WO2024109323A1 - 定子组件及其电机 - Google Patents

定子组件及其电机 Download PDF

Info

Publication number
WO2024109323A1
WO2024109323A1 PCT/CN2023/121338 CN2023121338W WO2024109323A1 WO 2024109323 A1 WO2024109323 A1 WO 2024109323A1 CN 2023121338 W CN2023121338 W CN 2023121338W WO 2024109323 A1 WO2024109323 A1 WO 2024109323A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
slot
winding
wire
layer
Prior art date
Application number
PCT/CN2023/121338
Other languages
English (en)
French (fr)
Inventor
王雪东
卢有君
马佳
Original Assignee
深蓝汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深蓝汽车科技有限公司 filed Critical 深蓝汽车科技有限公司
Publication of WO2024109323A1 publication Critical patent/WO2024109323A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present invention relates to the technical field of drive motors for new energy vehicles, and in particular to a stator assembly and a motor thereof.
  • the motor is the main power source of new energy pure electric vehicles. With the rapid development of new energy pure electric vehicles, the demand for motor performance is getting higher and higher. How to improve the efficiency of the motor has always been a research topic for all OEMs. In pursuit of relatively smaller electromagnetic volume to achieve higher performance, flat copper wire motors have become the mainstream design trend; using thick round wires and square wires as motor wires instead of traditional thin round wires to improve the space utilization in the stator slot, that is, the slot fill rate.
  • stator special-shaped slot or parallel tooth design is proposed.
  • the existing special-shaped slot design especially the several layers of flat copper wire at the bottom of the motor stator slot, cannot be changed to special-shaped slots with odd layers of flat copper wire, or parallel slots with different layers of flat copper wire, or no special-shaped slots with even layers due to the large difference in length and width, which cannot fully meet the engineering design requirements of flat copper wire motors.
  • the width-to-narrow ratio of the flat copper wire is too large, the space occupied by the flat copper wire at the end of the winding will increase during the coil twisting process, making it impossible to connect the layers.
  • the excessive width-to-narrow ratio will cause the flat copper wire to have a thin local paint film due to the large turning radius during the twisting process, causing insulation problems.
  • the slot depth of the motor stator cannot be infinitely designed. It is necessary to put more copper wires in a limited space to improve the space utilization of the stator slots, reduce the copper loss of the motor while ensuring that more copper wires are put in, and achieve the purpose of increasing the motor efficiency.
  • the patent with publication number CN114552837A discloses a stator assembly and a motor with a small width-to-narrow ratio conductor.
  • the stator core is provided with a plurality of stator slots, and each stator slot is provided with 3+n conductor layers in sequence along the radial direction of the stator core; wherein the three conductor layers close to the outside of the stator core are double conductor layers, and the remaining n conductor layers are single conductor layers; n is an odd number greater than or equal to 1.
  • the invention adopts a 2+4+n conductor arrangement method, that is, the three conductor layers close to the outside of the stator core are provided with two conductors in each layer, which effectively avoids an excessively large width-to-narrow ratio of a single-slot conductor, reduces the turning radius required for conductor forming, and reduces the height of the motor axial winding end.
  • the patent with the publication number CN114726133A discloses a flat wire double-layer stacked armature winding and a stator and a motor including the same, wherein the flat wire double-layer stacked armature winding includes: a three-phase winding, each phase winding includes a plurality of phase bands; wherein each phase band includes two flat copper wire coils, the flat copper wire coils are introduced from the upper layer of one coil slot, led out from the lower layer of another coil slot, and sequentially enter and exit between the adjacent layers of the two coil slots until the lead-out end is led out from the lower layer of another coil slot, and the lead-out end of one flat copper wire coil is welded and connected with the lead-in end of another flat copper wire coil to form a phase band; wherein the upper layer and the lower layer are distributed from inside to outside along the radial direction of the stator core.
  • the invention can realize the double-layer stacking of the flat copper wire coil in the coil slot, simplify the wire insertion process, and reduce the number of welding points
  • an object of the present invention is to provide a stator assembly and a motor thereof, so as to solve the technical problem of low motor efficiency in the prior art.
  • a stator assembly comprising:
  • stator core wherein the stator core has a hollow shaft hole, and a plurality of stator slots are circumferentially formed on the inner surface of the shaft hole of the stator core, and the stator slots penetrate the two ends of the stator core along the axial direction;
  • stator windings including multiple sets of wires wound along the span of stator slots;
  • N+2 layers of conductors are arranged along the stator core in each stator slot, wherein the conductors of layers 1 to 4 are arranged in parallel at the bottom of the stator slot, and the conductors of other layers are stacked layer by layer from outside to inside along the radial direction of the stator core, and N is an even number greater than 2;
  • stator winding comprising an in-slot winding and an end winding, wherein the end winding comprises a first end and a second end, and the in-slot winding corresponds to wires 1 to N+2 according to the wire layers in the stator slot;
  • the span winding mode of the first end is: the No. 1 wire in the a-th stator slot is connected to the No. 1 wire in the b-th stator slot, the No. 2 wire in the a-th stator slot is connected to the No. 3 wire in the b-th stator slot, the No. 4 wire in the a-th stator slot is connected to the No. 5 wire in the b-th stator slot; the No. N wire in the a-th stator slot is connected to the No. N+1 wire in the b-th stator slot;
  • the span winding method of the second end is: the No. 2 wire in the a-th stator slot is connected to the No. 1 wire in the b-th stator slot, the No. 4 wire in the a-th stator slot is connected to the No. 3 wire in the b-th stator slot, the No. 6 wire in the a-th stator slot is connected to the No. 5 wire in the b-th stator slot; the No. N+2 wire in the a-th stator slot is connected to the No. N+1 wire in the b-th stator slot.
  • the number of the stator slots is Z
  • the number of poles of the stator winding is P
  • the span winding interval of the stator winding is X
  • the number of span winding intervals of the stator winding is set by the number of stator slots and the maximum speed of the stator slots.
  • This span winding solves the problem of inconsistent width ratios of copper conductor coils between different layers due to the slot structure, and solves the problem of welding difficulties in this process.
