WO2024106856A1 - 편광판 및 광학표시장치 - Google Patents

편광판 및 광학표시장치 Download PDF

Info

Publication number
WO2024106856A1
WO2024106856A1 PCT/KR2023/018031 KR2023018031W WO2024106856A1 WO 2024106856 A1 WO2024106856 A1 WO 2024106856A1 KR 2023018031 W KR2023018031 W KR 2023018031W WO 2024106856 A1 WO2024106856 A1 WO 2024106856A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polarizing plate
polarizer
phase difference
retardation
Prior art date
Application number
PCT/KR2023/018031
Other languages
English (en)
French (fr)
Inventor
이범덕
심대섭
이성훈
정선경
임형태
김기범
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2024106856A1 publication Critical patent/WO2024106856A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to a polarizing plate and an optical display device.
  • a liquid crystal display device is a liquid crystal display device having a liquid crystal layer in which liquid crystals are aligned in a horizontal alignment mode.
  • IPS in plane switching
  • FFS far field swching
  • the liquid crystal display device in the horizontal alignment mode orients the liquid crystal horizontally and when two electrodes are driven on one side of the substrate, the liquid crystal rotates on a plane, thereby improving the wide viewing angle by using a method of transmitting or blocking light.
  • a polarizer having a retardation layer between the polarizer and the panel can be used.
  • the phase difference layer includes two or more layers to solve the above-mentioned problems.
  • a retardation layer of two or more layers may cause a thickness imbalance between the upper and lower surfaces of the polarizer, and since the retardation layer is generally manufactured by stretching, bending of the polarizer may occur. Bending is the lifting of the edges of the polarizer, which can cause light leakage.
  • An object of the present invention is to provide a polarizer that provides a diagonal compensation effect on sides including left and right sides.
  • Another object of the present invention is to provide a polarizing plate that suppresses light leakage from the edge portion by suppressing bending.
  • One aspect of the present invention is a polarizer.
  • a polarizer is a polarizer; and a laminate of a first retardation layer, a first adhesive layer, and a second retardation layer laminated on one side of the polarizer, wherein the first adhesive layer has a storage modulus of 4 x 10 4 Pa to 10 at 25°C. x 10 4 Pa, and the glass transition temperature is -60°C to -35°C.
  • Another aspect of the present invention is an optical display device.
  • the optical display device includes the polarizing plate of the present invention.
  • the present invention provides a polarizer that provides a diagonal compensation effect on sides including left and right sides.
  • the present invention provides a polarizing plate that suppresses light leakage at the edges by suppressing bending.
  • FIG. 1 is a cross-sectional view of a polarizer according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of a polarizer according to another embodiment of the present invention.
  • Figure 3 is a cross-sectional view of a polarizer according to another embodiment of the present invention.
  • in-plane retardation (Re) “thickness direction retardation (Rth)”, and “biaxiality degree (NZ)” are expressed by the following formulas A, B, and C:
  • NZ (nx - nz)/(nx - ny)
  • nx, ny, and nz are the refractive index in the slow axis direction of the optical element at the measurement wavelength, the refractive index in the fast axis direction of the optical element, and the thickness, respectively. is the refractive index of the direction, and d is the thickness of the corresponding optical element (unit: nm).
  • the in-plane retardation, thickness direction retardation, and degree of biaxiality are values measured by transmitting light in the normal direction to the in-plane direction of the optical element.
  • the 'storage modulus' of the first adhesive layer is obtained by stacking a plurality of first adhesive layers with a thickness of 15 ⁇ m to manufacture a specimen with a circular cross-section with a thickness of 600 ⁇ m and a diameter of 8mm, and performing ARES (Advanced Rheometry) on the specimen.
  • the storage modulus was measured in a temperature sweep test using an Expansion System (TA instrument), with frequency: 1Hz, strain: 5%, and normal force: 100N, while increasing the temperature from 0°C to 150°C at a rate of 10°C/min. This is the value at 25°C.
  • the 'glass transition temperature' of the first adhesive layer is calculated by heating 15 mg of the first adhesive layer to 100°C at a temperature increase rate of 20°C/min in a nitrogen atmosphere (nitrogen flow rate: 50mL/min) and cooling to -80°C. This value was measured using DSC Discovery (TA Instruments) while raising the temperature to 100°C at a rate of 10°C/min.
  • the 'shrinkage force' of the polarizer can be measured by TMA (thermomechanical analysis) according to the ASTM E831 standard measurement method. Specifically, the 'contraction force' of the polarizer is obtained by manufacturing a rectangular specimen of the MD (machine direction) of the polarizer x the TD (transverse direction) of the polarizer (30mm ) were each bitten, and then the contracting force was measured for 3 hours at 85°C.
  • TMA thermomechanical analysis
  • the 'shrinkage rate' of the polarizer was measured by manufacturing a square specimen of MD of the polarizer x TD of the polarizer (60mm).
  • the MD length of the specimen before high temperature treatment and the MD length of the specimen after high temperature treatment were measured using a dimension measuring device and calculated according to the formula below.
  • Shrinkage rate ⁇ S1 - S0 ⁇ /S0 x 100
  • S0 is the MD length of the specimen before high temperature treatment
  • S1 is the MD length after high temperature treatment of the above specimen
  • the 'shrinkage rate' of the retardation layer or protective layer is a value measured in substantially the same way, except that the retardation layer or protective layer is used instead of the polarizing plate when measuring the shrinkage rate of the polarizing plate.
  • the 'contraction force' of the retardation layer or protective layer is a value measured in substantially the same way, except that the retardation layer or protective layer is used instead of the polarizing plate when measuring the shrinkage force of the polarizing plate.
  • (meth)acrylic may mean acrylic or methacrylic.
  • X to Y means more than X and less than or equal to Y.
  • the polarizer of the present invention provided a diagonal compensation effect on the sides including the left or upper side and the right or lower side when applied to the panel of the optical display device, especially the liquid crystal panel in the horizontal alignment mode of the liquid crystal.
  • the horizontal alignment mode of the liquid crystal may be an in plane switching (IPS) mode or a fringe field sqitching (FFS) mode.
  • the polarizing plate of the present invention has the effect of suppressing light leakage by preventing bending at the edge of the polarizing plate by suppressing bending.
  • the 'bending' refers to bending, which means that when the polarizer is placed on a flat floor, the edge of the polarizer is lifted from the flat floor.
  • bending can be measured when the laminate of the first retardation layer, the first adhesive layer, and the second retardation layer among the polarizing plates is placed on a flat floor, and the detailed measurement method is described below.
  • a polarizer is a polarizer; and a laminate of a first retardation layer, a first adhesive layer, and a second retardation layer laminated on one side of the polarizer, wherein the first adhesive layer has a storage modulus of 4 x 10 4 Pa to 10 x at 25°C. 10 4 Pa, and the glass transition temperature is -60°C to -35°C.
  • the polarizer includes a light-absorbing polarizer that separates incident light into two orthogonal polarization components, transmitting one polarization component and absorbing the other polarization component.
  • the axis with a high refractive index among the in-plane directions of the polarizer is the light absorption axis of the polarizer (e.g., the mechanical direction (MD) of the polarizer), and the axis with a low refractive index is the light transmission axis of the polarizer (e.g. , may be the transverse direction (TD) of the polarizer.
  • the light absorption axis of the polarizer e.g., the mechanical direction (MD) of the polarizer
  • the axis with a low refractive index is the light transmission axis of the polarizer (e.g. , may be the transverse direction (TD) of the polarizer.
  • TD transverse direction
  • the polarization degree of the polarizer may be 95% or more, specifically 95% to 100%, and more specifically 98% to 100%. In the above range, the diagonal compensation effect of the polarizer may be excellent.
  • the polarizer may contain a dichroic dye and include a uniaxially stretched polarizer.
  • a polarizer containing a dichroic dye may include a polarizer manufactured by stretching a base film for a polarizer uniaxially in MD and dyeing it with a dichroic dye (eg, iodine or an iodine-containing material including potassium iodide).
  • the base film for a polarizer may include, but is not limited to, a polyvinyl alcohol-based film or a derivative thereof. Polarizers can be manufactured according to conventional methods known to those skilled in the art.
  • the polarizer may have a thickness of 1 ⁇ m to 40 ⁇ m, specifically 15 ⁇ m to 30 ⁇ m, more specifically 16 ⁇ m to 20 ⁇ m. Within the above range, it can be used in a polarizing plate.
  • the first phase difference layer and the second phase difference layer can be laminated on one side of the polarizer, preferably on the light incident side of the internal light of the polarizer, to provide a diagonal compensation effect on the side including the left or upper side and the right or lower side.
  • the 'internal light' refers to light that is emitted from the backlight unit, passes through the liquid crystal panel, and then enters the polarizer.
  • the first phase difference layer and the second phase difference layer may be stacked in that order from the lower surface of the polarizer.
  • the second retardation layer and the first retardation layer may be laminated in that order from the lower surface of the polarizer.
  • the bending and diagonal compensation effects of the present invention can be further improved by stacking the first phase difference layer and the second phase difference layer in that order from the lower surface of the polarizer.
  • the first phase difference layer is a positive C layer and can satisfy the refractive index relationship nz > nx ⁇ ny.
  • the first phase difference layer has a thickness direction retardation of -110 nm to -50 nm at a wavelength of 550 nm, for example -110, -105, -100, -95, -90, -85, -80, -75, -70, -65. , -60, -55, -50nm, for example -110nm to -60nm, -90nm to -65nm. In the above range, it may be easy to provide a diagonal compensation effect.
  • the first phase difference layer may have an in-plane phase difference of -10 nm to 10 nm, preferably 0 nm to 5 nm, at a wavelength of 550 nm. Within the above range, it may be easy to provide the above-described thickness direction phase difference.
  • the second phase difference layer is a positive A phase difference layer and can satisfy the refractive index relationship nx > ny ⁇ nz.
  • the second phase difference layer may have an in-plane retardation of 100 nm to 150 nm at a wavelength of 550 nm, for example, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150 nm, preferably 110 nm to 130 nm. . In the above range, it may be easy to provide a diagonal compensation effect.
  • the second phase difference layer may have a thickness direction retardation of 50 nm to 80 nm at a wavelength of 550 nm, for example, 50, 55, 60, 65, 70, 75, 80 nm, preferably 55 nm to 70 nm. In the above range, it may be easy to provide a diagonal compensation effect.
  • the second phase difference layer may have a degree of biaxiality of 0.9 to 1.2 at a wavelength of 550 nm, for example, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2, preferably 0.95 to 1.1. In the above range, it may be helpful to provide a diagonal compensation effect.
  • the first phase difference layer may be a liquid crystal layer or a non-liquid crystal layer.
  • the first phase difference layer When the first phase difference layer is a liquid crystal layer, the first phase difference layer may be formed by coating the liquid crystal layer composition onto a base film, drying and curing the composition. Since the first phase difference layer in the form of a liquid crystal layer is manufactured without a process such as stretching, it can be easy to reduce the bending of the polarizer.
  • the composition for the liquid crystal layer may be formed of a conventional liquid crystal layer composition known to those skilled in the art.
  • the composition for the liquid crystal layer may be nematic or discotic liquid crystal.
  • the first phase difference layer When the first phase difference layer is a non-liquid crystal layer, the first phase difference layer may be formed by coating the composition for the non-liquid crystal layer on a base film, etc., followed by drying and curing.
  • the first phase difference layer in the form of a non-liquid crystal layer is a non-stretched coating layer and is manufactured without a stretching process, so it can be easy to reduce bending of the polarizer.
  • the composition forming the first phase difference layer as a non-stretched coating layer may include, for example, a cellulose-based resin such as a cellulose ester-based or cellulose ether-based resin, a polystyrene-based resin, or a compound such as an oligomer or monomer.
  • a cellulose-based resin such as a cellulose ester-based or cellulose ether-based resin
  • a polystyrene-based resin such as an oligomer or monomer.
  • the cellulose-based compound may include at least a unit in which at least a portion of the hydrogen (H) of the hydroxyl group (OH) [C2 hydroxyl group, C3 hydroxyl group, or C6 hydroxyl group] of the sugar monomer constituting cellulose is substituted with an acyl group or ether group.
  • the cellulose-based compound may include one or more of a cellulose ester-based polymer and a cellulose ether-based polymer.
  • the hydrogen (H) of the hydroxyl group (OH) [C2 hydroxyl group, C3 hydroxyl group, or C6 hydroxyl group] of the sugar monomer constituting cellulose is an acyl group. It may include a cellulose ester-based polymer containing at least a substituted unit: in this case, the acyl group may be substituted or unsubstituted.
  • n is an integer of 1 or more
  • Substituents for cellulose ester or acyl group are halogen, nitro, alkyl (e.g., alkyl group with 1 to 20 carbon atoms), alkenyl (e.g., alkenyl group with 2 to 20 carbon atoms), cycloalkyl (e.g., 3 to 20 carbon atoms), respectively.
  • cycloalkyl group of 10 aryl (e.g., aryl group of 6 to 20 carbon atoms), heteroaryl (e.g., aryl group of 3 to 10 carbon atoms), alkoxy (e.g., alkoxy group of 1 to 20 carbon atoms), acyl , and may contain one or more types of halogen-containing functional groups. Substituents may be the same or different.
  • R is an alkyl group with 1 to 20 carbon atoms, cycloalkyl with 3 to 20 carbon atoms, aryl with 6 to 20 carbon atoms, or arylalkyl having 7 to 20 carbon atoms).
  • the “acyl” is bonded to a ring of cellulose through an ester bond (via an oxygen atom) in the cellulose.
  • composition for the first phase difference layer may include the cellulose ester system alone or a mixture of the cellulose ester system.
  • halogen means fluorine (F), Cl, Br or I, preferably F.
  • halogen-containing functional group is an organic functional group containing one or more halogens and may include an aromatic, aliphatic, or cycloaliphatic functional group.
  • the halogen-containing functional group is a halogen-substituted alkyl group with 1 to 20 carbon atoms, a halogen-substituted alkenyl group with 2 to 20 carbon atoms, a halogen-substituted alkynyl group with 2 to 20 carbon atoms, and a halogen-substituted alkyl group with 3 to 10 carbon atoms.
  • It may mean a cycloalkyl group, a halogen-substituted alkoxy group having 1 to 20 carbon atoms, a halogen-substituted acyl group, a halogen-substituted aryl group having 6 to 20 carbon atoms, or a halogen-substituted arylalkyl group having 7 to 20 carbon atoms. , but is not limited to this.
  • R' is a halogen-substituted alkyl group having 1 to 20 carbon atoms, a halogen-substituted cycloalkyl group having 3 to 20 carbon atoms , halogen-substituted aryl having 6 to 20 carbon atoms or halogen-substituted arylalkyl having 7 to 20 carbon atoms).
  • the “halogen substituted acyl group” is bonded to a ring of cellulose through an ester bond (via an oxygen atom) in cellulose.
  • Cellulose ester-based polymers can be manufactured by conventional methods known to those skilled in the art or can be used by purchasing commercially available products.
  • the cellulose ester polymer having acyl as a substituent can be prepared by reacting trifluoroacetic acid or trifluoroacetic anhydride with the sugar monomer or polymer of the sugar monomer forming the cellulose of the above-mentioned formula (1), or by reacting trifluoroacetic acid or trifluoroacetic anhydride.
  • an acylating agent for example, carboxylic acid anhydride or carboxylic acid
  • an acylating agent for example, carboxylic acid anhydride or carboxylic acid
  • trifluoroacetic acid or trifluoroacetic anhydride and an acylating agent are reacted together. It can be prepared by polymerizing it.
  • the polystyrene-based polymer may include repeating units of the formula (2):
  • R 1 , R 2 , R 3 are each independently a hydrogen atom, an alkyl group, a substituted alkyl group, or halogen, and R is each independently alkyl, substituted alkyl, halogen, hydroxy, carboxy, nitro, Alkoxy, amino, sulfonate, phosphate, acyl, acyloxy, phenyl, alkoxycarbonyl, cyano groups, and n is an integer from 0 to 5).
  • the polystyrene-based polymer may be a halogenated polystyrene-based polymer, containing halogen.
  • R 1 , R 2 , and R 3 may be halogen and/or at least one R may be halogen.
  • halogen means fluorine (F), Cl, Br or I, preferably F.
  • Halogen-containing polystyrene-based polymers include, for example, one or more of 1-(2,2-difluoroethenyl)-2-fluorobenzene, 1', 2', and 2'-trifluorostyrene. It can be formed by polymerizing the mixture.
  • the mixture may further include styrene.
  • the first phase difference layer may have a thickness of 1 ⁇ m to 10 ⁇ m, specifically 2 ⁇ m to 7 ⁇ m, specifically 3 ⁇ m to 5 ⁇ m. Within the above range, it can be used in a polarizer and can help improve the anti-bending effect.
  • the second phase difference layer may be thicker than the first phase difference layer.
  • the second phase difference layer may have a greater shrinkage rate and/or shrinkage force than the first phase difference layer. In this case, it may be easy to improve bending prevention.
  • the second phase difference layer may have a thickness of 20 ⁇ m to 80 ⁇ m, specifically 30 ⁇ m to 60 ⁇ m. Within the above range, it can be used in a polarizer and can help improve the anti-bending effect.
  • the second phase difference layer may have a contraction force of 0.04N to 0.1N, for example, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1N, specifically 0.05N to 0.07N.
  • the second phase difference layer may have a shrinkage rate of 0.15% to 0.30%, specifically 0.18% to 0.25%. Even if it shrinks due to heat in the above range, the phase difference value that compensates for the diagonal can be maintained.
  • the second phase difference layer may be a stretched film of a non-liquid crystal layer.
  • the second phase difference layer may be advantageous in increasing the in-plane phase difference at a wavelength of 550 nm compared to the first phase difference layer described above.
  • the second phase difference layer may be an MD or TD uniaxially stretched, MD and TD biaxially stretched, or obliquely stretched film of an unstretched film for the second phase difference layer.
  • the second retardation layer may be an MD uniaxially stretched film of the unstretched film for the second retardation layer.
  • the second phase difference layer may be manufactured by dry or wet stretching the unstretched film for the second phase difference layer at a stretching ratio of 5 to 8 times, but is not limited thereto.
  • the second phase difference layer has a slow axis and a fast axis in the in-plane direction, and the slow axis of the second phase difference layer may be substantially parallel to the light absorption axis of the polarizer.
  • the term 'substantially parallel' means that when the light absorption axis of the polarizer is 0°, the slow axis of the second retardation layer is -5° to +5°, preferably -1° to +1°, more preferably 0. It can mean °. Because of this, it can be easy to achieve the diagonal compensation effect of the polarizer.
  • the first adhesive layer described below can easily improve the bending of the polarizer having the above-described axis relationship.
  • the second phase difference layer may include a polymer with positive (+) intrinsic birefringence.
  • the fact that the intrinsic birefringence is positive means that the refractive index in the stretching direction (MD) increases.
  • the second phase difference layer may be a cyclic olefin polymer (COP)-based, norbornene-based such as cyclic olefin copolymer (COC)-based, or a cellulose-based such as triacetylcellulose (TAC). there is.
  • COP cyclic olefin polymer
  • COC cyclic olefin copolymer
  • TAC triacetylcellulose
  • the shrinkage force and/or shrinkage rate of the second phase difference layer can be realized by adjusting the draw ratio, stretching temperature, thickness, etc. when stretching the material for the second phase difference layer and the unstretched film for the second phase difference layer when manufacturing the second phase difference layer. Methods for controlling this are well known to those skilled in the art.
  • the second phase difference layer may be manufactured by melt-extruding the composition for the second phase difference layer to prepare an unstretched film and then stretching it, or by manufacturing an unstretched film using a solution casting method and then stretching it.
  • the present invention is provided with two retardation layers (a first retardation layer, a second retardation layer) stacked on the lower surface of the polarizer, and when the first retardation layer and the second retardation layer have different shrinkage rates and/or shrinkage forces, Bending of the polarizer was improved by providing a first adhesive layer with a storage modulus and glass transition temperature in a specific range between the first phase difference layer and the second phase difference layer.
  • the first adhesive layer has the effect of improving the bending of the polarizer. was excellent.
  • the first adhesive layer is directly laminated on the first phase difference layer and the second phase difference layer, respectively.
  • 'directly laminated' means that no other optical layer, other first adhesive layer, or other adhesive layer is laminated between the first phase difference layer and the first adhesive layer, or between the second phase difference layer and the first adhesive layer. it means.
  • the laminate of the first phase difference layer, the first adhesive layer, and the second phase difference layer may be a three-layer laminate.
  • the first adhesive layer has a storage modulus of 4 x 10 4 Pa to 10 x 10 4 Pa at 25°C and a glass transition temperature of -60°C to -35°C.
  • the first and second phase difference layers relieve shrinkage as an interlayer adhesive of the first and second phase difference layers.
  • the bending of the polarizer laminated on the lower surface of the polarizer can be improved.
  • the effect of improving the bending of the polarizer may be weak or it may be difficult to combine the first and second retardation layers. Even if the first adhesive layer satisfies the modulus of the present invention, if the glass transition temperature is higher than -35°C, the bending improvement effect of the polarizer is weak or the adhesive strength of the first adhesive layer is low, so that the first phase difference layer and the second phase difference layer are combined. may be difficult.
  • the modulus is less than 4 . Even if the first adhesive layer satisfies the glass transition temperature of the present invention, if the modulus is more than 10 Combining two different layers may be difficult.
  • the first adhesive layer may have a modulus of 5 x 10 4 Pa to 9 x 10 4 Pa at 25°C and a glass transition temperature of -50°C to -40°C.
  • the bending improvement effect of the polarizer is excellent, and the first adhesive layer can be easily manufactured.
  • the first adhesive layer may have a thickness greater than that of the first phase difference layer and may be smaller than that of the second phase difference layer.
  • the first adhesive layer may have a thickness of 5 ⁇ m to 30 ⁇ m, preferably 10 ⁇ m to 20 ⁇ m. Within the above range, it can be used in a polarizing plate.
  • the composition of the first adhesive layer is not limited as long as it can achieve the modulus range and glass transition temperature range at 25°C.
  • the first adhesive layer may be a heat-curable adhesive, preferably a pressure sensitive adhesive (PSA).
  • PSA pressure sensitive adhesive
  • the pressure-sensitive adhesive can be easily implemented in the modulus range and glass transition temperature range at 25°C.
  • the first adhesive layer may be a (meth)acrylic adhesive layer. In this case, it may be easy to implement the modulus range and glass transition temperature range at 25°C.
  • the first adhesive layer may be formed of a composition for a first adhesive layer including a (meth)acrylic adhesive resin and a curing agent.
  • the (meth)acrylic adhesive resin may include a (meth)acrylic copolymer of a monomer mixture including a (meth)acrylic monomer having an alkyl group and a (meth)acrylic monomer having a crosslinkable functional group.
  • the (meth)acrylic monomer having an alkyl group is in an unsubstituted form and can be a (meth)acrylate having a straight-chain or branched alkyl group of 1 to 20 carbon atoms at the ester portion, such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, iso-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl ( Among meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, iso-octyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate It may include one or more types.
  • the (meth)acrylic monomer having a crosslinkable functional group may include one or more of a (meth)acrylic monomer having a hydroxyl group and a (meth)acrylic monomer having a carboxylic acid group.
  • the adhesive strength of the first adhesive layer can be increased by reaction with the curing agent by including a (meth)acrylic monomer having a hydroxyl group as the (meth)acrylic monomer having a crosslinkable functional group.
  • the (meth)acrylic monomer having a hydroxyl group may be a (meth)acrylate having an alkyl group of 1 to 20 carbon atoms and one or more hydroxyl groups at the ester portion.
  • (meth)acrylic monomers having a hydroxyl group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl. It may include one or more of (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, and 1-chloro-2-hydroxypropyl (meth)acrylate.
  • the monomer may be included alone or in combination of two or more types in the monomer mixture.
  • the monomer mixture is 60% to 99% by weight of a (meth)acrylic monomer having an alkyl group, for example, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99% by weight, preferably 80% by weight to 99% by weight, 1% by weight to 40% by weight of (meth)acrylic monomer having a crosslinkable functional group, for example 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, It may contain 33, 34, 35, 36, 37, 38, 39, 40% by weight, preferably 1% to 20% by weight. Within the above range, it can
  • the total of the (meth)acrylic monomers having an alkyl group and the (meth)acrylic monomers having a crosslinkable functional group is 90% by weight or more in the monomer mixture, for example, 90, 91, 92, 93, 94, 95, 96, 97, 98. , 99, 100% by weight ⁇ 95% by weight to 100% by weight, 100% by weight. Within the above range, it can be easy to implement the effects of the present invention.
  • (meth)acrylic copolymers can be prepared using conventional methods known to those skilled in the art.
