WO2024109557A1 - 一种风光储场站的无功补偿容量配置方法、装置和设备 - Google Patents

一种风光储场站的无功补偿容量配置方法、装置和设备 Download PDF

Info

Publication number
WO2024109557A1
WO2024109557A1 PCT/CN2023/130852 CN2023130852W WO2024109557A1 WO 2024109557 A1 WO2024109557 A1 WO 2024109557A1 CN 2023130852 W CN2023130852 W CN 2023130852W WO 2024109557 A1 WO2024109557 A1 WO 2024109557A1
Authority
WO
WIPO (PCT)
Prior art keywords
active power
power
reactive
photovoltaic
loss
Prior art date
Application number
PCT/CN2023/130852
Other languages
English (en)
French (fr)
Inventor
汤兰西
李鹏
杜忠明
杨尉薇
徐东杰
刘思远
王雅婷
王爽
崔阳
蔡琛
郭慧倩
王鹏磊
Original Assignee
中国长江三峡集团有限公司
中国三峡新能源(集团)股份有限公司
电力规划总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国长江三峡集团有限公司, 中国三峡新能源(集团)股份有限公司, 电力规划总院有限公司 filed Critical 中国长江三峡集团有限公司
Publication of WO2024109557A1 publication Critical patent/WO2024109557A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to the field of power compensation, and in particular to a method, device and equipment for configuring reactive power compensation capacity of a wind-solar storage station.
  • the embodiments of the present invention provide a method, device and equipment for configuring the reactive power compensation capacity of a wind-solar-storage station, which improves the accuracy of the reactive power compensation capacity configuration of the wind-solar-storage station.
  • the present invention provides a method for configuring reactive power compensation capacity of a wind-solar storage station, the method comprising: calculating the maximum energy storage active power and the maximum energy storage active power under different photovoltaic active power conditions; Maximum wind power active power; calculating the site reactive loss and site reactive power corresponding to each photovoltaic actual active power condition based on the photovoltaic actual active power, maximum energy storage active power and maximum wind power active power of each photovoltaic actual active power condition; determining the reactive compensation demand under each photovoltaic actual active power condition by using the difference between the site reactive loss and the site reactive power; determining the reactive compensation capacity by using the maximum reactive compensation demand among the reactive compensation demands under each photovoltaic actual active power condition, so as to configure the idle capacity of the energy storage area according to the reactive compensation capacity.
  • the maximum energy storage active power under different photovoltaic active power conditions is calculated, including: obtaining photovoltaic rated active power, wind power rated active power and energy storage rated active power; determining the maximum active power of the station based on the sum of the photovoltaic rated active power and the wind power rated active power; taking values from the photovoltaic rated active power at preset proportional intervals to obtain multiple different photovoltaic active powers; determining the current energy storage allowable active power using the difference between the station maximum active power and the current photovoltaic active power, the current energy storage allowable active power representing the maximum active power currently allowed for energy storage by the station; determining the current maximum energy storage active power corresponding to the current photovoltaic active power based on the smaller value of the current energy storage allowable active power and the energy storage rated active power.
  • the maximum wind power active power under different photovoltaic active power conditions is calculated, including: determining the current allowable wind power active power by using the difference between the maximum active power of the site, the current photovoltaic active power and the current maximum energy storage active power, the current allowable wind power active power representing the maximum active power currently allowed for wind power to be generated by the site; determining the current maximum wind power active power corresponding to the current photovoltaic active power based on the smaller value of the current allowable wind power active power and the wind power rated active power.
  • the voltage value used in the calculation is a voltage value obtained by reducing the station rated voltage by a preset multiple.
  • the preset multiple is 0.97 times.
  • the reactive loss of the station corresponding to each photovoltaic actual active power condition is calculated based on the photovoltaic actual active power, maximum energy storage active power and maximum wind power active power of each photovoltaic actual active power condition, including: calculating the wind farm area reactive loss, photovoltaic area reactive loss, energy storage area reactive loss, boost transformer reactive loss and transmission line reactive loss corresponding to each photovoltaic actual active power condition based on the photovoltaic actual active power, maximum energy storage active power and maximum wind power active power of each photovoltaic actual active power condition; calculating the sum of the wind farm area reactive loss, photovoltaic area reactive loss, energy storage area reactive loss, boost transformer reactive loss and transmission line reactive loss corresponding to each photovoltaic actual active power condition as the station reactive loss corresponding to each photovoltaic actual active power condition.
  • the reactive loss in the wind farm area includes the reactive loss of the wind turbine to box transformer line, the reactive loss of the wind turbine box transformer and the reactive loss of the wind farm collection line;
  • the reactive loss in the photovoltaic area includes the reactive loss of the photovoltaic inverter to box transformer line, the reactive loss of the photovoltaic box transformer and the reactive loss of the photovoltaic field collection line;
  • the reactive loss in the energy storage area includes the reactive loss of the energy storage inverter to box transformer line, the reactive loss of the energy storage box transformer and the reactive loss of the energy storage field collection line.
  • an embodiment of the present invention provides a reactive compensation capacity configuration device for a wind-solar-storage station, the device comprising: a maximum active power determination module, used to calculate the maximum energy storage active power and the maximum wind power active power under different photovoltaic actual active power conditions; a station reactive power calculation module, used to calculate the station reactive loss and station reactive power corresponding to each photovoltaic actual active power condition based on the photovoltaic actual active power, the maximum energy storage active power and the maximum wind power active power of each photovoltaic actual active power condition; a reactive compensation demand calculation module, used to determine the reactive compensation demand under each photovoltaic actual active power condition by using the difference between the station reactive loss and the station reactive power under each photovoltaic actual active power condition; a reactive compensation capacity configuration module, used to determine the reactive compensation capacity by using the maximum reactive compensation demand among the reactive compensation demands under each photovoltaic actual active power condition, so as to configure the idle capacity of the energy storage area according to the reactive compensation capacity.
  • an embodiment of the present invention provides a reactive power compensation capacity allocation system for a wind-solar storage station.
  • a device comprising: a memory and a processor, wherein the memory and the processor are communicatively connected to each other, the memory stores computer instructions, and the processor executes the method described in the first aspect or any optional implementation manner of the first aspect by executing the computer instructions.
  • an embodiment of the present invention provides a computer-readable storage medium, wherein the computer-readable storage medium stores computer instructions, and the computer instructions are used to enable the computer to execute the method described in the first aspect or any optional implementation manner of the first aspect.
  • the technical solution provided by the present application takes photovoltaic active power as the independent variable, calculates the maximum energy storage active power and the maximum wind power active power under different photovoltaic actual active power conditions; then, based on the photovoltaic actual active power, the maximum energy storage active power and the maximum wind power active power of each photovoltaic actual active power condition, calculates the station reactive loss and station reactive power corresponding to each photovoltaic actual active power condition; then, calculates the difference between the station reactive loss and the station reactive power under each photovoltaic actual active power condition, and obtains the reactive compensation demand under each photovoltaic actual active power condition; finally, determines the reactive compensation capacity according to the maximum reactive compensation demand.
  • the determined reactive compensation capacity is used to configure the idle capacity of energy storage, so that the reactive loss generated by the wind and solar storage station under any output condition can be compensated by the configured idle capacity of energy storage, and while meeting the power factor of the wind and solar storage station, fully utilizes the idle capacity of the energy storage system to provide reactive support, reduces the need for the construction of reactive compensation devices for wind and solar storage power stations, reduces the total investment of power stations, improves the economic efficiency of the project, and reduces the social electricity cost.
  • FIG1 is a schematic diagram showing the steps of a method for configuring reactive power compensation capacity of a wind-solar-storage station in one embodiment of the present invention
  • FIG2 shows a schematic structural diagram of a reactive power compensation capacity configuration device of a wind-solar-storage station in one embodiment of the present invention
  • FIG3 shows a schematic structural diagram of a reactive power compensation capacity configuration device of a wind-solar-storage station in one embodiment of the present invention.
  • a method for configuring reactive power compensation capacity of a wind-solar-storage station specifically includes the following steps:
  • Step S101 Calculate the maximum energy storage active power and the maximum wind power active power under different photovoltaic active power conditions.
  • Step S102 Calculate the station reactive loss and station reactive power corresponding to each photovoltaic actual active power condition based on the photovoltaic actual active power, maximum energy storage active power and maximum wind power active power of each photovoltaic actual active power condition.
  • Step S103 Determine reactive power compensation requirements under various photovoltaic actual active power conditions by using the difference between the reactive power loss of the station and the reactive power of the station under various photovoltaic actual active power conditions.
  • Step S104 Determine reactive compensation capacity by using the maximum reactive compensation demand among reactive compensation demands under the actual active power conditions of each photovoltaic power generation, so as to configure the idle capacity of the energy storage area according to the reactive compensation capacity.
  • the reactive power loss of the wind-solar-storage station minus the maximum reactive power generated by various reactive power sources is the demand of the station for reactive compensation capacity under this mode.
  • the embodiment of the present invention takes into account all normal operation modes and determines the maximum value of reactive compensation capacity demand under each normal operation mode. If the maximum value of reactive compensation is used as the minimum scale of reactive compensation that the station needs to configure, the station can cope with reactive losses under all normal operation conditions, maximize the power factor of the wind-solar-storage station, and ensure the most efficient active output.
