WO2024109195A1 - 钙钛矿太阳电池及其制备方法 - Google Patents

钙钛矿太阳电池及其制备方法 Download PDF

Info

Publication number
WO2024109195A1
WO2024109195A1 PCT/CN2023/113664 CN2023113664W WO2024109195A1 WO 2024109195 A1 WO2024109195 A1 WO 2024109195A1 CN 2023113664 W CN2023113664 W CN 2023113664W WO 2024109195 A1 WO2024109195 A1 WO 2024109195A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
back electrode
layer
charge transport
transport layer
Prior art date
Application number
PCT/CN2023/113664
Other languages
English (en)
French (fr)
Inventor
王永磊
张洪旭
刘杨
秦媛
何博
徐希翔
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2024109195A1 publication Critical patent/WO2024109195A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application belongs to the technical field of solar cells, and specifically, relates to a perovskite solar cell and a preparation method thereof.
  • Organic-inorganic hybrid perovskite solar cells have attracted widespread attention worldwide as a new type of high-efficiency, low-cost solar cell.
  • the photoelectric conversion efficiency of single-junction small-area perovskite cells has rapidly climbed from 3.8% in 2009 to more than 25%, and the photoelectric conversion efficiency of perovskite/silicon heterojunction stacked cells has also reached more than 31%.
  • the rapid efficiency development has made it the focus of current photovoltaic research institutions and companies.
  • perovskite solar cells Compared with traditional thin-film solar cells (copper indium gallium selenide, cadmium telluride, etc.), perovskite solar cells have the advantages of high conversion efficiency, simple preparation process and low-cost potential, and have become the thin-film solar cell technology with the most industrial prospects.
  • the cutoff wavelength of the solar cell spectral response can be controlled, making it the most ideal solar cell absorption layer material.
  • perovskite solar cells The industrialization process of perovskite solar cells is in a stage of rapid development. At present, the square meter level perovskite solar cell module has achieved a conversion efficiency of more than 15%.
  • laser technology is needed to prepare the entire cell into a series structure of multiple sub-cells.
  • the P1 laser line cuts the TCO layer of the front electrode to form a single sub-cell;
  • P2 cuts the perovskite active layer, but does not damage the TCO layer of the front electrode;
  • the back electrode is connected to the TCO layer of the front electrode through P2;
  • P3 cuts the perovskite active layer and the back electrode, but does not damage the TCO layer of the front electrode.
  • P1, P2, and P3 enable each sub-cell to form a series structure, making mass production of perovskite solar cell modules possible.
  • the laser process itself is incompatible with the device structure of small-area perovskite solar cells in the laboratory, leading to a series of problems.
  • metal materials or TCO materials are generally used as the back electrode.
  • metal materials are used as the back electrode, evaporation or PVD processes are generally used.
  • the P2 line will be in direct contact with the perovskite active layer.
  • the metal itself has strong mobility and will migrate into the perovskite active layer, resulting in a decrease in stability.
  • polymer materials are often filled on both sides of the P2 area so that the metal material does not directly contact the perovskite active layer.
  • this method requires very high processing accuracy, which increases the process and cost.
  • a wider P2 width is also required to ensure the filling effect of the polymer material, thereby increasing the area of the dead zone and reducing the geometric filling factor.
  • the use of metal back electrodes limits the industrialization of perovskite solar cell modules.
  • TCO material When TCO material is used as the back electrode, PVD process or reactive plasma coating process is generally used. The reactive plasma coating process causes less damage to the substrate when preparing TCO material, but the reactive plasma coating equipment is expensive.
  • a multi-layer TCO structure is generally used to reduce bombardment damage to the substrate.
  • TCO material is deposited at low power as a protective layer, and then TCO material is deposited at high power as the back electrode.
  • low-power deposition of TCO material causes less damage to the substrate, the electrical properties of low-power deposited TCO material are very different from those of high-power deposited TCO material. Low-power deposited TCO material will increase the internal series resistance of the component, thereby reducing the fill factor and limiting the efficiency improvement of large-area perovskite solar cell components.
  • the present application provides a perovskite solar cell and a method for preparing the same.
  • a perovskite solar cell comprising:
  • a substrate layer, a front electrode layer, a first charge transport layer, a perovskite absorption layer, a second charge transport layer, a first back electrode layer and a second back electrode layer are sequentially stacked.
  • first scribing line passing through the front electrode layer and the first charge transport layer
  • a second scribe line wherein the second scribe line passes through the first charge transport layer, the perovskite absorption layer, the second charge transport layer, and the first back electrode layer,
  • a third scribe line passing through the first charge transport layer, the perovskite absorption layer, the second charge transport layer, the first back electrode layer and the second back electrode layer,
  • the first scribe line is filled with the same material as the perovskite absorption layer, and the second scribe line is filled with the same material as the second back electrode layer.
  • the perovskite solar cell further includes a third back electrode layer and a fourth back electrode layer.
  • the third back electrode layer is arranged on a side of the second back electrode layer away from the base layer, and the fourth back electrode layer is arranged on a side of the third back electrode layer away from the base layer.
  • the third back electrode layer and the fourth back electrode layer are penetrated by the third scribing line.
  • the first back electrode layer is prepared by a low-power magnetron sputtering method
  • the second back electrode layer is prepared by a high-power magnetron sputtering method.
  • the fourth back electrode layer is prepared by a high-power magnetron sputtering method.
  • the target surface power used in the low-power magnetron sputtering method is less than or equal to 1.5 W/cm 2 .
  • the target surface power used in the high-power magnetron sputtering method is greater than or equal to 2 W/cm 2 .
  • materials of the first back electrode layer, the second back electrode layer or the fourth back electrode layer are independently selected from one or more of the following: FTO, ITO, AZO, GZO, IZO, and IWO.
  • a material of the third back electrode is selected from one or more of the following: Au, Ag, Cu, and Al.
  • the first back electrode layer has a thickness of 10-50 nm.
  • the thickness of the second back electrode layer is 100-500 nm or 10-200 nm.
  • the thickness of the third back electrode is 5-200 nm.
  • the thickness of the fourth back electrode layer is 10-200 nm.
  • a method for preparing a perovskite solar cell comprising:
  • a front electrode layer is formed on one surface of the substrate layer, and a first charge transport layer is formed on the front electrode layer.
  • a perovskite absorption layer is formed on the first charge transport layer and the first scribed line, and a second charge transport layer is formed on the perovskite absorption layer.
  • the second back electrode layer is scribed to form a plurality of layers which penetrate the first charge transport layer, the perovskite absorption layer, the second charge transport layer, the first back electrode layer and the second back electrode layer.
  • the third line is scored.
  • a method for preparing a perovskite solar cell comprising:
  • a front electrode layer is formed on one surface of the substrate layer, and a first charge transport layer is formed on the front electrode layer.
  • a perovskite absorption layer is formed on the first charge transport layer and the first scribed line, and a second charge transport layer is formed on the perovskite absorption layer.
  • a third back electrode layer is formed on the second back electrode layer, and a fourth electrode layer is formed on the third back electrode layer.
  • the fourth back electrode layer is scribed to form a third scribe line that passes through the first charge transport layer, the perovskite absorption layer, the second charge transport layer, the first back electrode layer, the second back electrode layer, the third back electrode layer and the fourth back electrode layer.
  • the first back electrode layer is prepared by a low-power magnetron sputtering method
  • the second back electrode layer is prepared by a high-power magnetron sputtering method.
  • the fourth back electrode layer is prepared by a high-power magnetron sputtering method.
  • the target surface power used in the low-power magnetron sputtering method is less than or equal to 1.5 W/cm 2 .
  • the target surface power used in the high-power magnetron sputtering method is greater than or equal to 2 W/cm 2 .
  • materials of the first back electrode layer, the second back electrode layer or the fourth back electrode layer are each independently selected from one or more of the following: FTO, ITO, AZO, GZO, IZO, and IWO.
  • a material of the third back electrode is selected from one or more of the following: Au, Ag, Cu, and Al.
  • the first back electrode layer has a thickness of 10-50 nm.
  • the thickness of the second back electrode layer is 100-500 nm or 10-200 nm.
  • the thickness of the third back electrode is 5-200 nm.
  • the thickness of the fourth back electrode layer is 10-200 nm.
  • the perovskite solar cell of the present application can greatly improve the stability of the perovskite solar cell, reduce the series resistance of the cell, improve the fill factor, and increase the efficiency of the perovskite solar cell.
  • the method for preparing a perovskite solar cell of the present application can achieve the same effect (electrical performance, stability) as preparing a back electrode by reactive plasma coating, and can greatly reduce the equipment cost.
  • FIG1 is a schematic diagram of the structure of a conventional perovskite solar cell
  • FIG2 is a schematic diagram of the structure of a solar perovskite solar cell of the present application.
  • FIG3 is a schematic diagram of the structure of a solar perovskite solar cell of the present application.
  • the existing conventional perovskite solar cell structure is shown in Figure 1. It includes:
  • a substrate layer 1-1, a front electrode layer 1-2, a first charge transport layer 1-3, a perovskite absorption layer 1-4, a second charge transport layer 1-5, and a back electrode layer 1-6 are stacked in sequence.
  • a first scribing line 2-1 wherein the first scribing line 2-1 passes through the front electrode layer 1-2,
  • a second scribe line 2-2 wherein the second scribe line 2-2 passes through the first charge transport layer 1-3, the perovskite absorption layer 1-4, and the second charge transport layer 1-5,
  • a third scribing line 2-3 wherein the third scribing line 2-3 passes through the first charge transport layer 1-3, the perovskite absorption layer 1-4, the second charge transport layer 1-5, and the back electrode layer 1-6,
  • the first scribed line 2 - 1 is filled with the same material as the perovskite absorption layer 1 - 4
  • the second scribed line 2 - 2 is filled with the same material as the back electrode layer 1 - 6 .
  • the back electrode layer 1-6 is a metal electrode prepared by evaporation or a TCO electrode prepared by a reactive plasma coating method.
