrate W disposed in the processing chamber 1.
- Each antenna 3 has the same configuration, is linear with a length of several tens of centimeters or more when viewed from the outside, and has a circular cross-sectional shape.
- One end of the antenna 3 in the longitudinal direction is connected to the high-frequency power source 4 via a matching circuit 41, and the other end is directly grounded.
- An impedance adjustment circuit such as a variable capacitor or variable reactor may be provided at one or the other end of the antenna 3 to adjust the impedance of each antenna 3.
- each antenna 3 is, for example, copper, aluminum, alloys thereof, stainless steel, etc., but is not limited to these.
- the antenna 3 may be hollow and a refrigerant such as cooling water may be run through it to cool the antenna 3.
- the high-frequency power supply 4 can pass a high-frequency current IR through the antenna 3 via a matching circuit 41.
- the frequency of the high-frequency current is, for example, a typical 13.56 MHz, but is not limited to this and may be changed as appropriate.
- the vacuum vessel 2 has a protruding portion 2p formed by bending its wall so as to form a convex shape from the atmospheric side toward the processing chamber 1 side.
- This protruding portion 2p is formed at a position facing each antenna 3, and here multiple protruding portions 2p are formed corresponding to multiple antennas 3.
- the protruding portion 2p is formed by bending the wall of the container body 21 that forms the processing chamber 1. When viewed from the longitudinal direction of the antenna 3, this protruding portion 2p is formed to have a roughly U-shape that is convex from the atmospheric side toward the processing chamber 1 side.
- the antenna 3 is disposed within the recess 2c formed by the atmospheric side wall surface of the protruding portion 2p.
- Each protruding portion 2p has a pair of side walls 2p1 facing each other across the antenna 3, and a bottom wall 2p2 connecting the lower ends of each side wall 2p1 (here, the ends on the processing chamber 1 side).
- the pair of side walls 2p1 are formed to be parallel to each other and parallel to the direction from the antenna 3 toward the substrate W.
- the bottom wall 2p2 is formed to be parallel along the surface of the substrate W.
- the aforementioned opening 2a is formed in each of the pair of side walls 2p1 so as to penetrate through them in the thickness direction. In each protruding portion 2p, the opening 2a is formed in a position facing the antenna 3, at a position symmetrical with respect to the antenna 3.
- multiple (here, two) of the window members 22 are provided to cover each opening 2a.
- the multiple window members 22 are arranged facing each other (or back-to-back) with the antenna 3 in between, and more specifically, multiple dielectric plates 222 are arranged facing each other with the antenna 3 in between.
- the metal plate 221 and dielectric plate 222 constituting the window members are arranged upright along the side wall portion 2p1 (i.e., in a direction intersecting with the substrate W).
- the plasma processing apparatus 100 of this embodiment further includes a support member 9 for preventing the dielectric plate 222 from shifting or falling off during assembly.
- the support member 9 is resiliently deformable and detachably attached to the recess 2c. As shown in FIG. 4, the support member 9 can be selectively positioned at a support position Q where it contacts the dielectric plate 222 by deformation and urges the dielectric plate 222 toward the atmospheric side wall surface of the side wall portion 2p1 of the protruding portion 2p (i.e., the side wall surface of the recess 2c) by elastic force, and a retreat position R retreated from the support position Q.
- the user can change the position of the support member 9 between the support position Q and the retreat position R by, for example, grasping the support member 9 with the fingers, deforming it, and inserting and removing it in the vertical direction (depth direction of the recess 2c).
- the support member 9 is made of an insulating resin material.
- the support member 9 is an approximately plate-like member bent to form a convex shape from the processing chamber 1 side toward the atmosphere side, and is fitted into the recess 2c so as to cover the antenna 3 and the dielectric plate 222.
- the support member 9 is an elongated member having an approximately constant cross-sectional shape, and is attached to the recess 2c so that its long axis direction coincides with the longitudinal direction of the antenna 3.
- the cross-sectional shape of the support member 9 in this embodiment is an inverted U-shape that is convex from the processing chamber side toward the atmosphere side. More specifically, the support member 9 has a top 91 that curves and bulges toward the atmosphere side when viewed from the longitudinal direction of the antenna 3, and a pair of legs 92 that extend from both ends of the top 91 toward the processing chamber 1 side.
- the support member 9 is inserted between a pair of opposing window members 22 (specifically, between a pair of dielectric plates 222) in a deformed state that narrows the distance between the pair of legs 92.
- the pair of legs 92 are in surface contact with the surfaces of the corresponding dielectric plates 222, and support the dielectric plates 222 by biasing them toward the side wall surfaces of the recess 2c with their elastic force.
- the pair of legs 92 of the support member 9 are in surface contact with the opposing side walls of the recess 2c without contacting the dielectric plate 222, and the pair of legs 92 are attached to the recess 2c by pushing against the side walls.
- the support member 9 also functions as a flow path forming member that forms a cooling flow path through which a cooling fluid flows to cool the antenna 3 and the window member 22.
- the support member 9 in the retracted position R, has an inner wall and an outer wall of the protruding portion 2p (i.e., the side wall and bottom wall of the recess 2c) that form a storage space S that surrounds and stores the entire circumference of the antenna 3 and the window member 22.
- the storage space S functions as a cooling flow path through which the cooling fluid flows during plasma processing.
- the wall of the top 91 of the support member 9 is provided with a vent 9a that connects the storage space S to the external space, and is configured to allow the cooling fluid to be introduced and discharged from the vent 9a.
- the top 91 of the support member 9 is provided with multiple (here, two) vents 9a along the longitudinal direction of the antenna 3, and the cooling fluid introduced from one vent 9a flows along the longitudinal direction of the antenna 3, cools the antenna 3 and the window member 22, and is then discharged from the other vent 9a.
- the plasma processing apparatus 100 may also be equipped with a cooling fluid supply mechanism (not shown), which supplies cooling fluid through the vent 9a.
- the antenna is arranged in the recess 2c formed by the wall surface of the protruding portion 2p on the atmospheric side, so that, for example, by providing an opening in the side wall of the recess 2c, the distance between the antenna and the processing chamber can be made closer than when the antenna is arranged to face the flat wall of the vacuum vessel. This increases the plasma density in the direction perpendicular to the antenna, and broadens the distribution of the plasma density generated in the processing chamber.
- the recess 2c is provided with an elastically deformable support member 9 that can be selectively arranged at a support position Q where the dielectric plate is supported by biasing it toward the wall surface of the recess 2c, and at a retreat position R retreated from the support position. Therefore, when the plasma processing apparatus is assembled and the support of the dielectric plate is required, the support member 9 is arranged at the support position Q to prevent the dielectric plate from shifting or falling off, and after the processing chamber is evacuated to a vacuum, the support member 9 is arranged at the retreat position R to bring the antenna closer to the dielectric plate and increase the plasma density in the processing chamber.
- the protruding portion 2p is formed by bending the wall of the container body 21, but this is not limited to this.
- the processing chamber 1 is formed by both the walls of the container body 21 and the window member 22, and the protruding portion 2p may be formed by bending the metal plate 221 of the window member 22.
- the plasma processing apparatus 100 has an opening 2a that penetrates the upper wall 21a of the container body 21 in the thickness direction, and the window member 22 composed of the metal plate 221 and the dielectric plate 222 is detachably attached to the container body 21 so as to close this opening 2a.
- the metal plate 221 may be bent to form a convex shape from the atmosphere side toward the processing chamber 1 side to form multiple protruding portions 2p.
- a plurality of slits 221s may be formed in a pair of side walls 2p1 of each protruding portion 2p that face each other with the antenna 3 in between, and a dielectric plate 222 may be disposed to close the slits 221s.
- a support member 9 may be attached to a recess 2c formed by bending the metal plate 221.
- the top 91 of the support member 9 is curved and bulges toward the atmosphere, but this is not limited to the above. In other embodiments, the top 91 of the support member 9 may be flat, as shown in FIG. 9.
- the pair of sidewalls 2p1 of the protruding portion 2p are parallel to each other and are formed parallel to the direction from the antenna 3 toward the substrate W, but this is not limited to the above.
- the pair of sidewalls 2p1 have an inclined portion 2p11 that inclines toward each other from the antenna 3 side toward the processing chamber 1 side, and an opening 2a may be formed in this inclined portion 2p11.
- the slits 221s are formed in each of the pair of side wall portions 2p1, but this is not limited to the above.
- the protruding portion 2p may be formed by bending the metal plate 221, and the slits 221s may be formed continuously across the pair of side wall portions 2p1 and the bottom wall portion 2p2.
- the dielectric plate 222 may be formed to have a generally U-shape that is convex from the atmosphere side toward the processing chamber 1 side when viewed from the longitudinal direction of the antenna 3.
- the wall of the top 91 of the support member 9 may have only one vent 9a.
- the vent 9a may be provided near the center of the top 91 along the longitudinal direction of the antenna 3 as shown in FIG. 12, or near the end of the top 91 along the longitudinal direction of the antenna 3 as shown in FIG. 13.
- the vent 9a is provided near the center of the top 91, the cooling fluid introduced from the vent 9a can flow toward both ends along the longitudinal direction of the antenna 3 and be discharged from the openings at both ends of the support member 9.
- the vent 9a is provided near the end of the top 91, the cooling fluid introduced from the vent 9a can flow toward the other end along the longitudinal direction of the antenna 3 and be discharged from the opening at the other end of the support member 9.
- multiple (e.g., two) support members 9 may be arranged in each recess 2c along the longitudinal direction of the antenna 3.
- only one ventilation hole 9a may be provided at the top 91 of each support member 9, or multiple ventilation holes 9a may be provided.
- the multiple support members 9 may be provided at intervals along the longitudinal direction of the antenna 3, or may be provided without any intervals.
- the magnetic field transmission window 5 is formed by the slit 221s in the metal plate 221 and the dielectric plate 222 that closes it, but this is not limited to the above.
- the window member 22 does not include the metal plate 221, and the magnetic field transmission window 5 may be formed only by the dielectric plate 222.
- the plasma processing apparatus 100 in the above embodiment has multiple antennas 3, but is not limited to this and may have only one antenna 3.