  • this embodiment calculates the reactive compensation capacity demand according to the maximum active power of the station under normal operating mode.
  • the reactive power that wind power can provide is relatively small, and the impact on the reactive compensation capacity demand of the station is also small.
  • the active power output of energy storage mainly plays an auxiliary role and needs to change with the change of photovoltaic and wind power active output. Therefore, this embodiment takes photovoltaic active power as the independent variable, and respectively calculates the maximum energy storage active power and the maximum wind power active power under different photovoltaic actual active power conditions for multiple photovoltaic actual active power conditions, so as to further determine the maximum active power of the station under different photovoltaic actual active power conditions.
  • the photovoltaic actual active power, the maximum energy storage active power and the maximum wind power active power under each photovoltaic actual active power condition are used to comprehensively calculate the reactive loss and reactive power of the station corresponding to each photovoltaic actual active power condition.
  • the difference between the corresponding station reactive loss and the station reactive power is calculated to obtain the reactive compensation demand corresponding to each photovoltaic actual active power condition.
  • the maximum value of the reactive compensation demand is found from the reactive compensation demand corresponding to each photovoltaic actual active power condition, and the maximum value is used as the minimum scale of reactive compensation that the station needs to configure. In other words, when configuring the idle capacity of energy storage, the configured idle capacity must also reach the maximum value of the reactive compensation demand.
  • the configured capacity can be more than the maximum value of the reactive compensation demand, but it cannot be less than this value. Therefore, the energy storage idle capacity configured by the embodiment of the present invention can cope with the reactive loss under various normal operating conditions. Even if the wind, light and storage are all output at the maximum active power, the reactive loss generated by the station is very large, and the configured energy storage idle capacity can also be used for reactive compensation.
  • the reactive compensation requirements are met while avoiding the waste caused by multiple configuration capacity, thereby making full use of the idle capacity of the energy storage system to provide reactive support, reducing the need to build reactive compensation devices for wind, light and storage power stations, reducing the total investment of power stations, improving the economic efficiency of the project, and reducing social electricity costs.
  • the reactive compensation capacity configuration method of the wind, solar and storage station provided by the embodiment of the present invention, when calculating the reactive loss of the station and the reactive power of the station corresponding to each photovoltaic actual active power condition, the voltage value used in the calculation is the voltage value obtained by reducing the station rated voltage by a preset multiple.
  • the embodiment of the present invention further takes into account that under the premise that the active power of the station remains unchanged, the lower the voltage, the greater the corresponding current, and thus the greater the reactive loss of the station, and also the greater the demand for reactive compensation capacity of the station. Therefore, this embodiment calculates the reactive compensation capacity demand according to the minimum voltage under normal operating conditions.
  • the voltage deviation of new energy stations stipulated by safety regulations should be within the range of -3% to +7% of the nominal voltage. Therefore, the voltage involved in the calculation in the embodiment of the present invention is 0.97 times the rated voltage, so as to calculate the maximum value of the reactive power compensation demand of the station under the conditions of maximum active power and minimum voltage at the same time, so that the configured reactive compensation capacity can meet the reactive loss generated by all normal operation of the wind, solar and storage stations.
  • step S101 specifically includes the following steps:
  • Step 1 Obtain the rated active power of photovoltaic power, wind power and energy storage.
  • Step 2 Determine the maximum active power of the site based on the sum of the rated active power of photovoltaic power and the rated active power of wind power.
  • Step 3 Take values from the PV rated active power at preset proportional intervals to obtain multiple different PV actual active powers.
  • Step 4 Use the difference between the maximum active power of the site and the current actual active power of the photovoltaic power generation to determine the current allowable active power of the energy storage.
  • the current allowable active power of the energy storage represents the maximum active power that the site currently allows the energy storage to generate.
  • Step 5 Determine the current maximum energy storage active power corresponding to the current photovoltaic active power based on the smaller value of the current energy storage allowable active power and the energy storage rated active power.
  • Step 6 Determine the current wind power allowable active power by using the difference between the maximum active power of the site, the current photovoltaic active power and the current maximum energy storage active power.
  • the current wind power allowable active power represents the maximum active power that the site currently allows wind power to generate.
  • Step 7 Determine the current maximum wind power active power corresponding to the current photovoltaic active power based on the smaller value of the current wind power allowable active power and the wind power rated active power.
  • the maximum wind power active power and the maximum energy storage active power with photovoltaic active power as the independent variable, first obtain the installed capacity of wind power, photovoltaic power, and energy storage P wi,N , P so,N , and P st,N of the wind, photovoltaic, and energy storage stations, that is, the photovoltaic rated active power, the wind power rated active power, and the energy storage rated active power.
  • the photovoltaic active power P so the independent variable
  • the photovoltaic rated active power is calculated at a preset proportional interval. The power is taken to obtain multiple different photovoltaic active powers. For example, if a suitable positive integer n is selected as the number of different photovoltaic active powers, the photovoltaic active power is taken as
  • P so,i represents the active power generated by the i-th photovoltaic power plant. That is, a preset proportional interval is preset, and n photovoltaic active powers are incrementally extracted from the photovoltaic rated power P so,N to represent n normal operating conditions.
  • the maximum active power of energy storage P st,max,i min ⁇ P st,N ,P N -P so,i ⁇ . That is, PN is the maximum active power that the wind, solar and storage station can send out as a whole.
  • P so,i the allowable active power of energy storage, which represents the maximum active power allowed to be sent by energy storage from the perspective of the station as a whole.
  • P st,N is the rated power of energy storage.
  • P N -P so,i -P st,max,i represents the maximum power of wind power generation allowed by the site after the actual active power of photovoltaic power generation and the maximum active power of energy storage are determined, that is, the allowed active power of wind power.
  • step S102 specifically includes the following steps:
  • Step 8 Based on the actual photovoltaic active power, maximum energy storage active power and maximum wind power active power of each photovoltaic actual active power condition, calculate the wind farm area reactive loss, photovoltaic area reactive loss, energy storage area reactive loss, boost transformer reactive loss and transmission line reactive loss corresponding to each photovoltaic actual active power condition.
  • Step 9 Calculate the sum of the reactive loss of the wind farm area, the reactive loss of the photovoltaic area, the reactive loss of the energy storage area, the reactive loss of the boost transformer, and the reactive loss of the transmission line corresponding to each photovoltaic actual active power condition as the station reactive loss corresponding to each photovoltaic actual active power condition.
  • This embodiment accurately calculates the reactive power loss of the entire station from five aspects: reactive power loss in wind farm area, reactive power loss in photovoltaic area, reactive power loss in energy storage area, reactive power loss in boost transformer, and reactive power loss in transmission line. The following methods are used to calculate n The reactive power loss of the site corresponding to the actual active power condition of photovoltaic power generation.
  • the reactive loss of the wind-solar-storage station corresponding to each photovoltaic actual active power condition is obtained by adding up the reactive loss of the wind farm area, the reactive loss of the photovoltaic area, the reactive loss of the energy storage area, the reactive loss of the step-up transformer, and the reactive loss of the transmission line.
  • the calculation methods of each part are as follows.
  • the reactive loss of the wind farm area is obtained by adding the reactive loss of the wind turbine to the box transformer line, the reactive loss of the wind turbine box transformer, and the reactive loss of the wind farm collection line.
  • the calculation methods of each part are as follows.
  • the reactive power loss of a single wind turbine to box transformer line is calculated by the following equations (1) and (2), where the voltage, active power and power factor angle are the voltage, active power and maximum power factor angle of the wind turbine, respectively.
  • the reactive power loss of all single wind turbine to box transformer lines in the site is summed to obtain the reactive power loss of the wind turbine to box transformer line in the entire site.
  • I is the line current in kA, calculated by equation (2);
  • X is the line equivalent reactance in ⁇ .
  • Q T is the reactive power loss of the transformer, in Mvar
  • U k % is the short-circuit voltage percentage of the transformer
  • I 0 % is the no-load current percentage of the transformer
  • S is the apparent power of the transformer, in MVA
  • SN is the rated capacity of the transformer, in MVA.
  • the apparent power S is calculated according to the following formula (4).
  • P is the current maximum wind power active power, in MW; The most High power factor angle. Sum the reactive power loss of all single wind turbine chassis transformers in the field to obtain the reactive power loss of the wind turbine chassis transformers in the entire field.
  • the reactive power loss of a single section collector line is calculated by equations (1) and (2), where voltage is the voltage on the high-voltage side of the wind turbine box transformer, active power is the sum of the active powers of the wind turbines flowing through the section collector line, and power factor angle is the maximum power factor angle of the wind turbines.
  • the reactive power loss of all single-section collector lines in the farm is summed to obtain the reactive power loss of the collector lines in the entire farm.
  • the reactive loss of the photovoltaic field is obtained by adding the reactive loss of the photovoltaic inverter to the box transformer line, the reactive loss of the photovoltaic box transformer, and the reactive loss of the photovoltaic field collection line.
  • the calculation method of each part is as follows.
