WO2024109143A1 - Isg混动车辆动力系统模式切换控制方法、车辆及存储介质 - Google Patents

Isg混动车辆动力系统模式切换控制方法、车辆及存储介质 Download PDF

Info

Publication number
WO2024109143A1
WO2024109143A1 PCT/CN2023/109973 CN2023109973W WO2024109143A1 WO 2024109143 A1 WO2024109143 A1 WO 2024109143A1 CN 2023109973 W CN2023109973 W CN 2023109973W WO 2024109143 A1 WO2024109143 A1 WO 2024109143A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
isg
vehicle
mode
power system
Prior art date
Application number
PCT/CN2023/109973
Other languages
English (en)
French (fr)
Inventor
伍庆龙
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2024109143A1 publication Critical patent/WO2024109143A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to the field of new energy vehicle technology, for example, to an ISG hybrid vehicle power system mode switching control method, a vehicle and a storage medium.
  • ISG Integrated Starter and Generator
  • ISG hybrid vehicles have two power sources, engine and motor, to output torque, and are equipped with power batteries, the hybrid system operation modes of ISG hybrid vehicles are more diverse compared to traditional vehicles. Therefore, it is particularly important to accurately and effectively control the hybrid system mode switching.
  • the present application provides an ISG hybrid vehicle power system mode switching control method, a vehicle and a storage medium.
  • a mode switching control method for an ISG hybrid vehicle power system comprises: an engine, an ISG drive motor and a power battery, wherein the engine, the ISG drive motor and the power battery are respectively connected to a bus;
  • the control method comprises:
  • the vehicle When the vehicle is stationary and is started for the first time, the vehicle enters the idle start mode; the idle start mode includes the process of the engine switching from stationary shutdown to starting; when the vehicle has power demand, the starter and ISG drive motor drive the engine to rotate, and then enter the starting process;
  • the hybrid controller HCU controls the power system to enter the engine-only drive mode, and the engine alone outputs power; if the accelerator pedal travel is greater than the second travel threshold, the hybrid controller HCU controls the power system to enter the combined drive mode, and the engine and the ISG drive motor output power, and the second travel threshold is greater than the first travel threshold;
  • the hybrid controller HCU controls the power system to enter the driving charging mode, and the ISG drives the motor to charge the power battery.
  • a vehicle comprising an ISG hybrid vehicle power system, the ISG hybrid vehicle power system comprising a hybrid controller HCU, a battery management system, a motor controller, an ISG drive motor, an engine and a power battery, the engine, the ISG drive motor and the power battery are respectively connected to a bus;
  • the HCU is used to execute the ISG hybrid vehicle power system mode switching control method described in any embodiment of the present application.
  • a computer-readable storage medium stores computer instructions, and the computer instructions are used to enable a processor to implement the ISG hybrid vehicle power system mode switching control method described in any embodiment of the present application when executed.
  • FIG1 is a schematic structural diagram of an ISG hybrid vehicle power system provided in Embodiment 1 of the present application.
  • FIG2 is a flow chart of a method for controlling a mode switching of a power system of an ISG hybrid vehicle provided in Embodiment 1 of the present application;
  • FIG. 3 is a control module diagram of the ISG hybrid vehicle power system mode switching provided in the first embodiment of the present application;
  • FIG4 is a flow chart of the control of the ISG hybrid vehicle power system mode switching provided in the first embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of a vehicle provided in Embodiment 2 of the present application.
  • FIG6 is a diagram showing the connection relationship between various modules of a vehicle provided in Embodiment 2 of the present application.
  • FIG7 is a schematic diagram of vehicle function interface signal transmission provided in Example 2 of the present application.
  • FIG8 is a diagram of the vehicle network topology provided in Example 2 of the present application.
  • an embodiment of the present application provides an ISG hybrid vehicle power system mode switching control method, a vehicle and a storage medium.
  • FIG1 is a structural schematic diagram of an ISG hybrid vehicle power system provided in the first embodiment of the present application.
  • the ISG hybrid vehicle power system 100 includes an engine 110, an ISG drive motor 120, and a power battery 130.
  • the engine 110, the ISG drive motor 120, and the power battery 130 are respectively connected to a bus 140.
  • the ISG drive motor 120 is directly integrated on the main shaft of the engine 110 as a starter and generator. It can replace the engine 110 to drive the vehicle for a short time during the starting phase and can start the engine 110 at the same time.
  • the engine 110 drives the vehicle, the ISG drive motor is disconnected or acts as a generator, and the electrical energy is stored through the power battery 130.
  • FIG2 is a flow chart of a method for controlling a mode switch of a power system of an ISG hybrid vehicle provided in the first embodiment of the present application.
  • the present embodiment can switch the mode of the power system. As shown in FIG2 , the method includes:
  • the vehicle enters an idle start mode;
  • the idle start mode includes a process in which the engine switches from a stationary state to a starting state, or when the vehicle has a power demand, the starter and the ISG drive motor drive the engine to rotate, and then switches to a starting state.
  • Idling means that the engine is not doing work externally and the engine is completely disconnected from the transmission system. Maintain the engine to run continuously and smoothly at a lower speed.
  • Idle start refers to the process of starting the vehicle from a standstill for the first time, or when the vehicle's accessories have power requirements, the engine is driven by the starter or ISG drive motor. When the engine speed reaches the preset threshold, the engine sprays fuel and burns to achieve idle start.
  • the hybrid controller controls the power system to enter the starter starting mode, and the starter drives the engine to rotate.
  • the engine controller controls the engine to start fuel injection;
  • the hybrid controller HCU controls the power system to enter the ISG drive motor starting mode, and the ISG drive motor drives the engine to rotate;
  • the ambient temperature reaches a preset threshold, the hybrid controller HCU controls the power system to enter the combined starting mode, and the starter and ISG drive motor successively drive the engine to rotate.
  • the hybrid controller HCU is the hybrid power system vehicle controller, which is the main controller of the hybrid power system and is responsible for managing the entire powertrain.
  • the engine controller EMS is the engine management system, which realizes the control of the engine working state.
  • the idle start mode includes three starting sub-modes. According to the state of the ISG drive motor and the working environment temperature, the hybrid controller HCU controls the power system to enter different starting sub-modes.
  • the hybrid controller HCU controls the power system to enter the starter starting sub-mode; when the ISG drive motor is not faulty, the hybrid controller HCU controls the power system to enter the ISG drive motor starting sub-mode; when the ambient temperature reaches a preset threshold, such as in an extremely low temperature environment below -30 degrees Celsius, the hybrid controller HCU controls the power system to enter the joint starting mode, that is, the starter drives the engine to rotate and then uses the ISG drive motor to drive the engine to rotate.
  • a preset threshold such as in an extremely low temperature environment below -30 degrees Celsius
  • the hybrid controller HCU controls the power system to enter the engine-only drive mode, and the engine outputs power alone; if the accelerator pedal travel is greater than the second travel threshold, the hybrid controller HCU controls the power system to enter the combined drive mode, and the engine and the ISG drive motor output power, and the second travel threshold is greater than the first travel threshold.
  • the accelerator pedal is also called the accelerator pedal.
  • the engine speed is controlled by controlling the amount of pedaling.
  • the accelerator pedal travel can be understood as the amount of pedaling.
  • the hybrid controller HCU controls the power system to enter different driving modes according to the accelerator pedal travel.
  • the hybrid controller HCU controls the power system to enter the engine-only drive mode. At this time, the engine output power alone meets the needs of driving the vehicle.
  • the hybrid controller HCU controls the power system to enter the joint drive mode. The engine and ISG drive the motor. At the same time, power is output to meet the demand of driving the vehicle.
  • the second stroke threshold is greater than the first stroke threshold, and the first stroke threshold and the second stroke threshold can be preset.