  • the metal itself has a strong mobility and will migrate to the perovskite active layer, resulting in a decrease in stability, thereby limiting the industrialization of perovskite solar cell modules.
  • the back electrode layer 1-6 is a TCO electrode, a reactive plasma coating process is generally used.
  • the reactive plasma coating process for preparing TCO materials has less loss to the substrate, but the reactive plasma coating equipment is expensive.
  • the PVD process is used to prepare TCO materials, a multi-layer TCO structure is generally used to reduce bombardment damage to the substrate.
  • the TCO material is deposited at low power as a protective layer, and then the TCO material is deposited at high power as a back electrode.
  • the low-power deposition of TCO materials causes less damage to the substrate, the electrical properties of the low-power deposited TCO materials are very different from those of the high-power deposited TCO materials.
  • TCO materials deposited at low power will increase the internal series resistance of the component, thereby reducing the fill factor and limiting the improvement of the efficiency of large-area perovskite solar cell components.
  • the present application provides a perovskite solar cell, as shown in FIG2 , wherein the perovskite solar cell comprises:
  • a substrate layer 1-1, a front electrode layer 1-2, a first charge transport layer 1-3, a perovskite absorption layer 1-4, a second charge transport layer 1-5, a first back electrode layer 1-7 and a second back electrode layer 1-8 are stacked in sequence.
  • first scribing line 2-1 passes through the front electrode layer 1-2 and the first charge transport layer 1-3
  • a second scribing line 2-2 passes through the first charge transport layer 1-3, the perovskite absorption layer 1-4, the second charge transport layer 1-5, and the first back electrode layer 1-7,
  • the third scribed line 2-3 runs through the first charge transport layer 1-3, the perovskite absorption layer 1-4, the second charge transport layer 1-5, and the first back electrode layer 1-7. and the second back electrode layer 1-8,
  • the first scribe line 2-1 is filled with the same material as the perovskite absorption layer 1-4, and the second scribe line 2-2 is filled with the same material as the second back electrode layer 1-8.
  • the first back electrode layer 1-7 is prepared by low-power magnetron sputtering, which can protect the substrate material from bombardment damage in the subsequent magnetron sputtering process.
  • the second back electrode layer 1-8 is prepared by high-power magnetron sputtering, which has good electrical properties.
  • the second scribed line 2-2 is filled with the material prepared by high-power magnetron sputtering, which can reduce the series resistance of the perovskite solar cell and improve the filling factor, thereby increasing the efficiency of the perovskite solar cell.
  • the target surface power used in the low-power magnetron sputtering method is less than or equal to 1.5 W/cm 2 , for example, it can be 1.5 W/cm 2 , 1.4 W/cm 2 , 1.3 W/cm 2 , 1.2 W/cm 2 , 1.1 W/cm 2 , 1 W/cm 2 , 0.9 W/cm 2 , 0.8 W/cm 2 , 0.7 W/cm 2 , 0.6 W/cm 2 , 0.5 W/cm 2 and the like.
  • the target surface power used in the low-power magnetron sputtering method is 0.5-1.5 W/cm 2 .
  • the target surface power used in the high power magnetron sputtering method is greater than or equal to 2 W/cm 2 , for example, it can be 2 W/cm 2 , 2.5 W/cm 2 , 3 W/cm 2 , 3.5 W/cm 2 , 4 W/cm 2 , 4.5 W/cm 2 , 5 W/cm 2 and the like.
  • the target surface power used in the high power magnetron sputtering method is 2-5 W/cm 2
  • the materials of the first back electrode layer 1-7 and the second back electrode layer 1-8 can be independently selected from one or more of the following: FTO, ITO, AZO, GZO, IZO, IWO. That is, the materials of the first back electrode layer 1-7 and the second back electrode layer 1-8 can be the same, for example, both are ITO, or different, for example, the material of the first back electrode 1-6 is ITO, and the material of the second back electrode 1-7 is AZO. Those skilled in the art can understand that according to actual needs, the first back electrode layer 1-7 or the second back electrode layer 1-8 can also use two or more different materials.
  • the thickness of the first back electrode layer 1-7 is 10-50 nm, for example, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, etc.
  • the thickness of the second back electrode layer 1-8 is 10-200 nm, for example, 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 110 nm, 120 nm, 130 nm, 140 nm, 150 nm, 160 nm, 170nm, 180nm, 190nm, 200nm, etc.
  • the thickness of the second back electrode layer 1-8 is 100-500nm, for example, it can be 100nm, 120nm, 140nm, 160nm, 180nm, 200nm, 220nm, 240nm, 260nm, 280nm, 300nm, 320nm, 340nm, 360nm, 380nm, 400nm, 420nm, 440nm, 460nm, 480nm, 500nm, etc.
  • the substrate layer 1-1 may be any substrate known in the art, such as a glass substrate.
  • the material of the front electrode layer 1-2 may be selected from one or more of FTO, ITO, AZO, GZO, IZO, and IWO.
  • the first charge transport layer 1-3 and the second charge transport layer 1-5 have opposite conductivity types, that is, when the first charge transport layer 1-3 is a charge transport layer, the second charge transport layer 1-5 is a hole transport layer; when the first charge transport layer 1-3 is a hole transport layer, the second charge transport layer 1-5 is an electron transport layer.
  • the material when the first charge transport layer 1-3 is a hole transport layer, the material can be selected from one or more of CuSCN, NiO x , NiMgO x , V 2 O 5 and MoO 3 , for example, it can include at least one of NiO x and NiMgO x .
  • the material can be selected from one or more of TiO 2 , SnO 2 , ZnO, PCBM, C 60 or BCP, for example, it can be TiO 2 or SnO 2 .
  • the material may be selected from one or more of Spiro-OMeTAD, CuSCN, NiO x , NiMgO x , V 2 O 5 and MoO 3 , for example, Spiro and MoO 3.
  • the material may be selected from one or more of TiO 2 , SnO 2 , ZnO, PCBM, C 60 or BCP, for example, C 60 and SnO 2 .
  • the perovskite absorption layers 1-4 can be prepared by one or more of the following methods: scraping, ultrasonic spraying, slit coating, etc.
  • a buffer layer may also be included between the perovskite absorption layer 1-4 and the first charge transport layer 1-3 to improve the conversion efficiency or stability of the battery.
  • the material and thickness of the buffer layer may be selected and adjusted by those skilled in the art according to actual needs.
  • first scribing lines 2-1, second scribing lines 2-2, and third scribing lines 2-3 are arranged in sequence.
  • Multiple first scribing lines 2-1, multiple second scribing lines 2-2, or multiple third scribing lines 2-3 are arranged at equal intervals, for example, the spacing between adjacent first scribing lines 2-1 is less than or equal to 7mm.
  • the distance between each first scribing line 2-1 and the second scribing line 2-2 is less than or equal to 50 ⁇ m.
  • the distance between each second scribing line 2-2 and the third scribing line 2-3 is less than or equal to 50 ⁇ m.
  • the first scribing line 2-1 does not damage the substrate layer 1-1
  • the second scribing line 2-2 and the third scribing line 2-3 do not damage the front electrode layer 1-2.
  • the perovskite solar cell may further include a third back electrode layer 1-9 and a fourth back electrode layer 1-10.
  • the third back electrode layer 1-9 is arranged on a side of the second back electrode layer 1-8 away from the substrate layer 1-1
  • the fourth back electrode layer 1-10 is arranged on a side of the third back electrode layer 1-9 away from the substrate layer 1-1.
  • the third back electrode layer 1-9 and the fourth back electrode layer 1-10 are penetrated by the third scribed line 2-3, that is, the third scribed line 2-3 penetrates the first charge transport layer 1-3, the perovskite absorption layer 1-4, the second charge transport layer 1-5, the first back electrode layer 1-7, the second back electrode layer 1-8, the third back electrode layer 1-9 and the fourth back electrode layer 1-10.
  • the third back electrode layer 1-9 is made of metal material, which can be selected from one or more of the following: Au, Ag, Cu, Al. Metal materials have excellent electrical properties, can ensure the internal charge transfer of perovskite solar cells, and improve cell efficiency.
  • the thickness of the third back electrode layer 1-9 is 5-200nm, for example, it can be 5nm, 10nm, 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 110nm, 120nm, 130nm, 140nm, 150nm, 160nm, 170nm, 180nm, 190nm, 200nm, etc.
  • the fourth back electrode layer 1-10 is also prepared by high-power magnetron sputtering, and the selection of materials, thickness and specific preparation power are as described above for the second back electrode layer 1-8.
  • the fourth back electrode layer 1-10 has good electrical properties, can reduce the series resistance of the perovskite solar cell, and can protect the third back electrode layer 1-9 from direct contact with the outside, thereby improving the stability of the cell.
  • the perovskite solar cell comprises: a substrate layer 1-1, a front electrode layer 1-2, a first charge transport layer 1-3, a calcium Titanium ore absorption layer 1-4, second charge transport layer 1-5, first back electrode layer 1-7 and second back electrode layer 1-8; first scribed line 2-1, the first scribed line 2-1 runs through the front electrode layer 1-2 and the first charge transport layer 1-3; second scribed line 2-2, the second scribed line 2-2 runs through the first charge transport layer 1-3, the perovskite absorption layer 1-4, the second charge transport layer 1-5, and the first back electrode layer 1-7; third scribed line 2-3, the third scribed line 2-3 runs through the first charge transport layer 1-3, the perovskite absorption layer 1-4, the second charge transport layer 1-5, the first back electrode layer 1-7 and the second back electrode layer 1-8.
  • the substrate layer 1-1 is glass
  • the front electrode layer 1-2 is FTO.
  • the first charge transport layer 1-3 is a NiO x hole transport layer prepared by radio frequency magnetron sputtering, with a thickness of 25nm.
  • the perovskite absorption layer 1-4 is (Cs 0.15 FA 0.85 )Pb(I 0.7 Br 0.3 ) 3 with a thickness of 500nm.
