WO2014079278A1 - 一种大规模风电外送系统的无功补偿设备配置方法 - Google Patents

一种大规模风电外送系统的无功补偿设备配置方法 Download PDF

Info

Publication number
WO2014079278A1
WO2014079278A1 PCT/CN2013/084708 CN2013084708W WO2014079278A1 WO 2014079278 A1 WO2014079278 A1 WO 2014079278A1 CN 2013084708 W CN2013084708 W CN 2013084708W WO 2014079278 A1 WO2014079278 A1 WO 2014079278A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactive
reactive power
substation
demand
compensation device
Prior art date
Application number
PCT/CN2013/084708
Other languages
English (en)
French (fr)
Inventor
王雅婷
喻新强
申洪
周勤勇
秦晓辉
王劲武
孙强
王中阳
郑楠
Original Assignee
国家电网公司
中国电力科学研究院
国网陕西省电力公司规划评审中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 中国电力科学研究院, 国网陕西省电力公司规划评审中心 filed Critical 国家电网公司
Publication of WO2014079278A1 publication Critical patent/WO2014079278A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1864Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein the stepless control of reactive power is obtained by at least one reactive element connected in series with a semiconductor switch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1871Methods for planning installation of shunt reactive power compensators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the invention relates to the field of power systems, and in particular to a method for configuring a reactive power compensation device of a large-scale wind power delivery system. Background technique
  • the method of hierarchical partitioning for reactive power balance analysis is the first in China.
  • the commonly used reactive power analysis method is generally only for the chain transmission project, with the segment-by-segment line as the center, and the power flow software calculates the reactive power demand of the main transformer of the segment-by-segment line and its two substations, and then checks the main transformer low voltage of the two substations. Whether the low voltage capacitive reactance on the side can provide these reactive power requirements.
  • This method often results in the low-capacity compensation capacity of the substation being repeatedly accounted for, so it is easy to draw a biased conclusion; and this method seems to be powerless in dealing with the network structure.
  • the present invention provides a method for configuring a reactive power compensation device for a large-scale wind power delivery system.
  • the reliability of the system ⁇ is determined by the reactive power balance analysis under different levels of years and different operating modes.
  • Inductive reactive power demand and proposed a configuration scheme of dynamic reactive power compensation equipment such as capacitors and reactors, such as low-input fixed-cut reactive power compensation equipment, controllable reactors, and static var compensators.
  • the proposed configuration scheme can ensure that the voltage control of each point in the system is within a reasonable range under different operating modes.
  • the dynamic reactive power compensation device can meet the requirements of grid voltage reactive power control under wind power fluctuation, and has strong engineering adaptability.
  • the object of the present invention is to realize a reactive power compensation device configuration method for a large-scale wind power delivery system by the following technical solution, which is improved in that the configuration method includes the following steps -
  • the capacitive reactive demand analysis adopts a reactive partitioning principle of hierarchical partitioning;
  • the capacitive reactive demand of the substation includes a capacitive reactive demand of the transformer and all incoming and outgoing line capacities connected to the substation Sexual reactive demand, '
  • half of the capacitive reactive demand of each line is provided by the substation on the side, and the other half is provided by the opposite substation; if the opposite substation is the Shaoguan station, the capacitive reactive demand of the Beijian road is provided by the substation of the side; Eliminate reactive switching between grids of different voltage levels.
  • the capacitive reactive demand analysis selects the power load heavy load mode and combines the reactive power demand in the serious mode of the line N-1. At this time, the power flow of each substation line is the heaviest, and the capacitive reactive power shortage is the largest.
  • the perceptual reactive power requirement analysis adopts a reactive partitioning principle of hierarchical partitioning:
  • the reactive power balance principle is a charging power of a newly added line of 100% compensation engineering, that is, a combined compensation of each substation and New addition to this substation A half of the line's inductive reactive power shortage is analyzed for demand.
  • the inductive reactive power demand analysis selects the no-load mode, and at this time, the charging power of each substation line is the largest, and the inductive reactive power deficiency is the largest.
  • the capacitive reactive demand analysis adopts a ff DC power flow method, and the capacity configuration scheme of the capacitive reactive power compensation device is described by a capacitive reactive power expression, and the capacitive reactive power balance expression is described.
  • the formula is expressed by the following formula 1-3 -
  • Charging power; ⁇ indicates the active power flow of the substation load: A represents the equivalent reactance of the transformer in the substation.
  • step B the capacity configuration scheme of the inductive reactive power compensation device is described by using an inductive reactive power balance expression, which is represented by the following formulas 6 and 7 -),
  • the perceptual reactive power expression for calculating the inductive reactive power compensation is as follows -
  • the capacitive and inductive reactive power demand analysis of the step A and the step B and the capacity configuration scheme of the capacitive and inductive reactive power compensation device belong to a configuration scheme of the low-voltage side fixed switching reactive power compensation device of the substation.
  • Step D is based on the step A B C, and the final reactive power compensation device configuration scheme is obtained;
  • Step E performs voltage reactive check analysis for the final reactive power compensation device configuration scheme.
  • the method of the present invention utilizes the hierarchical partitioning method for the first time to analyze the reactive power demand of the 750kV substation, and fully utilizes the quantitative relationship between the reactive power demand and the active power transmission, and is based on the active power flow, which is suitable for the power grid planning stage. At the same time, this method can effectively ensure the balance of the system reactive power.
  • the method of the present invention analyzes the demand and necessity of the dynamic reactive power compensation application for the first time, and has a good effect for effectively suppressing the fluctuation of the system voltage caused by the wind power fluctuation and improving the transmission capacity of the channel.
  • the invention aims at large-scale wind power delivery system to meet the requirements of power transmission and wind power access.
  • the capacitive and inductive of each substation in the system is proposed.
  • Reactive power demand and proposed the configuration scheme of dynamic reactive power compensation equipment such as capacitors and reactors, such as low-voltage side fixed switching reactive power compensation equipment, controllable reactor and static var compensator.
  • the proposed configuration scheme can ensure that the voltage control of each point in the system is controlled within a reasonable range in different operating modes.
  • the dynamic reactive power compensation device can meet the requirements of grid voltage reactive power control under wind power fluctuation, and has strong engineering adaptability.
  • Figure is a schematic diagram of a two-in and two-out 750kV substation provided by the present invention.
  • Figure 3 is the voltage curve of the bus line of Shazhou Station and Yuka Station under the change of Hexi wind power output provided by the present invention (there is no dynamic reactive power compensation equipment in the system):
  • FIG. 4 is a schematic diagram of a second channel of the 750 kV networked between the Xinjiang and the northwest main network provided by the present invention
  • Figure 5 is a diagram showing the controllable reactor of the Shazhou-Fish card four-group line under the change of the wind power output provided by the present invention
  • Fig. 6 is a voltage curve of the bus line of the Shazhou station under the change of the wind power output provided by the present invention
  • FIG. 8 is a bus voltage curve of the Qaidam station under the change of the wind power output provided by the present invention
  • Figure 9 is a diagram showing the bus voltage curve of the Dunhuang station under the variation of the wind power output provided by the present invention
  • Figure 10 is a voltage curve of the busbar of the Jiuquan station under the variation of the wind power output provided by the present invention
  • FIG. 11 is a flow chart of a method for configuring a reactive power compensation device of a large-scale wind power delivery system provided by the present invention.
  • the method for configuring reactive power compensation equipment of the large-scale wind power delivery system aims at meeting the demand of Xinjiang electric power delivery and Jiuquan wind power access for the 750kV power transmission and transformation project of the second channel of the Xinjiang and the northwest main network.
  • the capacitive and inductive reactive power requirements of each substation in the system are proposed, and the low-voltage side fixed switching reactive power compensation device and controllable reactor are proposed.
  • the configuration scheme of dynamic reactive power compensation equipment such as static var compensator.
  • the proposed configuration scheme can ensure that the voltage control of each point in the system is within a reasonable range under different operating modes.
  • the dynamic reactive power compensation device can meet the requirements of grid voltage reactive power control under wind power fluctuation, and has strong engineering adaptability.
  • FIG. 11 A flow chart of a method for configuring a reactive power compensation device for a large-scale wind power delivery system provided by the present invention is shown in FIG. 11, and includes the following steps:
  • FIG. 1 is a schematic diagram of a two-in, two-out type 750kV substation (i.e., a 750kV substation with two incoming and two outgoing channels). Before determining the method, some of these conditions are assumed, as follows -
  • the capacitive reactive loss of the line and transformer is the square of the component active power multiplied by the component reactance (both nominal), the power factor of the hidden component is i, both sides of the component
  • the value of the voltage standard is i (the reference voltage is 765kV in heavy load mode).
  • the reactive power exchange between the 750kV side of the substation and the 330kV or 220kV power grid connected to the 750kV power grid is zero.
  • the 750kV power supply only inputs active power and does not inject reactive power.
  • the active power flow is relatively certain, while the uncertainty of the reactive power flow is relatively large. Under the above assumptions, the accuracy requirements of engineering analysis can be met.
  • the reactive power demand can be approximated by the following formula in engineering, that is,
  • the irTF mark indicates the incoming line