  • the curing agent may include one or more of an isocyanate-based curing agent, an epoxy-based curing agent, a metal chelate-based curing agent, an aziridine-based curing agent, and a carbodiimide-based curing agent as a thermal curing agent.
  • an isocyanate-based curing agent may be used as the curing agent. .
  • Isocyanate-based curing agents include toluene diisocyanate, 4,4'-methylenediphenyl diisocyanate, and 1,3-xylylene diisocyanate, including hexamethylene diisocyanate, 2,4-toluene diisocyanate, and 2,6-toluene diisocyanate.
  • Adducts may include adducts of the above-mentioned isocyanate-based curing agents such as xylylene diisocyanate adduct of trimethylolpropane, triphenylmethane triisocyanate, and methylene bistriisocyanate.
  • the curing agent is used in an amount of 0.01 to 0.1 parts by weight, for example, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 parts by weight, preferably 0.02, based on 100 parts by weight of the (meth)acrylic adhesive resin. It may be included in amounts ranging from 0.06 parts by weight. Within the above range, it can be easy to realize the modulus and glass transition temperature of the first adhesive layer at 25°C.
  • the composition may further include a silane coupling agent.
  • the silane coupling agent may be of any common type known to those skilled in the art, and may include, for example, one or more of acetylacetonate-based, acetoacetate-based, and epoxy-based silane coupling agents.
  • the silane coupling agent may be included in an amount of 0.1 to 1 part by weight, specifically 0.1 to 0.5 parts by weight, based on 100 parts by weight of the (meth)acrylic adhesive resin. Within the above range, the adhesion of the first adhesive layer can be further improved.
  • the composition for the first adhesive layer may be a solvent-free type.
  • the composition for the first adhesive layer may further include a solvent.
  • the first adhesive layer can be made thin and the applicability can be improved.
  • the solvent may be a common solvent known to those skilled in the art.
  • the solvent may include one or more of methyl ethyl ketone, ethyl acetate, and toluene.
  • the first adhesive layer can be manufactured by a common method known to those skilled in the art.
  • the first adhesive layer can be manufactured by applying the composition for the first adhesive layer to one side of the base film to a predetermined thickness, followed by drying and aging.
  • the polarizing plate may further include a first protective layer between the polarizer and the first retardation layer, or between the polarizer and the second retardation layer.
  • the first protective layer may include one or more layers of the polarizer.
  • the first protective layer can be laminated on the lower surface of the polarizer to increase the mechanical strength of the polarizer.
  • the first protective layer may be a base film for forming the first phase difference layer.
  • the first protective layer may have an in-plane retardation of 10 nm or less at a wavelength of 550 nm, for example, 0 nm to 10 nm or 0 nm to 5 nm. In the above range, the diagonal compensation effect by the first phase difference layer and the second phase difference layer may not be affected.
  • the first protective layer may have a lower shrinkage rate and/or lower shrinkage force than the second phase difference layer.
  • the first protective layer may be disposed adjacent to the polarizer compared to the first retardation layer and the second retardation layer, respectively. Because of this, the bending suppression effect of the polarizer can be further improved.
  • the first protective layer has a contractile force of 0.05N to 1.0N, for example 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0N, specifically 0.1N to 0.5 It can be N. Within the above range, it may be easy to provide a bending improvement effect.
  • the first protective layer has a shrinkage of 0.05% to 0.20%, for example 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20%, specific It can be 0.10% to 0.15%. Within the above range, it may be easy to provide a bending improvement effect.
  • the first protective layer may have a thickness of 25 ⁇ m to 80 ⁇ m, preferably 30 ⁇ m to 60 ⁇ m. Within the above range, it can be used in a polarizing plate.
  • the first protective layer may be a coating layer or film of a liquid crystal layer or a non-liquid crystal layer.
  • the first protective layer may be an optically transparent film.
  • the first protective layer is a cellulose-based material including triacetylcellulose (TAC), a polyester-based material including polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate (PET), and polybutylene naphthalate.
  • TAC triacetylcellulose
  • PET polyethylene naphthalate
  • the first protective layer may be laminated to the polarizer by an adhesive layer or an adhesive layer.
  • the adhesive layer or adhesive layer may be formed of a thermosetting or photocuring adhesive composition.
  • the adhesive layer or adhesive layer may have a thickness of 1 ⁇ m to 30 ⁇ m, for example, 2 ⁇ m to 10 ⁇ m, 2 ⁇ m to 3 ⁇ m.
  • a second adhesive layer may be further laminated between the first protective layer and the first phase difference layer.
  • the second adhesive layer can increase the strength of the polarizing plate by adhering the first protective layer and the first retardation layer or the first protective layer and the second retardation layer to each other.
  • the second adhesive layer may be formed of a composition for a second adhesive layer containing a (meth)acrylic adhesive resin and a curing agent.
  • the (meth)acrylic adhesive resin may include a (meth)acrylic copolymer of a monomer mixture including a (meth)acrylic monomer having an alkyl group and a (meth)acrylic monomer having a crosslinkable functional group.
  • the detailed types of the (meth)acrylic monomer having an alkyl group, the (meth)acrylic monomer having a crosslinkable functional group, and the curing agent are the same as those described in the first adhesive layer.
  • the monomer mixture is 60% to 99% by weight of a (meth)acrylic monomer having an alkyl group, preferably 80% to 99% by weight, and 1% to 40% by weight of a (meth)acrylic monomer having a crosslinkable functional group. may include 1% to 20% by weight. Within the above range, the adhesive strength of the second adhesive layer can be secured.
  • the curing agent may be included in an amount of 0.01 to 0.1 parts by weight, preferably 0.02 to 0.06 parts by weight, based on 100 parts by weight of the (meth)acrylic adhesive resin. Within the above range, it may be easy to secure the adhesion of the second adhesive layer.
  • the composition may further include a silane coupling agent.
  • the silane coupling agent may be of any common type known to those skilled in the art, and may include, for example, one or more of acetylacetonate-based, acetoacetate-based, and epoxy-based silane coupling agents.
  • the silane coupling agent may be included in an amount of 0.1 to 1 part by weight, specifically 0.1 to 0.5 parts by weight, based on 100 parts by weight of the (meth)acrylic adhesive resin. Within the above range, the adhesion of the second adhesive layer can be further improved.
  • the composition for the second adhesive layer may be a solvent-free type.
  • the composition for the second adhesive layer may further include a solvent.
  • the second adhesive layer can be made thin and the applicability can be improved.
  • the solvent may be a common solvent known to those skilled in the art.
  • the solvent may include one or more of methyl ethyl ketone, ethyl acetate, and toluene.
  • the second adhesive layer may have a thickness of 15 ⁇ m to 35 ⁇ m, specifically 20 ⁇ m to 30 ⁇ m. Within the above range, it can be used in a polarizing plate.
  • the polarizer may further include a second protective layer laminated on the other side of the polarizer.
  • the second protective layer may include one or more layers of the polarizer.
  • the second protective layer is disposed on the light emission surface of the polarizer of the internal light, and can further improve image quality or protect the polarizer by acting on the light emitted from the polarizer.
  • the second protective layer may include a protective film or protective coating layer.
  • the protective film is an optically transparent film, for example, cellulose-based including triacetylcellulose (TAC), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate (PET), polybutylene naphthalate, etc.
  • TAC triacetylcellulose
  • PET polyethylene naphthalate
  • It may be a film made of one or more resins of the denieric type. Specifically, TAC and PET films can be used.
  • the protective coating layer may be formed of one or more of a thermosetting coating layer composition and a photocurable coating layer composition.
  • the second protective layer may be a retardation film.
  • the second protective layer may have an in-plane retardation (Re) of 3,000 nm or more at a wavelength of 550 nm, specifically 5,000 nm to 15,000 nm, and more specifically 5,000 nm to 12,000 nm. Within the above range, there may be a frontal contrast ratio improvement effect, a rainbow mura suppression effect, etc.
  • Re in-plane retardation
  • the second protective layer may have a thickness direction retardation (Rth) of 6,000 nm or more at a wavelength of 550 nm, specifically 6,000 nm to 15,000 nm, and more specifically 6,000 nm to 12,000 nm.
  • Rth thickness direction retardation
  • the second protective layer may have a degree of biaxiality (NZ) of 2.5 or less, specifically 1.0 to 2.2, more specifically 1.2 to 2.0, and most specifically 1.4 to 1.8 at a wavelength of 550 nm.
  • NZ degree of biaxiality
  • the second protective layer may be a film formed from the above-described material and stretched at a predetermined stretching ratio. Through this, the protective layer can have a slow axis and a fast axis in the in-plane direction.
  • the axis with a low refractive index in the in-plane direction of the second protective layer is the machine direction (MD) of the second protective layer
  • the axis with a high refractive index in the in-plane direction of the second protective layer is the width of the second protective layer. It can be a direction (TD, transverse direction).
  • the second protective layer may be a TD uniaxially stretched protective film.
  • the axis with a low refractive index among the in-plane directions of the second protective layer is the width direction (TD) of the second protective layer
  • the axis with a high refractive index among the in-plane directions of the second protective layer is the mechanical direction (MD) of the second protective layer.
  • the second protective layer may be an MD uniaxially stretched protective film.
  • the axis with a low refractive index in the in-plane direction of the second protective layer is inclined with respect to the width direction of the second protective layer, and the axis with a high refractive index is inclined with respect to the mechanical direction of the second protective layer.
  • the second protective layer may be an MD and TD biaxially stretched film or an MD and TD biaxially stretched coating layer.
  • the second protective layer may include a TD uniaxially stretched protective film to have the above-described axis with a low refractive index and an axis with a high refractive index in the in-plane direction.
  • the unstretched film is a step of stretching the melt-extruded unstretched film resin by 100% to 200%, preferably 120% to 140%, of the TD width of the initial resin in the TD direction only. It can be manufactured by a stretched film manufacturing method comprising a. Stretching may be performed by one or more of dry stretching and wet stretching, and the stretching temperature is (Tg - 20) °C to (Tg + 50) °C, specifically 70 °C to 70 °C based on the glass transition temperature Tg of the resin for the protective film. Preferred is 250°C, more specifically 80°C to 200°C, and may even more specifically be 100°C to 200°C. Within the above range, there can be uniformly the same stretching effect.
  • the second protective layer may have a thickness of 100 ⁇ m or less, specifically more than 0 ⁇ m and 100 ⁇ m or less, more specifically 10 ⁇ m to 90 ⁇ m, and can be used in the polarizing plate within this range.
  • the second protective layer may additionally have a functional coating layer formed on at least one side.
  • the functional coating layer may be a hard coating layer, an anti-fingerprint layer, an anti-reflection layer, a low-reflection layer, an anti-glare layer, a primer layer, etc.
  • the second protective layer may be laminated to the polarizer using an adhesive layer or an adhesive layer.
  • the adhesive layer or adhesive layer may be formed of a photocurable or thermosetting adhesive or adhesive.
  • the adhesive layer or adhesive layer may have a thickness of 1 ⁇ m to 30 ⁇ m, for example, 2 ⁇ m to 10 ⁇ m, 2 ⁇ m to 3 ⁇ m.
  • the polarizing plate may further include a third adhesive layer laminated on the lower surface of the second retardation layer or the first retardation layer.
  • the third adhesive layer can adhere the polarizer to the optical display panel.
  • the third adhesive layer may be formed of a composition for the second adhesive layer containing a (meth)acrylic adhesive resin and a curing agent.
  • the (meth)acrylic adhesive resin may include a (meth)acrylic copolymer of a monomer mixture including a (meth)acrylic monomer having an alkyl group and a (meth)acrylic monomer having a crosslinkable functional group.
  • the detailed types of the (meth)acrylic monomer having an alkyl group, the (meth)acrylic monomer having a crosslinkable functional group, and the curing agent are the same as those described in the first adhesive layer.
  • the monomer mixture is 60% to 99% by weight of a (meth)acrylic monomer having an alkyl group, preferably 80% to 99% by weight, and 1% to 40% by weight of a (meth)acrylic monomer having a crosslinkable functional group. may include 1% to 20% by weight. Within the above range, the adhesive strength of the third adhesive layer can be secured.
  • the curing agent may be included in an amount of 0.01 to 0.1 parts by weight, preferably 0.02 to 0.06 parts by weight, based on 100 parts by weight of the (meth)acrylic adhesive resin. Within the above range, it may be easy to secure the adhesion of the third adhesive layer.
  • the composition may further include a silane coupling agent.
  • the silane coupling agent may be of any common type known to those skilled in the art, and may include, for example, one or more of acetylacetonate-based, acetoacetate-based, and epoxy-based silane coupling agents.
  • the silane coupling agent may be included in an amount of 0.1 to 1 part by weight, specifically 0.1 to 0.5 parts by weight, based on 100 parts by weight of the (meth)acrylic adhesive resin. Within the above range, the adhesion of the third adhesive layer can be further improved.
  • the composition for the third adhesive layer may be a solvent-free type.
  • the composition for the third adhesive layer may further include a solvent.
  • the third adhesive layer can be made thin and the applicability can be improved.
  • the solvent may be a common solvent known to those skilled in the art.
  • the solvent may include one or more of methyl ethyl ketone, ethyl acetate, and toluene.
  • the third adhesive layer may have a thickness of 15 ⁇ m to 35 ⁇ m, specifically 20 ⁇ m to 30 ⁇ m. Within the above range, it can be used in a polarizing plate.
  • 1 to 3 are cross-sectional views of a polarizing plate according to an embodiment of the present invention.
  • the polarizer includes a polarizer 10, a first protective layer 20, a first retardation layer 30, a first adhesive layer 40, and a first protective layer 20 sequentially stacked on the lower surface of the polarizer 10. It may include a second phase difference layer 50 and a second protective layer 60 laminated on the upper surface of the polarizer 10.
  • the polarizer includes a polarizer 10, a first protective layer 20, a second adhesive layer 70, a first phase difference layer 30, and a first protective layer sequentially stacked on the lower surface of the polarizer 10. It may include an adhesive layer 40, a second retardation layer 50, and a second protective layer 60 laminated on the upper surface of the polarizer 10.
  • the polarizer includes a polarizer 10, a first protective layer 20, a second adhesive layer 70, a first phase difference layer 30, and a first protective layer sequentially stacked on the lower surface of the polarizer 10. It may include a first adhesive layer 40, a second retardation layer 50, a third adhesive layer 80, and a second protective layer 60 laminated on the upper surface of the polarizer 10.
  • the shrinkage force of the polarizer may be 3.05 N or less, and the shrinkage rate of the polarizer may be 0.3% or less. Within the above range, it may be advantageous to provide a bending improvement effect.
  • the optical display device of the present invention includes the polarizing plate of the present invention.
  • the optical display device may include a liquid crystal display device in a vertical alignment mode, for example, IPS or FFS mode.
  • the liquid crystal display device includes a liquid crystal panel, a polarizer of the present invention laminated on the light exit surface of the liquid crystal panel, and a polarizer (light source side polarizer) disposed on the light incident surface of the liquid crystal panel.
  • the polarizing plate disposed on the light incident surface may include a polarizing plate commonly known to those skilled in the art.
  • the polarizing plate of the present invention can be used as a viewer-side polarizing plate.
  • the present invention is not limited thereto, and the polarizing plate of the present invention may be applied as a viewer-side polarizing plate or a light source-side polarizing plate.
  • the liquid crystal panel changes the orientation of the liquid crystal depending on whether voltage is applied or not, and can emit light emitted from the light source accordingly.
  • a liquid crystal panel may include a pair of substrates and a liquid crystal layer as a display medium included between the substrates.
  • One substrate color filter substrate
  • the other substrate active matrix substrate
  • a switching element e.g. TFT
  • Signal lines and pixel lines may be provided, but are not limited thereto.
  • the liquid crystal panel may employ liquid crystals in IPS or FFS mode. Through this, the liquid crystal display device can achieve an improvement in viewing angle characteristics.
  • the liquid crystal display device includes a light source on the lower surface of the polarizer on the light source side.
  • the light source may include a light source with a continuous emission spectrum.
  • the light source is a white LED light source, a quantum dot (QD) light source, a metal fluoride red phosphor light source, specifically KSF (K 2 SiF 6 :Mn 4+ ) phosphor or KTF (K 2 TiF 6 : Mn 4+ ) may include a phosphor-containing light source, etc.
  • a polyvinyl alcohol-based film (TS4500, KURARAY, thickness: 45 ⁇ m) washed with water at 25°C was subjected to swelling treatment in a swelling tank of water at 30°C.
  • the film that passed through the swelling tank was treated for 65 seconds in a dyeing tank at 30°C containing an aqueous solution containing 1 mol/ml potassium iodide and 1% by weight of boric acid.
  • the film that had passed through the dyeing tank was stretched to an MD uniaxial stretching ratio of 5.7 times in a wet stretching tank containing 3% by weight of boric acid in an aqueous solution at 60°C.
  • the film that passed through the wet stretching tank was treated for 65 seconds in a cross-linking tank containing a 25°C aqueous solution containing 3% by weight of boric acid.
  • the film that passed through the crosslinking bath was treated for 10 seconds in a complementary color bath containing a complementary color solution, which is a 30°C aqueous solution containing 4.5% by weight of potassium iodide.
  • the film that passed through the complementary color bath was washed with water and dried to prepare a polarizer (thickness: 18 ⁇ m).
  • a composition for a first adhesive layer was prepared by mixing (meth)acrylic adhesive resin CI-247 (Soken Co., Ltd., a copolymer of a monomer mixture containing n-butyl acrylate and a hydroxyl group-containing acrylic monomer as main components) and a curing agent.
  • the prepared composition for the first adhesive layer was applied to one side of the release film to a predetermined thickness, dried and heat treated, and then peeled from the release film to prepare a first adhesive layer (thickness: 15 ⁇ m).
  • a composition containing a cellulose ester (containing fluorine, VM500, Eastman) is applied to one side of the release film, cured, and then peeled from the release film to form a first phase difference layer (positive C layer, Rth: -80nm at a wavelength of 550nm, Thickness: 3.2 ⁇ m) was manufactured.
  • a first phase difference layer positive C layer, Rth: -80nm at a wavelength of 550nm, Thickness: 3.2 ⁇ m
  • a cyclic olefin polymer (COP) film (ZM12, Zeon, positive A layer, Re: 120 nm, NZ: 1.0, thickness: 46 ⁇ m at a wavelength of 550 nm) prepared by MD uniaxial stretching was prepared as a second phase contrast layer.
  • the shrinkage force of the second phase difference layer was 0.06N and the shrinkage rate was 0.19%.
  • the second phase difference layer has higher shrinkage force and higher shrinkage rate than the first phase difference layer.
  • the second and third adhesive layers are made by combining (meth)acrylic adhesive resin CI-247 (Soken Co., Ltd., a copolymer of a monomer mixture containing n-butyl acrylate and hydroxyl-containing acrylic monomer as main components) and a curing agent, respectively.
  • the composition was prepared, applied to a release film, cured, and then peeled from the release film to prepare a second adhesive layer (thickness: 25 ⁇ m) and a third adhesive layer (thickness: 25 ⁇ m).
  • a photocurable adhesive epoxy resin adhesive
  • a polyethylene terephthalate film (thickness: 85 ⁇ m, DSG-23PET(LR), DNP) with a low-reflection layer formed on the upper surface was laminated as a second protective layer on the upper surface of the polarizer.
  • a triacetylcellulose-based film (thickness: 40 ⁇ m, KC4CT1SW, Konica) was laminated on the lower surface of the polarizer as a first protective layer.
  • a polarizing plate was manufactured by laminating the second adhesive layer, the first retardation layer (+C), the first adhesive layer, the second retardation layer (+A), and the third adhesive layer on the lower surface of the first protective layer.
  • the slow axis of the second phase difference layer is parallel to the light absorption axis of the polarizer.
  • a polarizing plate was manufactured in the same manner as Example 1, except that the curing agent content was changed when manufacturing the first adhesive layer in Example 1.
  • Example 1 a polarizer was manufactured in which the second protective layer, polarizer, first protective layer, and second adhesive layer were laminated in the order of the first phase difference layer, the first adhesive layer, the second phase layer, and the third adhesive layer. did.
  • a cyclic olefin polymer (COP) film (ZM12, Zeon, positive A layer, Re: 120 nm, NZ: 1.0, thickness: 46 ⁇ m at a wavelength of 550 nm) prepared by MD uniaxial stretching was prepared as a second phase contrast layer.
  • COP cyclic olefin polymer
  • a composition containing cellulose ester (containing fluorine, VM500, Eastman) is applied to one side of the second phase difference layer and cured to form a first phase difference layer (positive C layer, Rth: -80nm at a wavelength of 550nm, thickness: 3.7 ⁇ m). ) and a laminate of the second phase difference layer was manufactured.
  • a first phase difference layer positive C layer, Rth: -80nm at a wavelength of 550nm, thickness: 3.7 ⁇ m.
  • Example 1 except that the second protective layer, polarizer, first protective layer, second adhesive layer, first phase difference layer, second phase difference layer, and third adhesive layer were laminated in that order without the first adhesive layer. Then, a polarizing plate was manufactured in the same manner as in Example 1. The first retardation layer is directly laminated on the second retardation layer without an adhesive layer between the first retardation layer and the second retardation layer.
  • a transparent adhesive composition (OCA) containing a partial polymer formed from a monomer mixture containing 90% by weight of 2-ethylhexyl acrylate, 4% by weight of acrylamide, and 6% by weight of acrylic acid was prepared and light cured to form a transparent adhesive layer (thickness: 15 ⁇ m) was prepared.
  • OCA transparent adhesive composition
  • a polarizing plate was manufactured in the same manner as Example 1, except that a transparent adhesive layer (OCA) was used instead of the first adhesive layer.
  • Example 2 By changing the composition of the first adhesive layer in Example 1, a first adhesive layer having the storage modulus, glass transition temperature, and thickness shown in Table 2 below was manufactured. A polarizing plate was manufactured in the same manner as Example 1, except that the first adhesive layer prepared above was used.
  • a polarizer was manufactured in the same manner as above.
  • a triacetylcellulose (TAC) film (KC4CT1SW, Konica Minolta Opto, Inc., thickness: 40 ⁇ m) was attached to the upper surface of the manufactured polarizer, and a polyethylene terephthalate (PET) film (Toyobo) was attached to the lower surface of the polarizer.
  • PET polyethylene terephthalate
  • the polarizers manufactured in the above examples and comparative examples were adhered to the light emitting surface of the IPS liquid crystal-containing liquid crystal panel via a third adhesive layer.
  • a liquid crystal module was manufactured by attaching the light source side polarizer prepared above to the light incident surface of the liquid crystal panel containing IPS liquid crystal through an adhesive layer. At this time, the TAC film of the polarizer on the light source side was adhered to the liquid crystal panel.
  • Storage modulus of the first adhesive layer or OCA (G', unit: Pa): A specimen with a thickness of 600 ⁇ m and a diameter of 8 mm and a circular cross section is manufactured by stacking a plurality of first adhesive layers with a thickness of 15 ⁇ m, For the above specimen, in a temperature sweep test using ARES (Advanced Rheometry Expansion System, TA instrument), the temperature was increased from 0°C to 150°C with frequency: 1Hz, strain: 5%, and normal force: 100N at a temperature increase rate of 10°C/min. This is the value at 25°C when the storage modulus was measured while increasing.
  • ARES Advanced Rheometry Expansion System
  • Glass transition temperature (Tg, unit: °C) of the first adhesive layer 15 mg was heated to 100 °C in a nitrogen atmosphere (50 mL/min) at a temperature increase rate of 20 °C/min, and then to -80 °C. This value was measured using DSC Discovery (TA Instruments) after cooling and raising the temperature to 100°C at a temperature increase rate of 10°C/min.
  • a liquid crystal module was manufactured using the above method from the polarizer manufactured in Examples and Comparative Examples.
  • the distance between (45°, 60°) and (135°, 60°) or (315°, 60°) was calculated as ⁇ (x, y). When ⁇ (x, y) was small compared to Comparative Example 1, it was evaluated as good.
  • Shrinkage rate of polarizer (unit: %): Square specimens of MD of polarizer x TD of polarizer (60mm It was treated at constant temperature and high temperature. The MD length of the specimen before high temperature treatment and the MD length of the specimen after high temperature treatment were measured using a dimension measuring device and calculated according to the above equation.
  • Bending (unit: mm): Prepare a specimen by cutting the polarizers manufactured in Examples and Comparative Examples into a rectangular shape of MD of polarizer x TD of polarizer (219.8mm x 124.15mm) (10.1 inch simulated evaluation size). The specimen was placed on a flat floor with the second protective layer placed on top. Then, after leaving it at 23°C for 2 hours, the maximum height from the floor to the edge of the specimen was measured three times at each 8 point and calculated as the average value. When the bending value is less than 3mm, it can be said that there is an effect of improving light leakage.
  • the polarizer of the present invention provides a diagonal compensation effect on the sides including the left and right sides, suppresses bending, and suppresses light leakage at the edges.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