  • the second charge transport layer 1-5 is an electron transport layer, and 30nm of C 60 is prepared by vacuum evaporation, and 20nm of SnO 2 is prepared by atomic layer deposition.
  • the first back electrode layer 1-7 is ITO prepared by magnetron sputtering with a target surface power less than or equal to 1.5W/cm 2 , and the thickness is 10-50nm.
  • the second back electrode layer 1-8 is ITO prepared by magnetron sputtering with a target surface power greater than or equal to 2W/cm 2 , and the film thickness is 100-500nm.
  • the perovskite absorption material of (Cs 0.15 FA 0.85 )Pb(I 0.7 Br 0.3 ) 3 is filled in the first scribed line, and ITO is filled in the second scribed line 2-2.
  • the perovskite solar cell comprises: a substrate layer 1-1, a front electrode layer 1-2, a first charge transport layer 1-3, a perovskite absorption layer 1-4, a second charge transport layer 1-5, a first back electrode layer 1-7, a second back electrode layer 1-8, a third back electrode layer 1-9 and a fourth back electrode layer 1-10 stacked in sequence; a first scribed line 2-1, wherein the first scribed line 2-1 runs through the front electrode layer 1-2 and the first charge transport layer 1-3; a second scribed line 2 -2, the second scribed line 2-2 runs through the first charge transport layer 1-3, the perovskite absorption layer 1-4, the second charge transport layer 1-5, and the first back electrode layer 1-7; the third scribed line 2-3, the third scribed line 2-3 runs through the first charge transport layer 1-3, the perovskite absorption layer 1-4, the second charge transport layer 1-5, the first back electrode layer 1-7, the second back electrode
  • the substrate layer 1-1 is glass
  • the front electrode layer 1-2 is FTO.
  • the first charge transport layer 1-3 is a NiO x hole transport layer prepared by radio frequency magnetron sputtering, with a thickness of 25nm.
  • the perovskite absorption layer 1-4 is (Cs 0.15 FA 0.85 ) Pb (I 0.7 Br 0.3 ) 3 , with a thickness of 500nm.
  • the second charge transport layer 1-5 is an electron transport layer, which is prepared by vacuum evaporation with 30nm C 60 and then by atomic layer deposition with 20nm SnO 2 .
  • the first back electrode layer 1-7 is prepared by magnetron sputtering with a target surface power of less than or equal to 1.5W/cm 2
  • the second back electrode layer 1-8 is ITO prepared by magnetron sputtering with a target surface power greater than or equal to 2W/ cm2 , and the film thickness is 10-200nm.
  • the third back electrode layer 1-9 is silver prepared by magnetron sputtering with a target surface power greater than or equal to 2W/ cm2 , and the thickness is 5-200nm.
  • the fourth back electrode layer 1-10 is ITO prepared by magnetron sputtering with a target surface power greater than or equal to 2W/ cm2 , and the thickness is 10-200nm.
  • the first scribed line is filled with a perovskite absorption material of (Cs 0.15 FA 0.85 )Pb(I 0.7 Br 0.3 ) 3
  • the second scribed line 2-2 is filled with ITO.
  • the present application also provides a method for preparing a perovskite solar cell, the preparation method comprising:
  • Step 1 preparing a front electrode layer on one surface of the substrate layer, and preparing a first charge transport layer on the front electrode layer,
  • Step 2 scribing the first charge transport layer to form a first scribing line that passes through the front electrode layer and the first charge transport layer.
  • Step 3 preparing a perovskite absorption layer on the first charge transport layer and the first scribe line, and preparing a second charge transport layer on the perovskite absorption layer,
  • Step 4 preparing a first back electrode layer on the second charge transport layer
  • Step 5 scribing the first back electrode layer to form a second scribing line that passes through the first charge transport layer, the perovskite absorption layer, the second charge transport layer, and the first back electrode layer.
  • Step 6 preparing a second back electrode layer on the first back electrode layer and the second scribe line
  • Step seven scribing the second back electrode layer to form a third scribing line that passes through the first charge transport layer, the perovskite absorption layer, the second charge transport layer, the first back electrode layer and the second back electrode layer.
  • the thicknesses of the substrate layer, the front electrode layer, the first charge transport layer, the perovskite absorption layer, the second charge transport layer, the first back electrode layer and the second back electrode layer, and the materials used are as described above for perovskite solar cells.
  • step 1, step 2 and step 3 can be carried out by methods known in the prior art.
  • the first back electrode layer is prepared by low-power magnetron sputtering method.
  • the target surface power of the low-power magnetron sputtering method is less than or equal to 1.5 W/cm 2 .
  • a green laser with a wavelength of 532nm can be used for scribing to prepare a second scribing line.
  • the green laser with a wavelength of 532nm is difficult to be absorbed by the front electrode layer, but is easily absorbed by the perovskite absorption layer.
  • the perovskite absorption layer is scribed by the laser, the first charge transport layer and the second charge transport layer are removed together.
  • the second back electrode layer is prepared by high-power magnetron sputtering.
  • the target surface power of the high-power magnetron sputtering is greater than or equal to 2 W/cm 2 .
  • a green laser with a wavelength of 532nm or mechanical scribing can be used to scribe on one side of the second scribe line.
  • the green laser with a wavelength of 532nm is difficult to be absorbed by the front electrode layer, but is easily absorbed by the perovskite absorption layer.
  • the perovskite absorption layer is scribed by laser, the first charge transport layer, the second charge transport layer, the first back electrode layer and the second back electrode layer are removed together.
  • the green laser with a wavelength of 532nm can scratch through the first charge transport layer, the perovskite absorption layer, the second charge transport layer, the first back electrode layer and the second back electrode layer, but does not damage the front electrode layer.
  • the sub-batteries of the battery form a series structure.
  • step 6 Furthermore, between step 6 and step 7, the following steps may be included:
  • a fourth electrode layer is formed on the third back electrode layer.
  • step seven includes scratching the first charge transfer layer, the perovskite absorption layer, the second charge transfer layer, the first back electrode layer, the second back electrode layer, the third back electrode layer and the fourth back electrode layer, but without damaging the front electrode layer.
  • the fourth back electrode layer is prepared by high-power magnetron sputtering.
  • the prepared perovskite solar cell is shown in FIG3 .
  • the preparation method comprises the following steps:
  • a front electrode layer 1-2 is prepared on a glass substrate 1-1, and the material of the front electrode layer 1-2 is FTO.
  • a first charge transport layer 1-3 is prepared on the front electrode layer 1-2 by radio frequency magnetron sputtering, wherein the first charge transport layer 1-3 is a NiO x hole transport layer with a thickness of 25 nm.
  • the first scoring lines 2-1 are spaced at equal intervals, with a spacing of 6 mm.
  • a perovskite absorption layer 1-4 is prepared on the first charge transport layer 1-3, wherein a (Cs 0.15 FA 0.85 )Pb(I 0.7 Br 0.3 ) 3 -component system is used, and appropriate materials are weighed according to molar ratios and dissolved in a mixed solution of DMF and DMSO with a concentration of 1.0 M. Then, a slit coating process is used to obtain a uniform liquid film, and a uniform solid film is obtained by air knife treatment. Then, annealing is performed on a hot plate at 120° C. for 30 minutes to obtain a perovskite absorption layer 1-4. The thickness of the perovskite absorption layer 1-4 is 500 nm.
  • a second charge transport layer 1-5 is prepared on the perovskite absorption layer 1-4.
  • the second charge transport layer 1-5 is an electron transport layer, and 30 nm of C 60 is prepared by vacuum evaporation, and 20 nm of SnO 2 is prepared by atomic layer deposition.
  • a first back electrode layer 1-7 is prepared on the second charge transport layer 1-5.
  • the first back electrode layer 1-7 is an ITO material prepared by magnetron sputtering with a target surface power of 1 W/cm 2 , and the film thickness is 20 nm.
  • a second back electrode layer 1-8 is prepared on the first back electrode layer 1-7.
  • the second back electrode layer 1-8 is an ITO material prepared by magnetron sputtering with a target surface power of 2.5 W/cm 2 , and the film thickness is 40 nm.
  • a third back electrode layer 1-9 is prepared on the second back electrode layer 1-8.
  • the third back electrode layer 1-9 is Ag prepared by magnetron sputtering with a target surface power of 2 W/cm 2 , and the film thickness is 80 nm.
  • a fourth back electrode layer 1-10 is prepared on the third back electrode layer 1-9.
  • the fourth back electrode layer 1-10 is an ITO material prepared by magnetron sputtering with a target surface power of 2.5 W/cm 2 , and the film thickness is 40 nm.
  • the prepared perovskite solar cell is shown in FIG2 .
  • the preparation method comprises the following steps:
  • a front electrode layer 1-2 is prepared on a glass substrate 1-1, and the material of the front electrode layer 1-2 is FTO.
  • a first charge transport layer 1-3 is prepared on the front electrode layer 1-2 by radio frequency magnetron sputtering, wherein the first charge transport layer 1-3 is a NiO x hole transport layer with a thickness of 25 nm.
  • a laser with a wavelength of 1064 nm is used to scribe first scribed lines 2-1 at equal intervals on the first charge transport layer 1-3.
  • the intervals between each first scribed line 2-1 are equal, and the interval is 6 mm.
  • a perovskite absorption layer 1-4 is prepared on the first charge transport layer 1-3, wherein a (Cs 0.15 FA 0.85 )Pb(I 0.7 Br 0.3 ) 3 -component system is used, and appropriate materials are weighed according to molar ratios and dissolved in a mixed solution of DMF and DMSO with a concentration of 1.0 M. Then, a slit coating process is used to obtain a uniform liquid film, and a uniform solid film is obtained by air knife treatment. Then, annealing is performed on a hot plate at 120° C. for 30 minutes to obtain a perovskite absorption layer 1-4. The thickness of the perovskite absorption layer 1-4 is 500 nm.
  • a second charge transport layer 1-5 is prepared on the perovskite absorption layer 1-4.
