WO2024106480A1 - 冷凍システム - Google Patents

冷凍システム Download PDF

Info

Publication number
WO2024106480A1
WO2024106480A1 PCT/JP2023/041133 JP2023041133W WO2024106480A1 WO 2024106480 A1 WO2024106480 A1 WO 2024106480A1 JP 2023041133 W JP2023041133 W JP 2023041133W WO 2024106480 A1 WO2024106480 A1 WO 2024106480A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
refrigeration
gas
refrigeration system
Prior art date
Application number
PCT/JP2023/041133
Other languages
English (en)
French (fr)
Inventor
一彦 三原
徹 森
晃司 佐藤
明日香 矢野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022184006A external-priority patent/JP2024073027A/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024106480A1 publication Critical patent/WO2024106480A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • Patent Document 1 discloses a refrigeration system that includes a cascade heat exchanger that exchanges heat between the low pressure side of an air conditioning refrigerant circuit and the high pressure side of a refrigerant circuit for a cooling storage equipment, and during cooling operation of the air conditioning refrigerant circuit, the refrigerant on the high pressure side of the refrigerant circuit for the cooling storage equipment flows through a condenser to the cascade heat exchanger, and during heating operation of the air conditioning refrigerant circuit, the refrigerant on the high pressure side of the refrigerant circuit for the cooling storage equipment flows through the cascade heat exchanger and then flows to the condenser.
  • Patent Literature 2 discloses a heat source unit and a refrigeration device that prevent gas refrigerant in a gas-liquid separator from being stopped from being sent to an intermediate flow path during high outdoor air temperatures.
  • a control unit executes a first operation of increasing the rotation speed of the third compressor when a first condition is satisfied that an intermediate pressure corresponding to the pressure in the intermediate flow path is higher than a predetermined value during operation of the first compressor, the second compressor, and the third compressor.
  • a first aspect of the present disclosure provides a refrigeration system that uses a natural refrigerant, carbon dioxide (R744), and can improve the efficiency of an air conditioning temperature zone.
  • a second aspect of the present disclosure provides a refrigeration system including a refrigeration circuit with a simple configuration, and capable of improving refrigeration capacity.
  • a refrigeration system of a first aspect of the present disclosure comprises a refrigeration cycle circuit connecting an outdoor unit having a plurality of compressors, an outdoor heat exchanger, and a gas-liquid separator, an indoor unit having an indoor heat exchanger, and a refrigeration equipment having a refrigeration heat exchanger, wherein the plurality of compressors are composed of a low-stage compressor and a high-stage compressor, and comprises a gas refrigerant return piping that sends gas refrigerant from the gas-liquid separator to the high-stage compressor, and a gas refrigerant return piping is provided with a gas refrigerant return expansion valve that controls the return amount of gas refrigerant from the gas-liquid separator.
  • this specification includes all the contents of Japanese Patent Application No. 2022-184006 filed in Japan on November 17, 2022.
  • a refrigeration system of a second aspect of the present disclosure includes a refrigeration circuit provided with a plurality of compressors, a heat source side heat exchanger, a plurality of user side heat exchangers, and a gas-liquid separator, the plurality of compressors being composed of a low stage compressor and a high stage compressor, the plurality of user side heat exchangers being composed of a first user side heat exchanger and a second user side heat exchanger having a refrigerant evaporation temperature lower than that of the first user side heat exchanger, the refrigeration circuit being provided with a switching mechanism that causes the refrigerant discharged from the high stage compressor and flowing through at least one of the heat source side heat exchanger and the first user side heat exchanger to flow to the gas-liquid separator, and a throttling mechanism that adjusts the pressure of the refrigerant being provided between the heat source side heat exchanger, the first user side heat exchanger, and the gas-liquid separator.
  • this specification includes all the contents of Japanese Patent Application No. 2023-142103 filed
  • the opening of the gas refrigerant return expansion valve is controlled to control the amount of gas refrigerant returned from the gas-liquid separator, thereby generating a differential pressure of the refrigerant sent to the indoor heat exchanger. Therefore, the pressure can be controlled by adding a specified value to the evaporation temperature of the indoor heat exchanger, which has a high evaporation temperature, and carbon dioxide (R744), a natural refrigerant with high environmental protection, can be used to improve the efficiency of the air conditioning temperature zone.
  • R744 carbon dioxide
  • a refrigeration circuit having a simple configuration is provided, and stable operation can be achieved.
  • FIG. 1 is a circuit diagram of a refrigeration system showing an operation during cooling operation in the first embodiment.
  • FIG. 2 is a circuit diagram of a refrigeration system showing an operation during heating operation in the first embodiment.
  • FIG. 3 is a circuit diagram of a refrigeration system showing the operation of heating operation at full capacity in the first embodiment.
  • FIG. 4 is a circuit diagram of a refrigeration system showing an operation in a case where a large capacity is required in the cooling equipment in the first embodiment and a heating amount is not required.
  • FIG. 5 is a diagram showing a refrigeration circuit of a refrigeration system according to a second embodiment.
  • FIG. 6 is a block diagram of a refrigeration system according to a second embodiment.
  • FIG. 7 is a circuit diagram showing a refrigeration circuit of a refrigeration system in a heating operation according to a second embodiment.
  • FIG. 8 is a circuit diagram showing a refrigeration circuit of a refrigeration system in a heating operation according to a second embodiment.
  • FIG. 9 is a circuit diagram showing a refrigeration circuit of a refrigeration system in a heating operation according to a second embodiment.
  • FIG. 10 is a ph diagram showing the state of the refrigerant in the refrigeration circuit in the second embodiment.
  • FIG. 11 is a flowchart showing the operation of the refrigeration system in the second embodiment.
  • FIG. 12 is a circuit diagram showing a refrigeration circuit of a refrigeration system in a refrigerant recovery and vacuum pumping operation according to the second embodiment.
  • FIG. 13 is a circuit diagram showing a refrigeration circuit of a refrigeration system during a refrigerant charging operation in accordance with the second embodiment.
  • FIG. 14 is a circuit diagram showing a refrigeration circuit of a refrigeration system in an adjustment operation according to the second embodiment.
  • HFC refrigerants are used as the refrigerants.
  • low GWP refrigerants are slightly flammable or toxic, and merging refrigeration circuits into one results in a large system and an increased amount of refrigerant, which poses safety issues.
  • carbon dioxide (R744) a natural refrigerant, is non-toxic and non-flammable, but when used in an air conditioner, it is considered to be unsuitable because of its low efficiency in the refrigerant temperature range of the air conditioner.
  • the inventors discovered a problem that requires technological development, and have come to constitute the subject of the present disclosure in order to solve the problem.
  • the present disclosure provides a refrigeration system that uses the natural refrigerant carbon dioxide (R744) and can improve the efficiency of air conditioning temperature zones.
  • FIG. 1 is a diagram showing a refrigeration cycle circuit of a refrigeration system 1 according to a first embodiment.
  • the refrigeration system 1 includes an outdoor unit 10 , an indoor unit 20 , and a cooling device 30 .
  • the indoor unit 20 provides air conditioning within a store, such as a convenience store or supermarket, and the refrigeration equipment 30 provides cooling within refrigerated showcases and freezer showcases that serve as cooling storage facilities installed within the store.
  • the outdoor unit 10 includes a low stage compressor 11 and two high stage compressors 12, 12.
  • the two high stage compressors 12 are connected in parallel to the low stage compressor 11.
  • An accumulator 13 is disposed between the low stage compressor 11 and the high stage compressor 12 . That is, the refrigerant discharged from the low-stage compressor 11 is separated into gas and liquid by the accumulator 13 , and only the gas refrigerant is sent to the high-stage compressor 12 .
  • An oil separator 14 is connected to the discharge side of the high-stage compressor 12.
  • An outdoor heat exchanger 15 is connected to the oil separator 14 via a refrigerant pipe 40.
  • a first heating pipe 41 that is connected to the refrigerant pipe 40 between the indoor unit 20 and the accumulator 13 is connected to the refrigerant pipe 40 between the oil separator 14 and the outdoor heat exchanger 15 .
  • a first outdoor return pipe 42 that is connected to the refrigerant piping 40 between the oil separator 14 and the outdoor heat exchanger 15 is connected to the refrigerant piping 40 between the cooling equipment 30 and the low-stage compressor 11.
  • a first switching mechanism 50 is provided between the oil separator 14 and the outdoor heat exchanger 15.
  • the first switching mechanism 50 includes a first cooling valve 51 that opens and closes the refrigerant pipe 40 between the oil separator 14 and the outdoor heat exchanger 15, a first heating valve 52 that is provided in the middle of the first heating pipe 41 and opens and closes the first heating pipe 41, and an outdoor refrigerant return valve 53 that is provided in the middle of the first outdoor return pipe 42 and opens and closes the first outdoor return pipe 42.
  • the gas-liquid separator 16 is connected to the outdoor heat exchanger 15 via a refrigerant pipe 40.
  • the gas-liquid separator 16 is connected to a cold-setting heat exchanger 31 of the cold-setting equipment 30 via the refrigerant pipe 40 and a cold-setting inlet-side expansion mechanism 32.
  • the cold-setting heat exchanger 31 is connected to the low-stage compressor 11 via a cold-setting outlet-side expansion mechanism 33.
  • a second cooling pipe 43 that is connected to the indoor heat exchanger 22 via an indoor expansion mechanism 21 is connected to the refrigerant pipe 40 between the outdoor heat exchanger 15 and the gas-liquid separator 16 .
  • a second heating pipe 44 that is connected to the indoor heat exchanger 22 is connected to the refrigerant pipe 40 between the outdoor heat exchanger 15 and the gas-liquid separator 16 .
  • a second outdoor return pipe 45 is connected to the refrigerant piping 40 between the outdoor heat exchanger 15 and the gas-liquid separator 16, and is connected to the refrigerant piping 40 between the cold-installed heat exchanger 31 and the gas-liquid separator 16.
  • a second switching mechanism 54 is provided between the outdoor heat exchanger 15 and the gas-liquid separator 16.
  • the second switching mechanism 54 includes a second cooling valve 55 for opening and closing the refrigerant pipe 40 between the outdoor heat exchanger 15 and the gas-liquid separator 16, a third cooling valve 56 provided in the middle of the second cooling pipe 43 for opening and closing the second cooling pipe 43, and a second heating valve 57 provided in the middle of the second heating pipe 44 for opening and closing the second heating pipe 44.
  • a refrigerant return expansion mechanism 58 that controls the flow rate of the second outdoor return pipe 45 is provided in the middle of the second outdoor return pipe 45 .
  • a check valve 59 is provided downstream of each of the second cooling valve 55, the third cooling valve 56, and the second heating valve 57.
  • the indoor heat exchanger 22 is connected to the high-stage compressor 12 via a refrigerant pipe 40 , an on-off valve 23 , and an accumulator 13 .
  • a gas refrigerant return pipe 60 is provided to send the gas refrigerant from the gas-liquid separator 16 to the suction side of the accumulator 13.
  • a gas refrigerant return expansion mechanism 61 is provided in the middle of the gas refrigerant return pipe 60.
  • the refrigerant that has passed through the oil separator 14 is sent through a first cooling valve 51 to the outdoor heat exchanger 15, where it exchanges heat with outside air.
  • the refrigerant after heat exchange is sent to the gas-liquid separator 16 via the second cooling valve 55 and to the indoor heat exchanger 22 via the third cooling valve 56 .
  • the indoor heat exchanger 22 the refrigerant exchanges heat with the indoor air to cool the indoor air.
  • the refrigerant that has exchanged heat with the indoor air is returned to each high-stage compressor 12 via the accumulator 13.
  • a portion of the refrigerant from the gas-liquid separator 16 is sent to the refrigeration heat exchanger 31 via the refrigeration inlet expansion mechanism 32, where it undergoes heat exchange to cool the refrigeration equipment 30.
  • the refrigerant that has undergone heat exchange in the refrigeration heat exchanger 31 is returned to the low-stage compressor 11 via the refrigeration inlet expansion mechanism 32.
  • FIG. 2 is a circuit diagram of the refrigeration system 1 showing the operation of the heating mode, in which the flow of the refrigerant is indicated by arrows.
  • the first heating valve 52 and the second heating valve 57 are opened, and the first cooling valve 51, the second cooling valve 55, the third cooling valve 56 and the outdoor refrigerant return valve 53 are closed.
  • the refrigerant compressed by the low-stage compressor 11 is sent to each high-stage compressor 12, further compressed by each high-stage compressor 12, and discharged toward the oil separator 14.
  • the refrigerant that has passed through the oil separator 14 is sent to the indoor heat exchanger 22 through the first heating valve 52, where it exchanges heat with indoor air to heat the indoor air.
  • the refrigerant that has exchanged heat in the indoor heat exchanger 22 is sent to the gas-liquid separator 16 via the second heating valve 57, and then sent to the cold-setting heat exchanger 31 via the cold-setting inlet expansion mechanism 32, where it undergoes heat exchange and cools the cold-setting equipment 30.
  • the refrigerant that has exchanged heat in the cold-setting heat exchanger 31 is returned to the low-stage compressor 11 via the cold-setting outlet-side expansion mechanism 33 . That is, the refrigeration system 1 of the present disclosure is configured so that during heating, the indoor heat exchanger 22 functions as a condenser, and the outdoor heat exchanger 15 is not used.
  • 3 is a circuit diagram of the refrigeration system 1 showing the operation of heating operation at full capacity.
  • the flow of the refrigerant is indicated by arrows in the figure.
  • the first heating valve 52, the second heating valve 57, the high-load valve, and the high-load expansion mechanism are all opened, and the first cooling valve 51, the second cooling valve 55, and the third cooling valve 56 are all closed.
  • the refrigerant compressed by the low-stage compressor 11 is sent to each high-stage compressor 12, further compressed by each high-stage compressor 12, and discharged toward the oil separator 14.
  • the refrigerant that has passed through the oil separator 14 is sent to the indoor heat exchanger 22 through the first heating valve 52, where it exchanges heat with indoor air to heat the indoor air.
  • the refrigerant that has exchanged heat in the indoor heat exchanger 22 is sent to the gas-liquid separator 16 via the second heating valve 57, and then sent to the cold-setting heat exchanger 31 via the cold-setting inlet-side expansion mechanism 32.
  • the refrigerant exchanges heat in the cold-setting heat exchanger 31, cooling the cold-setting equipment 30, and is returned to the low-stage compressor 11 via the cold-setting outlet-side expansion mechanism 33.
  • a portion of the refrigerant from the gas-liquid separator 16 is sent to the outdoor heat exchanger 15 via the refrigerant return expansion mechanism 58 , and is returned to the low-stage compressor 11 after heat exchange in the outdoor heat exchanger 15 .
  • the opening degree of the cooling outlet side expansion mechanism 33 is controlled to balance the pressure with the refrigerant sent from the outdoor heat exchanger 15, thereby avoiding the above-mentioned inconvenience.
  • 4 is a circuit diagram of the refrigeration system 1 showing the operation when a large capacity is required in the cooling equipment 30 and a heating heat amount is not required.
  • the flow of the refrigerant is indicated by arrows in the figure.
  • the first cooling valve 51, the second cooling valve 55, the first heating valve 52, and the second heating valve 57 are each opened, and the refrigerant return valve and the third cooling valve 56 are each closed.
  • the refrigerant compressed by the low-stage compressor 11 is sent to each high-stage compressor 12, further compressed by each high-stage compressor 12, and discharged toward the oil separator 14.
  • the refrigerant that has passed through the oil separator 14 is sent through a first cooling valve 51 to the outdoor heat exchanger 15, where it exchanges heat with outside air.
  • the refrigerant after heat exchange is sent to the gas-liquid separator 16 via the second cooling valve 55 .
  • the refrigerant that has passed through the oil separator 14 is sent to the indoor heat exchanger 22 through the first heating valve 52, where it exchanges heat with indoor air to heat the indoor air.
  • the refrigerant that has exchanged heat in the indoor heat exchanger 22 is merged with the refrigerant sent from the outdoor heat exchanger 15 via the second heating valve 57 and sent to the gas-liquid separator 16 .
  • the refrigerant from the gas-liquid separator 16 is sent to the refrigeration heat exchanger 31 via an inlet expansion mechanism for the refrigeration equipment 30. Heat exchange is performed in the refrigeration heat exchanger 31 to cool the refrigeration equipment 30, and the refrigerant that has undergone heat exchange in the refrigeration heat exchanger 31 is returned to the low-stage compressor 11 via an outlet expansion mechanism for the refrigeration equipment 33.
  • a portion of the refrigerant from the gas-liquid separator 16 is sent to the outdoor heat exchanger 15 via the refrigerant return expansion mechanism 58 , and is returned to the low-stage compressor 11 after heat exchange in the outdoor heat exchanger 15 . This allows the outdoor heat exchanger 15 and the indoor heat exchanger 22 to be heated simultaneously by the heating operation capacity, and allows the heat distribution to each to be controlled. In addition, by heating the outdoor heat exchanger 15, frost adhering to the outdoor heat exchanger 15 can be removed.
  • a gas refrigerant return pipe 60 is provided to send the gas refrigerant from the gas-liquid separator 16 to the suction side of the accumulator 13. Then, by controlling the opening of the gas refrigerant return expansion valve 61 to control the return amount of the gas refrigerant from the gas-liquid separator 16, a pressure difference of the refrigerant sent to the indoor heat exchanger 22 can be generated. This makes it possible to control the pressure by adding a specified value to the evaporation temperature of the indoor heat exchanger 22, which has a high evaporation temperature. By using carbon dioxide (R744), a natural refrigerant with high environmental friendliness, the efficiency of the air conditioning temperature range, which is a weak point, can be improved.
  • carbon dioxide R744
  • the system is provided with a refrigeration cycle circuit that connects the outdoor unit 10 having the low stage compressor 11, the high stage compressor 12, the outdoor heat exchanger 15, and the gas-liquid separator 16, the indoor unit 20 having the indoor heat exchanger 22, and the cooling equipment 30 having the cooling heat exchanger 31, and is provided with a gas refrigerant return piping 60 that sends gas refrigerant from the gas-liquid separator 16 to the high stage compressor 12, and is provided with a gas refrigerant return expansion valve 61 that controls the return amount of gas refrigerant from the gas-liquid separator 16.
  • the refrigeration cycle circuit is operated with the indoor heat exchanger 22 and the outdoor heat exchanger 15 as condensers and the cooling-use heat exchanger 31 as an evaporator.
  • the high evaporation temperature side of the indoor heat exchanger 22 reverses its flow direction to the outdoor heat exchanger 15, and the heat pumped up from the outdoor heat exchanger 15 and the exhaust heat from the cooling equipment 30 can be combined and used to heat the indoor heat exchanger 22.
  • the outdoor heat exchanger 15 and the indoor heat exchanger 22 can be heated simultaneously, and the heat distribution can be controlled.
  • the refrigeration cycle circuit is operated with the indoor heat exchanger 22 as a condenser and the cooling-use heat exchanger 31 and the outdoor heat exchanger 15 as evaporators.
  • This allows the heat pumped up from the outdoor heat exchanger 15 and the exhaust heat from the cold-setting heat exchanger 31 to be used to heat the indoor heat exchanger 22, and when the outdoor air temperature becomes lower than the temperature inside the cold-setting equipment 30, it becomes possible to control the pressure to be the same. Therefore, it is possible to prevent the evaporation temperature of the cold-setting equipment 30 from dropping too much, and to perform highly accurate temperature control.
  • the refrigeration cycle circuit is operated with the indoor heat exchanger 22 as a condenser and only the cold-use heat exchanger 31 as an evaporator.
  • This allows all of the exhaust heat from the cooling equipment 30 to be dissipated by the indoor heat exchanger 22 with a high evaporation temperature. Therefore, the exhaust heat can be utilized without loss, and heating operation can be performed with high efficiency.
  • the utilization side heat exchanger is switched between cooling and heating.
  • the refrigerant discharged from the compressor is made to flow through the utilization side heat exchanger via a gas-liquid separator, and therefore the configuration of the refrigeration circuit of the refrigeration system may become complicated.
  • the inventors have found a problem, and have come to constitute the subject of the present disclosure in order to solve the problem.
  • the present disclosure provides a refrigeration system that includes a refrigeration circuit with a simple configuration and that can improve the refrigeration capacity.
  • FIG. 5 is a circuit diagram showing a refrigeration system 101 in the first embodiment.
  • an opening and closing device in an open state is shown in white
  • an opening and closing device in a closed state and an expansion mechanism are shown in black.
  • pipes through which a refrigerant flows are shown in thick lines
  • pipes through which a refrigerant does not flow are shown in thin lines.
  • the opening and closing devices and pipes are shown in the same manner as in Fig. 5. As shown in FIG.
  • the refrigeration system 101 includes an outdoor unit 110, an indoor unit 120, and a cooling equipment 130, which are connected to each other by refrigerant piping to form a refrigeration circuit 2 that functions as a flow path through which the refrigerant flows.
  • the refrigerant used in the refrigeration circuit 2 is, for example, carbon dioxide (R744), a natural refrigerant that is non-flammable and non-toxic.
  • the indoor unit 120 includes a user-side heat exchanger, an indoor heat exchanger 122.
  • the indoor unit 120 conditions the air inside a store, which is a space to be conditioned, based on a temperature setting set by a user in a store such as a convenience store or a supermarket.
  • the refrigeration equipment 130 includes a user-side heat exchanger, a refrigeration heat exchanger 132.
  • the refrigeration equipment 130 cools the inside of a refrigerated showcase or a freezer showcase as a cooling storage facility installed in a store, based on a set temperature set by a user.
  • the rotation frequency of each compressor and the airflow rate of the fans 118 and 128 are determined based on the temperature difference between the set temperature and the temperature in the conditioned space in which the indoor unit 120 is installed. Furthermore, in the refrigeration system 101, when the set temperature of the indoor unit 120 is set, the opening degree of the throttle valve provided in the indoor unit 120 is determined so that the degree of superheat of the refrigerant at each of the inlet and outlet sides of the indoor heat exchanger 122 becomes a specified value. In this way, the refrigeration system 101 operates so that the conditioned space becomes the set temperature.
  • the rotation frequency of each compressor and the airflow rate of the fans 118 and 138 are determined based on the temperature difference between the set temperature and the temperature inside the showcase. Furthermore, in the refrigeration system 101, when the set temperature of the cooling equipment 130 is set, the opening degree of the throttle valve provided in the cooling equipment 130 is determined so that the degree of superheat of the refrigerant at each of the inlet and outlet sides of the cooling heat exchanger 132 becomes a specified value. In this way, the refrigeration system 101 operates so that the temperature inside the showcase becomes the set temperature.
  • the operation in which the refrigeration system 101 conditions the air in the conditioned space and cools the inside of the showcase will be referred to as a first operation mode.
  • the outdoor unit 110 functions as a so-called heat source device.
  • the outdoor unit 110 is formed by sequentially connecting a plurality of compressors, a first switching mechanism 150, an outdoor heat exchanger 115, a second switching mechanism 154, and a gas-liquid separator 116.
  • the outdoor heat exchanger 115 corresponds to the "heat source side heat exchanger" in this disclosure.
  • the outdoor unit 110 is provided with a mechanism in which a low-stage compressor 111 and two high-stage compressors 112, 112 are configured as a two-stage compressor.
  • the two high-stage compressors 112, 112 are both connected in series to the low-stage compressor 111.
  • the two high-stage compressors 112, 112 are connected in parallel to each other downstream of the low-stage compressor 111.
  • Each of the compressors is a rotary compressor having a compression mechanism driven by, for example, a motor.
  • Each of the high stage compressors 112 is driven to discharge the refrigerant at a higher discharge pressure than the low stage compressor 111.
  • An accumulator 113 is disposed between the low-stage compressor 111 and the high-stage compressor 112.
  • the accumulator 113 functions as a flow divider that distributes the oil sent from the oil separator 114 approximately evenly to each of the high-stage compressors 112.
  • An oil separator 114 is connected to the discharge side of the high-stage compressor 112.
  • a first switching mechanism 150 is connected to the oil separator 114. That is, the first switching mechanism 150 is connected to the discharge pipe of the high-stage compressor 112 via the oil separator 114.
  • the first switching mechanism 150 is a mechanism that switches the refrigerant sent from the high-stage compressor 112 in the refrigeration circuit 2 so that it flows through one of multiple flow paths.
  • the first switching mechanism 150 includes a pipe 140 that connects the oil separator 114 and the outdoor heat exchanger 115.
  • a first cooling valve 151 is provided in the pipe 140.
  • the first cooling valve 151 is located in the pipe 140 between the high-stage compressor 112 and the outdoor heat exchanger 115.
  • the first cooling valve 151 is an opening/closing device that opens and closes the pipe 140.
  • the first cooling valve 151 is an opening/closing device that can be switched between an open state in which refrigerant can flow through the pipe 140, and a closed state in which refrigerant does not flow through the pipe 140.
  • the first heating piping 141 is connected between the oil separator 114 and the first cooling valve 151.
  • the first heating piping 141 is provided with a first heating valve 152.
  • the first heating valve 152 is an opening and closing device that opens and closes the first heating piping 141.
  • the other end of the first heating pipe 141 is connected to a pipe 171 that connects the indoor heat exchanger 122 of the indoor unit 120 and the suction side of the high-stage compressor 112.
  • the discharge side of the high-stage compressor 112 is connected to the indoor heat exchanger 122 via the first heating pipe 141.
  • An on-off valve 123 is provided in the pipe 171 between the point where the other end of the first heating pipe 141 is connected and the accumulator 113.
  • the on-off valve 123 is an on-off device that opens and closes the pipe 171.
  • first outdoor return piping 142 In the piping 140, one end of the first outdoor return piping 142 is connected between the first cooling valve 151 and the outdoor heat exchanger 115.
  • the first outdoor return piping 142 is provided with an outdoor refrigerant return valve 153.
  • the outdoor refrigerant return valve 153 is an opening and closing device that opens and closes the first outdoor return piping 142.