편광자; 및 상기 편광자의 일면에 적층된, 제1위상차층, 제1점착제층 및 제2위상차층의 적층체를 포함하고, 상기 제1점착제층은 25℃에서 모듈러스가 4 x 104Pa 내지 10 x 104Pa이고, 유리 전이 온도가 -60℃ 내지 -35℃인 것인, 편광판, 및 이를 포함하는 광학표시장치가 제공된다.

Description

편광판 및 광학표시장치
본 발명은 편광판 및 광학표시장치에 관한 것이다.
액정표시장치의 일 예로서 액정이 수평 배향 모드로 배향된 액정층을 구비하는 액정표시장치가 있다. 이와 관련하여, IPS(in plane switching) 모드 또는 FFS(fringe field swching) 모드의 액정표시장치가 있다. 수평 배향 모드의 액정표시장치는 액정을 수평으로 배향시켜 일측 기판에 두개의 전극을 구동하게 될 때 액정이 평면 상에서 회전하게 됨으로써 광을 투과 또는 차단하는 방법을 이용하여 광시야각을 개선하고 있다.
수평 배향 모드의 액정표시장치는 액정 배향에 프리 틸트(pre tilt)가 있는 경우 좌우 또는 상하 색상, 또는 좌우 또는 상하 시감의 이방성이 발생할 가능성이 높다. 따라서, 좌우 또는 상하에서 복굴절의 양이 달라져 좌우 또는 상하 시감(시야각)의 불균일이 발생할 수 있다. 이를 해소하기 위하여, 편광자와 패널 사이에 위상차층을 구비하는 편광판이 사용될 수 있다. 일반적으로 위상차층은 2층 이상 포함되어 상술 문제점을 해소할 수 있다.
그런데, 2층 이상의 위상차층은 편광판의 상부면과 하부면 간에 두께 불균형을 일으킬 수 있으며, 일반적으로 위상차층은 연신에 의해 제조되는 만큼, 편광판의 벤딩이 발생할 수 있다. 벤딩은 편광판의 가장자리 부분이 들뜨는 것으로 이로 인해 빛샘이 발생할 수 있다.
본 발명의 배경기술은 일본공개특허 제2006-251659호 등에 개시되어 있다.
본 발명의 목적은 좌측 및 우측을 포함하는 측면에서 대각 보상 효과를 제공하는 편광판을 제공하는 것이다.
본 발명의 다른 목적은 벤딩을 억제하여 가장 자리 부분에서의 빛샘을 억제하는 편광판을 제공하는 것이다.
본 발명의 일 관점은 편광판이다.
편광판은 편광자; 및 상기 편광자의 일면에 적층된, 제1위상차층, 제1점착제층, 및 제2위상차층의 적층체를 포함하고, 상기 제1점착제층은 25℃에서 저장 모듈러스가 4 x 104Pa 내지 10 x 104Pa이고, 유리 전이 온도가 -60℃ 내지 -35℃이다.
본 발명의 다른 관점은 광학표시장치이다.
광학표시장치는 본 발명의 편광판을 포함한다.
본 발명은 좌측 및 우측을 포함하는 측면에서 대각 보상 효과를 제공하는 편광판을 제공하였다.
본 발명은 벤딩을 억제하여 가장 자리 부분에서의 빛샘을 억제하는 편광판을 제공하였다.
도 1은 본 발명 일 실시예의 편광판의 단면도이다.
도 2는 본 발명 다른 실시예의 편광판의 단면도이다.
도 3은 본 발명 또 다른 실시예의 편광판의 단면도이다.
첨부한 도면을 참고하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명을 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
여기서 사용되는 용어는 단지 예시적인 구현예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계 없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 도면 부호를 붙였다. 도면에서 각 구성 요소의 길이, 크기는 본 발명을 설명하기 위한 것으로 본 발명이 도면에 기재된 각 구성 요소의 길이, 크기에 제한되는 것은 아니다.
본 명세서에서 "상부"와 "하부"는 도면을 기준으로 정의한 것으로서, 시 관점에 따라 "상부"가 "하부"로 "하부"가 "상부"로 변경될 수 있고, "위(on)" 또는 "상(on)"으로 지칭되는 것은 바로 위뿐만 아니라 중간에 다른 구조를 개재한 경우도 포함할 수 있다. 반면, "직접 위(directly on)", "바로 위" 또는 "직접적으로 형성" 또는 "직접적으로 접하여 형성"으로 지칭되는 것은 중간에 다른 구조를 개재하지 않은 것을 의미한다.
본 명세서에서 "면내 위상차(Re)", "두께 방향 위상차(Rth)", "이축성 정도(NZ)"는 하기 식 A, 식 B, 식 C로 표시된다:
[식 A]
Re = (nx - ny) x d
[식 B]
Rth = ((nx + ny)/2 - nz) x d
[식 C]
NZ = (nx - nz)/(nx - ny)
(상기 식 A, 식 B, 식 C에서, nx, ny, nz는 측정 파장에서 각각 해당 광학 소자의 지상축(slow axis) 방향의 굴절률, 광학 소자의 진상축 방향(fast axis)의 굴절률, 두께 방향의 굴절률이고, d는 해당 광학 소자의 두께(단위:nm)이다).
본 명세서에서 면내 위상차, 두께 방향 위상차 및 이축성 정도는 특별히 언급되지 않으면, 광학 소자의 면내 방향에 대한 법선 방향으로 광을 투과시킴으로써 측정되는 값이다.
본 명세서에서 각도를 기재할 때 "+"는 기준(0°)에 대해 시계 방향 쪽으로의 각도, "-"는 기준(0°)에 대해 반시계 방향 쪽으로의 각도를 나타낸다.
본 명세서에서 제1점착제층의 '저장 모듈러스'는 두께 15㎛의 제1점착제층을 복수 개 적층시켜 두께 600㎛ 및 직경 8mm으로 단면이 원형인 시편을 제조하고, 상기 시편에 대하여 ARES(Advanced Rheometry Expansion System, TA instrument)를 사용하여 Temperature sweep test에서 frequency: 1Hz, strain: 5% 및 normal force: 100N으로 0℃ 내지 150℃까지 온도 상승 속도 10℃/분으로 온도를 높이면서 저장 모듈러스를 측정하였을 때 25℃에서의 값이다.
본 명세서에서 제1점착제층의 '유리전이온도'는 제1점착제층 15mg을 질소 분위기(질소 흐름 속도: 50mL/min)에서 20℃/min의 승온 속도로 100℃까지 승온하고 -80℃까지 냉각시킨 후 10℃/min의 승온 속도로 100℃까지 승온하면서 DSC Discovery(TA Instruments社)를 사용하여 측정된 값이다.
본 명세서에서 편광판의 '수축력'은 ASTM E831 표준 측정 방법에 따라 TMA(thermomechanical analysis)로 측정될 수 있다. 구체적으로, 편광판의 '수축력'은 편광자의 MD(machine direction) x 편광자의 TD(transverse direction)(30mm x 3mm)의 직사각형 시편을 제조하고 제조한 직사각형 시편 중 MD 쪽 양 말단을 TMA 양쪽 지그(jig)에 각각 물린 다음, 85℃에서 3시간 동안 수축되는 힘을 측정한 것이다.
본 명세서에서 편광판의 '수축률'은 편광자의 MD x 편광자의 TD(60mm x 60mm)의 정사각형 시편을 제조하고 제조한 시편을 60℃에서 250시간 동안 항온 고온 처리하였다. 치수 측정기를 사용해서 고온 처리하기 전 상기 시편의 MD 길이와, 고온 처리 후 상기 시편의 MD 길이를 측정하고, 아래 식에 따라 계산했다.
[식]
수축률 = │S1 - S0│/S0 x 100
(상기 식에서, S0은 상기 시편의 고온 처리하기 전 MD 길이,
S1은 상기 시편의 고온 처리 후 MD 길이)
본 명세서에서 위상차층 또는 보호층의 '수축률'은 편광판의 수축률 측정시 편광판 대신에 위상차층 또는 보호층을 사용하는 점을 제외하고는 실질적으로 동일한 방법으로 측정되는 값이다.
본 명세서에서 위상차층 또는 보호층의 '수축력'은 편광판의 수축력 측정시 편광판 대신에 위상차층 또는 보호층을 사용하는 점을 제외하고는 실질적으로 동일한 방법으로 측정되는 값이다.
본 명세서에서 "(메트)아크릴"은 아크릴 또는 메타아크릴을 의미할 수 있다.
본 명세서에서 수치 범위 기재시 "X 내지 Y"는 X 이상 Y 이하를 의미한다.
본 발명의 편광판은 광학표시장치의 패널 특히 액정의 수평 배향 모드의 액정 패널에 적용시 좌측 또는 상측 및 우측 또는 하측을 포함하는 측면에서 대각 보상 효과를 제공했다. 상기 액정의 수평 배향 모드는 IPS(in plane switching) 모드 또는 FFS(fringe field sqitching) 모드가 될 수 있다.
본 발명의 편광판은 벤딩(bending)이 억제됨으로써, 편광판의 가장 자리 부분에서의 들뜸을 방지하여 빛샘을 억제하는 효과를 제공했다. 상기 '벤딩'은 휨으로서, 편광판을 평평한 바닥에 두었을 때 편광판의 가장 자리 부분이 평평한 바닥으로부터 들뜨는 것을 의미한다. 일 구체예에서, 벤딩은 편광판 중 제1위상차층, 제1점착제층, 및 제2위상차층의 적층체가 평평한 바닥 쪽에 놓일 때 측정될 수 있으며, 상세한 측정 방법은 하기에서 설명되어 있다.
편광판은 편광자; 및 상기 편광자의 일면에 적층된, 제1위상차층, 제1점착제층 및 제2위상차층의 적층체를 포함하고, 상기 제1점착제층은 25℃에서 저장 모듈러스가 4 x 104Pa 내지 10 x 104Pa이고, 유리 전이 온도가 -60℃ 내지 -35℃이다.
편광자
편광자는 입사되는 광을 직교하는 2개의 편광 성분으로 분리하여 일방의 편광 성분은 투과시키고 타방의 편광 성분은 흡수하는 기능을 갖는, 광 흡수형 편광자를 포함한다.
일 구체예에서, 편광자의 면내 방향 중 굴절률이 높은 축은 편광자의 광 흡수축(예를 들면, 편광자의 기계적 방향(MD, machine direction))이고, 굴절률이 낮은 축은 편광자의 광 투과축(예를 들면, 편광자의 폭 방향(TD, transverse direction))이 될 수 있다.
편광자의 편광도는 95% 이상, 구체적으로 95% 내지 100%, 더 구체적으로 98% 내지 100%가 될 수 있다. 상기 범위에서, 편광판의 대각 보상 효과가 우수할 수 있다.
편광자는 이색성 염료를 함유하고 1축 연신된 편광자를 포함할 수 있다. 구체적으로, 이색성 염료를 함유하는 편광자는 편광자용 기재 필름을 MD 1축 연신하고 이색성 염료(예: 요오드 또는 요오드 함유 물질로서 요오드화칼륨을 포함)로 염색하여 제조된 편광자를 포함할 수 있다. 편광자용 기재 필름은 폴리비닐알코올계 필름 또는 그의 유도체를 포함할 수 있지만, 이에 제한되지 않는다. 편광자는 당업자에게 알려진 통상의 방법에 따라 제조될 수 있다.
편광자는 두께가 1㎛ 내지 40㎛, 구체적으로 15㎛ 내지 30㎛, 더 구체적으로 16㎛ 내지 20㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있다.
제1위상차층 및 제2위상차층
제1위상차층 및 제2위상차층은 편광자의 일면, 바람직하게는 편광자의 내부 광의 광 입사면에 적층됨으로써, 좌측 또는 상측 및 우측 또는 하측을 포함하는 측면에서 대각 보상 효과를 제공할 수 있다. 상기 '내부 광'은 백라이트 유닛으로부터 출사되어 액정 패널을 투과한 다음 편광자로 입사되는 광을 의미한다.
일 구체예에서, 편광자의 하부면으로부터 제1위상차층 및 제2위상차층의 순서로 적층될 수 있다. 다른 구체예에서, 편광자의 하부면으로부터 제2위상차층 및 제1위상차층의 순서로 적층될 수 있다. 바람직하게는, 편광자의 하부면으로부터 제1위상차층 및 제2위상차층의 순서로 적층됨으로써 본 발명의 벤딩 및 대각 보상 효과가 더 개선될 수 있다.
제1위상차층은 포지티브 C 층으로서, nz > nx ≒ ny 굴절률 관계를 만족할 수 있다. 제1위상차층은 파장 550nm에서 두께 방향 위상차는 -110nm 내지 -50nm, 예를 들면 -110, -105, -100, -95, -90, -85, -80, -75, -70, -65, -60, -55, -50nm, 예를 들면 -110nm 내지 -60nm, -90nm 내지 -65nm가 될 수 있다. 상기 범위에서, 대각 보상 효과를 제공하는데 용이할 수 있다.
제1위상차층은 파장 550nm에서 면내 위상차가 -10nm 내지 10nm, 바람직하게는 0nm 내지 5nm가 될 수 있다. 상기 범위에서, 상술 두께 방향 위상차를 제공하는데 용이할 수 있다.
제2위상차층은 포지티브 A 위상차층으로서, nx > ny ≒ nz 굴절률 관계를 만족할 수 있다. 제2위상차층은 파장 550nm에서 면내 위상차는 100nm 내지 150nm, 예를 들면 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150nm, 바람직하게는 110nm 내지 130nm가 될 수 있다. 상기 범위에서, 대각 보상 효과를 제공하는데 용이할 수 있다.
제2위상차층은 파장 550nm에서 두께 방향 위상차가 50nm 내지 80nm, 예를 들면 50, 55, 60, 65, 70, 75, 80nm, 바람직하게는 55nm 내지 70nm가 될 수 있다. 상기 범위에서, 대각 보상 효과를 제공하는데 용이할 수 있다.
제2위상차층은 파장 550nm에서 이축성 정도가 0.9 내지 1.2, 예를 들면 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 바람직하게는 0.95 내지 1.1이 될 수 있다. 상기 범위에서, 대각 보상 효과를 제공하는데 도움이 될 수 있다.
제1위상차층은 액정층 또는 비 액정층이 될 수 있다.
제1위상차층이 액정층인 경우, 제1위상차층은 액정층용 조성물을 기재 필름 등에 코팅하여 건조 및 경화시킴으로써 형성될 수 있다. 액정층 형태의 제1위상차층은 연신 등의 과정이 없이 제조되므로 편광판의 벤딩을 낮추는데 용이할 수 있다. 액정층용 조성물은 당업자에게 알려진 통상의 액정층용 조성물로 형성될 수 있다. 예를 들면, 액정층용 조성물은 네마틱 또는 디스코틱 액정 등이 될 수 있다.
제1위상차층이 비 액정층인 경우, 제1위상차층은 비 액정층용 조성물을 기재 필름 등에 코팅한 다음 건조 및 경화시킴으로써 형성될 수 있다. 비 액정층 형태의 제1위상차층은 무 연신의 코팅층으로서 연신 등의 과정이 없이 제조되므로 편광판의 벤딩을 낮추는데 용이할 수 있다.
무 연신의 코팅층으로서 제1위상차층을 형성하는 조성물은 예를 들면 셀룰로스 에스테르계, 셀룰로스 에테르계 등의 셀룰로스계, 폴리스티렌계 등의 수지, 올리고머, 또는 단량체 등의 화합물을 포함할 수 있다.
셀룰로스계 화합물은 셀룰로스를 이루는 당 단량체의 수산기(OH)[C2의 수산기, C3의 수산기 또는 C6의 수산기] 중 적어도 일부의 수소(H)가 아실기 또는 에테르기로 치환된 단위를 적어도 포함할 수 있다. 즉, 셀룰로스계 화합물은 셀룰로스 에스테르계 중합체, 셀룰로스 에테르계 중합체 중 1종 이상을 포함할 수 있다.