  • the hybrid controller HCU distributes the electric energy output by the engine and the ISG drive motor based on the efficiency of the engine and the ISG drive motor.
  • the hybrid controller HCU controls the electric energy output by the engine and the electric energy output by the ISG drive motor according to the efficiency of the engine and the efficiency of the ISG drive motor.
  • the hybrid controller HCU controls the engine to operate in the optimal efficiency range and controls the ISG drive motor to operate at a high efficiency point based on the efficiency MAP of the engine and the ISG drive motor.
  • the horizontal axis is generally the speed
  • the vertical axis is the torque
  • the intersection of the horizontal axis and the vertical axis is the efficiency point.
  • the brake pedal is a foot brake pedal, which is used as a service brake for deceleration and parking.
  • the hybrid controller HCU controls the power system to enter the driving charging mode.
  • the hybrid controller HCU controls the engine to work alone, and the engine drives the ISG drive motor to charge the power battery.
  • the third stroke threshold and the braking stroke threshold can be pre-set, and the third stroke threshold is less than the first stroke threshold.
  • the hybrid controller HCU controls the engine output power and controls the ISG drive motor to charge the power battery.
  • the battery management system BMS is responsible for controlling the charging and discharging of the battery and realizing functions such as battery state estimation.
  • the state of charge SOC of the power battery can represent the ratio of the remaining capacity of the power battery to its capacity in a fully charged state.
  • the HCU controls the engine as the main power source to output torque while controlling the ISG negative torque output, and the ISG motor works in the power generation state to charge the power battery.
  • the preset threshold for setting the state of charge SOC can be pre-set, for example, set to 70%.
  • the HCU controls the engine to operate in the optimal efficiency range based on the engine's efficiency MAP.
  • the excess energy after meeting the vehicle driving needs can be generated by the ISG drive motor to charge the power battery. That is, the engine outputs torque/power while providing energy to charge the power battery through the ISG drive motor.
  • the embodiment of the present application further includes: when the vehicle gear is in the parking gear and the power system has not reached automatic shutdown, the hybrid controller HCU controls the power system to enter the idle charging mode, The ISG drive motor charges the power battery; in the idle charging mode, if the power battery state of charge SOC sent by the battery management system BMS is less than the preset threshold, the hybrid controller HCU controls the engine to run at a predetermined speed, and at the same time controls the ISG drive motor to charge the power battery.
  • Automatic shutdown can be achieved through the brake pedal, or it can be automatically shut down due to insufficient battery power of the vehicle.
  • the engine continues to run but is separated from the transmission system.
  • the hybrid controller HCU controls the power system to enter the idle charging mode. If the power battery state of charge SOC sent by the battery management system BMS is less than the preset threshold, the hybrid controller HCU controls the engine to run at a predetermined speed. For example, when the SOC is lower than the specified value (such as 70%), the HCU controls the engine to run at a specified speed (such as 750rpm), and the ISG motor works in a power generation state to charge the power battery.
  • the HCU controls the engine speed operating point and the negative torque output of the ISG drive motor, so that the engine and the ISG drive motor operate at the required efficiency point.
  • the hybrid controller HCU controls the power system to enter the energy recovery mode, and the power battery stores the electrical energy.
  • Energy recovery is when the vehicle brakes and generates electricity through the motor when decelerating, and the electricity is recovered into the battery pack.
  • the HCU should control the engine to decelerate and cut off the fuel, and control the hybrid system to enter the energy recovery mode.
  • the control method is as follows:
  • the HCU should control the torque output of both the engine and the motor in the hybrid system to drop to 0 at a certain slope
  • the HCU shall control the coasting energy recovery based on the engine/motor speed (the two speeds are the same);
  • the HCU shall control the braking energy recovery based on the engine/motor speed (the two speeds are the same) and the brake pedal travel (according to the energy recovery advance calibration MAP, i.e. the relationship curve between the brake pedal travel and the ISG negative torque output);
  • the HCU should prohibit the energy recovery function based on vehicle safety priority. At this time, the vehicle does not recover energy, and the torque output of the hybrid system should respond to the requested torque of ESP or ABS.
  • the hybrid controller HCU controls the engine to "not inject fuel”; in the automatic start mode, the hybrid controller HCU controls the engine to start.
  • the hybrid controller HCU controls the engine to "not inject fuel” and the engine is shut down.
  • the hybrid controller HCU controls the powertrain The system enters automatic shutdown mode.
  • the vehicle speed is less than a certain value (such as 1km/h, which can be calibrated);
  • the vehicle does not have air conditioning and requires the engine to be started;
  • the power battery power reported by BMS is not limited
  • the engine water temperature exceeds a certain value (such as 50 degrees Celsius, which can be calibrated);
  • the voltage of the low-voltage battery exceeds a certain value (such as 12V, which can be calibrated);
  • the hybrid controller HCU controls the engine to start according to whether the vehicle meets the engine start condition.
  • the HCU controls the power system to enter the automatic start mode and controls the engine to start.
  • the vehicle has air conditioning and requires the engine to be started
  • the air pressure value in the brake vacuum booster system is lower than the specified value (such as 0.62Mpa, which can be calibrated)
  • 12V battery voltage is lower than a certain value (such as 10V, which can be calibrated)
  • the engine water temperature is lower than a certain value (such as 45 degrees Celsius, which can be calibrated)
  • the power battery SOC is lower than a certain value (such as 30%, which can be calibrated)
  • the power battery discharge power limit reported by the BMS is lower than a certain value (such as 20kW, which can be calibrated)
  • the ISG motor torque limit reported by the MCU is lower than a certain value (such as 70Nm, which can be calibrated)
  • Articles 14) and 15) are intended to prevent the power battery discharge power and ISG motor torque from being limited too low for some reason, which would result in the engine being unable to start normally the next time after it stops. Therefore, when a certain condition is met, the engine start function must be identified to avoid the inability to use the ISG motor to start the engine after a period of time due to battery or ISG motor power limitations.
  • the HCU When the automatic start is triggered, the HCU should control
  • the hybrid controller HCU controls the power system to enter a safe limp home mode.
  • the HCU should respond to the driver's accelerator pedal request, but control the power system torque output and limit the vehicle speed to below the preset speed.
  • the failure of the vehicle power system may be a failure of a power source component of the battery or motor, and the hybrid system drive power will be limited.
  • the hybrid controller HCU controls the power system to enter a safe limp home mode.
  • the accelerator pedal signal is normal, the HCU responds to the accelerator pedal information normally, but the vehicle speed needs to be limited, for example, controlling the vehicle speed at 20km/h to ensure the safety of vehicle operation.
  • the ISG hybrid system mode switching control block is developed and executed by the HCU controller.
  • FIG3 is a control module diagram of the ISG hybrid vehicle power system mode switching provided in Example 1 of the present application. As shown in FIG3, the modes involved include idle start mode, idle charging mode, driving charging mode, engine single drive mode, combined drive mode, energy recovery mode, automatic stop mode, automatic start and safety mode, a total of 9 major modes.
  • the HCU realizes the switching control between the ISG hybrid system modes through the design of mode switching conditions and control strategy methods.
  • FIG4 is a flow chart of the control of the ISG hybrid vehicle power system mode switching provided in the first embodiment of the present application.
  • the control method includes:
  • the HCU controls the vehicle hybrid system to enter the engine-only driving mode
  • the HCU controls the ISG hybrid system to enter safe mode.