  • the other end of the first outdoor return piping 142 is connected between the cooling heat exchanger 132 of the cooling equipment 130 and the suction side of the low-stage compressor 111.
  • a cooling outlet pressure adjustment mechanism 133 is provided in the piping 172 between the point where the other end of the first outdoor return piping 142 is connected and the cooling heat exchanger 132.
  • the cooling outlet pressure adjustment mechanism 133 is an opening/closing device that can change the opening degree from fully closed to fully open.
  • the cooling outlet pressure adjustment mechanism 133 functions as a so-called throttle valve that can change the pressure of the refrigerant flowing through the piping 172 by adjusting the opening degree.
  • the first switching mechanism 150 is connected to the outdoor heat exchanger 115 , the indoor heat exchanger 122 , the cold-use heat exchanger 132 , and the low-stage compressor 111 .
  • the first switching mechanism 150 switches the flow path of the refrigerant in the refrigeration circuit 2 by opening and closing a first cooling valve 151, a first heating valve 152, and an outdoor refrigerant return valve 153, and causes the refrigerant discharged from the high-stage compressor 112 to flow to either the outdoor heat exchanger 115 or the indoor heat exchanger 122.
  • the refrigerant discharged from the high-stage compressor 112 flows into the outdoor heat exchanger 115 .
  • the refrigerant discharged from the high-stage compressor 112 flows to the indoor heat exchanger 122.
  • the refrigerant discharged from the high-stage compressor 112 flows to both the outdoor heat exchanger 115 and the indoor heat exchanger 122.
  • the first switching mechanism 150 includes the first cooling valve 151 , the first heating valve 152 , and the outdoor refrigerant return valve 153 .
  • the first cooling valve 151, the first heating valve 152, and the outdoor refrigerant return valve 153 are electrically operated on-off valves that are opened and closed by an actuator or the like. Therefore, the first switching mechanism 150 can switch the flow path of the refrigerant in the refrigeration circuit 2 without stopping the low stage compressor 111 and the high stage compressor 112.
  • the refrigeration system 101 can switch operations related to air conditioning and cooling inside the showcase without stopping the low stage compressor 111 and the high stage compressor 112.
  • the first cooling valve 151, the first heating valve 152, and the outdoor refrigerant return valve 153 may be opening/closing devices whose opening degree can be adjusted from fully closed to fully open.
  • the first switching mechanism 150 corresponds to the "other switching mechanism" of the present disclosure.
  • a second switching mechanism 154 is provided on the piping 140 on the opposite side of the first switching mechanism 150 with the outdoor heat exchanger 115 interposed therebetween. That is, the second switching mechanism 154 is connected to the outdoor heat exchanger 115 via the piping 140.
  • the second switching mechanism 154 connects the outdoor heat exchanger 115, the indoor heat exchanger 122, the cold-installed heat exchanger 132, and the gas-liquid separator 116 to one another.
  • the second switching mechanism 154 is a mechanism that switches the refrigerant to flow through any one of a plurality of flow paths that connect the outdoor heat exchanger 115, the indoor heat exchanger 122, the cold-installed heat exchanger 132, and the gas-liquid separator 116 to one another.
  • the second switching mechanism 154 is formed by connecting the ends of the first to fourth pipes 173, 174, 175, and 176 at connection parts A, B, C, and D in a ring shape.
  • a throttling mechanism 55 is disposed in the first pipe 173.
  • a refrigerant return expansion mechanism 58 that controls the flow rate is disposed in the second pipe 174.
  • a check valve 159 is disposed in the third pipe 175.
  • a check valve 159 is disposed in the fourth pipe 176.
  • the check valve 159 is a so-called self-acting automatic valve that is opened and closed by the flow of the refrigerant.
  • the throttling mechanism 155 and the refrigerant return expansion mechanism 158 are flow control valves whose opening can be changed from fully closed to fully open.
  • the throttling mechanism 155 can change the pressure of the refrigerant flowing through the first pipe 173 by adjusting its opening.
  • the refrigerant return expansion mechanism 158 can change the pressure of the refrigerant flowing through the second pipe 174 by adjusting its opening.
  • the throttling mechanism 155 and the refrigerant return expansion mechanism 158 function as so-called throttling valves.
  • the check valve 159 is disposed so that the refrigerant flows only from the connection portion B toward the connection portion C.
  • the check valve 159 is disposed so that the refrigerant flows only from the connection portion C toward the connection portion D.
  • the throttling mechanism 155, the refrigerant return expansion mechanism 158, and the check valve 159 correspond to the "valve body" in this disclosure.
  • a pipe 140 in which the outdoor heat exchanger 115 is provided is connected to a connection portion A between the throttling mechanism 155 and the refrigerant return expansion mechanism 158 .
  • a connection part B between the refrigerant return expansion mechanism 158 and the check valve 159 of the third pipe 175 is connected to a middle part of the pipe 77 connecting the gas-liquid separator 116 and the cold-installed heat exchanger 132.
  • a cold-installed inlet-side expansion mechanism 31 is provided between the point where the connection part B is connected and the cold-installed heat exchanger 132.
  • a connection part C between the check valve 159 of the third pipe 175 and the check valve 159 of the fourth pipe 176 is connected to the indoor heat exchanger 122 via the pipe 78.
  • An indoor expansion mechanism 121 of the indoor unit 120 is provided between one end of the pipe 178 to which the connection part C is connected and the indoor heat exchanger 122.
  • the indoor expansion mechanism 121 is an opening/closing device capable of changing the opening degree from fully closed to fully open.
  • the indoor expansion mechanism 121 functions as a so-called throttle valve that can change the pressure of the refrigerant flowing through the pipe 178 by adjusting the opening degree.
  • the indoor expansion mechanism 121 and the throttle mechanism 155 correspond to the "throttle mechanism" in this disclosure.
  • a connection portion D between the check valve 159 of the fourth pipe 176 and the throttle mechanism 155 is connected to the gas-liquid separator 116 via a pipe 179 .
  • the gas-liquid separator 116 is connected to the outdoor heat exchanger 115, the indoor heat exchanger 122, and the cold-installed heat exchanger 132 via the second switching mechanism 154.
  • the refrigerant flows into the gas-liquid separator 116 from the pipe 179 and flows out from the pipe 177. That is, the pipe 179 functions as an inlet-side pipe of the gas-liquid separator 116, and the pipe 177 functions as an outlet-side pipe of the gas-liquid separator 116.
  • the second switching mechanism 154 corresponds to the "switching mechanism" of the present disclosure.
  • the indoor heat exchanger 122 functions as an evaporator.
  • the rotational frequency of each compressor and the airflow rate of the blowers 118 and 128 are determined based on the temperature difference between the set temperature of the indoor unit 120 and the temperature in the space to be conditioned in which the indoor unit 120 is installed.
  • the opening degree of the indoor expansion mechanism 121 is determined so that the degree of superheat of the refrigerant at each of the inlet side and outlet side of the indoor heat exchanger 122 becomes a specified value.
  • the refrigeration system 101 operates so that the space to be conditioned becomes the set temperature.
  • the evaporation temperature zone of the indoor heat exchanger 122 is, for example, 3°C to 6°C.
  • the refrigeration heat exchanger 132 functions as an evaporator.
  • the rotational frequency of each compressor and the airflow rate of the blowers 118 and 138 are determined based on the temperature difference between the set temperature of the refrigeration equipment 130 and the temperature inside the showcase.
  • the opening degree of the refrigeration inlet expansion mechanism 131 is determined so that the degree of superheat of the refrigerant at each of the inlet and outlet sides of the refrigeration heat exchanger 132 is a specified value.
  • the refrigeration system 101 operates so that the temperature inside the showcase is the set temperature.
  • the refrigeration equipment 130 of this embodiment can select and set the temperature zone within the cabinet from among, for example, the refrigeration temperature zone (3°C to 6°C), a temperature zone slightly higher than the refrigeration temperature zone (3°C to 8°C), a partial temperature zone (-3°C to -1°C), and a freezing temperature zone (-20°C to -18°C). Therefore, the evaporation temperature zone of the refrigeration heat exchanger 132 is set lower than the temperature zone within the cabinet.
  • the evaporation temperature range of the refrigeration heat exchanger 132 is, for example, from -5°C to 0°C.
  • the evaporation temperature zone of the cooling heat exchanger 132 is, for example, from -12°C to -8°C.
  • the evaporation temperature range of the refrigeration heat exchanger 132 is, for example, from -140°C to -20°C.
  • the indoor heat exchanger 122 is connected to the inlet side of the high-stage compressor 112
  • the cold-use heat exchanger 132 which has a lower evaporation temperature zone than the indoor heat exchanger 122, is connected to the inlet side of the low-stage compressor 111.
  • the indoor heat exchanger 122 corresponds to the "first use-side heat exchanger" in this disclosure
  • the cold-use heat exchanger 132 corresponds to the "first use-side heat exchanger" in this disclosure.
  • the gas-liquid separator 116 is a so-called flash tank that separates the gas-liquid two-phase refrigerant flowing thereinto into a gas refrigerant and a liquid refrigerant.
  • the refrigerant flowing from the outdoor heat exchanger 115 flows into the gas-liquid separator 116 via the second switching mechanism 154.
  • the refrigerant flowing from the second switching mechanism 154 into the gas-liquid separator 116 is depressurized by the throttling mechanism 155.
  • the refrigerant flowing from the indoor heat exchanger 122 flows into the gas-liquid separator 116 via the second switching mechanism 154.
  • the refrigerant flowing from the second switching mechanism 154 into the gas-liquid separator 116 is depressurized by the indoor expansion mechanism 121.
  • the refrigerant flows into the gas-liquid separator 116 in a state where the pressure has been adjusted by the throttling mechanism 155 or the indoor expansion mechanism 121 via the second switching mechanism 154. That is, when the first operation mode is performed, the refrigeration system 101 is provided with the second switching mechanism 154, so that the pressure of the refrigerant flowing into the gas-liquid separator 116 can be adjusted with a simple circuit configuration.
  • a gas refrigerant return pipe 160 is connected to the gas-liquid separator 116, and the gas refrigerant return pipe 160 is connected to pipe 171 and then to the accumulator 113.
  • a gas refrigerant flow control valve 161 is connected to the gas refrigerant return pipe 160.
  • This gas refrigerant flow control valve 161 is an opening/closing device whose opening can be changed from fully closed to fully open. In the refrigeration system 101, the flow rate of gas refrigerant flowing through the gas refrigerant return pipe 160 is adjusted by the opening of the gas refrigerant flow control valve 161.
  • a portion of the gas refrigerant separated in the gas-liquid separator 116 has its flow rate adjusted by the gas refrigerant flow control valve 161 , is sent to the accumulator 113 , and is returned to the suction side of the high-stage compressor 112 .
  • the gas-liquid separator 116 a portion of the gas refrigerant separated in the gas-liquid separator 116 is separated from the liquid refrigerant and flows out of the gas-liquid separator 116, thereby cooling the liquid refrigerant to a saturation temperature corresponding to the pressure of the gas-liquid separator 116. That is, in the refrigeration system 101, the gas-liquid separator 116 functions as a heat exchanger that cools the liquid refrigerant, and it is possible to increase the refrigeration capacity of the refrigeration system 101.
  • a pressure difference is generated before and after the indoor expansion mechanism 121. That is, in the refrigeration system 101, it is possible to generate a refrigerant pressure difference between the inlet and outlet of the indoor unit 120 in the refrigeration circuit 102. This prevents the flow of the refrigerant from being stagnate, particularly when performing cooling operation, in the refrigeration system 101.
  • the refrigeration system 101 in the indoor heat exchanger 122 in which the evaporation temperature of the refrigerant is high, it becomes possible to control the refrigerant flowing through the indoor heat exchanger 122 at a pressure value obtained by adding a specified pressure value to the pressure value at which the refrigerant evaporates.
  • An internal heat exchanger 164 is provided midway between the gas refrigerant return pipe 160 and the pipe 177.
  • the internal heat exchanger 164 is a so-called economizer heat exchanger.
  • This internal heat exchanger 164 is disposed in the pipe 177 between the gas-liquid separator 116 and the connection part B, and is disposed in the gas refrigerant return pipe 160 between the gas refrigerant flow rate control valve 161 and the accumulator 113.
  • the internal heat exchanger 164 houses the pipe 177 and the gas refrigerant return pipe 160 inside at the above-mentioned position, and exchanges heat between the liquid refrigerant flowing through the pipe 177 and the gas refrigerant flowing through the gas refrigerant return pipe 160.
  • the liquid refrigerant is cooled by the gas refrigerant in the internal heat exchanger 164.
  • the liquid refrigerant is then more reliably brought into a supercooled state, and the degree of supercooling increases. Therefore, even if the temperature of the liquid refrigerant in the gas-liquid separator 116 does not drop to the saturation temperature in the gas-liquid separator 116, the temperature of the liquid refrigerant is lowered to below the saturation temperature by being cooled in the internal heat exchanger 164.
  • the refrigeration system 101 is then able to ensure the degree of supercooling of the liquid refrigerant, and is able to improve operating efficiency.
  • the refrigeration circuit 102 is provided with a connection pipe 166.
  • the connection pipe 166 connects the internal heat exchanger 164 and connection part B in the pipe 177, and the gas refrigerant flow control valve 161 and the internal heat exchanger 164 in the gas refrigerant return pipe 160.
  • the liquid refrigerant that flows through this connection pipe 166 is mixed with the gas refrigerant before it is heat exchanged with the liquid refrigerant in the internal heat exchanger 164.
  • a liquid refrigerant flow control valve 165 is provided in the connecting pipe 166.
  • This liquid refrigerant flow control valve 165 is an opening/closing device whose opening can be changed from fully closed to fully open. In the refrigeration system 101, the flow rate of the liquid refrigerant flowing through the connecting pipe 166 is adjusted by the opening of the liquid refrigerant flow control valve 165.
  • a service valve 190 is provided in the piping 172.
  • the service valve 190 is provided between the outlet side of the cold-installation heat exchanger 132 and the cold-installation outlet-side pressure adjustment mechanism 133.
  • the service valve 190 is provided in the cold-installation equipment 130.
  • the service valve 190 has three connection ports: pipe connection ports 192, 194, and an external connection port 196.
  • the pipe connection ports 192, 194 and the external connection port 196 are all valve bodies that can be opened and closed.
  • the piping connection port 192 is connected to the piping 172 located on the side of the outlet side pressure adjustment mechanism for cooling 133.
  • the piping connection port 194 is connected to the piping 172 located on the outlet side of the cooling heat exchanger 132.
  • the piping connection ports 192 and 194 are normally open.
  • the external connection port 196 is provided to allow communication between the pipe 172 and the outside, and is formed so that external equipment can be connected.
  • external equipment for example, a manifold gauge, a refrigerant recovery device 150, a vacuum unit 152, a refrigerant sealing unit 154, etc. are connected ( Figures 12 and 13).
  • the external connection port 196 is closed when no external equipment is connected.
  • the external connection port 196 may be manually opened and closed by an operator.
  • the service valve 190 is provided between the outlet side of the cooling heat exchanger 132 and the cooling outlet pressure adjustment mechanism 133, so that a connection port for an external device can be provided without significantly changing the layout structure of the refrigeration circuit 102.
  • the service valve 190 is provided at a location close to the connection location between the outdoor unit 110 and the cooling device 130, so that the refrigeration system 101 can improve the workability when connecting an external device to the refrigeration system 101.
  • the service valve 190 corresponds to the "connection port" in this disclosure.
  • FIG. 6 is a block diagram of the refrigeration system 101. 5 and 6, the refrigeration system 101 is provided with a plurality of refrigerant pressure sensors 180.
  • the refrigerant pressure sensors 180 are provided at predetermined locations of the refrigeration circuit 102 that includes the outdoor unit 110, the indoor unit 120, and the cooling equipment 130.
  • the refrigerant pressure sensors 180 detect the pressure of the refrigerant flowing through those locations.
  • the refrigerant pressure sensor 180 is provided in the pipe 177, between the gas-liquid separator 116 and the internal heat exchanger 164.
  • the refrigerant pressure sensor 180 is also provided in the gas refrigerant return pipe 160, between the gas refrigerant flow rate control valve 161 and the accumulator 113.
  • the refrigerant pressure sensor 180 is provided in the pipe 171, between the connection point of the pipe 171 and the first heating pipe 141, and the indoor heat exchanger 122.
  • the refrigerant pressure sensor 180 is provided in the pipe 172, between the cooling outlet side pressure adjustment mechanism 133 and the suction side of the low stage compressor 111.
  • the refrigerant pressure sensor 180 is provided on a refrigerant pipe that connects the discharge side of the high-stage compressor 112 and the oil separator 114 .
  • the refrigeration system 101 is provided with multiple refrigerant temperature sensors 182.
  • the refrigerant temperature sensors 182 are provided at predetermined locations in the refrigeration circuit 102, which includes the outdoor unit 110, the indoor unit 120, and the cooling equipment 130.
  • the refrigerant temperature sensors 182 detect the temperature of the refrigerant flowing through those locations.
  • the refrigerant temperature sensor 182 is provided on a refrigerant pipe located on the suction side and a refrigerant pipe located on the discharge side in each of the high-stage compressors 112.
  • the refrigerant temperature sensor 182 is provided on the pipe 172 located on the suction side of the low-stage compressor 111, between the cooling outlet side pressure adjustment mechanism 133 and the suction side of the low-stage compressor 111.
  • the refrigerant temperature sensor 182 is provided on each of the refrigerant pipes connected to the inlet side and outlet side of each of the indoor heat exchanger 122 and the cold-installed heat exchanger 132 .
  • the refrigeration system 101 includes a space temperature sensor 127.
  • the space temperature sensor 127 is disposed in a space to be conditioned of the indoor unit 120, and detects the temperature of the space to be conditioned.
  • the refrigeration system 101 includes an internal temperature sensor 137.
  • the internal temperature sensor 137 is disposed inside a refrigerated showcase or a freezer showcase included in the refrigeration equipment 130, and detects the internal temperature.
  • the outdoor unit 110, indoor unit 120, and cooling equipment 130 are provided with blowers 118, 128, and 138, respectively.
  • Each blower 118, 128, and 138 flows air through the outdoor heat exchanger 115, indoor heat exchanger 122, and cooling equipment 132, respectively, promoting heat exchange between the air and the refrigerant flowing through each of the outdoor heat exchanger 115, indoor heat exchanger 122, and cooling equipment 132.
  • the outdoor unit 110 is equipped with an outdoor unit communication unit 206 that communicates with the indoor unit 120 via control wiring.
  • the outdoor unit communication unit 206 is composed of communication hardware such as connectors and communication circuits that comply with a specified communication standard.
  • the outdoor unit 110 includes a control device 200.
  • the outdoor unit I/F 205 includes communication hardware conforming to a predetermined communication standard, such as a connector and a communication circuit.
  • the outdoor unit I/F 205 communicates with the low stage compressor 111, the high stage compressor 112, the blower 118, the refrigerant pressure sensor 180, the refrigerant temperature sensor 182, and an outdoor unit communication unit 206.
  • the outdoor unit I/F 205 communicates with the first cooling valve 151, the first heating valve 152, the outdoor refrigerant return valve 153, the throttling mechanism 155, the refrigerant return expansion mechanism 158, the on-off valve 123, the gas refrigerant flow rate control valve 161, the liquid refrigerant flow rate control valve 165, and the service valve 190. Furthermore, the outdoor unit I/F 205 communicates with an indoor unit I/F 215 , a space temperature sensor 127 , and a cooling device I/F 225 .
  • the outdoor unit 110 includes a control device 200.
  • the control device 200 includes a control unit 201 and a storage unit 203.
  • the control unit 201 is a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) that operates based on a program stored in advance in the storage unit 203.
  • the control unit 201 may be configured with a single processor or may be configured with multiple processors. Note that a DSP (digital signal processor) or the like may be used as the control unit 201.
  • a control circuit such as an LSI (large scale integration), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programming Gate Array) may be used as the control unit 201.
  • the control unit 201 is capable of receiving various signals from each unit included in the outdoor unit 110 , the indoor unit 120 , and the cooling equipment 130 via the outdoor unit I/F 205 .
  • the control unit 201 is connected via the outdoor unit I/F 205 to each part of the outdoor unit 110, such as the memory unit 203 and the low-stage compressor 111, the indoor unit 120, and the cooling equipment 130, either wired or wirelessly, and controls each part.
  • the control unit 201 reads the computer program stored in the memory unit 203 and operates according to the read computer program, thereby functioning as an operation control unit 201a and a determination unit 201b.
  • the operation control unit 201a controls various devices such as the low-stage compressor 111, the high-stage compressor 112, and the opening and closing devices of the outdoor unit 110.
  • the operation control unit 201a transmits control signals to the indoor unit 120 and the cooling equipment 130 via the outdoor unit I/F 205, and causes the refrigeration system 101 to operate in a coordinated manner.
  • the operation control unit 201a is capable of changing the rotation speed of the compression mechanism included in each of the compressors, and is also capable of changing the discharge pressure of the refrigerant.
  • the operation control unit 201a can adjust the opening degree of the gas refrigerant flow rate control valve 161, the throttling mechanism 155, the indoor expansion mechanism 121, the cooling-use inlet expansion mechanism 131, the cooling-use outlet pressure adjustment mechanism 133, and the refrigerant return expansion mechanism 158.
  • the operation control unit 201a can switch the opening and closing devices provided in each of the first switching mechanism 150 and the second switching mechanism 154, and the opening and closing valve 123 to either an open state or a closed state.
  • the determination unit 201b compares the detection values of the refrigerant pressure sensors 180 and the detection values of the refrigerant temperature sensors 182 with data such as reference temperatures and reference pressures included in the setting data 103a stored in the memory unit 203.
  • the operation control unit 201a controls each part of the refrigeration system 101 based on the determination by this determination unit 201b.
  • the storage unit 203 includes a memory device such as a random access memory (RAM) or a read only memory (ROM), a fixed disk device such as a hard disk, or a portable storage device such as a flexible disk or an optical disk.
  • the storage unit 203 also stores computer programs, databases, tables, and the like used for various operations of the refrigeration system 101. These computer programs, and the like may be installed in the storage unit 203 from a computer-readable portable recording medium using a known setup program, and the like.
  • the portable recording medium is, for example, a semiconductor storage device including a CD-ROM (compact disc read only memory), a DVD-ROM (digital versatile disc read only memory), a USB (Universal Serial Bus) memory, or an SSD (Solid State Drive).
  • the computer program, etc. may be installed from a predetermined server, etc.
  • the memory unit 203 may include a volatile memory area and configure a work area for the control unit 201 .
  • Setting data 203a is stored in the storage unit 203.
  • the setting data 203a includes data on the set temperatures of the indoor units 120 and the cooling equipment 130.
  • the setting data 203 a includes data such as the rotation speed that is a specified value for each compressor, and a reference pressure value that is a specified value indicating a differential pressure at a predetermined point in the refrigeration circuit 102 .
  • the setting data 203a includes data related to the first operating mode. Specifically, the setting data 203a includes information on the opening and closing, or the opening degree, of each of the valve bodies provided in the refrigeration circuit 102 when the first operating mode is performed.
  • the control unit 201 controls each part of the refrigeration circuit 102 according to the data related to the first operating mode. In this way, the refrigeration system 101 performs the first operating mode.
  • the setting data 203a includes a second operation mode.
  • the second operation mode is an operation mode of the refrigeration system 101 that is performed in conjunction with the operation of an external device connected to the external connection port 196.
  • the setting data 203a includes information on the opening/closing or opening degree of each of the valve bodies provided in the refrigeration circuit 102 when the second operation mode is performed.
  • the control unit 201 controls each part of the refrigeration circuit 102 according to the data related to the second operation mode. As a result, the refrigeration system 101 performs the second operation mode.
  • the setting data 203a includes three operation modes as the second operation mode: a refrigerant recovery/vacuum drawing mode, a refrigerant charging mode, and an adjustment operation mode.
  • the outdoor unit I/F 205 includes communication hardware such as a communication interface circuit and a connector that allows the outdoor unit 110 to communicate with each device via a cable or the like in accordance with a predetermined communication protocol.
  • the outdoor unit I/F 205 sends data received from each device to the control device 200, and transmits data received from the control device 200 to each device.
  • the control device 200 includes an operation panel 232.
  • An operator is provided on the operation panel 232.
  • the control device 200 transmits a signal to the outdoor unit 110 to switch the operation mode of the refrigeration system 101 from the first operation mode to the second operation mode.
  • the control device 200 switches to and executes one of three second operation modes, a refrigerant recovery/vacuum drawing mode, a refrigerant charging mode, and an adjustment operation mode, in accordance with the operation of the operation panel 232.
  • the control device 200 is provided with a display panel 234.
  • the display panel 234 displays a predetermined screen in accordance with a signal transmitted from the outdoor unit 110.
  • the display panel 234 can display, for example, an operating status when the first operation mode or the second operation mode is executed, or the presence or absence of a malfunction in each part of the refrigeration system 101, and notify an operator of the same.
  • the control device 200 corresponds to a "control unit” in this disclosure.
  • the operation panel 232 corresponds to an "operation unit” in this disclosure.
  • the display panel 234 corresponds to a "display unit" in this disclosure.
  • the indoor unit 120 includes an indoor unit control device 210 and an indoor unit I/F 215.
  • the indoor unit control device 210 includes an indoor unit control unit 211 and an indoor unit memory unit 213.
  • the indoor unit control unit 211 is a processor such as a CPU or an MPU, similar to the control unit 201.
  • the indoor unit control unit 211 controls various devices such as the blower 128 mounted in the indoor unit 120 by operating according to a computer program stored in the indoor unit storage unit 213.
  • the indoor unit control unit 211 also receives output signals from various sensors mounted in the indoor unit 120, such as the space temperature sensor 127.