  • the reactive power loss of a single PV box transformer is calculated by formula (3), where the power factor is 1 and the apparent power is equal to the active power of the PV array.
  • the reactive power loss of all single PV box transformers in the field is summed to obtain the reactive power loss of the PV box transformers in the entire field.
  • the reactive loss of a single section collector line is calculated by equations (1) and (2), where voltage is the voltage on the high-voltage side of the photovoltaic box transformer, active power is the sum of the photovoltaic active power flowing through the section collector line, and the power factor is 1.
  • the reactive loss of all single-section collector lines in the field is summed to obtain the reactive loss of the collector line in the entire field.
  • the reactive loss of the energy storage area is obtained by adding the reactive loss of the energy storage converter to the box transformer line, the reactive loss of the energy storage box transformer, and the reactive loss of the energy storage area collector line.
  • the calculation methods of each part are as follows.
  • the reactive power loss of a single energy storage box transformer is calculated by formula (3), where the apparent power is the maximum capacity of the energy storage converter.
  • the reactive power loss of all single energy storage box transformers in the field is summed to obtain the reactive power loss of the energy storage box transformers in the entire field.
  • the reactive loss of a single collector line is calculated by equations (1) and (2), where the voltage is the voltage on the high-voltage side of the energy storage box transformer, and the apparent power is the sum of the maximum capacities of the energy storage converters that pass through the collector line.
  • the reactive loss of all single-segment collector lines in the area is summed to obtain the reactive loss of the collector line in the entire area.
  • the reactive power loss of a single boost transformer is calculated by formula (3), where the apparent power is obtained by dividing the active power by the power factor according to formula (4).
  • the active power is the sum of the active power of all wind power, photovoltaic power, and energy storage connected to the boost transformer, and the power factor is determined according to the relevant regulations of each region.
  • the reactive power loss of all single boost transformers in the field is summed to obtain the reactive power loss of the boost transformer in the entire field.
  • the reactive power loss of a single transmission line is calculated by equations (1) and (2), where voltage is the voltage on the high-voltage side of the step-up transformer, active power is the sum of the active power of all wind power, photovoltaic power, and energy storage connected to the transmission line, and the power factor is determined according to local regulations.
  • the reactive power loss of all single transmission lines is summed to obtain the reactive power loss of the entire wind, photovoltaic, and energy storage power station transmission line.
  • the steps of calculating the station reactive power corresponding to each photovoltaic actual active power condition based on the photovoltaic actual active power, the maximum energy storage active power and the maximum wind power active power of each photovoltaic actual active power condition are as follows:
  • the maximum reactive power that a wind farm can provide is Q wi,max (in Mvar)
  • P is the maximum wind power active power, in MW; is the maximum power factor angle of the wind turbine.
  • S max is the maximum capacity of the inverter or converter, in MVA
  • P is the active power of the inverter or converter, in MW. If it is a photovoltaic power station, P is the current photovoltaic active power; if it is energy storage, P is the current maximum energy storage active power.
  • the technical solution provided by the present application takes photovoltaic active power as the independent variable, calculates the maximum energy storage active power and the maximum wind power active power under different photovoltaic actual active power conditions; then, based on the photovoltaic actual active power, the maximum energy storage active power and the maximum wind power active power of each photovoltaic actual active power condition, calculates the station reactive loss and station reactive power corresponding to each photovoltaic actual active power condition; then, calculates the difference between the station reactive loss and the station reactive power under each photovoltaic actual active power condition, and obtains the reactive compensation demand under each photovoltaic actual active power condition; finally, determines the reactive compensation capacity according to the maximum reactive compensation demand.
  • the determined reactive compensation capacity is used to configure the idle capacity of energy storage, so that the reactive loss generated by the wind and solar storage station under any output condition can be compensated by the configured idle capacity of energy storage, and while meeting the power factor of the wind and solar storage station, fully utilizes the idle capacity of the energy storage system to provide reactive support, reduces the need for the construction of reactive compensation devices for wind and solar storage power stations, reduces the total investment of power stations, improves the economic efficiency of the project, and reduces the social electricity cost.
  • this embodiment further provides a reactive power compensation capacity configuration device for a wind-solar storage station, the device comprising:
  • the maximum active power determination module 101 is used to calculate the maximum energy storage active power and the maximum wind power active power under different photovoltaic active power conditions. For details, see the steps in the above method embodiment. The relevant description of S101 will not be repeated here.
  • the station reactive power calculation module 102 is used to calculate the station reactive loss and station reactive power corresponding to each photovoltaic actual active power condition based on the photovoltaic actual active power, the maximum energy storage active power and the maximum wind power active power of each photovoltaic actual active power condition. For details, please refer to the relevant description of step S102 in the above method embodiment, which will not be repeated here.
  • the reactive power compensation demand calculation module 103 is used to determine the reactive power compensation demand under each photovoltaic actual active power condition by using the difference between the reactive power loss of the station and the reactive power of the station under each photovoltaic actual active power condition. For details, please refer to the relevant description of step S103 in the above method embodiment, which will not be repeated here.
  • the reactive compensation capacity configuration module 104 is used to determine the reactive compensation capacity by using the maximum reactive compensation demand among the reactive compensation demands under the actual active power conditions of each photovoltaic power generation, so as to configure the idle capacity of the energy storage area according to the reactive compensation capacity. For details, please refer to the relevant description of step S104 in the above method embodiment, which will not be repeated here.
  • a reactive compensation capacity configuration device for a wind-solar-storage station provided in an embodiment of the present invention is used to execute a reactive compensation capacity configuration method for a wind-solar-storage station provided in the above embodiment. Its implementation method and principle are the same. For details, please refer to the relevant description of the above method embodiment and will not be repeated here.
  • the technical solution provided by this application takes photovoltaic active power as the independent variable, calculates the maximum energy storage active power and the maximum wind power active power under different photovoltaic actual active power conditions; then, based on the photovoltaic actual active power, the maximum energy storage active power and the maximum wind power active power of each photovoltaic actual active power condition, the station reactive loss and station reactive power corresponding to each photovoltaic actual active power condition are calculated; then, under each photovoltaic actual active power condition, the difference between the station reactive loss and the station reactive power is calculated to obtain the reactive compensation demand under each photovoltaic actual active power condition; finally, the reactive compensation capacity is determined according to the maximum reactive compensation demand.
  • the determined reactive compensation capacity is used to configure the idle capacity of energy storage, so that the reactive loss generated by the wind and solar storage station under any output condition can be compensated by the configured idle capacity of energy storage. While meeting the power factor of the wind and solar storage station, the idle capacity of the energy storage system is fully utilized to provide reactive support, reducing the need for the construction of reactive compensation devices for wind and solar storage power stations, reducing the total investment of power stations, improving the economic efficiency of the project, and reducing social electricity costs.
  • FIG3 shows a reactive power compensation capacity device of a wind-solar storage station according to an embodiment of the present invention.
  • the device includes a processor 901 and a memory 902 , which may be connected via a bus or other means.
  • FIG3 takes the connection via a bus as an example.
  • the processor 901 may be a central processing unit (CPU).
  • the processor 901 may also be other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or a combination of the above chips.
  • DSP digital signal processors
  • ASIC application-specific integrated circuits
  • FPGA field-programmable gate arrays
  • the memory 902 is a non-transitory computer-readable storage medium that can be used to store non-transitory software programs, non-transitory computer executable programs and modules, such as program instructions/modules corresponding to the methods in the above method embodiments.
  • the processor 901 executes various functional applications and data processing of the processor by running the non-transitory software programs, instructions and modules stored in the memory 902, that is, implementing the methods in the above method embodiments.
  • the memory 902 may include a program storage area and a data storage area, wherein the program storage area may store an operating system, an application required by at least one function; the data storage area may store data created by the processor 901, etc.
  • the memory 902 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one disk storage device, a flash memory device, or other non-volatile solid-state storage device.
  • the memory 902 may optionally include a memory remotely arranged relative to the processor 901, and these remote memories may be connected to the processor 901 via a network. Examples of the above-mentioned network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • One or more modules are stored in the memory 902 , and when executed by the processor 901 , the method in the above method embodiment is executed.
  • the storage medium can be a disk, an optical disk, a read-only memory (Read-Only Memory,
  • the storage medium may include a random access memory (ROM), a random access memory (RAM), a flash memory, a hard disk drive (HDD) or a solid-state drive (SSD), etc.
  • the storage medium may also include a combination of the above types of memories.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种风光储场站的无功补偿容量配置方法、装置和设备,方法包括:计算在不同光伏实发有功功率条件下的最大储能有功功率和最大风电有功功率;基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率;利用各个光伏实发有功功率条件下场站无功损耗和场站无功功率的差值确定各个光伏实发有功功率条件下的无功补偿需求;利用各个光伏实发有功功率条件下的无功补偿需求中的最大无功补偿需求确定无功补偿容量,以根据无功补偿容量对储能场区的闲置容量进行配置。本发明提供的技术方案,提高了风光储场站无功补偿容量配置的准确性。

