WO2024109696A1 - 多传感器触发控制方法、装置、设备及存储介质 - Google Patents

多传感器触发控制方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024109696A1
WO2024109696A1 PCT/CN2023/132664 CN2023132664W WO2024109696A1 WO 2024109696 A1 WO2024109696 A1 WO 2024109696A1 CN 2023132664 W CN2023132664 W CN 2023132664W WO 2024109696 A1 WO2024109696 A1 WO 2024109696A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
value
output
trigger
preset
Prior art date
Application number
PCT/CN2023/132664
Other languages
English (en)
French (fr)
Inventor
孙超
杨国栋
卢兵
王博
宋士佳
张春霞
黄文艺
王文伟
Original Assignee
北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) filed Critical 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院)
Publication of WO2024109696A1 publication Critical patent/WO2024109696A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0091Transmitter details

Definitions

  • the present application relates to the field of sensor technology, and in particular to a multi-sensor trigger control method, device, equipment and storage medium.
  • the embodiments of the present application provide a multi-sensor trigger control method, device, equipment and storage medium, aiming to solve the problem that the triggering moment cannot be flexibly adjusted in the prior art.
  • an embodiment of the present application provides a multi-sensor trigger control method, which includes:
  • the multi-sensor is triggered by a trigger control method according to the overflow value and the initial value.
  • the embodiment of the present application further provides a multi-sensor trigger control device, which includes:
  • An acquisition unit used for acquiring a target output frequency and an output phase set
  • a determination unit configured to determine an initial value and an overflow value of a counter corresponding to each phase in the output phase set according to the output phase set and a preset value
  • a calculation unit configured to calculate a reference frequency according to the overflow value and the target output frequency
  • a detection unit configured to detect whether a phase alignment condition is satisfied according to a received input signal and an output signal corresponding to the reference frequency
  • the trigger unit is used to trigger the multi-sensor by a trigger control method according to the overflow value and the initial value if the phase alignment condition is met.
  • an embodiment of the present application further provides a multi-sensor trigger control device, wherein the multi-sensor trigger control device comprises a control module, wherein the control module comprises a memory and a processor, wherein a computer program is stored in the memory, and the above method is implemented when the processor executes the computer program.
  • an embodiment of the present application further provides a computer-readable storage medium, wherein the storage medium stores a computer program, and the computer program implements the above method when executed by a processor.
  • the embodiments of the present application provide a multi-sensor trigger control method, device, equipment and storage medium.
  • the method includes: obtaining a target output frequency and an output phase set; determining the initial value and overflow value of the counter corresponding to each phase in the output phase set according to the output phase set and a preset value; calculating the reference frequency according to the overflow value and the target output frequency; detecting whether the phase alignment condition is met according to the received input signal and the output signal corresponding to the reference frequency; if the phase alignment condition is met, triggering the multi-sensor through a trigger control method according to the overflow value and the initial value.
  • the technical solution of the embodiment of the present application first determines the initial value and overflow value of the counter according to the output phase set and the preset value, and controls the triggering of the multi-sensor through a trigger control method according to the overflow value and the initial value, which is convenient for adjusting the phase, and thus the triggering moment can be flexibly adjusted.
  • FIG1 is a schematic diagram of a multi-sensor trigger control provided in an embodiment of the present application.
  • FIG2 is a schematic flow chart of a multi-sensor trigger control method provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a sub-flow chart of a multi-sensor trigger control method provided in an embodiment of the present application
  • FIG4 is a schematic diagram of a scenario of a multi-sensor trigger control method provided in an embodiment of the present application.
  • FIG5 is a trigger timing diagram of the multi-sensor trigger control in FIG4;
  • FIG6 is a schematic block diagram of a multi-sensor trigger control device provided in an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a multi-sensor trigger control device provided in an embodiment of the present application.
  • the term “if” may be interpreted as “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined” or “if [described condition or event] is detected” may be interpreted as meaning “upon determination” or “in response to determining” or “upon detection of [described condition or event]” or “in response to detecting [described condition or event],” depending on the context.
  • FIG 1 is a schematic diagram of a multi-sensor trigger control provided by an embodiment of the present application.
  • the multi-sensor trigger control method of the embodiment of the present application can be applied to a multi-sensor trigger control device, for example, the multi-sensor trigger control method can be implemented by configuring a software program corresponding to the multi-sensor trigger control device, so as to achieve flexible adjustment of the trigger time.
  • the multi-sensor trigger control device includes a control module 103, a communication module 104, an output module, an indication module, a signal frequency multiplication and frequency division module 102, and a power input and power supply module 101.
  • the output module includes a plurality of trigger signal output interfaces 105
  • the indication module includes a plurality of trigger signal indications 106
  • the plurality of trigger signal indications 106 correspond to the plurality of trigger signal output interfaces 105
  • the control module 103 is connected to the signal frequency multiplication and frequency division module 102, the output module and the indication module
  • the communication module 104 is used to connect to the host computer
  • the output module is used to receive the trigger signal sent by the control module 103
  • the power input and power supply module 101 is used to power the sensor trigger device, which includes an external power interface and a voltage stabilizing module.
  • control module 103 includes multiple counters, multiple comparators and multiple signal amplifiers corresponding to the multiple trigger signal output interfaces 105, wherein the signal multiplication and division module 102 is connected to the calculator, the counter is connected to the comparator, the comparator is connected to the signal amplifier, and the signal amplifier is connected to the trigger signal output interface 105.
  • the signal frequency multiplication and frequency division module 102 includes an analog/digital frequency multiplication circuit or a frequency division circuit, which can adjust the frequency corresponding to the input signal to the target output frequency within a certain range; Specifically, the frequency multiplication can be achieved through a PLL phase-locked loop or a gate delay, and the frequency division can be achieved through a counter setting.
  • the communication module 104 can communicate with other devices, such as a host computer, to realize the reporting of timestamps; in practical applications, the communication module 104 adds a fixed-length timestamp data in binary form to the front end of the data collected by the sensor, and sends it to the host computer.