  • the indoor unit storage unit 213, like the storage unit 203, has storage devices such as RAM and ROM, and stores computer programs and the like used for various operations of the indoor unit 120.
  • the indoor unit I/F 215 includes communication hardware such as a communication interface circuit and connectors that allow the indoor unit 120 to communicate with each device.
  • the indoor unit I/F 215 sends data received from the space temperature sensor 127 and each device to the indoor unit control device 210, and also transmits data received from the indoor unit control device 210 to each device.
  • the refrigeration equipment 130 includes a refrigeration equipment control device 220 and a refrigeration equipment I/F 225.
  • the refrigeration equipment control device 220 includes a refrigeration equipment control unit 221 and a refrigeration equipment memory unit 223.
  • the refrigeration equipment control unit 221 is a processor such as a CPU or an MPU, similar to the control unit 201.
  • the refrigeration equipment control unit 221 controls various devices such as the blower 138 mounted on the refrigeration equipment 130 by operating according to a computer program stored in the refrigeration equipment storage unit 223.
  • the refrigeration equipment control unit 221 also receives output signals from various sensors mounted on the refrigeration equipment 130, such as the inside temperature sensor 137.
  • the refrigeration equipment storage unit 223, like the storage unit 203, has storage devices such as RAM and ROM, and stores computer programs and the like used for various operations of the refrigeration equipment 130.
  • the refrigeration equipment I/F 225 includes communication hardware such as a communication interface circuit and connectors that allow the refrigeration equipment 130 to communicate with each device.
  • the refrigeration equipment I/F 225 sends data received from the internal temperature sensor 137 and each device to the refrigeration equipment control device 220, and also transmits data received from the refrigeration equipment control device 220 to each device.
  • the operation control unit 201a and the determination unit 201b may be provided not only in the control unit 201 but also in the indoor unit control unit 211 or the cooling equipment control unit 221.
  • the operation control unit 201a and the determination unit 201b may be provided by a processor provided in another location of the refrigeration system 101.
  • the operation control unit 201a and the determination unit 201b may be provided by a processor provided in a server device or the like provided outside the refrigeration system 101.
  • a server device may be capable of controlling each part of the refrigeration system 101 via a network consisting of, for example, a public line network, a dedicated line, other communication lines, and various communication facilities.
  • the outdoor heat exchanger 115 is used as a gas cooler or a radiator, and the indoor heat exchanger 122 and the cold-setting heat exchanger 132 are used as evaporators.
  • the control device 200 opens the first cooling valve 151 and closes the remaining first heating valve 152 and the outdoor refrigerant return valve 153.
  • the control device 200 opens the throttling mechanism 155 and closes the refrigerant return expansion mechanism 158.
  • the refrigerant that has passed through the oil separator 114 is sent through the first cooling valve 151 of the first switching mechanism 150 to the outdoor heat exchanger 115, where it exchanges heat with outside air.
  • the refrigerant after heat exchange is sent from connection part A of second switching mechanism 154 via throttling mechanism 155 to gas-liquid separator 116.
  • the liquid refrigerant separated in gas-liquid separator 116 passes through piping 177, is heat exchanged with gas refrigerant in internal heat exchanger 164, and then reaches connection part B of second switching mechanism 154.
  • One of the refrigerants branched at connection part B is sent through piping 178 to indoor heat exchanger 122 via check valve 159 provided in piping 175 and indoor expansion mechanism 121 of indoor unit 120.
  • the refrigerant exchanges heat with the indoor air to cool the indoor air.
  • the refrigerant that has exchanged heat with the indoor air passes through a pipe 171, and is returned to the suction side of each of the high-stage compressors 112 via an on-off valve 123 and an accumulator 113.
  • connection point B The other refrigerant branched off at connection point B is sent to the refrigeration heat exchanger 132 via the refrigeration inlet expansion mechanism 131 of the refrigeration equipment 130, where it undergoes heat exchange to cool the refrigeration equipment 130.
  • the refrigerant that has undergone heat exchange in the refrigeration heat exchanger 132 is returned to the low-stage compressor 111 via the refrigeration outlet pressure adjustment mechanism 133.
  • the refrigerant discharged from the high-stage compressor 112 and radiating heat while maintaining its high pressure in the outdoor heat exchanger 115 is reduced in pressure by the throttling mechanism 155 to an intermediate pressure and sent to the gas-liquid separator 116.
  • Fig. 7 is a circuit diagram of the refrigeration system 101 showing the operation of the heating mode.
  • the flow of the refrigerant is indicated by arrows in the drawing, and the refrigerant pipes through which the refrigerant flows are indicated by thick lines.
  • the heating operation is performed by using the indoor heat exchanger 122 as a gas cooler or a radiator, and the cold-use heat exchanger 132 as an evaporator.
  • the control device 200 opens the first heating valve 152 and closes the remaining first cooling valve 151 and the outdoor refrigerant return valve 153.
  • the control device 200 closes the throttling mechanism 155 and the refrigerant return expansion mechanism 158.
  • the refrigerant compressed by the low-stage compressor 111 is sent to each high-stage compressor 112, further compressed by each of the high-stage compressors 112, and discharged toward the oil separator 114.
  • the refrigerant that has passed through the oil separator 114 passes through the first heating valve 152 of the first switching mechanism 150 and is sent to the indoor heat exchanger 122, where it exchanges heat with the indoor air, heating the indoor air.
  • the refrigerant that has exchanged heat in the indoor heat exchanger 122 passes through the indoor expansion mechanism 121, reaches connection C of the second switching mechanism 154, and is sent to the gas-liquid separator 116 via the check valve 159 and throttling mechanism 155 provided in the piping 176.
  • the refrigerant separated in the gas-liquid separator 116 passes through the piping 177, reaches connection B of the second switching mechanism 154, and is sent to the cold-setting heat exchanger 132 via the cold-setting inlet expansion mechanism 131. This refrigerant exchanges heat in the cold-setting heat exchanger 132, and cools the cold-setting equipment 130.
  • the refrigerant that has exchanged heat in the cold-setting heat exchanger 132 passes through a pipe 172 and is returned to the suction side of the low-stage compressor 111 via the cold-setting outlet side pressure adjustment mechanism 133 .
  • the indoor heat exchanger 122 functions as a gas cooler or a radiator, and the outdoor heat exchanger 115 is not used. That is, the refrigeration system 101 can operate without using the outdoor heat exchanger 115 by performing heat exchange in the cold-installed heat exchanger 132 using the refrigerant whose heat is radiated in the indoor heat exchanger 122.
  • liquid refrigerant flows only through the cooling equipment 130, and therefore the opening degree of the gas refrigerant flow control valve 161 is smaller than during cooling operation.
  • FIG. 8 is a circuit diagram of the refrigeration system 101 showing the heating operation when the amount of heat exhausted to the cooling equipment 130 is insufficient.
  • the control device 200 opens the first heating valve 152, the outdoor refrigerant return valve 153, and the refrigerant return expansion mechanism 158, and closes the first cooling valve 151 and the throttling mechanism 155.
  • the refrigerant compressed by the low-stage compressor 111 is sent to each high-stage compressor 112, further compressed by each high-stage compressor 112, and discharged toward the oil separator 114.
  • the refrigerant that has passed through the oil separator 114 is sent to the indoor heat exchanger 122 through the first heating valve 152, where it exchanges heat with indoor air to heat the indoor air.
  • the refrigerant that has exchanged heat in the indoor heat exchanger 122 is sent to the gas-liquid separator 116 via a check valve 159 provided in the piping 176, and then sent to the refrigeration heat exchanger 132 via the refrigeration inlet side expansion mechanism 131.
  • the refrigerant exchanges heat in the refrigeration heat exchanger 132, cooling the refrigeration equipment 130, and the refrigerant that has exchanged heat in the refrigeration heat exchanger 132 is adjusted via the refrigeration outlet side pressure adjustment mechanism 133 so that its pressure is the same as that of the refrigerant sent from the first outdoor return piping 142, and is returned to the low-stage compressor 111. This is the operation when the outside air temperature is lower than the temperature inside the refrigeration equipment 130.
  • a portion of the refrigerant from the gas-liquid separator 116 is sent to the outdoor heat exchanger 115 via a refrigerant return expansion mechanism 158 , and is returned to the low-stage compressor 111 after heat exchange in the outdoor heat exchanger 115 .
  • This allows the exhaust heat from the cooling heat exchanger 132 and the heat pumped up by the outdoor heat exchanger 115 to be used as heat for the indoor heat exchanger 122, thereby increasing the heating capacity when the amount of heat exhausted to the cooling equipment 130 is insufficient.
  • the outdoor air temperature becomes lower than the temperature inside the cooling equipment 130
  • the evaporation temperature of the cooling equipment 130 is lowered, there is a risk that the temperature will become lower than the set temperature of the cooling equipment 130. Therefore, in this embodiment, by controlling the opening degree of the cooling outlet side pressure adjustment mechanism 133, the pressure can be balanced with the refrigerant sent from the outdoor heat exchanger 115, and a decrease in the evaporation temperature of the cooling equipment 130 can be suppressed.
  • FIG. 9 is a circuit diagram of the refrigeration system 101 showing a heating operation when a large capacity is required in the cooling equipment 130 but a heating heat quantity is not required.
  • the control device 200 opens the first cooling valve 151, the throttling mechanism 155, the first heating valve 152, and the check valve 159 provided in the piping 176, and closes the refrigerant return valve and the check valve 159 provided in the piping 175.
  • the refrigerant compressed by the low-stage compressor 111 is sent to each high-stage compressor 112, further compressed by each high-stage compressor 112, and discharged toward the oil separator 114.
  • the refrigerant that has passed through the oil separator 114 is sent to the outdoor heat exchanger 115 through the first cooling valve 151, where it exchanges heat with outside air.
  • the refrigerant after heat exchange is sent to the gas-liquid separator 116 via a throttling mechanism 155 .
  • the refrigerant that has passed through the oil separator 114 is sent to the indoor heat exchanger 122 through the first heating valve 152, where it exchanges heat with indoor air to heat the indoor air.
  • the refrigerant that has exchanged heat in the indoor heat exchanger 122 is combined with the refrigerant sent from the outdoor heat exchanger 115 via a check valve 159 provided in the pipe 176 , and is sent to the gas-liquid separator 116 .
  • the refrigerant from the gas-liquid separator 116 is sent to the refrigeration heat exchanger 132 via an inlet expansion mechanism for the refrigeration equipment 130. Heat exchange is performed in the refrigeration heat exchanger 132 to cool the refrigeration equipment 130, and the refrigerant that has undergone heat exchange in the refrigeration heat exchanger 132 is returned to the low-stage compressor 111 via a refrigeration outlet pressure adjustment mechanism 133. On the other hand, a portion of the refrigerant from the gas-liquid separator 116 is sent to the outdoor heat exchanger 115 via a refrigerant return expansion mechanism 158 , and is returned to the low-stage compressor 111 after heat exchange in the outdoor heat exchanger 115 .
  • the exhaust heat from the cooling equipment 130 can be dissipated by the outdoor heat exchanger 115 and the indoor heat exchanger 122, thereby increasing the cooling capacity of the cooling equipment 130 and making it possible to remove frost that has adhered to the outdoor heat exchanger 115.
  • the usage state of the outdoor heat exchanger 115 can be switched between a state in which it is not used, a state in which it is used as an evaporator, and a state in which it is used as a condenser, depending on the load on the indoor unit 120 and the cooling equipment 130. Therefore, in the refrigeration system 101, stable heating operation can be performed depending on the load on the indoor unit 120 and the cooling equipment 130.
  • Fig. 10 is a ph diagram showing the state of the refrigerant in the refrigeration circuit 102.
  • the vertical axis p represents pressure (MPa)
  • the horizontal axis h represents enthalpy (kJ/kg).
  • the refrigerant of the refrigeration system 101 when performing cooling operation will be described.
  • the refrigerant On the suction side of the low-stage compressor 111, the refrigerant is located at point P1 in Fig. 10.
  • the refrigerant is evaporated in the cold-installed heat exchanger 132, and is a gas refrigerant at point P1.
  • the pressure at point P1 will be referred to as the low pressure.
  • the refrigerant When the low-pressure refrigerant is sucked into the low-stage compressor 111 and adiabatically compressed, the refrigerant is positioned at point P2 in Fig. 10.
  • the pressure at point P2 will be referred to as the medium pressure in the following description.
  • the differential pressure between the low pressure and the medium pressure is, for example, 1.0 MPa.
  • This refrigerant is mixed with the refrigerant evaporated in the indoor heat exchanger 122 and the gas refrigerant flowing through the gas refrigerant return pipe 160.
  • the mixed refrigerants are maintained at a medium pressure while decreasing in temperature, and reach a state located at point P3 in FIG.
  • the refrigerant in a state where it is positioned at point P3 is adiabatically compressed, the refrigerant reaches a state where it is positioned at point P4 in Fig. 10.
  • the pressure at point P4 will hereinafter be referred to as the high pressure.
  • this refrigerant is discharged from the high-stage compressor 112, heat is dissipated in the outdoor heat exchanger 115 while the pressure is kept high. As a result, the refrigerant reaches a state located at point P5 in FIG.
  • the refrigerant at point P5 is decompressed by the throttling mechanism 155, and reaches point P6 in FIG. 10.
  • the refrigerant has a pressure value higher than the medium pressure.
  • the pressure at point P2 will be referred to as the medium pressure below.
  • the pressure difference between the medium pressure and the medium pressure is, for example, 0.5 MPa.
  • the refrigerant in a state positioned at point P6 is separated into liquid refrigerant and gas refrigerant by the gas-liquid separator 116.
  • the gas refrigerant is discharged from the gas-liquid separator 116 via the gas refrigerant return pipe 160.
  • the liquid refrigerant is cooled to the state of point P7 on the saturated liquid line, as shown in FIG.
  • the gas refrigerant return pipe 160 is connected to the suction side of the high-stage compressor 112. That is, the gas refrigerant is sucked by the high-stage compressor 112 and discharged from the gas-liquid separator 116.
  • the liquid refrigerant stored in the gas-liquid separator 116 is cooled to a state of point P7 on the saturated liquid line.
  • the refrigeration system 101 includes one low stage compressor 111 and two high stage compressors 112. That is, in the refrigeration system 101, the capacity of the high stage compressor 112 is larger than that of the low stage compressor 111.
  • the refrigeration system 101 can cool the liquid refrigerant in the gas-liquid separator 116 to a state of point P7 on the saturated liquid line even when the outside air temperature of the conditioned space or the cooling equipment 130 is high, for example, in summer. In this manner, the refrigeration system 101 can stably perform the first operation mode even when the ambient temperature of the utilization side heat exchanger is high.
  • the liquid refrigerant exchanges heat with the gas refrigerant in the internal heat exchanger 164, and reaches a state located at point P8 in FIG. 10. At point P8, the liquid refrigerant is in a subcooled state.
  • the gas refrigerant that has exchanged heat with the liquid refrigerant in the internal heat exchanger 164 reaches a state located at point P11 in FIG. 10.
  • the liquid refrigerant flowing out from the internal heat exchanger 164 branches off at connection point B and flows to the indoor unit 120 and the cooling equipment 130.
  • the liquid refrigerant flowing into the indoor unit 120 is decompressed to medium pressure by the indoor expansion mechanism 121, and reaches a state located at point P9 in FIG. 10. After this, the liquid refrigerant flowing into the indoor unit 120 evaporates in the indoor heat exchanger 122, and reaches a state located at point P3 in FIG. 10.
  • the refrigerant flows out from the indoor unit 120 and is sent to the suction side of the high-stage compressor 112.
  • the gas refrigerant flowing out from the internal heat exchanger 164 is also sent to the suction side of the high-stage compressor 112.
  • a refrigeration system 101 of the present embodiment is a system that performs a two-stage compression, two-stage expansion cycle by including a refrigeration circuit 102 .
  • the inlet side of the indoor heat exchanger 122 becomes a medium pressure and the outlet side of the indoor heat exchanger 122 becomes an intermediate pressure. That is, in the refrigeration system 101, it is possible to generate a refrigerant pressure difference between the inlet side and the outlet side of the indoor expansion mechanism 121 in the refrigeration circuit 102.
  • the refrigerant pressure is adjusted by the throttling mechanism 155, the indoor expansion mechanism 121, and the gas refrigerant flow control valve 161, and the refrigerant temperature is adjusted by the gas-liquid separator 116, so that the refrigerant state changes shown in FIG. 10 can be stably performed. Therefore, in the refrigeration system 101, the refrigerant pressure and temperature can be adjusted according to the load on the indoor unit 120 and the cooling equipment 130 due to the outside air temperature, etc., and stable operation can be performed.
  • the liquid refrigerant separated in the gas-liquid separator 116 exchanges heat with the gas refrigerant in the internal heat exchanger 164. This causes the liquid refrigerant sent to the indoor unit 120 and the cooling equipment 130 to be supercooled. Therefore, even if the temperature of the liquid refrigerant fluctuates due to external heat radiation or heat capacity of the gas-liquid separator 116, or fluctuations in the operating load of the refrigeration system 101, the liquid refrigerant is prevented from rising to a temperature at which flash gas is generated, for example. And, in the refrigeration system 101, it is possible to achieve stable evaporation of the refrigerant in the indoor heat exchanger 122 and the cooling heat exchanger 132.
  • a portion of the liquid refrigerant that has been heat exchanged with the gas refrigerant in the internal heat exchanger 164 is mixed with the gas refrigerant before heat exchange with the liquid refrigerant via the connecting pipe 166.
  • heat exchange occurs between the liquid refrigerant and the mixed refrigerant of the liquid refrigerant and gas refrigerant that has been cooled by heat exchange with the gas refrigerant in the internal heat exchanger 164.
  • the degree of subcooling of the liquid refrigerant is increased in the internal heat exchanger 164, and the operating efficiency of the refrigeration system 101 can be improved.
  • FIG. 11 is a flow chart showing the operation of the refrigeration system 101. Next, the operation relating to pressure control of the refrigeration system 101 during cooling operation will be described. 11, the determination unit 201b acquires a detection value of the refrigerant pressure sensor 180 provided on the discharge side of the indoor heat exchanger 122 and a detection value of the refrigerant pressure sensor 180 provided on the discharge side of the cold-installed heat exchanger 132. The determination unit 201b calculates a differential pressure between the medium pressure and the low pressure from these acquired detection values. The determination unit 201b compares the calculated value with data of a reference pressure value included in the setting data 203a stored in the memory unit 203 (step SA1).
  • the determination unit 201b acquires the detection value of the refrigerant pressure sensor 180 provided in the pipe 177 through which the liquid refrigerant discharged from the gas-liquid separator 116 flows.
  • the determination unit 201b calculates the pressure difference between the intermediate pressure and the intermediate pressure from the detection value and the detection value of the refrigerant pressure sensor 180 provided on the discharge side of the indoor heat exchanger 122.
  • the determination unit 201b then compares the calculated value with the data of the reference pressure value included in the setting data 203a stored in the memory unit 203 (step SA2).
  • step SA3 If the calculated value is greater than the reference pressure value included in the setting data 203a stored in the memory unit 203 (step SA2: YES), the operation control unit 201a drives each of the compressors and the fans 118, 28, and 38 so that the temperature reaches the setting temperature of the indoor unit 120 (step SA3).
  • step SA1 if the calculated pressure difference between the medium pressure and the low pressure is equal to or less than the reference pressure value included in the setting data 203a stored in the memory unit 203 (step SA1: NO), the operation control unit 201a adjusts the opening degree of the gas refrigerant flow control valve 161 and the throttling mechanism 155 to increase the medium pressure (step SA4).
  • the intermediate pressure increases by increasing the opening degree of the throttling mechanism 155 or decreasing the opening degree of the gas refrigerant flow control valve 161.
  • the determination unit 201b acquires the detection value of the refrigerant pressure sensor 180 provided on the discharge side of the indoor heat exchanger 122 and the detection value of the refrigerant pressure sensor 180 provided on the discharge side of the cold-air heat exchanger 132.
  • the determination unit 201b calculates the differential pressure between the medium pressure and the low pressure from these acquired detection values, and compares this calculated value with the data of the reference pressure value included in the setting data 203a stored in the memory unit 203 (step SA5).
  • step SA5 NO
  • step SA4 the operation control unit 201a performs step SA4 again. If both calculated values of the pressure difference between the medium pressure and the low pressure are greater than the reference pressure value included in the setting data 203a stored in the memory unit 203 (step SA1: YES), the determination unit 201b performs step SA2.
  • an internal heat exchanger 164 is provided to exchange heat between the liquid refrigerant flowing from the gas-liquid separator 116 to the indoor heat exchanger 122 and the cold-installed heat exchanger 132 and the gas refrigerant discharged from the gas-liquid separator 116. Furthermore, the gas refrigerant discharged from the gas-liquid separator 116 is mixed with a portion of the liquid refrigerant that has exchanged heat with the gas refrigerant discharged from the gas-liquid separator 116 in the internal heat exchanger 164 via the connecting piping 166. As a result, in the refrigeration system 101, the liquid refrigerant becomes colder, improving the refrigeration capacity of the indoor unit 120 through which the liquid refrigerant flows.
  • the refrigeration system 101 When the set temperature of the indoor unit 120 is higher than a predetermined value relative to the temperature of the liquid refrigerant, the refrigeration system 101 reduces the opening of the indoor expansion mechanism 121 to restrict the flow rate of the liquid refrigerant flowing to the indoor unit 120. As a result, the refrigeration system 101 reduces the intermediate pressure, which is the pressure of the refrigerant flowing out of the indoor heat exchanger 122, in other words, the pressure of the refrigerant sucked into each of the high-stage compressors 112.
  • step SA2 if the calculated pressure difference between the medium pressure and the intermediate pressure is less than the reference pressure value included in the setting data 203a stored in the memory unit 203 (step SA2: NO), the operation control unit 201a reduces the rotation frequency of the high-stage compressor 112 (step SA6).
  • the determination unit 201b determines whether the reduced rotational frequency of the high-stage compressor 112 is greater than a specified value included in the setting data 203a stored in the memory unit 203 (step SA7).
  • step SA7 If the rotation frequency is greater than the specified value (step SA7: YES), the determination unit 201b again acquires the detection value of the refrigerant pressure sensor 180 provided in the pipe 177 through which the liquid refrigerant discharged from the gas-liquid separator 116 flows.
  • the determination unit 201b calculates the pressure difference between the medium pressure and the intermediate pressure from the detection value and the detection value of the refrigerant pressure sensor 180 provided on the discharge side of the indoor heat exchanger 122.
  • the determination unit 201b compares the calculated value with the reference pressure value data included in the setting data 203a stored in the memory unit 203 (step SA8).
  • step SA8 If the calculated value is greater than the reference pressure value included in the setting data 203a stored in the memory unit 203 (step SA8: YES), the operation control unit 201a drives each of the compressors and the fans 118, 28, and 38 so that the temperature reaches the setting temperature of the indoor unit 120 (step SA3).
  • step SA8 NO
  • the operation control unit 201a again reduces the rotation frequency of the high-stage compressor 112 (step SA6).
  • step SA7 If the rotational frequency of the high-stage compressor 112 is lower than the specified value in step SA7 (step SA7: YES), the operation control unit 201a reduces the opening of the liquid refrigerant flow control valve 165 (step SA9). After this, the operation control unit 201a drives each of the compressors and the fans 118, 28, and 38 so that the temperature of the indoor unit 120 becomes the set temperature (step SA3).
  • the refrigeration system 101 by controlling the rotational frequency of the high-stage compressor 112, it is possible to maintain the pressure difference between the medium pressure and the low pressure at or below a predetermined value. This makes it possible for the refrigeration system 101 to improve the refrigeration efficiency of the indoor unit 120 while suppressing the input to the high-stage compressor 112. Therefore, in the refrigeration system 101, it is possible to improve the efficiency of cooling operation while saving energy.
  • the refrigeration system 101 reduces the opening of the liquid refrigerant flow control valve 165 when the rotation frequency becomes smaller than a specified value.
  • the flow rate at which the liquid refrigerant that has exchanged heat with the gas refrigerant discharged from the gas-liquid separator 116 in the internal heat exchanger 164 is mixed with the gas refrigerant discharged from the gas-liquid separator 116 is suppressed.
  • the flow rate of the liquid refrigerant sent to the indoor unit 120 is reduced, and a decrease in the intermediate pressure is suppressed.
  • the operation of each of the high stage compressors 112 is suppressed from being stopped.
  • the refrigerant discharged from the high-stage compressor 112 and radiating heat while maintaining its pressure at high pressure in the outdoor heat exchanger 115 is reduced in pressure by the throttling mechanism 155 to an intermediate pressure and is sent to the gas-liquid separator 116.
  • the refrigerant discharged from the high-stage compressor 112 dissipates heat while maintaining its pressure at a high pressure in the indoor heat exchanger 122.
  • the refrigerant is reduced in pressure by the indoor expansion mechanism 121 to an intermediate pressure, and is sent to the gas-liquid separator 116.
  • the refrigerant discharged from the high-stage compressor 112 and dissipating heat while maintaining its pressure at high in the outdoor heat exchanger 115 is reduced in pressure by the throttling mechanism 155 to an intermediate pressure and sent to the gas-liquid separator 116.
  • the refrigerant discharged from the high-stage compressor 112 and dissipating heat while maintaining its pressure at high in the indoor heat exchanger 122 is reduced in pressure by the indoor expansion mechanism 121 to an intermediate pressure and sent to the gas-liquid separator 116.
  • the refrigerant discharged from the high-stage compressor 112 and radiating heat while maintaining a high pressure in the indoor heat exchanger 122 is reduced in pressure by the indoor expansion mechanism 121 to an intermediate pressure and sent to the gas-liquid separator 116.
  • a portion of the liquid refrigerant flowing out of the gas-liquid separator 116 is reduced in pressure from the intermediate pressure to a low pressure by the refrigerant return expansion mechanism 158 and sent to the outdoor heat exchanger 115.