  • the second charge transport layer 1-5 is an electron transport layer, and 30 nm of C 60 is prepared by vacuum evaporation, and 20 nm of SnO 2 is prepared by atomic layer deposition.
  • a first back electrode layer 1-7 is prepared on the second charge transport layer 1-5.
  • the first back electrode layer 1-7 is an ITO material prepared by magnetron sputtering with a target surface power of 1 W/cm 2 , and the film thickness is 20 nm.
  • a second back electrode layer 1-8 is prepared on the first back electrode layer 1-7.
  • the second back electrode layer 1-8 is an ITO material prepared by magnetron sputtering with a target surface power of 2.5 W/cm 2 , and the film thickness is 300 nm.
  • the prepared perovskite solar cell is shown in FIG1 .
  • the preparation method comprises the following steps:
  • a front electrode layer 1-2 is prepared on a glass substrate 1-1, and the material of the front electrode layer 1-2 is FTO.
  • a first charge transport layer 1-3 is prepared on the front electrode layer 1-2 by radio frequency magnetron sputtering, wherein the first charge transport layer 1-3 is a NiO x hole transport layer with a thickness of 25 nm.
  • a laser with a wavelength of 1064 nm is used to scribe first scribe lines 2-1 at equal intervals on the first charge transport layer 1-3.
  • the intervals between each first scribe line 2-1 are equal, and the interval is 6 mm.
  • a perovskite absorption layer 1-4 is prepared on the first charge transport layer 1-3, wherein a (Cs 0.15 FA 0.85 )Pb(I 0.7 Br 0.3 ) 3 -component system is used, and appropriate materials are weighed according to molar ratios and dissolved in a mixed solution of DMF and DMSO with a concentration of 1.0 M. Then, a slit coating process is used to obtain a uniform liquid film, and a uniform solid film is obtained by air knife treatment. Then, annealing is performed on a hot plate at 120° C. for 30 minutes to obtain a perovskite absorption layer 1-4. The thickness of the perovskite absorption layer 1-4 is 500 nm.
  • a second charge transport layer 1-5 is prepared on the perovskite absorption layer 1-4.
  • the second charge transport layer 1-5 is an electron transport layer, and 30 nm of C 60 is prepared by vacuum evaporation, and 20 nm of SnO 2 is prepared by atomic layer deposition.
  • a mechanical scribing line is used to scribble on the left side of the second scribing line 2-2 to form a third scribing line 2-3.
  • the interval between the second scribing line 2-2 and the third scribing line 2-3 is 50 ⁇ m.
  • the prepared perovskite solar cell is shown in FIG1 .
  • the preparation method comprises the following steps:
  • a front electrode layer 1-2 is prepared on a glass substrate 1-1, and the material of the front electrode layer 1-2 is FTO.
  • a first charge transport layer 1-3 is prepared on the front electrode layer 1-2 by radio frequency magnetron sputtering, wherein the first charge transport layer 1-3 is a NiO x hole transport layer with a thickness of 25 nm.
  • a laser with a wavelength of 1064 nm is used to scribe first scribe lines 2-1 at equal intervals on the first charge transport layer 1-3.
  • the intervals between each first scribe line 2-1 are equal, and the interval is 6 mm.
  • a perovskite absorption layer 1-4 is prepared on the first charge transport layer 1-3, wherein a (Cs 0.15 FA 0.85 )Pb(I 0.7 Br 0.3 ) 3 -component system is used, and appropriate materials are weighed according to molar ratios and dissolved in a mixed solution of DMF and DMSO with a concentration of 1.0 M. Then, a slit coating process is used to obtain a uniform liquid film, and a uniform solid film is obtained by air knife treatment. Then, annealing is performed on a hot plate at 120° C. for 30 minutes to obtain a perovskite absorption layer 1-4. The thickness of the perovskite absorption layer 1-4 is 500 nm.
  • a second charge transport layer 1-5 is prepared on the perovskite absorption layer 1-4.
  • the second charge transport layer 1-5 is an electron transport layer, and 30 nm of C 60 is prepared by vacuum evaporation, and 20 nm of SnO 2 is prepared by atomic layer deposition.
  • a mechanical scribing line is used to scribble on the left side of the second scribing line 2-2 to form a third scribing line 2-3.
  • the interval between the second scribing line 2-2 and the third scribing line 2-3 is 50 ⁇ m.
  • Example 1-2 The performance of the perovskite solar cells prepared in Example 1-2 and Comparative Example 1-2 was measured, and the results are shown in Table 2.
  • the back electrode of Comparative Example 1 is metal Ag, which has the best initial efficiency but the worst stability. The reason is that Ag particles migrate into the perovskite active layer, reducing the stability of the component.
  • Example 1 due to the added protection of TCO material, the stability is consistent with the pure IWO back electrode of Comparative Example 2, and the stability of the component is greatly improved compared with Comparative Example 1.