  • the out subscript indicates the outgoing line
  • the load subscript indicates the transformer load.
  • the joint reactive power compensation mainly refers to the inductive reactive power of the line high resistance, which is the charging power of the line. This is to consider the reactive power demand after the power transmission and transformation project itself, and the reactive power compensation is mainly the low-voltage capacitor compensation of the substation, but the compensation capacity is limited by the transformer main variable capacity. For example, a 2100MVA main transformer of the Northwest Power Grid, the maximum low-voltage capacitor compensation is 8 X 60Mvar (rated voltage)
  • the method for analyzing the perceptual reactive power demand of the present invention is as follows:
  • the balance principle is 100% to compensate the charging power of the newly added line of the project, and each station considers the demand analysis of the half of the new circuit's inductive reactive power shortage connected with the station.
  • the subscript with m indicates the new enhancement line
  • the out subscript indicates the new outlet.
  • 'To refer to the inductive reactive power of the line high resistance, to charge the line power. This is considering the reactive power demand after the power transmission and transformation project itself, and the inductive reactive power compensation is mainly the low-voltage reactance compensation of the substation, but the compensation capacity is limited by the transformer main variable capacity. If the existing I 2i00MVA main transformer, the maximum low-voltage reactance compensation is 8 X 60Mvar (rated voltage 60kV), for the convenience of convenience, the substation inductive reactive compensation is recorded as .
  • busbar controllable reactor, svc, and the third winding side of the transformer can be used as a feasible solution to increase the inductive reactive power compensation and voltage regulation. If necessary, comprehensive economic and technical comparisons can be made between the schemes.
  • the installation requirements of the dynamic reactive power compensation equipment according to the present invention are as follows - with the construction of the Jiuquan tens of kilowatts wind power base, the fluctuation of the wind power in a large range and high frequency causes the tidal currents on the two channels of the west to the northwest of Xinjiang to fluctuate frequently, the voltage Difficulties in control, conventional low-voltage reactive power compensation equipment can not meet the needs of frequent switching, need to consider the configuration of dynamic reactive power compensation equipment.
  • the typical output curve of Hexi in June is shown in Figure 2.
  • the voltage fluctuations in Shazhou Station and Yuka Station are frequent.
  • the maximum voltage fluctuation of Shazhou Station can reach 30kV.
  • the maximum voltage fluctuation of fish card station is about 50W, and the peaks and valleys fluctuate many times. .
  • Conventional capacitance compensation equipment is difficult to meet the requirements of frequent switching. Therefore, the reactive compensation configuration of Shazhou Station and Yuka Station does not consider the conventional low-capacity and low-resistance scheme.
  • the power transmission capacity of the Xinjiang and Northwest main network channels is mainly affected by the three levels of power transmission in Xinjiang, Xinjiang and the northwest main network, and Jiuquan wind power.
  • the channel control section ⁇ Jiuquan ⁇ Hexi Shuanghui and Shazhou ⁇ fish card double back a total of 4 back 750kV lines.
  • the second will occur.
  • the channel voltage is low.
  • Shazhou ⁇ fish card N _l failure ' if using fixed high resistance, give full play to the reactive power compensation capability of the low-voltage side of each station, 2013 and 2015 heavy-duty mode Shazhou ', 'fish card ⁇ -, if With fixed high resistance, the fish card station voltage is 722kV and 729kV respectively.
  • reactive power compensation becomes a factor that restricts the power transmission capability of the channel.
  • the low-voltage winding side of the Shazhou station reaches the maximum capacitive compensation of 480M V ar, which can reduce the Xinjiang delivery channel.
  • the voltage curve of the bus line of Shazhou Station and Yuka Station under the change of Hexi wind power output There is no dynamic reactive power compensation device in the system) as shown in Figure 3.
  • the transmission capacity of the Xinjiang delivery system which was limited by reactive power compensation in 2013 and 2015, is shown in Table 2 below.
  • the controllable high-resistance reactive power support can ensure that the Xinjiang delivery channel is limited to the temporary stable transmission power, ie The control section limits are limited to reactive power compensation and limited dry temporary stability.
  • the fixed high-resistance and controllable high-resistance are adopted respectively.
  • the transmission capacity of the Xinjiang delivery system is shown in Table 3 below. It can be seen that, subject to reactive power compensation, if the fixed high-resistance is adopted, the transmission capacity of the Xinjiang delivery system is reduced compared with the controllable high-resistance scheme. In 2013, it was reduced by about 1800 MW, and in 2015 it was reduced by about 200 MW. From the perspective of improving the transmission capacity of the channel, it is necessary to control the high resistance of the Shazhou-fish card line and the high resistance of the fish card busbar.
  • Figure 4 is a schematic diagram of the second channel of the 750kV network between Xinjiang and the northwest main network.
  • the layout of the line high voltage reactor is marked.
  • the high resistance of the second channel is 84'1 ⁇ 2.
  • the capacitive reactive power requirements of each substation in the networking channel are analyzed.
  • the reactive stratification zoning method proposed in the invention is adopted to consider the heavy load mode of the 2015 trend, and consider the reactive power demand under the line overloaded N-i mode.
  • Table 4, Table 5 and Table 6 show the reactive power loss of the transformers in the substation of the second channel of the network in the heavy-duty mode in 2015, the reactive power loss of each line, and the capacitive reactive power requirements of each substation.
  • the stations with significant reactive demand under the N-1 mode were Hami Station, Dunhuang Station, Shazhou Station, Yuka Station and Qaidam Station.
  • Hami ⁇ Haminan line N-1 Hami station has the largest demand for reactive power, i83Mvar ; when Haminan ⁇ Shazhou line N-1, Dunhuang station has the largest reactive demand, 203Mvar ; Shazhou ⁇ fish card line N-1
  • the Shazhou station has the largest demand for reactive power, it is 1447Mvar; when the fish card is ⁇ Qaidamu line N-, the Chadmu station has the largest reactive demand, which is 366Mvar;
  • the fish card station Due to the high resistance of the installed busbar, the fish card station has a reactive demand of 330Mvar.
  • Shazhou Station is the new station of this project, and the low voltage winding side of Shazhou main transformer can only install 480M var £ pressure reactive compensation.
  • the reactive demand of Shazhou Station is considered to be partially compensated by its neighboring Dunhuang Station and Hami South Station.
  • the Hamiltonian station has a surplus of 252Mvar, and the Dunhuang station has less than 59Mvar.
  • the increase of 4 sets of 60Mvar low capacity in Dunhuang Station, Hami South Station and Dunhuang Station can provide 433Mvar capacitive reactive for Shazhou Station. Still unable to meet the reactive demand of Shazhou Station.
  • the Qaidam station adds 6 groups of 60Mvar low capacity
  • Hami Converter Station ⁇ Hami South (considering Hami converter station 420Mvar busbar high resistance compensation) Hami change ⁇ Hami ft
  • the reactive power compensation scheme is configured according to the results of the inductive reactive power demand analysis under the above-mentioned no-load mode.
  • the sensible reactive demand of Dunhuang Station is 102Mvar. Although Dunhuang Station has installed 300Mvar busbar controllable reactor, considering the factors such as controllable reactor failure, Dunhuang Station added 2 sets of 60Mvar low resistance. At this time, Dunhuang Station has 8 groups of 60Mvar. Low capacity.
  • the sensible reactive demand of the Shazhou station is 414M V a.
  • the 360Mvar low resistance at the Shazhou station Due to fluctuations in wind power in Jiuquan area, the trajectory of the second channel will fluctuate greatly.
  • dynamic reactive power compensation equipment on the low-voltage side of Shaliu Station, such as TCR-type SVC or magnetic valve-type busbar controllable high-resistance.
  • TCR static var compensator SVC
  • the second channel inductive reactive power compensation device configuration scheme is -
  • IIL Dunhuang Station added 2 groups of 60Mv'ar low resistance
  • the four groups can be controlled to be highly resistant to resection; once the voltage is higher than 790kV, the four groups can be At the same time, in the process of wind power output change, the low-voltage reactive power compensation of each station in the system, the opening and closing mode of other units and the voltage of the unit end of the unit remain unchanged.
  • the change of the graded switching of the controllable reactor is shown in the figure. Figure 5.
  • the voltage fluctuations of the five stations following the wind power at Shazhou Station, Yuka Station, Qaidam Station, Dunhuang Station and Jiuquan Station are shown in Figure 6 ⁇ 10.
  • the voltages of Shazhou, Yuka, Qaidam, Dunhuang and Jiuquan stations will exceed the allowable range.
  • the minimum is 740kV.
  • the bus voltage fluctuation of the 750kV substation on the channel is relatively large.
  • the Shazhou, Dunhuang, Jiuquan and Qaidam stations all exceed 30kV, and the voltage fluctuation range of the fish card station with the largest voltage fluctuation is more than 50kV. If the conventional low-voltage capacitor compensation is used, it can be seen from the figure that it needs to be cut at least twice a day.
  • the controllable high-resistance timely switching can compensate the reactive power changes caused by the line heavy load and light load conversion, thus suppressing the grid voltage fluctuation.
  • the initial capacity of the four groups of controllable reactors in the Shazhou-Fish card double-circuit line is 390Mvar, and the bus voltage of the Shazhou station is lower than 750kV.
  • the first-level capacity is removed and the voltage is restored to the normal range. From the l lh to 12h, the wind power is greatly reduced to 600 million. On this day, the first-class capacity needs to be put in, otherwise the voltage of the Shazhou station will exceed 790kV. From the 14th hour to the i5h, the wind power has risen sharply to 2.4 million. At this time, the controllable reactor needs to cut off the first-level capacity, otherwise the voltage of the Shazhou station will be lower than 750kV.
  • the controllable reactor needs to continue to cut off the primary capacity, otherwise the voltage of the Shazhou station is still lower than 750kV. After that, the wind power fluctuations are gentle, and the controllable reactor maintains the capacity of i56M V ar, which can maintain the voltage of each station in the system within a reasonable range of 750kV ⁇ 790kV.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明属于电力系统领域,具体涉及一种大规模风电外送系统的无功补偿设备应用方案。针对大规模风电外送系统,以满足电力外送和风电接入需求为目标,通过不同水平年、不同运行方式下的无功平衡分析,提出系统中各变电站的容性和感性无功需求,并提出电容器、电抗器等低压侧固定投切无功补偿设备及可控电抗器、静止无功补偿器等动态无功补偿设备的配置方案。所提配置方案能够保证不同运行方式下系统各点电压控制在合理范围内,同时动态无功补偿设备能够满足风功率波动下的电网电压无功控制要求,具有很强的工程适应性。