  • This reporting method is suitable for sensor devices with relatively high data frequency and small single data volume, such as IMU, with a typical frequency of 100Hz; the communication module can also directly send the acquired timestamp data to the host computer, and the host computer binds the collected data and timestamp.
  • This method is suitable for sensor devices with relatively low data frequency, such as cameras, with a typical frequency of 10Hz.
  • the multiple signal trigger indications are all LED indicator lights; it should also be noted that, in the embodiment of the present application, the input signal is a clock source 107; the multiple trigger signal output interfaces 105 are arranged in a ring, and accordingly, the multiple trigger signal indications 106 are also arranged in a ring, and the control module 103, the communication module 104, the power input and power supply module 101 and the signal multiplication and division module 102 are all arranged in the ring; the multiple trigger signal output interfaces 105 and the multiple sensors are hard triggered, wherein the hard trigger is a level trigger.
  • Figure 2 is a flow chart of a multi-sensor trigger control method provided by an embodiment of the present application. As shown in Figure 2, the method includes the following steps S100-S140.
  • the user first sets the target frequency and output phase set that the control module needs to output through the host computer, wherein the number of phases in the output phase set corresponds to the number of the multiple trigger signal output interfaces, as shown in FIG1 .
  • the output module includes 12 interfaces, namely, interface A, interface B, interface C, interface D, interface E, interface F, interface G, interface H, interface I, interface J, interface K and interface L. It can be understood that the output phase set includes 12 phases. After the setting is completed, the control module will obtain the target output frequency and the output phase set for use in subsequent steps.
  • the control module determines the initial value and overflow value of the counter corresponding to each phase in the output phase set according to the output phase set and the preset value, wherein the preset value is 360. It should be noted that, in the present embodiment, determining the initial value and overflow value of the counter corresponding to each phase in the output phase set is to determine the initial value and overflow value of the counter corresponding to each interface in the multiple trigger signal output interfaces, that is, the multiple trigger signal output interfaces correspond to the multiple phases in the output phase set.
  • the step S110 includes the following steps S111 - S114 .
  • step S111 determining whether the preset value can divide each phase value in the output phase set, if the preset value can divide each phase value in the output phase set, executing step S112, otherwise executing step S114;
  • an input signal is received, that is, if the clock source signal is received, it is detected whether the alignment number is a preset alignment number, wherein the preset alignment number is 0; if the alignment number is the preset alignment number, the preset phase of the input signal is aligned with the preset phase of the output signal corresponding to the reference frequency, and the preset phase is 0 phase, that is, the 0 phase of the input signal is aligned with the 0 phase of the output signal; if the preset alignment number is not the preset alignment number, indicating that the 0 phase of the input signal has been aligned with the 0 phase of the output signal, it is determined that the phase alignment condition is met.
  • phase alignment condition If the phase alignment condition is met, triggering multiple sensors through a trigger control method according to the overflow value and the initial value.
  • multiple sensors are triggered to collect data through a trigger control method according to the overflow value of each interface counter and the initial value of each interface counter. Specifically, based on the initial value of each interface counter, the output signal is counted by the counter to update the initial value; when the updated initial value reaches the overflow value, the control module sends a trigger signal to the sensor corresponding to the initial value to trigger the sensor; the initial value is set to a preset value, wherein the preset value is 0, and the step of counting the output signal by the counter based on the initial value to update the initial value is returned to execute until a preset stop trigger instruction is received.
  • the initial values of the counters of each interface are 360, 350, 349, 345, 240, 210, 180, 150, 120, 90, 60 and 30 respectively.
  • a interface starts counting from 360
  • B interface starts counting from 350
  • C interface starts counting from 349
  • L interface starts counting from 30. It is understandable that , port A reaches the overflow value when the algorithm starts working.
  • the control module After reaching the overflow value, the control module sends a trigger signal to the trigger connected to the A interface to trigger the sensor to collect data and set the initial value of the counter of the A interface to 0; and continues counting.
  • the A interface starts counting from 0 at this time.
  • the initial value of the B interface will reach the overflow value 360, and the control module will send a trigger signal to the sensor connected to the B interface to trigger the sensor to collect data and set the initial value of the counter of the B interface to 0, and so on, until the preset stop trigger instruction is received.
  • the control module when the initial value of the counter of each interface reaches the overflow value, the control module will not only send a trigger signal to the sensor, but also send an indication signal to the corresponding indication, so as to light up the indicator light to indicate that the interface is working; it is understandable that when the control module sends a trigger signal to the sensor, it will send an acquisition instruction to the communication module, and the communication module will obtain the current timestamp according to the acquisition instruction, and send the timestamp to the host computer so that the host computer can record the time when the sensor collects data.
  • Figure 4 is a schematic diagram of a scenario of multi-sensor trigger control provided by an embodiment of the present application
  • Figure 4 includes a primary synchronization trigger and a secondary synchronization trigger
  • the input of the signal frequency multiplication and division module 102 in the primary synchronization trigger is the GPS clock source signal 306, the three devices of camera A301, camera B302, and laser radar 304 are connected to the trigger signal output interface A105, and the camera C303 is connected to the trigger signal output interface G
  • the communication module 104 is connected to the workstation 305, and the workstation 305 can set the communication module 104 by setting the frequency multiplication and division module 102.
  • the frequency is 10, that is, the output frequency of the output interface is converted from 1Hz of the GPS clock source signal 306 to 10Hz, and the output of the trigger signal output interface A105 is set to be asynchronous, and the phase delay is 30°;
  • the input of the signal multiplication and division module 102 in the secondary synchronization trigger is connected to the trigger signal output interface A105 of the primary synchronization trigger, and the multiplication is set to 20 through the communication module 104 of the secondary synchronization trigger, that is, the output frequency of the trigger signal output interface is converted from 10Hz of the primary synchronization trigger to 200Hz, that is, the cascade effect is achieved, and the output frequency can be changed.