  • the conductive wires in layers 1 to 4 in the stator slots are arranged in parallel in pairs at the bottom of the stator slots, and the conductive wires in layers 5 to N+2 in the stator slots are stacked layer by layer.
  • the full slot rate can be further improved by arranging the wires in the stator slots.
  • the flat copper wires in layers 1 to 4 have a different width ratio from the flat copper wires in other layers.
  • the copper loss of the flat copper wire during the bending process can be fully reduced.
  • the length edges of the wires in layers 1 to 4 in the stator slots are arranged along the radial direction of the shaft hole, and the width edges of the wires in other layers are arranged along the radial direction of the shaft hole.
  • the full slot rate can be further improved by arranging the wires in the stator slots.
  • stator slots are composed of a bottom slot, a middle slot and a slot opening from bottom to top, the widths of the bottom slot, the middle slot and the slot opening decrease in sequence, and the 1-4 layers of the conductor are arranged in the bottom slot.
  • the flat copper wires are embedded into the stator slots layer by layer according to the different selections of the number of layers of the motor design scheme, and the stator slot type is adjusted according to the different sizes of the flat copper wires.
  • the width of the slot bottom position is adjusted according to different schemes, so as to put as much copper as possible into the stator slots while ensuring better utilization of the stator teeth of the motor.
  • the height of the bottom groove is consistent with the height of the middle groove.
  • stator tooth Furthermore, the structure between two adjacent stator slots is a stator tooth, and the bottom and top widths of the stator tooth are consistent.
  • the number of the stator slots is 48, the number of poles of the stator winding is 8, and the span winding interval of the stator winding is 6, which is the number of the stator slots.
  • the arrangement has a wide range of applications.
  • the span of the end winding is the first stator slot, the seventh stator slot, the thirteenth stator slot, the twentieth stator slot, the twenty-sixth stator slot, the thirty-third stator slot, the thirty-seventh stator slot, the forty-third stator slot, and the first stator slot, which are connected in a cycle in sequence.
  • the arrangement of the stator winding can further improve the efficiency of the motor.
  • stator assembly comprising:
  • stator assembly wherein the stator assembly is any one of the stator assemblies described above;
  • the motor body is installed inside the stator assembly.
  • the present invention increases the width of the bottom position of the stator slot due to the coordination of the stator slot and the wire. After adjusting the width of the bottom position of the stator slot, the utilization rate of the stator teeth is improved. Through the wire with a rectangular cross section and a relatively reasonable position arrangement, the full slot rate in the stator slot is improved, the winding copper loss is reduced, the overall efficiency of the motor is improved, and the overall performance of the motor is improved. Compared with the prior art, the coordination of the stator slot structure, the wire structure, and the stacking method effectively improves the full slot rate of the stator slot, reduces copper loss, and improves the efficiency of the motor.
  • FIG1 is a partial view of a stator punching sheet according to an example of the present invention.
  • FIG2 is an enlarged view of the slot type of a stator punching sheet according to an example of the present invention.
  • FIG3 is a stator winding connection diagram of an example of the present invention.
  • FIG4 is a partial enlarged view of point A in FIG3 ;
  • FIG5 is a partial enlarged view of point B in FIG3;
  • FIG6 is a diagram of a stator winding coil according to an example of the present invention.
  • FIG7 is a diagram of a stator assembly according to an example of the present invention.
  • FIG8 is a CLTC operating point distribution diagram of a certain vehicle model according to an example of the present invention.
  • FIG. 9 is a motor efficiency map according to an example of the present invention.
  • stator core 10 there are a stator core 10 , a stator slot 11 , a bottom slot 111 , a middle slot 112 , a slot opening 113 , a stator tooth 12 , a stator winding 20 , and a conductor 21 .
  • the present invention provides a motor with high efficiency, which includes a motor body and a stator assembly.
  • the stator assembly can be a stator assembly of any of the following embodiments.
  • the stator assembly includes a stator core 10 and a stator winding 20.
  • the stator core 10 has a hollow shaft hole.
  • the stator core 10 is provided with a plurality of stator slots 11 on the inner surface of the shaft hole.
  • the plurality of stator slots 11 are distributed along the radial direction of the shaft hole and penetrate the two ends of the stator core 10.
  • the stator winding 20 is formed by winding a wire 21 along each of the stator slots 11.
  • the cross section of the wire 21 is rectangular.
  • Each of the stator slots 11 is provided with N+2 layers of the conductors 21 along the radial direction of the stator core, wherein the conductors 21 of layers 1 to 4 are arranged in parallel at the bottom of the stator slots 11, and the conductors 21 of other layers are stacked layer by layer from outside to inside along the radial direction of the stator core, and N is an even number greater than 2;
  • the stator winding 20 includes an in-slot winding and an end winding, wherein the end winding includes a first end and a second end, and the in-slot winding corresponds to wires 21 No. 1 to N+2 according to the wire 21 layer in the stator slot 11;
  • the span winding mode of the first end is: the conductor No. 1 in the ath stator slot 11
  • the wire 21 is connected to the No. 1 wire 21 in another stator slot 11, the No. 2 wire 21 in the a-th stator slot 11 is connected to the No. 3 wire 21 in the b-th stator slot 11, the No. 4 wire 21 in the a-th stator slot 11 is connected to the No. 5 wire 21 in the b-th stator slot 11; the No. N wire 21 in the a-th stator slot 11 is connected to the No. N+1 wire 21 in the b-th stator slot 11;
  • the span winding method of the second end is: the No. 2 wire 21 in the a-th stator slot 11 is connected to the No. 1 wire 21 in the b-th stator slot 11, the No. 4 wire 21 in the a-th stator slot 11 is connected to the No. 3 wire 21 in the b-th stator slot 11, the No. 6 wire 21 in the a-th stator slot 11 is connected to the No. 5 wire 21 in the b-th stator slot 11; the No. N+2 wire 21 in the a-th stator slot 11 is connected to the No. X+1 wire 21 in the b-th stator slot 11.
  • the two stator slots 11 a and b are one of two of all the stator slots 11 , for example, the first and seventh.
  • the stator core 10 is an important part of the motor magnetic circuit, and together with the rotor core and the air gap between the stator and the rotor, it forms a complete magnetic circuit of the motor.
  • the magnetic flux in the stator core 10 is alternating, thus generating core loss.
  • the core loss includes two parts: hysteresis loss and eddy current loss.