  • the present embodiment provides an ISG hybrid vehicle power system mode switching control method, wherein the ISG hybrid vehicle power system includes: an engine, an ISG drive motor and a power battery, wherein the engine, the ISG drive motor and the power battery are respectively connected to a bus; the control method includes: when the vehicle is stationary and the vehicle is started for the first time, the vehicle enters an idle start mode; the idle start mode includes a process in which the engine switches from a stationary stop to a start-up, or when the vehicle has a power demand, the starter and the ISG drive motor drive the engine to rotate, and then switches to a start-up process.
  • the hybrid controller HCU controls the power system to enter the engine-only driving mode, and the engine outputs power alone; if the accelerator pedal stroke is greater than the second stroke threshold, the hybrid controller HCU controls the power system to enter the joint driving mode, and the engine and the ISG drive motor output power, and the second stroke threshold is greater than the first stroke threshold; when the vehicle gear is in the driving gear, if the accelerator pedal stroke is between the third stroke threshold and the first stroke threshold, and the brake pedal stroke is less than the brake stroke threshold, the hybrid controller HCU controls the power system to enter the driving charging mode, and the ISG drive motor charges the power battery.
  • FIG5 is a schematic diagram of the structure of a vehicle provided in the second embodiment of the present application.
  • the vehicle 500 includes an ISG hybrid vehicle power system 100.
  • the ISG hybrid vehicle power system 100 includes a hybrid control
  • the hybrid controller HCU 510, the battery management system 520, the motor controller 530, the ISG drive motor 120, the engine 110 and the power battery 130 are respectively connected to the bus 140.
  • the hybrid controller HCU is used to execute the ISG hybrid vehicle power system mode switching control method.
  • the hybrid controller HCU510 is the hybrid power system vehicle controller, which is the main controller of the hybrid power system and is responsible for managing the entire powertrain.
  • the battery management system 520 is responsible for controlling the charging and discharging of the battery and realizing functions such as battery state estimation.
  • the motor controller 530 can control the response of the motor according to the control command and adjust the drive motor output in real time according to the feedback.
  • the main functions of the motor controller include forward, reverse, idle, AC to DC and other functions.
  • FIG6 is a connection diagram of various modules of a vehicle provided in Example 2 of the present application, which is mainly composed of an engine, an automatic mechanical transmission (AMT), an ISG drive motor, a high-voltage power battery, a DCDC DC converter, a clutch, etc. It also includes controllers or control systems of various components, such as an engine control system, a hybrid controller, a motor controller, a battery management system, and a transmission controller.
  • AMT automatic mechanical transmission
  • ISG drive motor ISG drive motor
  • high-voltage power battery a high-voltage power battery
  • a DCDC DC converter a clutch
  • a clutch etc.
  • controllers or control systems of various components such as an engine control system, a hybrid controller, a motor controller, a battery management system, and a transmission controller.
  • FIG. 7 is a schematic diagram of vehicle function interface signal transmission provided in Example 2 of the present application.
  • the mode management and control module is developed and implemented by HCU.
  • the hybrid vehicle involves coordinated control between multiple controllers in the mode switching control process, including the hybrid controller HCU, the motor controller MCU, the battery management system BMS, the engine controller EMS, the transmission controller (Transmission Control Unit, TCU), the instrument display system IC (Instrument Control), the electronic stability system ESP (Electronic Stability Program), etc.
  • TCU Transmission Control Unit
  • IC Instrument Display System
  • ESP Electronic Stability Program
  • FIG 8 is a vehicle network topology diagram provided in Example 2 of the present application.
  • the information transmission method between the modules of the vehicle adopts the controller area network (CAN) network for communication.
  • the relevant CAN network is described as follows: the traditional CAN network mainly includes the network nodes EMS, TCU, ESP, ABS and IC related to traditional vehicles; the hybrid CAN network mainly includes the network nodes HCU, BMS, MCU and DCDC related to new energy; the signal interaction of different controllers across network nodes can be realized through the gateway GW (Gateway) node.
  • the gateway GW Gateway
  • an ISG electric/generator integrated machine and a power battery pack are added to the traditional vehicle.
  • a smaller engine can be selected on the basis of ensuring the power performance of the whole vehicle, and the engine working area can be optimized.
  • the ISG motor can effectively recover energy and convert mechanical energy into electrical energy for storage.
  • Embodiment 3 of the present application further provides a computer-readable storage medium, wherein the computer-readable storage medium stores computer instructions, and the computer instructions are used to enable a processor to execute a method for controlling a mode switching of a power system of an ISG hybrid vehicle, the method comprising:
  • the idle start mode includes the process of the engine switching from stationary shutdown to starting, or when the vehicle has power demand, the starter and ISG drive motor drive the engine to rotate, and then switch to the starting process;
  • the hybrid controller HCU controls the power system to enter the engine-only drive mode, and the engine alone outputs power; if the accelerator pedal travel is greater than the second travel threshold, the hybrid controller HCU controls the power system to enter the combined drive mode, and the engine and the ISG drive motor output power, and the second travel threshold is greater than the first travel threshold;
  • the hybrid controller HCU controls the power system to enter the driving charging mode, and the ISG drives the motor to charge the power battery.
  • the storage medium may be a non-transitory storage medium.
  • a computer readable storage medium may be a tangible medium that may contain or store a computer program for use by or in conjunction with an instruction execution system, device, or apparatus.
  • a computer readable storage medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing.
  • a computer readable storage medium may be a machine readable signal medium.
  • Examples of machine readable storage media may include an electrical connection based on one or more lines, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM) or flash memory, an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory an optical fiber
  • CD-ROM portable compact disk read-only memory
  • CD-ROM compact disk read-only memory
  • magnetic storage device or any suitable combination of the foregoing.
  • the systems and techniques described herein can be implemented on an electronic device having: a display device (e.g., a cathode ray tube (CRT) or a liquid crystal display (LCD) monitor) for displaying information to the user; and a keyboard and a pointing device (e.g., a mouse or a trackball) through which the user can interact with the user.
  • a display device e.g., a cathode ray tube (CRT) or a liquid crystal display (LCD) monitor
  • a keyboard and a pointing device e.g., a mouse or a trackball
  • Other types of devices may also be used to provide interaction with a user; for example, the feedback provided to the user may be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and input from the user may be received in any form (including acoustic input, voice input, or tactile input).
  • the systems and techniques described herein may be implemented in a computing system that includes backend components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes frontend components (e.g., a user computer with a graphical user interface or a web browser through which a user can interact with implementations of the systems and techniques described herein), or a computing system that includes any combination of such backend components, middleware components, or frontend components.
  • the components of the system may be interconnected by any form or medium of digital data communication (e.g., a communication network). Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN), blockchain network, and the Internet.
  • a computing system may include a client and a server.
  • the client and the server are generally remote from each other and usually interact through a communication network.
  • the client and server relationship is generated by computer programs running on the respective computers and having a client-server relationship with each other.
  • the server may be a cloud server, also known as a cloud computing server or cloud host, which is a host product in the cloud computing service system to solve the defects of difficult management and weak business scalability in traditional physical hosts and virtual private servers (VPS) services.
  • VPN virtual private servers