Description

一种风光储场站的无功补偿容量配置方法、装置和设备
本申请要求于2022年11月23日提交中国专利局、申请号为202211474415.3、申请名称为“一种风光储场站的无功补偿容量配置方法、装置和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及功率补偿领域,具体涉及一种风光储场站的无功补偿容量配置方法、装置和设备。
背景技术
目前,风电、光伏等新能源场站需配置足够的无功补偿装置以满足功率因数的要求。同时,多地规定新能源场站需配置一定比例的储能,以平抑新能源发电出力的随机性、波动性。储能作为一种优质的调节资源,在进行有功出力调节的同时,还可以辅助进行无功调节。储能进行无功调节主要通过功率变换系统(power convert system,PCS)实现,可在不影响系统有功出力的前提下,利用储能的闲置容量提供一定的无功支撑,从而减少电站配建无功补偿装置的需求,节省相应投资,提升项目的经济性,降低全社会用电成本。但是,应该提供多少无功补偿容量合适,还没有准确的配置方法。
发明内容
有鉴于此,本发明实施方式提供了一种风光储场站的无功补偿容量配置方法、装置和设备,提高了风光储场站无功补偿容量配置的准确性。
根据第一方面,本发明提供一种风光储场站的无功补偿容量配置方法,所述方法包括:计算在不同光伏实发有功功率条件下的最大储能有功功率和 最大风电有功功率;基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率;利用各个光伏实发有功功率条件下场站无功损耗和场站无功功率的差值确定各个光伏实发有功功率条件下的无功补偿需求;利用各个光伏实发有功功率条件下的无功补偿需求中的最大无功补偿需求确定无功补偿容量,以根据所述无功补偿容量对储能场区的闲置容量进行配置。
可选地,计算在不同光伏实发有功功率条件下的最大储能有功功率,包括:获取光伏额定有功功率、风电额定有功功率和储能额定有功功率;基于所述光伏额定有功功率与所述风电额定有功功率的和确定场站最大有功功率;以预设比例间隔从所述光伏额定有功功率中取值,得到多个不同的光伏实发有功功率;利用所述场站最大有功功率和当前光伏实发有功功率的差值确定当前储能允许有功功率,所述当前储能允许有功功率表征场站当前允许储能发出的最大有功功率;基于所述当前储能允许有功功率和所述储能额定有功功率中的较小值确定当前光伏实发有功功率对应的当前最大储能有功功率。
可选地,计算在不同光伏实发有功功率条件下的最大风电有功功率,包括:利用所述场站最大有功功率、所述当前光伏实发有功功率和所述当前最大储能有功功率的差值确定当前风电允许有功功率,所述当前风电允许有功功率表征场站当前允许风电发出的最大有功功率;基于所述当前风电允许有功功率与所述风电额定有功功率中的较小值确定当前光伏实发有功功率对应的当前最大风电有功功率。
可选地,计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率时,参与计算所用的电压值为场站额定电压缩小了预设倍数的电压值。
可选地,所述预设倍数为0.97倍。
可选地,基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的场站无功损耗,包括:基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的风电场区无功损耗、光伏场区无功损耗、储能场区无功损耗、升压变无功损耗、送出线路无功损耗;计算各个光伏实发有功功率条件对应的风电场区无功损耗、光伏场区无功损耗、储能场区无功损耗、升压变无功损耗、送出线路无功损耗的和,作为各个光伏实发有功功率条件对应的场站无功损耗。
可选地,所述风电场区无功损耗包括风机至箱变线路的无功损耗、风机箱变无功损耗和风电场区集电线路无功损耗;所述光伏场区无功损耗包括光伏逆变器至箱变线路的无功损耗、光伏箱变无功损耗和光伏场区集电线路无功损耗;所述储能场区无功损耗包括储能变流器至箱变线路的无功损耗、储能箱变无功损耗和储能场区集电线路无功损耗。
根据第二方面,本发明实施例提供了一种风光储场站的无功补偿容量配置装置,所述装置包括:最大有功确定模块,用于计算在不同光伏实发有功功率条件下的最大储能有功功率和最大风电有功功率;场站无功计算模块,用于基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率;无功补偿需求计算模块,用于利用各个光伏实发有功功率条件下场站无功损耗和场站无功功率的差值确定各个光伏实发有功功率条件下的无功补偿需求;无功补偿容量配置模块,用于利用各个光伏实发有功功率条件下的无功补偿需求中的最大无功补偿需求确定无功补偿容量,以根据所述无功补偿容量对储能场区的闲置容量进行配置。
根据第三方面,本发明实施例提供了一种风光储场站的无功补偿容量配 置设备,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行第一方面,或者第一方面任意一种可选实施方式中所述的方法。
根据第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机从而执行第一方面,或者第一方面任意一种可选实施方式中所述的方法。
本申请提供的技术方案,具有如下优点:
本申请提供的技术方案,以光伏有功功率为自变量,计算了在不同光伏实发有功功率条件下的最大储能有功功率和最大风电有功功率;然后基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率;之后,在各个光伏实发有功功率条件下计算场站无功损耗和场站无功功率的差值,得到各个光伏实发有功功率条件下的无功补偿需求;最后根据其中的最大无功补偿需求确定无功补偿容量。利用确定的无功补偿容量配置储能闲置容量,使得风光储场站在任何出力情况下产生的无功损耗均可以被配置的储能闲置容量所补偿,在满足风光储场站功率因数的同时,充分利用储能系统闲置容量提供无功支撑,减少了风光储电站配建无功补偿装置的需求,降低电站总投资,提升项目的经济性,降低社会用电成本。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1示出了本发明一个实施方式中一种风光储场站的无功补偿容量配置方法的步骤示意图;
图2示出了本发明一个实施方式中一种风光储场站的无功补偿容量配置装置的结构示意图;
图3示出了本发明一个实施方式中一种风光储场站的无功补偿容量配置设备的结构示意图。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
请参阅图1,在一个实施方式中,一种风光储场站的无功补偿容量配置方法,具体包括如下步骤:
步骤S101:计算在不同光伏实发有功功率条件下的最大储能有功功率和最大风电有功功率。
步骤S102:基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率。
步骤S103:利用各个光伏实发有功功率条件下场站无功损耗和场站无功功率的差值确定各个光伏实发有功功率条件下的无功补偿需求。
步骤S104:利用各个光伏实发有功功率条件下的无功补偿需求中的最大无功补偿需求确定无功补偿容量,以根据无功补偿容量对储能场区的闲置容量进行配置。
具体地,在风光储场站的某一运行方式下,风光储场站无功损耗减去各类无功电源产生的最大无功功率,即为该方式下场站对无功补偿容量的需求。本发明实施例考虑所有正常运行方式,并确定各个正常运行方式下无功补偿容量需求的最大值,若将无功补偿的最大值作为场站需配置的无功补偿的最小规模,则场站能够应付所有正常运行情况下的无功损耗,使风光储场站的功率因数达到最大,保证最高效的有功出力。
而在电压不变的前提下,场站的有功功率越大,则电流越大,对应的场站无功损耗会越大,进而对无功补偿容量的需求也就越大,因此本实施例按照正常运行方式下的场站最大有功功率计算无功补偿容量需求。