  • the stator winding 20 refers to the winding installed on the stator, that is, the copper wire wound on the stator.
  • the winding is a general term for a single phase or the entire electromagnetic circuit composed of multiple coils or coil groups.
  • Electric motors can be divided into two types: centralized and distributed, depending on the shape of the coil winding and the embedded wiring method.
  • the winding and embedding of centralized windings are relatively simple, but the efficiency is low and the operating performance is poor.
  • Most of the stators of AC motors use distributed windings. According to different machine types, models and coil embedding process conditions, the motors are designed with different winding types and specifications.
  • the stator winding 20 can be divided into two types: explicit pole type and implicit pole type according to the relationship between the number of magnetic poles of the motor and the actual number of magnetic poles formed by the winding distribution.
  • the specific implementation mode of the present invention is illustrated by using 8 layers of flat copper conductors, specifically the stator slot 11 structure as shown in Figures 1 and 2. According to the requirements of motor performance, 8 layers of conductors are specifically arranged in the same stator slot 11, of which 1-4 layers are guaranteed to be within the range of the special-shaped slot bottom, and the potential arrangement scheme of other layers is an even-numbered arrangement similar to the present invention.
  • stator slot 11 According to the different selections of the number of conductor layers in the motor design scheme, they are embedded in the stator slot 11 layer by layer, and the stator slot type is adjusted according to different conductor sizes, and the width of the slot bottom position is adjusted according to different schemes, so as to put as much copper as possible in the stator slot 11 while ensuring that the stator teeth 12 of the motor are better utilized.
  • the main structure of this slot type of the stator slot 11 is to increase the width of the bottom position of the motor stator slot 11.
  • this special-shaped slot scheme is adopted.
  • the overall area of the stator slot 11 is about 1.1 times that of the winding arrangement, and the corresponding amount of the wire 21 in the stator slot 11 can be increased by about 1.1 times.
  • This scheme allows the motor stator teeth 12 to maintain a state similar to parallel teeth, improves the utilization rate of the motor stator teeth 12, and reduces the winding copper loss through the different sizes of wires 21 and relatively reasonable position arrangement, thereby improving the overall efficiency of the motor and benefiting the overall performance of the motor.
  • the conductive wires 21 of layers 1-4 in the stator slot 11 are arranged in pairs at the bottom of the stator slot 11 , and the conductive wires 21 of layers 5 to N+2 in the stator slot 11 are stacked layer by layer.
  • the conductor 21 is a flat copper wire, wherein the flat copper wires in layers 1 to 4 have a different width ratio from the flat copper wires in other layers.
  • the length edges of the conductors 21 in the 1st to 4th layers in the stator slots 11 are arranged along the radial direction of the shaft hole, and the length edges of the conductors 21 in the other layers are arranged along the radial direction of the shaft hole.
  • the width edge of the wire 21 is arranged along the radial direction of the axial hole.
  • the stator slots 11 are composed of a bottom slot 111, a middle slot 112, and a slot opening 113 from bottom to top, and the widths of the bottom slot 111, the middle slot 112, and the slot opening 113 decrease in sequence, and the 1-4 layers of the conductor 21 are arranged in the bottom slot 111.
  • the height of the bottom slot 111 is consistent with the height of the middle slot 112.
  • the structure between two adjacent stator slots 11 is a stator tooth 12, and the bottom and top widths of the stator tooth 12 are consistent.
  • connection diagram of the stator winding 20 of the present invention as a whole is a detailed connection path of the stator winding 20.
  • the overall scheme of the motor of the present invention adopts a 48-slot 8-pole pole slot matching scheme. Based on this, according to the current slot structure and the number of flat wire layers, the connection method of the copper conductors of different layers between different slots can be specifically described by FIG3 and FIG4 .
  • the span of the motor is from the 1st slot to the 7th slot
  • the 1st layer of the copper conductor is connected to the 1st layer of the 7th slot
  • the 1st layer of the 7th slot is connected to the 2nd layer of the 1st slot after being led out
  • the 2nd layer of the 1st slot is connected to the 3rd layer of the 7th slot after being led out
  • the 3rd layer of the 7th slot is connected to the 3rd layer of the 7th slot.
  • After being led out it is connected to the 4th layer of the 1st slot.
  • the winding connection After being led out from the 5th layer of the 7th slot, it is connected to the 6th layer of the 1st slot. After being led out from the 6th layer of the 1st slot, it is connected to the 7th layer of the 7th slot. After being led out from the 7th layer of the 7th slot, it is connected to the 8th layer of the 1st slot. The 8th layer of the 1st slot is led out and connected to the 8th layer of the 8th slot.
  • the 8th layer of the 8th slot copper conductor goes to the next pole circle of the motor, and is connected in sequence according to the connection method between the 1st and 7th slot layers. It is finally led out at the 1st layer of the 13th slot of the stator, until the 13th slot winding is connected. In order to ensure the balance of the back electromotive force, the winding connection needs to be carried out with a long distance of winding layers.
  • the span of the end winding is the first stator slot 11, the seventh stator slot 11, the thirteenth stator slot 11, the twentieth stator slot 11, the twenty-sixth stator slot 11, the thirty-third stator slot 11, the thirty-seventh stator slot 11, the forty-third stator slot 11, and the first stator slot 11 are connected in sequence in a cycle.
  • the conductor 21 of the fourteenth stator slot 11 is connected to the conductor 21 of the nineteenth stator slot 11 in the span of the end winding.
  • the first layer of the 13th slot is led out and connected to the first layer of the 20th slot
  • the first layer of the 20th slot is led out and connected to the second layer of the 13th slot
  • the second layer of the 13th slot is led out and connected to the third layer of the 20th slot
  • the third layer of the 20th slot is led out and connected to the fourth layer of the 13th slot
  • the fourth layer of the 13th slot is led out and connected to the fifth layer of the 20th slot
  • the fifth layer of the 20th slot is led out and connected to the sixth layer of the 13th slot
  • the sixth layer of the 13th slot is led out and connected to the seventh layer of the 20th slot
  • the seventh layer of the 20th slot is led out and connected to the 13th slot.
  • the copper conductors of different layers of the next pole circle will repeat the connection method of the 1st slot spanning the 7th slot.