Description

一种大规模风电夕卜送系统的无功补偿设备配置方法
技术领域
本发明涉及电力系统领域,具体涉及一种大规模风电外送系统的无功补偿设备配置方法。 背景技术
目前, 风电有功功率波动引起的动态无功补偿问题尤为突出。 提出合理可行的第二通道 工程中各变电站的无功补偿配置方案, 对于保证不同运行方式及风功率波动下系统内各点电 压控制在合理范围内非常关键。
在 750kV系统中采用分层分区的方法进行无功平衡分析在国内尚属首次。 目前常用的无 功平衡分析方法一般只针对链状输电工程, 以逐段线路为中心, 由潮流软件计算逐段线路及 其两侧变电站主变的无功需求, 然后检查两侧变电站主变低压侧的低压电容电抗是否可以提 供这些无功需求。 这种方法往往导致变电站中低容的补偿容量被重复计及, 因此易得出偏乐 观的结论; 而且这种方法在处理网状结构日 T显得无能为力。 同日 也是首次在 750kV系统中 提出多个动态无功补偿设备集中应 的需求。
发明内容
针对现有技术的不足, 本发明提供一种大规模风电外送系统的无功补偿设备配置方法, 通过不同水平年、 不同运行方式下的无功平衡分析, 提出系统 Φ各变电站的容性和感性无功 需求, 并提出电容器、 电抗器等低 i£侧固定投切无功补偿设备及可控电抗器、 静止无功补偿 器等动态无功补偿设备的配置方案。 所提配置方案能够保证不同运行方式下系统各点电压控 制在合理范围内, 同时动态无功补偿设备能够满足风功率波动下的电网电压无功控制要求, 具有很强的工程适应性。
本发明的目的是采用下述技术方案实现的- 一种大规模风电外送系统的无功补偿设备配置方法, 其改进之处在于, 所述配置方法包 括下述步骤-
A、 变电站容性无功需求分析, 同时进行变电站感性无功需求分析;
B、 确定容性无功补偿设备的容量配置方案, 同时确定感性无功补偿设备的容量配置方 案;
C、 动态无功补偿设备无功需求分析;
D、 确定最终无功补偿设备配置方案;
E、 对最终无功补偿设备配置方案进行应用校核。
其中, 所述步骤 A中, 所述容性无功需求分析采用分层分区的无功平衡原则; 变电站的容性无功需求包括变压器的容性无功需求以及与变电站相连的所有进出线容性 无功需求,'
其中, 每条线路容性无功需求的一半由本侧变电站提供, 另一半由对侧变电站提供; 若对侧变电站为幵关站, 贝 i践路容性无功需求都由本侧变电站提供; 并且排除不同电压 等级电网之间的无功交换。
其中,所述容性无功需求分析选取潮流重载方式并结合线路 N-1严重方式下的无功需求, 此时各变电站线路的潮流最重, 容性无功缺额最大。
其中, 所述步骤 A中, 所述感性无功需求分析采用分层分区的无功平衡原则: 所述无功 平衡原则为 100%补偿工程新增线路的充电功率,即各变电站结合钋偿与本变电站相连的新增 线路感性无功缺额的一半进行需求分析。
其 , 所述感性无功需求分析选取空载方式, 此时各变电站线路的充电功率最大, 感性 无功缺额最大。
其中, 所述步骤 B中, 所述容性无功需求分析采 ffl直流潮流方法, 容性无功补偿设备的 容量配置方案采用容性无功平衡表达式描述, 所述容性无功平衡表达式用下述①-③式表示 -
Figure imgf000004_0001
②: demand.t ― load ί 其中: C?fe ^表示变电站新增进线的容性无功需求; β 表示变电站新增出线的容 性无功需求; 0^。《 表示变电站负载的容性无功需求; , 表示变电站中线路新增进线的有 功潮流; ffl>i表示变电站中线路新增进线的电抗; .^表示线路进线高抗的感性无功; 表示线路新增进线充电功率; 表示变电站中线路新增出线的有功潮流; „ 表示变电站 中线路新增出线的电抗; ^表示线路新增出线高抗的感性无功; 。^表示线路新增出线
充电功率; ^表示变电站负载的有功潮流: A表示变电站内变压器等效电抗。
其中, 判断是否存在容性无功需求的表达式组如下: 需要 iL≤ ( •d inand.in "' ^-deinand.out + ^--deniaad.i
表示变电站容性无功钋偿; 在潮流方式下, 计算容性无功平衡需要补偿的容性无功表达式如下-
其中, 所述步骤 B中, 所述感性无功补偿设备的容量配置方案采用感性无功平衡表达式 描述, 所述用下述⑥和⑦式表示- ) ,
⑥; ^. =∑( ί, Ζ 2
⑦; 其 . Q,kmand.m'表、示、变入电站新增进线的 w感性无功需求; β 表示变电站新增出线的容 性无功需求。
其中, 判断是否存在感性无功需求的表达式组如下:
^\
Figure imgf000005_0001
表示变电站感性无功补偿;
在潮流方式下, 计算感性无功平 要补偿的感性无功表达式如下-
Q '' demand, in' +
Figure imgf000005_0002
Qi
其中,所述步骤 A和歩骤 B的容性和感性无功需求分析以及容性和感性无功补偿设备的 容量配置方案属于变电站低压侧固定投切无功补偿设备的配置方案。
Figure imgf000005_0003
分析。
其中, 步骤 D基于所述步骤 A B C, 得到最终无功补偿设备配置方案;
步骤 E对于最终无功补偿设备配置方案进行电压无功校核分析。
与现有技术比, 本发明达到的有益效果是;
L本发明的方法首次利用分层分区的方法对于 750kV变电站的无功需求进行分析, 充分 利用无功需求和有功传输之间的定量关系, 可汉基于有功电力流, 适合于电网规划阶段。 同 时, 该方法能有效保证系统无功就地平衡。
2.本发明的方法首次对于动态无功补偿应用的需求和必要性开展分析, 对于有效抑制风 电波动导致系统电压波动以及提高通道的输电能力具有良好的效果。
3、本发明针对大规模风电外送系统, 以满足电力外送和风电接入需求为目标, 通过不同 水平年、 不同运行方式下的无功平衡分析, 提出系统中各变电站的容性和感性无功需求, 并 提出电容器、 电抗器等低压侧固定投切无功补偿设备及可控电抗器、 静止无功补偿器等动态 无功补偿设备的配置方案。 所提配置方案能够保证不同运行方式下系统各点电压控制在合理 范圈内, 同时动态无功补偿设备能够满足风功率波动下的电网电压无功控制要求, 具有很强 的工程适应性。
附图说明
图】是本发明提供的两进两出型 750kV变电站示意图;
图 2是本发明提供的河西风电與型出力曲线;
图 3 是本发明提供的河西风电出力变化情况下沙州站和鱼卡站母线电压曲线 (系统中无 动态无功补偿设备):
图 4是本发明提供的新疆与西北主网联网 750kV第二通道示意图;
图 5是本发明提供的风电出力变化情况下沙州〜鱼卡四组线路可控电抗器投切图- 图 6是本发明提供的风电出力变化情况下沙州站母线电压曲线;
图 7是本发明提供的风电出力变化情况下鱼卡站母线电压曲线;
图 8是本发明提供的风电出力变化情况下柴达木站母线电压曲线; 图 9是本发明提供的风电出力变化情况下敦煌站母线电压曲线;