예를 들면, 셀룰로스계 중합체는 하기 화학식 1에서 표시되는 바와 같이 셀룰로스를 이루는 당 단량체의 수산기(OH)[C2의 수산기, C3의 수산기 또는 C6의 수산기] 중 적어도 일부의 수소(H)가 아실기로 치환된 단위를 적어도 포함하는 셀룰로스 에스테르계 중합체를 포함할 수 있다: 이때, 상기 아실기는 치환 또는 비치환될 수 있다.
[화학식 1]
Figure PCTKR2023018031-appb-img-000001
(상기 화학식 1에서, n은 1 이상의 정수)
셀룰로스 에스테르계 또는 아실기를 위한 치환기는 각각 할로겐, 니트로, 알킬(예: 탄소수 1 내지 탄소수 20의 알킬기), 알케닐(예: 탄소수 2 내지 20의 알케닐기), 시클로알킬(예: 탄소수 3 내지 탄소수 10의 시클로알킬기), 아릴(예: 탄소수 6 내지 탄소수 20의 아릴기), 헤테로 아릴(예: 탄소수 3 내지 탄소수 10의 아릴기), 알콕시(예: 탄소수 1 내지 탄소수 20의 알콕시기), 아실, 할로겐 함유 작용기 중 1종 이상을 포함할 수 있다. 치환기는 동일하거나 다를 수 있다.
상기 "아실"은 당업자에게 알려진 바와 같이 R-C(=O)-*(*은 연결 부호, R은 탄소수 1 내지 탄소수 20의 알킬기, 탄소수 3 내지 탄소수 20의 시클로알킬, 탄소수 6 내지 탄소수 20의 아릴 또는 탄소수 7 내지 탄소수 20의 아릴알킬)이 될 수 있다. 상기 "아실"은 셀룰로스에서 에스테르 결합을 통해(산소 원자를 통해) 셀룰로스의 고리에 결합된다.
상기 "알킬", "알케닐", "시클로알킬", "아릴", "헤테로아릴", "알콕시", "아실"은 각각 편의상 할로겐을 포함하지 않는 비-할로겐계이다. 제1위상차층용 조성물은 상기 셀룰로스 에스테르계 단독 또는 상기 셀룰로스 에스테르계가 혼합되어 포함될 수도 있다.
상기 "할로겐"은 플루오린(F), Cl, Br 또는 I를 의미하고, 바람직하게는 F를 의미한다.
상기 "할로겐 함유 작용기"는 1개 이상의 할로겐을 함유하는 유기 작용기로서, 방향족, 지방족 또는 지환족 작용기를 포함할 수 있다. 예를 들면, 할로겐 함유 작용기는 할로겐 치환된 탄소수 1 내지 탄소수 20의 알킬기, 할로겐 치환된 탄소수 2 내지 탄소수 20의 알케닐기, 할로겐 치환된 탄소수 2 내지 20의 알키닐기, 할로겐 치환된 탄소수 3 내지 탄소수 10의 시클로알킬기, 할로겐 치환된 탄소수 1 내지 탄소수 20 알콕시기, 할로겐 치환된 아실기, 할로겐 치환된 탄소수 6 내지 탄소수 20의 아릴기, 또는 할로겐 치환된 탄소수 7 내지 탄소수 20의 아릴알킬기를 의미할 수 있지만, 이에 제한되지 않는다.
상기 "할로겐 치환된 아실기"는 R'-C(=O)-*(*은 연결 부호, R'은 할로겐 치환된 탄소수 1 내지 탄소수 20의 알킬기, 할로겐 치환된 탄소수 3 내지 탄소수 20의 시클로알킬, 할로겐 치환된 탄소수 6 내지 탄소수 20의 아릴 또는 할로겐 치환된 탄소수 7 내지 20의 아릴알킬)이 될 수 있다. 상기 "할로겐 치환된 아실기"는 셀룰로스에서 에스테르 결합을 통해(산소 원자를 통해) 셀룰로스의 고리에 결합된다.
셀룰로스 에스테르계 중합체는 당업자에게 알려진 통상의 방법으로 제조되거나 상업적으로 판매되는 제품을 구입하여 사용될 수 있다. 예를 들면, 치환기로서 아실을 갖는 셀룰로스 에스테르계 중합체는 상술 화학식 1의 셀룰로스를 이루는 당 단량체 또는 당 단량체의 중합체에 트리플루오로아세트산, 트리플루오로아세트산 무수물을 반응시키거나 또는 트리플루오로아세트산, 트리플루오로아세트산 무수물을 반응시킨 다음 아실화제(예를 들면, 카르복실산의 무수물, 또는 카르복실산)를 추가로 반응시키거나, 또는 트리플루오로아세트산 또는 트리플루오로아세트산 무수물 및 아실화제를 함께 반응시킨 다음 중합하여 제조될 수 있다.
폴리스티렌계 중합체는 하기 화학식 2의 반복 단위를 포함할 수 있다:
[화학식 2]
Figure PCTKR2023018031-appb-img-000002
(상기 화학식 2에서,
Figure PCTKR2023018031-appb-img-000003
은 연결 부위이고, R1, R2, R3은 각각 독립적으로 수소 원자, 알킬기, 치환된 알킬기, 또는 할로겐이고, R은 각각 독립적으로 알킬, 치환된 알킬, 할로겐, 히드록시, 카르복시, 니트로, 알콕시, 아미노, 술포네이트, 포스페이트, 아실, 아실옥시, 페닐, 알콕시카르보닐, 시아노기이고, n은 0 내지 5의 정수이다).
폴리스티렌계 중합체는 할로겐을 함유하는, 할로겐 폴리스티렌계 중합체일 수 있다. 화학식 2에서, R1, R2, R3 중 하나 이상이 할로겐이거나 및/또는 적어도 하나의 R은 할로겐일 수 있다. 일 구체예에서, 할로겐은 플루오린(F), Cl, Br 또는 I를 의미하고, 바람직하게는 F를 의미한다.
할로겐 함유 폴리스티렌계 중합체는 예를 들면, 1-(2,2-디플루오로에테닐)-2-플루오로벤젠, 1', 2', 2'-트리플루오로스티렌 중 1종 이상을 포함하는 혼합물을 중합하여 형성될 수 있다. 상기 혼합물은 스티렌을 더 포함할 수 있다.
제1위상차층은 두께가 1㎛ 내지 10㎛, 구체적으로 2㎛ 내지 7㎛, 구체적으로 3㎛ 내지 5㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있고, 벤딩 방지 효과를 개선하는데 도움을 줄 수 있다.
제2위상차층은 제1위상차층 대비 두께가 클 수 있다. 제2위상차층은 제1위상차층 대비 수축률 및/또는 수축력이 더 클 수 있다. 이러한 경우, 벤딩 방지 개선에 용이할 수 있다.
제2위상차층은 두께가 20㎛ 내지 80㎛, 구체적으로 30㎛ 내지 60㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있고, 벤딩 방지 효과를 개선하는데 도움을 줄 수 있다.
제2위상차층은 수축력이 0.04N 내지 0.1N, 예를 들면 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1N, 구체적으로 0.05N 내지 0.07N이 될 수 있다. 제2위상차층은 수축률이 0.15% 내지 0.30%, 구체적으로 0.18% 내지 0.25%가 될 수 있다. 상기 범위에서 열을 받아 수축을 하더라도 대각을 보상해주는 위상차 값을 유지해 줄 수 있다.
제2위상차층은 비 액정층의 연신 필름이 될 수 있다. 이로 인해, 제2위상차층은 상술 제1위상차층 대비 파장 550nm에서 면내 위상차를 높이는데 유리할 수 있다. 일 구체예에서, 제2위상차층은 제2위상차층용 미 연신 필름의 MD 또는 TD 1축 연신, MD와 TD 2축 연신, 또는 경사 연신 필름이 될 수 있다. 바람직하게는, 제2위상차층은 제2위상차층용 미 연신 필름의 MD 1축 연신 필름이 될 수 있다. 예를 들면, 제2위상차층은 제2위상차층용 미 연신 필름을 연신비 5배 내지 8배로 건식 또는 습식으로 연신시켜 제조될 수 있지만, 이에 제한되지 않는다.
제2위상차층은 면내 방향 중 지상축 및 진상축을 가지며, 제2위상차층의 지상축은 편광자의 광 흡수축 대비 실질적으로 평행할 수 있다. 상기 '실질적으로 평행'은 편광자의 광 흡수축을 0°라고 할 때, 제2위상차층의 지상축이 -5° 내지 +5°, 바람직하게는 -1° 내지 +1°, 더 바람직하게는 0°가 됨을 의미할 수 있다. 이로 인해, 편광판의 대각 보상 효과가 나오는데 용이할 수 있다. 하기에서 설명되는 제1점착제층은 상술 축 관계를 갖는 편광판의 벤딩을 개선하는데 용이할 수 있다.
제2위상차층은 고유 복굴절이 양(+)인 중합체를 포함할 수 있다. 고유 복굴절이 양이다라는 것은 연신한 방향(MD)으로 그 방향의 굴절율이 커짐을 의미한다. 예를 들면, 제2위상차층은 고리형 올레핀 폴리머(COP)계, 고리형 올레핀코폴리머(COC)계 등의 노르보르넨계, 또는 트리아세틸셀룰로스(TAC) 등을 포함하는 셀룰로오스계 등이 될 수 있다.
제2위상차층의 수축력 및/또는 수축률은 제2위상차층을 제조할 때 제2위상차층용 소재, 제2위상차층용 미연신 필름을 연신시 연신비, 연신 온도, 두께 등을 조절함으로써 구현될 수 있으며, 이를 조절하는 방법은 당업자들이 충분히 알 수 있다. 일 구체예에서, 제2위상차층은 제2위상차층용 조성물을 용융 압출시켜 미연신 필름을 제조한 다음 연신시켜 제조되거나 또는 용액 캐스팅 방법으로 미연신된 필름을 제조한 다음 연신시켜 제조될 수 있다.
본 발명은 편광자의 하부면에 적층되는 2개의 위상차층(제1위상차층, 제2위상차층)을 구비하되, 제1위상차층과 제2위상차층이 수축률 및/또는 수축력이 서로 상이한 경우, 제1위상차층과 제2위상차층 사이에 특정 범위의 저장 모듈러스 및 유리전이온도를 갖는 제1점착제층을 구비시킴으로써 편광판의 벤딩을 개선했다. 특히, 제2위상차층이 제1위상차층 대비 수축률 및/또는 수축력이 크고, 제2위상차층이 제1위상차층 대비 편광자로부터 더 멀리 떨어져 있는 경우, 제1점착제층은 편광판의 벤딩을 개선하는 효과가 우수했다.
제1점착제층
제1점착제층은 제1위상차층과 제2위상차층에 각각 직접적으로 적층되어 있다. 여기에서 '직접적으로 적층'은 제1위상차층과 제1점착제층 사이, 제2위상차층과 제1점착제층 사이에, 다른 광학층, 다른 제1점착제층, 또는 다른 접착제층이 적층되지 않음을 의미한다. 이로 인해, 제1위상차층, 제1점착제층 및 제2위상차층의 적층체는 3층 적층체일 수 있다.
제1점착제층은 25℃에서 저장 모듈러스가 4 x 104Pa 내지 10 x 104Pa이고, 유리 전이 온도가 -60℃ 내지 -35℃이다. 제1점착제층이 25℃에서 상술 저장 모듈러스 및 유리 전이 온도 범위 모두를 만족할 때, 제1위상차층과 제2위상차층의 층간 점착제로서 수축을 완화시켜 줌으로써 상술 제1위상차층 및 제2위상차층이 편광자의 하부면에 적층되는 편광판의 벤딩을 개선할 수 있다.
제1점착제층이 본 발명의 모듈러스를 만족하더라도 유리 전이 온도가 -60℃ 미만인 경우, 편광판의 벤딩 개선 효과가 미약하거나 제1위상차층 및 제2위상차층의 합지가 어려울 수도 있다. 제1점착제층이 본 발명의 모듈러스를 만족하더라도 유리 전이 온도가 -35℃ 초과인 경우, 편광판의 벤딩 개선 효과가 미약하거나 제1점착제층의 점착력이 떨어져서 제1위상차층 및 제2위상차층의 합지가 어려울 수도 있다.
제1점착제층이 본 발명의 유리전이온도를 만족하더라도 25℃에서 모듈러스가 4 x 104Pa 미만인 경우, 편광판의 벤딩 개선 효과가 미약하거나 제1위상차층 및 제2위상차층의 합지가 어려울 수도 있다. 제1점착제층이 본 발명의 유리전이온도를 만족하더라도 25℃에서 모듈러스가 10 x 104Pa 초과인 경우, 편광판의 벤딩 개선 효과가 미약하거나 제1점착제층이 너무 딱딱해서 제1위상차층 및 제2위상차층의 합지가 어려울 수도 있다.
바람직하게는, 제1점착제층은 25℃에서 모듈러스가 5 x 104Pa 내지 9 x 104Pa이고, 유리 전이 온도가 -50℃ 내지 -40℃가 될 수 있다. 상기 범위에서, 편광판의 벤딩 개선 효과가 우수하고, 제1점착제층의 제조가 용이할 수 있다.
제1점착제층은 두께가 제1위상차층 대비 크고 제2위상차층 대비 작을 수 있다. 예를 들면, 제1점착제층은 두께가 5㎛ 내지 30㎛, 바람직하게는 10㎛ 내지 20㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있다.
제1점착제층은 상술 25℃에서 모듈러스 범위 및 유리 전이 온도 범위를 구현할 수 있다면, 그 조성에 제한을 두지 않는다. 바람직하게는, 제1점착제층은 열 경화형 점착제로서, 바람직하게는 감압 점착제(PSA, pressure sensitive adhesive)일 수 있다. 감압 점착제는 상술 25℃에서 모듈러스 범위 및 유리 전이 온도 범위 구현에 용이할 수 있다. 바람직하게는, 제1점착제층은 (메트)아크릴계 점착제층일 수 있다. 이 경우, 상술 25℃에서 모듈러스 범위 및 유리 전이 온도 범위 구현에 용이할 수 있다.
일 구체예에서, 제1점착제층은 (메트)아크릴계 점착 수지 및 경화제를 포함하는 제1점착제층용 조성물로 형성될 수 있다.
(메트)아크릴계 점착 수지는 알킬기를 갖는 (메트)아크릴계 단량체 및 가교성 관능기를 갖는 (메트)아크릴계 단량체를 포함하는 단량체 혼합물의 (메트)아크릴계 공중합체를 포함할 수 있다.
알킬기를 갖는 (메트)아크릴계 단량체는 비치환 형태로서, 에스테르 부위에 직쇄형 또는 분지쇄형의, 탄소수 1 내지 20의 알킬기를 갖는 (메트)아크릴레이트가 될 수 있고, 메틸 (메트)아크릴레이트, 에틸 (메트)아크릴레이트, 프로필 (메트)아크릴레이트, n-부틸 (메트)아크릴레이트, iso-부틸 (메트)아크릴레이트, 펜틸 (메트)아크릴레이트, 헥실 (메트)아크릴레이트, 2-에틸헥실 (메트)아크릴레이트, 헵틸 (메트)아크릴레이트, 옥틸 (메트)아크릴레이트, iso-옥틸 (메트)아크릴레이트, 노닐 (메트)아크릴레이트, 데실 (메트)아크릴레이트, 도데실(메트)아크릴레이트 중 1종 이상을 포함할 수 있다.
가교성 관능기를 갖는 (메트)아크릴계 단량체는 수산기를 갖는 (메트)아크릴계 단량체, 카르복시산기를 갖는 (메트)아크릴계 단량체 중 1종 이상을 포함할 수 있다. 바람직하게는 가교성 관능기를 갖는 (메트)아크릴계 단량체로서 수산기를 갖는 (메트)아크릴계 단량체를 포함함으로써 경화제와의 반응에 의해 제1점착제층의 점착력을 높일 수 있다.
수산기를 갖는 (메트)아크릴계 단량체는 에스테르 부위에 하나 이상의 수산기를 갖는 탄소수 1 내지 20의 알킬기를 갖는 (메트)아크릴레이트가 될 수 있다. 구체적으로, 수산기를 갖는 (메트)아크릴계 단량체는 2-히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 2-히드록시부틸 (메트)아크릴레이트, 4-히드록시부틸 (메트)아크릴레이트, 6-히드록시헥실 (메트)아크릴레이트, 1-클로로-2-히드록시프로필 (메트)아크릴레이트 중 1종 이상을 포함할 수 있다. 상기 단량체는 상기 단량체 혼합물 중 단독 또는 2종 이상 혼합하여 포함될 수 있다.
단량체 혼합물은 알킬기를 갖는 (메트)아크릴계 단량체 60중량% 내지 99중량%, 예를 들면 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99중량%, 바람직하게는 80중량% 내지 99중량%, 가교성 관능기를 갖는 (메트)아크릴계 단량체 1중량% 내지 40중량%, 예를 들면 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40중량%, 바람직하게는 1중량% 내지 20중량%를 포함할 수 있다. 상기 범위에서, 제1점착제층의 25℃에서의 모듈러스 및 유리 전이 온도 구현에 용이할 수 있다.