  • This connection method solves the problem of inconsistent width ratio of copper conductor coils between different layers caused by the slot structure and solves the problem of difficult welding in the process.
  • the winding coils of different layers in the 14th slot need to span to the 19th slot to form a short-distance effect and further reduce the winding harmonics, thereby improving the sinusoidality of the voltage excitation.
  • the span of the motor is from the 1st slot of the stator slot to the 7th slot, the 7th slot, and the 8th slot.
  • the slot spans to the 13th slot, the 13th slot spans to the 20th slot, the 20th slot spans to the 26th slot, the 26th slot spans to the 32nd slot, the 32nd slot spans to the 37th slot, the 37th slot spans to the 43rd slot, and the 43rd slot spans to the 1st slot;
  • the copper conductor starts from the first layer of the 1st slot and connects to the first layer of the 7th slot.
  • the first layer of the 7th slot is led out and connected to the second layer of the 1st slot.
  • the second layer of the 1st slot is led out and connected to the third layer of the 7th slot.
  • the third layer of the 7th slot is led out and connected to the fourth layer of the 1st slot.
  • the fourth layer of the 1st slot is led out and connected to the fifth layer of the 7th slot.
  • the fifth layer of the 7th slot is led out and connected to the sixth layer of the 1st slot.
  • the sixth layer of the 1st slot is led out and connected to the seventh layer of the 7th slot.
  • the seventh layer of the 7th slot is led out and connected to the eighth layer of the 1st slot.
  • the eighth layer of the 1st slot is led out and connected to the eighth layer of the 8th slot.
  • the eighth layer of the copper conductor of the 8th slot goes to the next pole circle of the motor.
  • the first layer of the 13th slot is led out and connected to the second layer of the 7th slot
  • the second layer of the 7th slot is led out and connected to the third layer of the 13th slot
  • the third layer of the 13th slot is led out and connected to the fourth layer of the 7th slot
  • the fourth layer of the 7th slot is led out and connected to the fifth layer of the 13th slot
  • the fifth layer of the 13th slot is led out and connected to the sixth layer of the 7th slot
  • the sixth layer of the 7th slot is led out and connected to the seventh layer of the 13th slot
  • the seventh layer of the 13th slot is led out and connected to the eighth layer of the 7th slot.
  • the first layer of the 20th slot is led out and connected to the second layer of the 13th slot
  • the second layer of the 13th slot is led out and connected to the third layer of the 20th slot
  • the third layer of the 20th slot is led out and connected to the fourth layer of the 13th slot
  • the fourth layer of the 13th slot is led out and connected to the fifth layer of the 20th slot
  • the fifth layer of the 20th slot is led out and connected to the sixth layer of the 13th slot
  • the sixth layer of the 13th slot is led out and connected to the seventh layer of the 20th slot
  • the seventh layer of the 20th slot is led out and connected to the eighth layer of the 13th slot.
  • the first layer of the 26th slot is led out and connected to the second layer of the 20th slot
  • the second layer of the 20th slot is led out and connected to the third layer of the 26th slot
  • the third layer of the 26th slot is led out and connected to the fourth layer of the 20th slot
  • the fourth layer of the 20th slot is led out and connected to the fifth layer of the 26th slot
  • the fifth layer of the 26th slot is led out and connected to the sixth layer of the 20th slot
  • the sixth layer of the 20th slot is led out and connected to the seventh layer of the 26th slot
  • the seventh layer of the 26th slot is led out and connected to the eighth layer of the 20th slot.
  • the first layer of the 32nd slot is led out and connected to the second layer of the 26th slot
  • the second layer of the 26th slot is led out and connected to the third layer of the 32nd slot
  • the third layer of the 32nd slot is led out and connected to the fourth layer of the 26th slot
  • the fourth layer of the 26th slot is led out and connected to the fifth layer of the 32nd slot
  • the fifth layer of the 32nd slot is led out and connected to the sixth layer of the 26th slot
  • the sixth layer of the 26th slot is led out and connected to the seventh layer of the 32nd slot
  • the seventh layer of the 32nd slot is led out and connected to the eighth layer of the 26th slot.
  • the first layer of the 37th slot is led out and connected to the second layer of the 32nd slot
  • the second layer of the 32nd slot is led out and connected to the third layer of the 37th slot
  • the third layer of the 37th slot is led out and connected to the fourth layer of the 32nd slot
  • the fourth layer of the 32nd slot is led out and connected to the fifth layer of the 37th slot
  • the fifth layer of the 37th slot is led out and connected to the sixth layer of the 32nd slot
  • the sixth layer of the 32nd slot is led out and connected to the seventh layer of the 37th slot
  • the seventh layer of the 37th slot is led out and connected to the eighth layer of the 32nd slot.
  • the first layer of slot 43 is connected to the second layer of slot 37
  • the second layer of slot 37 is connected to the third layer of slot 43
  • the third layer of slot 43 is connected to the fourth layer of slot 37
  • the fourth layer of slot 37 is connected to the fifth layer of slot 43
  • the fifth layer of slot 43 is connected to the sixth layer of slot 37
  • the sixth layer of slot 37 is connected to the seventh layer of slot 43
  • the seventh layer of slot 43 is connected to the eighth layer of slot 37. layer.
  • the second layer of the 43rd slot is led out and connected to the third layer of the 1st slot
  • the third layer of the 1st slot is led out and connected to the fourth layer of the 43rd slot
  • the fourth layer of the 43rd slot is led out and connected to the fifth layer of the 1st slot
  • the fifth layer of the 1st slot is led out and connected to the sixth layer of the 43rd slot
  • the sixth layer of the 43rd slot is led out and connected to the seventh layer of the 1st slot
  • the seventh layer of the 1st slot is led out and connected to the eighth layer of the 43rd slot.
  • the stator winding is formed by connecting the layers in the stator slots in sequence with long-distance winding layers.
  • FIG5 is a physical winding coil structure formed by connecting FIG2, FIG3, and FIG4;
  • FIG. 6 and FIG. 7 show a stator assembly formed based on the winding connection structure and the stator core.
  • the CLTC operating point distribution diagram and Map diagram of a certain vehicle model are obtained by testing the motor in this scheme.
  • the amount of copper used in the stator slots of the overall motor stator is expected to increase by more than 10%.
  • the motor monomer can reach ⁇ 95% under the CLTC operating condition.
  • the overall efficiency of the conventional slot motor monomer is increased by about ⁇ 1% under this condition, achieving higher motor performance with a smaller electromagnetic volume.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