图 10是本发明提供的风电出力变化情况下酒泉站母线电压曲线;
图 11是本发明提供的大规模风电外送系统的无功补偿设备配置方法的流程图。
具体实施方式
下面结合附图財本发明的具体实施方式作进一步的详细说明。
本发明提供的大规模风电外送系统的无功补偿设备配置方法, 针对大新疆与西北主网联 网第二通道 750kV输变电工程, 以满足新疆电力外送和酒泉风电接入需求为目标, 通过不同 水平年、 不同运行方式下的无功平衡分析, 提出系统中各变电站的容性和感性无功需求, 并 提出电容器、 电抗器等低压侧固定投切无功补偿设备及可控电抗器、 静止无功补偿器等动态 无功补偿设备的配置方案。 所提配置方案能够保证不同运行方式下系统各点电压控制在合理 范围内, 同时动态无功补偿设备能够满足风功率波动下的电网电压无功控制要求, 具有很强 的工程适应性。
本发明提供的大规模风电外送系统的无功补偿设备配置方法的流程图如图 11所示,包括 下述步骤:
本发明涉及的容性无功需求分析方法如下- 图 1为两进两出型 750kV变电站 (即有两个进线通道、 两个出线通道的 750kV变电站) 示意图。 在确定方法之前, 对其中的一些条件作了假设, 具体如下-
( 1 )在容性无功平衡方程式中, 线路和变压器的容性无功损耗为元件有功潮流的平方乘 以元件电抗 (均为标 值), 隐含元件的功率因数为 i, 元件两侧电压标么值为 i (重载方式 下取基准电压 765kV)。
(2) 对于和某 750:kV变电站相连的所有进出线来说, 本着无功就地平衡的原则, 每条 线路容性无功需求的一半由本站提供, 另一半由这条线路的則由对端变电站站提供; 如果对 端为开关站, 则这条线路的所有容性无功需求都 本 提供。 ②
(3 )根据无功分层平衡的原则,变电站的 750kV侧与接入 750kV电网的 330kV或 220kV 电网的无功交换为零。
(4) 不考虑就近直接接入本站 750kV层面大电源的无功补偿能力, 即 750kV电源只注 入有功, 不注入无功。
在规划阶段, 有功潮流比较确定, 而无功潮流的不确定性却相对较大, 在以上假设的情 况下, 能够满足工程分析的精度需求。
根据上述假设, 采用直流潮流方法的假设, 无功需求在工程上可采用下述公式近似, 即
Figure imgf000006_0001
β , __
demand. t ―
Figure imgf000006_0002
其中, 带 irTF标的表示进线, out下标的表示出线, load下标代表变压器负载。 ^ ^为并 联无功补偿, 主要指线路高抗的感性无功, 为线路充电功率。 这是考虑了输变电工程本身 后的无功需求, 而作为无功补偿的则主要是变电站的低压电容补偿, 但补偿容量受变压器主 变容量限制。 如西北电网 1 台 2100MVA主变, 最大低压电容补偿为 8 X 60Mvar (额定电压
60kV), 令变电站容性无功补偿记为 。
是否存在容性无功需求则直接比较需求和可提供的补偿即可, 判断公式如下- j Qc.t -■
Figure imgf000007_0001
' L小不需要要 Qc . > (ίi2de—m .a—iiil.!.n + + fid_.e d.ont ++ Qοd,smmAA. )■
④; 因此, 在安排的潮流方式下, 通过计算无功平衡可得需要补偿的容性无功为
⑤;
实际选取容性补偿方案的注意原则:
( 1 )线路可控电抗器、 svc、 变压器第二绕组侧!低容都可作为增加容性无功补偿和调压 的可行方案, 可行性方案之间需进行综合经济技术比较。
(2 )不能完全依赖上述公式进行判断, 应该本着充分利用电网设备, 技术经济综合优化 的原则, 如果线路两端变压器补偿出现盈余或亏缺两类情 , 则在可接受范围内 (打破完全 分区平衡原则), 应该考虑利用变压器盈余容量的可行性后再考虑线路可控电抗器、静止无功 补偿器 SVC的必要性。
(3 )线路可控电抗器的安装点, 原则上选择无功需求最大的线路, 容量则需要根据缺额 考虑。 ⑥
本发明涉及的感性无功需求分析方法如下:
分析感性无功需求时,平衡原则为 100%补偿工程新增线路的充电功率,各站考虑补偿与 本站相连的新增线路感性无功缺额的一半进行需求分析。
根据图 I模型, 感性无功需求在工程上可采 ffl下述公式近似, 即:
⑦; 其中, 带 m下标的表示新增进线, out下标的表示新增出线。 '为指线路高抗的感性 无功, 为线路充电功率。 这是考虑了输变电工程本身后的无功需求, 而作为感性无功补偿 的则主要是变电站的低压电抗补偿,但补偿容量受变压器主变容量限制。如现有 I台 2i00MVA 主变, 最大低压电抗补偿为 8 X 60Mvar (额定电压 60kV), 为表示方便, 变电站感性无功补 偿记为 。
是否存在感性无功需求则直接比较需求和可提供的补偿即可, 判断公式如下: j 要 Qij ( C?deffiai d—in + i?demai d— out)
[不而 '要 Qi j > (C¾e d.iii十 deKiand.out ) ⑧ 因此, 在安排的潮流方式下, 通过计算无功平衡可得需要补偿的感性无功为-
实际选取感性补偿方案时, 需要注意以下原则:
( 1 )母线可控电抗器、 svc、 变压器第三绕组侧低抗都可作为增加感性无功补偿和调压 的可行方案, 如有必要, 方案之间可进行综合经济技术比较。
( 2 )不能完全依赖上述公式进行判断, 应该本着充分利用电网设备, 技术经济综合优化 的原则, 如果线路两端变压器补偿出现盈余或亏缺两类情况, 则在可接受范围内 (打破完全 分区平衡原则), 应该考虑利用变压器盈余容量的可行性后再考虑母线可控电抗器、 SVC 的 必要性。
本发明涉及的动态无功补偿设备安装需求分析如下- 随着酒泉千万千瓦风电基地建成, 风功率大范围高频率的波动造成新疆经河西至西北主 网的两个通道上潮流波动频繁, 电压控制困难, 常规低压无功补偿设备无法满足频繁投切的 需求, 需要考虑配置动态无功补偿设备。 河西 6月份典型出力曲线如图 2所示, 沙州站、 鱼 卡站电压波动频繁,沙州站最大电压波动可达 30kV左右,鱼卡站最大电压波动达 50W左右, 而且峰谷波动多次。 常规的电容补偿设备难以满足频繁投切的要求, 因而沙州站、 鱼卡站无 功补偿配置不考虑常规低容、 低抗方案。
同时, 从提高通道送电能力的角度进行分祈, 新疆与西北主网通道送电能力主要受新疆 直流、新疆与西北主网送电水平和酒泉风电三方面因素的影响。该通道控制断面 ώ酒泉〜河西 双回和沙州〜鱼卡双回共 4回 750kV线路构成。 经 i†'算, 受限于酒泉〜河西线路酒泉侧三永故 障, 20】3年酒泉直流建成前和 2015年酒泉直流建成后的通道送电能力见下表 1 , 即 2013年 重载方式和 2015年重载方式下控制断面的暂稳极限。 2013年酒泉直流建成前, 控制断面送 电能力为 7500MW左右; 2015年酒泉直流建成后, 控制断面送电能力提高到 8600MW左右。