알킬기를 갖는 (메트)아크릴계 단량체 및 가교성 관능기를 갖는 (메트)아크릴계 단량체의 총합은 단량체 혼합물 중 90중량% 이상, 예를 들면 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100중량%< 95중량% 내지 100중량%, 100중량%로 함유될 수 있다. 상기 범위에서, 본 발명의 효과 구현이 용이할 수 있다.
(메트)아크릴계 공중합체는 당업자에게 알려진 통상의 방법을 사용하여 제조될 수 있다.
경화제는 열 경화제로서 이소시아네이트계 경화제, 에폭시계 경화제, 금속 킬레이트계 경화제, 아지리딘계 경화제, 카르보디이미드계 경화제 중 1종 이상을 포함할 수 있고, 바람직하게는, 경화제로 이소시아네이트계 경화제를 사용할 수 있다.
이소시아네이트계 경화제는 헥사메틸렌디이소시아네이트, 2,4-톨루엔디이소시아네이트, 2,6-톨루엔디이소시아네이트 등을 포함하는 톨루엔디이소시아네이트, 4,4'-메틸렌디페닐디이소시아네이트, 1,3-자일릴렌디이소시아네이트, 1,4-자일릴렌 디이소시아네이트 등을 포함하는 자일릴렌디이소시아네이트, 수소화 톨루엔 디이소시아네이트, 이소포론 디이소시아네이트, 1,3-비스이소시아네이토메틸시클로헥산, 테트라메틸자일렌디이소시아네이트, 1,5-나프탈렌디이소시아네이트, 2,2,4-트리메틸헥사메틸렌디이소시아네이트, 2,4,4-트리메틸헥사메틸렌디이소시아네이트, 트리메틸올프로판/톨루엔디이소시아네이트의 3량체 부가물을 포함하는 트리메틸올프로판 톨루엔디이소시아네이트 어덕트, 트리메틸올프로판의 자일릴렌 디이소시아네이트 어덕트, 트리페닐메탄트리이소시아네이트, 메틸렌비스트리이소시아네이트 등의 상술 이소시아네이트계 경화제의 어덕트 등을 포함할 수 있다.
경화제는 (메트)아크릴계 점착 수지 100중량부에 대하여 0.01중량부 내지 0.1중량부, 예를 들면 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1중량부, 바람직하게는 0.02중량부 내지 0.06중량부로 포함될 수 있다. 상기 범위에서, 제1점착제층의 25℃에서의 모듈러스 및 유리 전이 온도 구현에 용이할 수 있다.
상기 조성물은 실란 커플링제를 더 포함할 수 있다. 실란 커플링제는 당업자에게 알려진 통상의 종류를 채용할 수 있고, 예를 들면 아세틸아세토네이트계, 아세토아세테이트계, 에폭시계 실란 커플링제 중 1종 이상을 포함할 수 있다. 실란 커플링제는 (메트)아크릴계 점착 수지 100중량부에 대해 0.1중량부 내지 1중량부, 구체적으로 0.1중량부 내지 0.5중량부로 포함될 수 있다. 상기 범위에서, 제1점착제층의 점착력이 더 개선될 수 있다.
제1점착제층용 조성물은 무용제형일 수 있다. 또는 제1점착제층용 조성물은 용제를 더 포함할 수 있다. 상기 조성물이 용제를 포함하는 경우, 제1점착제층을 박형의 두께로 만들 수 있고 도포성을 좋게 할 수 있다. 용제는 당업자에게 알려진 통상의 용제를 사용할 수 있다. 예를 들면, 용제는 메틸에틸케톤, 에틸아세테이트, 톨루엔 중 1종 이상을 포함할 수 있다.
제1점착제층은 당업자에게 알려진 통상의 방법으로 제조될 수 있다. 예를 들면, 제1점착제층은 제1점착제층용 조성물을 기재 필름의 일면에 소정의 두께로 도포한 다음 건조시키고 숙성시킴으로써 제조될 수 있다.
편광판은 편광자와 제1위상차층 사이, 또는 편광자와 제2위상차층 사이에 제1보호층을 더 구비할 수 있다. 제1보호층은 편광판 중 1층 이상 포함될 수 있다.
제1보호층
제1보호층은 편광자의 하부면에 적층되어 편광판의 기계적 강도를 높일 수 있다. 또는 제1보호층은 제1위상차층을 형성하기 위한 기재 필름이 될 수도 있다.
제1보호층은 파장 550nm에서 면내 위상차가 10nm 이하, 예를 들면 0nm 내지 10nm, 0nm 내지 5nm가 될 수 있다. 상기 범위에서, 제1위상차층 및 제2위상차층에 의한 대각 보상 효과에 영향을 주지 않을 수 있다.
제1보호층은 제2위상차층 대비 낮은 수축률 및/또는 낮은 수축력을 가질 수 있다. 제1보호층은 제1위상차층, 및 제2위상차층 각각 대비 편광자에 인접하여 배치될 수 있다. 이로 인해, 편광판의 벤딩 억제 효과가 더 개선될 수 있다.
일 구체예에서, 제1보호층은 수축력이 0.05N 내지 1.0N, 예를 들면 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0N, 구체적으로 0.1N 내지 0.5N이 될 수 있다. 상기 범위에서, 벤딩 개선 효과를 제공하는데 용이할 수 있다. 제1보호층은 수축률이 0.05% 내지 0.20%, 예를 들면 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20%, 구체적으로 0.10% 내지 0.15%가 될 수 있다. 상기 범위에서, 벤딩 개선 효과를 제공하는데 용이할 수 있다.
제1보호층은 두께가 25㎛ 내지 80㎛, 바람직하게는 30㎛ 내지 60㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있다.
제1보호층은 액정층 또는 비 액정층의 코팅층 또는 필름일 수 있다. 예를 들면, 제1보호층은 광학적으로 투명한 필름일 수 있다. 구체적으로, 제1보호층은 트리아세틸셀룰로스(TAC) 등을 포함하는 셀룰로오스계, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트(PET), 폴리부틸렌나프탈레이트 등을 포함하는 폴리에스테르계, 고리형 폴리올레핀계, 폴리카보네이트계, 폴리에테르술폰계, 폴리술폰계, 폴리아미드계, 폴리이미드계, 폴리올레핀계, 폴리아릴레이트계, 폴리비닐알코올계, 폴리염화비닐계, 폴리염화비닐리덴계 중 하나 이상의 수지로 된 필름이 될 수 있다.
제1보호층은 접착층 또는 점착층에 의해 편광자에 합지될 수 있다. 접착층 또는 점착층은 열경화형 또는 광경화형 접착제 조성물로 형성될 수 있다. 접착층 또는 점착층은 두께가 1㎛ 내지 30㎛, 예를 들면 2㎛ 내지 10㎛, 2㎛ 내지 3㎛가 될 수 있다.
제1보호층과 제1위상차층 사이에는 제2점착제층이 더 적층될 수 있다.
제2점착제층
제2점착제층은 제1보호층과 제1위상차층 또는 제1보호층과 제2위상차층을 서로 점착시킴으로써, 편광판의 강도를 높일 수 있다.
제2점착제층은 (메트)아크릴계 점착 수지 및 경화제를 포함하는 제2점착제층용 조성물로 형성될 수 있다.
(메트)아크릴계 점착 수지는 알킬기를 갖는 (메트)아크릴계 단량체 및 가교성 관능기를 갖는 (메트)아크릴계 단량체를 포함하는 단량체 혼합물의 (메트)아크릴계 공중합체를 포함할 수 있다.
알킬기를 갖는 (메트)아크릴계 단량체, 및 가교성 관능기를 갖는 (메트)아크릴계 단량체, 및 경화제의 상세 종류는 상기 제1점착제층에서 설명된 바와 동일하다.
단량체 혼합물은 알킬기를 갖는 (메트)아크릴계 단량체 60중량% 내지 99중량%, 바람직하게는 80중량% 내지 99중량%, 가교성 관능기를 갖는 (메트)아크릴계 단량체 1중량% 내지 40중량%, 바람직하게는 1중량% 내지 20중량%를 포함할 수 있다. 상기 범위에서, 제2점착제층의 점착력이 확보될 수 있다.
경화제는 (메트)아크릴계 점착 수지 100중량부에 대하여 0.01중량부 내지 0.1중량부, 바람직하게는 0.02중량부 내지 0.06중량부로 포함될 수 있다. 상기 범위에서, 제2점착제층의 점착력 확보가 용이할 수 있다.
상기 조성물은 실란 커플링제를 더 포함할 수 있다. 실란 커플링제는 당업자에게 알려진 통상의 종류를 채용할 수 있고, 예를 들면 아세틸아세토네이트계, 아세토아세테이트계, 에폭시계 실란 커플링제 중 1종 이상을 포함할 수 있다. 실란 커플링제는 (메트)아크릴계 점착 수지 100중량부에 대해 0.1중량부 내지 1중량부, 구체적으로 0.1중량부 내지 0.5중량부로 포함될 수 있다. 상기 범위에서, 제2점착제층의 점착력이 더 개선될 수 있다.
제2점착제층용 조성물은 무용제형일 수 있다. 또는 제2점착제층용 조성물은 용제를 더 포함할 수 있다. 상기 조성물이 용제를 포함하는 경우, 제2점착제층을 박형의 두께로 만들 수 있고 도포성을 좋게 할 수 있다. 용제는 당업자에게 알려진 통상의 용제를 사용할 수 있다. 예를 들면, 용제는 메틸에틸케톤, 에틸아세테이트, 톨루엔 중 1종 이상을 포함할 수 있다.
제2점착제층은 두께가 15㎛ 내지 35㎛, 구체적으로 20㎛ 내지 30㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있다.
편광판은 편광자의 다른 일면에 적층된 제2보호층을 더 포함할 수 있다. 제2보호층은 편광판 중 1층 이상 포함될 수 있다.
제2보호층
제2보호층은 내부광의 편광자의 광 출사면에 배치되어, 편광자로부터 출사되는 광에 작용함으로써 화질을 더 개선하거나 편광자를 보호할 수 있다.
제2보호층은 보호 필름 또는 보호 코팅층을 포함할 수 있다.
보호 필름은 광학적 투명 필름으로서, 예를 들면 트리아세틸셀룰로스(TAC) 등을 포함하는 셀룰로오스계, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트(PET), 폴리부틸렌나프탈레이트 등을 포함하는 폴리에스테르계, 고리형 폴리올레핀계, 폴리카보네이트계, 폴리에테르술폰계, 폴리술폰계, 폴리아미드계, 폴리이미드계, 폴리올레핀계, 폴리아릴레이트계, 폴리비닐알코올계, 폴리염화비닐계, 폴리염화비닐리덴계 중 하나 이상의 수지로 된 필름이 될 수 있다. 구체적으로, TAC, PET 필름을 사용할 수 있다. 보호 코팅층은 열경화성 코팅층용 조성물, 광경화성 코팅층용 조성물 중 1종 이상으로 형성될 수 있다.
일 구체예에서, 제2보호층은 위상차 필름이 될 수 있다.
일 구체예에서, 제2보호층은 파장 550nm에서 면내 위상차(Re)가 3,000nm 이상, 구체적으로 5,000nm 내지 15,000nm, 더 구체적으로 5,000nm 내지 12,000nm가 될 수 있다. 상기 범위에서, 정면 명암비 개선 효과, 무지개 무라 억제 효과 등이 있을 수 있다.
일 구체예에서, 제2보호층은 파장 550nm에서 두께 방향 위상차(Rth)가 6,000nm 이상, 구체적으로 6,000nm 내지 15,000nm, 더 구체적으로 6,000nm 내지12,000nm가 될 수 있다. 상기 범위에서, 복굴절에 의한 얼룩 제어 효과, 액정 표시 장치에서의 시야각 특성 개선 효과 등이 있을 수 있다.
일 구체예에서, 제2보호층은 파장 550nm에서 이축성 정도(NZ)가 2.5 이하, 구체적으로 1.0 내지 2.2, 더 구체적으로 1.2 내지 2.0, 가장 구체적으로 1.4 내지 1.8 이 될 수 있다. 상기 범위에서, 복굴절에 의한 얼룩 제어 효과, 필름의 기계적 강도 유지 효과 등이 있을 수 있다.
일 구체예에서, 제2보호층은 상술 소재로 형성된 소정의 연신비로 연신된 필름일 수 있다. 이를 통해, 보호층은 면내 방향 중 지상축과 진상축을 가질 수 있다.
일 구체예에서, 제2보호층은 면내 방향 중 굴절률이 낮은 축은 제2보호층의 기계적 방향(MD, machine direction)이고, 제2보호층의 면내 방향 중 굴절률이 높은 축은 제2보호층의 폭 방향(TD, transverse direction)이 될 수 있다. 이 경우, 제2보호층은 TD 1축 연신 보호 필름이 될 수 있다.
다른 구체예에서, 제2보호층은 면내 방향 중 굴절률이 낮은 축은 제2보호층의 폭 방향(TD)이고, 제2보호층의 면내 방향 중 굴절률이 높은 축은 제2보호층의 기계적 방향(MD)이 될 수 있다. 이 경우, 제2보호층은 MD 1축 연신 보호 필름이 될 수 있다.
또 다른 구체예에서, 제2보호층은 면내 방향 중 굴절률이 낮은 축은 제2보호층의 폭 방향에 대해 대해 경사 방향이 되고, 굴절률이 높은 축은 제2보호층의 기계적 방향에 대해 대해 경사 방향이 될 수 있다. 이 경우, 제2보호층은 MD와 TD 2축 연신 필름 또는 MD와 TD 2축 연신 코팅층이 될 수 있다.
일 구체예에서, 제2보호층은 면내 방향 중 상술한 굴절률이 낮은 축과 굴절률이 높은 축을 갖기 위해 TD 1축 연신 보호 필름을 포함할 수 있다.
TD 1축 연신시, 미 연신된 필름은 용융 압출된 미 연신된 필름용 수지를 TD 방향으로만 상기 최초 수지의 TD 폭에 대해 100% 내지 200%, 바람직하게는 120% 내지 140% 연신하는 단계를 포함하는 연신된 필름 제조 방법에 의해 제조될 수 있다. 연신은 건식 연신, 습식 연신 중 하나 이상으로 수행될 수 있고, 연신 온도는 보호 필름용 수지의 유리전이온도 Tg를 기준으로 (Tg - 20)℃ 내지 (Tg + 50)℃, 구체적으로 70℃ 내지 250℃, 더 구체적으로 80℃ 내지 200℃가 바람직하고, 보다 더 구체적으로 100℃ 내지 200℃가 될 수 있다. 상기 범위에서, 일률적으로 동일한 연신 효과가 있을 수 있다.
제2보호층은 두께가 100㎛ 이하, 구체적으로 0㎛ 초과 100㎛ 이하, 더 구체적으로 10㎛ 내지 90㎛가 될 수 있고, 상기 범위에서 편광판에 사용할 수 있다.
제2보호층은 적어도 일면에 기능성 코팅층이 추가로 형성될 수 있다. 기능성 코팅층은 하드코팅층, 내지문성층, 반사방지층, 저반사층, 안티글레어층, 프라이머층 등이 될 수 있다.
제2보호층은 편광자에 접착층 또는 점착층에 의해 합지될 수 있다. 접착층 또는 점착층은 광경화성 또는 열경화성 접착제 또는 점착제로 형성될 수 있다. 접착층 또는 점착층은 두께가 1㎛ 내지 30㎛, 예를 들면 2㎛ 내지 10㎛, 2㎛ 내지 3㎛가 될 수 있다.
편광판은 제2위상차층 또는 제1위상차층의 하부면에 적층된 제3점착제층을 더 포함할 수 있다.
제3점착제층
제3점착제층은 편광판을 광학표시장치용 패널에 점착시킬 수 있다.
제3점착제층은 (메트)아크릴계 점착 수지 및 경화제를 포함하는 제2점착제층용 조성물로 형성될 수 있다.
(메트)아크릴계 점착 수지는 알킬기를 갖는 (메트)아크릴계 단량체 및 가교성 관능기를 갖는 (메트)아크릴계 단량체를 포함하는 단량체 혼합물의 (메트)아크릴계 공중합체를 포함할 수 있다.
알킬기를 갖는 (메트)아크릴계 단량체, 및 가교성 관능기를 갖는 (메트)아크릴계 단량체, 및 경화제의 상세 종류는 상기 제1점착제층에서 설명된 바와 동일하다.
단량체 혼합물은 알킬기를 갖는 (메트)아크릴계 단량체 60중량% 내지 99중량%, 바람직하게는 80중량% 내지 99중량%, 가교성 관능기를 갖는 (메트)아크릴계 단량체 1중량% 내지 40중량%, 바람직하게는 1중량% 내지 20중량%를 포함할 수 있다. 상기 범위에서, 제3점착제층의 점착력이 확보될 수 있다.
경화제는 (메트)아크릴계 점착 수지 100중량부에 대하여 0.01중량부 내지 0.1중량부, 바람직하게는 0.02중량부 내지 0.06중량부로 포함될 수 있다. 상기 범위에서, 제3점착제층의 점착력 확보가 용이할 수 있다.