- the disclosure of this specification may further include the following embodiments 1 to 6.
- a plasma processing apparatus that uses plasma to vacuum process an object to be processed that is placed in a processing chamber, the apparatus comprising: a vacuum vessel in which the wall that forms the processing chamber is bent from the atmosphere side toward the processing chamber side to form a convex shape, the protruding portion having an opening formed therethrough in the thickness direction; an antenna that is provided outside the processing chamber and in a recess formed by the atmosphere side wall surface of the protruding portion and is connected to a high frequency power source to generate a high frequency magnetic field; a dielectric plate that is placed in the recess so as to block the opening of the protruding portion from the atmosphere side and transmits the high frequency magnetic field generated by the antenna into the processing chamber; and a support member that is elastically deformable and attached to the recess, that can be selectively positioned between a support position that contacts the dielectric plate and supports the dielectric plate by urging it toward the wall surface of the recess by elastic force, and a retracted position that does not contact the dielectric plate
- the antenna is disposed in a recess formed by the atmospheric side wall of the protruding portion, and therefore, for example, by providing an opening in the side wall of the recess, the distance between the antenna and the processing chamber can be reduced compared to the case where the antenna is disposed facing a flat wall of the vacuum vessel.
- This increases the plasma density in the direction perpendicular to the antenna, and broadens the distribution of the plasma density generated in the processing chamber.
- the recess is fitted with an elastically deformable support member which can be selectively positioned between a support position where the dielectric plate is supported by urging it towards the wall of the recess, and a retracted position retracted from that position.
- the support member when assembling the plasma processing apparatus where support for the dielectric plate is required, the support member can be positioned at the support position to prevent the dielectric plate from shifting or falling off. On the other hand, after evacuating the processing chamber where support for the dielectric plate is not required, the support member can be positioned at the retracted position to bring the antenna closer to the dielectric plate and further increase the plasma density in the processing chamber.
- a single support member can simultaneously support a plurality of opposing dielectric plates.
- the support member is approximately plate-shaped and bent to form a convex shape from the processing chamber side toward the atmosphere side, and is attached to the recess so as to cover the antenna and dielectric plate.
- the cooling fluid can be efficiently supplied to the accommodation space by introducing the cooling fluid through the ventilation hole.
- a method for assembling a plasma processing apparatus which performs vacuum processing of a workpiece placed in a processing chamber using plasma, the method comprising: a vacuum vessel having a protruding portion in which a wall forming the processing chamber is bent from the atmosphere side toward the processing chamber side to form a convex shape, the protruding portion having an opening formed therethrough in the thickness direction; an antenna which is provided outside the processing chamber and in a recess formed by the atmosphere side wall surface of the protruding portion, the antenna being connected to a high frequency power source and generating a high frequency magnetic field; and a dielectric plate which is provided in the recess so as to block the opening of the protruding portion from the atmosphere side and which allows the high frequency magnetic field generated from the antenna to pass into the processing chamber, the method comprising the steps of: bringing an elastically deformable support member into contact with the dielectric plate, and supporting the dielectric plate by elastic force toward the wall surface of the recess, and then evacuating the processing chamber,
- Plasma processing apparatus 1 Processing chamber 2: Vacuum vessel 2a: Opening 2p: Protruding portion 2c: Recess 222: Dielectric plate 3: Antenna 4: High frequency power source 9: Support member W: Workpiece P: Plasma
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
Abstract
This plasma treatment device vacuum-treats, using plasma, an object to be treated disposed in a treatment chamber, and comprises: a vacuum vessel that is formed by bending a wall forming the treatment chamber so as to form a convex shape protruding from the atmosphere side toward the treatment chamber side, and has a protruding portion in which an opening penetrating in a thickness direction is formed; an antenna that is provided outside the treatment chamber and within a recess formed by an atmosphere-side wall surface of the protruding portion, is connected to a high-frequency power source, and generates a high-frequency magnetic field; a dielectric plate that is disposed within the recess so as to close the opening of the protruding portion from the atmosphere side, and transmits the high-frequency magnetic field generated from the antenna into the treatment chamber; and a support member that is attached to the recess and elastically deformable, and can be selectively disposed at a support position where the support member comes into contact with the dielectric plate, and biases and supports the dielectric plate toward the wall surface of the recess by elastic force or a retreat position where the support member is retreated from the support position.
Description
本発明は、プラズマを用いて被処理物を処理するプラズマ処理装置及びその組み立て方法に関するものである。
The present invention relates to a plasma processing apparatus that uses plasma to process objects and a method for assembling the same.
アンテナに高周波電流を流し、それによって生じる誘導電界によって誘導結合型のプラズマ(略称ICP)を発生させ、この誘導結合型のプラズマを用いて基板等の被処理物に処理を施すプラズマ処理装置が従来から提案されている。このようなプラズマ処理装置として、特許文献1には、アンテナを真空容器の外部に配置し、真空容器の壁に形成された開口を塞ぐように設けた誘電体板を通じてアンテナから生じた高周波磁場を真空容器内に透過させることで、処理室内にプラズマを発生させるものが開示されている。
Plasma processing apparatuses have been proposed that generate inductively coupled plasma (abbreviated ICP) by passing a high-frequency current through an antenna, and use the resulting induced electric field to process substrates and other workpieces. Patent Document 1 discloses such a plasma processing apparatus in which an antenna is placed outside a vacuum vessel, and a high-frequency magnetic field generated from the antenna is transmitted into the vacuum vessel through a dielectric plate that is provided to cover an opening in the wall of the vacuum vessel, thereby generating plasma within the processing chamber.
また特許文献2には、真空容器の壁を処理室側に向かって突出させるように曲げることで形成される大気側の凹部にアンテナを配置させたプラズマ処理装置が記載されている。このプラズマ処理装置では、凹部内にアンテナを配置し、凹部内に誘電体板を設けることで、アンテナに直交する方向におけるプラズマ密度を高くし、処理室に生成されるプラズマ密度の分布をブロードにすることができる。
Patent Document 2 also describes a plasma processing apparatus in which an antenna is placed in a recess on the atmosphere side, which is formed by bending the wall of the vacuum container so that it protrudes toward the processing chamber. In this plasma processing apparatus, an antenna is placed in the recess and a dielectric plate is provided in the recess, thereby increasing the plasma density in the direction perpendicular to the antenna and broadening the distribution of plasma density generated in the processing chamber.
ところで、上記したような凹部内に誘電体板を設ける構成では、誘電体板を真空容器に固定して支持するための枠体を取り付けるためのスペースを設けるのが困難な場合があり、それ故プラズマ処理装置の組み立て作業時において誘電体板をしっかりと支持することができず、誘電体板がズレたり脱落したりする可能性がある。
However, in a configuration in which the dielectric plate is provided in a recess as described above, it can be difficult to provide space for attaching a frame for fixing and supporting the dielectric plate to the vacuum vessel, and as a result, the dielectric plate cannot be supported firmly during assembly of the plasma processing apparatus, which can lead to the dielectric plate becoming misaligned or falling off.
本発明はこのような問題に鑑みてなされたものであり、処理室の外部にアンテナを配置するプラズマ処理装置において、処理室に生成されるプラズマ密度を高くするとともにその分布をブロードにし、かつ組立時における誘電体板のズレ及び脱落を防止することを主たる課題とするものである。
The present invention was made in consideration of these problems, and its main objective is to increase the plasma density generated in the processing chamber and broaden its distribution in a plasma processing apparatus in which an antenna is placed outside the processing chamber, while preventing the dielectric plate from shifting or falling off during assembly.
すなわち本発明に係るプラズマ処理装置は、処理室に配置された被処理物をプラズマを用いて真空処理するものであって、前記処理室を形成する壁を大気側から前記処理室側に向かって凸形状をなすよう曲げて形成した突出部分を有する真空容器と、前記処理室の外部であって、前記突出部分の大気側の壁面により形成される凹部内に設けられ、高周波電源に接続されて高周波磁場を生じさせるアンテナと、前記突出部分に形成された開口を大気側から塞ぐように設けられ、前記アンテナから生じた高周波磁場を前記処理室内に透過させる誘電体板と、前記凹部に取り付けられた弾性変形可能なものであって、前記アンテナと前記誘電体板との間に入り込み、弾性力により当該誘電体板を前記突出部分の壁面に向けて付勢して支持する支持位置と、前記アンテナと前記誘電体板との間から退避した退避位置と、に選択的に配置できる支持部材とを備えることを特徴とする。
In other words, the plasma processing apparatus according to the present invention is for vacuum processing an object to be processed placed in a processing chamber using plasma, and is characterized by comprising a vacuum vessel having a protruding portion formed by bending the wall forming the processing chamber from the atmosphere side toward the processing chamber side to form a convex shape, an antenna that is provided outside the processing chamber and in a recess formed by the atmosphere side wall surface of the protruding portion and is connected to a high frequency power source to generate a high frequency magnetic field, a dielectric plate that is provided to block the opening formed in the protruding portion from the atmosphere side and allows the high frequency magnetic field generated by the antenna to pass into the processing chamber, and a support member that is elastically deformable and attached to the recess, and that can be selectively positioned between a support position that enters between the antenna and the dielectric plate and supports the dielectric plate by urging it toward the wall surface of the protruding portion with its elastic force, and a retracted position retracted from between the antenna and the dielectric plate.