表 ί 20ί3年和 2015年新疆夕卜送系统输电能力 (受限于酒泉〜河西三永)
Figure imgf000008_0001
受第二通道无功补偿不足的制约, 在维持上述暂稳输送能力时, 若考虑沙州〜鱼卡两回线 路高抗和鱼卡站母线高抗均为常规固定高抗, 会出现第二通道电压偏低的现象。例如, 沙州〜 鱼卡 N_l 故障 ', 若采用固定高抗, 充分发挥各站低压侧的无功补偿能力, 2013年和 2015 年重载方式沙州'、 '鱼卡 Ν- 时, 若采用固定高抗, 鱼卡站电压分别为 722kV、 729kV。 此时, 无功补偿成为制约通道送电能力的因素。
若考虑沙州〜鱼卡两回线路高抗和鱼卡站母线高抗均为常规固定高抗,沙州站低压绕组侧 达到最大容性补偿 480MVar, 此时可通过降低新疆外送通道的输电能力, 以保证沙州〜鱼卡 N-1 沙州站恰好满足无功平衡。河西风电出力变化情况下沙州站和鱼卡站母线电压曲线(系 统中无动态无功补偿设备) 如图 3所示。 2013年和 2015年受限于无功补偿的新疆外送系统 输电能力如下表 2所示。
表 2 2013年和 2015年新疆外送系统输电能力 (受限于无功补偿)
Figure imgf000009_0001
若沙州〜鱼卡两回线路装设四组 390Mvar可控高抗, 可控高抗提供的无功支撑, 恰好可 保证新疆外送通道受限于暂稳的输送功率全部送出, 即受限于无功补偿和受限干暂稳的控制 断面极限保持一致。
综上, 分别采用固定高抗和可控高抗, 新疆外送系统输电能力如下表 3所示。 此可见, 受限于无功补偿,若采用固定高抗,新疆外送系统输电能力相比可控高抗方案有所降低, 2013 年降低了大约 1800MW, 2015年降低了大约 2 00MW。 从提高通道输电能力来看, 沙州〜鱼 卡线路高抗和鱼卡母线高抗采 可控高抗是十分必要的。
表 3 2013年和 2015年有无可控高抗方案下新疆幷送系统输电能力 (MW)
Figure imgf000009_0002
实施钶 I
图 4为新疆与西北主网联网 750kV第二通道示意图, 图中标注了线路高压电抗器的配置 方案。 第二通道全线高抗补偿度为 84'½。
首先分析联网通道各变电站的容性无功需求, 采用发明中提出的无功分层分区方法, 考 虑 2015年潮流重载方式, 并考虑线路重载 N-i方式下的无功需求。 表 4、 表 5、 表 6为 2015 年重载方式下联网第二通道各变电站内变压器的无功损耗、 各线路的无功损耗、 各变电站容 性无功需求。进一歩, 分别考虑 2015年重载方式下第二通道各线路 N -】时的无功需求, 如表 7所示, 每个站选取容性无功缺额最大量作为无功需求。
表 4 2015年重载方式下第二通道各变电站变压器无功损耗
站名 站内变压器无功损耗 ( Mvar )
2
125
哈密换 0
哈密南 0
沙州 0
卡 0 表 5 2015年重载方式下与第二通道各钴相连线路的无功损耗
Figure imgf000010_0001
2015年重载方式下第二通道各站的容性无功需求
Figure imgf000010_0002
表 7 2015年重载 -1严重方式下第二通道各站的容性无功需求 (M r) 第二通道各线路 N-1方式下各站的无功需求 (Mvar)
站名 哈密换〜哈 哈密南〜沙 敦煌〜沙州 沙州〜 ft卡 钼卡〜柴达 哈密'、'哈密换 密南 N - 1 州 N- 1 N- 1 N- 1 木 N- 1 N- 1 哈密 - 34 100 ■45 ■19 ■22 183 敦煌 53 203 54 59 49 62 哈密换 - - - - - - 哈密南 -61 441 -214 -252 -248 -260 沙州 ■720 858 782 1447 613 ■72 i 鱼卡- 330 330 330 330 330 330 柴达木 10 -6 2 - 146 366 M 苁表中可看出, 相较于 2015年重载基本方式, 重载 N-1方式下新疆与西北主网联网第二 通道各站的无功需求更加严重。 2015年重载 N-1方式下存在明显无功需求的站为哈密站、 敦 煌站、沙州站、鱼卡站和柴达木站。哈密〜哈密南线路 N-1时,哈密站无功需求最大,为 i83Mvar; 哈密南〜沙州线路 N-1时, 敦煌站无功需求最大, 为 203Mvar; 沙州〜鱼卡线路 N- 1时, 沙州 站无功需求最大,为 1447Mvar;鱼卡〜柴达木线路 N- 时,柴达木站无功需求最大,为 366Mvar;
鱼卡站由于安装母线高抗, 无功需求为 330Mvar。
同时考虑新疆与西北主网联网 750kV第二通道各变电站低压侧容性无功补偿设备可安装 的最大规模如下表 8所示。
表 8 2015年第二通道各站的最大低压容性无功补偿能力
Figure imgf000011_0001
面依据上述 2015年重载 N-1方式下的容性无功需求分析结果进行方案配置。
①鱼卡站由于安装母线高抗, 无功需求为 330Mv'ar。 考虑将鱼卡站 330Mvar母线固定高 抗变成磁阀式可控高抗, 重载时可控高抗全部退出, 可补偿鱼卡站的无功缺额。 同时, 还可 以动态调节鱼卡站的电压, 抑制电压大幅波动。
②敦煌站在哈密南〜沙州线路 N- 1时达到最大无功需求 203Mvar。考虑在敦煌站增加 4组 60Mvar低容。 此时, 敦煌站共 8组 60Mvar低容。
③哈密站在哈密〜哈密南线路 N-1时达到最大无功需求 183Mvar。由于哈密站有大型火电 电源接入, 可为其提供无功支撑, 同时敦煌站新增低容也为其提供部分无功支撑, 因而不需 要配置额外的无功补偿设备。
④柴达木站在鱼卡〜柴达木线路 N-i时达到最大无功需求 366Mvax。考虑在柴达木站增加 6组 60Mvar低容。 此时, 柴达木站共 14组 60Mvar低容。
⑤沙州站在沙州〜鱼卡线路: k 时达到最大无功需求 1447Mvar。沙州站是本工程新建站, 且沙州主变低压绕组侧最多只能安装 480Mvar £压无功补偿。 除去沙州站自身的补偿, 沙州 站的无功需求考虑其相邻的敦煌站和哈密南站进行部分补偿。 根据表 Ί, 沙州〜鱼卡线路 N-1 时, 哈密南站无功盈余 252Mvar, 敦煌站无功不足 59Mvar。考虑到敦煌站增加的 4组 60Mvar 低容, 哈密南站和敦煌站可为沙州站提供 433Mvar的容性无功。 依旧无法满足沙州站的无功 需求。