  • camera A301, camera B302, camera C303 and laser radar 304 can all be collectively referred to as sensors. It should be noted that when the trigger signal output interface A105 is triggered, the trigger signal indication 106 will be lit.
  • FIG. 5 is a trigger timing diagram of the multi-sensor trigger control in Figure 4.
  • PPS is the GPS clock source signal
  • camera A301, camera B302, and lidar 304 are triggered in the same phase to simultaneously capture images in front of the vehicle
  • camera C303 is triggered with a phase delay of 180° compared to lidar 304.
  • the lidar rotates to the rear of the vehicle, thereby overlapping with the field of view of camera C303.
  • FIG6 is a schematic block diagram of a multi-sensor trigger control device 200 provided in an embodiment of the present application.
  • the present application also provides a multi-sensor trigger control device 200.
  • the multi-sensor trigger control device 200 includes a unit for executing the above multi-sensor trigger control method, and the device can be configured in a multi-sensor trigger control device.
  • the multi-sensor trigger control device 200 includes an acquisition unit 201, a determination unit 202, a calculation unit 203, a detection unit 204, and a trigger unit 205.
  • the acquisition unit 201 is used to acquire the target output frequency and output phase set; the determination unit 202 is used to determine the initial value and overflow value of the counter corresponding to each phase in the output phase set according to the output phase set and the preset value; the calculation unit 203 is used to calculate the reference frequency according to the overflow value and the target output frequency; the detection unit 204 is used to detect whether the phase alignment condition is met according to the received input signal and the output signal corresponding to the reference frequency; the trigger unit 205 is used to trigger the multi-sensor through the trigger control method according to the overflow value and the initial value if the phase alignment condition is met.
  • the determining unit 202 includes a judging unit, a first setting unit, a second setting unit, a third setting unit, and a fourth setting unit.
  • the judging unit is used to judge whether the preset value can divide each phase value in the output phase set;
  • the first setting unit is used to calculate the greatest common divisor of each phase value in the output phase set if the preset value can divide each phase value in the output phase set, and set the overflow value of the counter corresponding to each phase in the output phase set to the quotient of the preset value and the greatest common divisor of each phase;
  • the second setting unit is used to set the initial value of the counter corresponding to each phase in the output phase set to start from the overflow value and decrease by 1 in sequence;
  • the third setting unit is used to set the overflow value of the counter corresponding to each phase in the output phase set to the preset value if the preset value cannot divide each phase value in the output phase set;
  • the fourth setting unit is used to set the initial value of the counter corresponding to each phase in the output phase set to the difference between the preset value and each phase value.
  • the detection unit 204 includes a detection subunit, an alignment unit, and a determination unit.
  • the detection subunit is used to detect whether the alignment number is a preset alignment number if an input signal is received; the alignment unit is used to align the preset phase of the input signal with the preset phase of the output signal corresponding to the reference frequency if the alignment number is the preset alignment number; and the determination unit is used to determine that the phase alignment condition is met if the preset alignment number is not the preset alignment number.
  • the trigger unit 205 includes an update unit, a trigger sub-unit, and a return execution unit.
  • the update unit is used to count the output signal through the counter based on the initial value to update the initial value;
  • the trigger subunit is used to send a trigger signal to the sensor corresponding to the initial value to trigger the sensor if the updated initial value reaches the overflow value;
  • the return execution unit is used to set the initial value to a preset value, and return to execute the step of counting the output signal through the counter based on the initial value to update the initial value until a preset stop trigger instruction is received.
  • the multi-sensor trigger control device 200 includes an acquisition and sending unit.
  • the acquisition and sending unit is used to acquire the current timestamp if a trigger signal is detected, and send the timestamp to the host computer.
  • the specific implementation of the multi-sensor trigger control device 200 in the embodiment of the present application corresponds to the above-mentioned multi-sensor trigger control method, which will not be repeated here.
  • the above-mentioned multi-sensor trigger control device can be implemented in the form of a computer program, and the computer program can be run on the multi-sensor trigger control device as shown in FIG. 7 .
  • FIG. 7 is a schematic block diagram of a multi-sensor trigger control device provided in an embodiment of the present application.
  • the multi-sensor trigger control device 300 includes a control module.
  • the multi-sensor trigger control device 300 includes a processor 302 , a memory, and a network interface 305 connected via a system bus 301 , wherein the memory may include a storage medium 303 and an internal memory 304 .
  • the storage medium 303 may store an operating system 3031 and a computer program 3032.
  • the processor 302 may execute a multi-sensor trigger control method.
  • the processor 302 is used to provide computing and control capabilities to support the operation of the entire multi-sensor trigger control device 300 .
  • the internal memory 304 provides an environment for the operation of the computer program 3032 in the storage medium 303.
  • the processor 302 can execute a multi-sensor trigger control method.
  • the network interface 305 is used to communicate with other devices over a network.
  • the structure shown in FIG. 7 is merely a block diagram of a portion of the structure related to the present application, and does not constitute a limitation on the multi-sensor trigger control device 300 to which the present application is applied.
  • the specific multi-sensor trigger control device 300 may include more or fewer components than those shown in the figure, or combine certain components, or have a different arrangement of components.
  • the processor 302 is used to run a computer program 3032 stored in the memory to implement any embodiment of the multi-sensor trigger control method.
  • the processor 302 may be a central processing unit (CPU), and the processor 302 may also be other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the computer program can be stored in a storage medium, which is a computer-readable storage medium.
  • the computer program is executed by at least one processor in the computer system to implement the process steps of the embodiment of the above method.
  • the present application also provides a storage medium.
  • the storage medium may be a computer-readable storage medium.
  • the storage medium stores a computer program.
  • the processor executes any embodiment of the multi-sensor trigger control method.
  • the storage medium may be a USB flash drive, a mobile hard disk, a read-only memory (ROM), a magnetic disk, or an optical disk, etc., which are computer-readable storage media that can store program codes.
  • ROM read-only memory
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of each unit is only a logical function division, and there may be other division methods in actual implementation.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the steps in the method of the embodiment of the present application can be adjusted in order, combined and deleted according to actual needs.