  • Example 1 Compared with Example 2, the back electrode of Example 1 has a conductivity close to that of the pure metal back electrode of Comparative Example 1 due to the presence of the metal layer, and has very excellent initial electrical properties. At the same time, since the TCO material can protect the metal from contacting the perovskite active layer, its stability is also greatly improved. Example 1 not only has excellent initial electrical properties, but also has excellent stability.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the scheme of this embodiment. Those of ordinary skill in the art may understand and implement it without creative effort.
  • references to "one embodiment”, “embodiment” or “one or more embodiments” herein mean that a particular feature, structure or characteristic described in conjunction with the embodiment is included in at least one embodiment of the present application.
  • examples of the term “in one embodiment” herein do not necessarily all refer to the same embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请提供一种钙钛矿太阳电池及其制备方法。钙钛矿太阳能电池包括:依次层叠设置的基底层、前电极层、第一电荷传输层、钙钛矿吸收层、第二电荷传输层、第一背电极层和第二背电极层;第一划刻线,其贯穿前电极层和第一电荷传输层;第二划刻线,其贯穿第一电荷传输层、钙钛矿吸收层、第二电荷传输层、以及第一背电极层;第三划刻线,其贯穿第一电荷传输层、钙钛矿吸收层、第二电荷传输层、第一背电极层和第二背电极层,其中,第一划刻线内填充与钙钛矿吸收层相同的材料,第二划刻线内填充与第二背电极层相同的材料。本申请的钙钛矿太阳能电池能极大提升钙钛矿太阳电池的稳定性,降低电池的串联电阻,提高填充因子,增加钙钛矿太阳电池的效率。

Description

钙钛矿太阳电池及其制备方法
本申请要求在2022年11月24日提交中国专利局、申请号为202211481017.4、名称为″钙钛矿太阳电池及其制备方法″的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于太阳能电池技术领域,具体地,涉及一种钙钛矿太阳电池及其制备方法。
背景技术
有机-无机杂化钙钛矿太阳能电池作为新型高效率、低成本太阳能电池在全世界范围内被广泛关注。短短几年时间里,单结小面积钙钛矿电池的光电转换效率从2009年的3.8%迅速攀升到25%以上,钙钛矿/硅异质结叠层电池的光电转换效率也达到了31%以上。迅猛的效率发展使其成为当下光伏研究机构及企业的重点关注对象。与传统薄膜太阳电池(铜铟镓硒、碲化镉等)相比,钙钛矿太阳电池具有高转换效率、简单制备工艺以及低成本潜力等优势,并成为最具产业化前景的薄膜太阳电池技术。通过调节前驱体溶液的成分配比,可实现太阳电池光谱响应截止波长的调控,使之成为最理想的太阳电池吸收层材料。
钙钛矿太阳电池的产业化进程正在处于一个飞速发展的阶段。目前平方米级的钙钛矿太阳电池组件已经达到了15%以上的转换效率。钙钛矿太阳电池组件在制备过程中,需要使用激光工艺将整个电池制备成多个子电池的串联结构。其中,P1激光线将前电极的TCO层划断,形成单一子电池;P2将钙钛矿活性层划断,但不伤及前电极的TCO层;背电极通过P2与前电极的TCO层连接;P3将钙钛矿活性层与背电极划断,但不伤及前电极的TCO层。P1、P2、P3使各个子电池形成串联结构,从而使钙钛矿太阳电池组件的量产化成为可能。但是激光工艺本身与实验室中的小面积钙钛矿太阳电池的器件结构不兼容,导致了一系列的问题。
在钙钛矿太阳电池中,一般使用金属材料或者TCO材料作为背电极。金属材料作为背电极时,一般使用蒸镀工艺或PVD工艺。金属材料填充进 P2线内,会与钙钛矿活性层直接接触。金属本身具有很强的迁移性,会迁移到钙钛矿活性层中,从而导致稳定性的下降。在实验室中,经常在P2区域的两边填充高分子材料,从而使金属材料不与钙钛矿活性层直接接触。但是这种方法要求非常高的加工精度,增加了工序与成本。同时还要求较宽的P2宽度以保证高分子材料的填充效果,从而增加了死区的面积,降低了几何填充因子。金属背电极的使用,限制了钙钛矿太阳电池组件的产业化。
TCO材料作为背电极时,一般使用PVD工艺或反应式等离子体镀膜工艺。反应式等离子体镀膜工艺制备TCO材料对基底的损失较小,但是反应式等离子体镀膜设备价格昂贵。PVD制备TCO材料时,为减小对基底的轰击损伤,一般会使用多层的TCO结构。首先低功率沉积TCO材料作为保护层,然后再高功率沉积TCO材料作为背电极。低功率沉积TCO材料虽然对基底的损伤较少,但是低功率沉积的TCO材料与高功率沉积的TCO材料相比,电学性能有很大的差异性。低功率沉积的TCO材料,会增加组件的内部串联电阻,从而降低填充因子,限制了大面积钙钛矿太阳电池组件效率的提升。
发明内容
针对现有技术存在的问题,本申请提供一种钙钛矿太阳电池及其制备方法。
具体来说,本申请涉及如下方面:一种钙钛矿太阳能电池,所述钙钛矿太阳能电池包括:
依次层叠设置的基底层、前电极层、第一电荷传输层、钙钛矿吸收层、第二电荷传输层、第一背电极层和第二背电极层,
第一划刻线,所述第一划刻线贯穿所述前电极层和所述第一电荷传输层,
第二划刻线,所述第二划刻线贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、以及所述第一背电极层,
第三划刻线,所述第三划刻线贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、所述第一背电极层和所述第二背电极层,
其中,所述第一划刻线内填充与所述钙钛矿吸收层相同的材料,所述第二划刻线内填充与所述第二背电极层相同的材料。
可选地,所述钙钛矿太阳能电池还包括第三背电极层和第四背电极层,
其中,所述第三背电极层设置在所述第二背电极层远离所述基底层的一侧,所述第四背电极层设置在所述第三背电极层远离所述基底层的一侧,
所述第三背电极层和所述第四背电极层被所述第三划刻线贯穿。
可选地,所述第一背电极层通过低功率磁控溅射法制备,所述第二背电极层通过高功率磁控溅射法制备。
可选地,所述第四背电极层通过高功率磁控溅射法制备。
可选地,低功率磁控溅射法所采用的靶表功率小于等于1.5W/cm2
可选地,高功率磁控溅射法所采用的靶表功率大于等于2W/cm2
可选地,所述第一背电极层、所述第二背电极层或者所述第四背电极层的材料各自独立地选自以下中的一种或两种以上:FTO、ITO、AZO、GZO、IZO、IWO。
可选地,所述第三背电极的材料选自以下中的一种或两种以上:Au、Ag、Cu、Al。
可选地,所述第一背电极层的厚度为10-50nm。
可选地,所述第二背电极层的厚度为100-500nm或10-200nm。
可选地,所述第三背电极的厚度为5-200nm。
可选地,所述第四背电极层的厚度为10-200nm。
一种钙钛矿太阳能电池的制备方法,所述制备方法包括:
在基底层的一个表面制备前电极层,并在所述前电极层上制备第一电荷传输层,
在所述第一电荷传输层上划刻,形成贯穿所述前电极层和所述第一电荷传输层的第一划刻线,
在所述第一电荷传输层和所述第一划刻线上制备钙钛矿吸收层,并在所述钙钛矿吸收层上制备第二电荷传输层,
在所述第二电荷传输层上制备第一背电极层,
在所述第一背电极层上划刻,形成贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、以及所述第一背电极层的第二划刻线,
在所述第一背电极层和所述第二划刻线上制备第二背电极层,
在所述第二背电极层上划刻,形成贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、所述第一背电极层和所述第二背电极层的 第三划刻线。
一种钙钛矿太阳能电池的制备方法,所述制备方法包括:
在基底层的一个表面制备前电极层,并在所述前电极层上制备第一电荷传输层,
在所述第一电荷传输层上划刻,形成贯穿所述前电极层和所述第一电荷传输层的第一划刻线,
在所述第一电荷传输层和所述第一划刻线上制备钙钛矿吸收层,并在所述钙钛矿吸收层上制备第二电荷传输层,
在所述第二电荷传输层上制备第一背电极层,
在所述第一背电极层上划刻,形成贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、以及所述第一背电极层的第二划刻线,
在所述第一背电极层和所述第二划刻线上制备第二背电极层,
在所述第二背电极层上制备第三背电极层,并在所述第三背电极层上制备第四电极层,
在所述第四背电极层上划刻,形成贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、所述第一背电极层、所述第二背电极层、所述第三背电极层和所述第四背电极层的第三划刻线。
可选地,通过低功率磁控溅射法制备第一背电极层,通过高功率磁控溅射法制备第二背电极层。
可选地,通过高功率磁控溅射法制备第四背电极层。
可选地,低功率磁控溅射法所采用的靶表功率小于等于1.5W/cm2
可选地,高功率磁控溅射法所采用的靶表功率大于等于2W/cm2
可选地,所述第一背电极层、所述第二背电极层或所述第四背电极层的材料各自独立地选自以下中的一种或两种以上:FTO、ITO、AZO、GZO、IZO、IWO。
可选地,所述第三背电极的材料选自以下中的一种或两种以上:Au、Ag、Cu、Al。
可选地,所述第一背电极层的厚度为10-50nm。
可选地,所述第二背电极层的厚度为100-500nm或10-200nm。
可选地,所述第三背电极的厚度为5-200nm。
可选地,所述第四背电极层的厚度为10-200nm。
本申请的钙钛矿太阳能电池能极大提升钙钛矿太阳电池的稳定性,降低电池的串联电阻,提高填充因子,增加钙钛矿太阳电池的效率。本申请的制备钙钛矿太阳能电池的方法可以达到与反应式等离子体镀膜制备背电极相同的效果(电性能、稳定性),并可极大降低设备成本。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为常规钙钛矿太阳能电池结构示意图;
图2为本申请一种太阳钙钛矿太阳能电池结构示意图;
图3为本申请一种太阳钙钛矿太阳能电池结构示意图。
附图标记:
1-1基底层,1-2前电极层,1-3第一电荷传输层,1-4钙钛矿吸收层,1-5第二电荷传输层,1-6背电极层,1-7第一背电极层,1-8第二背电极层,1-9第三背电极层,1-10第四背电极层,2-1第一划刻线,2-2第二划刻线,2-3第二划刻线。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