基于本发明实施例提供的上述思路,进一步考虑到风电可提供的无功功率相对较小,对场站无功补偿容量需求的影响也较小,还考虑到储能的有功功率出力主要起辅助作用,需要随着光伏和风电有功出力的变化而变化,因此本实施例以光伏有功功率为自变量,分别针对多个光伏实发有功功率条件,计算在不同光伏实发有功功率条件下的最大储能有功功率和最大风电有功功率,从而进一步确定不同光伏实发有功功率条件下的场站最大有功功率。然后利用各个光伏实发有功功率条件下的光伏实发有功功率、最大储能有功功率和最大风电有功功率综合计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率。之后针对各个光伏实发有功功率条件,计算对应的场站无功损耗和场站无功功率的差值,得到各个光伏实发有功功率条件对应的无功补偿需求。最后,从各个光伏实发有功功率条件对应的无功补偿需求找出无功补偿需求的最大值,该最大值作为场站需配置的无功补偿的最小规模,换言之,配置储能的闲置容量时,所配置的闲置容量最小也需要达到无功补偿需求的最大值,所配置的容量可以比无功补偿需求的最大值更多,但是不能少于该值。从而,通过本发明实施例配的储能闲置容量能够应对各类正常运行情况下的无功损耗,即便风光储均以最大有功功率出力,场站产生的无功损耗非常大,所配置的储能闲置容量也可以对其进行无功补偿,如果所配置的储能闲置容量与无功补偿需求的最大值相等,在满足无功补偿要求的同时还避免了多配置容量导致的浪费,从而充分利用储能系统闲置容量提供了无功支撑,减少了风光储电站配建无功补偿装置的需求,降低电站总投资,提升项目的经济性,降低社会用电成本。
具体地,在一实施例中,本发明实施例提供的风光储场站的无功补偿容量配置方法,在计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率时,参与计算所用的电压值为场站额定电压缩小了预设倍数的电压值。具体地,本发明实施例进一步考虑到在场站有功功率不变的前提下,电压越低,对应电流越大,从而场站无功损耗越大,同样使场站对无功补偿容量的需求越大,因此本实施例按照正常运行方式下的最低电压计算无功补偿容量需求。通常安规规定的新能源场站电压偏差应在标称电压的-3%~+7%范 围之内,因此本发明实施例中参与计算的电压取0.97倍额定电压,以同时在最大有功功率和最低电压两种条件下计算得到场站无功补偿需求的最大值,进而使配置的无功补偿容量能够满足风光储场站所有正常运行情况所产生无功损耗。
具体地,在一实施例中,上述步骤S101,具体包括如下步骤:
步骤一:获取光伏额定有功功率、风电额定有功功率和储能额定有功功率。
步骤二:基于光伏额定有功功率与风电额定有功功率的和确定场站最大有功功率。
步骤三:以预设比例间隔从光伏额定有功功率中取值,得到多个不同的光伏实发有功功率。
步骤四:利用场站最大有功功率和当前光伏实发有功功率的差值确定当前储能允许有功功率,当前储能允许有功功率表征场站当前允许储能发出的最大有功功率。
步骤五:基于当前储能允许有功功率和储能额定有功功率中的较小值确定当前光伏实发有功功率对应的当前最大储能有功功率。
步骤六:利用场站最大有功功率、当前光伏实发有功功率和当前最大储能有功功率的差值确定当前风电允许有功功率,当前风电允许有功功率表征场站当前允许风电发出的最大有功功率;
步骤七:基于当前风电允许有功功率与风电额定有功功率中的较小值确定当前光伏实发有功功率对应的当前最大风电有功功率。
具体地,在以光伏有功功率为自变量计算最大风电有功功率和最大储能有功功率之前,首先获取风光储场站的风电、光伏、储能的装机容量Pwi,N、Pso,N和Pst,N,即光伏额定有功功率、风电额定有功功率和储能额定有功功率。由于储能多发挥平滑新能源出力、促进新能源消纳等作用,因此本实施例暂不考虑风光满发时储能也满发的情况,从而确定风光储场站配置的送出线路的最大有功功率为PN=Pwi,N+Pso,N,即允许风光储场站发出的场站最大有功功率为PN。为了以光伏有功功率Pso为自变量,以预设比例间隔从光伏额定有功 功率中取值,得到多个不同的光伏实发有功功率,例如选取合适的正整数n作为不同光伏有功功率的个数,则光伏有功功率取值为
式中,Pso,i表示第i个光伏实发有功功率,即预设预设比例间隔,从光伏额定功率Pso,N中递增提取n个光伏实发有功功率,表征n个正常运行情况。
然后针对每一个光伏实发有功功率,都计算对应的最大储能有功功率和风电最大有功功率为,计算过程如下:
储能有功功率越大,其可以提供的最大无功功率就越小,场站对无功补偿容量的需求越大。在光伏实发有功功率为Pso,i时,储能最大有功功率Pst,max,i为Pst,max,i=min{Pst,N,PN-Pso,i}。即PN是风光储场站整体可以对外发出的最大有功功率,减去光伏的实际有功功率Pso,i后,即为储能允许有功功率,表征从场站整体而言允许储能发出的最大的有功功率,Pst,N作为储能额定功率,当上述两个条件都满足时,最大储能有功功率取上述两值中的最小值。
同理,在光伏实发有功功率为Pso,i且储能的最大有功功率Pst,max,i确定后,取风电最大有功功率为Pwi,max,i=min{Pwi,N,PN-Pso,i-Pst,max,i}。其中,PN-Pso,i-Pst,max,i表示光伏实发有功功率和储能取最大有功功率确定后,场站允许风电发出的最大功率,即风电允许有功功率。
具体地,在一实施例中,上述步骤S102,具体包括如下步骤:
步骤八:基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的风电场区无功损耗、光伏场区无功损耗、储能场区无功损耗、升压变无功损耗、送出线路无功损耗。
步骤九:计算各个光伏实发有功功率条件对应的风电场区无功损耗、光伏场区无功损耗、储能场区无功损耗、升压变无功损耗、送出线路无功损耗的和,作为各个光伏实发有功功率条件对应的场站无功损耗。
具体地,在本发明实施例中,为了进一步提高无功补偿容量配置的准确率,将提高无功损耗计算准确率为前提,本实施例从风电场区无功损耗、光伏场区无功损耗、储能场区无功损耗、升压变无功损耗、送出线路无功损耗五个方面,来准确计算场站整体的无功损耗。通过如下方式,分别计算了n 个光伏实发有功功率条件对应的场站无功损耗。
每一个光伏实发有功功率条件对应的风光储场站无功损耗由风电场区无功损耗、光伏场区无功损耗、储能场区无功损耗、升压变无功损耗、送出线路无功损耗五部分加和得到,各部分的计算方法如下。
1.风电场区无功损耗
其中,风电场区无功损耗又由风机至箱变线路的无功损耗、风机箱变无功损耗、风电场区集电线路无功损耗三部分的加和得到,各部分的计算方法如下。
(a)单台风机至箱变线路的无功损耗由下式(1)和式(2)计算,其中电压、有功功率和功率因数角分别取风电机组的电压、有功功率和最大功率因数角。对场区内所有单台风机至箱变线路的无功损耗求和,得到整个场区内风机至箱变线路的无功损耗。
线路无功损耗QL(单位为Mvar)计算公式为:
QL=3I2X   (1)
式中,I为线路线电流,单位为kA,由(2)式计算;X为线路等值电抗,单位为Ω。
式中,S为线路视在功率,单位为MVA;U为线路线电压,单位为kV;P为线路有功功率,单位为MW,取当前最大风电有功功率;为线路功率因数。
(b)单台风机箱变的无功损耗下式(3)计算,
式中,QT为变压器无功损耗,单位为Mvar;Uk%为变压器短路电压百分比;I0%为变压器空载电流百分比;S为变压器视在功率,单位为MVA;SN为变压器额定容量,单位为MVA。其中视在功率S按下式(4)计算。
其中P为当前最大风电有功功率,单位为MW;为风电机组的最 大功率因数角。对场区内所有单台风机箱变的无功损耗求和,得到整个场区内风机箱变的无功损耗。
(c)根据风电场区集电线路分段情况,单段集电线路无功损耗由式(1)和式(2)计算,其中电压为风机箱变高压侧电压,有功功率为流过该段集电线路的风电机组的有功功率的总和,功率因数角为风电机组的最大功率因数角。对场区内所有单段集电线路的无功损耗求和,得到整个场区内集电线路的无功损耗。
2.光伏场区无功损耗计算
光伏场区无功损耗又由光伏逆变器至箱变线路的无功损耗、光伏箱变无功损耗、光伏场区集电线路无功损耗三部分的加和得到,各部分的计算方法如下。