一种定子组件及其电机,定子组件包括定子芯体(10)和定子绕组(20),定子芯体(10)上具有中空的轴孔,定子芯体(10)上在轴孔的内表面开设有多个定子槽(11),多个定子槽(11)沿轴孔的径向分布且贯穿定子芯体(10)的两端;定子绕组由导线(21)沿各定子槽(11)进行跨距缠绕形成,导线(21)的横截面为矩形;定子槽(11)内沿定子铁芯径向依次布置有N+2层导线层,其中1-4层的导线(21)在定子槽(11)的底部并列排布,其他层的导线(21)逐层堆叠,N为大于2的偶数;定子绕组(20)包括槽内绕组和端部绕组,端部绕组包括第一端和第二端,槽内绕组按照定子槽(11)内的导线层对应为1至N+2号导线(21)。与现有技术相比,定子槽(11)结构和导线(21)结构、堆叠方式的配合,有效提升了定子槽(11)的满槽率,降低铜损耗,提高电机的效率。

Description

定子组件及其电机 技术领域
本发明涉及新能源汽车的驱动电机技术领域,具体涉及定子组件及其电机。
背景技术
电机是新能源纯电动汽车的主要动力源,随着新能源纯电动汽车的快速发展,对电机性能的需求越来越高,如何提高电机的效率一直是各主机厂研究的课题。追求相对越小的电磁体积实现更高的性能,扁铜线电机已成为设计主流趋势;用粗圆形导线、方形导线作为电机导线替代传统的细圆导线以提升定子槽内的空间利用率,即槽满率。
为了进一步提高电机定子的槽满率,提出了定子的异形槽或者平行齿设计。但现有异形槽设计方案中,特别是电机定子槽底部的几层扁铜线,因长宽尺寸差异过大导致无法更改为异形槽配合奇数层扁铜线,或是平行槽配合不同的扁铜线层数,或是无异形槽配合偶数层的问题,不能完全满足扁铜线电机工程化设计需求。
另外,如果扁铜线的宽窄比过大的话,扁铜线在线圈扭头成型过程中所占用的绕组端部空间变大,导致无法实现层与层之间的连接,同时过大的宽窄比在扭头成型过程中因转弯半径过大而导致扁铜线局部漆膜过薄引起绝缘问题。电机定子的槽深无法无限设计,需要在有限的空间内放入更多的铜线,提高定子槽的空间利用率,在保证放入更多铜线时降低电机的铜损耗,达到增加电机效率的目的。
公开号为CN114552837A的专利中,公开了一种具有小宽窄比导线的定子组件及电机,定子铁芯上设置有若干个定子槽,每个定子槽内沿定子铁芯径向依次设置有3+n层导线层;其中,靠近定子铁芯外侧的三层导线层均为双导线层,其余n层导线层均为单导线层;n为大于或等于1的奇数。该发明采用2+4+n根导线排布方式,即将靠近定子铁芯外侧的三层导线层,每层中设置有两根导线,有效避免了过大的单槽导线宽窄比,减小了导线成型时所需的转弯半径,降低了电机轴向绕组端部高度。
公开号为CN114726133A的专利中,公开了一种扁线双层叠绕电枢绕组及包括其的定子、电机,其中,所述扁线双层叠绕电枢绕组包括:三相绕组,每一相绕组均包括多个相带;其中,每个相带均包括两个扁铜线线圈,所述扁铜线线圈自一个线圈槽的上层引入,自另一个线圈槽的下层引出,并在两个线圈槽的相邻层之间顺次进出,直至引出端从另一个线圈槽的下层引出,并且,一个扁铜线线圈的引出端与另一个扁铜线线圈的引入端焊接连接,构成相带;其中,上层与下层沿定子铁芯的径向由内至外分布。该发明可以实现扁铜线线圈在线圈槽中的双层叠绕,简化了插线工艺,减少了扁铜线电机焊点数量。
以上方案中,虽然一定程度上减少了电机的铜损耗,但是对定子槽的空间利用率有限,电机效率低。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种定子组件及其电机,用于解决现有技术中电机效率低的技术问题。
为实现上述目的及其他相关目的,本发明提供一种定子组件,包括:
定子芯体,所述定子芯体上具有中空的轴孔,所述定子芯体上在轴孔的内表面沿周向开设有多个定子槽,所述定子槽贯穿所述定子芯体沿轴向的两端;
定子绕组,包括沿定子槽跨距缠绕的多组导线;
其中,每个所述定子槽内沿所述定子铁芯布置有N+2层导线层,其中1-4层的导线在所述定子槽的底部并列排布,其他层的导线沿定子铁芯径向由外至内逐层堆叠,N为大于2的偶数;
定子绕组,所述定子绕组包括槽内绕组和端部绕组,所述端部绕组包括第一端和第二端,所述槽内绕组按照所述定子槽内的导线层对应为1至N+2号导线;
跨距缠绕的a和b两个定子槽中,所述第一端的跨距缠绕方式为:第a个定子槽中的1号导线和第b个定子槽中的1号导线连接,第a个定子槽中的2号导线和第b个所述定子槽中的3号导线连接,第a个所述定子槽中的4号导线和第b个所述定子槽中的5号导线连接;第a个述定子槽中的N号导线和第b个所述定子槽中的N+1号导线连接;
所述第二端的跨距缠绕方式为:第a个所述定子槽中的2号导线和第b个所述定子槽中的1号导线连接,第a个所述定子槽中的4号导线和第b个所述定子槽中的3号导线连接,第a个所述定子槽中的6号导线和第b个所述定子槽中的5号导线连接;第a个所述定子槽中的N+2号导线和第b个所述定子槽中的N+1号导线连接。
进一步,所述定子槽的数量为Z,所述定子绕组的极数为P,所述定子绕组的跨距缠绕间隔所述定子槽的数量为X,则X=Z/P。
根据上述技术手段,通过定子槽的数量和定子槽的极速来设定定子绕组的跨距缠绕间隔数量,此种跨距缠绕解决因此槽型结构导致不同层之间铜导体线圈宽窄比不一致的问题,解决工艺在此问题上焊接困难的问题。
进一步,所述定子槽内1-4层的所述导线在所述定子槽的底部两两并列排布,所述定子槽内5至N+2层的所述导线逐层堆叠。
根据上述技术手段,通过导线在定子槽内的排布方式,能够进一步提升满槽率。
进一步,其中1-4层的扁铜线与其他层的扁铜线宽窄比不同。
根据上述技术手段,以便于充分减少扁铜线在弯折过程中的铜损耗。
进一步,所述定子槽内1-4层的所述导线长度边沿所述轴孔的径向布置,其他层的所述导线宽度边沿所述轴孔的径向布置。
根据上述技术手段,通过导线在定子槽内的排布方式,能够进一步提升满槽率。
进一步,所述定子槽从底部至顶部依次为底槽、中槽和槽口,所述底槽、所述中槽、所述槽口的宽度依次递减,所述导线的1-4层设置于底槽内。
根据上述技术手段,根据电机设计方案对于扁铜线层数的选择不同逐层嵌入定子槽中并根据不同的扁铜线尺寸调整定子的槽型,并根据方案的不同调整槽底位置的宽度,以此在使定子槽内尽可能的放入更多的铜的同时保证电机定子齿部得到更好的利用。
进一步,所述底槽的高度和所述中槽的高度保持一致。
根据上述技术手段,能够充分保证每一层扁铜线的利用。
进一步,相邻两个所述定子槽之间的结构为定子齿,所述定子齿的底部和顶部宽度保持一致。
根据上述技术手段,通过定子齿的设定保证扁铜线的充分利用。
进一步,所述定子槽的数量为48,所述定子绕组的极数为8,所述定子绕组的跨距缠绕间隔所述定子槽的数量为6。
根据上述技术手段,该布置适用范围较广。