  • the refrigeration system 101 is equipped with a first switching mechanism 150. This allows the refrigeration system 101 to switch between cooling operation and heating operation.
  • the refrigeration system 101 can switch between a state in which the outdoor heat exchanger 115 is not used as a condenser and a state in which it is used as a condenser, depending on the amount of heat that is insufficient or excessive.
  • the refrigeration system 101 is equipped with a second switching mechanism 154.
  • the refrigerant discharged from each of the high-stage compressors 112 can be sent to the heat exchanger functioning as an evaporator via the gas-liquid separator 116. This allows the refrigeration system 101 to increase its refrigeration capacity.
  • the refrigerant sent out from each of the high-stage compressors 112 flows into the gas-liquid separator 116 by the second switching mechanism 154, and then is flowed to the indoor heat exchanger 122 and the cold-setting heat exchanger 132.
  • the refrigerant sent out from each of the high-stage compressors 112 flows into the gas-liquid separator 116 by the second switching mechanism 154, and is then directed to the cooling heat exchanger 132 or the outdoor heat exchanger 115 depending on the amount of heating heat required.
  • the refrigeration system 101 can switch the state of the outdoor heat exchanger 115 between a state in which it is not used, a state in which it is used as a condenser, and a state in which it is used as an evaporator, depending on the surplus or deficiency of the amount of heat during heating operation.
  • the refrigeration system 101 can adjust the surplus or deficiency of the amount of heating heat in the indoor unit 120 by switching the state of the outdoor heat exchanger, using the cooling exhaust heat of the cooling heat exchanger 132.
  • the refrigeration system 101 can increase the refrigeration capacity and adjust the amount of heating heat to be insufficient or excessive, while suppressing an increase in the number of valve bodies and opening/closing devices to be controlled.
  • the refrigeration system 101 can increase the refrigeration capacity and adjust the amount of heating heat to be insufficient or excessive, using the refrigeration circuit 102 with a simple configuration.
  • FIG. 12 is a circuit diagram showing the refrigeration circuit 102 of the refrigeration system 101 during the refrigerant recovery and vacuum drawing operation. Next, the operation relating to refrigerant recovery will be described. 12 , when an operator performs a refrigerant recovery/vacuuming operation on refrigeration system 101, first, refrigerant recovery device 150 or vacuuming unit 152 is connected to external connection port 196 of service valve 190 via connection piping 156. External connection port 196 is released by the operator after connection piping 156 is connected.
  • the operator operates the operation panel 232 to select the refrigerant recovery/vacuum drawing mode.
  • This causes a specified signal to be sent from the operation panel 232 to the control device 200.
  • the control unit 201 receives this signal, it opens all opening and closing devices provided in the refrigeration system 101 fully.
  • the control device 200 displays a screen on the display panel 234 indicating that the refrigeration system 101 is operating in the refrigerant recovery/vacuum drawing mode.
  • the operator then drives the refrigerant recovery device 150 or the vacuum drawing unit 152 to recover the refrigerant from the refrigeration circuit 102.
  • FIG. 13 is a circuit diagram showing the refrigeration circuit 102 of the refrigeration system 101 during the refrigerant charging operation. Next, the operation relating to charging of the refrigerant will be described. 13, when an operator performs a refrigerant charging operation on the refrigeration system 101, the refrigerant charging unit 154 is first connected to the external connection port 196 of the service valve 190 via the connection pipe 156. After the connection pipe 156 is connected, the external connection port 196 is released by the operator.
  • the operator operates the operation panel 232 to select the refrigerant charging mode.
  • This causes a predetermined signal to be sent from the operation panel 232 to the control device 200.
  • the control unit 201 Upon receiving the signal, the control unit 201 fully closes each of the first cooling valve 151, the first heating valve 152, the outdoor refrigerant return valve 153, the opening/closing valve 123, the throttling mechanism 155, the refrigerant return expansion mechanism 158, the gas refrigerant flow control valve 161, the liquid refrigerant flow control valve 165, the indoor expansion mechanism 121, and the cooling outlet side pressure adjustment mechanism 133.
  • the control unit 201 Upon receiving the signal, the control unit 201 fully opens each of the check valves 159 provided on the pipes 175 and 76 and the cooling inlet side expansion mechanism 131. Upon completing the control of these opening/closing devices, the control device 200 displays a screen on the display panel 234 indicating that the refrigeration system 101 is performing the refrigerant charging mode. Thereafter, the operator drives the refrigerant charging unit 154 to send the refrigerant to the refrigeration circuit 102 . As a result, in the refrigeration circuit 102 , the refrigerant is stored in the cold-installed heat exchanger 132 and the gas-liquid separator 116 .
  • FIG. 14 is a circuit diagram showing the refrigeration circuit 102 of the refrigeration system 101 in the regulated operation.
  • the external connection port 196 is closed by an operator as shown in FIG.
  • the operator operates the operation panel 232 to select the adjustment operation mode. This causes a predetermined signal to be sent from the operation panel 232 to the control device 200.
  • the control unit 201 Upon receiving the signal, the control unit 201 fully closes each of the first heating valve 152, the outdoor refrigerant return valve 153, the refrigerant return expansion mechanism 158, the check valve 159 provided in the piping 176, and the cooling outlet side pressure adjustment mechanism 133.
  • the control unit 201 Upon receiving the signal, the control unit 201 fully opens each of the first cooling valve 151, the opening/closing valve 123, the throttling mechanism 155, the check valve 159 provided in the piping 176, the gas refrigerant flow control valve 161, the liquid refrigerant flow control valve 165, the indoor expansion mechanism 121, and the cooling inlet side expansion mechanism 131. Upon completing the control of these opening/closing devices, the control device 200 displays a screen on the display panel 234 indicating that the refrigeration system 101 is performing the adjustment operation mode. After this, the worker drives each of the high stage compressors 112 and the indoor unit 120 while stopping the cooling equipment 130 and the low stage compressor 111.
  • the refrigeration system 101 includes a refrigeration circuit 102 connecting an outdoor unit 110 having a plurality of compressors, an outdoor heat exchanger 115, and a gas-liquid separator 116, an indoor unit 120 having an indoor heat exchanger 122, and a refrigeration equipment 130 having a refrigeration heat exchanger 132.
  • the multiple compressors are composed of a low-stage compressor 111 and a high-stage compressor 112, and the indoor heat exchanger 122, which has a high evaporation temperature of the refrigerant, is connected to the high-stage compressor 112, and the cold-air heat exchanger 132, which has a low evaporation temperature of the refrigerant, is connected to the low-stage compressor 111.
  • the refrigeration circuit 102 includes a second switching mechanism 154 that causes the refrigerant discharged from the high-stage compressor 112 and flowing through at least one of the outdoor heat exchanger 115 and the indoor heat exchanger 122 to flow to the gas-liquid separator 116.
  • a throttling mechanism 155 that adjusts the pressure of the refrigerant, and an indoor expansion mechanism 121 are provided between the outdoor heat exchanger 115, the indoor heat exchanger 122, and the gas-liquid separator 116.
  • the refrigeration circuit 102 is formed with a simple configuration, and the refrigerant can be sent to the evaporator via the gas-liquid separator 116 whether the cooling operation is being performed or the heating operation is being performed. Therefore, the refrigeration system 101 can improve the refrigeration capacity with a simple circuit configuration.
  • the second switching mechanism 154 includes pipes 173 to 76 that connect the outdoor heat exchanger 115, the indoor heat exchanger 122, the cold-installed heat exchanger 132, and the gas-liquid separator 116 to one another.
  • Each of the pipes 173 to 76 may be provided with a throttling mechanism 155 that adjusts the flow of the refrigerant, a refrigerant return expansion mechanism 158, and a check valve 159.
  • the refrigerant that is heat exchanged by the gas-liquid separator 116 can be sent to any one of the outdoor heat exchanger 115, the indoor heat exchanger 122, and the cold-air heat exchanger 132 depending on the operation of the indoor unit 120 and the cold-air equipment 130. Therefore, the refrigeration system 101 can increase the refrigeration capacity of the indoor unit 120 and the cold-air equipment 130.
  • the second switching mechanism 154 may include a check valve 159 and a throttle mechanism 155 as a valve body.
  • the refrigerant that is heat exchanged by the gas-liquid separator 116 can be sent to any one of the outdoor heat exchanger 115, the indoor heat exchanger 122, and the cold-air heat exchanger 132 depending on the operation of the indoor unit 120 and the cold-air equipment 130. Therefore, the refrigeration system 101 can increase the refrigeration capacity of the indoor unit 120 and the cold-air equipment 130.
  • the first switching mechanism 150 may be a mechanism that switches between any of a flow path through which the refrigerant discharged from the high-stage compressor 112 flows to the outdoor heat exchanger 115, a flow path through which the refrigerant discharged from the high-stage compressor 112 flows to the indoor heat exchanger 122, and a flow path through which the refrigerant discharged from the high-stage compressor 112 flows to both the outdoor heat exchanger 115 and the indoor heat exchanger 122.
  • This allows the refrigeration system 101 to include a more simply configured refrigeration circuit 102.
  • operation can be switched without stopping the compressor.
  • the first switching mechanism 150 may be provided with a first cooling valve 151 located between the discharge side of the high-stage compressor 112 and the outdoor heat exchanger 115, and an outdoor refrigerant return valve 153 located downstream of the first cooling valve 151 and between the discharge side of the high-stage compressor 112 and the suction side of the low-stage compressor 111.
  • the refrigeration system 101 can switch between any one of a flow path in which the refrigerant discharged from the high-stage compressor 112 flows to the outdoor heat exchanger 115, a flow path in which the refrigerant discharged from the high-stage compressor 112 flows to the indoor heat exchanger 122, and a flow path in which the refrigerant discharged from the high-stage compressor 112 flows to both the outdoor heat exchanger 115 and the indoor heat exchanger 122. Therefore, the refrigeration system 101 can be provided with a refrigeration circuit 102 with a simpler configuration.
  • the refrigeration system 101 includes a control device 200 that controls each part of the refrigeration circuit 102.
  • the control device 200 includes an operation panel 232 that can be operated by an operator.
  • the control device 200 includes, as operation modes of the refrigeration circuit 102, a first operation mode in which the refrigerant flowing through the indoor heat exchanger 122 and the cold-setting heat exchanger 132 is adjusted to a predetermined temperature, and a second operation mode in which an operation is performed in accordance with the operation of an external device connected to the refrigeration circuit 102.
  • the control device 200 may switch between the first operation mode and the second operation mode in accordance with an operation on the operation panel 232.
  • control device 200 may be provided with a plurality of second operating modes, and may switch between each of the second operating modes in accordance with an operation on the operation panel 232 .
  • an operator can perform tasks related to refrigerant recovery, vacuuming, and refrigerant charging by operating the operation panel 232.
  • an operator can easily perform tasks related to refrigerant recovery, vacuuming, and refrigerant charging.
  • control device 200 may include a display panel 234 that displays the state of the refrigeration circuit 102 in each of the operation modes.
  • a display panel 234 that displays the state of the refrigeration circuit 102 in each of the operation modes.
  • a service valve 190 to which an external device can be connected may be provided between the cold-installed heat exchanger 132 and the suction side of the low-stage compressor 111 .
  • the service valve 190 is provided at a location close to a connection location between the outdoor unit 110 and the cooling equipment 130. Therefore, in the refrigeration system 101, it is possible to improve the workability when connecting an external device to the refrigeration system 101.
  • the first and second embodiments have been described as examples of the technology disclosed in this application.
  • the technology in this disclosure is not limited to these, and can be applied to embodiments in which modifications, substitutions, additions, omissions, etc. are made.
  • the refrigeration system 101 is provided with the connection pipe 166, but the connection pipe 166 may be omitted.
  • the cooling-use outlet-side pressure adjustment mechanism 133 and the service valve 190 are provided in the cooling equipment 130.
  • the cooling-use outlet-side pressure adjustment mechanism 133 and the service valve 190 may be provided in the outdoor unit 110.
  • the cooling-use outlet-side pressure adjustment mechanism 133 and the service valve 190 may be provided in the piping 172 between the outdoor unit 110 and the cooling equipment 130.
  • the refrigeration system 101 includes one indoor heat exchanger 122 and one cold-use heat exchanger 132.
  • the present invention is not limited to this, and the refrigeration system 101 may include another cold-use heat exchanger 132 instead of the indoor heat exchanger 122. That is, in this refrigeration system 101, the indoor unit 120 may be omitted, and a plurality of cold-use devices 130 may be included. In this case, the multiple cold-set heat exchangers 132 have different evaporation temperature zones.
  • the cold-set heat exchanger 132 having a higher evaporation temperature zone is connected to the inlet side of the high-stage compressor 112, and the cold-set heat exchanger 132 having a lower evaporation temperature zone is connected to the inlet side of the low-stage compressor 111.
  • the refrigeration heat exchanger 132 in the refrigeration equipment 130 set to the refrigeration temperature zone is connected to the inlet side of the high-stage compressor 112.
  • the refrigeration heat exchanger 132 is connected to the inlet side of the low-stage compressor 111.
  • the utilization side heat exchangers connected to the inlet side of the high-stage compressor 112 may be arranged in parallel in multiple locations on the pipes 178 and 171.
  • the utilization side heat exchangers connected to the inlet side of the low-stage compressor 111 may be arranged in parallel in multiple locations on the pipes 177 and 172.
  • multiple indoor heat exchangers 122 may be provided in parallel to each other in the pipes 178 and 171.
  • an indoor expansion mechanism 121 may be provided on the inlet side of each of the indoor heat exchangers 122.
  • the refrigeration system 101 includes multiple indoor units 120.
  • one or more indoor heat exchangers 122 and one or more cold-use heat exchangers 132 may be provided in parallel in the pipes 178 and 171.
  • Plural cold-use heat exchangers 132 may be provided in parallel to each other in the pipes 177 and 172.
  • a cold-use inlet expansion mechanism 131 may be provided on the inlet side of each of the cold-use heat exchangers 132.
  • at least one of the cold-use heat exchangers 132 provided in parallel to each other in the pipes 177 and 172 may have a different evaporation temperature range from the other cold-use heat exchangers 132.
  • the control device 200 may include a touch panel that combines the functions of the operation panel 232 and the display panel 234 . Furthermore, for example, the control device 200 may be provided in either the indoor unit 120 or the cooling equipment 130. Furthermore, for example, either the operation panel 232 or the display panel 234 may be provided integrally in either the outdoor unit 110, the indoor unit 120, or the cooling equipment 130. Furthermore, for example, the control device 200 may be provided integrally with an operation terminal such as a remote control provided in the indoor unit 120 or the cooling equipment 130. The remote control is a terminal that operates the set temperatures of the indoor unit 120 or the cooling equipment 130, starts the indoor unit 120 or the cooling equipment 130, or the like.
  • control device 200 may be a communication terminal such as a smartphone or tablet on which an app or program that transmits a predetermined signal to the outdoor unit 110 or each part of the refrigeration system 101 is installed.
  • the control device 200 may be capable of communicating with the outdoor unit 110 and each part of the refrigeration system 101 via a network configured of a public line network, a dedicated line, other communication lines, and various communication facilities. The specific form of this network is not limited.
  • the communication network may include at least one of a wireless communication circuit and a wired communication circuit.
  • the control device 200 may be a server device in which an application or program that transmits a predetermined signal to the outdoor unit 110 and each part of the refrigeration system 101 is installed. The server device may be capable of communicating with the outdoor unit 110 and each part of the refrigeration system 101 via the above-mentioned network.
  • the components shown in FIG. 6 are merely examples, and the specific implementation form is not particularly limited. In other words, it is not necessary to implement hardware that corresponds to each component individually, and it is of course possible to implement a configuration in which one processor executes a program to realize the functions of each component. Also, some of the functions realized by software in the above-described embodiment may be hardware, or some of the functions realized by hardware may be software. In addition, the specific detailed configurations of other components such as the outdoor unit 110, indoor unit 120, and cooling equipment 130 may also be changed as desired without departing from the spirit of this disclosure.
  • the step units of the operation shown in FIG. 9 are divided according to the main processing content in order to facilitate understanding of the operation of each part of the refrigeration system 101, and the operation is not limited by the way in which the processing units are divided or their names. Depending on the processing content, the operation may be divided into more step units. Also, a step may be divided so that it contains even more processing. Also, the order of the steps may be changed as appropriate within the scope of the purpose of this disclosure.
  • a refrigeration system comprising: an outdoor unit having a plurality of compressors, an outdoor heat exchanger, and a gas-liquid separator; an indoor unit having an indoor heat exchanger; and a refrigeration cycle circuit connecting the plurality of compressors, the outdoor unit having the indoor heat exchanger, and a refrigeration equipment having a refrigeration heat exchanger;
  • the plurality of compressors are composed of a low stage compressor and a high stage compressor;
  • the system comprises a gas refrigerant return piping that sends gas refrigerant from the gas-liquid separator to the high stage compressor; and the gas refrigerant return piping is provided with a gas refrigerant return expansion valve that controls the return amount of gas refrigerant from the gas-liquid separator.
  • the opening of the gas refrigerant return expansion valve is controlled to control the amount of gas refrigerant returning from the gas-liquid separator, thereby generating a differential pressure of the refrigerant sent to the indoor heat exchanger. Therefore, it is possible to control the pressure by adding a specified value to the evaporation temperature of the indoor heat exchanger, which has a high evaporation temperature, and to use carbon dioxide (R744), a natural refrigerant with high environmental conservation properties, thereby improving the efficiency of the air conditioning temperature range.
  • carbon dioxide R744
  • a refrigeration system comprising a refrigeration circuit provided with a plurality of compressors, a heat source side heat exchanger, a plurality of user side heat exchangers, and a gas-liquid separator, the plurality of compressors being composed of low stage compressors and high stage compressors, the plurality of user side heat exchangers being composed of a first user side heat exchanger and a second user side heat exchanger having a refrigerant evaporation temperature lower than that of the first user side heat exchanger, the refrigeration circuit being provided with a switching mechanism that causes the refrigerant discharged from the high stage compressor and flowing through at least one of the heat source side heat exchanger and the first user side heat exchanger to flow to the gas-liquid separator, and a throttling mechanism that adjusts the pressure of the refrigerant being provided between the heat source side heat exchanger, the first user side heat exchanger, and the gas-liquid separator.
  • the refrigeration system can form a refrigeration circuit with a simple configuration, and can send refrigerant to the heat exchanger functioning as an evaporator via the gas-liquid separator in both cooling and heating operations, thereby improving the refrigeration capacity of the refrigeration system with a simple circuit configuration.
  • FIG. 9 A refrigeration system as described in Technology 8, in which the other switching mechanism includes a first cooling valve which is a valve body located between the discharge side of the high-stage compressor and the heat source side heat exchanger, and an outdoor refrigerant return valve which is a valve body located downstream of the first cooling valve and between the discharge side of the high-stage compressor and the suction side of the low-stage compressor.
  • a first cooling valve which is a valve body located between the discharge side of the high-stage compressor and the heat source side heat exchanger
  • an outdoor refrigerant return valve which is a valve body located downstream of the first cooling valve and between the discharge side of the high-stage compressor and the suction side of the low-stage compressor.
  • the refrigeration system can switch between a flow path in which the refrigerant discharged from the high-stage compressor flows to the heat source-side heat exchanger, a flow path in which the refrigerant discharged from the high-stage compressor flows to the first user-side heat exchanger, and a flow path in which the refrigerant discharged from the high-stage compressor flows to both the outdoor heat exchanger and the first user-side heat exchanger. Therefore, the refrigeration system can be provided with a refrigeration circuit with a simpler configuration.
  • a refrigeration system as described in any one of Technology 5 to Technology 9, comprising a control unit that controls each part of the refrigeration circuit, the control unit having an operation unit that can be operated by an operator, the control unit having operation modes of the refrigeration circuit, a first operation mode in which a refrigerant flowing through the first use side heat exchanger and the second use side heat exchanger is adjusted to a predetermined temperature, and a second operation mode in which an operation is performed in conjunction with an operation of an external device connected to the refrigeration circuit, and the refrigeration system switches between the first operation mode and the second operation mode in accordance with an operation on the operation unit.
  • the first operation mode and the second operation mode can be switched by operating the operation unit, so that an operator can easily switch the operation mode in the refrigeration system.
  • the first aspect of the present disclosure can be suitably used as a refrigeration system that uses carbon dioxide (R744), a natural refrigerant with high environmental friendliness, and can improve the efficiency of the air-conditioning temperature zone.
  • the second aspect of the present disclosure can be suitably used as a refrigeration system that uses a natural refrigerant and can improve the efficiency of the air conditioning temperature zone and can improve the efficiency of the entire system.