(a)单台光伏逆变器至箱变线路的无功损耗由式(1)和式(2)计算,其中参数进行替换,需要替换的参数为:电压、有功功率分别取光伏方阵的电压、光伏实发有功功率,功率因数取1。对场区内所有单台光伏逆变器至箱变线路的无功损耗求和,得到整个场区内光伏逆变器至箱变线路的无功损耗。
(b)单台光伏箱变的无功损耗由式(3)计算,其中功率因数取1、视在功率即等于光伏方阵有功功率。对场区内所有单台光伏箱变的无功损耗求和,得到整个场区内光伏箱变的无功损耗。
(c)根据光伏场区集电线路分段情况,单段集电线路无功损耗由式(1)和式(2)计算,其中电压为光伏箱变高压侧电压,有功功率为流过该段集电线路的光伏实发有功功率的总和,功率因数取1。对场区内所有单段集电线路的无功损耗求和,得到整个场区内集电线路的无功损耗。
3.储能场区无功损耗计算
储能场区无功损耗又由储能变流器至箱变线路的无功损耗、储能箱变无功损耗、储能场区集电线路无功损耗三部分的加和得到,各部分的计算方法如下。
(a)单台储能变流器至箱变线路的无功损耗由式(1)和式(2)计算,其中电压取连接至该储能变流器的电池系统的电压,视在功率取储能变流器 的最大容量。场区内所有单台储能变流器至箱变线路的无功损耗求和,得到整个场区内储能变流器至箱变线路的无功损耗。
(b)单台储能箱变的无功损耗由式(3)计算,其中视在功率取储能变流器的最大容量。对场区内所有单台储能箱变的无功损耗求和,得到整个场区内储能箱变的无功损耗。
(c)根据储能场区集电线路分段情况,单段集电线路无功损耗由式(1)和式(2)计算,其中电压为储能箱变高压侧电压,视在功率为功率流过该段集电线路的储能变流器最大容量的总和。对场区内所有单段集电线路的无功损耗求和,得到整个场区内集电线路的无功损耗。
4.升压变无功损耗计算
单台升压变无功损耗由式(3)计算,其中视在功率参考式(4)由有功功率除以功率因数得到,有功功率取连接至该升压变的所有风电、光伏、储能的有功功率的总和,功率因数根据各地相关规程取值。对场区内所有单台升压变无功损耗求和,得到整个场区内升压变的无功损耗。
5.送出线路无功损耗计算
单条送出线路无功损耗由式(1)和式(2)计算,其中电压为升压变高压侧电压,有功功率为连接至该条送出线路的所有风电、光伏、储能的有功功率的总和,功率因数根据各地相关规程取值。对所有单条送出线路的无功损耗求和,得到整个风光储电站送出线路的无功损耗。
通过上述各部分的无功损耗计算,进一步提高了对场站整体的无功损耗估计的准确度。
此外,在本实施例中,基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的场站无功功率步骤如下:
在本实施例中,为了无功补偿容量,需要先计算风光储自身能够提供无功功率作为无功电源的部分,包括:
1.风电场
风电场能提供的最大无功功率Qwi,max(单位为Mvar)
式中P为最大风电有功功率,单位为MW;为风电机组的最大功率因数角。
2.光伏电站和储能电站
光伏逆变器与储能变流器的原理类似,均可为系统提供无功支撑。通过利用光伏逆变器或储能变流器的闲置容量,可以提供的最大无功功率Qmax(单位为Mvar)
式中Smax为逆变器或变流器的最大容量,单位为MVA;P为逆变器或变流器的有功功率,单位为MW,若是光伏电站,则P取当前光伏实发有功功率,若是储能,则P取当前的最大储能有功功率。
通过上述步骤,本申请提供的技术方案,以光伏有功功率为自变量,计算了在不同光伏实发有功功率条件下的最大储能有功功率和最大风电有功功率;然后基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率;之后,在各个光伏实发有功功率条件下计算场站无功损耗和场站无功功率的差值,得到各个光伏实发有功功率条件下的无功补偿需求;最后根据其中的最大无功补偿需求确定无功补偿容量。利用确定的无功补偿容量配置储能闲置容量,使得风光储场站在任何出力情况下产生的无功损耗均可以被配置的储能闲置容量所补偿,在满足风光储场站功率因数的同时,充分利用储能系统闲置容量提供无功支撑,减少了风光储电站配建无功补偿装置的需求,降低电站总投资,提升项目的经济性,降低社会用电成本。
如图2所示,本实施例还提供了一种风光储场站的无功补偿容量配置装置,装置包括:
最大有功确定模块101,用于计算在不同光伏实发有功功率条件下的最大储能有功功率和最大风电有功功率。详细内容参见上述方法实施例中步骤 S101的相关描述,在此不再进行赘述。
场站无功计算模块102,用于基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率。详细内容参见上述方法实施例中步骤S102的相关描述,在此不再进行赘述。
无功补偿需求计算模块103,用于利用各个光伏实发有功功率条件下场站无功损耗和场站无功功率的差值确定各个光伏实发有功功率条件下的无功补偿需求。详细内容参见上述方法实施例中步骤S103的相关描述,在此不再进行赘述。
无功补偿容量配置模块104,用于利用各个光伏实发有功功率条件下的无功补偿需求中的最大无功补偿需求确定无功补偿容量,以根据无功补偿容量对储能场区的闲置容量进行配置。详细内容参见上述方法实施例中步骤S104的相关描述,在此不再进行赘述。
本发明实施例提供的一种风光储场站的无功补偿容量配置装置,用于执行上述实施例提供的一种风光储场站的无功补偿容量配置方法,其实现方式与原理相同,详细内容参见上述方法实施例的相关描述,不再赘述。
通过上述各个组成部分的协同合作,本申请提供的技术方案,以光伏有功功率为自变量,计算了在不同光伏实发有功功率条件下的最大储能有功功率和最大风电有功功率;然后基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率;之后,在各个光伏实发有功功率条件下计算场站无功损耗和场站无功功率的差值,得到各个光伏实发有功功率条件下的无功补偿需求;最后根据其中的最大无功补偿需求确定无功补偿容量。利用确定的无功补偿容量配置储能闲置容量,使得风光储场站在任何出力情况下产生的无功损耗均可以被配置的储能闲置容量所补偿,在满足风光储场站功率因数的同时,充分利用储能系统闲置容量提供无功支撑,减少了风光储电站配建无功补偿装置的需求,降低电站总投资,提升项目的经济性,降低社会用电成本。
图3示出了本发明实施例的一种风光储场站的无功补偿容量设备,该设备包括处理器901和存储器902,可以通过总线或者其他方式连接,图3中以通过总线连接为例。
处理器901可以为中央处理器(Central Processing Unit,CPU)。处理器901还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器902作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如上述方法实施例中的方法所对应的程序指令/模块。处理器901通过运行存储在存储器902中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的方法。
存储器902可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器901所创建的数据等。此外,存储器902可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器902可选包括相对于处理器901远程设置的存储器,这些远程存储器可以通过网络连接至处理器901。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
一个或者多个模块存储在存储器902中,当被处理器901执行时,执行上述方法实施例中的方法。
上述风光储场站的无功补偿容量设备具体细节可以对应参阅上述方法实施例中对应的相关描述和效果进行理解,此处不再赘述。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,实现的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;存储介质还可以包括上述种类的存储器的组合。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (10)