また本発明に係るプラズマ処理装置の組み立て方法は、処理室に配置された被処理物をプラズマを用いて真空処理するプラズマ処理装置であって、前記処理室を形成する壁を大気側から前記処理室側に向かって凸形状をなすよう曲げて形成した突出部分を有する真空容器と、前記処理室の外部であって、前記突出部分の大気側の壁面により形成される凹部内に設けられ、高周波電源に接続されて高周波磁場を生じさせるアンテナと、前記突出部分に形成された開口を大気側から塞ぐように設けられ、前記アンテナから生じた高周波磁場を前記処理室内に透過させる誘電体板とを備えるプラズマ処理装置の組み立て方法であって、弾性変形可能な支持部材を、前記アンテナと前記誘電体板との間に入り込ませ、弾性力により当該誘電体板を前記突出部分の壁面に向けて付勢して支持し、前記処理室内を真空排気した後、前記支持部材を移動させて前記アンテナと前記誘電体板との間から退避させることを特徴とする。
The method of assembling a plasma processing apparatus according to the present invention is a plasma processing apparatus for vacuum processing an object placed in a processing chamber using plasma, the method comprising: a vacuum vessel having a protruding portion formed by bending a wall forming the processing chamber from the atmosphere side toward the processing chamber side to form a convex shape; an antenna that is connected to a high-frequency power source and generates a high-frequency magnetic field, which is provided outside the processing chamber and in a recess formed by the atmosphere side wall surface of the protruding portion; and a dielectric plate that is provided to block an opening formed in the protruding portion from the atmosphere side and allows the high-frequency magnetic field generated by the antenna to pass into the processing chamber, the method comprising: inserting an elastically deformable support member between the antenna and the dielectric plate, and supporting the dielectric plate by biasing it toward the wall surface of the protruding portion with an elastic force; and, after evacuating the processing chamber, moving the support member to move it out from between the antenna and the dielectric plate.
このようにした本発明によれば、処理室の外部にアンテナを配置するプラズマ処理装置において、処理室に生成されるプラズマ密度を高くするとともにその分布をブロードにし、かつ組立時における誘電体板のズレ及び脱落を防止することができる。
In this way, the present invention makes it possible to increase the plasma density generated in the processing chamber and broaden its distribution in a plasma processing apparatus in which an antenna is placed outside the processing chamber, while preventing the dielectric plate from shifting or falling off during assembly.
以下に、本発明の一実施形態に係るプラズマ処理装置100について、図面を参照して説明する。
Below, a plasma processing apparatus 100 according to one embodiment of the present invention will be described with reference to the drawings.
<装置構成>
本実施形態に係るプラズマ処理装置100は、誘導結合型のプラズマPを用いて基板等の被処理物Wに真空処理を施すものである。ここで基板は、例えば液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板等である。また基板に施す処理は、例えば、プラズマCVD法による膜形成、エッチング、アッシング、スパッタリング等である。 <Device Configuration>
Theplasma processing apparatus 100 according to this embodiment performs vacuum processing on a workpiece W such as a substrate by using an inductively coupled plasma P. The substrate here is, for example, a substrate for a flat panel display (FPD) such as a liquid crystal display or an organic electroluminescence display, a flexible substrate for a flexible display, etc. The processing performed on the substrate is, for example, film formation by a plasma CVD method, etching, ashing, sputtering, etc.
本実施形態に係るプラズマ処理装置100は、誘導結合型のプラズマPを用いて基板等の被処理物Wに真空処理を施すものである。ここで基板は、例えば液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイ(FPD)用の基板、フレキシブルディスプレイ用のフレキシブル基板等である。また基板に施す処理は、例えば、プラズマCVD法による膜形成、エッチング、アッシング、スパッタリング等である。 <Device Configuration>
The
なお本実施形態のプラズマ処理装置100は、プラズマCVD法によって膜形成を行う場合はプラズマCVD装置、エッチングを行う場合はプラズマエッチング装置、アッシングを行う場合はプラズマアッシング装置、スパッタリングを行う場合はプラズマスパッタリング装置とも呼ばれる。
The plasma processing apparatus 100 of this embodiment is also called a plasma CVD apparatus when forming a film by plasma CVD, a plasma etching apparatus when etching is performed, a plasma ashing apparatus when ashing is performed, and a plasma sputtering apparatus when sputtering is performed.
具体的にプラズマ処理装置100は、図1~図3に示すように、真空排気され且つガスGが導入される処理室1を内側に形成する真空容器2と、処理室1の外部に設けられたアンテナ3と、アンテナ3に高周波を印加する高周波電源4とを備えている。真空容器2には、アンテナ3から生じた高周波磁場を処理室1内に透過させる磁場透過窓5がアンテナ3に臨む位置に形成されている。高周波電源4からアンテナ3に高周波を印加すると、アンテナ3から発生した高周波磁場が磁場透過窓5を透過して処理室1内に形成されることで処理室1内の空間に誘導電界が発生し、これにより誘導結合型のプラズマPが生成される。
Specifically, as shown in Figures 1 to 3, the plasma processing apparatus 100 comprises a vacuum vessel 2 which forms inside the processing chamber 1 which is evacuated to a vacuum and into which gas G is introduced, an antenna 3 which is provided outside the processing chamber 1, and a high frequency power supply 4 which applies high frequency to the antenna 3. A magnetic field transmission window 5 which allows the high frequency magnetic field generated from the antenna 3 to pass through into the processing chamber 1 is formed in the vacuum vessel 2 at a position facing the antenna 3. When high frequency is applied from the high frequency power supply 4 to the antenna 3, the high frequency magnetic field generated from the antenna 3 passes through the magnetic field transmission window 5 and is formed inside the processing chamber 1, generating an induced electric field in the space within the processing chamber 1, thereby generating an inductively coupled plasma P.
真空容器2は、処理室1を形成する容器本体21と、磁場透過窓5を形成する窓部材22とを備えている。
The vacuum vessel 2 includes a vessel body 21 that forms the processing chamber 1, and a window member 22 that forms a magnetic field transmission window 5.
容器本体21は例えば金属製の容器であり、その壁(内壁)によって処理室1を内側に形成している。容器本体21の壁には、厚さ方向に貫通する開口部2aが形成されている。窓部材22はこの開口部2aを塞ぐように容器本体21に着脱可能に取り付けられている。なお、容器本体21は電気的に接地されており、窓部材22と容器本体21との間はOリング等のガスケットや接着剤により真空シールされている。
The container body 21 is, for example, a metal container, and its walls (inner walls) form the processing chamber 1 on the inside. An opening 2a is formed in the wall of the container body 21, penetrating in the thickness direction. The window member 22 is removably attached to the container body 21 so as to cover this opening 2a. The container body 21 is electrically grounded, and the space between the window member 22 and the container body 21 is vacuum sealed with a gasket such as an O-ring or an adhesive.
窓部材22は、複数のスリット221sが形成された金属板(スリット板)221と誘電体板222とを備えている。金属板221と誘電体板222は、処理室1側から大気側(アンテナ側)に向かってこの順に設けられており、いずれもアンテナ3の長手方向に沿って延びるように設けられている。本実施形態のプラズマ処理装置100では、金属板221のスリット221sと、これを塞ぐ誘電体板222とによって、高周波磁場を処理室1内に透過させる磁場透過窓5が形成されている。
The window member 22 comprises a metal plate (slit plate) 221 in which multiple slits 221s are formed, and a dielectric plate 222. The metal plate 221 and the dielectric plate 222 are provided in this order from the processing chamber 1 side toward the atmosphere side (antenna side), and both are provided to extend along the longitudinal direction of the antenna 3. In the plasma processing apparatus 100 of this embodiment, the slits 221s of the metal plate 221 and the dielectric plate 222 that covers them form a magnetic field transmission window 5 that allows a high-frequency magnetic field to pass into the processing chamber 1.
金属板221は、その板厚方向に貫通する複数のスリット221sが形成されており、容器本体21の開口部2aを塞ぐように設けられている。この複数のスリット221sは、いずれもアンテナ3の長手方向に交差する方向に伸びる矩形状をなしており、アンテナ3の長手方向に沿って並んで形成されている。
The metal plate 221 has multiple slits 221s formed through it in the thickness direction, and is arranged to cover the opening 2a of the container body 21. Each of the multiple slits 221s has a rectangular shape that extends in a direction intersecting the longitudinal direction of the antenna 3, and is formed in a row along the longitudinal direction of the antenna 3.
金属板221は、例えばCu、Al、Zn、Ni、Sn、Si、Ti、Fe、Cr、Nb、C、Mo、W又はCoを含む群から選択される1種の金属又はそれらの合金(例えばステンレス合金、アルミニウム合金等)等の金属材料を圧延加工(例えば冷間圧延や熱間圧延)などにより製造したものである。
The metal plate 221 is manufactured by rolling (e.g., cold rolling or hot rolling) a metal material such as one metal selected from the group including Cu, Al, Zn, Ni, Sn, Si, Ti, Fe, Cr, Nb, C, Mo, W, or Co, or an alloy thereof (e.g., stainless steel alloy, aluminum alloy, etc.).
誘電体板222は、容器本体21の開口部2a及び金属板221のスリット221sを処理室1の外部側(すなわち大気側)から塞ぐように、Oリング等のガスケットを介して金属板221の大気側の表面に配置される。
The dielectric plate 222 is placed on the atmospheric surface of the metal plate 221 via a gasket such as an O-ring so as to block the opening 2a of the container body 21 and the slits 221s of the metal plate 221 from the outside (i.e., the atmospheric side) of the processing chamber 1.
誘電体板222を構成する材料は、アルミナ、炭化ケイ素、窒化ケイ素等のセラミックス、石英ガラス、無アルカリガラス等の無機材料、フッ素樹脂(例えばテフロン)等の樹脂材料等の既知の材料であってよい。
The material constituting the dielectric plate 222 may be a known material such as ceramics such as alumina, silicon carbide, silicon nitride, etc., inorganic materials such as quartz glass and non-alkali glass, or resin materials such as fluororesin (e.g. Teflon).
真空容器2は、真空排気装置6によって処理室1が真空排気されるように構成されている。また真空容器2は、例えば流量調整器(図示省略)及び容器本体21に設けられた複数のガス導入口212を経由して、処理室1にガスGが導入されるように構成されている。ガスGは、基板Wに施す処理内容に応じたものにすればよい。例えば、プラズマCVD法によって基板に膜形成を行う場合には、ガスGは、原料ガス又はそれを希釈ガス(例えばH2)で希釈したガスである。より具体例を挙げると、原料ガスがSiH4の場合はSi膜を、SiH4+NH3の場合はSiN膜を、SiH4+O2の場合はSiO2膜を、SiF4+N2の場合はSiN:F膜(フッ素化シリコン窒化膜)を、それぞれ基板上に形成することができる。
The vacuum vessel 2 is configured so that the processing chamber 1 is evacuated by the vacuum exhaust device 6. The vacuum vessel 2 is also configured so that the gas G is introduced into the processing chamber 1 via, for example, a flow rate regulator (not shown) and a plurality of gas inlets 212 provided in the vessel body 21. The gas G may be selected according to the processing contents to be performed on the substrate W. For example, when a film is formed on the substrate by the plasma CVD method, the gas G is a source gas or a gas obtained by diluting the source gas with a dilution gas (for example, H 2 ). To give a more specific example, when the source gas is SiH 4 , a Si film can be formed on the substrate, when the source gas is SiH 4 +NH 3 , a SiN film can be formed, when the source gas is SiH 4 +O 2 , a SiO 2 film can be formed, and when the source gas is SiF 4 +N 2 , a SiN:F film (fluorinated silicon nitride film) can be formed.