  • REFRIGERATION SYSTEM 10 Outdoor unit 11 Low stage compressor 12 High stage compressor 13 Accumulator 14 Oil separator 15 Outdoor heat exchanger 16 Gas-liquid separator 20 Indoor unit 21 Indoor expansion mechanism 22 Indoor heat exchanger 23 Opening/closing valve 30 Refrigeration equipment 31 Refrigeration heat exchanger 32 Refrigeration inlet side expansion mechanism 33 Refrigeration outlet side expansion mechanism 40 Refrigerant piping 41 First heating piping 42 First outdoor return piping 43 Second cooling piping 44 Second heating piping 45 Second outdoor return piping 50 First switching mechanism 51 First cooling valve 52 First heating valve 53 Outdoor refrigerant return valve 54 Second switching mechanism 55 Second cooling valve 56 Third cooling valve 57 Second heating valve 58 Refrigerant return expansion mechanism 59 Check valve 60 Gas refrigerant return piping 61 Gas refrigerant return expansion mechanism 101 Refrigeration system 102 Refrigeration circuit 110 Outdoor unit 111 Low stage compressor 112 High stage compressor 113 Accumulator 114 Oil separator 115 Outdoor heat exchanger (heat source side heat exchanger) 116 Gas-liquid separator 118, 128,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

本開示は、自然冷媒の二酸化炭素(R744)を使用し、空調温度帯の効率を改善することができる冷凍システムを提供する。 低段圧縮機11および高段圧縮機12、室外熱交換器15、気液分離器16を有する室外機10と、室内熱交換器22を有する室内機20と、冷設熱交換器31を有する冷設機器30と、を接続した冷凍サイクル回路と、を備え、気液分離器16のガス冷媒を高段圧縮機12に送るガス冷媒戻り配管60を備え、ガス冷媒戻り配管60には、気液分離器16のガス冷媒の戻り量を制御するガス冷媒戻り用膨張弁61を設けた。

Description

冷凍システム
 本開示は、冷凍システムに関する。
 特許文献1は、空調用冷媒回路の低圧側と冷却貯蔵設備用冷媒回路の高圧側とを熱交換させるカスケード熱交換器を備え、空調用冷媒回路の冷房運転時に、冷却貯蔵設備用冷媒回路の高圧側の冷媒を、凝縮器を介してカスケード熱交換器に流すと共に、空調用冷媒回路の暖房運転時には、冷却貯蔵設備用冷媒回路の高圧側の冷媒を、カスケード熱交換器に流した後、凝縮器に流すようにした冷凍システムを開示する。
 特許文献2は、高外気時において、気液分離器内のガス冷媒が中間流路に送られなくなることを抑制する熱源ユニット及び冷凍装置を開示する。この熱源ユニット及び冷凍装置は、制御部は、第1圧縮機、第2圧縮機、及び第3圧縮機を運転する運転において、中間流路の圧力に相当する中間圧力が所定値より高い第1条件を満たす場合に、第3圧縮機の回転数を増大させる第1動作を実行する。
特許第4169638号公報 特開2022-039365号公報
 本開示における第1の態様は、自然冷媒の二酸化炭素(R744)を使用し、空調温度帯の効率を改善することができる冷凍システムを提供する。
 本開示における第2の態様は、簡易な構成の冷凍回路を備え、冷凍能力の向上を図ることができる冷凍システムを提供する。
 本開示における第1の態様の冷凍システムは、複数の圧縮機、室外熱交換器、気液分離器を有する室外機と、室内熱交換器を有する室内機と、冷設熱交換器を有する冷設機器と、を接続した冷凍サイクル回路と、を備え、複数の圧縮機は、低段圧縮機と高段圧縮機とから構成され、前記気液分離器のガス冷媒を前記高段圧縮機に送るガス冷媒戻り配管を備え、前記ガス冷媒戻り配管には、前記気液分離器のガス冷媒の戻り量を制御するガス冷媒戻り用膨張弁を設けた。
 なお、この明細書には、2022年11月17日付けで日本国に出願された日本国特許出願・特願2022-184006のすべての内容が含まれる。
 本開示における第2の態様の冷凍システムは、複数の圧縮機と、熱源側熱交換器と、複数の利用側熱交換器と、気液分離器と、が設けられる冷凍回路を備え、複数の前記圧縮機は、低段圧縮機と、高段圧縮機と、で構成され、複数の前記利用側熱交換器は、第1利用側熱交換器と、前記第1利用側熱交換器よりも冷媒の蒸発温度が低い第2利用側熱交換器と、で構成され、前記冷凍回路には、前記高段圧縮機から吐出され、前記熱源側熱交換器と、前記第1利用側熱交換器との少なくとも一方を介して流れる冷媒を前記気液分離器に流す切替機構が設けられ、前記熱源側熱交換器、及び前記第1利用側熱交換器と、前記気液分離器と、の間には、冷媒の圧力を調節する絞り機構が設けられる。
 なお、この明細書には、2023年9月1日付けで日本国に出願された日本国特許出願・特願2023-142103のすべての内容が含まれる。
 本開示における第1の態様によれば、ガス冷媒戻り用膨張弁の開度を制御して、気液分離器のガス冷媒の戻り量を制御することで、室内熱交換器に送られる冷媒の差圧を生成することができる。そのため、蒸発温度が高い室内熱交換器の蒸発温度に規定の値を加算した圧力で制御することができ、境保全性が高い自然冷媒の二酸化炭素(R744)を使用し、空調温度帯の効率を改善することができる。
 本開示における第2の態様によれば、簡易な構成の冷凍回路を備え、安定した運転ができる。
図1は、実施の形態1における冷房運転時の動作を示す冷凍システムの回路図 図2は、実施の形態1における暖房運転時の動作を示す冷凍システムの回路図 図3は、実施の形態1における全能力による暖房運転の動作を示す冷凍システムの回路図 図4は、実施の形態1における冷設機器において大きな能力が必要で暖房熱量が必要ない場合の動作を示す冷凍システムの回路図 図5は、実施の形態2における冷凍システムの冷凍回路を示す図 図6は、実施の形態2における冷凍システムのブロック図 図7は、実施の形態2における暖房運転における冷凍システムの冷凍回路を示す回路図 図8は、実施の形態2における暖房運転における冷凍システムの冷凍回路を示す回路図 図9は、実施の形態2における暖房運転における冷凍システムの冷凍回路を示す回路図 図10は、実施の形態2における冷凍回路における冷媒の状態を示すp-h線図 図11は、実施の形態2における冷凍システムの動作を示すフローチャート 図12は、実施の形態2における冷媒回収・真空引き作業における冷凍システムの冷凍回路を示す回路図 図13は、実施の形態2における冷媒封入作業における冷凍システムの冷凍回路を示す回路図 図14は、実施の形態2における調節運転における冷凍システムの冷凍回路を示す回路図
 (本開示の基礎となった知見等)
 発明者らが本開示における第1の態様の冷凍システムに想到するに至った当時、コンビニエンスストアなどの店舗において、冷凍冷蔵設備と空調設備とを1つの冷凍回路とし、冬期の暖房に冷凍冷蔵設備の排熱を利用し、省エネを図るようにした冷凍システムがあった。
 このような従来の技術では、冷媒としてHFC冷媒を使用しているが、近年、環境保全の観点から、低GWP冷媒への転換が求められている。
 しかしながら、低GWP冷媒は、微燃性、または毒性があり、冷凍回路を1つに融合するとシステムの規模が大きく、冷媒封入量が増大するため、安全性に課題がある。一方、自然冷媒である二酸化炭素(R744)は、無毒・不燃性であるが、空気調和装置で用いる場合、空気調和装置における冷媒の温度帯では、効率が低く、二酸化炭素冷媒は適さないとされていて、技術開発が必要であるという課題を発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。
 本開示は、自然冷媒の二酸化炭素(R744)を使用し、空調温度帯の効率を改善することができる冷凍システムを提供する。
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
 (実施の形態1)
 以下、図面を用いて、本開示の第1の態様に対応する実施の形態1を説明する。
 [1-1-1.冷凍システムの構成]
 図1は、実施の形態1における冷凍システム1の冷凍サイクル回路を示す図である。
 図1に示すように、冷凍システム1は、室外機10と、室内機20と、冷設機器30とを備えている。
 室内機20は、例えば、コンビニエンスストアやスーパーマーケットなどの店舗における店内の空調を行うものであり、冷設機器30は、店内に設置されている冷却貯蔵設備としての冷蔵ショーケースや冷凍ショーケースの庫内冷却を行うものである。
 室外機10は、低段圧縮機11と、2つの高段圧縮機12,12とを備えている。低段圧縮機11に対して、2つの高段圧縮機12は、並列に接続されている。
 低段圧縮機11と、高段圧縮機12との間には、アキュムレータ13が配置されている。
 すなわち、低段圧縮機11から吐出させた冷媒は、アキュムレータ13により気体と液体とに分離され、気体冷媒のみが高段圧縮機12に送られる。
 高段圧縮機12の吐出側には、オイルセパレータ14が接続されている。オイルセパレータ14には、冷媒配管40を介して室外熱交換器15が接続されている。
 オイルセパレータ14と室外熱交換器15との間の冷媒配管40には、室内機20とアキュムレータ13との間の冷媒配管40に接続される第1の暖房用配管41が接続されている。
 また、オイルセパレータ14と室外熱交換器15との間の冷媒配管40には、冷設機器30と低段圧縮機11との間の冷媒配管40に接続される第1の室外戻り用配管42が接続されている。
 オイルセパレータ14と室外熱交換器15との間には、第1の切替機構50が設けられている。第1の切替機構50は、オイルセパレータ14と室外熱交換器15との間の冷媒配管40の開閉を行う第1の冷房用弁51と、第1の暖房用配管41の中途部に設けられ第1の暖房用配管41の開閉を行う第1の暖房用弁52と、第1の室外戻り用配管42の中途部に設けられ第1の室外戻り用配管42の開閉を行う室外冷媒戻り用弁53と、を備えている。
 室外熱交換器15には、冷媒配管40を介して気液分離器16が接続されている。気液分離器16には、冷媒配管40および冷設用入口側膨張機構32を介して冷設機器30の冷設熱交換器31が接続されている。冷設熱交換器31は、冷設用出口側膨張機構33を介して低段圧縮機11に接続されている。
 室外熱交換器15と気液分離器16との間の冷媒配管40には、室内用膨張機構21を介して室内熱交換器22に接続される第2の冷房用配管43が接続されている。
 室外熱交換器15と気液分離器16との間の冷媒配管40には、室内熱交換器22に接続される第2の暖房用配管44が接続されている。
 室外熱交換器15と気液分離器16との間の冷媒配管40には、冷設熱交換器31と気液分離器16との間の冷媒配管40に接続される第2の室外戻り用配管45が接続されている。
 室外熱交換器15と気液分離器16との間には、第2の切替機構54が設けられている。第2の切替機構54は、室外熱交換器15と気液分離器16との間の冷媒配管40の開閉を行う第2の冷房用弁55と、第2の冷房用配管43の中途部に設けられ第2の冷房用配管43の開閉を行う第3の冷房用弁56と、第2の暖房用配管44の中途部に設けられ第2の暖房用配管44の開閉を行う第2の暖房用弁57と、を備えている。
 第2の室外戻り用配管45の中途部には、第2の室外戻り用配管45の流量を制御する冷媒戻り用膨張機構58が設けられている。
 第2の冷房用弁55、第3の冷房用弁56および第2の暖房用弁57の下流側には、それぞれ逆止弁59が設けられている。
 室内熱交換器22は、冷媒配管40、開閉弁23およびアキュムレータ13を介して高段圧縮機12に接続されている。
 また、本実施の形態においては、気液分離器16のガス冷媒をアキュムレータ13の吸込側に送るガス冷媒戻り配管60が設けられている。ガス冷媒戻り配管60の中途部には、ガス冷媒戻り用膨張機構61が設けられている。
 [1-2.動作]
 次に、本実施の形態の動作について説明する。
 まず、冷房運転を行う動作について説明する。
 冷房運転を行う場合は、図1に示すように、第1の冷房用弁51を開とし、第2の冷房用弁55、第3の冷房用弁56をそれぞれ開とする。第1の暖房用弁52、第2の暖房用弁57、第1の高負荷用弁、室外戻り用弁、室外戻り用膨張機構をそれぞれ閉とする。
 この状態で、低段圧縮機11および各高段圧縮機12を駆動することで、低段圧縮機11により圧縮された冷媒が、各高段圧縮機12に送られ、各高段圧縮機12によりさらに圧縮されてオイルセパレータ14にむけて吐出される。
 オイルセパレータ14を経た冷媒は、第1の冷房用弁51を通って室外熱交換器15に送られ、室外熱交換器15において外気と熱交換を行う。
 熱交換後の冷媒は、第2の冷房用弁55を介して気液分離器16に送られ、第3の冷房用弁56を介して室内熱交換器22に送られる。
 室内熱交換器22において、冷媒は室内空気と熱交換し、室内空気の冷却を行う。室内空気と熱交換した冷媒は、アキュムレータ13を介して各高段圧縮機12に戻される。
 一方、気液分離器16からの冷媒の一部は、冷設用入口側膨張機構32を介して冷設熱交換器31に送られ、冷設熱交換器31において熱交換を行い、冷設機器30の冷却を行う。冷設熱交換器31において熱交換した冷媒は、冷設用入口側膨張機構32を介して低段圧縮機11に戻される。
 次に、暖房運転を行う場合の動作について説明する。
 図2は、暖房運転の動作を示す冷凍システム1の回路図である。なお、冷媒の流れを図中矢印で示している。
 図2に示すように、暖房運転を行う場合は、第1の暖房用弁52、第2の暖房用弁57をそれぞれ開とし、第1の冷房用弁51、第2の冷房用弁55、第3の冷房用弁56および室外冷媒戻り用弁53をそれぞれ閉とする。
 この状態で、低段圧縮機11および各高段圧縮機12を駆動することで、低段圧縮機11により圧縮された冷媒が、各高段圧縮機12に送られ、各高段圧縮機12によりさらに圧縮されてオイルセパレータ14にむけて吐出される。
 オイルセパレータ14を経た冷媒は、第1の暖房用弁52を通って室内熱交換器22に送られ、室内熱交換器22において室内空気と熱交換を行い、室内空気の暖房を行う。
 室内熱交換器22で熱交換を行った冷媒は、第2の暖房用弁57を介して気液分離器16に送られた後、冷設用入口側膨張機構32を介して冷設熱交換器31に送られ、冷設熱交換器31において熱交換を行い、冷設機器30の冷却を行う。
 冷設熱交換器31において熱交換した冷媒は、冷設用出口側膨張機構33を介して低段圧縮機11に戻される。
 すなわち、本開示の冷凍システム1は、暖房時には、室内熱交換器22が凝縮器として機能するように構成され、室外熱交換器15は使用されない。
 次に、全能力による暖房運転を行う場合の動作について説明する。
 図3は、全能力による暖房運転の動作を示す冷凍システム1の回路図である。なお、冷媒の流れを図中矢印で示している。
 図3に示すように、全能力による暖房を行う場合は、第1の暖房用弁52、第2の暖房用弁57、高負荷用弁および高負荷用膨張機構をそれぞれ開とし、第1の冷房用弁51、第2の冷房用弁55、第3の冷房用弁56をそれぞれ閉とする。
 この状態で、低段圧縮機11および各高段圧縮機12を駆動することで、低段圧縮機11により圧縮された冷媒が、各高段圧縮機12に送られ、各高段圧縮機12によりさらに圧縮されてオイルセパレータ14にむけて吐出される。
 オイルセパレータ14を経た冷媒は、第1の暖房用弁52を通って室内熱交換器22に送られ、室内熱交換器22において室内空気と熱交換を行い、室内空気の暖房を行う。
 室内熱交換器22で熱交換を行った冷媒は、第2の暖房用弁57を介して気液分離器16に送られた後、冷設用入口側膨張機構32を介して冷設熱交換器31に送られる。冷設熱交換器31において熱交換を行い、冷設機器30の冷却を行い、冷設熱交換器31において熱交換した冷媒は、冷設用出口側膨張機構33を介して低段圧縮機11に戻される。
 一方、気液分離器16からの冷媒の一部は、冷媒戻り用膨張機構58を介して室外熱交換器15に送られ、室外熱交換器15で熱交換した後、低段圧縮機11に戻される。
 これにより、冷設熱交換器31からの排熱と室外熱交換器15でくみ上げた熱とを室内熱交換器22の熱として利用することができ、効率のよい暖房を行うことができる。
 この場合に、冷設機器30の庫内温度よりも外気温度が低くなった場合、冷設機器30の蒸発温度を下げなければ、室外熱交換器15から熱を汲み上げることができなくなる。冷設機器30の蒸発温度を低くすると規定温度よりも低くなってしまい、サーモサイクルが短く、ショートサイクル運転となり、更には、商品の凍結事故を招くおそれがある。
 そのため、本実施の形態においては、冷設用出口側膨張機構33の開度を制御することで、室外熱交換器15から送られる冷媒との圧力のバランスをとることで、前述の不都合を回避することができる。
 次に、冷設機器30において大きな能力が必要で暖房熱量が必要ない場合の動作について説明する。
 図4は、冷設機器30において大きな能力が必要で暖房熱量が必要ない場合の動作を示す冷凍システム1の回路図である。なお、冷媒の流れを図中矢印で示している。
 図4に示すように、冷設機器30において大きな能力が必要で暖房熱量が必要ない場合は、第1の冷房用弁51、第2の冷房用弁55、第1の暖房用弁52、第2の暖房用弁57をそれぞれ開とし、冷媒戻り用弁、第3の冷房用弁56をそれぞれ閉とする。
 この状態で、低段圧縮機11および各高段圧縮機12を駆動することで、低段圧縮機11により圧縮された冷媒が、各高段圧縮機12に送られ、各高段圧縮機12によりさらに圧縮されてオイルセパレータ14にむけて吐出される。
 オイルセパレータ14を経た冷媒は、第1の冷房用弁51を通って室外熱交換器15に送られ、室外熱交換器15において外気と熱交換を行う。
 熱交換後の冷媒は、第2の冷房用弁55を介して気液分離器16に送られる。
 一方、オイルセパレータ14を経た冷媒は、第1の暖房用弁52を通って室内熱交換器22に送られ、室内熱交換器22において室内空気と熱交換を行い、室内空気の暖房を行う。
 室内熱交換器22で熱交換を行った冷媒は、第2の暖房用弁57を介して室外熱交換器15から送られた冷媒と合流して気液分離器16に送られる。
 気液分離器16からの冷媒は、冷設機器30用入口側膨張機構を介して冷設熱交換器31に送られる。冷設熱交換器31において熱交換を行い、冷設機器30の冷却を行い、冷設熱交換器31における熱交換した冷媒は、冷設用出口側膨張機構33を介して低段圧縮機11に戻される。
 一方、気液分離器16からの冷媒の一部は、冷媒戻り用膨張機構58を介して室外熱交換器15に送られ、室外熱交換器15で熱交換した後、低段圧縮機11に戻される。
 これにより、暖房運転の能力により、室外熱交換器15と室内熱交換器22とを同時に加熱することができ、それぞれの熱量配分を制御することができる。また、室外熱交換器15を加熱することで、室外熱交換器15に付着した霜を除去することができる。
 また、本実施の形態においては、気液分離器16のガス冷媒をアキュムレータ13の吸込側に送るガス冷媒戻り配管60が設けられている。そして、ガス冷媒戻り用膨張弁61の開度を制御して、気液分離器16のガス冷媒の戻り量を制御することで、室内熱交換器22に送られる冷媒の差圧を生成することができる。
 これにより、蒸発温度が高い室内熱交換器22の蒸発温度に規定の値を加算した圧力で制御することが可能となる。環境保全性が高い自然冷媒の二酸化炭素(R744)を使用し、弱点である空調温度帯の効率を改善することができる。
 [1-3.効果等]
 以上のように、本実施の形態においては、低段圧縮機11および高段圧縮機12、室外熱交換器15、気液分離器16を有する室外機10と、室内熱交換器22を有する室内機20と、冷設熱交換器31を有する冷設機器30と、を接続した冷凍サイクル回路と、を備え、気液分離器16のガス冷媒を高段圧縮機12に送るガス冷媒戻り配管60を備え、ガス冷媒戻り配管60には、気液分離器16のガス冷媒の戻り量を制御するガス冷媒戻り用膨張弁61を設けた。
 これにより、ガス冷媒戻り用膨張弁61の開度を制御して、気液分離器16のガス冷媒の戻り量を制御することで、室内熱交換器22に送られる冷媒の差圧を生成することができる。そのため、蒸発温度が高い室内熱交換器22の蒸発温度に規定の値を加算した圧力で制御することができ、環境保全性が高い自然冷媒の二酸化炭素(R744)を使用し、空調温度帯の効率を改善することができる。
 また、本実施の形態においては、暖房運転時に、室内熱交換器22および室外熱交換器15を凝縮器とし、冷設熱交換器31を蒸発器として冷凍サイクル回路を動作させる。
 これにより、室内熱交換器22の高蒸発温度側は、室外熱交換器15と流れ方向が反転し、室外熱交換器15から汲み上げた熱と冷設機器30からの排熱を合わせて、室内熱交換器22の暖房として利用することができる。また、室内熱交換器22の条件により、室外熱交換器15と室内熱交換器22を同時に加熱することができ、その熱量配分を制御することができる。
 また、本実施の形態においては、暖房運転時に、室内熱交換器22を凝縮器とし、冷設熱交換器31および室外熱交換器15を蒸発器として冷凍サイクル回路を動作させる。
 これにより、室外熱交換器15から汲み上げた熱と冷設熱交換器31からの排熱とを合わせて、室内熱交換器22の暖房として利用することができ、冷設機器30の庫内温度よりも外気温度が低くなった場合、その圧力を同一に制御することが可能となる。そのため、冷設機器30の蒸発温度の下がり過ぎを防止することができ、精度の高い温度制御を行うことができる。
 また、本実施の形態においては、暖房運転時に、室内熱交換器22を凝縮器とし、冷設熱交換器31のみを蒸発器として冷凍サイクル回路を動作させる。
 これにより、冷設機器30の排熱を高蒸発温度の室内熱交換器22ですべて放熱することができる。そのため、排熱をロスなく利用することができ、高効率で暖房運転を行うことができる。
 (実施の形態2)
 (本開示の基礎となった知見等)
 発明者らが本開示における第2の態様の冷凍システムに想到するに至った当時、低段圧縮機と、高段圧縮機と、複数の利用側熱交換器と、これらの利用側熱交換器と共用の熱源側熱交換器と、を1つの冷凍回路に備え、各利用側熱交換器で蒸発温度帯が異なる運転を行う冷凍システムがあった。これにより、この冷凍システムでは、例えば被調和空間の空調と、冷設機器の庫内の冷却とが同時に行われる。
 このような冷凍システムには、気液分離器を備えるものが知られている。当該冷凍システムでは、圧縮機から送り出される冷媒が気液分離器を介して利用側熱交換器に流されることで、冷凍能力の向上が図られる。
 上述するような冷凍システムには、利用側熱交換器を冷却として利用する運転と、加温として利用する運転とを切り替えて行うものがある。このような冷凍システムでは、これらの運転のいずれにおいても、圧縮機から送り出される冷媒を、気液分離器を介して利用側熱交換器に流すために、当該冷凍システムが備える冷凍回路の構成が複雑化する虞があると言う課題を発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。
 そこで、本開示は、簡易な構成の冷凍回路を備え、冷凍能力の向上を図ることができる冷凍システムを提供する。
 以下、図面を用いて、本開示の第2の態様に対応する実施の形態2を説明する。
 [2-1-1.冷凍システムの構成]
 図5は、実施の形態1における冷凍システム101を示す回路図である。図5では、説明の便宜上、開状態の開閉装置を白色で示し、閉状態の開閉装置と、膨張機構とを黒色で示す。図5では、説明の便宜上、冷媒が流通する配管を太線で示し、冷媒が流れない配管を細線で示す。以降の回路図において、開閉装置と、配管とは、図5と同様に示す。
 図5に示すように、冷凍システム101は、室外機110と、室内機120と、冷設機器130とを備え、これらが冷媒配管で互いに接続されることで、冷媒が流れる流路として機能する冷凍回路2が形成される。
 本実施の形態において、冷凍回路2の冷媒には、例えば燃焼性・毒性のない自然冷媒である冷媒二酸化炭素(R744)が使用される。
 室内機120は、利用側熱交換器である室内熱交換器122を備える。室内機120は、例えば、コンビニエンスストアやスーパーマーケット等の店舗において、使用者によって設定される設定温度に基づいて、被調和空間である店内の空調を行うものである。
 冷設機器130は、利用側熱交換器である冷設熱交換器132を備える。冷設機器130は、使用者によって設定される設定温度に基づいて、店内に設置される冷却貯蔵設備としての冷蔵ショーケースや冷凍ショーケースの庫内冷却を行うものである。
 冷凍システム101では、室内機120の設定温度が設定されると、当該設定温度と、室内機120が設置される被調和空間内の温度との温度差に基づいて、各圧縮機の回転周波数や、送風機118、128の送風量が決定される。さらに、冷凍システム101では、室内機120の設定温度が設定されると、室内熱交換器122の入口側と出口側との各々における冷媒の過熱度が規定値となるように、室内機120が備える絞り弁の開度が決定される。これによって、冷凍システム101は、被調和空間が設定温度になるように運転を行う。
 同様に、冷凍システム101では、冷設機器130の設定温度が設定されると、当該設定温度と、ショーケースの庫内温度との温度差に基づいて、各圧縮機の回転周波数や、送風機118、138の送風量が決定される。さらに、冷凍システム101では、冷設機器130の設定温度が設定されると、冷設熱交換器132の入口側と出口側との各々における冷媒の過熱度が規定値となるように、冷設機器130が備える絞り弁の開度が決定される。これによって、冷凍システム101は、ショーケースの庫内が設定温度になるように運転を行う。
 以下、冷凍システム101が被調和空間の空気調和やショーケースの庫内冷却を行う運転を第1運転モードという。
 室外機110は、所謂熱源装置として機能するものである。室外機110は、複数の圧縮機、第1の切替機構150、室外熱交換器115、第2の切替機構154および気液分離器116が順に接続されることで形成される。
 室外熱交換器115は、本開示の「熱源側熱交換器」に相当する。
 本実施の形態において、室外機110には、低段圧縮機111、及び2つの高段圧縮機112、12を二段圧縮機に構成した機構が設けられる。2つの高段圧縮機112、112は、いずれも低段圧縮機111に対して直列に接続される。2つの高段圧縮機112、112は、低段圧縮機111の下流側で、互いに並列に接続される。
 圧縮機の各々は、例えばモータによって圧縮機構が駆動される回転式圧縮機である。高段圧縮機112の各々は、低段圧縮機111よりも高い吐出圧力で冷媒を吐出するように駆動する。
 低段圧縮機111と、高段圧縮機112との間には、アキュムレータ113が配置される。アキュムレータ113は、オイルセパレータ114から送られるオイルを高段圧縮機112の各々に略均等に配分する分流器として機能する。