  1. 一种风光储场站的无功补偿容量配置方法,其特征在于,所述方法包括:
    计算在不同光伏实发有功功率条件下的最大储能有功功率和最大风电有功功率;
    基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率;
    利用各个光伏实发有功功率条件下场站无功损耗和场站无功功率的差值确定各个光伏实发有功功率条件下的无功补偿需求;
    利用各个光伏实发有功功率条件下的无功补偿需求中的最大无功补偿需求确定无功补偿容量,以根据所述无功补偿容量对储能场区的闲置容量进行配置。
  2. 根据权利要求1所述的方法,其特征在于,计算在不同光伏实发有功功率条件下的最大储能有功功率,包括:
    获取光伏额定有功功率、风电额定有功功率和储能额定有功功率;
    基于所述光伏额定有功功率与所述风电额定有功功率的和确定场站最大有功功率;
    以预设比例间隔从所述光伏额定有功功率中取值,得到多个不同的光伏实发有功功率;
    利用所述场站最大有功功率和当前光伏实发有功功率的差值确定当前储能允许有功功率,所述当前储能允许有功功率表征场站当前允许储能发出的最大有功功率;
    基于所述当前储能允许有功功率和所述储能额定有功功率中的较小值确定当前光伏实发有功功率对应的当前最大储能有功功率。
  3. 根据权利要求2所述的方法,其特征在于,计算在不同光伏实发有功功率条件下的最大风电有功功率,包括:
    利用所述场站最大有功功率、所述当前光伏实发有功功率和所述当前最大储能有功功率的差值确定当前风电允许有功功率,所述当前风电允许有功功率表征场站当前允许风电发出的最大有功功率;
    基于所述当前风电允许有功功率与所述风电额定有功功率中的较小值确定当前光伏实发有功功率对应的当前最大风电有功功率。
  4. 根据权利要求1所述的方法,其特征在于,计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率时,参与计算所用的电压值为场站额定电压缩小了预设倍数的电压值。
  5. 根据权利要求4所述的方法,其特征在于,所述预设倍数为0.97倍。
  6. 根据权利要求1所述的方法,其特征在于,基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的场站无功损耗,包括:
    基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的风电场区无功损耗、光伏场区无功损耗、储能场区无功损耗、升压变无功损耗、送出线路无功损耗;
    计算各个光伏实发有功功率条件对应的风电场区无功损耗、光伏场区无功损耗、储能场区无功损耗、升压变无功损耗、送出线路无功损耗的和,作为各个光伏实发有功功率条件对应的场站无功损耗。
  7. 根据权利要求6所述的方法,其特征在于,所述风电场区无功损耗包括风机至箱变线路的无功损耗、风机箱变无功损耗和风电场区集电线路无功损耗;所述光伏场区无功损耗包括光伏逆变器至箱变线路的无功损耗、光伏箱变无功损耗和光伏场区集电线路无功损耗;所述储能场区无功损耗包括储能变流器至箱变线路的无功损耗、储能箱变无功损耗和储能场区集电线路无功 损耗。
  8. 一种风光储场站的无功补偿容量配置装置,其特征在于,所述装置包括:
    最大有功确定模块,用于计算在不同光伏实发有功功率条件下的最大储能有功功率和最大风电有功功率;
    场站无功计算模块,用于基于各个光伏实发有功功率条件的光伏实发有功功率、最大储能有功功率和最大风电有功功率计算各个光伏实发有功功率条件对应的场站无功损耗和场站无功功率;
    无功补偿需求计算模块,用于利用各个光伏实发有功功率条件下场站无功损耗和场站无功功率的差值确定各个光伏实发有功功率条件下的无功补偿需求;
    无功补偿容量配置模块,用于利用各个光伏实发有功功率条件下的无功补偿需求中的最大无功补偿需求确定无功补偿容量,以根据所述无功补偿容量对储能场区的闲置容量进行配置。
  9. 一种风光储场站的无功补偿容量配置设备,其特征在于,包括:
    存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行如权利要求1-7任一项所述的方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机从而执行如权利要求1-7任一项所述的方法。
PCT/CN2023/130852 2022-11-23 2023-11-09 一种风光储场站的无功补偿容量配置方法、装置和设备 WO2024109557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211474415.3 2022-11-23
CN202211474415.3A CN115764944A (zh) 2022-11-23 2022-11-23 一种风光储场站的无功补偿容量配置方法、装置和设备