また、真空容器2内には、基板Wを保持する基板ホルダ7が設けられている。この例のように、基板ホルダ7にバイアス電源8からバイアス電圧を印加するようにしてもよい。バイアス電圧は、例えば負の直流電圧、負のバイアス電圧等であるが、これに限られるものではない。このようなバイアス電圧によって、例えば、プラズマP中の正イオンが基板Wに入射する時のエネルギーを制御して、基板Wの表面に形成される膜の結晶化度の制御等を行うことができる。基板ホルダ7内に、基板Wを加熱するヒータ71を設けておいてもよい。
Also, a substrate holder 7 for holding a substrate W is provided within the vacuum vessel 2. As in this example, a bias voltage may be applied to the substrate holder 7 from a bias power supply 8. The bias voltage may be, for example, a negative DC voltage, a negative bias voltage, etc., but is not limited to these. By using such a bias voltage, for example, it is possible to control the energy when positive ions in the plasma P are incident on the substrate W, thereby controlling the crystallinity of the film formed on the surface of the substrate W. A heater 71 for heating the substrate W may be provided within the substrate holder 7.
アンテナ3は複数本設けられており、各アンテナ3は磁場透過窓5に対向するように処理室1の外部に配置されている。各アンテナ3は、処理室1に設けられる基板Wの表面と実質的に平行になるように配置されている。
Multiple antennas 3 are provided, and each antenna 3 is disposed outside the processing chamber 1 so as to face the magnetic field transmission window 5. Each antenna 3 is disposed so as to be substantially parallel to the surface of the substrate W disposed in the processing chamber 1.
各アンテナ3は同一構成のものであり、外観視して長さが数十cm以上の直線状をなし、その断面形状が円形状をなすものである。アンテナ3の長手方向の一端部は、整合回路41を介して高周波電源4が接続されており、他端部は直接接地されている。なお、アンテナ3の一端部又は他端部に、可変コンデンサ又は可変リアクトル等のインピーダンス調整回路を設けて、各アンテナ3のインピーダンスを調整するように構成しても良い。このように各アンテナ3のインピーダンスを調整することによって、アンテナ3の長手方向におけるプラズマPの密度分布を均一化することができ、アンテナ3の長手方向の膜厚を均一化することができる。
Each antenna 3 has the same configuration, is linear with a length of several tens of centimeters or more when viewed from the outside, and has a circular cross-sectional shape. One end of the antenna 3 in the longitudinal direction is connected to the high-frequency power source 4 via a matching circuit 41, and the other end is directly grounded. An impedance adjustment circuit such as a variable capacitor or variable reactor may be provided at one or the other end of the antenna 3 to adjust the impedance of each antenna 3. By adjusting the impedance of each antenna 3 in this manner, the density distribution of the plasma P in the longitudinal direction of the antenna 3 can be made uniform, and the film thickness in the longitudinal direction of the antenna 3 can be made uniform.
各アンテナ3の材質は、例えば、銅、アルミニウム、これらの合金、ステンレス等であるが、これに限られるものではない。なおアンテナ3を中空にして、その中に冷却水等の冷媒を流し、アンテナ3を冷却するようにしてもよい。
The material of each antenna 3 is, for example, copper, aluminum, alloys thereof, stainless steel, etc., but is not limited to these. The antenna 3 may be hollow and a refrigerant such as cooling water may be run through it to cool the antenna 3.
高周波電源4は、整合回路41を介してアンテナ3に高周波電流IRを流すことができる。高周波の周波数は例えば一般的な13.56MHzであるが、これに限られるものではなく適宜変更してもよい。
The high-frequency power supply 4 can pass a high-frequency current IR through the antenna 3 via a matching circuit 41. The frequency of the high-frequency current is, for example, a typical 13.56 MHz, but is not limited to this and may be changed as appropriate.
ここで本実施形態のプラズマ処理装置100では、真空容器2は、大気側から処理室1側に向かって凸形状をなすようにその壁を曲げて形成した突出部分2pを有している。この突出部分2pは各アンテナ3に臨む位置に形成されており、ここでは複数のアンテナ3に対応して複数の突出部分2pが形成されている。
In the plasma processing apparatus 100 of this embodiment, the vacuum vessel 2 has a protruding portion 2p formed by bending its wall so as to form a convex shape from the atmospheric side toward the processing chamber 1 side. This protruding portion 2p is formed at a position facing each antenna 3, and here multiple protruding portions 2p are formed corresponding to multiple antennas 3.
本実施形態では、突出部分2pは処理室1を形成する容器本体21の壁を曲げて形成したものである。アンテナ3の長手方向から視て、この突出部分2pは大気側から処理室1側に向かって凸となる略U字形状を成すように形成されている。そして突出部分2pの大気側の壁面により形成される凹部2c内にアンテナ3が配置されている。
In this embodiment, the protruding portion 2p is formed by bending the wall of the container body 21 that forms the processing chamber 1. When viewed from the longitudinal direction of the antenna 3, this protruding portion 2p is formed to have a roughly U-shape that is convex from the atmospheric side toward the processing chamber 1 side. The antenna 3 is disposed within the recess 2c formed by the atmospheric side wall surface of the protruding portion 2p.
各突出部分2pは、アンテナ3を挟んで対向する一対の側壁部2p1と、各側壁部2p1の下端(ここでは処理室1側の端部)を連結する底壁部2p2とを備えている。一対の側壁部2p1は、互いに平行であって、かつアンテナ3から基板Wに向かう方向に平行になるように形成されている。底壁部2p2は、基板Wの表面に沿って平行となるように形成されている。そしてこの一対の側壁部2p1のそれぞれに、前記した開口部2aが厚さ方向に貫通するように形成されている。各突出部分2pにおいて、開口部2aは、アンテナ3に臨む位置に、アンテナ3を挟んで対称となる位置に形成されている。
Each protruding portion 2p has a pair of side walls 2p1 facing each other across the antenna 3, and a bottom wall 2p2 connecting the lower ends of each side wall 2p1 (here, the ends on the processing chamber 1 side). The pair of side walls 2p1 are formed to be parallel to each other and parallel to the direction from the antenna 3 toward the substrate W. The bottom wall 2p2 is formed to be parallel along the surface of the substrate W. The aforementioned opening 2a is formed in each of the pair of side walls 2p1 so as to penetrate through them in the thickness direction. In each protruding portion 2p, the opening 2a is formed in a position facing the antenna 3, at a position symmetrical with respect to the antenna 3.
凹部2c内において、前記した窓部材22は各開口部2aを塞ぐように複数(ここでは2つ)設けられている。凹部2c内において、複数の窓部材22はアンテナ3を挟んで互いに向かい合うように(あるいは背中合わせとなるように)配置されており、より具体的には複数の誘電体板222がアンテナ3を挟んで向かい合うように配置されている。凹部2c内において、窓部材を構成する金属板221及び誘電体板222は、側壁部2p1に沿って立てて(すなわち、基板Wに対して交差する向きで)配置されている。
In the recess 2c, multiple (here, two) of the window members 22 are provided to cover each opening 2a. In the recess 2c, the multiple window members 22 are arranged facing each other (or back-to-back) with the antenna 3 in between, and more specifically, multiple dielectric plates 222 are arranged facing each other with the antenna 3 in between. In the recess 2c, the metal plate 221 and dielectric plate 222 constituting the window members are arranged upright along the side wall portion 2p1 (i.e., in a direction intersecting with the substrate W).
そして本実施形態のプラズマ処理装置100は、組み立て中における誘電体板222の位置ズレ及び脱落を防止するための支持部材9を更に有している。この支持部材9は、凹部2cに着脱可能に取付けられた弾性変形可能なものであり、図4に示すように、変形することにより、誘電体板222に接触し、弾性力により誘電体板222を突出部分2pの側壁部2p1の大気側の壁面(すなわち凹部2cの側壁面)に向けて付勢して支持する支持位置Qと、当該支持位置Qから退避した退避位置Rとに選択的に配置可能なものである。ユーザが例えば手指等で掴んで支持部材9を変形させて上下方向(凹部2cの深さ方向)に抜き差しすることにより、支持部材9の位置を支持位置Qと退避位置Rとで切り替えることができる。なお、支持部材9は絶縁性の樹脂材料により構成されている。
The plasma processing apparatus 100 of this embodiment further includes a support member 9 for preventing the dielectric plate 222 from shifting or falling off during assembly. The support member 9 is resiliently deformable and detachably attached to the recess 2c. As shown in FIG. 4, the support member 9 can be selectively positioned at a support position Q where it contacts the dielectric plate 222 by deformation and urges the dielectric plate 222 toward the atmospheric side wall surface of the side wall portion 2p1 of the protruding portion 2p (i.e., the side wall surface of the recess 2c) by elastic force, and a retreat position R retreated from the support position Q. The user can change the position of the support member 9 between the support position Q and the retreat position R by, for example, grasping the support member 9 with the fingers, deforming it, and inserting and removing it in the vertical direction (depth direction of the recess 2c). The support member 9 is made of an insulating resin material.