  • the units in the device of the embodiment of the present application can be combined, divided and deleted according to actual needs.
  • the functional units in the various embodiments of the present application can be integrated into one processing unit, or each unit can exist physically separately, or two or more units can be integrated into one unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions for enabling a multi-sensor trigger control device (which can be a personal computer, terminal, or network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

本申请实施例公开了一种多传感器触发控制方法、装置、设备及存储介质。其涉及传感器技术领域,其中,所述方法包括:获取目标输出频率及输出相位集;根据所述输出相位集及预设数值确定与所述输出相位集中各个相位相对应的计数器的初始值及溢出值;根据所述溢出值及所述目标输出频率计算基准频率;根据接收的输入信号及与所述基准频率相对应的输出信号检测是否满足相位对齐条件;若满足相位对齐条件,则根据所述溢出值及所述初始值通过触发控制方法触发多传感器。本申请实施例可灵活调整触发时刻。

Description

多传感器触发控制方法、装置、设备及存储介质
本申请是以申请号为202211482831.8、申请日为2022年11月24日的中国专利申请为基础,并主张其优先权,该申请的全部内容在此作为整体引入本申请中。
技术领域
本申请涉及传感器技术领域,尤其涉及一种多传感器触发控制方法、装置、设备及存储介质。
背景技术
随着自动驾驶技术的发展,传感器的数量爆炸式增长,而为了实现精准的环境感知,必须依赖于高精度的时间同步触发设备,例如,在高速100km/h的行驶场景中,激光雷达与摄像机的0.1s延时将引入2.78米的位置误差;又或在SLAM应用中,IMU与激光雷达的时间不同步可能导致系统无法正常工作,但现有技术中的触发方法因为固定频率的同步触发,导致测试过程中,无法灵活调整触发时刻。
申请内容
本申请实施例提供了一种多传感器触发控制方法、装置、设备及存储介质,旨在解决现有技术中无法灵活调整触发时刻的问题。
第一方面,本申请实施例提供了一种多传感器触发控制方法,其包括:
获取目标输出频率及输出相位集;
根据所述输出相位集及预设数值确定与所述输出相位集中各个相位相对应的计数器的初始值及溢出值;
根据所述溢出值及所述目标输出频率计算基准频率;
根据接收的输入信号及与所述基准频率相对应的输出信号检测是否满足相位对齐条件;
若满足相位对齐条件,则根据所述溢出值及所述初始值通过触发控制方法触发多传感器。
第二方面,本申请实施例还提供了一种多传感器触发控制装置,其包括:
获取单元,用于获取目标输出频率及输出相位集;
确定单元,用于根据所述输出相位集及预设数值确定与所述输出相位集中各个相位相对应的计数器的初始值及溢出值;
计算单元,用于根据所述溢出值及所述目标输出频率计算基准频率;
检测单元,用于根据接收的输入信号及与所述基准频率相对应的输出信号检测是否满足相位对齐条件;
触发单元,用于若满足相位对齐条件,则根据所述溢出值及所述初始值通过触发控制方法触发多传感器。
第三方面,本申请实施例还提供了一种多传感器触发控制设备,所述多传感器触发控制设备包括控制模块,所述控制模块包括存储器及处理器,所述存储器上存储有计算机程序,所述处理器执行所述计算机程序时实现上述方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述方法。
本申请实施例提供了一种多传感器触发控制方法、装置、设备及存储介质。其中,所述方法包括:获取目标输出频率及输出相位集;根据所述输出相位集及预设数值确定与所述输出相位集中各个相位相对应的计数器的初始值及溢出值;根据所述溢出值及所述目标输出频率计算基准频率;根据接收的输入信号及与所述基准频率相对应的输出信号检测是否满足相位对齐条件;若满足相位对齐条件,则根据所述溢出值及所述初始值通过触发控制方法触发多传感器。本申请实施例的技术方案,先根据输出相位集及预设数值确定计数器的初始值及溢出值,根据溢出值及初始值通过触发控制方法控制触发多传感器,因可便于相位的调整,进而可灵活调整触发时刻。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种多传感器触发控制的示意图;
图2为本申请实施例提供的一种多传感器触发控制方法的流程示意图;
图3为本申请实施例提供的一种多传感器触发控制方法的子流程示意图;
图4为本申请实施例提供的一种多传感器触发控制方法的场景示意图;
图5为4中多传感器触发控制的触发时序图;
图6为本申请实施例提供的一种多传感器触发控制装置的示意性框图;
图7为本申请实施例提供的一种多传感器触发控制设备的示意性框图。
实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和 “包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/ 或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为 “当... 时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
请参阅图1,图1是本申请实施例提供的一种多传感器触发控制的示意图。本申请实施例的多传感器触发控制方法可应用于多传感器触发控制设备中,例如可通过配置于与所述多传感器触发控制设备相对应的软件程序来实现所述多传感器触发控制方法,从而实现可灵活调整触发时刻。如图1所示,所述多传感器触发控制设备包括控制模块103、通讯模块104、输出模块、指示模块、信号倍频及分频模块102以及电源输入及供电模块101。具体地,所述输出模块包括多个触发信号输出接口105,所述指示模块包括多个触发信号指示106,所述多个触发信号指示106与所述多个触发信号输出接口105相对应;所述控制模块103与所述信号倍频及分频模块102、所述输出模块以及所述指示模块连接;所述通讯模块104用于与上位机连接;所述输出模块用于接收所述控制模块103发送的触发信号;所述电源输入及供电模块101用于对所述传感器触发设备进行供电,其包括外部电源接口及稳压模块。更为具体地,所述控制模103块包括与所述多个触发信号输出接口105相对应的多个计数器、多个比较器以及多个信号放大器,其中,所述信号倍频及分频模块102与所述计算器连接,所述计数器与所述比较器连接,所述比较器与所述信号放大器连接,所述信号放大器与所述触发信号输出接口105连接。