상기 조성물은 실란 커플링제를 더 포함할 수 있다. 실란 커플링제는 당업자에게 알려진 통상의 종류를 채용할 수 있고, 예를 들면 아세틸아세토네이트계, 아세토아세테이트계, 에폭시계 실란 커플링제 중 1종 이상을 포함할 수 있다. 실란 커플링제는 (메트)아크릴계 점착 수지 100중량부에 대해 0.1중량부 내지 1중량부, 구체적으로 0.1중량부 내지 0.5중량부로 포함될 수 있다. 상기 범위에서, 제3점착제층의 점착력이 더 개선될 수 있다.
제3점착제층용 조성물은 무용제형일 수 있다. 또는 제3점착제층용 조성물은 용제를 더 포함할 수 있다. 상기 조성물이 용제를 포함하는 경우, 제3점착제층을 박형의 두께로 만들 수 있고 도포성을 좋게 할 수 있다. 용제는 당업자에게 알려진 통상의 용제를 사용할 수 있다. 예를 들면, 용제는 메틸에틸케톤, 에틸아세테이트, 톨루엔 중 1종 이상을 포함할 수 있다.
제3점착제층은 두께가 15㎛ 내지 35㎛, 구체적으로 20㎛ 내지 30㎛가 될 수 있다. 상기 범위에서, 편광판에 사용될 수 있다.
도 1 내지 도 3은 본 발명 일 실시예의 편광판의 단면도이다.
도 1을 참조하면, 편광판은 편광자(10), 편광자(10)의 하부면에 순차적으로 적층된 제1보호층(20), 제1위상차층(30), 제1점착제층(40) 및 제2위상차층(50), 및 편광자(10)의 상부면에 적층된 제2보호층(60)을 포함할 수 있다.
도 2를 참조하면, 편광판은 편광자(10), 편광자(10)의 하부면에 순차적으로 적층된 제1보호층(20), 제2점착제층(70), 제1위상차층(30), 제1점착제층(40) 및 제2위상차층(50), 및 편광자(10)의 상부면에 적층된 제2보호층(60)을 포함할 수 있다.
도 3을 참조하면, 편광판은 편광자(10), 편광자(10)의 하부면에 순차적으로 적층된 제1보호층(20), 제2점착제층(70), 제1위상차층(30), 제1점착제층(40), 제2위상차층(50) 및 제3점착제층(80), 및 편광자(10)의 상부면에 적층된 제2보호층(60)을 포함할 수 있다.
일 구체예에서, 편광판의 수축력은 3.05N 이하, 편광판의 수축률은 0.3% 이하가 될 수 있다. 상기 범위에서, 벤딩 개선 효과를 제공하는데 유리할 수 있다.
본 발명의 광학표시장치는 본 발명의 편광판을 포함한다. 일 구체예에서, 광학표시장치는 수직 배향 모드로서, 예를 들면 IPS 또는 FFS 모드의 액정표시장치를 포함할 수 있다.
액정표시장치는 액정 패널, 액정 패널의 광 출사면에 적층되는 본 발명의 편광판, 액정 패널의 광 입사면에 배치되는 편광판(광원측 편광판)을 포함한다. 광 입사면에 배치되는 편광판은 당업자에게 통상적으로 알려진 편광판을 포함할 수 있다. 본 발명의 편광판은 시인측 편광판으로 사용될 수 있다. 그러나, 본 발명이 이에 제한되는 것은 아니며, 본 발명의 편광판은 시인측 편광판 또는 광원측 편광판으로 적용될 수 있다.
액정 패널은 전압의 인가 및 무 인가에 따라 액정의 배향이 달라지며, 그에 따라 광원으로부터 출사되는 광을 출사시킬 수 있다.
액정 패널은 한 쌍의 기판과 기판 사이에 포함된 표시 매체로서의 액정층을 포함할 수 있다. 한쪽의 기판(컬러 필터 기판)은 컬러 필터 및 블랙 매트릭스가 마련되고, 다른 한쪽의 기판(활성 매트릭스 기판)은 액정의 전기 광학적 특성을 제어하는 스위칭 소자(예: TFT) 및 스위칭 소자에 게이트 신호를 부여하는 신호선과 화소선이 마련되어 있을 수 있지만, 이에 제한되지 않는다.
일 구체예에서, 액정 패널은 IPS 또는 FFS 모드의 액정을 채용할 수 있다. 이를 통해, 액정표시장치는 시야각 특성 개선 효과를 얻을 수 있다.
액정표시장치는 광원측 편광판의 하부면에 광원을 포함한다. 광원은 연속적인 발광 스펙트럼을 갖는 광원을 포함할 수 있다. 예를 들면, 광원은 백색 LED(White LED) 광원, 양자점(QD, quantum dot) 광원, 금속 불화물 적색 형광체 광원 구체적으로 KSF(K2SiF6:Mn4+) 형광체 또는 KTF(K2TiF6:Mn4+) 형광체 함유 광원 등을 포함할 수 있다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로, 본 발명의 범위가 하기 실시예에 한정되지는 않는다.
실시예 1
(1)편광자의 제조
25℃의 물로 수세한 폴리비닐알코올계 필름(TS4500, KURARAY社, 두께: 45㎛)을 30℃ 물의 팽윤조에서 팽윤 처리하였다. 팽윤조를 통과한 상기 필름을 요오드화칼륨 1mol/ml 및 붕산 1중량%를 포함하는 수용액을 함유하는 30℃의 염착조에서 65초 동안 처리하였다. 염착조를 통과한 상기 필름을 붕산 3중량%를 함유하는 60℃ 수용액인 습식 연신조에서 MD 1축 연신비 5.7배로 연신시켰다. 상기 습식 연신조를 통과한 상기 필름을 붕산 3중량%를 함유하는 25℃ 수용액을 함유하는 가교조에서 65초 동안 처리하였다. 가교조를 통과한 상기 필름을 요오드화칼륨 4.5중량%를 함유하는 30℃ 수용액인 보색액을 포함하는 보색조에서 10초 동안 처리하였다. 보색조를 통과한 상기 필름을 수세하고 건조시켜 편광자(두께: 18㎛)를 제조하였다.
(2)제1점착제층 제조
(메트)아크릴계 점착 수지 CI-247(Soken社, n-부틸 아크릴레이트와 수산기 함유 아크릴계 단량체를 주성분으로 갖는 단량체 혼합물의 공중합체) 및 경화제를 배합하여, 제1점착제층용 조성물을 제조했다. 제조한 제1점착제층용 조성물을 이형 필름의 일면에 소정의 두께로 도포하고 건조 및 열 처리한 다음 이형 필름으로부터 박리시켜 제1점착제층(두께: 15㎛)를 제조했다.
(3)편광판의 제조
이형 필름의 일면에 셀룰로스계 에스테르(불소 함유, VM500, Eastman社)를 포함하는 조성물을 도포하고 경화시킨 다음 상기 이형 필름으로부터 박리시켜 제1위상차층(포지티브 C 층, 파장 550nm에서 Rth: -80nm, 두께: 3.2㎛)을 제조했다.
MD 1축 연신으로 제조된 시클릭 올레핀 폴리머(COP) 필름(ZM12, Zeon社, 포지티브 A 층, 파장 550nm에서 Re: 120nm, NZ: 1.0, 두께: 46㎛)을 제2위상차층으로 준비했다. 제2위상차층의 수축력은 0.06N, 수축률은 0.19%이었다. 제2위상차층은 제1위상차층보다 높은 수축력 및 높은 수축률을 갖는다.
제2점착제층, 제3점착제층은 각각 (메트)아크릴계 점착 수지 CI-247(Soken社, n-부틸 아크릴레이트와 수산기 함유 아크릴계 단량체를 주성분으로 함유하는 단량체 혼합물의 공중합체) 및 경화제를 배합하여 조성물을 제조한 다음 이형 필름에 도포하고 경화시킨 다음 이형 필름으로부터 박리시켜, 제2점착제층(두께: 25㎛), 제3점착제층(두께: 25㎛)을 제조했다.
상기 제조한 편광자의 양면에 광경화형 접착제(에폭시계 수지 접착제)를 도포했다. 편광자의 상부면에 제2보호층으로서 상부면에 저반사층이 형성된 폴리에틸렌테레프탈레이트 필름(두께:85㎛, DSG-23PET(LR), DNP社)을 합지시켰다. 편광자의 하부면에 제1보호층으로서 트리아세틸셀룰로스계 필름(두께:40㎛, KC4CT1SW, Konica社)을 합지시켰다. 제1보호층의 하부면에 제2점착제층, 제1위상차층(+C), 제1점착제층, 제2위상차층(+A), 및 제3점착제층을 합지시켜, 편광판을 제조했다. 제2위상차층의 지상축은 편광자의 광 흡수축과 평행하다.
실시예 2 내지 실시예 3
실시예 1에서 제1점착제층을 제조할 때 경화제 함량을 변경한 점을 제외하고는 실시예 1과 동일한 방법으로 편광판을 제조했다.
비교예 1
실시예 1에서, 제1위상차층, 제1점착제층, 제2위상체층 및 제3점착제층 없이, 제2보호층, 편광자, 제1보호층, 제2점착제층의 순서로 적층된 편광판을 제조했다.
비교예 2
MD 1축 연신으로 제조된 시클릭 올레핀 폴리머(COP) 필름(ZM12, Zeon社, 포지티브 A 층, 파장 550nm에서 Re: 120nm, NZ: 1.0, 두께: 46㎛)을 제2위상차층으로 준비했다.
제2위상차층의 일면에 셀룰로스계 에스테르(불소 함유, VM500, Eastman社)를 포함하는 조성물을 도포하고 경화시켜, 제1위상차층(포지티브 C 층, 파장 550nm에서 Rth: -80nm, 두께: 3.7㎛) 및 제2위상차층의 적층체를 제조했다.
실시예 1에서, 제1점착제층 없이, 제2보호층, 편광자, 제1보호층, 제2점착제층, 제1위상차층, 제2위상차층, 제3점착제층의 순서로 적층시킨 점을 제외하고는 실시예 1과 동일한 방법으로 편광판을 제조했다. 제1위상차층과 제2위상차층 사이에 점착층이 없이 제1 위상차층은 제2위상차층에 직접적으로 적층되어 있다.
비교예 3
2-에틸헥실 아크릴레이트 90중량%, 아크릴 아미드 4중량% 및 아크릴산 6중량%를 포함하는 단량체 혼합물로 형성된 부분 중합체를 포함하는 투명 점착제 조성물(OCA)을 제조하고 광 경화시켜 투명 점착제층(두께: 15㎛)을 제조했다. 실시예 1에서, 제1점착제층 대신에 투명 점착제층(OCA)을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 편광판을 제조했다.
비교예 4 내지 비교예 7
실시예 1에서 제1점착제층의 조성을 변경해서, 하기 표 2의 저장 모듈러스, 유리 전이 온도 및 두께를 갖는 제1점착제층을 제조했다. 실시예 1에서 상기 제조된 제1점착제층을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 편광판을 제조했다.
광원측 편광판 제조
상기와 동일한 방법으로 편광자를 제조하였다. 제조한 편광자의 상부면에 트리아세틸셀룰로스(TAC) 필름(KC4CT1SW, Konica Minolta Opto, Inc., 두께:40㎛)을 접착시키고, 상기 편광자의 하부면에 폴리에틸렌테레프탈레이트(PET) 필름(Toyobo社), 두께:80㎛, 파장 550nm에서 Re:8400nm, Rth:9800nm)을 접착시켜 광원측 편광판을 제조하였다.
액정 모듈 제조
IPS 액정 함유 액정 패널의 광 출사면에 상기 실시예와 비교예에서 제조된 편광판을 제3점착제층을 매개로 점착시켰다. IPS 액정 함유 액정 패널의 광입사면에 상기 제조한 광원측 편광판을 점착층을 매개로 점착시켜, 액정 모듈을 제조하였다. 이때, 광원측 편광판의 TAC 필름이 액정 패널에 점착되도록 하였다.
실시예와 비교예의 편광판을 가지고 하기 표 1 및 표 2의 물성을 평가하였다.
(1)제1점착제층 또는 OCA의 저장 모듈러스(G', 단위: Pa): 두께 15㎛의 제1점착제층을 복수 개 적층시켜 두께 600㎛ 및 직경 8mm으로 단면이 원형인 시편을 제조하고, 상기 시편에 대하여 ARES(Advanced Rheometry Expansion System, TA instrument)를 사용하여 Temperature sweep test에서 frequency: 1Hz, strain: 5% 및 normal force: 100N으로 0℃ 내지 150℃까지 온도 상승 속도 10℃/분으로 온도를 높이면서 저장 모듈러스를 측정하였을 때 25℃에서의 값이다.
(2)제1점착제층의 유리전이온도(Tg, 단위: ℃): 제1점착제층 15mg을 질소 분위기(50mL/min)에서 20℃/min의 승온 속도로 100℃까지 승온하고 -80℃까지 냉각시킨 후 10℃/min의 승온 속도로 100℃까지 승온하면서 DSC Discovery(TA Instruments社)를 사용하여 측정된 값이다.
(3)좌우(상,하) 시감: 실시예와 비교예에서 제조한 편광판로부터 상기 방법으로 액정 모듈을 제조하였다. EZ-Contrast XL-88 장비를 활용하여, Black Color 방위각 60° 상태에서 좌or (상)(45°)/우(135°) or하(315°) 각도 지정하여 확인하는 방법으로 (45°, 60°), (135°, 60°), (315°,60°) 각각에서 색좌표 x, 색좌표 y를 구하였다. (45°, 60°)으로부터 (135°, 60°) 또는 (315°,60°) 간의 거리를 △(x, y)로 계산하였다. 비교예 1 대비 △(x, y)가 작은 경우 양호라고 평가했다.
(4)편광판의 수축력(단위: N): 실시예와 비교예에서 제조된 편광판을 편광자의 MD x 편광자의 TD(30mm x 3mm)의 직사각형 시편을 제조하고 제조한 직사각형 시편 중 MD 쪽 양 말단을 TMA 양쪽 지그(jig)에 각각 물린 다음, 85℃에서 3시간 동안 수축되는 힘을 측정한 것이다.
(5)편광판의 수축률(단위: %): 실시예와 비교예에서 제조된 편광판을 편광자의 MD x 편광자의 TD (60mm x 60mm)의 정사각형 시편을 제조하고 제조한 시편을 60℃에서 250시간 동안 항온 고온 처리하였다. 치수 측정기를 사용해서 고온 처리하기 전 상기 시편의 MD 길이와, 고온 처리 후 상기 시편의 MD 길이를 측정하고, 위 식에 따라 계산했다.
(6)벤딩(단위: mm): 실시예와 비교예에서 제조된 편광판을 편광자의 MD x 편광자의 TD(219.8mm x 124.15mm)(10.1인치 모사 평가 크기)의 직사각형 모양으로 절단하여 시편을 제조하고 상기 시편을 평평한 바닥면에 위치시키되, 제2보호층이 맨 위로 위치하도록 하였다. 그런 다음, 23℃에서 2 시간 방치한 후, 바닥면에서 시편의 가장자리까지의 최대 높이를 각 8 Point 지점에서 3회 측정하고 평균값으로 구했다. 벤딩 값이 3mm 미만일 때, 빛샘 개선 효과가 있다고 할 수 있다.
실시예
1 2 3
제1점착제층 또는 OCA G' 7 x 104 5 x 104 9 x 104
Tg -46 -40 -50
두께 15 15 15
좌우(상하) 시감 양호 양호 양호
편광판의 수축력 2.95 2.88 3.02
편광판의 수축률 0.26 0.25 0.27
벤딩 2.95 2.82 2.97
비교예
1 2 3 4 5 6 7
제1점착제층 또는 OCA G' - - 4 x 105 2 x 104 3 x 105 10 x 104 8 x 104
Tg - - -28 -60 -35 -62 -32
두께 - - 15 7 15 10 15
좌우(상하) 시감 불량 양호 양호 양호 양호 양호 양호
편광판의 수축력 3.34 5.80 3.32 3.18 3.37 3.07 3.41
편광판의 수축률 0.29 0.54 0.29 0.29 0.33 0.28 0.35
벤딩 3.21 5.8 3.19 3.10 3.29 3.08 3.47
상기 표 1 및 표 2에서와 같이, 본 발명의 편광판은 좌측 및 우측을 포함하는 측면에서 대각 보상 효과를 제공하고, 벤딩을 억제하여 가장 자리 부분에서의 빛샘을 억제했다.
그러나, 본 발명의 저장 모듈러스 및 유리전이온도를 동시에 만족하지 않는 제1점착제층을 구비하는 비교예 모두 본 발명의 효과를 모두 얻을 수 없었다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (22)