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种ISG混动车辆动力系统模式切换控制方法、车辆及存储介质,包括:发动机(110)、ISG驱动电机(120)和动力电池(130),在车辆处于静止状态且第一次启动时,进入怠速起机模式;根据车辆挡位、油门踏板行程控制动力系统进入发动机单独驱动模式、联合驱动模式;在行车挡时,根据油门踏板以及制动踏板的行程控制动力系统进入行车充电模式。

Description

ISG混动车辆动力系统模式切换控制方法、车辆及存储介质
本申请要求在2022年11月23日提交中国专利局、申请号为202211471439.3的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及新能源汽车技术领域,例如涉及一种ISG混动车辆动力系统模式切换控制方法、车辆及存储介质。
背景技术
ISG(Integrated Starter and Generator)为单轴并联式一体机,由于ISG混动汽车具有发动机和电机两个动力源输出扭矩,同时搭载动力电池,相比于传统汽车,ISG混动汽车的混动系统运行模式更为多样化,因此,准确、有效地进行混动系统模式切换控制尤为重要。
发明内容
本申请提供了一种ISG混动车辆动力系统模式切换控制方法、车辆及存储介质。
根据本申请的一方面,提供了一种ISG混动车辆动力系统模式切换控制方法,ISG混动车辆动力系统包括:发动机、ISG驱动电机和动力电池,所述发动机、ISG驱动电机和动力电池分别与总线连接;
所述控制方法包括:
在车辆处于静止状态,且第一次启动车辆时,则车辆进入怠速起机模式;所述怠速起机模式包括发动机从静止停机转入启动的过程;在车辆有功率需求时,启动机、ISG驱动电机带动发动机转动,然后再转入启动的过程;
在车辆挡位在行车挡,如果油门踏板行程大于第一行程阈值,且动力电池不需要充电,混动控制器HCU控制动力系统进入发动机单独驱动模式,由发动机单独输出功率;如果油门踏板行程大于第二行程阈值,混动控制器HCU控制动力系统进入联合驱动模式,由发动机和ISG驱动电机输出功率,所述第二行程阈值大于所述第一行程阈值;
在车辆挡位在行车挡,如果油门踏板行程在第三行程阈值和第一行程阈值之间,且制动踏板行程小于制动行程阈值,混动控制器HCU控制动力系统进入行车充电模式,由ISG驱动电机为动力电池充电。
根据本申请的另一方面,提供了一种车辆,该车辆包括ISG混动车辆动力系统,所述ISG混动车辆动力系统包括混动控制器HCU、电池管理系统、电机控制器、ISG驱动电机、发动机和动力电池,所述发动机、ISG驱动电机和动力电池分别与总线连接;
所述HCU用于执行本申请任一实施例所述的ISG混动车辆动力系统模式切换控制方法。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现本申请任一实施例所述的ISG混动车辆动力系统模式切换控制方法。
应当理解,本部分所描述的内容并非旨在标识本申请的实施例的关键或重要特征,也不用于限制本申请的范围。本申请的其它特征将通过以下的说明书而变得容易理解。
附图说明
下面将对实施例描述中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的ISG混动车辆动力系统的结构示意图;
图2是本申请实施例一提供的一种ISG混动车辆动力系统模式切换控制方法流程图;
图3是本申请实施例一提供的ISG混动车辆动力系统模式切换的控制模块图;
图4本申请实施例一提供的ISG混动车辆动力系统模式切换控制流程图;
图5是本申请实施例二提供的一种车辆的结构示意图;
图6是本申请实施例二提供的一种车辆各模块连接关系图;
图7是本申请实施例二提供的车辆功能接口信号传递示意图;
图8是本申请实施例二提供的车辆网络拓扑结构图。
具体实施方式
针对ISG混动车辆动力系统模式切换控制的方法较少,一般是针对动力系统模式的故障判断和处理,没有考虑车辆在不同模式下的切换条件,不能有效地进行混动系统模式切换管理和控制。
考虑到上述情况,本申请实施例提供了一种ISG混动车辆动力系统模式切换控制方法、车辆及存储介质。
为了使本技术领域的人员更好地理解本申请实施例,下面将结合本申请实施例中的附图,对本申请实施例进行清楚、完整地描述。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
随着新能源汽车的发展,出现了不同类型的混合动力汽车,混合动力汽车的动力系统主要是由发电机和电机组成,本申请实施例涉及的ISG混动车辆在传统车辆的基础上增加ISG电动/发电一体机和动力电池组,具有发动机和电机两个动力源输出扭矩。图1是本申请实施例一提供的ISG混动车辆动力系统的结构示意图,如图1所示,ISG混动车辆动力系统100包括发动机110、ISG驱动电机120和动力电池130,发动机110、ISG驱动电机120和动力电池130分别与总线140连接。
本实施例中,ISG驱动电机120作为起动发电一体机,直接集成在发动机110主轴上,可以在起步阶段短时代替发动机110驱动车辆,同时可以启动发动机110,车辆正常行驶时,发动机110驱动车辆,ISG驱动电机断开或者起到发电机的作用,通过动力电池130将电能存储。
图2是本申请实施例一提供的一种ISG混动车辆动力系统模式切换控制方法流程图,本实施例可以进行动力系统的模式切换,如图2所示,该方法包括:
S210、在车辆处于静止状态,且第一次启动车辆时,则车辆进入怠速起机模式;所述怠速起机模式包括发动机从静止停机转入启动的过程,或车辆有功率需求时,启动机、ISG驱动电机带动发动机转动,然后再转入启动的过程。
本实施例中,怠速是指发动机对外不做功,发动机与传动系统完全脱离, 维持发动机在较低的转速下连续平稳运转。怠速起机是指,在车辆静止状态下第一次启动,车辆从静止转入启动的过程,或者,在车辆的附件有功率需求时,通过启动机或ISG驱动电机带动发动机转动,当发动机转速达到预设阈值时,发动机再喷油燃烧,实现怠速起机。
例如,在所述怠速起机模式下,当ISG驱动电机出现故障时,混动控制器(Hybrid Control Unit,HCU)控制动力系统进入启动机起机子模式,由启动机带动发动机转动,当发动机转速达到预设值后,发动机控制器(Engine Management System,EMS)控制发动机开始喷油;当ISG驱动电机无故障时,混动控制器HCU控制动力系统进入ISG驱动电机起机子模式,由ISG驱动电机带动发动机转动;当环境温度达到预设阈值,混动控制器HCU控制动力系统进入联合起机模式,由启动机、ISG驱动电机先后带动发动机转动。
本实施例中,混动控制器HCU即混合动力系统整车控制器,是混合动力系统的主控制器,负责管理整个动力总成。发动机控制器EMS即发动机管理系统,实现对发动机工作状态的控制。怠速起机模式包括三个起机子模式,根据ISG驱动电机的状态、以及工作环境温度的状况,混动控制器HCU控制动力系统进入不同的起机子模式。例如,当ISG驱动电机出现故障时,混动控制器HCU控制动力系统进入启动机起机子模式;当ISG驱动电机无故障时,混动控制器HCU控制动力系统进入ISG驱动电机起机子模式;当环境温度达到预设阈值,例如在-30摄氏度以下的极低温环境下,混动控制器HCU控制动力系统进入联合起机模式,即启动机带动发动机转动然后再使用ISG驱动电机带动发动机转动。
S220、在车辆挡位在行车挡,如果油门踏板行程大于第一行程阈值,且动力电池不需要充电,混动控制器HCU控制动力系统进入发动机单独驱动模式,由发动机单独输出功率;如果油门踏板行程大于第二行程阈值,混动控制器HCU控制动力系统进入联合驱动模式,由发动机和ISG驱动电机输出功率,所述第二行程阈值大于所述第一行程阈值。
本实施例中,油门踏板又称加速踏板,通过控制其踩踏量实现对发动机转速的控制,油门踏板行程可以理解为油门踏板的踩踏量。混动控制器HCU根据油门踏板行程控制动力系统进入不同的驱动模式。
在车辆处于行车状态下,当油门踏板行程大于第一行程阈值,且动力电池不需要充电时,混动控制器HCU控制动力系统进入发动机单独驱动模式,此时,发动机单独输出功率满足驱动车辆的需求。当油门踏板行程大于第二行程阈值时,混动控制器HCU控制动力系统进入联合驱动模式,发动机和ISG驱动电机 同时输出功率以满足驱动车辆的需求。其中,第二行程阈值大于第一行程阈值,第一行程阈值、第二行程阈值可以预先设定。