 高段圧縮機112の吐出側には、オイルセパレータ114が接続される。オイルセパレータ114には、第1の切替機構150が接続される。すなわち、第1の切替機構150は、高段圧縮機112の吐出管に、オイルセパレータ114を介して接続される。
 第1の切替機構150は、冷凍回路2において、高段圧縮機112から送り出される冷媒を、複数の流路のいずれかに流れるように切り替える機構である。
 第1の切替機構150は、オイルセパレータ114と室外熱交換器115をつなぐ配管140を備える。配管140には、第1の冷房用弁151が設けられる。第1の冷房用弁151は、配管140において、高段圧縮機112と、室外熱交換器115との間に位置する。第1の冷房用弁151は、配管140を開閉する開閉装置である。本実施の形態では、第1の冷房用弁151は、配管140に冷媒が流通可能な開状態と、配管140に冷媒が流通されない閉状態とを切り替え可能な開閉装置である。
 配管140において、オイルセパレータ114と、第1の冷房用弁151との間には、第1の暖房用配管141の一端が接続される。第1の暖房用配管141には、第1の暖房用弁152が設けられる。第1の暖房用弁152は、第1の暖房用配管141を開閉する開閉装置である。
 第1の暖房用配管141の他端は、室内機120の室内熱交換器122と高段圧縮機112の吸入側とをつなぐ配管171に接続される。これによって、高段圧縮機112の吐出側は、第1の暖房用配管141を介して、室内熱交換器122に接続される。
 配管171において、第1の暖房用配管141の他端が接続される個所と、アキュムレータ113との間には、開閉弁123が設けられる。開閉弁123は、配管171を開閉する開閉装置である。
 配管140において、第1の冷房用弁151と、室外熱交換器115との間には、第1の室外戻り用配管142の一端が接続される。第1の室外戻り用配管142には、室外冷媒戻り用弁153が設けられる。室外冷媒戻り用弁153は、第1の室外戻り用配管142を開閉する開閉装置である。第1の室外戻り用配管142の他端は、冷設機器130の冷設熱交換器132と低段圧縮機111の吸入側との間に接続される。
 配管172において、第1の室外戻り用配管142の他端が接続される個所と、冷設熱交換器132との間には、冷設用出口側圧力調節機構133が設けられる。冷設用出口側圧力調節機構133は、全閉から全開まで開度を変更可能な開閉装置である。冷設用出口側圧力調節機構133は、開度を調節することで、配管172を流れる冷媒の圧力を変更可能な、所謂絞り弁として機能する。
 このように、第1の切替機構150には、室外熱交換器115と、室内熱交換器122と、冷設熱交換器132と、低段圧縮機111とが接続される。
 第1の切替機構150では、第1の冷房用弁151、第1の暖房用弁152、室外冷媒戻り用弁153を開閉させることで、冷凍回路2における冷媒の流路を切り替え、高段圧縮機112から吐出される冷媒を室外熱交換器115と、室内熱交換器122とのいずれかに流す。
 例えば、冷凍システム101が冷房運転を行う場合、高段圧縮機112から吐出される冷媒は、室外熱交換器115に流される。
 冷凍システム101が暖房運転を行う場合、高段圧縮機112から吐出される冷媒は、室内熱交換器122に流される。また、冷凍システム101が暖房運転を行う場合において、暖房熱量が過多となる場合には、高段圧縮機112から吐出される冷媒は、室外熱交換器115と、室内熱交換器122との各々に流される。
 上述のように、第1の切替機構150は、第1の冷房用弁151、第1の暖房用弁152、室外冷媒戻り用弁153を備える。
 本実施の形態において、第1の冷房用弁151、第1の暖房用弁152、室外冷媒戻り用弁153は、アクチュエータ等によって開閉される電動式の開閉弁である。
 このため、第1の切替機構150は、低段圧縮機111、及び高段圧縮機112を停止させることなく、冷凍回路2における冷媒の流路を切り替えることが可能である。すなわち、冷凍システム101は、低段圧縮機111、及び高段圧縮機112を停止させることなく、空気調和、及びショーケースの庫内冷却に関わる運転の切り替えを行うことが可能である。
 なお、第1の切替機構150において、第1の冷房用弁151、第1の暖房用弁152、室外冷媒戻り用弁153は、全閉から全開まで開度を調節可能な開閉装置であってもよい。
 第1の切替機構150は、本開示の「他の切替機構」に相当する。
 配管140において、室外熱交換器115を挟む第1の切替機構150の反対側には、第2の切替機構154が設けられる。すなわち、室外熱交換器115には、配管140を介して、第2の切替機構154が接続される。
 第2の切替機構154は、室外熱交換器115と、室内熱交換器122と、冷設熱交換器132と、気液分離器116とを互いに接続する。第2の切替機構154は、室外熱交換器115と、室内熱交換器122と、冷設熱交換器132と、気液分離器116とを互いに接続する複数の流路のいずれかに、冷媒が流れるように切り替える機構である。
 第2の切替機構154は、第1~第4の配管173、174、175、176の端部を、接続部A、B、C、Dで環状に接続して形成される。
 第1の配管173には、絞り機構55が配置される。第2の配管174には、流量を制御する冷媒戻り用膨張機構58が配置される。
 第3の配管175には、逆止弁159が配置される。第4の配管176には、逆止弁159が配置される。本実施の形態において、逆止弁159は、冷媒の流れによって開閉される所謂自力式自動弁である。
 絞り機構155と、冷媒戻り用膨張機構158とは、全閉から全開まで開度を変更可能な流量制御弁である。絞り機構155は、開度を調節することで、第1の配管173を流れる冷媒の圧力を変更可能である。冷媒戻り用膨張機構158は、開度を調節することで、第2の配管174を流れる冷媒の圧力を変更可能である。すなわち、絞り機構155と、冷媒戻り用膨張機構158とは、所謂絞り弁として機能する。
 第3の配管175において、逆止弁159は、接続部Bから、接続部Cに向かってのみ冷媒が流れるように配置される。第4の配管176において、逆止弁159は、接続部Cから、接続部Dに向かってのみ冷媒が流れるように配置される。
 絞り機構155と、冷媒戻り用膨張機構158と、逆止弁159とは、本開示の「弁体」に相当する。
 絞り機構155と、冷媒戻り用膨張機構158との間の接続部Aには、室外熱交換器115が設けられる配管140が接続される。
 冷媒戻り用膨張機構158と、第3の配管175が備える逆止弁159との間の接続部Bは、気液分離器116と、冷設熱交換器132とをつなぐ配管77の中途部に接続される。配管177において、接続部Bが接続される個所と、冷設熱交換器132との間には、冷設用入口側膨張機構31が設けられる。
 第3の配管175が備える逆止弁159と、第4の配管176が備える逆止弁159との間の接続部Cは、配管78を介して室内熱交換器122に接続される。配管178において、接続部Cが接続される一端と、室内熱交換器122との間には、室内機120の室内用膨張機構121が設けられる。室内用膨張機構121は、全閉から全開まで開度を変更可能な開閉装置である。室内用膨張機構121は、開度を調節することで、配管178を流れる冷媒の圧力を変更可能な、所謂絞り弁として機能する。室内用膨張機構121と、絞り機構155とは、本開示の「絞り機構」に相当する。
 第4の配管176が備える逆止弁159と、絞り機構155との間の接続部Dは、配管179を介して気液分離器116に接続される。
 上述のように、気液分離器116は、第2の切替機構154を介して、室外熱交換器115と、室内熱交換器122と、冷設熱交換器132とに接続される。これによって、冷凍システム101が第1運転モードを行う場合、気液分離器116では、配管179から冷媒が流入し、配管177から流出する。すなわち、配管179は、気液分離器116の入口側配管として機能し、配管177は、気液分離器116の出口側配管として機能する。
 第2の切替機構154は、本開示の「切替機構」に相当する。
 次いで、冷凍システム101が備える利用側熱交換器について説明する。
 室内機120が冷房運転を行う場合において、室内熱交換器122は、蒸発器として機能する。冷凍システム101では、室内機120の設定温度と、室内機120が設置される被調和空間内の温度との温度差に基づいて、各圧縮機の回転周波数や、送風機118、128の送風量が決定される。さらに、室内熱交換器122の入口側と出口側との各々における冷媒の過熱度が規定値となるように、室内用膨張機構121の開度が決定される。これによって、冷凍システム101は、被調和空間が設定温度になるように運転を行う。本実施の形態において、室内熱交換器122の蒸発温度帯は、例えば3℃から6℃である。
 冷設熱交換器132は、蒸発器として機能する。冷凍システム101では、冷設機器130の設定温度と、ショーケースの庫内温度との温度差に基づいて、各圧縮機の回転周波数や、送風機118、138の送風量が決定される。さらに、冷設熱交換器132の入口側と出口側との各々における冷媒の過熱度が規定値となるように、冷設用入口側膨張機構131の開度が決定される。これによって、冷凍システム101は、ショーケースの庫内が設定温度になるように運転を行う。
 本実施の形態の冷設機器130は、庫内の温度帯として、例えば冷蔵温度帯(3℃~6℃)、冷蔵温度帯よりやや高温の温度帯(3℃~8℃)、パーシャル温度帯(-3℃~-1℃)、及び冷凍温度帯(-20℃~-18℃)のいずれかの温度帯を選択して設定可能である。このため、冷設熱交換器132の蒸発温度帯は、庫内の温度帯よりも低く設定される。
 冷設機器130が冷蔵温度帯に設定される場合において、冷設熱交換器132の蒸発温度帯は、例えば-5℃から0℃である。
 冷設機器130がパーシャル温度帯に設定される場合において、冷設熱交換器132の蒸発温度帯は、例えば-12℃から-8℃である。
 冷設機器130が冷凍温度帯に設定される場合において、冷設熱交換器132の蒸発温度帯は、例えば-140℃から-20℃である。
 このように、冷凍システム101には、蒸発温度帯の異なる2つの利用側熱交換器が設けられる。これら蒸発温度帯の異なる2つの利用側熱交換器のうち、室内熱交換器122が高段圧縮機112の入り口側に接続され、室内熱交換器122よりも蒸発温度帯が低い冷設熱交換器132が低段圧縮機111の入り口側に接続される。
 室内熱交換器122は、本開示の「第1利用側熱交換器」に相当し、冷設熱交換器132は、本開示の「第1利用側熱交換器」に相当する。
 次いで、気液分離器116について説明する。
 気液分離器116は、流れ込む気液二相冷媒を、ガス冷媒と、液冷媒とに分離する所謂フラッシュタンクである。
 本実施の形態では、冷凍システム101が冷房運転を行う場合に、第2の切替機構154を介して、室外熱交換器115から流れる冷媒が気液分離器116に流入する。冷凍システム101の冷房運転において、第2の切替機構154から気液分離器116に流れ込む冷媒は、絞り機構155によって減圧される。
 冷凍システム101が暖房運転を行う場合には、第2の切替機構154を介して、室内熱交換器122から流れる冷媒が気液分離器116に流入する。冷凍システム101の暖房運転において、第2の切替機構154から気液分離器116に流れ込む冷媒は、室内用膨張機構121によって減圧される。
 このように、冷凍システム101が第1運転モードを行う場合、気液分離器116には、第2の切替機構154を介することで、絞り機構155、または室内用膨張機構121によって圧力調節をされた状態で冷媒が流れ込む。すなわち、第1運転モードを行う場合において、冷凍システム101は、第2の切替機構154が設けられることで、簡易な回路構成で、気液分離器116に流入する冷媒の圧力調節を行うことができる。
 気液分離器116には、ガス冷媒戻り配管160が接続され、ガス冷媒戻り配管160は、配管171に接続されてアキュムレータ113に接続される。ガス冷媒戻り配管160には、ガス冷媒流量制御弁161が接続される。このガス冷媒流量制御弁161は、全閉から全開まで開度を変更可能な開閉装置である。冷凍システム101では、ガス冷媒流量制御弁161の開度によって、ガス冷媒戻り配管160を流れるガス冷媒の流量が調節される。
 本実施の形態では、気液分離器116で分離されたガス冷媒の一部がガス冷媒流量制御弁161によって流量調節されて、アキュムレータ113に送られ、高段圧縮機112の吸入側に戻される。
 このように、気液分離器116では、気液分離器116で分離されたガス冷媒の一部が液冷媒から分離されて、気液分離器116から流出することで、当該気液分離器116の圧力に相当する飽和温度にまで、液冷媒が冷却される。すなわち、冷凍システム101において、気液分離器116は、液冷媒を冷却する熱交換器として機能し、当該冷凍システム101の冷凍能力の増大を図ることが可能である。
 加えて、冷凍システム101では、ガス冷媒流量制御弁161の開度を制御し、ガス冷媒の戻り量を調節することで、室内用膨張機構121の前後で圧力差が生じる。すなわち、冷凍システム101では、冷凍回路102において、室内機120の入口と出口とで、冷媒の差圧を生成することが可能である。
 これにより、冷凍システム101では、特に冷房運転を行う場合において、冷媒の流れが滞ることが抑制される。そして、冷凍システム101では、冷媒の蒸発温度が高い室内熱交換器122において、当該冷媒の蒸発温度となる圧力値に規定の圧力値を加算した圧力値で、当該室内熱交換器122を流れる冷媒を制御することが可能となる。
 ガス冷媒戻り配管160と、配管177との中途部には、内部熱交換器164が設けられる。内部熱交換器164は、所謂エコノマイザ熱交換器である。この内部熱交換器164は、配管177において、気液分離器116と、接続部Bとの間に配置され、ガス冷媒戻り配管160において、ガス冷媒流量制御弁161と、アキュムレータ113との間に配置される。
 内部熱交換器164は、上述の位置で、配管177とガス冷媒戻り配管160とを内部に収め、配管177を流れる液冷媒と、ガス冷媒戻り配管160を流れるガス冷媒とを熱交換させる。
 これによって、冷凍システム101では、内部熱交換器164において、ガス冷媒によって液冷媒が冷却される。そして、当該液冷媒は、より確実に過冷却状態となると共に、過冷却度が上昇する。このため、気液分離器116の液冷媒は、気液分離器116で温度が飽和温度まで下がらない場合であっても、内部熱交換器164で冷却されることで、飽和温度以下まで温度が低下される。そして、冷凍システム101は、当該液冷媒の過冷却度の確保を図ることが可能であり、運転効率の向上を図ることが可能である。
 冷凍回路102には、接続配管166が設けられる。接続配管166は、配管177における内部熱交換器164と接続部Bとの間と、ガス冷媒戻り配管160におけるガス冷媒流量制御弁161と内部熱交換器164との間とを接続する。この接続配管166には、内部熱交換器164でガス冷媒と熱交換された液冷媒の一部が流される。この接続配管166を流れる液冷媒は、内部熱交換器164で液冷媒と熱交換される前のガス冷媒に混合される。
 すなわち、内部熱交換器164では、液冷媒と、内部熱交換器164でガス冷媒と熱交換されて冷却された液冷媒とガス冷媒との混合冷媒とが熱交換される。
 これによって、内部熱交換器164では、液冷媒の過冷却度の増加を図ることが可能である。そのため、冷凍システム101では、運転効率の向上を図ることが可能である。
 接続配管166には、液冷媒流量制御弁165が設けられる。この液冷媒流量制御弁165は、全閉から全開まで開度を変更可能な開閉装置である。冷凍システム101では、液冷媒流量制御弁165の開度によって、接続配管166を流れる液冷媒の流量が調節される。
 次いで、サービスバルブ190について説明する。
 冷凍システム101において、配管172には、サービスバルブ190が設けられる。配管172において、サービスバルブ190は、冷設熱交換器132の出口側と、冷設用出口側圧力調節機構133との間に設けられる。本実施の形態では、サービスバルブ190は、冷設機器130に設けられる。
 サービスバルブ190は、配管接続口192、194と、外部接続口196との3つの接続口を備える。配管接続口192、194と、外部接続口196とは、いずれも開閉可能な弁体である。
 配管接続口192は、冷設用出口側圧力調節機構133側に位置する配管172に接続される。配管接続口194は、冷設熱交換器132の出口側に位置する配管172に接続される。本実施の形態では、配管接続口192、194は、通常開放される。
 外部接続口196は、配管172と外部とを連通可能に設けられ、外部機器を接続可能に形成される。本実施の形態では、例えば、マニホールドゲージや、冷媒回収装置150、真空引きユニット152、冷媒封入ユニット154等が接続される(図12、図13)。外部接続口196は、外部機器が接続されない場合、閉塞される。外部接続口196は、作業者の手動によって開閉可能であってもよい。
 冷凍システム101では、サービスバルブ190が冷設熱交換器132の出口側と、冷設用出口側圧力調節機構133との間に設けられることで、冷凍回路102の配置構造を大きく変更することなく、外部機器の接続口を設けることができる。加えて、サービスバルブ190が室外機110と、冷設機器130との接続箇所に接近する箇所に設けられることで、冷凍システム101では、外部機器が冷凍システム101に接続する場合における作業性の向上を図ることが可能である。
 サービスバルブ190は、本開示の「接続口」に相当する。
 [2-1-2.冷凍システムの制御に関わる構成]
 図6は、冷凍システム101のブロック図である。
 図5、図6に示すように、冷凍システム101には、複数の冷媒圧力センサ180が設けられる。冷媒圧力センサ180は、室外機110、室内機120、冷設機器130を含む冷凍回路102の所定箇所に設けられる。冷媒圧力センサ180は、当該箇所を流れる冷媒の圧力を検知する。
 図5に示すように、冷媒圧力センサ180は、配管177において、気液分離器116と、内部熱交換器164との間に設けられる。また、冷媒圧力センサ180は、ガス冷媒戻り配管160において、ガス冷媒流量制御弁161と、アキュムレータ113との間に設けられる。
 さらに、冷媒圧力センサ180は、配管171において、当該配管171と第1の暖房用配管141との接続箇所と、室内熱交換器122と、の間に設けられる。また、冷媒圧力センサ180は、配管172において、冷設用出口側圧力調節機構133と、低段圧縮機111の吸入側との間に設けられる。
 冷媒圧力センサ180は、高段圧縮機112の吐出側と、オイルセパレータ114とを接続する冷媒配管に設けられる。
 図5、図6に示すように、冷凍システム101には、複数の冷媒温度センサ182が設けられる。冷媒温度センサ182は、室外機110、室内機120、冷設機器130を含む冷凍回路102の冷凍回路102の所定箇所に設けられる。冷媒温度センサ182は、当該箇所を流れる冷媒の温度を検知する。
 図5に示すように、冷媒温度センサ182は、高段圧縮機112の各々において、吸入側に位置する冷媒配管と、吐出側に位置する冷媒配管とに設けられる。また、冷媒温度センサ182は、低段圧縮機111の吸入側に位置する配管172において、冷設用出口側圧力調節機構133と、低段圧縮機111の吸入側との間に設けられる。
 さらに、冷媒温度センサ182は、室内熱交換器122と、冷設熱交換器132との各々の入口側、及び出口側に接続される冷媒配管の各々に設けられる。
 図6に示すように、冷凍システム101は、空間温度センサ127を備える。空間温度センサ127は、室内機120の被調和空間に配置され、当該被調和空間の温度を検出する。
 冷凍システム101は、庫内温度センサ137を備える。庫内温度センサ137は、冷設機器130が備える冷蔵ショーケースや冷凍ショーケースの庫内に配置され、庫内温度を検出する。
 室外機110と、室内機120と、冷設機器130とには、それぞれ送風機118、128、138が設けられる。各送風機118、128、138は、それぞれ室外熱交換器115、室内熱交換器122、及び冷設熱交換器132に空気を流し、室外熱交換器115、室内熱交換器122、及び冷設熱交換器132の各々を流れる冷媒と、空気との熱交換を促進させる。
 室外機110は、制御配線を介して室内機120と通信する室外機通信部206を備える。室外機通信部206は、所定の通信規格に従ったコネクタや通信回路等の通信ハードウェアにより構成される。
 室外機110は、制御装置200を備える。室外機I/F205は、コネクタや通信回路等の所定の通信規格に従った通信ハードウェアを備える。室外機I/F205は、低段圧縮機111、高段圧縮機112、送風機118、冷媒圧力センサ180、冷媒温度センサ182、及び室外機通信部206と通信する。室外機I/F205は、第1の冷房用弁151、第1の暖房用弁152、室外冷媒戻り用弁153と、絞り機構155と、冷媒戻り用膨張機構158、開閉弁123、ガス冷媒流量制御弁161、液冷媒流量制御弁165、及びサービスバルブ190と通信する。
 さらに、室外機I/F205は、室内機I/F215、空間温度センサ127、及び冷設機器I/F225と通信する。
 室外機110は、制御装置200を備える。制御装置200は、制御部201と、記憶部203と、を備える。
 制御部201は、予め記憶部203に記憶されるプログラムに基づいて動作するCPU(Central Processing Unit)やMPU(Micro Processing Unit)等のプロセッサである。制御部201は、単一のプロセッサにより構成されてもよいし、複数のプロセッサから構成されてもよい。なお、制御部201として、DSP(digital signal processor)等が用いられてもよい。また、制御部201として、LSI(large scale integration)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programming Gate Array)等の制御回路が用いられてもよい。
 制御部201は、室外機I/F205を介して、室外機110が備える各部、室内機120、及び冷設機器130の各々から、各種の信号を受信することが可能である。
 制御部201は、室外機I/F205を介して、記憶部203や低段圧縮機111等の室外機110が備える各部、室内機120、及び冷設機器130の各々に有線、あるいは無線で接続され、当該各部の制御等を行う。
 制御部201は、記憶部203に記憶されたコンピュータプログラムを読み取り、読み取ったコンピュータプログラムに従って動作することにより、運転制御部201a、及び判定部201bとして機能する。
 運転制御部201aは、室外機110が備える低段圧縮機111、高段圧縮機112、開閉装置の各々等の各種機器を制御する。運転制御部201aは、室外機I/F205を介して、室内機120及び冷設機器130に制御信号を送信し、冷凍システム101を協調して動作させる。
 運転制御部201aは、圧縮機の各々が備える圧縮機構の回転速度を変更させることが可能であると共に、冷媒の吐出圧力を変更させることが可能である。
 運転制御部201aは、ガス冷媒流量制御弁161や、絞り機構155、室内用膨張機構121、冷設用入口側膨張機構131、冷設用出口側圧力調節機構133、冷媒戻り用膨張機構158の開度を調節可能である。運転制御部201aは、第1の切替機構150と第2の切替機構154との各々が備える開閉装置や、開閉弁123を開状態または閉状態のいずれかに切り替え可能である。
 判定部201bは、冷媒圧力センサ180の各々の検出値や冷媒温度センサ182の各々の検出値と、記憶部203に格納された設定データ103aに含まれる基準温度や基準圧力値等のデータとを比較する。
 運転制御部201aは、この判定部201bの判定に基づいて、冷凍システム101の各部を制御する。
 記憶部203は、RAM(Random Access Memory)、ROM(Read Only Memory)等のメモリ装置、ハードディスク等の固定ディスク装置、又はフレキシブルディスク、光ディスク等の可搬用の記憶装置等を備える。また、記憶部203には、冷凍システム101の各種動作に用いられるコンピュータプログラム、データベース、テーブル等が格納される。これらのコンピュータプログラム等は、コンピュータ読み取り可能な可搬型記録媒体から公知のセットアッププログラム等を用いて記憶部203にインストールされてもよい。可搬型記録媒体は、例えばCD-ROM(compact disc read only memory)、DVD-ROM(digital versatile disc read only memory)、USB(Universal Serial Bus)メモリやSSD(Solid State Drive)を含む半導体記憶デバイス等である。コンピュータプログラム等は、所定のサーバ等からインストールされてもよい。
 また、記憶部203は、揮発性の記憶領域を備え、制御部201のワークエリアを構成してもよい。
 記憶部203には、設定データ203aが記憶される。設定データ203aは、室内機120の設定温度のデータや冷設機器130の設定温度のデータを含む。
 設定データ203aは、圧縮機の各々の規定値となる回転数や、冷凍回路102の所定箇所における差圧を示す規定値となる基準圧力値等のデータを含む。
 設定データ203aは、第1運転モードに関わるデータを含む。具体的には、設定データ203aは、第1運転モードを行う場合における冷凍回路102が備える弁体の各々の開閉、あるいは開度等の情報を含む。制御部201は、第1運転モードに関わるデータに従って、冷凍回路102の各部を制御する。これによって、冷凍システム101は、第1運転モードを行う。
 設定データ203aは、第2運転モードを含む。第2運転モードは、外部接続口196に接続される外部機器の動作に伴って行われる冷凍システム101の運転モードである。設定データ203aは、第2運転モードを行う場合における冷凍回路102が備える弁体の各々の開閉、あるいは開度等の情報を含む。制御部201は、第2運転モードに関わるデータに従って、冷凍回路102の各部を制御する。これによって、冷凍システム101は、第2運転モードを行う。
 本実施の形態において、設定データ203aは、第2運転モードとして、冷媒回収・真空引きモードと、冷媒充填モードと、調節運転モードとの3つの運転モードを含む。
 室外機I/F205は、室外機110が、ケーブル等を介して各装置と所定の通信プロトコルに従って通信を行うための通信インタフェース回路やコネクタ等の通信ハードウェアを備える。室外機I/F205は、各装置から受信したデータを制御装置200に送ると共に、制御装置200から受け取ったデータを各装置に送信する。
 制御装置200は、操作パネル232を備える。操作パネル232には、操作子が設けられる。制御装置200は、当該操作子が操作されることで、冷凍システム101の運転モードを第1運転モードから第2運転モードに切り替える信号を室外機110に送信する。本実施の形態において、制御装置200は、操作パネル232の操作に従って、冷媒回収・真空引きモードと、冷媒充填モードと、調節運転モードとの3つの第2運転モードのいずれかに切り替え、実行する。
 制御装置200には、表示パネル234が設けられる。表示パネル234は、室外機110から送信される信号に従って、所定の画面表示を行う。本実施の形態において、表示パネル234は、例えば、第1運転モードや、第2運転モードが実行される場合における運転状況、あるいは、冷凍システム101の各部における不具合の有無を表示し、作業者に報知可能である。
 制御装置200は、本開示の「制御部」に相当する。操作パネル232は、本開示の「操作部」に相当する。表示パネル234は、本開示の「表示部」に相当する。
 室内機120は、室内機制御装置210と室内機I/F215とを備える。室内機制御装置210は、室内機制御部211と室内機記憶部213とを備える。