具体的にこの支持部材9は、図2、図4及び図5に示すように、処理室1側から大気側に向かって凸形状をなすように曲げて形成された略板状のものであり、アンテナ3及び誘電体板222を覆うようにして凹部2cに嵌めて取り付けられている。支持部材9は、略一定断面形状を有する長尺状の部材であり、その長軸方向がアンテナ3の長手方向と一致するように凹部2cに取り付けられている。本実施形態の支持部材9の断面形状は、処理室側から大気側に向かって凸となる逆U字形状をなしている。より具体的にこの支持部材9は、アンテナ3の長手方向から視て、湾曲して大気側に膨出する頂部91と、頂部91の両端から処理室1側に向かって伸びる一対の脚部92とを有している。
Specifically, as shown in Figures 2, 4, and 5, the support member 9 is an approximately plate-like member bent to form a convex shape from the processing chamber 1 side toward the atmosphere side, and is fitted into the recess 2c so as to cover the antenna 3 and the dielectric plate 222. The support member 9 is an elongated member having an approximately constant cross-sectional shape, and is attached to the recess 2c so that its long axis direction coincides with the longitudinal direction of the antenna 3. The cross-sectional shape of the support member 9 in this embodiment is an inverted U-shape that is convex from the processing chamber side toward the atmosphere side. More specifically, the support member 9 has a top 91 that curves and bulges toward the atmosphere side when viewed from the longitudinal direction of the antenna 3, and a pair of legs 92 that extend from both ends of the top 91 toward the processing chamber 1 side.
図4に示すように、支持位置Qにおいて支持部材9は、一対の両脚部92間の距離を狭めるように変形した状態で対向する一対の窓部材22間(具体的には一対の誘電体板222間)に挿入されている。この状態では、一対の脚部92が対応する誘電体板222の表面にそれぞれ面接触し、弾性力により凹部2cの側壁面に向けて誘電体板222を付勢することにより支持している。
As shown in Figure 4, at support position Q, the support member 9 is inserted between a pair of opposing window members 22 (specifically, between a pair of dielectric plates 222) in a deformed state that narrows the distance between the pair of legs 92. In this state, the pair of legs 92 are in surface contact with the surfaces of the corresponding dielectric plates 222, and support the dielectric plates 222 by biasing them toward the side wall surfaces of the recess 2c with their elastic force.
また支持位置Qから上向きに引き抜かれた退避位置Rにおいて支持部材9は、一対の脚部92が、誘電体板222に接触することなく凹部2cの対向する両側壁に面接触しており、この一対の脚部92が両側壁を突っ張ることにより凹部2cに取付けられている。
In addition, when the support member 9 is pulled upward from the support position Q to the retracted position R, the pair of legs 92 of the support member 9 are in surface contact with the opposing side walls of the recess 2c without contacting the dielectric plate 222, and the pair of legs 92 are attached to the recess 2c by pushing against the side walls.
そしてこの支持部材9は、アンテナ3及び窓部材22を冷却するための冷却流体が流れる冷却流路を形成する流路形成部材としても機能する。具体的にこの支持部材9は、退避位置Rにおいて、その内壁と、突出部分2pの外壁(すなわち凹部2cの側壁及び底壁)とにより、アンテナ3及び窓部材22の全周を取り囲んで収容する収容空間Sが形成している。そしてこの収容空間Sが、プラズマ処理中において冷却流体が流れる冷却流路として機能する。支持部材9の頂部91の壁には、収容空間Sと外部空間とを連通させる通気口9aが設けられており、当該通気口9aから冷却流体を導入及び導出できるように構成されている。ここでは、支持部材9の頂部91には、アンテナ3の長手方向に沿って複数(ここでは2個)の通気口9aが設けられており、一方の通気口9aから導入した冷却流体がアンテナ3の長手方向に沿って流れ、アンテナ3及び窓部材22を冷却した後、他方の通気口9aから導出される。なおプラズマ処理装置100は、図示しない冷却流体供給機構を備え、当該冷却流体供給機構により通気口9aから冷却流体を供給してもよい。
The support member 9 also functions as a flow path forming member that forms a cooling flow path through which a cooling fluid flows to cool the antenna 3 and the window member 22. Specifically, in the retracted position R, the support member 9 has an inner wall and an outer wall of the protruding portion 2p (i.e., the side wall and bottom wall of the recess 2c) that form a storage space S that surrounds and stores the entire circumference of the antenna 3 and the window member 22. The storage space S functions as a cooling flow path through which the cooling fluid flows during plasma processing. The wall of the top 91 of the support member 9 is provided with a vent 9a that connects the storage space S to the external space, and is configured to allow the cooling fluid to be introduced and discharged from the vent 9a. Here, the top 91 of the support member 9 is provided with multiple (here, two) vents 9a along the longitudinal direction of the antenna 3, and the cooling fluid introduced from one vent 9a flows along the longitudinal direction of the antenna 3, cools the antenna 3 and the window member 22, and is then discharged from the other vent 9a. The plasma processing apparatus 100 may also be equipped with a cooling fluid supply mechanism (not shown), which supplies cooling fluid through the vent 9a.
<本実施形態の効果>
このように構成された本実施形態のプラズマ処理装置100によれば、突出部分2pの大気側の壁面により形成される凹部2c内にアンテナを配置するようにしているので、例えば凹部2cの側壁に開口を設けるようにすることで、真空容器の平坦な壁に対向させるようにアンテナを配置する場合に比べて、アンテナ周りの処理室との距離を近づけることができる。これにより、アンテナに直交する方向におけるプラズマ密度を高くし、処理室に生成されるプラズマ密度の分布をブロードにすることができる。そして、凹部2cに取り付けられ、誘電体板を凹部2cの壁面に向けて付勢して支持する支持位置Qと、当該位置から退避した退避位置Rとに選択的に配置できる弾性変形可能な支持部材9を備えているので、誘電体板の支持が必要であるプラズマ処理装置の組み立て時には、支持部材9を支持位置Qに配置することで誘電体板のズレや脱落を防止でき、その一方で誘電体板の支持が不要である処理室内の真空排気後には、支持部材9を退避位置Rに配置させることで、アンテナを誘電体板に近づけて処理室内のプラズマ密度を高くすることができる。 <Effects of this embodiment>
According to theplasma processing apparatus 100 of the present embodiment, the antenna is arranged in the recess 2c formed by the wall surface of the protruding portion 2p on the atmospheric side, so that, for example, by providing an opening in the side wall of the recess 2c, the distance between the antenna and the processing chamber can be made closer than when the antenna is arranged to face the flat wall of the vacuum vessel. This increases the plasma density in the direction perpendicular to the antenna, and broadens the distribution of the plasma density generated in the processing chamber. The recess 2c is provided with an elastically deformable support member 9 that can be selectively arranged at a support position Q where the dielectric plate is supported by biasing it toward the wall surface of the recess 2c, and at a retreat position R retreated from the support position. Therefore, when the plasma processing apparatus is assembled and the support of the dielectric plate is required, the support member 9 is arranged at the support position Q to prevent the dielectric plate from shifting or falling off, and after the processing chamber is evacuated to a vacuum, the support member 9 is arranged at the retreat position R to bring the antenna closer to the dielectric plate and increase the plasma density in the processing chamber.
このように構成された本実施形態のプラズマ処理装置100によれば、突出部分2pの大気側の壁面により形成される凹部2c内にアンテナを配置するようにしているので、例えば凹部2cの側壁に開口を設けるようにすることで、真空容器の平坦な壁に対向させるようにアンテナを配置する場合に比べて、アンテナ周りの処理室との距離を近づけることができる。これにより、アンテナに直交する方向におけるプラズマ密度を高くし、処理室に生成されるプラズマ密度の分布をブロードにすることができる。そして、凹部2cに取り付けられ、誘電体板を凹部2cの壁面に向けて付勢して支持する支持位置Qと、当該位置から退避した退避位置Rとに選択的に配置できる弾性変形可能な支持部材9を備えているので、誘電体板の支持が必要であるプラズマ処理装置の組み立て時には、支持部材9を支持位置Qに配置することで誘電体板のズレや脱落を防止でき、その一方で誘電体板の支持が不要である処理室内の真空排気後には、支持部材9を退避位置Rに配置させることで、アンテナを誘電体板に近づけて処理室内のプラズマ密度を高くすることができる。 <Effects of this embodiment>
According to the
<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。 <Other Modified Embodiments>
The present invention is not limited to the above-described embodiment.
なお、本発明は前記実施形態に限られるものではない。 <Other Modified Embodiments>
The present invention is not limited to the above-described embodiment.
例えば前記実施形態のプラズマ処理装置100では、突出部分2pは容器本体21の壁を曲げて形成したものであったが、これに限らない。他の実施形態のプラズマ処理装置100では、容器本体21と窓部材の22の両方の壁により処理室1が形成されており、突出部分2pは窓部材22の金属板221を曲げて形成したものであってもよい。この場合、プラズマ処理装置100は、図6~図8に示すように、容器本体21の上壁21aに厚さ方向に貫通する開口部2aが形成されており、金属板221と誘電体板222から構成される窓部材22はこの開口部2aを塞ぐように容器本体21に着脱可能に取り付けられている。そして、各アンテナ3に臨む位置において、金属板221を大気側から処理室1側に向かって凸形状を成すように曲げることにより複数の突出部分2pを形成してよい。そして各突出部分2pが有する、アンテナ3を挟んで対向する一対の側壁部2p1に複数のスリット221sが形成され、このスリット221sを塞ぐように誘電体板222が配置されてよい。そして金属板221を曲げることで形成した凹部2cに支持部材9が取り付けられてよい。
For example, in the plasma processing apparatus 100 of the embodiment, the protruding portion 2p is formed by bending the wall of the container body 21, but this is not limited to this. In another embodiment of the plasma processing apparatus 100, the processing chamber 1 is formed by both the walls of the container body 21 and the window member 22, and the protruding portion 2p may be formed by bending the metal plate 221 of the window member 22. In this case, as shown in Figures 6 to 8, the plasma processing apparatus 100 has an opening 2a that penetrates the upper wall 21a of the container body 21 in the thickness direction, and the window member 22 composed of the metal plate 221 and the dielectric plate 222 is detachably attached to the container body 21 so as to close this opening 2a. Then, at a position facing each antenna 3, the metal plate 221 may be bent to form a convex shape from the atmosphere side toward the processing chamber 1 side to form multiple protruding portions 2p. A plurality of slits 221s may be formed in a pair of side walls 2p1 of each protruding portion 2p that face each other with the antenna 3 in between, and a dielectric plate 222 may be disposed to close the slits 221s. A support member 9 may be attached to a recess 2c formed by bending the metal plate 221.