进一步,所述定子绕组进行跨距缠绕时所述端部绕组的跨距为第1个所述定子槽、第7个所述定子槽、第13个所述定子槽、第20个所述定子槽、第26个所述定子槽、第33个所述定子槽、第37个所述定子槽、第43个所述定子槽、第1个所述定子槽依次循环连接。
根据上述技术手段,对定子绕组的布置,能够进一步提高电机的效率。
进一步,所述端部绕组的跨距中第14个所述定子槽与第19个所述定子槽的导线连接。
根据上述技术手段,形成短距效应并进一步降低绕组谐波,提高电压激励的正弦度。
相应的,本发明还提供一种定子组件,包括:
定子组件,所述定子组件为上述任一种所述的定子组件;
电机本体,所述定子组件安装于所述电机本体内部。
如上所述,本发明根据上述技术手段,由于定子槽和导线的配合,提高定子槽底部位置的宽度,调整定子槽底部位置的宽度后,提升定子齿部的利用率,通过横截面为矩形的导线及相对合理的位置排布,提升了定子槽中的满槽率,降低绕组铜损耗,提升电机整体效率,利于电机整体性能的发挥。与现有技术相比,定子槽结构和导线结构、堆叠方式的配合,有效提升了定子槽的满槽率,降低铜损耗,提高电机的效率。
附图说明
图1为本发明一示例的定子冲片局部图;
图2为本发明一示例的定子冲片槽型放大图;
图3为本发明一示例的定子绕组连接图;
图4为图3中A处的局部放大图;
图5为图3中B处的局部放大图;
图6为本发明一示例的定子绕组线圈图;
图7为本发明一示例的定子组件图;
图8为本发明一示例的某车型CLTC工况点分布图;
图9为本发明一示例的电机效率Map图。
其中,定子芯体10、定子槽11、底槽111、中槽112、槽口113、定子齿12、定子绕组20、导线21。
具体实施方式
以下将参照附图和优选实施例来说明本发明的实施方式,本领域技术人员可由本说明书中所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。应当理解,优选实施例仅为了说明本发明,而不是为了限制本发明的保护范围。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
本发明中提供一种具有高效率的电机,该电机包括电机本体和定子组件,该定子组件可以为下述实施例中任一实施例的定子组件,结合图1、图2和图7所示,该定子组件包括定子芯体10和定子绕组20,所述定子芯体10上具有中空的轴孔,所述定子芯体10上在轴孔的内表面开设有多个定子槽11,多个所述定子槽11沿轴孔的径向分布且贯穿所述定子芯体10的两端;所述定子绕组20由导线21沿各所述定子槽11进行跨距缠绕形成,所述导线21的横截面为矩形;
其中,每个所述定子槽11内沿所述定子铁芯径向布置有N+2层所述导线21层,其中1-4层的导线21在所述定子槽11的底部并列排布,其他层的导线21沿定子铁芯径向由外至内逐层堆叠,N为大于2的偶数;
定子绕组20,所述定子绕组20包括槽内绕组和端部绕组,所述端部绕组包括第一端和第二端,所述槽内绕组按照所述定子槽11内的导线21层对应为1至N+2号导线21;
跨距缠绕的a和b两个定子槽中,所述第一端的跨距缠绕方式为:第a个所述定子槽11中的1号导 线21和另一所述定子槽11中的1号导线21连接,第a个所述定子槽11中的2号导线21和第b个所述定子槽11中的3号导线21连接,第a个所述定子槽11中的4号导线21和第b个所述定子槽11中的5号导线21连接;第a个所述定子槽11中的N号导线21和第b个所述定子槽11中的N+1号导线21连接;
所述第二端的跨距缠绕方式为:第a个所述定子槽11中的2号导线21和第b个所述定子槽11中的1号导线21连接,第a个所述定子槽11中的4号导线21和第b个所述定子槽11中的3号导线21连接,第a个所述定子槽11中的6号导线21和第b个所述定子槽11中的5号导线21连接;第a个所述定子槽11中的N+2号导线21和第b个所述定子槽11中的X+1号导线21连接。
a和b两个定子槽11是所有定子槽11中的两个之一,比如第一个和第七个。
其中,定子芯体10是电机磁路的重要组成部分,它和转子铁心、定子和转子之间的气隙一起组成电机的完整的磁路。在异步电机中,定子芯体10中的磁通是交变的,因而产生铁心损耗。芯体损耗包括两部分:磁滞损耗和涡流损耗。
定子绕组20是指安装在定子上的绕组,也就是绕在定子上面的铜线。绕组是由多个线圈或线圈组构成一相或整个电磁电路的统称。电动机根据线圈绕制的形状与嵌装布线方式不同,可分为集中式和分布式两类。集中式绕组的绕制和嵌装比较简单,但效率较低,运行性能也差。交流电动机定子绝大部分都是应用分布式绕组,根据不同机种、型号及线圈嵌绕的工艺条件,电动机各自设计采用不同的绕组型式和规格。定子绕组20根据电动机的磁极数与绕组分布形成实际磁极数的关系,可分为显极式与隐式两种类型。
本发明具体实施方式以8层扁线铜导体作为说明,具体如图1和图2所示的定子槽11型结构,根据电机性能的需要,是在同一定子槽11内,具体布置为8层导体,其中1-4层保证处于异形槽底范围内,其他层潜在的布置方案跟本发明相近的偶数层布置根据电机设计方案对于导体层数的选择不同逐层嵌入定子槽11中并根据不同的导体尺寸调整定子的槽型,并根据方案的不同调整槽底位置的宽度,以此在使定子槽11内尽可能的放入更多的铜的同时保证电机定子齿12部得到更好的利用。
在实际实施过程中,定子槽11的此种槽型的主体结构是提高电机定子槽11底部位置的宽度,调整定子槽11底部位置的宽度后,假设原定子槽11的面积为m,采用此种异形槽方案,定子槽11的整体面积是布置绕组的1.1倍左右,相应的定子槽11内的导线21用量同步可提升1.1倍左右,这样方案使电机定子齿12保持类似平行齿的状态,提升电机定子齿12部的利用率,通过不同尺寸的导线21及相对合理的位置排布,降低绕组铜损耗,提升电机整体效率,利于电机整体性能的发挥。
在一些实施例中,所述定子槽11内1-4层的所述导线21在所述定子槽11的底部两两并列排布,所述定子槽11内5至N+2层的所述导线21逐层堆叠。
在一些实施例中,所述导线21为扁铜线,其中1-4层的扁铜线与其他层的扁铜线宽窄比不同。
在一些实施例中,所述定子槽11内1-4层的所述导线21长度边沿所述轴孔的径向布置,其他层 的所述导线21宽度边沿所述轴孔的径向布置。
在一些实施例中,所述定子槽11从底部至顶部依次为底槽111、中槽112和槽口113,所述底槽111、所述中槽112、所述槽口113的宽度依次递减,所述导线21的1-4层设置于底槽111内。所述底槽111的高度和所述中槽112的高度保持一致。相邻两个所述定子槽11之间的结构为定子齿12,所述定子齿12的底部和顶部宽度保持一致。
在一些实施例中,所述定子槽11的数量为Z,所述定子绕组20的极数为P,所述定子绕组20的跨距缠绕间隔所述定子槽11的数量为X,则X=Z/P。在一些实施例中,所述定子槽11的数量为48,所述定子绕组20的极数为8,所述定子绕组20的跨距缠绕间隔所述定子槽11的数量为6。