 室内機制御部211は、制御部201と同様に、CPUやMPU等のプロセッサである。室内機制御部211は、室内機記憶部213に記憶されたコンピュータプログラムに従って動作することにより、室内機120に搭載された送風機128等の各種機器を制御する。また、室内機制御部211は、空間温度センサ127等の室内機120に搭載された各種センサからの出力信号を受け取る。
 室内機記憶部213は、記憶部203と同様に、RAMやROM等の記憶装置を有し、室内機120の各種動作に用いられるコンピュータプログラム等が格納される。
 室内機I/F215は、室内機120が各機器と通信を行うための通信インタフェース回路やコネクタ等の通信ハードウェアを備える。室内機I/F215は、空間温度センサ127や各装置から受信したデータを室内機制御装置210に送ると共に、室内機制御装置210から受け取ったデータを各装置に送信する。
 冷設機器130は、冷設機器制御装置220と冷設機器I/F225とを備える。冷設機器制御装置220は、冷設機器制御部221と冷設機器記憶部223とを備える。
 冷設機器制御部221は、制御部201と同様に、CPUやMPU等のプロセッサである。冷設機器制御部221は、冷設機器記憶部223に記憶されたコンピュータプログラムに従って動作することにより、冷設機器130に搭載された送風機138等の各種機器を制御する。また、冷設機器制御部221は、庫内温度センサ137等の冷設機器130に搭載された各種センサからの出力信号を受け取る。
 冷設機器記憶部223は、記憶部203と同様に、RAMやROM等の記憶装置を有し、冷設機器130の各種動作に用いられるコンピュータプログラム等が格納される。
 冷設機器I/F225は、冷設機器130が各機器と通信を行うための通信インタフェース回路やコネクタ等の通信ハードウェアを備える。冷設機器I/F225は、庫内温度センサ137や各装置から受信したデータを冷設機器制御装置220に送ると共に、冷設機器制御装置220から受け取ったデータを各装置に送信する。
 なお、運転制御部201a、及び判定部201bは、制御部201に限らず、室内機制御部211や、冷設機器制御部221が備えてもよい。また例えば、運転制御部201a、及び判定部201bは、冷凍システム101の他の箇所に設けられるプロセッサが備えてもよい。また例えば、運転制御部201a、及び判定部201bは、冷凍システム101の外部に設けられるサーバ装置等が備えるプロセッサが備えてもよい。このようなサーバ装置は、例えば公衆回線網、専用線、その他の通信回線、及び各種の通信設備で構成されるネットワークを介して、冷凍システム101の各部を制御可能であってもよい。
 [2-2.冷凍システムの動作]
 次に、本実施の形態の動作について説明する。
 [2-2-1.冷房運転]
 まず、冷房運転を行う場合の冷凍システム101の動作について説明する。
 冷房運転時には、図5に示すように、室外熱交換器115をガスクーラまたは放熱器とし、室内熱交換器122及び冷設熱交換器132を蒸発器として運転が行われる。
 冷房運転を行う場合、第1の切替機構150において、制御装置200は、第1の冷房用弁151を開とし、残りの第1の暖房用弁152および室外冷媒戻り用弁153を閉じる。また、第2の切替機構154において、制御装置200は、絞り機構155を開とし、冷媒戻り用膨張機構158を閉じる。
 この状態で、低段圧縮機111および高段圧縮機112の各々を駆動することで、低段圧縮機111により圧縮された冷媒が高段圧縮機112の各々に送られ、高段圧縮機112の各々によりさらに圧縮されてオイルセパレータ114に向けて吐出される。
 オイルセパレータ114を経た冷媒は、第1の切替機構150の第1の冷房用弁151を通って室外熱交換器115に送られ、室外熱交換器115において外気と熱交換を行う。
 熱交換後の冷媒は、第2の切替機構154の接続部Aから絞り機構155を介して、気液分離器116に送られる。気液分離器116で分離された液冷媒は、配管177を通って、内部熱交換器164でガス冷媒と熱交換された後に、第2の切替機構154の接続部Bに至る。接続部Bで分岐した一方の冷媒は、配管178を通って、配管175に設けられる逆止弁159、及び室内機120の室内用膨張機構121を介して室内熱交換器122に送られる。
 室内熱交換器122において、冷媒は室内空気と熱交換し、室内空気の冷却を行う。室内空気と熱交換した冷媒は、配管171を通って、開閉弁123、アキュムレータ113を介して高段圧縮機112の各々の吸入側に戻される。
 接続部Bで分岐した他方の冷媒は、冷設機器130の冷設用入口側膨張機構131を介して冷設熱交換器132に送られ、冷設熱交換器132において熱交換を行い、冷設機器130の冷却を行う。冷設熱交換器132において熱交換した冷媒は、冷設用出口側圧力調節機構133を介して低段圧縮機111に戻される。
 上述した冷凍システム101の冷房運転において、高段圧縮機112から吐出され、室外熱交換器115で圧力を高圧に保ったまま放熱される冷媒は、絞り機構155によって、減圧されることで、中間圧力となり、気液分離器116に送り出される。
 [2-2-2.暖房運転]
 次いで、暖房運転を行う場合の冷凍システム101の動作について説明する。
 図7は、暖房運転の動作を示す冷凍システム101の回路図である。なお、図7では、冷媒の流れを図中矢印で示すと共に、冷媒が流れる冷媒配管を太線で示す。
 冷凍システム101において暖房運転は、室内熱交換器122をガスクーラまたは放熱器とし、冷設熱交換器132を蒸発器として運転が行われる。
 図7に示すように、暖房運転を行う場合、第1の切替機構150において、制御装置200は、第1の暖房用弁152を開とし、残りの第1の冷房用弁151および室外冷媒戻り用弁153を閉とする。また、第2の切替機構154において、制御装置200は、絞り機構155、と、冷媒戻り用膨張機構158とを閉とする。
 この状態で、低段圧縮機111および高段圧縮機112の各々を駆動することで、低段圧縮機111により圧縮された冷媒が、各高段圧縮機112に送られ、高段圧縮機112の各々によりさらに圧縮されてオイルセパレータ114に向けて吐出される。
 オイルセパレータ114を経た冷媒は、第1の切替機構150の第1の暖房用弁152を通って、室内熱交換器122に送られ、室内熱交換器122において室内空気と熱交換を行い、室内空気の暖房を行う。
 室内熱交換器122で熱交換を行った冷媒は、室内用膨張機構121を経て、第2の切替機構154の接続部Cに至り、配管176に設けられる逆止弁159と、絞り機構155と、を介して、気液分離器116に送られる。気液分離器116で分離された冷媒は、配管177を通って、第2の切替機構154の接続部Bに至り、冷設用入口側膨張機構131を介して冷設熱交換器132に送られる。この冷媒は、冷設熱交換器132において熱交換を行い、冷設機器130の冷却を行う。
 冷設熱交換器132において熱交換した冷媒は、配管172を通って、冷設用出口側圧力調節機構133を介して低段圧縮機111の吸入側に戻される。
 本開示の冷凍システム101では、暖房運転時に、室内熱交換器122がガスクーラまたは放熱器として機能し、室外熱交換器115は使用されない。すなわち、冷凍システム101は、室内熱交換器122で放熱される冷媒を用いて冷設熱交換器132での熱交換を行うことで、室外熱交換器115を用いることなく運転を行うことができる。
 本開示の冷凍システム101では、暖房運転時に、冷設機器130にのみ液冷媒が流れるため、ガス冷媒流量制御弁161の開度は、冷房運転時よりも小さくなる。
 [2-2-3.冷設機器に対する排熱では熱量が不足する場合の暖房運転]
 次に、冷設機器130に対する排熱では熱量が不足する場合の暖房運転を行う場合の動作について説明する。
 図8は、冷設機器130に対する排熱では熱量が不足する場合の暖房運転の動作を示す冷凍システム101の回路図である。
 図8に示すように、全能力による暖房を行う場合において、制御装置200は、第1の暖房用弁152、室外冷媒戻り用弁153、及び冷媒戻り用膨張機構158、をそれぞれ開とし、第1の冷房用弁151、絞り機構155をそれぞれ閉とする。
 この状態で、低段圧縮機111および各高段圧縮機112を駆動することで、低段圧縮機111により圧縮された冷媒が、各高段圧縮機112に送られ、各高段圧縮機112によりさらに圧縮されてオイルセパレータ114に向けて吐出される。
 オイルセパレータ114を経た冷媒は、第1の暖房用弁152を通って室内熱交換器122に送られ、室内熱交換器122において室内空気と熱交換を行い、室内空気の暖房を行う。
 室内熱交換器122で熱交換を行った冷媒は、配管176に設けられる逆止弁159を介して気液分離器116に送られた後、冷設用入口側膨張機構131を介して冷設熱交換器132に送られる。冷設熱交換器132において熱交換を行い、冷設機器130の冷却を行い、冷設熱交換器132において熱交換した冷媒は、冷設用出口側圧力調節機構133を介して第1の室外戻り用配管142から送られる冷媒と圧力が同一となるように調節されて低段圧縮機111に戻される。これは、冷設機器130の庫内温度より外気温度が低い場合の動作となる。
 一方、気液分離器116からの冷媒の一部は、冷媒戻り用膨張機構158を介して室外熱交換器115に送られ、室外熱交換器115で熱交換した後、低段圧縮機111に戻される。
 これにより、冷設熱交換器132からの排熱と室外熱交換器115でくみ上げた熱とを室内熱交換器122の熱として利用することができ、冷設機器130に対する排熱では熱量が不足する場合の暖房能力を増加させることができる。
 従来では、冷設機器130の庫内温度よりも外気温度が低くなる場合、室外熱交換器115から熱を汲み上げるために、冷設機器130の蒸発温度を下げる必要がある。しかしながら、冷設機器130の蒸発温度を低くすると、冷設機器130の設定温度よりも低くなる虞がある。
 そのため、本実施の形態においては、冷設用出口側圧力調節機構133の開度を制御することで、室外熱交換器115から送られる冷媒との圧力のバランスをとり、冷設機器130の蒸発温度の低下を抑制できる。
 [2-2-4.冷設機器において大きな能力が必要で暖房熱量が必要ない場合の暖房運転]
 次に、冷設機器130において大きな能力が必要で暖房熱量が必要ない場合の暖房運転について説明する。
 図9は、冷設機器130において大きな能力が必要で暖房熱量が必要ない場合の暖房運転を示す冷凍システム101の回路図である。
 図9に示すように、冷設機器130において大きな能力が必要で暖房熱量が必要ない場合において、制御装置200は、第1の冷房用弁151、絞り機構155、第1の暖房用弁152、配管176に設けられる逆止弁159をそれぞれ開とし、冷媒戻り用弁、配管175に設けられる逆止弁159をそれぞれ閉とする。
 この状態で、低段圧縮機111および各高段圧縮機112を駆動することで、低段圧縮機111により圧縮された冷媒が、各高段圧縮機112に送られ、各高段圧縮機112によりさらに圧縮されてオイルセパレータ114に向けて吐出される。
 オイルセパレータ114を経た冷媒は、第1の冷房用弁151を通って室外熱交換器115に送られ、室外熱交換器115において外気と熱交換を行う。
 熱交換後の冷媒は、絞り機構155を介して気液分離器116に送られる。
 一方、オイルセパレータ114を経た冷媒は、第1の暖房用弁152を通って室内熱交換器122に送られ、室内熱交換器122において室内空気と熱交換を行い、室内空気の暖房を行う。
 室内熱交換器122で熱交換を行った冷媒は、配管176に設けられる逆止弁159を介して室外熱交換器115から送られた冷媒と合流して気液分離器116に送られる。
 気液分離器116からの冷媒は、冷設機器130用入口側膨張機構を介して冷設熱交換器132に送られる。冷設熱交換器132において熱交換を行い、冷設機器130の冷却を行い、冷設熱交換器132における熱交換した冷媒は、冷設用出口側圧力調節機構133を介して低段圧縮機111に戻される。
 一方、気液分離器116からの冷媒の一部は、冷媒戻り用膨張機構158を介して室外熱交換器115に送られ、室外熱交換器115で熱交換した後、低段圧縮機111に戻される。
 これにより、暖房運転時に冷設機器130の排熱を、室外熱交換器115と室内熱交換器122とにより放熱することができ、冷設機器130の冷却能力を高めることができると共に、室外熱交換器115に付着した霜を除去することが可能である。
 このように、冷凍システム101では、暖房運転を行う場合に、室内機120、及び冷設機器130にかかる負荷に応じて、室外熱交換器115の使用状態を、使用しない状態と、蒸発器として使用する状態と、凝縮器として使用する状態と、のいずれかに切り替えることができる。このため、冷凍システム101では、室内機120、及び冷設機器130にかかる負荷に応じて、安定した暖房運転を行うことができる。
 [2-2-5.冷凍回路における冷媒の状態]
 図10は、冷凍回路102における冷媒の状態を示すp-h線図である。図8では、縦軸pが圧力(MPa)を示し、横軸hがエンタルピ(kJ/kg)を示す。
 ここで、冷房運転を行う場合における、冷凍システム101の冷媒について説明する。
 低段圧縮機111の吸入側において、冷媒は、図10の点P1に位置する状態にある。当該冷媒は、冷設熱交換器132で蒸発した冷媒であって、点P1において、ガス冷媒である。以下、説明の便宜上、点P1における圧力を低圧圧力という。
 低圧状態の冷媒が低段圧縮機111に吸入され、断熱圧縮されると、当該冷媒は、図10の点P2に位置する状態となる。以下、説明の便宜上、点P2における圧力を中圧圧力という。本実施の形態では、低圧圧力と、中圧圧力との差圧は、例えば1.0MPaである。
 この冷媒は、室内熱交換器122で蒸発した冷媒と、ガス冷媒戻り配管160を流れるガス冷媒と混合される。混合されたこれらの冷媒は、中圧を維持しつつ温度が低下し、図10の点P3に位置する状態となる。
 点P3に位置する状態の冷媒が断熱圧縮されると、当該冷媒は、図10の点P4に位置する状態となる。以下、説明の便宜上、点P4における圧力を高圧圧力という。
 この冷媒は、高段圧縮機112から吐出されると、室外熱交換器115において、圧力を高圧に保ったまま放熱される。これによって、当該冷媒は、図10の点P5に位置する状態となる。
 点P5に位置する状態の冷媒は、絞り機構155によって、減圧され、図10の点P6に位置する状態となる。当該点P6において、冷媒は、中圧圧力よりも高圧な圧力値となる。以下、説明の便宜上、点P2における圧力を中間圧力という。本実施の形態では、中間圧力と、中圧圧力との差圧は、例えば0.5MPaである。
 上述のように、冷凍システム101では、冷房運転を行う場合と暖房運転を行う場合とのいずれの場合においても、絞り機構155、または室内用膨張機構121によって減圧された低圧の液冷媒が気液分離器116に流れ込む。これによって、冷凍システム101では、第1運転モードを行う場合に、気液分離器116に入る冷媒を圧力調節することができる。
 点P6に位置する状態の冷媒は、気液分離器116で、液冷媒と、ガス冷媒とに分離される。これらの冷媒の内、ガス冷媒は、ガス冷媒戻り配管160を介して、気液分離器116から排出される。
 液冷媒は、ガス冷媒が分離されて気液分離器116から排出されることで、図10に示すように、飽和液線上の点P7の状態となるまで冷却される。
 上述のように、ガス冷媒戻り配管160は、高段圧縮機112の吸入側に接続される。すなわち、ガス冷媒は、高段圧縮機112によって、吸入されることで、気液分離器116から排出される。これによって、冷凍システム101では、気液分離器116に貯留される液冷媒が飽和液線上の点P7の状態となるまで冷却される。
 冷凍システム101は、1つの低段圧縮機111と2つの高段圧縮機112とを備える。すなわち、冷凍システム101では、低段圧縮機111よりも高段圧縮機112の容量が大きくなる。これらの高段圧縮機112によって、ガス冷媒が吸入されることで、冷凍システム101は、例えば夏季のように被調和空間や冷設機器130の外気温度が高い場合であっても、気液分離器116の内部の液冷媒を飽和液線上の点P7の状態にまで冷却できる。
 このように、冷凍システム101は、利用側熱交換器の周囲の温度が高い場合であっても、安定して第1運転モードを行うことができる。
 液冷媒は、内部熱交換器164で、ガス冷媒と熱交換され、図10の点P8に位置する状態となる。点P8において、液冷媒は、過冷却状態となる。内部熱交換器164で液冷媒と熱交換されたガス冷媒は、図10の点P11に位置する状態となる。
 内部熱交換器164から流出した液冷媒は、接続部Bで、室内機120と、冷設機器130とに分岐して流れる。室内機120に流れる液冷媒は、室内用膨張機構121で中圧圧力に減圧され、図10の点P9に位置する状態となる。この後、室内機120に流れる液冷媒は、室内熱交換器122で蒸発することで、図10の点P3に位置する状態となる。当該冷媒は、室内機120から流出し、高段圧縮機112の吸入側に送り出される。高段圧縮機112の吸入側には、内部熱交換器164から流出したガス冷媒も同様に送り出される。
 冷設機器130に流れる液冷媒は、冷設用入口側膨張機構131で中圧圧力に減圧され、図10の点P10に位置する状態となる。この後、冷設機器130に流れる液冷媒は、冷設熱交換器132で蒸発することで、図10の点P1に位置する状態となる。当該冷媒は、冷設機器130から流出し、低段圧縮機111の吸入側に送り出される。
 図10に示すように、本実施の形態の冷凍システム101は、冷凍回路102を備えることで、二段圧縮二段膨張サイクルを行うシステムである。
 このように、冷凍システム101では、ガス冷媒流量制御弁161の開度を制御し、ガス冷媒の戻り量を調節することで、室内熱交換器122の入口側が中圧圧力となり、室内熱交換器122の出口側が中間圧力となる。すなわち、冷凍システム101では、冷凍回路102において、室内用膨張機構121の入口側と出口側とで、冷媒の差圧を生成することが可能である。
 これにより、冷凍システム101では、冷媒の蒸発温度が高い室内熱交換器122において、当該冷媒の蒸発温度となる圧力値に規定の圧力値を加算した圧力値で、当該室内熱交換器122を流れる冷媒を制御することが可能となる。
 そのため、冷凍システム101では、環境保全性が高い自然冷媒の二酸化炭素(R744)を使用し、空調温度帯の効率を改善することができ、冷凍システム全体としての効率を改善することが可能である。
 上述のように、冷凍システム101では、絞り機構155、室内用膨張機構121、及びガス冷媒流量制御弁161によって冷媒の圧力を調節し、気液分離器116によって冷媒の温度を調節することで、図10に示す冷媒の状態変化を安定して行うことができる。このため、冷凍システム101では、外気温度等によって室内機120、及び冷設機器130にかかる負荷に応じて、冷媒の圧力や温度を調節し、安定した運転を行うことができる。
 さらに、冷凍システム101では、気液分離器116で分離された液冷媒と、ガス冷媒とが内部熱交換器164で熱交換される。これによって、室内機120、及び冷設機器130に送り出される液冷媒が過冷却される。このため、気液分離器116の外部放熱や、熱容量、あるいは、冷凍システム101の運転負荷の変動によって液冷媒の温度が変動した場合であっても、例えば当該液冷媒でフラッシュガスが生じるような温度まで上昇することが抑制される。そして、冷凍システム101では、室内熱交換器122や冷設熱交換器132での冷媒の安定した蒸発の実施を図ることが可能である。
 加えて、冷凍システム101では、接続配管166を介して、内部熱交換器164でガス冷媒と熱交換された液冷媒の一部が液冷媒と熱交換される前のガス冷媒に混合される。これによって、内部熱交換器164では、液冷媒と、内部熱交換器164でガス冷媒と熱交換されて冷却された液冷媒とガス冷媒との混合冷媒とが熱交換される。このため、内部熱交換器164では、液冷媒の過冷却度が増加され、冷凍システム101では、運転効率の向上を図ることが可能である。
 [2-2-6.冷房運転での冷凍システムの動作]
 図11は、冷凍システム101の動作を示すフローチャートである。
 次いで、冷房運転における冷凍システム101の圧力制御に関わる動作を説明する。
 図11に示すように、判定部201bは、室内熱交換器122の吐出側に設けられる冷媒圧力センサ180の検出値と、冷設熱交換器132の吐出側に設けられる冷媒圧力センサ180の検出値とを取得する。判定部201bは、取得したこれらの検出値から、中圧圧力と低圧圧力との差圧を算出する。判定部201bは、当該算出値と、記憶部203に格納された設定データ203aに含まれる基準圧力値のデータとを比較する(ステップSA1)。
 当該算出値が記憶部203に格納された設定データ203aに含まれる基準圧力値よりも大きい場合(ステップSA1:YES)、判定部201bは、気液分離器116から吐出される液冷媒が流れる配管177に設けられる冷媒圧力センサ180の検出値を取得する。判定部201bは、当該検出値と、室内熱交換器122の吐出側に設けられる冷媒圧力センサ180の検出値とから、中圧圧力と中間圧力との差圧を算出する。そして、判定部201bは、当該算出値と、記憶部203に格納された設定データ203aに含まれる基準圧力値のデータとを比較する(ステップSA2)。
 当該算出値が記憶部203に格納された設定データ203aに含まれる基準圧力値より大きい場合(ステップSA2:YES)、運転制御部201aは、室内機120の設定温度となるように、圧縮機の各々と、送風機118、28、38とを駆動させる(ステップSA3)。
 ステップSA1において、中圧圧力と低圧圧力との差圧の算出値が記憶部203に格納された設定データ203aに含まれる基準圧力値以下となる場合(ステップSA1:NO)、運転制御部201aは、ガス冷媒流量制御弁161と、絞り機構155との開度を調節し、中圧圧力を上昇させる(ステップSA4)。
 冷凍システム101では、絞り機構155の開度を上昇させる、あるいはガス冷媒流量制御弁161の開度を低下させることで、中間圧力が上昇する。
 この後、判定部201bは、室内熱交換器122の吐出側に設けられる冷媒圧力センサ180の検出値と、冷設熱交換器132の吐出側に設けられる冷媒圧力センサ180の検出値とを取得する。判定部201bは、取得したこれらの検出値から、中圧圧力と低圧圧力との差圧を算出し、当該算出値と、記憶部203に格納された設定データ203aに含まれる基準圧力値のデータとを比較する(ステップSA5)。
 中圧圧力と低圧圧力との差圧の算出値が記憶部203に格納された設定データ203aに含まれる基準圧力値以下となる場合(ステップSA5:NO)、運転制御部201aは、再度ステップSA4を実施する。
 中圧圧力と低圧圧力との差圧の算出値がいずれも記憶部203に格納された設定データ203aに含まれる基準圧力値よりも大きい場合(ステップSA1:YES)、判定部201bは、ステップSA2を実施する。
 これによって、冷凍システム101では、低段圧縮機111、及び高段圧縮機112の各々の吸入側と、吐出側とで所定値以上の差圧が生成される。このため、冷凍システム101では、低段圧縮機111、及び高段圧縮機112の各々で、圧縮不良が生じることが抑制される。
 上述の通り、本実施形態の冷凍システム101では、気液分離器116から室内熱交換器122、及び冷設熱交換器132に流れる液冷媒と、気液分離器116から吐出されるガス冷媒と、を熱交換させる内部熱交換器164が設けられる。さらに、気液分離器116から吐出されるガス冷媒には、接続配管166を介して、内部熱交換器164で気液分離器116から吐出されるガス冷媒と熱交換した液冷媒の一部が混合される。これによって、冷凍システム101では、液冷媒がより低温となり、当該液冷媒が流される室内機120の冷凍能力が向上する。
 室内機120の設定温度が当該液冷媒の温度に対して所定値以上に高い場合、冷凍システム101では、室内用膨張機構121の開度を低下させることで、室内機120に流れる液冷媒の流量が制限される。これによって、冷凍システム101では、室内熱交換器122から流出する冷媒、換言すれば高段圧縮機112の各々に吸入される冷媒の圧力である中間圧力が低下する。
 ステップSA2において、中圧圧力と中間圧力との差圧の算出値が記憶部203に格納された設定データ203aに含まれる基準圧力値未満となる場合(ステップSA2:NO)、運転制御部201aは、高段圧縮機112の回転周波数を低下させる(ステップSA6)。
 次いで、判定部201bは、低下された高段圧縮機112の回転周波数が記憶部203に格納された設定データ203aに含まれる規定値よりも大きいか否かを判定する(ステップSA7)。
 当該回転周波数が規定値よりも大きい場合(ステップSA7:YES)、判定部201bは、再度気液分離器116から吐出される液冷媒が流れる配管177に設けられる冷媒圧力センサ180の検出値を取得する。判定部201bは、当該検出値と、室内熱交換器122の吐出側に設けられる冷媒圧力センサ180の検出値とから、中圧圧力と中間圧力との差圧を算出する。判定部201bは、当該算出値と、記憶部203に格納された設定データ203aに含まれる基準圧力値のデータとを比較する(ステップSA8)。
 当該算出値が記憶部203に格納された設定データ203aに含まれる基準圧力値より大きい場合(ステップSA8:YES)、運転制御部201aは、室内機120の設定温度となるように、圧縮機の各々と、送風機118、28、38とを駆動させる(ステップSA3)。
 中圧圧力と中間圧力との差圧の算出値が記憶部203に格納された設定データ203aに含まれる基準圧力値以下となる場合(ステップSA8:NO)、運転制御部201aは、再度高段圧縮機112の回転周波数を低下させる(ステップSA6)。
 ステップSA7において、高段圧縮機112の回転周波数が規定値よりも小さい場合(ステップSA7:YES)、運転制御部201aは、液冷媒流量制御弁165の開度を低下させる(ステップSA9)。この後、運転制御部201aは、室内機120の設定温度となるように、圧縮機の各々と、送風機118、28、38とを駆動させる(ステップSA3)。
 このように、冷凍システム101では、高段圧縮機112の回転周波数を制御することで、中圧圧力と低圧圧力との差圧を所定値以下に維持することが可能である。これによって、冷凍システム101では、高段圧縮機112に対する入力を抑制しつつ、室内機120の冷凍効率を向上させることが可能である。このため、冷凍システム101では、省エネルギー化を図りつつ、冷房運転の効率を改善することが可能である。
 加えて、冷凍システム101は、回転周波数が規定値よりも小さくなる場合に、液冷媒流量制御弁165の開度を低下させる。これによって、冷凍システム101では、内部熱交換器164で気液分離器116から吐出されるガス冷媒と熱交換した液冷媒が気液分離器116から吐出されるガス冷媒に混合される流量が抑制される。このため、室内機120に送り出される液冷媒の流量が減少し、中間圧力の低下が抑制される。そして、冷凍システム101では、高段圧縮機112の各々の駆動が停止されることが抑制される。
 上述した冷凍システム101の冷房運転において、高段圧縮機112から吐出され、室外熱交換器115で圧力を高圧に保ったまま放熱される冷媒は、絞り機構155によって、減圧されることで、中間圧力となり、気液分離器116に送り出される。
 これに対して、冷凍システム101の暖房運転において、高段圧縮機112から吐出される冷媒は、室内熱交換器122で圧力を高圧に保ったまま放熱される。当該冷媒は、室内用膨張機構121によって、減圧されることで、中間圧力となり、気液分離器116に送り出される。
 冷設機器130に対する排熱では熱量が不足する場合における冷凍システム101の暖房運転において、高段圧縮機112から吐出され、室外熱交換器115で圧力を高圧に保ったまま放熱される冷媒は、絞り機構155によって減圧されることで、中間圧力となり、気液分離器116に送り出される。同様に、高段圧縮機112から吐出され、室内熱交換器122で圧力を高圧に保ったまま放熱される冷媒は、室内用膨張機構121によって、減圧されることで、中間圧力となり、気液分離器116に送り出される。