例如,在所述联合驱动模式下,混动控制器HCU基于发动机和ISG驱动电机的效率分配发动机和ISG驱动电机输出电能。混动控制器HCU根据发动机的效率以及ISG驱动电机的效率控制发动机输出的电能和ISG驱动电机输出的电能。例如,混动控制器HCU基于发动机和ISG驱动电机的效率MAP,控制发动机运行在最佳效率区间,控制ISG驱动电机运行在高效率点。在效率MAP中,一般横坐标是转速,纵坐标是扭矩,横坐标与纵坐标的交点为效率点。
S230、在车辆挡位在行车挡,如果油门踏板行程在第三行程阈值和第一行程阈值之间,且制动踏板行程小于制动行程阈值,混动控制器HCU控制动力系统进入行车充电模式,由ISG驱动电机为动力电池充电。
本实施例中,制动踏板即脚刹踏板,作为行车制动器用于减速停车。在车辆运行状态下,油门踏板行程大于第三行程阈值并小于第一行程阈值,且制动踏板行程小于制动行程阈值时,混动控制器HCU控制动力系统进入行车充电模式,此时,混动控制器HCU控制发动机单独工作,发动机带动ISG驱动电机为动力电池充电。其中,第三行程阈值、制动行程阈值可以预先设定,第三行程阈值小于第一行程阈值。
例如,在所述行车充电模式下,如果电池管理系统(battery management system,BMS)发送的动力电池荷电状态(State of Charge,SOC)小于预设阈值时,混动控制器HCU控制发动机输出功率,同时控制ISG驱动电机对所述动力电池充电。其中,电池管理系统BMS负责控制电池的充电和放电以及实现电池状态估算等功能,动力电池的荷电状态SOC可以表示动力电池的剩余容量与其完全充电状态的容量的比值。当电池管理系统BMS发送的动力电池荷电状态SOC小于预设阈值时,HCU控制发动机作为主要动力源输出扭矩的同时,控制ISG负扭矩输出,ISG电机工作在发电状态,对动力电池进行充电。其中,设定荷电状态SOC的预设阈值可以预先设定,例如设定为70%。
在行车充电过程中,HCU基于发动机的效率MAP,控制发动机运行在最佳的效率区间,在满足驱动车辆需求后的多余的能量可以通过ISG驱动电机发电为动力电池充电,即发动机一边输出扭矩/功率,一边提供能量通过ISG驱动电机为动力电池充电。
在上述实施例的基础上,本申请实施例还包括:在车辆挡位在停车挡位,且动力系统未达到自动停机,混动控制器HCU控制动力系统进入怠速充电模式, 由ISG驱动电机为动力电池充电;在所述怠速充电模式下,如果电池管理系统BMS发送的动力电池荷电状态SOC小于预设阈值,混动控制器HCU控制发动机按照预定速度运行,同时控制ISG驱动电机对所述动力电池进行充电。自动停机可以通过制动踏板实现,也可以由于车辆的电池电量不足导致的自动停机,当车辆挡位在停车挡位,且动力系统未达到自动停机时,发动机继续运转但与传动系统分离,此时发动机为怠速状态,混动控制器HCU控制动力系统进入怠速充电模式。如果电池管理系统BMS发送的动力电池荷电状态SOC小于预设阈值,混动控制器HCU控制发动机按照预定速度运行,示例性的,当SOC低于规定值时(如70%),HCU控制发动机以规定转速(如750rpm)运行,ISG电机工作在发电状态,对动力电池进行充电。在怠速充电过程中,基于发动机和ISG驱动电机的效率MAP,HCU控制发动机的转速运行点和ISG驱动电机的负扭矩输出,使得发动机和ISG驱动电机运行在所需的效率点。
在车辆挡位在行车挡位,且油门踏板行程为零时,混动控制器HCU控制动力系统进入能量回收模式,由动力电池将电能进行存储。能量回收就是车辆在减速时通过电机进行制动发电,把电量回收进电池包。示例性的,在车辆挡位在行车挡位,且油门踏板未被踩下,车速逐渐降低,离合器处于闭合中,HCU应当控制发动机减速断油,控制混动系统进入能量回收模式。控制方法如下:
1)HCU应当控制混动系统中的发动机和电机两者输出的扭矩输出以一定的斜率降至为0;
2)若制动踏板未被踩下,HCU应当基于发动机/电机转速(两者转速相同)控制滑行能量回收;
3)若制动踏板被踩下,HCU应当基于发动机/电机转速(两者转速相同)和制动踏板行程(根据能量回收提前标定MAP,即制动踏板行程与ISG负扭矩输出的关系曲线)控制制动能量回收;
4)在能量回收的过程中,如果触发了ESP或制动防抱死系统(antilock brake system,ABS)功能,则应基于车辆安全优先考虑,HCU应当禁止能量回收功能,此时车辆不进行能量回收,混动系统的扭矩输出应响应ESP或ABS的请求扭矩。
在制动踏板行程满足自动停机模式,混动控制器HCU控制发动机“不喷油”;自动起机模式下,混动控制器HCU控制发动机起机。
本实施例中,自动停机模式下,混动控制器HCU控制发动机“不喷油”,发动机熄火停机。示例性的,在满足以下条件时,混动控制器HCU控制动力系 统进入自动停机模式。
1)制动踏板被踩下,制动开关信号置位(即BrkSwitch=True)且规定时间(可标定);
2)换挡杆位置在D挡或N挡;
3)车辆速度小于某一值(如1km/h,可标定);
4)车辆没有空调制冷请求起动发动机;
5)制动真空助力系统中的空压力值超过规定值(如0.82Mpa,可标定)
6)BMS上报的动力电池功率不受限;
7)离合器处于打开状态;
8)BMS上报的动力电池SOC值超过某一值(如40%,可标定);
9)发动机水温值超过某一值(如50摄氏度,可标定);
10)低压蓄电池电压超过某一值(如12V,可标定);
11)当车速低于某一值(可标定),且运行时间低于某一值(可标定),则发动机自动停机次数不能超过规定次数(可标定),这样做的目的是防止车辆低速走走停停造成道路拥堵。
本实施例中,自动起机模式下,混动控制器HCU根据车辆是否满足发动机启动条件控制发动机起机。示例性的,当满足下述所有条件时,HCU控制动力系统进入自动起机模式,控制发动机起机。
1)BMS上报的动力电池放电功率不受限
2)电机控制器(Motor Control Unit,MCU)上报的ISG电机扭矩不受限
3)离合器处于打开状态
上述1)~3)条件为“且”、下述条件为“或”
或4)若挡位为D挡时,制动踏板未踩下,制动开关信号不置位(BrkSwitch=False);
或5)若挡位为P或N挡时,制动踏板从被踩下,到释放,又到被踩下;
或6)油门踏板被踩下,油门踏板位置行程超过规定值(油门踏板位置行程>AccPosn4,其中AccPosn3>AccPosn2>AccPosn1>AccPosn4);
或7)车辆有空调制冷请求起动发动机;
或8)制动真空助力系统中的空压力值低于规定值(如0.62Mpa,可标定)
或9)12V蓄电池电压低于某一值(如10V,可标定)
或11)驾驶员切换挡位置R挡;
或12)发动机水温低于某一值(如45摄氏度,可标定)
或13)动力电池SOC低于某一值(如30%,可标定)
或14)BMS上报的动力电池放电功率限值低于某一值(如20kW,可标定)
或15)MCU上报的ISG电机扭矩限值低于某一值(如70Nm,可标定)
其中第14)和第15)条是为了防止动力电池放电功率和ISG电机扭矩由于某种原因被限制过低,会导致出现发动机停机之后,下次无法正常起动发动机了,因此当满足某一条件时,要识别发动机起机功能,避免后续一段时间后因为电池或ISG电机功率的限制导致无法利用ISG电机进行起动发动机。
在自动起机触发时,HCU应当控制
1)将发动机起动类型置为“ISG电机起动”(注:发动机有启动机起动和ISG电机起动两种方式)
2)将发动机喷油状态置为“喷油请求”
3)将发动机自动起动请求置为“True”
当发动机完成自动起机后,HCU应当控制
1)将发动机起动类型置成“None”
2)将发动机自动起动请求置成“False”
在车辆动力系统出现故障时,混动控制器HCU控制所述动力系统进入安全跛行模式,在所述安全跛行模式下,如果油门踏板信号正常,所述HCU应当响应驾驶员的油门踏板请求,但控制动力系统扭矩输出,将车速限制在预设车速以下。其中,车辆动力系统出现故障可能是电池或电机某一动力源部件出现了故障,混合系统驱动功率将会受到限制,混动控制器HCU控制所述动力系统进入安全跛行模式。在油门踏板信号正常时,HCU正常响应油门踏板信息,但需要对车速限制,例如控制车速在20km/h,确保车辆运行的安全性。