考虑将沙州〜鱼卡每回线路上两组 390Mvar 固定高抗变为可控高抗。 选取固定容量 39Mvar, 可调容量 351Mvar。 沙州〜鱼卡线路 N-1后, 剩余一回线路的两组可控高抗共可为 沙州站提供 702Mvar的容性无功。 此时, 沙州主变低压绕组侧需要提供的低压无功补偿容量 为; 1447-702-433=312Mvar。 考虑在沙州主变低压绕组側安装 360Mvar低容, 由于风电波动 的影响, 也可考虑安装 360Mvar静止无功补偿器 SVC (TSC)。 依据前面所述动态无功补偿 设备安装的必要性, 因而在沙州站安装静止无功补偿器 SVC。
综上所述, 2015年第二通道容性无功补偿设备的推荐方案为;
a、 敦煌站增加 4组 60Mvar低容;
b、 柴达木站增加 6组 60Mvar低容;
c 沙州〜鱼卡两回线路共配置 4组可控电抗器, 每组容量 390Mvax, 固定容量 39Mv'ar, 可调容量 351 Mvar, 3级可调, 每级容量 I Mvar;
d、 沙州站配置 360Mvar静止无功补偿器 SVC (容性);
e、 鱼卡站配置 330Mvar磁阔式母线可控高抗。
实施钶 2
分析联网通道各变电站的感性无功需求。依据发明提出的需求分析方法, 即 100%补偿工 程新增线路的充电功率。考虑 2015年空载方式, 联网第二通道各线路的感性无功缺额如下表 9所示, 各站的感性无功需求如下表 10所示。
表 9 第二通道各线路感性无功缺额
Figure imgf000012_0001
表 10 第二通道各钴感性无功需求
站名 需#偿的线路 站感性无功需求 (Mvar)
哈密站 哈密〜哈密換流站 ! 93
哈密〜哈密换流站 -40
哈密换流站
哈密换流站〜哈密南 (考虑哈密换流站 420Mvar母线高抗补偿) 哈密换〜哈密 ft
哈密南站 374
哈密南 少州
敦煌站 敦煌〜沙州 102
敦煌 ~沙州
沙 站 哈密南〜沙州 414
沙州〜 卡
鱼卡'站 沙州〜鱼卡 ■135 鱼卡〜柴达木 (考虑 卡站 330Mvar母线高抗补偿) 柴 木站 鱼卡〜柴达木 70
根据表 10可知, 新疆与西北主网联网第二通道中哈密站、 哈密南站、 敦煌站、 沙洲站、 柴达木站存在感性无功需求, 哈密换流站、 鱼卡站存在感性无功盈余。 第二通道整体的感性 无功缺额为 978Mvar。
同 考虑新疆与西北主网联网 750kV第二通道各变电站低压侧容性无功补偿设备可安装 的最大规模如下表 11所示。
表 11 第二通道各站的最大低压感性无功补偿能力
Figure imgf000013_0001
下面依据上述空载方式下的感性无功需求分析结果进行无功补偿方案配置。
①哈密站感性无功需求为】 93MVar, 由于 2013年哈密站无低抗安装空间, 考虑由对侧哈 密换流站进行补偿, 在哈密换流站内 750/500kV联络变的低压侧装设 2 X 120MV低压电抗 器。
②敦煌站感性无功需求为 102Mvar, 虽然敦煌站己装设 300Mvar母线可控电抗器, 但考 虑可控电抗器故障等因素, 敦煌站增加 2组 60Mvar低抗, 此时敦煌站共 8组 60Mvar低容。
③哈密南站感性无功需求为 374Mvar, 考虑增加 4组 90Mvar低抗。
④柴达木站的感性无功需求为 70Mvar, 考虑增加〗组 60Mvar低抗。
⑤沙州站感性无功需求为 414MVa 考虑在沙州站配置 360Mvar低抗。 由于酒泉地区风 电波动会造成第二通道潮流大幅度波动, 可考虑在沙浏站低压側设置动态无功补偿设备, 如 TCR式 SVC或磁阀式母线可控高抗。 考虑^经济方面考虑, 磁阀式母线高抗设备费用很高, 经济效益差, 因而沙州站感性无功补偿设备配置选取 360MVar静止无功补偿器 SVC ( TCR ) 方案。
综上所述, 第二通道感性无功补偿设备配置方案为-
I、 沙州站配置 360Mvar静止无功补偿器 SVC (感性);
II、 哈密南站增加 4组 90Mvar低抗;
IIL 敦煌站增加 2组 60Mv'ar低抗;
IV、 柴达木站增加 1组 60Mvar低抗。 实施例 3
对于无功补偿配置的调压效果进行分析。 2015年重载方式下, 考虑风电波动, 以风电场 6月份與型出力为例进行仿真计算, 如图 2所示。沙州〜鱼卡两回线路四组 390Mva3"可控高抗 的初始投入量为其最大容量, HP 390Mvar 在风电出力变化时, 沙州〜鱼卡线路的四组可控高 抗根据调压同时进行分档投切, 以保证系统内各站的 750kV侧运行电压在 750kV'、 90kV范 围之内。 一旦电压低于 750kV, 四组可控高抗切除; 一旦电压高于 790kV, 四组可控高抗投 入。 同时, 在风电出力变化过程中, 系统内各站的低压无功补偿、 其它机组开停机方式以及 机组机端电压等均保持不变。 可控电抗器分级投切变化如图 5所示。 沙州站、 鱼卡站、 柴达 木站、 敦煌站、 酒泉站五个站跟随风功率的电压波动情况如图 6〜图 10所示。
若沙州 鱼卡双回线路四组高抗为固定高抗, 沙州站、 鱼卡站、 柴达木站、 敦煌站、 酒泉 站的电压会超出允许范围, 风电出力最大时, 最低达 740kV。 同时, 通道上 750kV变电站母 线电压波动幅度较大, 沙州、 敦煌、 酒泉站、 柴达木站均超过 30kV, 其中电压波动幅度最大 的鱼卡站电压波动范圈超过 50kV。 如果采 ffl采^常规的低压电容补偿, 从图中可看出, 每天 需要至少投切 2次。
若沙州〜鱼卡双回线路四组高抗为可控高抗,可控高抗的及时投切能够补偿线路重载和轻 载转换引起的无功变化, 从而抑制电网电压波动。
初始时刻, 沙州〜鱼卡双回线路四组可控电抗器初始容量 390Mvar, 沙州站母线电压低于 750kV, 切除一级容量, 电压恢复到正常范围内。 从第 l lh到 12h, 风电功率大幅降低到 60 万千万, 此日 需再投入一级容量, 否则沙州站电压将超过 790kV。 从第 14h到 i5h, 风电功 率大幅上升至 240万千万, 此时可控电抗器需切除一级容量, 否则沙州站电压将低于 750kV。 从 15h到 16h, 风电功率继续上升至 310万千瓦, 此时可控电抗器需继续切除一级容量, 否 則沙州站电压还低于 750kV。 之后, 风电波动平缓, 可控电抗器一直维持容量 i56MVar, 即 可保持系统内各站电压维持在 750kV〜790kV的合理范围之内。
由此可见, 通过沙州〜敦煌站四组可控高抗调节, 大体能够满足风功率波动下的电网电压 无功控制要求, 保证系统电压在 750kV~790kV的合理范围之内。 同时, 通过校核, 可控电抗 器的分级投切数也能满足调压要求。
最后应当说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限制, 尽管参照 上述实施例对本发明进行了详细的说明, 所属领域的普通技术人员应当理解: 依然可以对本 发明的具体实施方式进行修改或者等同替换, 而未脱离本发明精神和范围的任何修改或者等 同替换, 其均应涵盖在本发明的权利要求范围当中。