Publications (1)

Publication Number Publication Date
WO2024109557A1 true WO2024109557A1 (zh) 2024-05-30

Family

ID=85335969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130852 WO2024109557A1 (zh) 2022-11-23 2023-11-09 一种风光储场站的无功补偿容量配置方法、装置和设备

Country Status (2)

Country Link
CN (1) CN115764944A (zh)
WO (1) WO2024109557A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115764944A (zh) * 2022-11-23 2023-03-07 中国长江三峡集团有限公司 一种风光储场站的无功补偿容量配置方法、装置和设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014079278A1 (zh) * 2012-11-22 2014-05-30 国家电网公司 一种大规模风电外送系统的无功补偿设备配置方法
CN104578086A (zh) * 2015-02-01 2015-04-29 华北电力大学(保定) 一种风电和光伏发电接入电网的无功电压控制方法
CN105591391A (zh) * 2015-12-23 2016-05-18 国家电网公司 一种风光储联合发电站无功电压控制方法
CN105720573A (zh) * 2016-01-25 2016-06-29 国网冀北电力有限公司电力科学研究院 基于实测数据的风光储电站有功及无功控制系统建模方法
US20210184462A1 (en) * 2017-08-15 2021-06-17 Vestas Wind Systems A/S Improvements relating to reactive power control in wind power plants
CN114759620A (zh) * 2022-05-12 2022-07-15 中国长江三峡集团有限公司 一种风光储场站群无功协同优化调控方法、装置及系统
CN114865649A (zh) * 2022-07-07 2022-08-05 中国长江三峡集团有限公司 一种风光储一体化场站无功调节方法、装置及电子设备
CN115313399A (zh) * 2022-08-25 2022-11-08 中国电力工程顾问集团西北电力设计院有限公司 一种风光储新能源场站无功协调控制方法及系统
CN115764944A (zh) * 2022-11-23 2023-03-07 中国长江三峡集团有限公司 一种风光储场站的无功补偿容量配置方法、装置和设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014079278A1 (zh) * 2012-11-22 2014-05-30 国家电网公司 一种大规模风电外送系统的无功补偿设备配置方法
CN104578086A (zh) * 2015-02-01 2015-04-29 华北电力大学(保定) 一种风电和光伏发电接入电网的无功电压控制方法
CN105591391A (zh) * 2015-12-23 2016-05-18 国家电网公司 一种风光储联合发电站无功电压控制方法
CN105720573A (zh) * 2016-01-25 2016-06-29 国网冀北电力有限公司电力科学研究院 基于实测数据的风光储电站有功及无功控制系统建模方法
US20210184462A1 (en) * 2017-08-15 2021-06-17 Vestas Wind Systems A/S Improvements relating to reactive power control in wind power plants
CN114759620A (zh) * 2022-05-12 2022-07-15 中国长江三峡集团有限公司 一种风光储场站群无功协同优化调控方法、装置及系统
CN114865649A (zh) * 2022-07-07 2022-08-05 中国长江三峡集团有限公司 一种风光储一体化场站无功调节方法、装置及电子设备
CN115313399A (zh) * 2022-08-25 2022-11-08 中国电力工程顾问集团西北电力设计院有限公司 一种风光储新能源场站无功协调控制方法及系统
CN115764944A (zh) * 2022-11-23 2023-03-07 中国长江三峡集团有限公司 一种风光储场站的无功补偿容量配置方法、装置和设备

Also Published As

Publication number Publication date
CN115764944A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2024109557A1 (zh) 一种风光储场站的无功补偿容量配置方法、装置和设备
WO2022142812A1 (zh) 多端海上风电柔性直流与储能协同并网系统及其控制方法
WO2022165914A1 (zh) 分布式电压源变流器协同控制方法及交直流混联微电网
WO2023010624A1 (zh) 融合风电场调度策略的风力发电机布局优化方法
JP7011881B2 (ja) ハイブリッド発電システム及び電力制御装置
CN104578086A (zh) 一种风电和光伏发电接入电网的无功电压控制方法
JP7181691B2 (ja) 再生可能エネルギーハイブリッド発電システム及びその制御方法
CN107645166A (zh) 一种集成光伏的新型统一电能质量调节装置及其控制方法
Shi et al. Decoupling control of series-connected DC wind turbines with energy storage system for offshore DC wind farm
CN112039119B (zh) 一种含光伏接入的配电网电压控制方法及系统
CN102332730B (zh) 可再生能源发电出力控制方法和系统
JP7180993B2 (ja) 発電システム
CN107666156B (zh) 一种风电机组有功无功协调控制方法及系统
Kazemi et al. A novel method for estimating wind turbines power output based on least square approximation
KR101707013B1 (ko) 복합발전 무효전력 제어장치 및 방법
CN113471995A (zh) 一种基于改进平均值法提升新能源高占比区域频率稳定性的储能配置方法
CN109428341B (zh) 一种直流电压协调控制方法
CN104377728A (zh) 并网非上网分布式风力发电机组协调控制方法
Tay et al. Improved Voltage Control in LV Grid-Connected PV System Using Active Power Curtailment with Battery Energy Storage System
CN110148968A (zh) 光伏直流并网系统故障恢复控制方法
Du et al. Power distribution strategy considering active power loss for DFIGs wind farm
Shen et al. Influence of distributed photovoltaic access on power quality of distribution network and countermeasures in new power system
CN108054758A (zh) 新能源电站电压平衡优化方法及存储介质
Jiandong et al. Over-voltage regulation capability analysis of rooftop photovoltaic grid-connected inverters
CN117175712A (zh) 风光同场电站及风光同场电站的配置方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023821468

Country of ref document: EP

Effective date: 20231220