在具体实施过程中,如图3是本发明整体的定子绕组20连接图,其为定子绕组20的详细连接路径,本发明电机整体方案采用的是48槽8极的极槽配合方案,基于此按照目前的槽型结构和扁线层数,不同槽之间的不同层的铜导体连接方式可通过图3、图4具体描述下,根据图3所示,电机的跨距是从第1槽跨到第7槽,铜导体的第1层层连接第7槽的第1层,第7槽第1层引出后连接第1槽的第2层,第1槽第2层引出后连接第7槽的第3层,第7槽的第3层引出后连接第1槽的第4层,第1槽第4层引出后连接第7槽的第5层,第7槽第5层引出后连接第1槽的第6层,第1槽的第6层引出后连接第7槽的第7层,第7槽第7层引出后连接第1槽的第8层,第1槽的第8层引出转而连接第8槽的第8层,第8槽的第8层铜导体向电机的下一个极圈,按照第1槽和第7槽层与层之间的连接方式递次进行,最终在定子的第13槽第1层引出,直至第13槽绕组连接因为保证反电动势平衡,需以长距的绕组层数连接进行。
在一些实施例中,所述定子绕组20进行跨距缠绕时所述端部绕组的跨距为第1个所述定子槽11、第7个所述定子槽11、第13个所述定子槽11、第20个所述定子槽11、第26个所述定子槽11、第33个所述定子槽11、第37个所述定子槽11、第43个所述定子槽11、第1个所述定子槽11依次循环连接。所述端部绕组的跨距中第14个所述定子槽11与第19个所述定子槽11的导线21连接。
具体如图4,第13槽第1层引出后连接第20槽的第1层,第20槽的第1层引出连接第13槽的第2层,第13槽的第2层引出连接第20槽的第3层,第20槽的第3层引出后连接第13槽的第4层,第13槽的第4层引出后连接第20槽的第5层,第20槽的第5层引出后连接第13槽的第6层,第13槽的第6层引出连接第20槽的第7层,第20槽的第7层引出后连接第13槽的第8层,下一极圈的不同层的铜导体将重复第1槽跨第7槽的连接方式,以此通过此种连接方式解决因此槽型结构导致不同层之间铜导体线圈宽窄比不一致的问题,解决工艺在此问题上焊接困难的问题;另外需要特殊说明的是为进一步保证绕组线圈的电势平衡,按此绕组连接方式,需要在第14槽不同层数的绕组线圈跨距至第19槽形成短距效应并进一步降低绕组谐波,提高电压激励的正弦度。
具体示例中,在48槽8极的极槽配合方案中,电机的跨距是从定子槽的第1槽跨至第7槽、第7 槽跨至第13槽、第13槽跨至第20槽、第20槽跨至第26槽、第26槽跨至第32槽、第32槽跨至第37槽、第37槽跨至第43槽、第43槽跨至第1槽;第2槽跨至第8槽、第8槽跨至第14槽、第14槽跨至第19槽、第19槽跨至第25槽、第25槽跨至第31槽、第31槽跨至第38槽、第37槽跨至第44槽、第44槽跨至第2槽。
整个过程中铜导体从第1槽的第1层出发,连接第7槽的第1层,第7槽第1层引出后连接第1槽的第2层,第1槽第2层引出后连接第7槽的第3层,第7槽的第3层引出后连接第1槽的第4层,第1槽第4层引出后连接第7槽的第5层,第7槽第5层引出后连接第1槽的第6层,第1槽的第6层引出后连接第7槽的第7层,第7槽第7层引出后连接第1槽的第8层,第1槽的第8层引出转而连接第8槽的第8层,第8槽的第8层铜导体向电机的下一个极圈。
第13槽第1层引出后连接第7槽的第2层,第7槽第2层引出后连接第13槽的第3层,第13槽的第3层引出后连接第7槽的第4层,第7槽第4层引出后连接第13槽的第5层,第13槽第5层引出后连接第7槽的第6层,第7槽的第6层引出后连接第13槽的第7层,第13槽第7层引出后连接第7槽的第8层。
第20槽第1层引出后连接第13槽的第2层,第13槽第2层引出后连接第20槽的第3层,第20槽的第3层引出后连接第13槽的第4层,第13槽第4层引出后连接第20槽的第5层,第20槽第5层引出后连接第13槽的第6层,第13槽的第6层引出后连接第20槽的第7层,第20槽第7层引出后连接第13槽的第8层。
第26槽第1层引出后连接第20槽的第2层,第20槽第2层引出后连接第26槽的第3层,第26槽的第3层引出后连接第20槽的第4层,第20槽第4层引出后连接第26槽的第5层,第26槽第5层引出后连接第20槽的第6层,第20槽的第6层引出后连接第26槽的第7层,第26槽第7层引出后连接第20槽的第8层。
第32槽第1层引出后连接第26槽的第2层,第26槽第2层引出后连接第32槽的第3层,第32槽的第3层引出后连接第26槽的第4层,第26槽第4层引出后连接第32槽的第5层,第32槽第5层引出后连接第26槽的第6层,第26槽的第6层引出后连接第32槽的第7层,第32槽第7层引出后连接第26槽的第8层。
第37槽第1层引出后连接第32槽的第2层,第32槽第2层引出后连接第37槽的第3层,第37槽的第3层引出后连接第32槽的第4层,第32槽第4层引出后连接第37槽的第5层,第37槽第5层引出后连接第32槽的第6层,第32槽的第6层引出后连接第37槽的第7层,第37槽第7层引出后连接第32槽的第8层。
第43槽第1层引出后连接第37槽的第2层,第37槽第2层引出后连接第43槽的第3层,第43槽的第3层引出后连接第37槽的第4层,第37槽第4层引出后连接第43槽的第5层,第43槽第5层引出后连接第37槽的第6层,第37槽的第6层引出后连接第43槽的第7层,第43槽第7层引出后连接第37槽的第8 层。
第43槽第2层引出后连接第1槽的第3层,第1槽的第3层引出后连接第43槽的第4层,第43槽第4层引出后连接第1槽的第5层,第1槽第5层引出后连接第43槽的第6层,第43槽的第6层引出后连接第1槽的第7层,第1槽第7层引出后连接第43槽的第8层。
按照定子槽内层与层之间的连接方式递次进行,以长距的绕组层数连接进行形成定子绕组。
关于第2槽、第8槽、第14槽、第19槽、第25槽、第31槽、第38槽、第44槽、第2槽之间定子绕组的跨距缠绕方式,可完全参考上述第1槽、第13槽、第20槽、第26槽、第32槽、第37槽、第43槽、第1槽之间导线的缠绕方式来进行。
如图5是按照图2、图3、图4所连接而成的实物绕组线圈结构;
如图6、图7是基于此绕组连接结构配合定子铁芯所形成的定子组件。
如图8、图9是根据本方案中的电机进行试验获得某车型CLTC工况点分布图和Map图,本方案中整体电机定子的定子槽内用铜量预计提升10%以上,在保证同常规平行槽型的电磁方案相同包含但不限于极槽配合、硅钢、磁钢选型相同的情况下,可实现电机单体在CLTC工况下达到≥95%,相对常规槽型电机单体整体效率在此工况下提升约≥1%,以更小的电磁体积实现更高的电机性能。
上述实施例仅例示性说明本实用新型的原理及其功效,而非用于限制本实用新型。任何熟悉此技术的人士皆可在不违背本实用新型的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本实用新型所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本实用新型的权利要求所涵盖。