需要说明的是,在本申请实施例中,所述信号倍频及分频模块102包括模拟/数字倍频电路或分频电路,可在一定范围内将输入信号所对应的频率调整为目标输出频率; 具体地,可通过PLL锁相环或门延时实现倍频,通过计数器设定实现分频。所述通讯模块104可以与其他设备进行通讯,例如上位机,以实现时间戳的上报;在实际应用中,所述通讯模块104在传感器采集到的数据前端以二进制形式附加固定长度的时间戳数据,并将其发送给上位机,该上报方法适合数据频率相对较高、单次数据量小的传感器设备,如IMU,典型频率为100Hz;所述通讯模块也可直接将获取到的时间戳数据发送给上位机,由上位机进行采集数据和时间戳的绑定,该方法适合数据频率相对较低的传感器设备,如相机,典型频率为10Hz。所述多个信号触发指示均为LED指示灯;还需要说明的是,在本申请实施例中,所述输入信号为时钟源107;所述多个触发信号输出接口105成环形设置,相应地,所述多个触发信号指示106也成环形设置,所述控制模块103、所述通讯模块104、所述电源输入及供电模块101以及所述信号倍频及分频模块102均设于环形内;所述多个触发信号输出接口105与多个传感器为硬触发,其中,所述硬触发为电平触发。
请参阅图2,图2是本申请实施例提供的一种多传感器触发控制方法的流程示意图。如图2所示,该方法包括以下步骤S100-S140。
S100、获取目标输出频率及输出相位集。
在本申请实施例中,用户先通过上位机设定所述控制模块需要输出的目标频率及输出相位集,其中,所述输出相位集中的相位个数与所述多个触发信号输出接口的个数相对应,如图1所示,在本实施例中,所述输出模块包括12个接口,分别为A接口、B接口、C接口、D接口、E接口、F接口、G接口、H接口、I接口、J接口、K接口以及L接口,可理解地,所述输出相位集包括12个相位。设定完成之后,所述控制模块会获取所述目标输出频率及所述输出相位集以便于后续步骤中使用。
S110、根据所述输出相位集及预设数值确定与所述输出相位集中各个相位相对应的计数器的初始值及溢出值。
在本申请实施例中,所述控制模块获取所述目标输出频率及所述输出相位集之后,会根据所述输出相位集及预设数值确定与所述输出相位集中各个相位相对应的计数器的初始值及溢出值,其中,所述预设数值为360。需要说明的是,在本实施例中,确定与所述输出相位集中各个相位相对应的计数器的初始值及溢出值即为确定与所述多个触发信号输出接口中各个接口相对应的计数器的初始值及溢出值,也即所述多个触发信号输出接口与所述输出相位集中的多个相位相对应。
请参阅图3,在一实施例中,例如在本申请实施例中,所述步骤S110包括如下步骤S111-S114。
S111、判断所述预设数值是否能整除所述输出相位集中各个相位值,若所述预设数值能整除所述输出相位集中各个相位值,则执行步骤S112,否则执行步骤S114;
S112、计算所述输出相位集中各个相位值的最大公因子,并将与所述输出相位集中各个相位相对应的计数器的溢出值设置为所述预设数值与所述各个相位的最大公因子之商;
S113、将与所述输出相位集中各个相位相对应的计数器的初始值依次设置为从所述溢出值开始,依次递减数值1;
S114、将与所述输出相位集中各个相位相对应的计数器的溢出值设置为所述预设数值,并将与所述输出相位集中各个相位相对应的计数器的初始值设置为所述预设数值与所述各个相位值之差。
S120、根据所述溢出值及所述目标输出频率计算基准频率。
在本申请实施例中,计算出所述溢出值之后,根据所述溢出值及所述目标输出频率计算基准频率,具体地,计算所述目标输出频率与所述溢出值之积得到所述基准频率,例如,假设所述时钟源信号的频率为1HZ,所述信号倍频及分频模块中的倍频器为10,所述目标输出频率为10HZ,所述溢出值为360,所述基准频率为3600HZ。需要说明的是,在本实施例中,之所以所述基准频率为所述目标输出频率与所述溢出值之积,是为了每达到计数器的溢出值时,就触发一次,相当于会再用3600/360 =10Hz,得到所述目标输出频率给到传感器。
S130、根据接收的输入信号及与所述基准频率相对应的输出信号检测是否满足相位对齐条件。
在本申请实施例中,计算出所述基准频率之后,若接收到输入信号,即若接收到所述时钟源信号,则检测所述对齐次数是否为预设对齐次数,其中,所述预设对齐次数为0;若所述对齐次数为所述预设对齐次数,则将所述输入信号的预设相位与所述基准频率相对应的输出信号的所述预设相位对齐,所述预设相位为0相位,即将所述输入信号的0相位与所述输出信号的0相位对齐;若所述预设对齐次数不为所述预设对齐次数,表明所述输入信号的0相位已与所述输出信号的0相位对齐,则判定满足相位对齐条件。
S140、若满足相位对齐条件,则根据所述溢出值及所述初始值通过触发控制方法触发多传感器。
在本申请实施例中,当满足相位对齐条件时,根据各个接口计数器溢出值及各个接口计数器初始值通过触发控制方法触发多传感器进行数据采集。具体地,基于各个接口计数器初始值,通过所述计数器对所述输出信号进行计数以更新所述初始值;当更新后的所述初始值到达所述溢出值时,所述控制模块向与所述初始值相对应的传感器发送触发信号以触发所述传感器;将所述初始值设置为预设值,其中,所述预设值为0,并返回执行所述基于所述初始值,通过所述计数器对所述输出信号进行计数以更新所述初始值的步骤,直至接收到预设停止触发指令。例如,假设各个接口计数器的溢出值为360,各个接口(A接口、B接口、C接口、D接口、E接口、F接口、G接口、H接口、I接口、J接口、K接口以及L接口)计数器的初始值分别为360、350、349、345、240、210、180、150、120、90、60、30,计数开始后,A接口从360开始计数,B接口从350开始计数,C接口从349开始计数,依次类推,L接口从30开始计数,可理解地,A口在算法开始工作即达到溢出值,到达之后,所述控制模块向与A接口连接的触发器发送触发信号,以触发所述传感器进行数据采集,并将A接口的计数器初始值设置为0;并继续计数,A接口此时从0开始计数,再之后,B接口的初始值会到达溢出值360,所述控制模块会向与B接口连接的传感器发送触发信号,以触发所述传感器进行数据采集,并将B接口的计数器初始值设置为0,依次类推,直至接收到预设停止触发指令。
进一步地,当各个接口的计数器初始值到达溢出值之后,所述控制模块除了向传感器发送触发信号,还会向对应的指示等发送指示信号,以点亮所述指示灯,以表征该接口正在工作;可理解地,所述控制模块向传感器发送触发信号时,会给所述通讯模块会送一个获取指令,所述通讯模块根据所述获取指令获取当前时间戳,并将所述时间戳发送至上位机,以供上位机记录传感器采集数据的时间。
请参考图4,图4本申请实施例提供的一种多传感器触发控制的场景示意图,在图4包括一级同步触发器和二级同步触发器,其中,一级同步触发器中信号倍频与分频模块102的输入为GPS时钟源信号306,相机A301、相机B302、激光雷达304三个设备连接至触发信号输出接口A105,相机C303连接至触发信号输出接口G;通讯模块104连接至工作站305,可由工作站305通过设置通讯模块104设置倍频为10,即输出接口的输出频率由GPS时钟源信号306的1Hz转换为10Hz,设置触发信号输出接口A105的输出为异步,相位延迟为30°;二级同步触发器中信号倍频与分频模块102的输入接一级同步触发器的触发信号输出接口A105,通过二级同步触发器的通讯模块104设置倍频为20,即触发信号输出接口的输出频率由一级同步触发器的10Hz转换为200Hz,即达到了级联的效果,可改变输出频率。可理解地,在图4应用场景中,相机A301、相机B302、相机C303以及激光雷达304均可统称为传感器。需要说明的是,当触发信号输出接口A105被触发时,触发信号指示106会被点亮。