现有常规的钙钛矿太阳能电池结构如图1所示。包括:
依次层叠设置的基底层1-1、前电极层1-2、第一电荷传输层1-3、钙钛矿吸收层1-4、第二电荷传输层1-5、背电极层1-6,
第一划刻线2-1,所述第一划刻线2-1贯穿所述前电极层1-2,
第二划刻线2-2,所述第二划刻线2-2贯穿所述第一电荷传输层1-3、所述钙钛矿吸收层1-4、和所述第二电荷传输层1-5,
第三划刻线2-3,所述第三划刻线2-3贯穿所述第一电荷传输层1-3、所述钙钛矿吸收层1-4、所述第二电荷传输层1-5、和所述背电极层1-6,
其中,所述第一划刻线2-1内填充与所述钙钛矿吸收层1-4相同的材料,所述第二划刻线2-2内填充与所述背电极层1-6相同的材料。
其中,背电极层1-6为蒸镀法制备的金属电极或反应式等离子体镀膜方法制备的TCO电极。当背电极层1-6为金属电极时,金属本身具有很强的迁移性,会迁移到钙钛矿活性层中,从而导致稳定性的下降,从而限制了钙钛矿太阳电池组件的产业化。当背电极层1-6为TCO电极时,一般使用反应式等离子体镀膜工艺。反应式等离子体镀膜工艺制备TCO材料对基底的损失较小,但是反应式等离子体镀膜设备价格昂贵。PVD工艺制备TCO材料时,为减小对基底的轰击损伤,一般会使用多层的TCO结构。首先低功率沉积TCO材料作为保护层,然后再高功率沉积TCO材料作为背电极。低功率沉积TCO材料虽然对基底的损伤较少,但是低功率沉积的TCO材料与高功率沉积的TCO材料相比,电学性能有很大的差异性。低功率沉积的TCO材料,会增加组件的内部串联电阻,从而降低填充因子,限制了大面积钙钛矿太阳电池组件效率的提升。
针对常规钙钛矿太阳能电池存在的以上问题,本申请提供一种钙钛矿太阳能电池,如图2所示,所述钙钛矿太阳能电池包括:
依次层叠设置的基底层1-1、前电极层1-2、第一电荷传输层1-3、钙钛矿吸收层1-4、第二电荷传输层1-5、第一背电极层1-7和第二背电极层1-8,
第一划刻线2-1,所述第一划刻线2-1贯穿所述前电极层1-2和所述第一电荷传输层1-3,
第二划刻线2-2,所述第二划刻线2-2贯穿所述第一电荷传输层1-3、所述钙钛矿吸收层1-4、所述第二电荷传输层1-5、以及所述第一背电极层1-7,
第三划刻线2-3,所述第三划刻线2-3贯穿所述第一电荷传输层1-3、所述钙钛矿吸收层1-4、所述第二电荷传输层1-5、所述第一背电极层1-7 和所述第二背电极层1-8,
其中,所述第一划刻线2-1内填充与所述钙钛矿吸收层1-4相同的材料,所述第二划刻线2-2内填充与所述第二背电极层1-8相同的材料。
其中,第一背电极层1-7通过低功率磁控溅射制备,可以保护基底材料不受后续磁控溅射工艺的轰击损伤。第二背电极层1-8通过高功率磁控溅射制备,其具有良好的电学性能,第二划刻线2-2内填充这种高功率磁控溅射制备的材料可以降低钙钛矿太阳电池的串联电阻,提高填充因子,从而增加钙钛矿太阳电池的效率。
在本申请中,低功率磁控溅射法所采用的靶表功率小于等于1.5W/cm2,例如可以为1.5W/cm2、1.4W/cm2、1.3W/cm2、1.2W/cm2、1.1W/cm2、1W/cm2、0.9W/cm2、0.8W/cm2、0.7W/cm2、0.6W/cm2、0.5W/cm2等。
在一个具体的实施方式中,低功率磁控溅射法所采用的靶表功率为0.5-1.5W/cm2
高功率磁控溅射法所采用的靶表功率大于等于2W/cm2,例如可以为2W/cm2、2.5W/cm2、3W/cm2、3.5W/cm2、4W/cm2、4.5W/cm2、5W/cm2等。
在一个具体的实施方式中,高功率磁控溅射法所采用的靶表功率为2-5W/cm2
第一背电极层1-7和第二背电极层1-8的材料可以各自独立地选自以下中的一种或两种以上:FTO、ITO、AZO、GZO、IZO、IWO。即第一背电极层1-7和第二背电极层1-8的材料可以相同,例如都为ITO,也可以不同,例如第一背电极1-6的材料为ITO,第二背电极1-7的材料为AZO。本领域技术人员可以理解,根据实际需要第一背电极层1-7或第二背电极层1-8也可以采用两种或两种以上的不同材料。
在一个具体的实施方式中,第一背电极层1-7的厚度为10-50nm,例如可以为10nm、15nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm等。
在一个具体的实施方式中,第二背电极层1-8的厚度为10-200nm,例如可以为10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、110nm、120nm、130nm、140nm、150nm、160nm、 170nm、180nm、190nm、200nm等。
在一个具体的实施方式中,第二背电极层1-8的厚度为100-500nm,例如可以为100nm、120nm、140nm、160nm、180nm、200nm、220nm、240nm、260nm、280nm、300nm、320nm、340nm、360nm、380nm、400nm、420nm、440nm、460nm、480nm、500nm等。
基底层1-1可以是本领域已知的任何基底,例如为玻璃基底。前电极层1-2的材料可以选自FTO、ITO、AZO、GZO、IZO、IWO中的一种或两种以上。
第一电荷传输层1-3和第二电荷传输层1-5的导电类型相反,即当第一电荷传输层1-3为电荷传输层时,第二电荷传输层1-5为空穴传输层;当第一电荷传输层1-3为空穴传输层时,第二电荷传输层1-5为电子传输层。其中,当第一电荷传输层1-3为空穴传输层时,材料可以选自CuSCN、NiOx、NiMgOx、V2O5和MoO3中的一种或两种以上,例如可以包括NiOx、NiMgOx中的至少一种。当第一电荷传输层1-3为电子传输层时,材料可以选自TiO2、SnO2、ZnO、PCBM、C60或BCP中一种或两种以上,例如可以为TiO2或SnO2
当第二电荷传输层1-5为空穴传输层时,材料可以选自Spiro-OMeTAD、CuSCN、NiOx、NiMgOx、V2O5和MoO3中的一种或两种以上,例如可以为Spiro和MoO3。当第二电荷传输层1-5为电子传输层时,材料可以选自TiO2、SnO2、ZnO、PCBM、C60或BCP中一种或两种以上,例如可以为C60与SnO2
针对第一电荷传输层1-3和第二电荷传输层1-5各种材料所采用的厚度和制备方法,本领域技术人员可以根据实际需要进行选择和调整。
钙钛矿吸收层1-4的材料为化学通式为ABXmY3-m型晶体结构的一种或两种以上,其中A为CH3NH3、C4H9NH3、NH2=CHNH2或Cs;B为Pb或Sn;X为Cl、Br或I,Y为Cl、Br或I,且X和Y不同时为同一种元素;m=1、2或3。钙钛矿吸收层1-4制备方式可以为刮涂、超声喷涂、狭缝涂布等方式中的一种或两种以上。
钙钛矿吸收层1-4与第一电荷传输层1-3之间还可以包括缓冲层,以提高电池的转换效率或稳定性。缓冲层的材料和厚度,本领域技术人员可以根据实际需要进行选择和调整。
本领域技术人员可以理解在一个太阳能电池上有多条第一划刻线2-1、第二划刻线2-2、和第三划刻线2-3。如图所示,第一划刻线2-1、第二划刻线2-2、和第三划刻线2-3依次间隔设置。多条第一划刻线2-1、多条第二划刻线2-2、或多条第三划刻线2-3等间距设置,例如相邻的第一划刻线2-1之间的间距小于等于7mm。每条第一划刻线2-1和第二划刻线2-2之间的距离小于等于50μm。每条第二划刻线2-2和第三划刻线2-3之间的距离小于等于50μm。
此外,优选地,第一划刻线2-1不会破坏基底层1-1,第二划刻线2-2和第三划刻线2-3不会破坏前电极层1-2。
进一步地,如图3所示,所述钙钛矿太阳能电池还可以包括第三背电极层1-9和第四背电极层1-10。其中,所述第三背电极层1-9设置在所述第二背电极层1-8远离所述基底层1-1的一侧,所述第四背电极层1-10设置在所述第三背电极层1-9远离所述基底层1-1的一侧。所述第三背电极层1-9和所述第四背电极层1-10被所述第三划刻线2-3贯穿,即第三划刻线2-3贯穿所述第一电荷传输层1-3、所述钙钛矿吸收层1-4、所述第二电荷传输层1-5、所述第一背电极层1-7、所述第二背电极层1-8、所述第三背电极层1-9和所述第四背电极层1-10。
其中,第三背电极层1-9为金属材料,可以选自以下中的一种或两种以上:Au、Ag、Cu、Al。金属材料具有优秀的电学性能,可以保证钙钛矿太阳电池的内部电荷传输,提高电池效率。
在一个具体的实施方式中,所述第三背电极层1-9的厚度为5-200nm,例如可以为5nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、110nm、120nm、130nm、140nm、150nm、160nm、170nm、180nm、190nm、200nm等。
第四背电极层1-10同样采用高功率磁控溅射法制备,其材料的选择、厚度以及具体制备的功率如上针对第二背电极层1-8所述。第四背电极层1-10具有良好的电学性能,可以降低钙钛矿太阳电池的串联电阻,并可以保护第三背电极层1-9不与外部直接接触,提高电池的稳定性。
在一个具体的实施方式中,如图2所示,所述钙钛矿太阳能电池包括:依次层叠设置的基底层1-1、前电极层1-2、第一电荷传输层1-3、钙 钛矿吸收层1-4、第二电荷传输层1-5、第一背电极层1-7和第二背电极层1-8;第一划刻线2-1,所述第一划刻线2-1贯穿所述前电极层1-2和所述第一电荷传输层1-3;第二划刻线2-2,所述第二划刻线2-2贯穿所述第一电荷传输层1-3、所述钙钛矿吸收层1-4、所述第二电荷传输层1-5、以及所述第一背电极层1-7;第三划刻线2-3,所述第三划刻线2-3贯穿所述第一电荷传输层1-3、所述钙钛矿吸收层1-4、所述第二电荷传输层1-5、所述第一背电极层1-7和所述第二背电极层1-8。其中,基底层1-1为玻璃,前电极层1-2为FTO。第一电荷传输层1-3为射频磁控溅射制备的NiOx空穴传输层,厚度为25nm。钙钛矿吸收层1-4为(Cs0.15FA0.85)Pb(I0.7Br0.3)3,厚度为500nm。第二电荷传输层1-5为电子传输层,使用真空蒸镀制备30nm的C60,再使用原子层沉积制备20nm的SnO2。第一背电极层1-7为靶表功率小于等于1.5W/cm2的磁控溅射法制备的ITO,厚度为10-50nm。第二背电极层1-8为靶表功率大于等于2W/cm2的磁控溅射法制备的ITO,膜层厚度为100-500nm。第一划刻线内填充(Cs0.15FA0.85)Pb(I0.7Br0.3)3的钙钛矿吸收材料,所述第二划刻线2-2内填充ITO。
在一个具体的实施方式中,如图3所示,所述钙钛矿太阳能电池包括:依次层叠设置的基底层1-1、前电极层1-2、第一电荷传输层1-3、钙钛矿吸收层1-4、第二电荷传输层1-5、第一背电极层1-7、第二背电极层1-8、第三背电极层1-9和第四背电极层1-10;第一划刻线2-1,所述第一划刻线2-1贯穿所述前电极层1-2和所述第一电荷传输层1-3;第二划刻线2-2,所述第二划刻线2-2贯穿所述第一电荷传输层1-3、所述钙钛矿吸收层1-4、所述第二电荷传输层1-5、以及所述第一背电极层1-7;第三划刻线2-3,所述第三划刻线2-3贯穿所述第一电荷传输层1-3、所述钙钛矿吸收层1-4、所述第二电荷传输层1-5、所述第一背电极层1-7、所述第二背电极层1-8、所述第三背电极层1-9、和所述第四背电极层1-10。其中,基底层1-1为玻璃,前电极层1-2为FTO。第一电荷传输层1-3为射频磁控溅射制备的NiOx空穴传输层,厚度为25nm。钙钛矿吸收层1-4为(Cs0.15FA0.85)Pb(I0.7Br0.3)3,厚度为500nm。第二电荷传输层1-5为电子传输层,使用真空蒸镀制备30nm的C60,再使用原子层沉积制备20nm的SnO2。第一背电极层1-7为靶表功率小于等于1.5W/cm2的磁控溅射法制备 的ITO,厚度为10-50nm。第二背电极层1-8为靶表功率大于等于2W/cm2的磁控溅射法制备的ITO,膜层厚度为10-200nm。第三背电极层1-9为靶表功率大于等于2W/cm2的磁控溅射法制备的银,厚度为5-200nm。第四背电极层1-10为靶表功率大于等于2W/cm2的磁控溅射法制备的ITO,厚度为10-200nm。第一划刻线内填充(Cs0.15FA0.85)Pb(I0.7Br0.3)3的钙钛矿吸收材料,所述第二划刻线2-2内填充ITO。