ISG混动系统模式切换控制块由HCU控制器开发并执行。示例性的,图3是本申请实施例一提供的ISG混动车辆动力系统模式切换的控制模块图,如图3所示,涉及的模式包括怠速起机模式、怠速充电模式、行车充电模式、发动机单独驱动模式、联合驱动模式、能量回收模式、自动停机模式、自动起机以及安全模式共9大类模式。HCU通过模式切换条件及控制策略方法设计,实现ISG混动系统模式之间的切换控制。
图4本申请实施例一提供的ISG混动车辆动力系统模式切换控制流程图。控制方法包括:
(1)驾驶员操作钥匙Key Start之后,车辆默认进入怠速起机模式;
(2)当车辆挡位为D或R挡,离合器未闭合,SOC低于规定值,则HCU 控制车辆混动系统进入怠速充电模式;
(3)当车辆挡位为D或R挡,离合器已闭合,油门踏板位置行程位于AccPosn1和AccPosn2之间,制动踏板未被踩下,且SOC低于规定值,则HCU控制车辆混动系统进入行车充电模式;
(4)当油门踏板位置行程大于AccPosn2,且SOC高于规定值,则HCU控制车辆混动系统进入发动机单独驱动模式;
(5)当油门踏板位置行程大于AccPosn3,且SOC高于规定值,则HCU控制车辆混动系统进入联合驱动模式;
(6)当油门踏板被释放(即未踩下),且离合器已处于闭合,车速由高逐渐降低,则HCU控制车辆混动系统进入能量回收模式;
(7)在联合驱动模式下,如果车辆满足自动停机或自动起机条件,则按本申请上述实施例描述的内容进行混动系统的自动起停控制;
(8)在联合驱动模式下,如果车辆电池或电机出现了故障,导致无法在HEV Mode下正常运行,则HCU控制ISG混动系统进入安全模式。
本实施例,提供了一种ISG混动车辆动力系统模式切换控制方法,ISG混动车辆动力系统包括:发动机、ISG驱动电机和动力电池,所述发动机、ISG驱动电机和动力电池分别与总线连接;控制方法包括:在车辆处于静止状态,且第一次启动车辆时,则车辆进入怠速起机模式;所述怠速起机模式包括发动机从静止停机转入启动的过程,或车辆有功率需求时,启动机、ISG驱动电机带动发动机转动,然后再转入启动的过程。在车辆挡位在行车挡,如果油门踏板行程大于第一行程阈值,且动力电池不需要充电,混动控制器HCU控制动力系统进入发动机单独驱动模式,由发动机单独输出功率;如果油门踏板行程大于第二行程阈值,混动控制器HCU控制动力系统进入联合驱动模式,由发动机和ISG驱动电机输出功率,所述第二行程阈值大于所述第一行程阈值;在车辆挡位在行车挡,如果油门踏板行程在第三行程阈值和第一行程阈值之间,且制动踏板行程小于制动行程阈值,混动控制器HCU控制动力系统进入行车充电模式,由ISG驱动电机为动力电池充电。通过提供的动力系统模式切换控制方法,改善了不能有效地进行混动系统模式切换管理和控制的情况,实现了对不同切换模式的有效控制,提高了ISG混动车辆运行的稳定性和可靠性。
实施例二
图5是本申请实施例二提供的一种车辆的结构示意图,如图5所示,车辆500包括ISG混动车辆动力系统100,ISG混动车辆动力系统100包括混动控制 器HCU510、电池管理系统520、电机控制器530、ISG驱动电机120、发动机110和动力电池130,发动机110、ISG驱动电机120和动力电池130分别与总线140连接。混动控制器HCU用于执行ISG混动车辆动力系统模式切换控制方法。
参考上述实施例,混动控制器HCU510即混合动力系统整车控制器,是混合动力系统的主控制器,负责管理整个动力总成。电池管理系统520负责控制电池的充电和放电以及实现电池状态估算等功能。电机控制器530可以根据控制指令控制电机的响应,并且根据反馈实时调整驱动电机输出,电机控制器的主要功能包括前进、倒车、怠速、交流转直流等功能。
示例性的,图6是本申请实施例二提供的一种车辆各模块连接关系图,主要是由发动机、自动变速箱(Automated Mechanical transmission,AMT)、ISG驱动电机、高压动力电池、DCDC直流转换器、离合器等组成。同时还包括各零部件的控制器或控制系统,例如发动机控制系统、混动控制器、电机控制器、电池管理系统、变速箱控制器。
图7是本申请实施例二提供的车辆功能接口信号传递示意图,模式管理及控制模块由HCU开发实现,混合动力车辆在模式切换控制过程中涉及到了多个控制器之间的协同控制,包括混动控制器HCU、电机控制器MCU、电池管理系统BMS、发动机控制器EMS、变速箱控制器(Transmission Control Unit,TCU)、仪表显示系统IC(Instrument Control)、电子稳定系统ESP(Electronic Stability Program)等,通过各控制器之间的信号传输实现模式切换的合理控制,同时还要对各个控制器之间的交互信号进行确认及检查。
图8是本申请实施例二提供的车辆网络拓扑结构图,如图8所示,车辆各模块间的信息传递方式采用控制器局域网络(Controller Area Network,CAN)网络进行通讯,相关CAN网络描述如下:传统CAN网络主要包含了传统车相关的网络节点EMS、TCU、ESP、ABS和IC;混动CAN网络主要包含了新能源相关的网络节点HCU、BMS、MCU和DCDC;跨网络节点之间的不同控制器信号交互可以通过网关GW(Gateway)节点实现。
本实施例,为了实现混合动力特有的一些功能,在传统车辆的基础上增加ISG电动/发电一体机和动力电池组。通过ISG驱动电机的辅助和控制,在保证整车动力性能的基础上,可以选择较小的发动机,还可以优化发动机工作区域,同时在滑行和制动阶段,ISG电机可以进行有效的能量回收,将机械能转换为电能储存起来,通过上述措施与新增功能来降低油耗与排放,实现整车节能减排 的目标。
实施例三
本申请实施例三还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,计算机指令用于使处理器执行一种ISG混动车辆动力系统模式切换控制方法,该方法包括:
在车辆处于静止状态,且第一次启动车辆时,则车辆进入怠速起机模式;所述怠速起机模式包括发动机从静止停机转入启动的过程,或车辆有功率需求时,启动机、ISG驱动电机带动发动机转动,然后再转入启动的过程;
在车辆挡位在行车挡,如果油门踏板行程大于第一行程阈值,且动力电池不需要充电,混动控制器HCU控制动力系统进入发动机单独驱动模式,由发动机单独输出功率;如果油门踏板行程大于第二行程阈值,混动控制器HCU控制动力系统进入联合驱动模式,由发动机和ISG驱动电机输出功率,所述第二行程阈值大于所述第一行程阈值;
在车辆挡位在行车挡,如果油门踏板行程在第三行程阈值和第一行程阈值之间,且制动踏板行程小于制动行程阈值,混动控制器HCU控制动力系统进入行车充电模式,由ISG驱动电机为动力电池充电。
存储介质可以是非暂态(non-transitory)存储介质。
在本申请的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。备选地,计算机可读存储介质可以是机器可读信号介质。机器可读存储介质的示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)或快闪存储器、光纤、便捷式紧凑盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在电子设备上实施此处描述的系统和技术,该电子设备具有:用于向用户显示信息的显示装置(例如,阴极射线管(Cathode Ray Tube,CRT)或者液晶显示器(Liquid Crystal Display,LCD)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装 置来将输入提供给电子设备。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(Local Area Network,LAN)、广域网(Wide Area Network,WAN)、区块链网络和互联网。
计算系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与虚拟专用服务器(Virtual Private Server,VPS)服务中,存在的管理难度大,业务扩展性弱的缺陷。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,本文在此不进行限制。
上述具体实施方式,并不构成对本申请保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。