请参考图5,图5为4中多传感器触发控制的触发时序图,在图5中,PPS为GPS时钟源信号,相机A301、相机B302、激光雷达304同相位触发,同时采集车辆前方图像;相机C303比激光雷达304延迟180°相位触发,此时激光雷达旋转至车辆后方,从而与相机C303的视野重合。
图6是本申请实施例提供的一种多传感器触发控制装置200的示意性框图。如图6所示,对应于以上多传感器触发控制方法,本申请还提供一种多传感器触发控制装置200。该多传感器触发控制装置200包括用于执行上述多传感器触发控制方法的单元,该装置可以被配置于多传感器触发控制设备中。具体地,请参阅图6,该多传感器触发控制装置200包括获取单元201、确定单元202、计算单元203、检测单元204以及触发单元205。
其中,所述获取单元201用于获取目标输出频率及输出相位集;所述确定单元202用于根据所述输出相位集及预设数值确定与所述输出相位集中各个相位相对应的计数器的初始值及溢出值;所述计算单元203用于根据所述溢出值及所述目标输出频率计算基准频率;所述检测单元204用于根据接收的输入信号及与所述基准频率相对应的输出信号检测是否满足相位对齐条件;所述触发单元205,用于若满足相位对齐条件,则根据所述溢出值及所述初始值通过触发控制方法触发多传感器。
在某些实施例,例如本实施例中,所述确定单元202包括判断单元、第一设置单元、第二设置单元、第三设置单元以及第四设置单元。
其中,所述判断单元用于判断所述预设数值是否能整除所述输出相位集中各个相位值;所述第一设置单元用于若所述预设数值能整除所述输出相位集中各个相位值,则计算所述输出相位集中各个相位值的最大公因子,并将与所述输出相位集中各个相位相对应的计数器的溢出值设置为所述预设数值与所述各个相位的最大公因子之商;所述第二设置单元用于将与所述输出相位集中各个相位相对应的计数器的初始值依次设置为从所述溢出值开始,依次递减数值1;所述第三设置单元用于若所述预设数值不能整除所述输出相位集中各个相位值,则将与所述输出相位集中各个相位相对应的计数器的溢出值设置为所述预设数值;所述第四设置单元用于将与所述输出相位集中各个相位相对应的计数器的初始值设置为所述预设数值与所述各个相位值之差。
在某些实施例,例如本实施例中,所述检测单元204包括检测子单元、对齐单元以及判定单元。
其中,所述检测子单元用于若接收到输入信号,则检测所述对齐次数是否为预设对齐次数;所述对齐单元用于若所述对齐次数为所述预设对齐次数,则将所述输入信号的预设相位与所述基准频率相对应的输出信号的所述预设相位对齐;所述判定单元用于若所述预设对齐次数不为所述预设对齐次数,则判定满足相位对齐条件。
在某些实施例,例如本实施例中,所述触发单元205包括更新单元、触发子单元以及返回执行单元。
其中,所述更新单元用于基于所述初始值,通过所述计数器对所述输出信号进行计数以更新所述初始值;所述触发子单元用于若更新后的所述初始值到达所述溢出值,则向与所述初始值相对应的传感器发送触发信号以触发所述传感器;所述返回执行单元用于将与所述初始值设置为预设值,并返回执行所述基于所述初始值,通过所述计数器对所述输出信号进行计数以更新所述初始值的步骤,直至接收到预设停止触发指令。
在某些实施例,例如本实施例中,所述多传感器触发控制装置200包括获取发送单元。
其中,所述获取发送单元用于若检测到触发信号,则获取当前时间戳,并将所述时间戳发送至上位机。
本申请实施例的多传感器触发控制装置200的具体实现方式与上述多传感器触发控制方法相对应,在此不再赘述。
上述多传感器触发控制装置可以实现为一种计算机程序的形式,该计算机程序可以在如图7所示的多传感器触发控制设备上运行。
请参阅图7,图7是本申请实施例提供的一种多传感器触发控制设备的示意性框图。该多传感器触发控制设备300包括控制模块。
参阅图7,该多传感器触发控制设备300包括通过系统总线301连接的处理器302、存储器和网络接口305,其中,存储器可以包括存储介质303和内存储器304。
该存储介质303可存储操作系统3031和计算机程序3032。该计算机程序3032被执行时,可使得处理器302执行一种多传感器触发控制方法。
该处理器302用于提供计算和控制能力,以支撑整个多传感器触发控制设备300的运行。
该内存储器304为存储介质303中的计算机程序3032的运行提供环境,该计算机程序3032被处理器302执行时,可使得处理器302执行一种多传感器触发控制方法。
该网络接口305用于与其它设备进行网络通信。本领域技术人员可以理解,图7中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的多传感器触发控制设备300的限定,具体的多传感器触发控制设备300可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
其中,所述处理器302用于运行存储在存储器中的计算机程序3032,以实现上述多传感器触发控制方法的任意实施例。
应当理解,在本申请实施例中,处理器302可以是中央处理单元 (CentralProcessing Unit,CPU),该处理器302还可以是其他通用处理器、数字信号处理器(DigitalSignal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本领域普通技术人员可以理解的是实现上述实施例的方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成。该计算机程序可存储于一存储介质中,该存储介质为计算机可读存储介质。该计算机程序被该计算机系统中的至少一个处理器执行,以实现上述方法的实施例的流程步骤。
因此,本申请还提供一种存储介质。该存储介质可以为计算机可读存储介质。该存储介质存储有计算机程序。该计算机程序被处理器执行时使处理器执行上述多传感器触发控制方法的任意实施例。
所述存储介质可以是U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的计算机可读存储介质。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的。例如,各个单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。本申请实施例装置中的单元可以根据实际需要进行合并、划分和删减。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台多传感器触发控制设备(可以是个人计算机,终端,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,尚且本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (9)