本申请还提供一种钙钛矿太阳能电池的制备方法,所述制备方法包括:
步骤一:在基底层的一个表面制备前电极层,并在所述前电极层上制备第一电荷传输层,
步骤二:在所述第一电荷传输层上划刻,形成贯穿所述前电极层和所述第一电荷传输层的第一划刻线,
步骤三:在所述第一电荷传输层和所述第一划刻线上制备钙钛矿吸收层,并在所述钙钛矿吸收层上制备第二电荷传输层,
步骤四:在所述第二电荷传输层上制备第一背电极层,
步骤五:在所述第一背电极层上划刻,形成贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、以及所述第一背电极层的第二划刻线,
步骤六:在所述第一背电极层和所述第二划刻线上制备第二背电极层,
步骤七:在所述第二背电极层上划刻,形成贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、所述第一背电极层和所述第二背电极层的第三划刻线。
对于步骤一至步骤七,基底层、前电极层、第一电荷传输层、钙钛矿吸收层、第二电荷传输层、第一背电极层和第二背电极层的厚度,以及所使用的材料如上针对钙钛矿太阳能电池所述。
步骤一、步骤二和步骤三中涉及的具体制备方法可以采用现有技术已知的方法进行。
步骤四中,通过低功率磁控溅射法制备第一背电极层。低功率磁控溅射法的靶表功率小于等于1.5W/cm2
步骤五中,可以使用波长为532nm的绿光激光进行划刻以制备第二划刻线。波长为532nm的绿光激光难以被前电极层吸收,容易被钙钛矿吸收层吸收。钙钛矿吸收层被激光划刻时,将第一电荷传输层、第二电荷传输层一起崩除。在划刻时,需要划穿第一电荷传输层、钙钛矿吸收层、和第二电荷传输层,但不伤及前电极层。
步骤六中,通过高功率磁控溅射法制备第二背电极层。高功率磁控溅射法的靶表功率大于等于2W/cm2
步骤七中,可以使用波长为532nm的绿光激光或机械划刻的方式,在第二划刻线一侧进行划刻。波长为532nm的绿光激光难以被前电极层吸收,容易被钙钛矿吸收层吸收。钙钛矿吸收层被激光划刻时,将第一电荷传输层、第二电荷传输层、第一背电极层和第二背电极层一起崩除。波长为532nm的绿光激光可以使划穿第一电荷传输层、钙钛矿吸收层、第二电荷传输层、第一背电极层和第二背电极层,但不伤及前电极层。此时电池的各个子电池形成串联结构。
进一步地,在步骤六和步骤七之间还可以包括:
在所述第二背电极层上制备第三背电极层,
在所述第三背电极层上制备第四电极层。
本领域技术人员可以理解,第三划刻线的形成在第四电极层制备完成之后,此时步骤七包括划穿第一电荷传输层、钙钛矿吸收层、第二电荷传输层、第一背电极层、第二背电极层、第三背电极层和第四背电极层,但不伤及前电极层所述第四背电极层通过高功率磁控溅射法制备。
实施例
实施例1
制备得到的钙钛矿太阳能电池如图3所示。
制备方法包括以下步骤:
(1-1)在玻璃基底1-1上制备前电极层1-2,材质为FTO。
(1-2)采用射频磁控溅射法,在前电极层1-2上制备第一电荷传输层1-3。其中第一电荷传输层1-3为NiOx空穴传输层,厚度为25nm。
(1-3)使用1064nm波长的激光在第一电荷传输层1-3上等间距划刻 第一划刻线2-1,每条第一划刻线2-1间距相等,间距为6mm。
(1-4)在第一电荷传输层1-3上制备钙钛矿吸收层1-4,其中采用(Cs0.15FA0.85)Pb(I0.7Br0.3)3组分体系,按照摩尔比例称取合适的材料,溶解到DMF与DMSO的混合溶液中,浓度1.0M。然后使用狭缝涂布工艺得到均匀液膜,通过风刀处理得到均匀固态膜。然后在120℃热台上退火30min,得到钙钛矿吸收层1-4。钙钛矿吸收层1-4厚度为500nm。
(1-5)在钙钛矿吸收层1-4上制备第二电荷传输层1-5。其中1-5第二电荷传输层为电子传输层,使用真空蒸镀制备30nm的C60,再使用原子层沉积制备20nm的SnO2
(1-6)在第二电荷传输层1-5上制备第一背电极层1-7。第一背电极层1-7为靶表功率为1W/cm2的磁控溅射制备的ITO材料,膜层厚度为20nm。
(1-7)使用波长为532nm的绿光激光,在第一划刻线2-1左侧位置进行划刻,形成第二划刻线2-2。第二划刻线2-2与第一划刻线2-1的间距为50μm。
(1-8)在第一背电极层1-7上制备第二背电极层1-8。第二背电极层1-8为靶表功率为2.5W/cm2的磁控溅射制备的ITO材料,膜层厚度为40nm。
(1-9)在第二背电极层1-8上制备第三背电极层1-9。第三背电极层1-9为靶表功率为2W/cm2的磁控溅射制备的Ag,膜层厚度为80nm。
(1-10)在第三背电极层1-9上制备第四背电极层1-10。第四背电极层1-10为靶表功率为2.5W/cm2的磁控溅射制备的ITO材料,膜层厚度为40nm。
(1-11)使用波长为532nm的绿光激光在第二划刻线2-2左侧位置进行划刻,形成第三划刻线2-3。第二划刻线2-2和第三划刻线2-3的间距为50μm。
实施例2
制备得到的钙钛矿太阳能电池如图2所示。
制备方法包括以下步骤:
(1-1)在玻璃基底1-1上制备前电极层1-2,材质为FTO。
(1-2)采用射频磁控溅射法,在前电极层1-2上制备第一电荷传输层1-3。其中第一电荷传输层1-3为NiOx空穴传输层,厚度为25nm。
(1-3)使用1064nm波长的激光在第一电荷传输层1-3上等间距划刻第一划刻线2-1,每条第一划刻线2-1间距相等,间距为6mm。
(1-4)在第一电荷传输层1-3上制备钙钛矿吸收层1-4,其中采用(Cs0.15FA0.85)Pb(I0.7Br0.3)3组分体系,按照摩尔比例称取合适的材料,溶解到DMF与DMSO的混合溶液中,浓度1.0M。然后使用狭缝涂布工艺得到均匀液膜,通过风刀处理得到均匀固态膜。然后在120℃热台上退火30min,得到钙钛矿吸收层1-4。钙钛矿吸收层1-4厚度为500nm。
(1-5)在钙钛矿吸收层1-4上制备第二电荷传输层1-5。其中1-5第二电荷传输层为电子传输层,使用真空蒸镀制备30nm的C60,再使用原子层沉积制备20nm的SnO2
(1-6)在第二电荷传输层1-5上制备第一背电极层1-7。第一背电极层1-7为靶表功率为1W/cm2的磁控溅射制备的ITO材料,膜层厚度为20nm。
(1-7)使用波长为532nm的绿光激光,在第一划刻线2-1左侧位置进行划刻,形成第二划刻线2-2。第二划刻线2-2与第一划刻线2-1的间距为50μm。
(1-8)在第一背电极层1-7上制备第二背电极层1-8。第二背电极层1-8为靶表功率为2.5W/cm2的磁控溅射制备的ITO材料,膜层厚度为300nm。
(1-9)使用波长为532nm的绿光激光在第二划刻线2-2左侧位置进行划刻,形成第三划刻线2-3。第二划刻线2-2和第三划刻线2-3的间距为50μm。
对比例1
制备得到的钙钛矿太阳能电池如图1所示。
制备方法包括以下步骤:
(1-1)在玻璃基底1-1上制备前电极层1-2,材质为FTO。
(1-2)采用射频磁控溅射法,在前电极层1-2上制备第一电荷传输层1-3。其中第一电荷传输层1-3为NiOx空穴传输层,厚度25为nm。
(1-3)使用1064nm波长的激光在第一电荷传输层1-3上等间距划刻第一划刻线2-1,每条第一划刻线2-1间距相等,间距为6mm。
(1-4)在第一电荷传输层1-3上制备钙钛矿吸收层1-4,其中采用(Cs0.15FA0.85)Pb(I0.7Br0.3)3组分体系,按照摩尔比例称取合适的材料,溶解到DMF与DMSO的混合溶液中,浓度1.0M。然后使用狭缝涂布工艺得到均匀液膜,通过风刀处理得到均匀固态膜。然后在120℃热台上退火30min,得到钙钛矿吸收层1-4。钙钛矿吸收层1-4厚度为500nm。
(1-5)在钙钛矿吸收层1-4上制备第二电荷传输层1-5。其中1-5第二电荷传输层为电子传输层,使用真空蒸镀制备30nm的C60,再使用原子层沉积制备20nm的SnO2
(1-6)使用波长为532nm的绿光激光,在第一划刻线2-1左侧位置进行划刻,形成第二划刻线2-2。第二划刻线2-2与第一划刻线2-1的间距为50μm。
(1-7)在第二电荷传输层1-5上,蒸镀100nm的Ag作为背电极层1-6。
(1-8)使用机械划线在第二划刻线2-2左侧位置进行划刻,形成第三划刻线2-3。第二划刻线2-2和第三划刻线2-3的间距为50μm。
对比例2
制备得到的钙钛矿太阳能电池如图1所示。
制备方法包括以下步骤:
(1-1)在玻璃基底1-1上制备前电极层1-2,材质为FTO。
(1-2)采用射频磁控溅射法,在前电极层1-2上制备第一电荷传输层1-3。其中第一电荷传输层1-3为NiOx空穴传输层,厚度为25nm。
(1-3)使用1064nm波长的激光在第一电荷传输层1-3上等间距划刻第一划刻线2-1,每条第一划刻线2-1间距相等,间距为6mm。
(1-4)在第一电荷传输层1-3上制备钙钛矿吸收层1-4,其中采用(Cs0.15FA0.85)Pb(I0.7Br0.3)3组分体系,按照摩尔比例称取合适的材料,溶解到DMF与DMSO的混合溶液中,浓度1.0M。然后使用狭缝涂布工艺得到均匀液膜,通过风刀处理得到均匀固态膜。然后在120℃热台上退火30min,得到钙钛矿吸收层1-4。钙钛矿吸收层1-4厚度为500nm。
(1-5)在钙钛矿吸收层1-4上制备第二电荷传输层1-5。其中1-5第二电荷传输层为电子传输层,使用真空蒸镀制备30nm的C60,再使用原子层沉积制备20nm的SnO2
(1-6)使用波长为532nm的绿光激光,在第一划刻线2-1左侧位置进行划刻,形成第二划刻线2-2。第二划刻线2-2与第一划刻线2-1的间距为50μm。
(1-7)在第二电荷传输层1-5上,使用反应式等离子体镀膜制备300nm的IWO作为背电极层1-6。
(1-8)使用机械划线在第二划刻线2-2左侧位置进行划刻,形成第三划刻线2-3。第二划刻线2-2和第三划刻线2-3的间距为50μm。
上述实施例和对比例的背电极情况如表1所示。
表1
对实施例1-2和对比例1-2制备的钙钛矿太阳能电池进行性能测定,结果如表2所示。
表2
从表2中可以看出,对比例1的背电极为金属Ag,虽然有最佳的初始效率,但是稳定性最差。原因为Ag粒子迁移到钙钛矿活性层中,降低了组件的稳定性。
实施例1与实施例2,由于增加来TCO材料的保护,其稳定性与对比例2的纯IWO背电极一致,组件的稳定性相较于对比例1大幅提升。
实施例1相较于实施例2,背电极由于有金属层的存在,其导电性接近于对比例1的纯金属背电极,具有非常优秀的初始电性能。同时由于TCO材料可以保护金属不与钙钛矿活性层接触,其稳定性也大幅提升。实施例1不仅具有优秀的初始电性能,还具有优秀的稳定性。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的″一个实施例″、″实施例″或者″一个或者多个实施例″意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里″在一个实施例中″的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种钙钛矿太阳能电池,其特征在于,所述钙钛矿太阳能电池包括:
    依次层叠设置的基底层、前电极层、第一电荷传输层、钙钛矿吸收层、第二电荷传输层、第一背电极层和第二背电极层,
    第一划刻线,所述第一划刻线贯穿所述前电极层和所述第一电荷传输层,
    第二划刻线,所述第二划刻线贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、以及所述第一背电极层,
    第三划刻线,所述第三划刻线贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、所述第一背电极层和所述第二背电极层,
    其中,所述第一划刻线内填充与所述钙钛矿吸收层相同的材料,所述第二划刻线内填充与所述第二背电极层相同的材料。
  2. 根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述钙钛矿太阳能电池还包括第三背电极层和第四背电极层,
    其中,所述第三背电极层设置在所述第二背电极层远离所述基底层的一侧,所述第四背电极层设置在所述第三背电极层远离所述基底层的一侧,
    所述第三背电极层和所述第四背电极层被所述第三划刻线贯穿。
  3. 根据权利要求1或2所述的钙钛矿太阳能电池,其特征在于,
    所述第一背电极层通过低功率磁控溅射法制备,所述第二背电极层通过高功率磁控溅射法制备;或者
    所述第四背电极层通过高功率磁控溅射法制备。
  4. 根据权利要求3所述的钙钛矿太阳能电池,其特征在于,低功率磁控溅射法所采用的靶表功率小于等于1.5W/cm2
  5. 根据权利要求3所述的钙钛矿太阳能电池,其特征在于,高功率磁控溅射法所采用的靶表功率大于等于2W/cm2
  6. 根据权利要求1或2所述的钙钛矿太阳能电池,其特征在于,所述第一背电极层、所述第二背电极层或者所述第四背电极层的材料各自独立地选自以下中的一种或两种以上:FTO、ITO、AZO、GZO、IZO、IWO;或者
    所述第三背电极的材料选自以下中的一种或两种以上:Au、Ag、Cu、 Al。
  7. 根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述第一背电极层的厚度为10-50nm;或者
    所述第二背电极层的厚度为100-500nm或10-200nm。
    所述第三背电极的厚度为5-200nm;或者
    所述第四背电极层的厚度为10-200nm。
  8. 一种钙钛矿太阳能电池的制备方法,其特征在于,所述制备方法包括:
    在基底层的一个表面制备前电极层,并在所述前电极层上制备第一电荷传输层,
    在所述第一电荷传输层上划刻,形成贯穿所述前电极层和所述第一电荷传输层的第一划刻线,
    在所述第一电荷传输层和所述第一划刻线上制备钙钛矿吸收层,并在所述钙钛矿吸收层上制备第二电荷传输层,
    在所述第二电荷传输层上制备第一背电极层,
    在所述第一背电极层上划刻,形成贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、以及所述第一背电极层的第二划刻线,
    在所述第一背电极层和所述第二划刻线上制备第二背电极层,
    在所述第二背电极层上划刻,形成贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、所述第一背电极层和所述第二背电极层的第三划刻线。
  9. 一种钙钛矿太阳能电池的制备方法,其特征在于,所述制备方法包括:
    在基底层的一个表面制备前电极层,并在所述前电极层上制备第一电荷传输层,
    在所述第一电荷传输层上划刻,形成贯穿所述前电极层和所述第一电荷传输层的第一划刻线,
    在所述第一电荷传输层和所述第一划刻线上制备钙钛矿吸收层,并在所述钙钛矿吸收层上制备第二电荷传输层,
    在所述第二电荷传输层上制备第一背电极层,
    在所述第一背电极层上划刻,形成贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、以及所述第一背电极层的第二划刻线,
    在所述第一背电极层和所述第二划刻线上制备第二背电极层,
    在所述第二背电极层上制备第三背电极层,并在所述第三背电极层上制备第四电极层,
    在所述第四背电极层上划刻,形成贯穿所述第一电荷传输层、所述钙钛矿吸收层、所述第二电荷传输层、所述第一背电极层、所述第二背电极层、所述第三背电极层和所述第四背电极层的第三划刻线。
  10. 根据权利要求8或9所述的制备方法,其特征在于,通过低功率磁控溅射法制备第一背电极层,通过高功率磁控溅射法制备第二背电极层;或者
    通过高功率磁控溅射法制备第四背电极层。
  11. 根据权利要求10所述的制备方法,其特征在于,低功率磁控溅射法所采用的靶表功率小于等于1.5W/cm2,高功率磁控溅射法所采用的靶表功率大于等于2W/cm2
  12. 根据权利要求8或9所述的制备方法,其特征在于,所述第一背电极层、所述第二背电极层或所述第四背电极层的材料各自独立地选自以下中的一种或两种以上:FTO、ITO、AZO、GZO、IZO、IWO;或者
    所述第三背电极的材料选自以下中的一种或两种以上:Au、Ag、Cu、Al。
  13. 根据权利要求8或9所述的制备方法,其特征在于,所述第一背电极层的厚度为10-50nm;或者
    所述第二背电极层的厚度为100-500nm或10-200nm;或者
    所述第三背电极的厚度为5-200nm;或者
    所述第四背电极层的厚度为10-200nm。
PCT/CN2023/113664 2022-11-24 2023-08-18 钙钛矿太阳电池及其制备方法 WO2024109195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211481017.4 2022-11-24
CN202211481017.4A CN115942761A (zh) 2022-11-24 2022-11-24 钙钛矿太阳电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2024109195A1 true WO2024109195A1 (zh) 2024-05-30

Family

ID=86556802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113664 WO2024109195A1 (zh) 2022-11-24 2023-08-18 钙钛矿太阳电池及其制备方法

Country Status (2)

Country Link
CN (1) CN115942761A (zh)
WO (1) WO2024109195A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115942761A (zh) * 2022-11-24 2023-04-07 隆基绿能科技股份有限公司 钙钛矿太阳电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186251A (ja) * 2002-11-29 2004-07-02 Toshiba Corp 放射線検出器およびその製造方法
CN114335360A (zh) * 2022-01-10 2022-04-12 华能新能源股份有限公司 一种免划刻大面积钙钛矿太阳能电池的制备方法
CN114678471A (zh) * 2022-03-22 2022-06-28 深圳黑晶光电技术有限公司 一种钙钛矿太阳能电池组件及其加工方法
CN115942761A (zh) * 2022-11-24 2023-04-07 隆基绿能科技股份有限公司 钙钛矿太阳电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186251A (ja) * 2002-11-29 2004-07-02 Toshiba Corp 放射線検出器およびその製造方法
CN114335360A (zh) * 2022-01-10 2022-04-12 华能新能源股份有限公司 一种免划刻大面积钙钛矿太阳能电池的制备方法
CN114678471A (zh) * 2022-03-22 2022-06-28 深圳黑晶光电技术有限公司 一种钙钛矿太阳能电池组件及其加工方法
CN115942761A (zh) * 2022-11-24 2023-04-07 隆基绿能科技股份有限公司 钙钛矿太阳电池及其制备方法

Also Published As

Publication number Publication date
CN115942761A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2024109195A1 (zh) 钙钛矿太阳电池及其制备方法
CN105789444A (zh) 一种基于真空蒸发镀膜法的钙钛矿太阳能电池及其制备方法
CN105140398A (zh) 一种背接触钙钛矿太阳电池
CN108470852A (zh) 一种界面修饰钙钛矿太阳能电池的制备方法
WO2023020515A1 (zh) 异质结太阳能电池及其制作方法、异质结光伏组件
CN110085683A (zh) 无掺杂晶体硅异质结太阳能电池及其制备方法
CN112086562A (zh) 半透明钙钛矿太阳能电池、组件及制备方法
CN114695671A (zh) 钙钛矿太阳能电池及其制备方法、光伏系统
CN217280794U (zh) 一种光伏电池
CN115884608A (zh) 一种大面积双异质结钙钛矿太阳能电池及其制备方法
CN108878570A (zh) 空穴选择型MoOx/SiOx(Mo)/n-Si异质结、太阳电池器件及其制备方法
WO2024125560A1 (zh) 一种薄膜光伏串联组件及其制备方法
CN102222575B (zh) 染料敏化太阳能电池光阳极的制备方法
CN105470338A (zh) 一种柔性叠层太阳电池及制备方法
CN109166972A (zh) 一种双缓冲层钙钛矿太阳能电池制造方法
CN112786737A (zh) Cigs薄膜太阳能电池组件及其刻划方法
CN116782675A (zh) 一种钙钛矿太阳能电池及其制备方法
Fan et al. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact
CN106450004A (zh) 一种基于f4‑tcnq/c60结构的紫外‑可见有机光电探测器的制备方法
CN219146068U (zh) 钙钛矿太阳能电池
WO2022127178A1 (zh) 一种薄膜太阳能电池
CN205900557U (zh) 一种光谱吸收增强型石墨烯硅基太阳能电池
CN108365105A (zh) 一种钙钛矿太阳能电池及其制备方法
CN109326718A (zh) 一种双缓冲层钙钛矿太阳能电池制造方法
Nakada et al. Chalcopyrite thin-film tandem solar cells with 1.5 V open-circuit-voltage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893293

Country of ref document: EP

Kind code of ref document: A1