また前記実施形態では、支持部材9の頂部91は、湾曲して大気側に膨出する形状を成していたがこれに限らない。他の実施形態では、図9に示すように支持部材9の頂部91は平坦形状をなしていてもよい。
In the above embodiment, the top 91 of the support member 9 is curved and bulges toward the atmosphere, but this is not limited to the above. In other embodiments, the top 91 of the support member 9 may be flat, as shown in FIG. 9.
また前記実施形態では、突出部分2pが有する一対の側壁部2p1は、互いに平行であり、かつアンテナ3から基板Wに向かう方向に平行になるように形成されていたがこれに限らない。他の実施形態では、図10に示すように、一対の側壁部2p1はアンテナ3側から処理室1側に向かうにつれて相寄るように傾斜する傾斜部分2p11を有しており、この傾斜部分2p11に開口部2aが形成されてもよい。
In the above embodiment, the pair of sidewalls 2p1 of the protruding portion 2p are parallel to each other and are formed parallel to the direction from the antenna 3 toward the substrate W, but this is not limited to the above. In other embodiments, as shown in FIG. 10, the pair of sidewalls 2p1 have an inclined portion 2p11 that inclines toward each other from the antenna 3 side toward the processing chamber 1 side, and an opening 2a may be formed in this inclined portion 2p11.
また前記実施形態では、一対の側壁部2p1のそれぞれにスリット221sが形成されていたがこれに限らない。他の実施形態では、図11に示すように、突出部分2pが金属板221を曲げることにより形成されており、スリット221sが、一対の側壁部2p1と底壁部2p2とにわたって連続して形成されていてもよい。そしてこの場合、誘電体板222は、アンテナ3の長手方向から視て、大気側から処理室1側に向かって凸となる略U字形状を成すように形成されていてよい。
In the above embodiment, the slits 221s are formed in each of the pair of side wall portions 2p1, but this is not limited to the above. In other embodiments, as shown in FIG. 11, the protruding portion 2p may be formed by bending the metal plate 221, and the slits 221s may be formed continuously across the pair of side wall portions 2p1 and the bottom wall portion 2p2. In this case, the dielectric plate 222 may be formed to have a generally U-shape that is convex from the atmosphere side toward the processing chamber 1 side when viewed from the longitudinal direction of the antenna 3.
さらに他の実施形態では、支持部材9の頂部91に壁には、通気口9aが1つのみ設けられていてもよい。この場合、通気口9aは、図12に示すようにアンテナ3の長手方向に沿った頂部91の中央近傍に設けられてもよく、図13に示すように、アンテナ3の長手方向に沿った頂部91の端部近傍に設けられてもよい。通気口9aが頂部91の中央近傍に設けられる場合、通気口9aから導入した冷却流体を、アンテナ3の長手方向に沿って両端に向かって流し、支持部材9の両端部の開口から導出させることができる。また通気口9aが頂部91の端部近傍に設けられる場合、通気口9aから導入した冷却流体を、アンテナ3の長手方向に沿って他方の端部に向かって流し、支持部材9の他方の端部の開口から導出させることができる。
In yet another embodiment, the wall of the top 91 of the support member 9 may have only one vent 9a. In this case, the vent 9a may be provided near the center of the top 91 along the longitudinal direction of the antenna 3 as shown in FIG. 12, or near the end of the top 91 along the longitudinal direction of the antenna 3 as shown in FIG. 13. When the vent 9a is provided near the center of the top 91, the cooling fluid introduced from the vent 9a can flow toward both ends along the longitudinal direction of the antenna 3 and be discharged from the openings at both ends of the support member 9. When the vent 9a is provided near the end of the top 91, the cooling fluid introduced from the vent 9a can flow toward the other end along the longitudinal direction of the antenna 3 and be discharged from the opening at the other end of the support member 9.
また他の実施形態では、図14及び図15に示すように、各凹部2cにおいて、アンテナ3の長手方向に沿って複数(例えば2個)の支持部材9が並べて設けられてもよい。この場合、各支持部材9の頂部91には通気口9aが1つだけ設けられてもよく、複数設けられてもよい。また複数の支持部材9は、アンテナ3の長手方向に沿って間隔を空けて設けられてもよく、間隔を空けることなく設けられてもよい。
In another embodiment, as shown in Figures 14 and 15, multiple (e.g., two) support members 9 may be arranged in each recess 2c along the longitudinal direction of the antenna 3. In this case, only one ventilation hole 9a may be provided at the top 91 of each support member 9, or multiple ventilation holes 9a may be provided. Furthermore, the multiple support members 9 may be provided at intervals along the longitudinal direction of the antenna 3, or may be provided without any intervals.
また前記実施形態では、金属板221のスリット221sとこれを塞ぐ誘電体板222によって磁場透過窓5が形成されていたがこれに限らない。他の実施形態では、窓部材22は金属板221を備えておらず、誘電体板222のみによって磁場透過窓5が形成されてもよい。
In the above embodiment, the magnetic field transmission window 5 is formed by the slit 221s in the metal plate 221 and the dielectric plate 222 that closes it, but this is not limited to the above. In other embodiments, the window member 22 does not include the metal plate 221, and the magnetic field transmission window 5 may be formed only by the dielectric plate 222.
前記実施形態のプラズマ処理装置100は、アンテナ3を複数本備えていたが、これに限らずアンテナ3を1本のみ備えていてもよい。
The plasma processing apparatus 100 in the above embodiment has multiple antennas 3, but is not limited to this and may have only one antenna 3.
さらに本明細書の開示内容は、以下に例示する態様1~6を含み得る。
The disclosure of this specification may further include the following embodiments 1 to 6.
(態様1)処理室に配置された被処理物をプラズマを用いて真空処理するプラズマ処理装置であって、前記処理室を形成する壁を大気側から前記処理室側に向かって凸形状をなすよう曲げて形成したものであり、厚さ方向に貫通する開口が形成された突出部分を有する真空容器と、前記処理室の外部であって、前記突出部分の大気側の壁面により形成される凹部内に設けられ、高周波電源に接続されて高周波磁場を生じさせるアンテナと、前記突出部分の開口を大気側から塞ぐように前記凹部内に配置され、前記アンテナから生じた高周波磁場を前記処理室内に透過させる誘電体板と、前記凹部に取り付けられた弾性変形可能なものであって、前記誘電体板に接触し、弾性力により当該誘電体板を前記凹部の壁面に向けて付勢して支持する支持位置と、前記誘電体板に接触しない退避位置とに選択的に配置できる支持部材とを備えるプラズマ処理装置。
(Aspect 1) A plasma processing apparatus that uses plasma to vacuum process an object to be processed that is placed in a processing chamber, the apparatus comprising: a vacuum vessel in which the wall that forms the processing chamber is bent from the atmosphere side toward the processing chamber side to form a convex shape, the protruding portion having an opening formed therethrough in the thickness direction; an antenna that is provided outside the processing chamber and in a recess formed by the atmosphere side wall surface of the protruding portion and is connected to a high frequency power source to generate a high frequency magnetic field; a dielectric plate that is placed in the recess so as to block the opening of the protruding portion from the atmosphere side and transmits the high frequency magnetic field generated by the antenna into the processing chamber; and a support member that is elastically deformable and attached to the recess, that can be selectively positioned between a support position that contacts the dielectric plate and supports the dielectric plate by urging it toward the wall surface of the recess by elastic force, and a retracted position that does not contact the dielectric plate.
このような構成であれば、突出部分の大気側の壁面により形成される凹部内にアンテナを配置するようにしているので、例えば凹部の側壁に開口を設けるようにすることで、真空容器の平坦な壁に対向させるようにアンテナを配置する場合に比べて、アンテナ周りの処理室との距離を近づけることができる。これにより、アンテナに直交する方向におけるプラズマ密度を高くし、処理室に生成されるプラズマ密度の分布をブロードにすることができる。
そして、凹部に取り付けられ、誘電体板を凹部の壁面に向けて付勢して支持する支持位置と、当該位置から退避した退避位置とに選択的に配置できる弾性変形可能な支持部材を備えているので、誘電体板の支持が必要であるプラズマ処理装置の組み立て時には、支持部材を支持位置に配置することで誘電体板のズレや脱落を防止でき、その一方で誘電体板の支持が不要である処理室内の真空排気後には、支持部材を退避位置に配置させることで、アンテナを誘電体板に近づけて処理室内のプラズマ密度を一層高めることができる。 In this configuration, the antenna is disposed in a recess formed by the atmospheric side wall of the protruding portion, and therefore, for example, by providing an opening in the side wall of the recess, the distance between the antenna and the processing chamber can be reduced compared to the case where the antenna is disposed facing a flat wall of the vacuum vessel. This increases the plasma density in the direction perpendicular to the antenna, and broadens the distribution of the plasma density generated in the processing chamber.
The recess is fitted with an elastically deformable support member which can be selectively positioned between a support position where the dielectric plate is supported by urging it towards the wall of the recess, and a retracted position retracted from that position. Therefore, when assembling the plasma processing apparatus where support for the dielectric plate is required, the support member can be positioned at the support position to prevent the dielectric plate from shifting or falling off. On the other hand, after evacuating the processing chamber where support for the dielectric plate is not required, the support member can be positioned at the retracted position to bring the antenna closer to the dielectric plate and further increase the plasma density in the processing chamber.
そして、凹部に取り付けられ、誘電体板を凹部の壁面に向けて付勢して支持する支持位置と、当該位置から退避した退避位置とに選択的に配置できる弾性変形可能な支持部材を備えているので、誘電体板の支持が必要であるプラズマ処理装置の組み立て時には、支持部材を支持位置に配置することで誘電体板のズレや脱落を防止でき、その一方で誘電体板の支持が不要である処理室内の真空排気後には、支持部材を退避位置に配置させることで、アンテナを誘電体板に近づけて処理室内のプラズマ密度を一層高めることができる。 In this configuration, the antenna is disposed in a recess formed by the atmospheric side wall of the protruding portion, and therefore, for example, by providing an opening in the side wall of the recess, the distance between the antenna and the processing chamber can be reduced compared to the case where the antenna is disposed facing a flat wall of the vacuum vessel. This increases the plasma density in the direction perpendicular to the antenna, and broadens the distribution of the plasma density generated in the processing chamber.