Claims

1、 一种大规模风电外送系统的无功补偿设备配置方法, 其特征在于, 所述配置方法包括 下述步骤-
A、 变电站容性无功需求分析, 同时进行变电站感性无功需求分析;
B、 确定容性无功补偿设备的容量配置方案, 同日 T确定感性无功补偿设备的容量配置方 案;
C、 动态无功补偿设备无功需求分析;
D、 确定最终无功补偿设备配置方案;
E、 对最终无功补偿设备配置方案进行应用校核。
2、 如权利要求 1所述的无功补偿设备配置方法, 其特征在于, 所述步骤 A中, 所述容 性无功需求分析采用分层分区的无功平衡 J原则;
变电站的容性无功需求包括变压器的容性无功需求以及与变电站相连的所有进出线容性 无功需求。
3、 如权利要求 2所述的无功补偿设备配置方法要, 其特征在于, 每条线路容性无功需求的 -半由本侧变电站提供, 另一半由对侧变电站提供; 求
若对侧变电站为开关站, 贝!]线路容性无功需求都由本侧变电站提供; 并且排除不同电压 等级电网之间的无功交换。
4、 如权利要求 2所述的无功补偿设备配置方法, 其特征在于, 所述容性无功需求分析选 取潮流重载方式并结合线路 N-1严重方式下的无功需求, 此 各变电站线路的潮流最重, 容 性无功缺额最大。
5、 如权利要求 i所述的无功补偿设备配置方法, 其特征在于, 所述步骤 A中, 所述感 性无功需求分析采用分层分区的无功平衡原则;所述无功平衡原则为 100%补偿工程新增线路 的充电功率, 即各变电站结合补偿与本变电站相连的新增线路感性无功缺额的一半进行需求 分析。
6、 如权利要求 5所述的无功补偿设备配置方法, 其特征在于, 所述感性无功需求分析选 取空载方式, 此^各变电站线路的充电功率最大, 感性无功缺额最大。
7、 如权利要求 i所述的无功补偿设备配置方法, 其特征在于, 所述歩骤 B中, 所述容 性无功需求分析采 直流潮流方法, 容性无功补偿设备的容量配置方案采 ffl容性无功平衡表 达式描述, 所述容性无功平衡表达式用下述① -③式表示-
①:
Figure imgf000015_0001
J ②; β 二
demand ,ί ― F lo2ad X i 、) 其中: β^Μ„^表示变电站新增进线的容性无功需求; ∞(∞。^表示变电站新增出线的容 性无功需求; ™。^表示变电站负载的容性无功需求; 表示变电站中线路新增进线的有 功潮流; ffl>i表示变电站中线路新增进线的电抗; 表示线路进线高抗的感性无功; Qc.m j 表示线路新增进线充电功率; 表示变电站中线路新增出线的有功潮流; „ 表示变电站 中线路新增出线的电抗: 。 ^表示线路新增出线高抗的感性无功; 表示线路新增出线 充电功率: 表示变电站负载的有功潮流; A表示变电站内变压器等效电抗。
8、 如权利要求 1所述的无功补偿设备配置方法, 其特征在于, 判断是否存在容性无功需 求的表达式组如下:
I Π¾ <~i Q ( Gdemand.in "^" fidemand iut + Gdemand.t)
l ^ rfn ¾ Qc.i ^ (fidemand.in + fideraaiid.otit + fidetnaiid. i )
、- . ^' ;
表示变电站容性无功补偿; 在潮流方式下, 计算容性无功平衡需要补偿的容性无功表达式如下- ¾.;。
9、 如权利要求 1所述的无功补偿设备配置方法, 其特征在于, 所述步骤 B中, 所述感 性无功补偿设备的容量配置方案采 ffl感性无功平衡表达式描述, 所述用下述⑥和⑦式表示: n
Qdem nd.in' "" QCW "" Q h 2
':,! · ⑥;
Q demand .cut' ―
Figure imgf000016_0001
Qsh.ont, j - 1
〖 . ⑦; Ά - ψ : 表示变电站新增进线的感性无功需求; Q一^表示变电站新增 线的容 性无功需求。
10、 如权利要求 9所述的无功补偿设备配置方法, 其特征在于, 判断是否存在感性无功 需求的表达式组如下;
Figure imgf000016_0002
≤ ( !¾temand.in'十 Qlanaiid.on
、不需要 Ql t > (i¾emaJjd.jn. + i 其中: (^表示变电站感性无功钋偿;
在潮流方式下, 计算感性无功平衡需要补偿的感性无功表达式如下-
Q (
11、 如权利要求 i所述的无功补偿设备配置方法, 其特征在于, 所述步骤 A和步骤 B的 容性和感性无功需求分析以及容性和感性无功补偿设备的容量配置方案属于变电站低压侧固 定投切无功钋偿设备的配置方案。
12、 如权利要求 i所述的无功补偿设备配置方法, 其特征在于, 所述步骤 C中, 所述动 态无功补偿设备包括可控电抗器和静止无功补偿器; 所述动态无功补偿设备无功需求从抑制 风功率导致的电压波动和提升通道送电能力两个方面进行分析。
13、如权利要求 i所述的无功补偿设备配置方法, 其特征在于, 步骤 D基于所述步骤 A、 B、 C, 得到最终无功补偿设备配置方案;
步骤 E对于最终无功补偿设备配置方案进行电压无功校核分析。
PCT/CN2013/084708 2012-11-22 2013-09-30 一种大规模风电外送系统的无功补偿设备配置方法 WO2014079278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210480072.1A CN103414197B (zh) 2012-11-22 2012-11-22 一种大规模风电外送系统的无功补偿设备配置方法
CN201210480072.1 2012-11-22

Publications (1)

Publication Number Publication Date
WO2014079278A1 true WO2014079278A1 (zh) 2014-05-30

Family

ID=49607189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084708 WO2014079278A1 (zh) 2012-11-22 2013-09-30 一种大规模风电外送系统的无功补偿设备配置方法

Country Status (2)

Country Link
CN (1) CN103414197B (zh)
WO (1) WO2014079278A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159973A (zh) * 2016-07-27 2016-11-23 浙江群力电气有限公司 变压器投切运行系统
CN108107287A (zh) * 2017-06-07 2018-06-01 国网山西省电力公司电力科学研究院 基于闭环响应动态无功发生装置性能检测装置及检测方法
CN109103947A (zh) * 2018-08-24 2018-12-28 国家电网公司西北分部 一种利用无功平衡确定厂站无功缺额的方法
CN110336296A (zh) * 2019-07-10 2019-10-15 云南电网有限责任公司昆明供电局 一种基于分区无功平衡指标的电网无功设备配置方法
CN112084626A (zh) * 2020-08-06 2020-12-15 国网浙江省电力有限公司嘉兴供电公司 基于分布式光伏接入的配电网无功补偿配置容量计算方法
CN112653156A (zh) * 2021-01-05 2021-04-13 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种线路可控高抗与静止同步补偿器间的协调控制方法
CN113013910A (zh) * 2019-12-19 2021-06-22 国网宁夏电力有限公司经济技术研究院 一种可控高抗在直流输电系统中的应用方法
CN114094591A (zh) * 2021-11-18 2022-02-25 广东电网有限责任公司 一种自动电压控制方法、装置、计算机设备和存储介质
CN114142455A (zh) * 2021-09-30 2022-03-04 国网湖北省电力有限公司电力科学研究院 一种通过特高压交流电站利用区外电源进行黑启动的方法
CN116031898A (zh) * 2022-12-23 2023-04-28 山东大学 一种抑制短时有功冲击的调相机优化配置方法及系统
CN116345701A (zh) * 2023-05-31 2023-06-27 国网安徽省电力有限公司合肥供电公司 一种低压无功补偿智能监测控制系统