  1. 편광자; 및 상기 편광자의 일면에 적층된, 제1위상차층, 제1점착제층, 및 제2위상차층의 적층체를 포함하고,
    상기 제1점착제층은 25℃에서 저장 모듈러스가 4 x 104Pa 내지 10 x 104Pa이고, 유리 전이 온도가 -60℃ 내지 -35℃인 것인, 편광판.
  2. 제1항에 있어서, 상기 제2위상차층은 상기 제1위상차층보다 수축률 또는 수축력이 더 큰 것인, 편광판.
  3. 제2항에 있어서, 상기 제2위상차층은 수축률이 0.15% 내지 0.30%이고 수축력이 0.04N 내지 0.1N인 것인, 편광판.
  4. 제1항에 있어서, 상기 제2위상차층은 상기 제1위상차층 대비 상기 편광자로부터 더 멀리 떨어져 있는 것인, 편광판.
  5. 제1항에 있어서, 상기 제2위상차층은 상기 제1위상차층 대비 두께가 더 큰 것인, 편광판.
  6. 제1항에 있어서, 상기 제2위상차층은 비 액정층의 연신 필름인 것인, 편광판.
  7. 제1항에 있어서, 상기 제2위상차층의 지상축은 상기 편광자의 광 흡수축을 0°라고 할 때 -5° 내지 +5°를 이루는 것인, 편광판.
  8. 제1항에 있어서, 상기 제2위상차층은 고유 복굴절이 양(+)인 중합체를 포함하는 것인, 편광판.
  9. 제8항에 있어서, 상기 제2위상차층은 고리형 올레핀 폴리머(COP)계, 고리형 올레핀코폴리머(COC)계 또는 트리아세틸셀룰로스(TAC)계인 것인, 편광판.
  10. 제1항에 있어서, 상기 제1위상차층은 액정층 또는 비 액정층인 것인, 편광판.
  11. 제10항에 있어서, 상기 비 액정층은 셀룰로스계 또는 폴리스티렌계인 것인, 편광판.
  12. 제1항에 있어서, 상기 제1점착제층은 두께가 5㎛ 내지 30㎛인 것인, 편광판.
  13. 제1항에 있어서, 상기 제1점착제층은 (메트)아크릴계 점착 수지 및 경화제를 포함하는 제1점착제층용 조성물의 경화물을 포함하는 것인, 편광판.
  14. 제13항에 있어서, 상기 (메트)아크릴계 점착 수지는 알킬기를 갖는 (메트)아크릴계 단량체 및 가교성 관능기를 갖는 (메트)아크릴계 단량체를 포함하는 단량체 혼합물의 (메트)아크릴계 공중합체를 포함하고,
    상기 경화제는 상기 (메트)아크릴계 점착 수지 100중량부에 대하여 0.01중량부 내지 0.1중량부로 포함되는 것인, 편광판.
  15. 제1항에 있어서, 상기 제1위상차층은 포지티브 C 층이고, 상기 제2위상차층은 포지티브 A 위상차층인 것인, 편광판.
  16. 제15항에 있어서, 상기 제1위상차층은 파장 550nm에서 두께 방향 위상차가 -110nm 내지 -60nm이고, 상기 제2위상차층은 파장 550nm에서 면내 위상차가 100nm 내지 150nm 및 이축성 정도가 0.9 내지 1.2인 것인, 편광판.
  17. 제1항에 있어서, 상기 편광판은 상기 편광자의 일면에서부터 순차적으로 적층된 상기 제1위상차층, 상기 제1점착제층, 및 상기 제2위상차층을 포함하는 것인, 편광판.
  18. 제17항에 있어서, 상기 편광자와 상기 제1위상차층 사이에 제1보호층이 더 적층된 것인, 편광판.
  19. 제18항에 있어서, 상기 제1보호층은 상기 제2위상차층보다 낮은 수축률 또는 낮은 수축력을 갖는 것인, 편광판.
  20. 제19항에 있어서, 상기 편광자의 다른 일면에 적층된 제2보호층을 더 포함하는 것인, 편광판.
  21. 제17항에 있어서, 상기 제1보호층과 상기 제1위상차층 사이에 제2점착제층이 더 적층된 것인, 편광판.
  22. 제1항 내지 제21항 중 어느 한 항의 편광판을 포함하는 것인, 광학표시장치.
PCT/KR2023/018031 2022-11-16 2023-11-10 편광판 및 광학표시장치 WO2024106856A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220153345A KR20240071630A (ko) 2022-11-16 2022-11-16 편광판 및 광학표시장치
KR10-2022-0153345 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024106856A1 true WO2024106856A1 (ko) 2024-05-23