Claims (12)

  1. 一种定子组件,其特征在于,包括:
    定子芯体,所述定子芯体上具有中空的轴孔,所述定子芯体上在轴孔的内表面沿周向开设有多个定子槽,所述定子槽贯穿所述定子芯体沿轴向的两端;
    定子绕组,包括沿定子槽跨距缠绕的多组导线;
    其中,每个所述定子槽内沿所述定子铁芯布置有N+2层导线层,其中1-4层的导线在所述定子槽的底部并列排布,其他层的导线沿定子铁芯径向由外至内逐层堆叠,N为大于2的偶数;
    定子绕组,所述定子绕组包括槽内绕组和端部绕组,所述端部绕组包括第一端和第二端,所述槽内绕组按照所述定子槽内的导线层对应为1至N+2号导线;
    跨距缠绕的a和b两个定子槽中,所述第一端的跨距缠绕方式为:第a个定子槽中的1号导线和第b个定子槽中的1号导线连接,第a个定子槽中的2号导线和第b个所述定子槽中的3号导线连接,第a个所述定子槽中的4号导线和第b个所述定子槽中的5号导线连接;第a个述定子槽中的N号导线和第b个所述定子槽中的N+1号导线连接;
    所述第二端的跨距缠绕方式为:第a个所述定子槽中的2号导线和第b个所述定子槽中的1号导线连接,第a个所述定子槽中的4号导线和第b个所述定子槽中的3号导线连接,第a个所述定子槽中的6号导线和第b个所述定子槽中的5号导线连接;第a个所述定子槽中的N+2号导线和第b个所述定子槽中的N+1号导线连接。
  2. 根据权利要求1所述的定子组件,其特征在于:所述定子槽的数量为Z,所述定子绕组的极数为P,所述定子绕组的跨距缠绕间隔所述定子槽的数量为X,则X=Z/P。
  3. 根据权利要求2所述的定子组件,其特征在于:所述定子槽内1-4层的所述导线在所述定子槽的底部两两并列排布,所述定子槽内5至N+2层的所述导线逐层堆叠。
  4. 根据权利要求3所述的定子组件,其特征在于:所述导线为扁铜线,其中1-4层的扁铜线与其他层的扁铜线宽窄比不同。
  5. 根据权利要求4所述的定子组件,其特征在于:所述定子槽内1-4层的所述导线长度边沿所述轴孔的径向布置,其他层的所述导线宽度边沿所述轴孔的径向布置。
  6. 根据权利要求1所述的定子组件,其特征在于:所述定子槽从底部至顶部依次为底槽、中槽和槽口,所述底槽、所述中槽、所述槽口的宽度依次递减,所述导线的1-4层设置于底槽内。
  7. 根据权利要求6所述的定子组件,其特征在于:所述底槽的高度和所述中槽的高度保持一致。
  8. 根据权利要求6所述的定子组件,其特征在于:相邻两个所述定子槽之间的结构为定子齿,所述定子齿的底部和顶部宽度保持一致。
  9. 根据权利要求2所述的定子组件,其特征在于:所述定子槽的数量为48,所述定子绕组的极数为8,所述定子绕组的跨距缠绕间隔所述定子槽的数量为6。
  10. 根据权利要求9所述的定子组件,其特征在于:所述定子绕组进行跨距缠绕时所述端部绕组的跨距为第1个所述定子槽、第7个所述定子槽、第13个所述定子槽、第20个所述定子槽、第26个所述定子槽、第33个所述定子槽、第37个所述定子槽、第43个所述定子槽、第1个所述定子槽依次循环连接。
  11. 根据权利要求1所述的定子组件,其特征在于:所述端部绕组的跨距中第14个所述定子槽与第19个所述定子槽的导线连接。
  12. 一种电机,其特征在于,包括:
    定子组件,所述定子组件为权利要求1-11中任一所述的定子组件;
    电机本体,所述定子组件安装于所述电机本体内部。
PCT/CN2023/121338 2022-11-25 2023-09-26 定子组件及其电机 WO2024109323A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211494277.5 2022-11-25
CN202211494277.5A CN118137711A (zh) 2022-11-25 2022-11-25 定子组件及其电机

Publications (1)

Publication Number Publication Date
WO2024109323A1 true WO2024109323A1 (zh) 2024-05-30

Family

ID=91195190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121338 WO2024109323A1 (zh) 2022-11-25 2023-09-26 定子组件及其电机

Country Status (2)

Country Link
CN (1) CN118137711A (zh)
WO (1) WO2024109323A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009965A (ja) * 2017-06-28 2019-01-17 株式会社Soken 回転電機ステータ
CN110556936A (zh) * 2018-05-31 2019-12-10 比亚迪股份有限公司 定子组件以及电机
CN114243961A (zh) * 2021-12-17 2022-03-25 上海易唯科电机技术有限公司 一种同槽层多线的定子组件及扁线电机
CN114552837A (zh) * 2022-02-28 2022-05-27 上海易唯科电机技术有限公司 一种具有小宽窄比导线的定子组件及电机
CN114744785A (zh) * 2022-04-21 2022-07-12 上海易唯科电机技术有限公司 一种槽内导线数量为偶数的不等宽槽定子组件及电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009965A (ja) * 2017-06-28 2019-01-17 株式会社Soken 回転電機ステータ
CN110556936A (zh) * 2018-05-31 2019-12-10 比亚迪股份有限公司 定子组件以及电机
CN114243961A (zh) * 2021-12-17 2022-03-25 上海易唯科电机技术有限公司 一种同槽层多线的定子组件及扁线电机
CN114552837A (zh) * 2022-02-28 2022-05-27 上海易唯科电机技术有限公司 一种具有小宽窄比导线的定子组件及电机
CN114744785A (zh) * 2022-04-21 2022-07-12 上海易唯科电机技术有限公司 一种槽内导线数量为偶数的不等宽槽定子组件及电机

Also Published As

Publication number Publication date
CN118137711A (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
CN110235342B (zh) 用于电机的定子
CN110829641B (zh) 发卡扁线电机定子及发卡扁线电机
CN113783334A (zh) 一种扁线电枢绕组和电机
CN114204708B (zh) 定子、扁线电机、动力总成和车辆
JP6707860B2 (ja) 回転電機およびその製造方法
CN114552811B (zh) 一种电机定子及其应用的电机
WO2024032001A1 (zh) 定子、扁线电机、动力总成和车辆
CN104882975B (zh) 一种电动机定子及其绕线方法
US20050046299A1 (en) Windings for electric machines
CN210608731U (zh) 一种混合相绕组、定子及电机
CN116633058A (zh) 一种短距扁线电机定子的绕组方法及绕组结构
WO2024109323A1 (zh) 定子组件及其电机
CN111564919A (zh) 一种电机定子绕组、电机定子及电机
CN114552812B (zh) 一种电机定子及其应用的电机
CN114629263B (zh) 一种电机定子及其应用的电机
EP3340439B1 (en) Voltage balanced winding pattern for an electric machine with a minimal number of connections and method for assembly of such winding
CN214412445U (zh) 一种电机定子绕组、电机定子及电机
CN114825717A (zh) 一种定子组件及其应用的电机
KR100793807B1 (ko) 3상 다극 모터의 권선 방법 및 이를 이용한 3상 다극 모터
CN220291757U (zh) 一种扁线电机的绕组结构
CN220325368U (zh) 一种发电机散嵌型绕组结构
CN214506708U (zh) 扁线双层叠绕电枢绕组及包括其的定子、电机
CN218920078U (zh) 定子组件及电机
CN212114942U (zh) 一种电机定子及电机
CN212085913U (zh) 一种电机定子及电机