The recess is fitted with an elastically deformable support member which can be selectively positioned between a support position where the dielectric plate is supported by urging it towards the wall of the recess, and a retracted position retracted from that position. Therefore, when assembling the plasma processing apparatus where support for the dielectric plate is required, the support member can be positioned at the support position to prevent the dielectric plate from shifting or falling off. On the other hand, after evacuating the processing chamber where support for the dielectric plate is not required, the support member can be positioned at the retracted position to bring the antenna closer to the dielectric plate and further increase the plasma density in the processing chamber.
(態様2)前記アンテナの長手方向から視て、複数の前記誘電体板が、前記アンテナを挟んで向かい合うように配置され、前記支持部材が、前記支持位置において、変形した状態で対向する一対の前記誘電体板間に挿入されている態様1に記載のプラズマ処理装置。
このような構成であれば、1つの支持部材により、互いに対向する複数の誘電体板を一気に支持することができる。 (Aspect 2) A plasma processing apparatus as described inaspect 1, wherein, when viewed from the longitudinal direction of the antenna, a plurality of the dielectric plates are arranged facing each other across the antenna, and the support member is inserted between a pair of opposing dielectric plates in a deformed state at the support position.
With this configuration, a single support member can simultaneously support a plurality of opposing dielectric plates.
このような構成であれば、1つの支持部材により、互いに対向する複数の誘電体板を一気に支持することができる。 (Aspect 2) A plasma processing apparatus as described in
With this configuration, a single support member can simultaneously support a plurality of opposing dielectric plates.
(態様3)前記支持部材が、前記処理室側から前記大気側に向かって凸形状をなすよう曲げて形成された略板状のものであり、前記アンテナ及び誘電体板を覆うように前記凹部に取り付けられている態様1又は2に記載のプラズマ処理装置。
このような構成であれば、このようにすれば、支持部材の壁と凹部の壁とにより、アンテナ及び誘電体板を取り囲む空間を形成することができ、例えばこの空間に冷却流体を供給することで、アンテナ及び誘電板を効率的に冷却することができる。 (Aspect 3) A plasma processing apparatus as described in aspect 1 or 2, wherein the support member is approximately plate-shaped and bent to form a convex shape from the processing chamber side toward the atmosphere side, and is attached to the recess so as to cover the antenna and dielectric plate.
With this configuration, a space surrounding the antenna and the dielectric plate can be formed by the walls of the support member and the walls of the recess, and the antenna and the dielectric plate can be efficiently cooled, for example, by supplying a cooling fluid to this space.
このような構成であれば、このようにすれば、支持部材の壁と凹部の壁とにより、アンテナ及び誘電体板を取り囲む空間を形成することができ、例えばこの空間に冷却流体を供給することで、アンテナ及び誘電板を効率的に冷却することができる。 (Aspect 3) A plasma processing apparatus as described in
With this configuration, a space surrounding the antenna and the dielectric plate can be formed by the walls of the support member and the walls of the recess, and the antenna and the dielectric plate can be efficiently cooled, for example, by supplying a cooling fluid to this space.
(態様4)前記退避位置にある前記支持部材の壁と前記突出部分の壁により、前記アンテナ及び前記誘電体板を取り囲んで収容する収容空間が形成されており、前記支持部材の壁には、前記収容空間と外部空間とを連通させる通気口が設けられている態様3に記載のプラズマ処理装置。
このような構成であれば、通気口から冷却流体を導入することで、収容空間に冷却流体を効率的に供給することができる。 (Aspect 4) A plasma processing apparatus as described inaspect 3, wherein the wall of the support member in the retracted position and the wall of the protruding portion form a storage space that surrounds and contains the antenna and the dielectric plate, and the wall of the support member is provided with an air vent that connects the storage space to an external space.
With this configuration, the cooling fluid can be efficiently supplied to the accommodation space by introducing the cooling fluid through the ventilation hole.
このような構成であれば、通気口から冷却流体を導入することで、収容空間に冷却流体を効率的に供給することができる。 (Aspect 4) A plasma processing apparatus as described in
With this configuration, the cooling fluid can be efficiently supplied to the accommodation space by introducing the cooling fluid through the ventilation hole.
(態様5)前記支持部材の壁には、前記アンテナの長手方向に沿って前記通気口が複数設けられている態様3又は4に記載のプラズマ処理装置。
このような構成であれば、例えば一方の通気口から冷却流体を供給し、他方の通気口から冷却流体を排気させることで、アンテナの長手方向に沿って冷却流体を流すことができ、効率的にアンテナ及び誘電体板を冷却することができる。 (Aspect 5) The plasma processing apparatus according to aspect 3 or 4, wherein a plurality of the ventilation holes are provided in the wall of the support member along the longitudinal direction of the antenna.
With such a configuration, for example, by supplying cooling fluid through one vent and exhausting the cooling fluid through the other vent, the cooling fluid can be made to flow along the longitudinal direction of the antenna, thereby efficiently cooling the antenna and the dielectric plate.
このような構成であれば、例えば一方の通気口から冷却流体を供給し、他方の通気口から冷却流体を排気させることで、アンテナの長手方向に沿って冷却流体を流すことができ、効率的にアンテナ及び誘電体板を冷却することができる。 (Aspect 5) The plasma processing apparatus according to
With such a configuration, for example, by supplying cooling fluid through one vent and exhausting the cooling fluid through the other vent, the cooling fluid can be made to flow along the longitudinal direction of the antenna, thereby efficiently cooling the antenna and the dielectric plate.
(態様6)前記支持部材が、前記アンテナの長手方向に沿って複数設けられている態様3~5のいずれかに記載のプラズマ処理装置。
このような構成であれば、プラズマ処理装置が大型であり、非常に長いアンテナを有するものであっても、これを効率的に冷却することができる。 (Aspect 6) The plasma processing apparatus according to any one ofaspects 3 to 5, wherein a plurality of the support members are provided along the longitudinal direction of the antenna.
With this configuration, even if the plasma processing apparatus is large and has a very long antenna, it can be cooled efficiently.
このような構成であれば、プラズマ処理装置が大型であり、非常に長いアンテナを有するものであっても、これを効率的に冷却することができる。 (Aspect 6) The plasma processing apparatus according to any one of
With this configuration, even if the plasma processing apparatus is large and has a very long antenna, it can be cooled efficiently.
(態様7)処理室に配置された被処理物をプラズマを用いて真空処理するプラズマ処理装置であって、前記処理室を形成する壁を大気側から前記処理室側に向かって凸形状をなすよう曲げて形成したものであり、厚さ方向に貫通する開口が形成された突出部分を有する真空容器と、前記処理室の外部であって、前記突出部分の大気側の壁面により形成される凹部内に設けられ、高周波電源に接続されて高周波磁場を生じさせるアンテナと、前記突出部分の開口を大気側から塞ぐように前記凹部内に配置され、前記アンテナから生じた高周波磁場を前記処理室内に透過させる誘電体板とを備えるプラズマ処理装置の組み立て方法であって、弾性変形可能な支持部材を前記誘電体板に接触させ、弾性力により当該誘電体板を前記凹部の壁面に向けて付勢して支持し、その後前記処理室内を真空排気した後、前記支持部材を前記誘電体板に接触しない位置に移動させるプラズマ処理装置の組み立て方法。
このようなプラズマ処理装置の組み立て方法であれば、前記したプラズマ処理装置と同様の効果を奏し得る。 (Aspect 7) A method for assembling a plasma processing apparatus which performs vacuum processing of a workpiece placed in a processing chamber using plasma, the method comprising: a vacuum vessel having a protruding portion in which a wall forming the processing chamber is bent from the atmosphere side toward the processing chamber side to form a convex shape, the protruding portion having an opening formed therethrough in the thickness direction; an antenna which is provided outside the processing chamber and in a recess formed by the atmosphere side wall surface of the protruding portion, the antenna being connected to a high frequency power source and generating a high frequency magnetic field; and a dielectric plate which is provided in the recess so as to block the opening of the protruding portion from the atmosphere side and which allows the high frequency magnetic field generated from the antenna to pass into the processing chamber, the method comprising the steps of: bringing an elastically deformable support member into contact with the dielectric plate, and supporting the dielectric plate by elastic force toward the wall surface of the recess, and then evacuating the processing chamber, and then moving the support member to a position where it does not contact the dielectric plate.
Such a method for assembling a plasma processing apparatus can provide the same effects as those of the above-mentioned plasma processing apparatus.
このようなプラズマ処理装置の組み立て方法であれば、前記したプラズマ処理装置と同様の効果を奏し得る。 (Aspect 7) A method for assembling a plasma processing apparatus which performs vacuum processing of a workpiece placed in a processing chamber using plasma, the method comprising: a vacuum vessel having a protruding portion in which a wall forming the processing chamber is bent from the atmosphere side toward the processing chamber side to form a convex shape, the protruding portion having an opening formed therethrough in the thickness direction; an antenna which is provided outside the processing chamber and in a recess formed by the atmosphere side wall surface of the protruding portion, the antenna being connected to a high frequency power source and generating a high frequency magnetic field; and a dielectric plate which is provided in the recess so as to block the opening of the protruding portion from the atmosphere side and which allows the high frequency magnetic field generated from the antenna to pass into the processing chamber, the method comprising the steps of: bringing an elastically deformable support member into contact with the dielectric plate, and supporting the dielectric plate by elastic force toward the wall surface of the recess, and then evacuating the processing chamber, and then moving the support member to a position where it does not contact the dielectric plate.
Such a method for assembling a plasma processing apparatus can provide the same effects as those of the above-mentioned plasma processing apparatus.
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
It goes without saying that the present invention is not limited to the above-described embodiment, and various modifications are possible without departing from the spirit of the invention.