Claims (10)

  1. 一种ISG混动车辆动力系统模式切换控制方法,ISG混动车辆动力系统包括:发动机、ISG驱动电机和动力电池,所述发动机、ISG驱动电机和动力电池分别与总线连接;
    所述控制方法包括:
    在车辆处于静止状态,且第一次启动车辆时,则车辆进入怠速起机模式;所述怠速起机模式包括发动机从静止停机转入启动的过程;在车辆有功率需求时,启动机、ISG驱动电机带动发动机转动,然后再转入启动的过程;
    在车辆挡位在行车挡,如果油门踏板行程大于第一行程阈值,且动力电池不需要充电,混动控制器HCU控制动力系统进入发动机单独驱动模式,由发动机单独输出功率;如果油门踏板行程大于第二行程阈值,混动控制器HCU控制动力系统进入联合驱动模式,由发动机和ISG驱动电机输出功率,所述第二行程阈值大于所述第一行程阈值;
    在车辆挡位在行车挡,如果油门踏板行程在第三行程阈值和第一行程阈值之间,且制动踏板行程小于制动行程阈值,混动控制器HCU控制动力系统进入行车充电模式,由ISG驱动电机为动力电池充电。
  2. 根据权利要求1所述的方法,还包括:在所述怠速起机模式下,当ISG驱动电机出现故障时,混动控制器HCU控制动力系统进入启动机起机子模式,由启动机带动发动机转动,当发动机转速达到预设值后,发动机控制器EMS控制发动机开始喷油;当ISG驱动电机无故障时,混动控制器HCU控制动力系统进入ISG驱动电机起机子模式,由ISG驱动电机带动发动机转动;当环境温度达到预设阈值,混动控制器HCU控制动力系统进入联合起机模式,由启动机、ISG驱动电机先后带动发动机转动。
  3. 根据权利要求1所述的方法,还包括:在所述联合驱动模式下,混动控制器HCU基于发动机和ISG驱动电机的效率分配发动机和ISG驱动电机输出电能。
  4. 根据权利要求1所述的方法,还包括:在所述行车充电模式下,如果电池管理系统BMS发送的动力电池荷电状态SOC小于预设阈值时,混动控制器HCU控制发动机输出功率,同时控制ISG驱动电机对所述动力电池充电。
  5. 根据权利要求1所述的方法,还包括:在车辆挡位在停车挡位,且动力系统未达到自动停机,混动控制器HCU控制动力系统进入怠速充电模式,由ISG驱动电机为动力电池充电;
    在所述怠速充电模式下,如果电池管理系统BMS发送的动力电池荷电状态 SOC小于预设阈值,混动控制器HCU控制发动机按照预定速度运行,同时控制ISG驱动电机对所述动力电池进行充电。
  6. 根据权利要求1所述的方法,还包括:当车辆挡位在行车挡位,且油门踏板行程为零时,混动控制器HCU控制动力系统进入能量回收模式,由动力电池将电能进行存储。
  7. 根据权利要求1所述的方法,还包括:在制动踏板行程满足自动停机模式,混动控制器HCU控制发动机不喷油;自动起机模式下,混动控制器HCU控制发动机起机。
  8. 根据权利要求1所述的方法,还包括:在车辆动力系统出现故障时,混动控制器HCU控制所述动力系统进入安全跛行模式,在所述安全跛行模式下,如果油门踏板信号正常,所述HCU响应驾驶员的油门踏板请求,控制动力系统扭矩输出,将车速限制在预设车速以下。
  9. 一种车辆,包括ISG混动车辆动力系统,所述ISG混动车辆动力系统包括混动控制器HCU、电池管理系统、电机控制器、ISG驱动电机、发动机和动力电池,所述发动机、ISG驱动电机和动力电池分别与总线连接;
    所述HCU用于执行权利要求1-8任一项所述的ISG混动车辆动力系统模式切换控制方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现权利要求1-8中任一项所述的ISG混动车辆动力系统模式切换控制方法。
PCT/CN2023/109973 2022-11-23 2023-07-28 Isg混动车辆动力系统模式切换控制方法、车辆及存储介质 WO2024109143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211471439.3A CN115571111B (zh) 2022-11-23 2022-11-23 一种isg混动车辆动力系统模式切换控制方法、车辆及存储介质
CN202211471439.3 2022-11-23