  1. 一种多传感器触发控制方法,其特征在于,包括:
    获取目标输出频率及输出相位集;
    根据所述输出相位集及预设数值确定与所述输出相位集中各个相位相对应的计数器的初始值及溢出值;
    根据所述溢出值及所述目标输出频率计算基准频率;
    根据接收的输入信号及与所述基准频率相对应的输出信号检测是否满足相位对齐条件;
    若满足相位对齐条件,则根据所述溢出值及所述初始值通过触发控制方法触发多传感器;
    其中,所述根据所述输出相位集及预设数值确定与所述输出相位集中各个相位相对应的计数器的初始值及溢出值的步骤包括:
    判断所述预设数值是否能整除所述输出相位集中各个相位值;
    若所述预设数值能整除所述输出相位集中各个相位值,则计算所述输出相位集中各个相位值的最大公因子,并将与所述输出相位集中各个相位相对应的计数器的溢出值设置为所述预设数值与所述各个相位的最大公因子之商;
    将与所述输出相位集中各个相位相对应的计数器的初始值依次设置为从所述溢出值开始,依次递减数值1。
  2. 根据权利要求1所述的方法,其特征在于,所述判断所述预设数值是否能整除所述输出相位集中各个相位的步骤之后,还包括:
    若所述预设数值不能整除所述输出相位集中各个相位值,则将与所述输出相位集中各个相位相对应的计数器的溢出值设置为所述预设数值;
    将与所述输出相位集中各个相位相对应的计数器的初始值设置为所述预设数值与所述各个相位值之差。
  3. 根据权利要求1所述的方法,其特征在于,所述根据接收的输入信号及与所述基准频率相对应的输出信号检测是否满足相位对齐条件的步骤,包括:
    若接收到输入信号,则检测对齐次数是否为预设对齐次数;
    若所述对齐次数为所述预设对齐次数,则将所述输入信号的预设相位与所述基准频率相对应的输出信号的所述预设相位对齐;
    若所述预设对齐次数不为所述预设对齐次数,则判定满足相位对齐条件。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述溢出值及所述初始值通过触发控制方法触发多传感器的步骤,包括:
    基于所述初始值,通过所述计数器对所述输出信号进行计数以更新所述初始值;
    若更新后的所述初始值到达所述溢出值,则向与所述初始值相对应的传感器发送触发信号以触发所述传感器;
    将所述初始值设置为预设值,并返回执行所述基于所述初始值,通过所述计数器对所述输出信号进行计数以更新所述初始值的步骤,直至接收到预设停止触发指令。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若检测到触发信号,则获取当前时间戳,并将所述时间戳发送至上位机。
  6. 一种多传感器触发控制装置,其特征在于,包括:
    获取单元,用于获取目标输出频率及输出相位集;
    确定单元,用于根据所述输出相位集及预设数值确定与所述输出相位集中各个相位相对应的计数器的初始值及溢出值;
    计算单元,用于根据所述溢出值及所述目标输出频率计算基准频率;
    检测单元,用于根据接收的输入信号及与所述基准频率相对应的输出信号检测是否满足相位对齐条件;
    触发单元,用于若满足相位对齐条件,则根据所述溢出值及所述初始值通过触发控制方法触发多传感器;
    其中,所述确定单元包括判断单元、第一设置单元以及第二设置单元,其中,所述判断单元用于判断所述预设数值是否能整除所述输出相位集中各个相位值;所述第一设置单元用于若所述预设数值能整除所述输出相位集中各个相位值,则计算所述输出相位集中各个相位值的最大公因子,并将与所述输出相位集中各个相位相对应的计数器的溢出值设置为所述预设数值与所述各个相位的最大公因子之商;所述第二设置单元用于将与所述输出相位集中各个相位相对应的计数器的初始值依次设置为从所述溢出值开始,依次递减数值1。
  7. 一种多传感器触发控制设备,其特征在于,所述多传感器触发控制设备包括控制模块,所述控制模块包括存储器及处理器,所述存储器上存储有计算机程序,所述处理器执行所述计算机程序时实现如权利要求1-5中任一项所述的方法。
  8. 根据权利要求7所述的设备,其特征在于,所述多传感器触发控制设备还包括信号倍频及分频模块、通讯模块、输出模块、指示模块以及电源输入及供电模块,其中,所述输出模块包括多个触发信号输出接口,所述指示模块包括多个触发信号指示,所述多个触发信号指示与所述多个触发信号输出接口相对应,所述控制模块与所述信号倍频及分频模块、所述输出模块以及所述指示模块连接,所述通讯模块用于与上位机连接,所述输出模块用于接收所述控制模块发送的触发信号。
  9. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-5中任一项所述的方法。
PCT/CN2023/132664 2022-11-24 2023-11-20 多传感器触发控制方法、装置、设备及存储介质 WO2024109696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211482831.8A CN115603849B (zh) 2022-11-24 2022-11-24 多传感器触发控制方法、装置、设备及存储介质
CN202211482831.8 2022-11-24

Publications (1)

Publication Number Publication Date
WO2024109696A1 true WO2024109696A1 (zh) 2024-05-30

Family

ID=84852359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132664 WO2024109696A1 (zh) 2022-11-24 2023-11-20 多传感器触发控制方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115603849B (zh)
WO (1) WO2024109696A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115603849B (zh) * 2022-11-24 2023-04-07 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 多传感器触发控制方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111983948A (zh) * 2020-07-07 2020-11-24 宝能(广州)汽车研究院有限公司 多传感器数据同步方法及其设备
CN112672415A (zh) * 2020-12-25 2021-04-16 之江实验室 多传感器时间同步方法、装置、系统、电子设备及介质
EP3920151A1 (en) * 2020-06-04 2021-12-08 Hitachi, Ltd. Data collection triggering device