Family

ID=91085117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018031 WO2024106856A1 (ko) 2022-11-16 2023-11-10 편광판 및 광학표시장치

Country Status (2)

Country Link
KR (1) KR20240071630A (ko)
WO (1) WO2024106856A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108065A1 (en) * 2004-11-22 2006-05-25 Yongcai Wang Cover sheet comprising an adhesion promoting layer for a polarizer and method of making the same
KR20170051618A (ko) * 2015-10-29 2017-05-12 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
KR20200018487A (ko) * 2017-06-28 2020-02-19 닛토덴코 가부시키가이샤 위상차 필름, 원편광판 및 위상차 필름의 제조 방법
KR20210025012A (ko) * 2018-06-28 2021-03-08 닛토덴코 가부시키가이샤 광학 적층체 및 유기 el 표시 장치
WO2021153019A1 (ja) * 2020-01-31 2021-08-05 住友化学株式会社 光学積層体およびそれを用いた表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108065A1 (en) * 2004-11-22 2006-05-25 Yongcai Wang Cover sheet comprising an adhesion promoting layer for a polarizer and method of making the same
KR20170051618A (ko) * 2015-10-29 2017-05-12 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
KR20200018487A (ko) * 2017-06-28 2020-02-19 닛토덴코 가부시키가이샤 위상차 필름, 원편광판 및 위상차 필름의 제조 방법
KR20210025012A (ko) * 2018-06-28 2021-03-08 닛토덴코 가부시키가이샤 광학 적층체 및 유기 el 표시 장치
WO2021153019A1 (ja) * 2020-01-31 2021-08-05 住友化学株式会社 光学積層体およびそれを用いた表示装置

Also Published As

Publication number Publication date
KR20240071630A (ko) 2024-05-23

Similar Documents

Publication Publication Date Title
WO2011105875A2 (ko) 편광판
WO2015008925A1 (ko) 위상차 필름 및 이를 구비하는 화상 표시 장치
WO2014035117A1 (ko) 편광판
WO2018164348A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2019235832A1 (ko) 점착제 조성물
WO2020153639A1 (ko) 액정표시장치
WO2018221872A1 (ko) 편광판 및 이를 포함하는 액정표시장치
WO2019147011A1 (ko) 점착제 조성물 및 이의 용도
WO2018043851A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2019031786A1 (en) OPTICAL ELEMENT, POLARIZING ELEMENT, AND DISPLAY DEVICE
WO2020111864A1 (ko) 광학 적층체
WO2014204205A1 (ko) 편광판 및 이를 포함하는 화상표시장치
WO2019083160A1 (ko) 액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
WO2013094969A2 (ko) 편광판 및 이를 구비한 화상표시장치
WO2021034012A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2016159645A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2019245145A1 (ko) 광학필름, 이를 포함하는 편광판 및 이를 포함하는 디스플레이 장치
WO2022098016A1 (ko) 광학표시장치용 모듈 및 이를 포함하는 광학표시장치
WO2024106856A1 (ko) 편광판 및 광학표시장치
WO2022220442A1 (ko) 액정표시소자
WO2022203329A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2012064141A2 (ko) 광학 소자
EP3625596A1 (en) Optical member, polarization member, and display device
WO2020138879A1 (ko) 편광판 및 이를 포함하는 액정표시장치
WO2020184862A1 (ko) 편광판 및 이를 포함하는 광학표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891923

Country of ref document: EP

Kind code of ref document: A1