本発明によれば、処理室の外部にアンテナを配置するプラズマ処理装置において、処理室に生成されるプラズマ密度を高くするとともにその分布をブロードにし、かつ組立時における誘電体板のズレ及び脱落を防止することができる。
In accordance with the present invention, in a plasma processing apparatus in which an antenna is placed outside the processing chamber, it is possible to increase the plasma density generated in the processing chamber, broaden its distribution, and prevent the dielectric plate from shifting or falling off during assembly.
100 ・・・プラズマ処理装置
1 ・・・処理室
2 ・・・真空容器
2a ・・・開口部
2p ・・・突出部分
2c ・・・凹部
222 ・・・誘電体板
3 ・・・アンテナ
4 ・・・高周波電源
9 ・・・支持部材
W ・・・被処理物
P ・・・プラズマ REFERENCE SIGNS LIST 100: Plasma processing apparatus 1: Processing chamber 2:Vacuum vessel 2a: Opening 2p: Protruding portion 2c: Recess 222: Dielectric plate 3: Antenna 4: High frequency power source 9: Support member W: Workpiece P: Plasma
1 ・・・処理室
2 ・・・真空容器
2a ・・・開口部
2p ・・・突出部分
2c ・・・凹部
222 ・・・誘電体板
3 ・・・アンテナ
4 ・・・高周波電源
9 ・・・支持部材
W ・・・被処理物
P ・・・プラズマ REFERENCE SIGNS LIST 100: Plasma processing apparatus 1: Processing chamber 2:
Claims (7)
- 処理室に配置された被処理物をプラズマを用いて真空処理するプラズマ処理装置であって、
前記処理室を形成する壁を大気側から前記処理室側に向かって凸形状をなすよう曲げて形成したものであり、厚さ方向に貫通する開口が形成された突出部分を有する真空容器と、
前記処理室の外部であって、前記突出部分の大気側の壁面により形成される凹部内に設けられ、高周波電源に接続されて高周波磁場を生じさせるアンテナと、
前記突出部分の開口を大気側から塞ぐように前記凹部内に配置され、前記アンテナから生じた高周波磁場を前記処理室内に透過させる誘電体板と、
前記凹部に取り付けられた弾性変形可能なものであって、前記誘電体板に接触し、弾性力により当該誘電体板を前記凹部の壁面に向けて付勢して支持する支持位置と、当該支持位置から退避した退避位置とに選択的に配置できる支持部材とを備えるプラズマ処理装置。 A plasma processing apparatus that performs vacuum processing on a workpiece placed in a processing chamber using plasma,
a vacuum vessel having a wall that defines the processing chamber and is bent from the atmosphere side toward the processing chamber side to form a convex shape, the vacuum vessel having a protruding portion with an opening penetrating therethrough in a thickness direction;
an antenna that is provided outside the processing chamber and in a recess formed by an atmospheric side wall surface of the protruding portion, and is connected to a high frequency power source to generate a high frequency magnetic field;
a dielectric plate that is disposed in the recess so as to close an opening of the protruding portion from the atmosphere side and that transmits a high frequency magnetic field generated from the antenna into the processing chamber;
A plasma processing apparatus comprising: a support member attached to the recess and capable of elastically deforming, the support member being selectively positioned at a support position where the support member contacts the dielectric plate and supports the dielectric plate by using elastic force to urge the dielectric plate toward a wall surface of the recess, and a retracted position retracted from the support position. - 前記支持部材が、前記処理室側から前記大気側に向かって凸形状をなすよう曲げて形成された略板状のものであり、前記アンテナ及び誘電体板を覆うように前記凹部に取り付けられている請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the support member is substantially plate-shaped and bent to form a convex shape from the processing chamber side toward the atmosphere side, and is attached to the recess so as to cover the antenna and the dielectric plate.
- 前記アンテナの長手方向から視て、
複数の前記誘電体板が、前記アンテナを挟んで向かい合うように配置され、
前記支持部材が、前記支持位置において、変形した状態で対向する一対の前記誘電体板間に挿入されている請求項2に記載のプラズマ処理装置。 When viewed from the longitudinal direction of the antenna,
A plurality of the dielectric plates are arranged to face each other with the antenna therebetween,
3. The plasma processing apparatus according to claim 2, wherein the support member is inserted between the pair of opposing dielectric plates in a deformed state at the support position. - 前記退避位置にある前記支持部材の壁と前記突出部分の壁により、前記アンテナ及び前記誘電体板を取り囲んで収容する収容空間が形成されており、
前記支持部材の壁には、前記収容空間と外部空間とを連通させる通気口が設けられている請求項2に記載のプラズマ処理装置。 a wall of the support member in the retracted position and a wall of the protruding portion form an accommodation space surrounding and accommodating the antenna and the dielectric plate,
3. The plasma processing apparatus according to claim 2, wherein a vent hole is provided in a wall of the support member to communicate the accommodation space with an external space. - 前記支持部材の壁には、前記アンテナの長手方向に沿って前記通気口が複数設けられている請求項4に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 4, wherein the wall of the support member has a plurality of vents arranged along the longitudinal direction of the antenna.
- 前記支持部材が、前記アンテナの長手方向に沿って複数設けられている請求項4又は5に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 4 or 5, wherein the support members are provided in multiple numbers along the longitudinal direction of the antenna.
- 処理室に配置された被処理物をプラズマを用いて真空処理するプラズマ処理装置であって、前記処理室を形成する壁を大気側から前記処理室側に向かって凸形状をなすよう曲げて形成したものであり、厚さ方向に貫通する開口が形成された突出部分を有する真空容器と、前記処理室の外部であって、前記突出部分の大気側の壁面により形成される凹部内に設けられ、高周波電源に接続されて高周波磁場を生じさせるアンテナと、前記突出部分の開口を大気側から塞ぐように前記凹部内に配置され、前記アンテナから生じた高周波磁場を前記処理室内に透過させる誘電体板とを備えるプラズマ処理装置の組み立て方法であって、
弾性変形可能な支持部材を前記誘電体板に接触させ、弾性力により当該誘電体板を前記凹部の壁面に向けて付勢して支持し、
その後前記処理室内を真空排気した後、前記支持部材を前記誘電体板に接触しない位置に移動させるプラズマ処理装置の組み立て方法。 A method for assembling a plasma processing apparatus for vacuum processing a workpiece placed in a processing chamber using plasma, the method comprising: a vacuum vessel having a protruding portion in which a wall forming the processing chamber is bent from an atmosphere side toward the processing chamber side to form a convex shape, the protruding portion having an opening formed therethrough in a thickness direction; an antenna provided outside the processing chamber and in a recess formed by an atmosphere side wall surface of the protruding portion, the antenna being connected to a high frequency power source and generating a high frequency magnetic field; and a dielectric plate provided in the recess so as to close the opening of the protruding portion from the atmosphere side, the dielectric plate allowing the high frequency magnetic field generated from the antenna to pass into the processing chamber,
an elastically deformable support member is brought into contact with the dielectric plate, and the dielectric plate is supported by being biased toward a wall surface of the recess by an elastic force;
Thereafter, the processing chamber is evacuated to a vacuum, and then the support member is moved to a position where it does not contact the dielectric plate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/043249 WO2024111071A1 (en) | 2022-11-22 | 2022-11-22 | Plasma treatment device and method for assembling same |
TW112112085A TW202422622A (en) | 2022-11-22 | 2023-03-29 | Plasma treatment device and method for assembling same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/043249 WO2024111071A1 (en) | 2022-11-22 | 2022-11-22 | Plasma treatment device and method for assembling same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024111071A1 true WO2024111071A1 (en) | 2024-05-30 |
Family
ID=91195922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/043249 WO2024111071A1 (en) | 2022-11-22 | 2022-11-22 | Plasma treatment device and method for assembling same |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202422622A (en) |
WO (1) | WO2024111071A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100010069A (en) * | 2008-07-22 | 2010-02-01 | 위순임 | Inductively coupled plasma reactor |
JP2022023394A (en) * | 2020-07-27 | 2022-02-08 | 日新電機株式会社 | Plasma processing apparatus |
-
2022
- 2022-11-22 WO PCT/JP2022/043249 patent/WO2024111071A1/en unknown
-
2023
- 2023-03-29 TW TW112112085A patent/TW202422622A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100010069A (en) * | 2008-07-22 | 2010-02-01 | 위순임 | Inductively coupled plasma reactor |
JP2022023394A (en) * | 2020-07-27 | 2022-02-08 | 日新電機株式会社 | Plasma processing apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW202422622A (en) | 2024-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100283853B1 (en) | Plasma process apparatus | |
CN100440422C (en) | Substrate support having dynamic temperature control | |
US5951887A (en) | Plasma processing apparatus and plasma processing method | |
US20090301656A1 (en) | Microwave plasma processing apparatus | |
CN111146134B (en) | Substrate mounting table, substrate processing apparatus, and substrate processing method | |
WO2021210583A1 (en) | Plasma source and plasma processing apparatus | |
US7311796B2 (en) | Plasma processing apparatus | |
JP7232410B2 (en) | Plasma processing equipment | |
WO2010110080A1 (en) | Microwave plasma processing apparatus | |
JP7238613B2 (en) | Plasma processing equipment | |
JP7488464B2 (en) | Plasma Processing Equipment | |
WO2024111071A1 (en) | Plasma treatment device and method for assembling same | |
EP0841838B1 (en) | Plasma treatment apparatus and plasma treatment method | |
US6092486A (en) | Plasma processing apparatus and plasma processing method | |
WO2021182638A1 (en) | Sputtering device | |
JP7302338B2 (en) | Plasma processing equipment | |
JP6043968B2 (en) | Plasma processing method and electronic device manufacturing method | |
WO2023136008A1 (en) | Plasma treatment device | |
JP7403052B2 (en) | Plasma source and plasma processing equipment | |
TWI803698B (en) | Plasma processing chamber, lid assembly for the same, and backing plate apparatus for the same | |
JP7568915B2 (en) | Plasma Processing Equipment | |
JP6318363B2 (en) | Plasma processing apparatus and method, and electronic device manufacturing method | |
JP2023001990A (en) | Plasma source and plasma processing device | |
WO2024177066A1 (en) | Plasma processing device | |
JP2020123446A (en) | Plasma processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22966481 Country of ref document: EP Kind code of ref document: A1 |