Publications (1)

Publication Number Publication Date
WO2024109143A1 true WO2024109143A1 (zh) 2024-05-30

Family

ID=84590445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109973 WO2024109143A1 (zh) 2022-11-23 2023-07-28 Isg混动车辆动力系统模式切换控制方法、车辆及存储介质

Country Status (2)

Country Link
CN (1) CN115571111B (zh)
WO (1) WO2024109143A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115571111B (zh) * 2022-11-23 2023-03-24 中国第一汽车股份有限公司 一种isg混动车辆动力系统模式切换控制方法、车辆及存储介质
CN117207897A (zh) * 2023-10-18 2023-12-12 浙江上开汽车电器股份有限公司 动力模式切换开关及其启动控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101121407A (zh) * 2007-09-03 2008-02-13 奇瑞汽车有限公司 一种强混合动力汽车的发动机启动控制方法
CN101186209A (zh) * 2007-09-04 2008-05-28 深圳先进技术研究院 采用电气系统实现混联功率分配的混合动力系统
CN103802836A (zh) * 2014-01-26 2014-05-21 上汽通用五菱汽车股份有限公司 一种混合动力汽车控制方法
JP2016094161A (ja) * 2014-11-17 2016-05-26 ダイハツ工業株式会社 車両の制御装置
JP2018103739A (ja) * 2016-12-26 2018-07-05 スズキ株式会社 ハイブリッド車両
CN110949368A (zh) * 2019-12-06 2020-04-03 中国第一汽车股份有限公司 混合动力车辆的控制方法、装置、存储介质及车辆
CN115571111A (zh) * 2022-11-23 2023-01-06 中国第一汽车股份有限公司 一种isg混动车辆动力系统模式切换控制方法、车辆及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1238213C (zh) * 2003-10-17 2006-01-25 清华大学 混合动力轿车动力总成的动力输出切换方法及其控制系统
CN101428610A (zh) * 2008-12-04 2009-05-13 奇瑞汽车股份有限公司 一种混合动力汽车动力总成控制方法
CN101691118B (zh) * 2009-10-13 2014-05-07 奇瑞汽车股份有限公司 一种混合动力汽车的电机辅助驱动模式控制方法
CN101857027B (zh) * 2010-05-31 2013-03-27 重庆长安汽车股份有限公司 一种混合动力汽车加减速意图判断系统及方法
CN102529734B (zh) * 2010-12-31 2015-04-15 上海汽车集团股份有限公司 混合动力汽车智能充电控制及整车标定方法
CN103863323B (zh) * 2012-12-11 2016-03-02 重庆长安汽车股份有限公司 一种重度混合动力汽车的能量管理系统的控制方法
CN105984319A (zh) * 2015-01-28 2016-10-05 江苏众鑫交通器材有限公司 一种汽车用混合动力驱动系统
KR101684543B1 (ko) * 2015-06-19 2016-12-20 현대자동차 주식회사 하이브리드 차량의 운전 모드 제어 시스템 및 그 방법
CN106800020B (zh) * 2015-11-24 2024-01-23 广州汽车集团股份有限公司 一种四驱混合动力系统及其控制方法
CN107226083B (zh) * 2016-03-25 2019-08-06 上海汽车集团股份有限公司 一种混合动力汽车的动力控制系统
CN107226080B (zh) * 2017-05-04 2019-11-05 江苏大学 基于超级电容及汽车启动电机的短时混合动力系统的控制方法
CN108545076B (zh) * 2018-04-16 2020-03-24 奇瑞汽车股份有限公司 一种基于bsg电机的车辆控制方法和装置
CN113911097B (zh) * 2021-10-12 2023-04-07 东风越野车有限公司 一种具有单isg电机的混动车辆的控制系统及控制方法
CN114802182A (zh) * 2022-05-09 2022-07-29 北京汽车集团越野车有限公司 一种48v混动车辆的能量管理方法、系统和车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101121407A (zh) * 2007-09-03 2008-02-13 奇瑞汽车有限公司 一种强混合动力汽车的发动机启动控制方法
CN101186209A (zh) * 2007-09-04 2008-05-28 深圳先进技术研究院 采用电气系统实现混联功率分配的混合动力系统
CN103802836A (zh) * 2014-01-26 2014-05-21 上汽通用五菱汽车股份有限公司 一种混合动力汽车控制方法
JP2016094161A (ja) * 2014-11-17 2016-05-26 ダイハツ工業株式会社 車両の制御装置
JP2018103739A (ja) * 2016-12-26 2018-07-05 スズキ株式会社 ハイブリッド車両
CN110949368A (zh) * 2019-12-06 2020-04-03 中国第一汽车股份有限公司 混合动力车辆的控制方法、装置、存储介质及车辆
CN115571111A (zh) * 2022-11-23 2023-01-06 中国第一汽车股份有限公司 一种isg混动车辆动力系统模式切换控制方法、车辆及存储介质

Also Published As

Publication number Publication date
CN115571111A (zh) 2023-01-06
CN115571111B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2024109143A1 (zh) Isg混动车辆动力系统模式切换控制方法、车辆及存储介质
JP5371200B2 (ja) ハイブリッド車両のエンジン始動制御装置及びハイブリッド車両のエンジン始動制御方法。
JP3712910B2 (ja) 車両の変速機制御装置
CN110949368A (zh) 混合动力车辆的控制方法、装置、存储介质及车辆
WO2024124920A1 (zh) 燃料电池车动力系统模式切换控制方法、车辆及存储介质
CN106274886A (zh) 混合动力车的发动机停止控制系统和方法
DE102012224487A1 (de) Vorrichtung und Verfahren zum Steuern des Motordrehmoments für ein umweltfreundliches Fahrzeug
US10214204B2 (en) Device and method for controlling an engine clutch in an environmentally-friendly vehicle
JP2007307995A (ja) ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
CN103386982A (zh) 混合动力车辆中的齿隙区检测
JP2008074226A (ja) 車両の制御装置
CN213948116U (zh) 基于双电机的车辆混合动力系统及具有其的车辆
JP5251483B2 (ja) ハイブリッド車両の制御装置
CN116238474A (zh) 混动车辆的起步控制方法、装置、系统、车辆和存储介质
KR101964786B1 (ko) 하이브리드 차량의 주행 제어 장치 및 방법
JP2012131497A (ja) ハイブリッド車両のエンジン始動制御装置及びハイブリッド車両のエンジン始動制御方法
WO2024001873A1 (zh) 一种基于混合动力系统的挡位切换方法及系统
KR20180070341A (ko) 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법
JP2007261415A (ja) ハイブリッド自動車の制御装置
CN114715134A (zh) 一种混合动力汽车的百公里加速控制方法、系统及车辆
WO2025082084A1 (zh) 动力系统的驱动控制方法、装置、存储介质及车辆
CN107826101A (zh) 一种混联式混合动力客车逻辑门限值控制策略
KR102304853B1 (ko) 하이브리드 자동차 및 그 모터 제어 방법
CN105730247A (zh) 制动能量回馈控制方法和系统
KR102621563B1 (ko) 하이브리드 차량의 엔진 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893242

Country of ref document: EP

Kind code of ref document: A1