CN114759999A (zh) * 2022-03-15 2022-07-15 青岛慧拓智能机器有限公司 一种用于自动驾驶车辆的多传感器授时同步方法和系统
CN115134030A (zh) * 2021-03-29 2022-09-30 东风汽车集团股份有限公司 车载多传感器同步方法、装置、设备和存储介质
CN115603849A (zh) * 2022-11-24 2023-01-13 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院)(Cn) 多传感器触发控制方法、装置、设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101354438B (zh) * 2008-08-28 2011-12-28 阮树成 毫米波时分线性调频多目标检测汽车防撞雷达
US10771669B1 (en) * 2017-09-26 2020-09-08 Apple Inc. Time synchronization of sensor data
US10890914B2 (en) * 2018-08-24 2021-01-12 Baidu Usa Llc Trigger logic to trigger sensors of an autonomous driving vehicle for capturing data
WO2020113358A1 (en) * 2018-12-03 2020-06-11 Beijing Didi Infinity Technology And Development Co., Ltd. Systems and methods for synchronizing vehicle sensors and devices
US11726184B2 (en) * 2019-03-08 2023-08-15 Leddartech Inc. Component for a LIDAR sensor system, LIDAR sensor system, LIDAR sensor device, method for a LIDAR sensor system and method for a LIDAR sensor device
CN114614934B (zh) * 2022-03-28 2024-05-14 智己汽车科技有限公司 一种时间同步触发装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3920151A1 (en) * 2020-06-04 2021-12-08 Hitachi, Ltd. Data collection triggering device
CN111983948A (zh) * 2020-07-07 2020-11-24 宝能(广州)汽车研究院有限公司 多传感器数据同步方法及其设备
CN112672415A (zh) * 2020-12-25 2021-04-16 之江实验室 多传感器时间同步方法、装置、系统、电子设备及介质
CN115134030A (zh) * 2021-03-29 2022-09-30 东风汽车集团股份有限公司 车载多传感器同步方法、装置、设备和存储介质
CN114759999A (zh) * 2022-03-15 2022-07-15 青岛慧拓智能机器有限公司 一种用于自动驾驶车辆的多传感器授时同步方法和系统
CN115603849A (zh) * 2022-11-24 2023-01-13 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院)(Cn) 多传感器触发控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN115603849B (zh) 2023-04-07
CN115603849A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2024109696A1 (zh) 多传感器触发控制方法、装置、设备及存储介质
CN110870229B (zh) 用于使从设备同步的技术
CN108900272B (zh) 传感器数据采集方法、系统和丢包判断方法
EP2372490A1 (en) Circuit arrangement for a data processing system and method for data processing
WO2018228352A1 (zh) 一种同步曝光方法、装置及终端设备
US8260991B2 (en) Data processing apparatus and method for measuring a value of a predetermined property of transactions
CN111585682A (zh) 传感器时间同步方法、装置及终端设备
US11965919B2 (en) Phase frequency detector-based high-precision feedback frequency measurement apparatus and method
EP4044466A1 (en) Synchronization method and device
WO2022134949A1 (zh) 电量校准方法、装置和电子设备
CN103017736A (zh) 一种确定卫星星敏感器数据曝光时刻的方法
WO2022179605A1 (zh) 时间同步方法、装置、车载设备及存储介质
WO2021035645A1 (zh) 传感系统、传感设备及其控制方法、可移动平台和存储介质
US11493948B2 (en) Sensor-data processing device
US8976341B2 (en) Optoelectric control apparatus for satellite laser ranging system
US20240134016A1 (en) Signal processing method and apparatus and terminal device
JP2005157946A (ja) 同期方法、コンピュータシステム及びプログラム
JP2599434Y2 (ja) パルス状信号回路装置
CN110687773B (zh) 时间统一系统授时精度的测量方法、装置和系统
CN105738695A (zh) 一种时钟频率跟踪测量及误差估计实现方法和模块
CN115102453A (zh) 一种位置控制系统及方法
CN111556535B (zh) 通讯方法、通讯装置、电子设备及存储介质
US20080224714A1 (en) System and Method of Integrated Circuit Control for in Situ Impedance Measurement
WO2024138400A1 (zh) 同步数据处理方法及设备
TWI844209B (zh) 影像輸出同步方法及裝置