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362643B (zh) * 2014-10-10 2017-04-12 国家电网公司 风电场无功补偿配置容量计算方法
CN104578106B (zh) * 2015-01-05 2017-02-22 国网宁夏电力公司电力科学研究院 一种避免风电场脱网的无功控制域计算方法
CN105990854B (zh) * 2015-02-15 2020-01-17 国家电网公司 一种风电基地外送系统中直流功率安排方法
CN106655209B (zh) * 2016-10-21 2019-07-05 国网上海市电力公司 城市电网无功电压的数据处理方法及数据处理系统
CN107947187B (zh) * 2017-11-28 2019-07-05 许继集团有限公司 一种应对直流偏磁引起无功缺额的多变电站协调控制方法
CN110336293A (zh) * 2019-03-12 2019-10-15 国网浙江省电力有限公司经济技术研究院 一种片区电网不同电缆化率情况下无功配置方法和系统
CN110336290B (zh) * 2019-06-27 2021-06-18 中国铁路设计集团有限公司 一种贯通线无功功率分布式动态补偿系统及方法
CN111009906B (zh) * 2019-12-04 2023-12-19 国网河北省电力有限公司雄安新区供电公司 一种全电缆网架的无功补偿平衡方法
CN110994638B (zh) * 2019-12-25 2022-05-24 阳光新能源开发股份有限公司 无功补偿方法、系统及计算机可读存储介质
CN111740427B (zh) * 2020-05-15 2022-07-01 中国电力科学研究院有限公司 一种海上风电场接入系统的无功补偿配置方法及系统
CN112271735A (zh) * 2020-11-02 2021-01-26 国网黑龙江省电力有限公司电力科学研究院 220kV及以下电压等级电网无功平衡的分析方法
CN113852142B (zh) * 2021-09-30 2023-07-07 深圳供电局有限公司 一种多直流馈入电网的多电压等级静动态无功配置方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134356A (en) * 1990-06-22 1992-07-28 Board Of Regents Of The University Of Washington Reactive power compensator
CN101931237A (zh) * 2010-09-06 2010-12-29 余杭供电局 一种高压配电网电压无功配置与运行状态的评估方法
CN102074964A (zh) * 2011-01-26 2011-05-25 中国电力科学研究院 一种电力系统无功平衡及其临界潮流快速分析方法
CN102377189A (zh) * 2011-11-28 2012-03-14 山东电力集团公司潍坊供电公司 风电场无功补偿优化配置及运行方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134356A (en) * 1990-06-22 1992-07-28 Board Of Regents Of The University Of Washington Reactive power compensator
CN101931237A (zh) * 2010-09-06 2010-12-29 余杭供电局 一种高压配电网电压无功配置与运行状态的评估方法
CN102074964A (zh) * 2011-01-26 2011-05-25 中国电力科学研究院 一种电力系统无功平衡及其临界潮流快速分析方法
CN102377189A (zh) * 2011-11-28 2012-03-14 山东电力集团公司潍坊供电公司 风电场无功补偿优化配置及运行方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159973A (zh) * 2016-07-27 2016-11-23 浙江群力电气有限公司 变压器投切运行系统
CN108107287A (zh) * 2017-06-07 2018-06-01 国网山西省电力公司电力科学研究院 基于闭环响应动态无功发生装置性能检测装置及检测方法
CN108107287B (zh) * 2017-06-07 2023-04-25 国网山西省电力公司电力科学研究院 基于闭环响应动态无功发生装置性能检测装置及检测方法
CN109103947A (zh) * 2018-08-24 2018-12-28 国家电网公司西北分部 一种利用无功平衡确定厂站无功缺额的方法
CN110336296A (zh) * 2019-07-10 2019-10-15 云南电网有限责任公司昆明供电局 一种基于分区无功平衡指标的电网无功设备配置方法
CN110336296B (zh) * 2019-07-10 2022-10-21 云南电网有限责任公司昆明供电局 一种基于分区无功平衡指标的电网无功设备配置方法
CN113013910B (zh) * 2019-12-19 2023-07-21 国网宁夏电力有限公司经济技术研究院 一种可控高抗在直流输电系统中的应用方法
CN113013910A (zh) * 2019-12-19 2021-06-22 国网宁夏电力有限公司经济技术研究院 一种可控高抗在直流输电系统中的应用方法
CN112084626A (zh) * 2020-08-06 2020-12-15 国网浙江省电力有限公司嘉兴供电公司 基于分布式光伏接入的配电网无功补偿配置容量计算方法
CN112653156A (zh) * 2021-01-05 2021-04-13 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种线路可控高抗与静止同步补偿器间的协调控制方法
CN112653156B (zh) * 2021-01-05 2024-03-12 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种线路可控高抗与静止同步补偿器间的协调控制方法
CN114142455A (zh) * 2021-09-30 2022-03-04 国网湖北省电力有限公司电力科学研究院 一种通过特高压交流电站利用区外电源进行黑启动的方法
CN114142455B (zh) * 2021-09-30 2023-09-26 国网湖北省电力有限公司电力科学研究院 一种通过特高压交流电站利用区外电源进行黑启动的方法
CN114094591A (zh) * 2021-11-18 2022-02-25 广东电网有限责任公司 一种自动电压控制方法、装置、计算机设备和存储介质
CN116031898A (zh) * 2022-12-23 2023-04-28 山东大学 一种抑制短时有功冲击的调相机优化配置方法及系统
CN116031898B (zh) * 2022-12-23 2024-04-05 山东大学 一种抑制短时有功冲击的调相机优化配置方法及系统
CN116345701A (zh) * 2023-05-31 2023-06-27 国网安徽省电力有限公司合肥供电公司 一种低压无功补偿智能监测控制系统
CN116345701B (zh) * 2023-05-31 2023-08-04 国网安徽省电力有限公司合肥供电公司 一种低压无功补偿智能监测控制系统

Also Published As

Publication number Publication date
CN103414197A (zh) 2013-11-27
CN103414197B (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2014079278A1 (zh) 一种大规模风电外送系统的无功补偿设备配置方法
Liu Ultra-high voltage AC/DC grids
Qu et al. Planning and analysis of the demonstration project of the MVDC distribution network in Zhuhai
CN111009906B (zh) 一种全电缆网架的无功补偿平衡方法
CN103746389B (zh) 基于无功电压特性的风电500kV汇集变电站无功补偿配置方法
Bryantsev et al. Power compensators based on magnetically controlled shunt reactors in electric networks with a voltage between 110 kV and 500 kV
CN103001234A (zh) 基于改进经济压差的特高压电网无功电压控制方法
CN103078329B (zh) 海上风电场长距离220kV海缆送出无功补偿分析方法
CN102904287A (zh) 一种新能源外送系统的facts设备协调控制方法
Tadjeddine et al. Optimal distribution of power under stress on power grid in real-time by reactive compensation-management and development in balance
CN103972897A (zh) 一种特高压交流变电站500kV母线运行电压控制范围确定方法
Ciocia et al. Voltage control in low voltage grids: A comparison between the use of distributed photovoltaic converters or centralized devices
CN112633605A (zh) 一种城市配电网规划方法
CN102074961A (zh) 采用串联公共电抗器配置的分级式可控并联电抗器装置
Joshi et al. Implementation of Thyristor controlled series capacitor in transmission system to improve the performance of power system network
Fan et al. China MV distribution network benchmark for network integrated of renewable and distributed energy resources
CN103208814A (zh) 一种基于微网广域信息的svg电能质量治理工程应用的方法
CN111181171A (zh) 一种无功补偿装置
Yao et al. Research on reactive power optimization of Long Distance Ultra-high Voltage Cable Connected to Municipal Power Grid
Zhong et al. Chinese growing pains
HaoLiang et al. Reactive Power Configuration Scheme of Offshore Wind Power Transmission System by 220UVAC Submarine Cable
CN104377689A (zh) 配电网降损方法和装置
Chen et al. A comprehensive energy saving potential evaluation method for the distribution networks
Wen et al. Low Voltage Control Configuration Method for Remote Rural Distribution Network Coordinated by Voltage Regulator and Capacitor
Song et al. Comprehensive Configuration Method for Static and Dynamic Reactive Power Compensation of Multi-Voltage Level Urban Power Grid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856983

Country of ref document: EP

Kind code of ref document: A1