 冷設機器130において大きな能力が必要で暖房熱量が必要ない場合における冷凍システム101の暖房運転において、高段圧縮機112から吐出され、室内熱交換器122で圧力を高圧に保ったまま放熱される冷媒は、室内用膨張機構121によって減圧されることで、中間圧力となり、気液分離器116に送り出される。また、気液分離器116から流出する液冷媒の一部は、冷媒戻り用膨張機構158によって、中間圧力から低圧圧力に減圧され、室外熱交換器115に送り出される。
 上述のように、冷凍システム101では、第1の切替機構150を備える。これによって、冷凍システム101は、冷房運転と、暖房運転とを切り替えることができる。加えて、暖房運転を行う場合において、冷凍システム101は、第1の切替機構150を備えることで、熱量の過不足に従って、室外熱交換器115を凝縮器として使用しない状態と、凝縮器として使用する状態と、のいずれかに切り替えることができる。
 上述のように、冷凍システム101では、第2の切替機構154を備える。これによって、冷凍システム101は、室内熱交換器122が蒸発器として機能する場合、及び室内熱交換器122が凝縮器として機能する場合のいずれの場合においても、高段圧縮機112の各々から送り出される冷媒を、気液分離器116を介して、蒸発器として機能する熱交換器に送り出すことができる。このため、冷凍システム101では、冷凍能力の増大を図ることができる。
 具体的には、室内機120が冷房運転を行う場合、高段圧縮機112の各々から送り出される冷媒は、第2の切替機構154によって、気液分離器116に流れ込んだ後に、室内熱交換器122と、冷設熱交換器132に流される。
 室内機120が暖房運転を行う場合、高段圧縮機112の各々から送り出される冷媒は、第2の切替機構154によって、気液分離器116に流れ込んだ後に、暖房熱量の過不足に従って、冷設熱交換器132、あるいは室外熱交換器115に流される。
 さらに、冷凍システム101では、第1の切替機構150と、第2の切替機構154とを備えることで、暖房運転を行う場合において、熱量の過不足に従って、室外熱交換器115の状態を、使用しない状態と、凝縮器として使用する状態と、蒸発器として使用する状態と、のいずれかに切り替えることができる。これによって、冷凍システム101は、暖房運転を行う場合において、室外熱交換器の状態を切り替えることで、冷設熱交換器132の冷却排熱を利用して、室内機120の暖房熱量の過不足を調整することができる。
 このように、冷凍システム101は、第1の切替機構150と、第2の切替機構154とを備えることで、制御対象となる弁体や開閉装置の増加を抑制しつつ、冷凍能力の増大、及び暖房熱量の過不足の調整を行うことができる。すなわち、冷凍システム101は、冷凍能力の増大、及び暖房熱量の過不足の調整を、簡易な構成の冷凍回路102で行うことができる。
 [2-2-7.冷媒回収に関わる動作]
 図12は、冷媒回収・真空引き作業における冷凍システム101の冷凍回路102を示す回路図である。
 次いで、冷媒回収に関わる動作について説明する。
 図12に示すように、作業者が冷凍システム101に対して、冷媒回収・真空引き作業を行う場合、まず、接続配管156を介して、冷媒回収装置150、または真空引きユニット152がサービスバルブ190の外部接続口196に接続される。外部接続口196は、接続配管156が接続された後に、作業者によって解放される。
 次いで、作業者は、操作パネル232を操作し、冷媒回収・真空引きモードを選択する。これによって、操作パネル232から所定の信号が制御装置200に送信される。制御部201は、当該信号を受信すると、冷凍システム101が備えるすべての開閉装置を全開状態にする。すべての開閉装置が全開状態となった場合、制御装置200は、表示パネル234に冷凍システム101が冷媒回収・真空引きモードを実施していることを示す画面表示を行う。この後、作業者は、冷媒回収装置150、または真空引きユニット152を駆動させ、冷凍回路102の冷媒を回収する。
 [2-2-8.冷媒封入に関わる動作]
 図13は、冷媒封入作業における冷凍システム101の冷凍回路102を示す回路図である。
 次いで、冷媒封入に関わる動作について説明する。
 図13に示すように、作業者が冷凍システム101に対して、冷媒封入作業を行う場合、まず、接続配管156を介して、冷媒封入ユニット154がサービスバルブ190の外部接続口196に接続される。外部接続口196は、接続配管156が接続された後に、作業者によって解放される。
 次いで、作業者は、操作パネル232を操作し、冷媒封入モードを選択する。これによって、操作パネル232から所定の信号が制御装置200に送信される。制御部201は、当該信号を受信すると、第1の冷房用弁151、第1の暖房用弁152、室外冷媒戻り用弁153、開閉弁123、絞り機構155、冷媒戻り用膨張機構158、ガス冷媒流量制御弁161、液冷媒流量制御弁165、室内用膨張機構121、冷設用出口側圧力調節機構133の各々を全閉状態にする。制御部201は、当該信号を受信すると、配管175、76に設けられる逆止弁159の各々と、冷設用入口側膨張機構131とを全開状態にする。これらの開閉装置に対する制御が完了すると、制御装置200は、表示パネル234に冷凍システム101が冷媒封入モードを実施していることを示す画面表示を行う。この後、作業者は、冷媒封入ユニット154を駆動させ、冷凍回路102に冷媒を送り出す。
 これによって、冷凍回路102では、冷設熱交換器132と、気液分離器116とに冷媒が貯留される。
 図14は、調節運転における冷凍システム101の冷凍回路102を示す回路図である。
 冷凍システム101が冷媒の封入作業後に冷房運転を行う場合、図14に示すように、外部接続口196が作業者によって閉塞される。
 次いで、作業者は、操作パネル232を操作し、調節運転モードを選択する。これによって、操作パネル232から所定の信号が制御装置200に送信される。制御部201は、当該信号を受信すると、第1の暖房用弁152、室外冷媒戻り用弁153、冷媒戻り用膨張機構158、配管176に設けられる逆止弁159、冷設用出口側圧力調節機構133の各々を全閉状態にする。制御部201は、当該信号を受信すると、第1の冷房用弁151、開閉弁123、絞り機構155、配管176に設けられる逆止弁159、ガス冷媒流量制御弁161、液冷媒流量制御弁165、室内用膨張機構121、冷設用入口側膨張機構131の各々を全開状態にする。これらの開閉装置に対する制御が完了すると、制御装置200は、表示パネル234に冷凍システム101が調節運転モードを実施していることを示す画面表示を行う。この後、作業者は、冷設機器130と、低段圧縮機111とを停止させた状態で、高段圧縮機112の各々と、室内機120とを駆動させる。これによって、冷凍回路102では、室外熱交換器115と、室内熱交換器2F2と冷媒が送り出される。またこの場合、室内用膨張機構121は、気液分離器116から流れ込む中間圧力の冷媒が低圧圧力の冷媒となるような開度となる。これによって、冷凍システム101では、高圧圧力の冷媒と、中圧圧力の冷媒と、中間圧力の冷媒とが生成される。
 [2-3.効果等]
 以上のように、本実施の形態において、冷凍システム101は、複数の圧縮機、室外熱交換器115、及び気液分離器116を備える室外機110と、室内熱交換器122を備える室内機120と、冷設熱交換器132を備える冷設機器130と、を接続した冷凍回路102を備える。
 複数の圧縮機は、低段圧縮機111と、高段圧縮機112と、で構成され、冷媒の蒸発温度が高い室内熱交換器122は、高段圧縮機112に接続され、冷媒の蒸発温度が低い冷設熱交換器132は、低段圧縮機111に接続される。
 冷凍回路102は、高段圧縮機112から吐出され室外熱交換器115と、室内熱交換器122との少なくとも一方を介して流れる冷媒を気液分離器116に流す第2の切替機構154を備える。室外熱交換器115、及び室内熱交換器122と、気液分離器116と、の間には、冷媒の圧力を調節する絞り機構155と、室内用膨張機構121とが設けられる。
 これにより、冷凍システム101では、簡易な構成で冷凍回路102を形成すると共に、冷房運転を実施する場合と、暖房運転を実施する場合とのいずれにおいても、気液分離器116を介して、冷媒を蒸発器に送り出すことができる。そのため、冷凍システム101は、簡易な回路構成で、冷凍能力の向上を図ることができる。
 本実施の形態のように、第2の切替機構154は、室外熱交換器115と、室内熱交換器122と、冷設熱交換器132と、気液分離器116と、の各々を互いに接続する配管173~76を備える。配管173~76の各々には、冷媒の流れを調節する絞り機構155と、冷媒戻り用膨張機構158と、逆止弁159とが設けられてもよい。
 これにより、冷凍システム101では、室内機120や、冷設機器130の運転に応じて、気液分離器116によって熱交換される冷媒を室外熱交換器115と、室内熱交換器122と、冷設熱交換器132とのいずれかに送り出すことができる。そのため、冷凍システム101は、室内機120、及び冷設機器130の冷凍能力の増大を図ることができる。
 本実施の形態のように、第2の切替機構154は、弁体として、逆止弁159と、絞り機構155と、を備えてもよい。
 これにより、冷凍システム101では、室内機120や、冷設機器130の運転に応じて、気液分離器116によって熱交換される冷媒を室外熱交換器115と、室内熱交換器122と、冷設熱交換器132とのいずれかに送り出すことができる。そのため、冷凍システム101は、室内機120、及び冷設機器130の冷凍能力の増大を図ることができる。
 本実施の形態のように、第1の切替機構150は、高段圧縮機112から吐出される冷媒が室外熱交換器115に流れる流路と、高段圧縮機112から吐出される冷媒が室内熱交換器122に流れる流路と、高段圧縮機112から吐出される冷媒が室外熱交換器115と室内熱交換器122との両方に流れる流路と、のいずれかの流路に切り替える機構であってもよい。
 これにより、冷凍システム101は、より簡易な構成の冷凍回路102を備えることができる。加えて、冷凍システム101では、圧縮機を停止させることなく運転の切り替えを行うことができる。
 本実施の形態のように、第1の切替機構150には、高段圧縮機112の吐出側と室外熱交換器115との間に位置する第1の冷房用弁151と、第1の冷房用弁151の下流側に位置し、高段圧縮機112の吐出側と低段圧縮機111の吸入側との間に位置する室外冷媒戻り用弁153と、が設けられてもよい。
 これにより、冷凍システム101は、高段圧縮機112から吐出される冷媒が室外熱交換器115に流れる流路と、高段圧縮機112から吐出される冷媒が室内熱交換器122に流れる流路と、高段圧縮機112から吐出される冷媒が室外熱交換器115と室内熱交換器122との両方に流れる流路と、のいずれかの流路に切り替えることが可能である。そのため、冷凍システム101は、より簡易な構成の冷凍回路102を備えることができる。
 本実施の形態のように、冷凍システム101は、冷凍回路102の各部を制御する制御装置200を備える。制御装置200は、作業者が操作可能な操作パネル232を備える。制御装置200は、冷凍回路102の運転モードとして、室内熱交換器122と冷設熱交換器132とを流れる冷媒を所定の温度に調節する第1運転モードと、冷凍回路102に接続される外部装置の動作に伴う運転を実施させる第2運転モードと、を備える。制御装置200は、操作パネル232に対する操作に従って、第1運転モードと、第2運転モードとを切り替えてもよい。
 これにより、冷凍システム101では、操作パネル232に対する操作によって、第1運転モードと、第2運転モードとを切り替えることができる。そのため、冷凍システム101では、運転モードの切り替えを作業者が容易に実施できる。
 本実施の形態のように、制御装置200は、複数の第2運転モードを備え、操作パネル232に対する操作に従って、第2運転モードの各々を切り替えてもよい。
 これにより、冷凍システム101では、操作パネル232に対する操作によって、冷媒回収や、真空引き、冷媒封入に関わる作業を作業者が実施できる。そのため、冷凍システム101では、冷媒回収や、真空引き、冷媒封入に関わる作業を、作業者が容易に実施できる。
 本実施の形態のように、制御装置200は、運転モードの各々での冷凍回路102の状態を表示する表示パネル234を備えてもよい。
 これにより、冷凍システム101では、冷凍システム101の状態を確認しつつ、制御装置200に対する操作によって、冷媒回収や、真空引き、冷媒封入に関わる作業を作業者が実施できる。そのため、冷凍システム101では、冷媒回収や、真空引き、冷媒封入に関わる作業を作業者が容易に実施できる。
 本実施の形態のように、冷設熱交換器132と、低段圧縮機111の吸入側と、の間に、外部機器を接続可能なサービスバルブ190が設けられてもよい。
 これにより、冷凍システム101では、サービスバルブ190が室外機110と、冷設機器130との接続箇所に接近する箇所に設けられる。そのため、冷凍システム101では、外部機器が冷凍システム101に接続する場合における作業性の向上を図ることができる。
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1および実施の形態2を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1および実施の形態2で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態を例示する。
 上述した実施の形態では、冷凍システム101には、接続配管166が設けられるとしたが、当該接続配管166は、省略されてもよい。
 上述した実施の形態では、冷設用出口側圧力調節機構133と、サービスバルブ190とは、冷設機器130に設けられるとした。しかしながらこれに限らず、冷設用出口側圧力調節機構133と、サービスバルブ190とは、室外機110に設けられてもよい。また例えば、冷設用出口側圧力調節機構133と、サービスバルブ190とは、配管172において、室外機110と、冷設機器130との間に設けられてもよい。
 上述した実施の形態では、冷凍システム101は、室内熱交換器122と、冷設熱交換器132とを1つずつ備えるとした。しかしながらこれに限らず、冷凍システム101は、室内熱交換器122に替えて、他の冷設熱交換器132を備えてもよい。すなわち、この冷凍システム101では、室内機120が省略され、複数の冷設機器130を備えてもよい。
 この場合、複数の冷設熱交換器132は、蒸発温度帯が互いに異なる。複数の冷設熱交換器132のうち、蒸発温度帯がより高い冷設熱交換器132は、高段圧縮機112の入り口側に接続され、蒸発温度帯がより低い冷設熱交換器132は、低段圧縮機111の入り口側に接続される。
 例えば、冷凍システム101が冷凍温度帯に設定される冷設機器130と、冷蔵温度帯に設定される冷設機器130とを備える場合、冷蔵温度帯に設定される冷設機器130において、冷設熱交換器132は、高段圧縮機112の入り口側に接続される。これに対して、冷凍温度帯に設定される冷設機器130において、冷設熱交換器132は、低段圧縮機111の入り口側に接続される。
 上述した実施の形態において、高段圧縮機112の入り口側に接続される利用側熱交換器は、配管178、及び配管171において、複数が並列となるように設けられてもよい。同様に、低段圧縮機111の入り口側に接続される利用側熱交換器は、配管177、及び配管172において、複数が並列となるように設けられてもよい。
 また例えば、配管178、及び配管171には、複数の室内熱交換器122が互いに並列となるように設けられてもよい。この場合、室内熱交換器122の各々の入り口側には、いずれも室内用膨張機構121が設けられてもよい。この場合、冷凍システム101は、複数の室内機120を備える。またこの場合、配管178、及び配管171において、1つあるいは複数の室内熱交換器122と、1つあるいは複数の冷設熱交換器132と、が並列に設けられてもよい。
 配管177、及び配管172には、複数の冷設熱交換器132が互いに並列となるように設けられてもよい。この場合、冷設熱交換器132の各々の入り口側には、いずれも冷設用入口側膨張機構131が設けられてもよい。またこの場合、配管177、及び配管172において、並列に設けられる冷設熱交換器132は、少なくとも1つが他の冷設熱交換器132と異なる蒸発温度帯であってもよい。
 制御装置200は、操作パネル232と、表示パネル234との機能を一体に備えるタッチパネルを備えてもよい。
 また例えば、制御装置200は、室内機120、冷設機器130のいずれかに設けられてもよい。また例えば、操作パネル232と、表示パネル234とのいずれか一方が室外機110や室内機120、冷設機器130のいずれかに一体に設けられてもよい。
 また例えば、制御装置200は、室内機120や、冷設機器130が備えるリモコン等の操作端末に、一体に設けられてもよい。当該リモコンは、室内機120や、冷設機器130の設定温度操作や、起動等を行う端末である。
 また例えば、制御装置200は、室外機110や、冷凍システム101の各部に所定の信号を送信するアプリやプログラムがインストールされるスマートフォンやタブレット等の通信端末であってもよい。この場合、制御装置200は、公衆回線網、専用線、その他の通信回線、及び各種の通信設備で構成されるネットワークを介して、室外機110や、冷凍システム101の各部と通信可能であってもよい。このネットワークは、具体的な態様は制限されない。通信ネットワークは、無線通信回路及び有線通信回路の少なくともいずれかを含んでもよい。
 また例えば、制御装置200は、室外機110や、冷凍システム101の各部に所定の信号を送信するアプリやプログラムがインストールされるサーバ装置であってもよい。当該サーバ装置は、上述したネットワークを介して、室外機110や、冷凍システム101の各部と通信可能であってもよい。
 図6に示した各部は一例であって、具体的な実装形態は特に限定されない。つまり、必ずしも各部に個別に対応するハードウェアが実装される必要はなく、一つのプロセッサがプログラムを実行することで各部の機能を実現する構成とすることも勿論可能である。また、上述した実施の形態においてソフトウェアで実現される機能の一部をハードウェアとしてもよく、或いは、ハードウェアで実現される機能の一部をソフトウェアで実現してもよい。その他、室外機110、室内機120、冷設機器130等の他の各部の具体的な細部構成についても、本開示の趣旨を逸脱しない範囲で任意に変更可能である。
 図9に示す動作のステップ単位は、冷凍システム101の各部の動作の理解を容易にするために、主な処理内容に応じて分割したものであり、処理単位の分割の仕方や名称によって、動作が限定されることはない。処理内容に応じて、さらに多くのステップ単位に分割してもよい。また、1つのステッさらに位がさらに多くの処理を含むように分割してもよい。また、そのステップの順番は、本開示の趣旨に支障のない範囲で適宜に入れ替えてもよい。
 なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
(付記)
 以上の実施の形態の記載により、下記の技術が開示される。
 (技術1)複数の圧縮機、室外熱交換器、気液分離器を有する室外機と、室内熱交換器を有する室内機と、冷設熱交換器を有する冷設機器と、を接続した冷凍サイクル回路と、を備え、複数の圧縮機は、低段圧縮機と高段圧縮機とから構成され、前記気液分離器のガス冷媒を前記高段圧縮機に送るガス冷媒戻り配管を備え、前記ガス冷媒戻り配管には、前記気液分離器のガス冷媒の戻り量を制御するガス冷媒戻り用膨張弁を設けた冷凍システム。
 この構成により、ガス冷媒戻り用膨張弁の開度を制御して、気液分離器のガス冷媒の戻り量を制御することで、室内熱交換器に送られる冷媒の差圧を生成することができる。そのため、蒸発温度が高い室内熱交換器の蒸発温度に規定の値を加算した圧力で制御することができ、環境保全性が高い自然冷媒の二酸化炭素(R744)を使用し、空調温度帯の効率を改善することができる。
 (技術2)暖房運転時に、前記室内熱交換器および前記室外熱交換器を凝縮器とし、前記冷設熱交換器を蒸発器として前記冷凍サイクル回路を動作させる技術1に記載の冷凍システム。
 この構成により、室内熱交換器の高蒸発温度側は、室外熱交換器と流れ方向が反転し、室外熱交換器から汲み上げた熱と冷設機器からの排熱を合わせて、室内熱交換器の暖房として利用することができる。また、室内熱交換器の条件により、室外熱交換器と室内熱交換器を同時に加熱することができ、その熱量配分を制御することができる。
 (技術3)暖房運転時に、前記室内熱交換器を凝縮器とし、前記冷設熱交換器および前記室外熱交換器を蒸発器として冷凍サイクル回路を動作させる技術1に記載の冷凍システム。
 この構成により、室外熱交換器から汲み上げた熱と冷設熱交換器からの排熱とを合わせて、室内熱交換器の暖房として利用することができ、冷設機器の庫内温度よりも外気温度が低くなった場合、その圧力を同一に制御することが可能となる。そのため、冷設機器の蒸発温度の下がり過ぎを防止することができ、精度の高い温度制御を行うことができる。
 (技術4)暖房運転時に、前記室内熱交換器を凝縮器とし、前記冷設熱交換器のみを蒸発器として前記冷凍サイクル回路を動作させる技術1に記載の冷凍システム。
 この構成により、冷設機器の排熱を高蒸発温度の室内熱交換器ですべて放熱することができる。そのため、排熱をロスなく利用することができ、高効率で暖房運転を行うことができる。
 (技術5)複数の圧縮機と、熱源側熱交換器と、複数の利用側熱交換器と、気液分離器と、が設けられる冷凍回路を備え、複数の前記圧縮機は、低段圧縮機と、高段圧縮機と、で構成され、複数の前記利用側熱交換器は、第1利用側熱交換器と、前記第1利用側熱交換器よりも冷媒の蒸発温度が低い第2利用側熱交換器と、で構成され、前記冷凍回路には、前記高段圧縮機から吐出され、前記熱源側熱交換器と、前記第1利用側熱交換器との少なくとも一方を介して流れる冷媒を前記気液分離器に流す切替機構が設けられ、前記熱源側熱交換器、及び前記第1利用側熱交換器と、前記気液分離器と、の間には、冷媒の圧力を調節する絞り機構が設けられる冷凍システム。
 これにより、冷凍システムでは、簡易な構成で冷凍回路を形成すると共に、冷房運転を実施する場合と、暖房運転を実施する場合とのいずれにおいても、気液分離器を介して、冷媒を蒸発器として機能する熱交換器に送り出すことができる。そのため、冷凍システムは、簡易な回路構成で、冷凍能力の向上を図ることができる。
  (技術6)前記切替機構は、前記熱源側熱交換器と、前記第1利用側熱交換器と、前記第2利用側熱交換器と、前記気液分離器と、の各々を互いに接続する配管を備え、前記配管の各々には、冷媒の流れを調節する弁体が設けられる技術5に記載の冷凍システム。
 これにより、冷凍システムでは、気液分離器によって熱交換される冷媒を熱源側熱交換器と、第1利用側熱交換器と、第2利用側熱交換器とのいずれかに送り出すことができる。そのため、冷凍システムでは、冷凍能力の向上を図ることができる。
 (技術7)前記切替機構は、前記弁体として、逆止弁と、前記絞り機構と、を備える技術6に記載の冷凍システム。
 これにより、冷凍システムでは、気液分離器によって熱交換される冷媒を利用側熱交換器と、第1利用側熱交換器と、第2利用側熱交換器とのいずれかに送り出すことができる。そのため、冷凍システムでは、冷凍能力の増大を図ることができる。
 (技術8)前記冷凍回路には、前記高段圧縮機から吐出される冷媒が前記熱源側熱交換器に流れる流路と、前記高段圧縮機から吐出される冷媒が前記第1利用側熱交換器に流れる流路と、前記高段圧縮機から吐出される冷媒が前記熱源側熱交換器と前記第1利用側熱交換器との両方に流れる流路と、のいずれかの流路に切り替える他の切替機構が設けられる技術5から技術7のいずれか一項に記載の冷凍システム。
 これにより、冷凍システムは、より簡易な構成の冷凍回路を備えることができる。そのため、加えて、冷凍システムでは、圧縮機を停止させることなく運転の切り替えを行うことができる。
 (技術9)前記他の切替機構には、前記高段圧縮機の吐出側と前記熱源側熱交換器との間に位置する弁体である第1の冷房用弁と、前記第1の冷房用弁の下流側に位置し、前記高段圧縮機の吐出側と前記低段圧縮機の吸入側との間に位置する弁体である室外冷媒戻り用弁と、が設けられる技術8に記載の冷凍システム。
 これにより、冷凍システムは、高段圧縮機から吐出される冷媒が熱源側熱交換器に流れる流路と、高段圧縮機から吐出される冷媒が第1利用側熱交換器に流れる流路と、高段圧縮機から吐出される冷媒が室外熱交換器と第1利用側熱交換器との両方に流れる流路と、のいずれかの流路に切り替えることが可能である。そのため、冷凍システムは、より簡易な構成の冷凍回路を備えることができる。
 (技術10)前記冷凍回路の各部を制御する制御部を備え、前記制御部は、作業者が操作可能な操作部を備え、前記制御部は、前記冷凍回路の運転モードとして、前記第1利用側熱交換器と前記第2利用側熱交換器とを流れる冷媒を所定の温度に調節する第1運転モードと、前記冷凍回路に接続される外部機器の動作に伴う運転を実施させる第2運転モードと、を備え、前記操作部に対する操作に従って、前記第1運転モードと、前記第2運転モードとを切り替える技術5から技術9のいずれか一項に記載の冷凍システム。
 これにより、冷凍システムでは、操作部に対する操作によって、第1運転モードと、第2運転モードとを切り替えることができる。そのため、冷凍システムでは、運転モードの切り替えを作業者が容易に実施できる。
 (技術11)前記制御部は、複数の前記第2運転モードを備え、前記操作部に対する操作に従って、前記第2運転モードの各々を切り替える技術10に記載の冷凍システム。
 これにより、冷凍システムでは、操作部に対する操作によって、冷媒回収や、真空引き、冷媒封入に関わる作業を作業者が実施できる。そのため、冷凍システムでは、冷媒回収や、真空引き、冷媒封入に関わる作業を、作業者が容易に実施できる。
 (技術12)前記制御部は、前記運転モードの各々での前記冷凍回路の状態を表示する表示部を備える技術10または技術11に記載の冷凍システム。
 これにより、冷凍システムでは、冷凍システムの状態を確認しつつ、制御部に対する操作によって、冷媒回収や、真空引き、冷媒封入に関わる作業を作業者が実施できる。そのため、冷凍システムでは、冷媒回収や、真空引き、冷媒封入に関わる作業を作業者が容易に実施できる。
 (技術13)前記第2利用側熱交換器と、前記低段圧縮機の吸入側と、の間に、外部機器を接続可能な接続口が設けられる技術5から技術12のいずれか一項に記載の冷凍システム。
 これにより、冷凍システムでは、外部機器が冷凍システムに接続する場合における作業性の向上を図ることができる。
 本開示における第1の態様は、環境保全性が高い自然冷媒の二酸化炭素(R744)を使用し、空調温度帯の効率を改善することができる冷凍システムとして好適に利用可能である。
 本開示における第2の態様は、自然冷媒を使用し、空調温度帯の効率を改善することができ、システム全体としての効率を改善することができる冷凍システムとして好適に利用可能である。
 1 冷凍システム
 10 室外機
 11 低段圧縮機
 12 高段圧縮機
 13 アキュムレータ
 14 オイルセパレータ
 15 室外熱交換器
 16 気液分離器
 20 室内機
 21 室内用膨張機構
 22 室内熱交換器
 23 開閉弁
 30 冷設機器
 31 冷設熱交換器
 32 冷設用入口側膨張機構
 33 冷設用出口側膨張機構
 40 冷媒配管
 41 第1の暖房用配管
 42 第1の室外戻り用配管
 43 第2の冷房用配管
 44 第2の暖房用配管
 45 第2の室外戻り用配管
 50 第1の切替機構
 51 第1の冷房用弁
 52 第1の暖房用弁
 53 室外冷媒戻り用弁
 54 第2の切替機構
 55 第2の冷房用弁
 56 第3の冷房用弁
 57 第2の暖房用弁
 58 冷媒戻り用膨張機構
 59 逆止弁
 60 ガス冷媒戻り配管
 61 ガス冷媒戻り用膨張機構
 101 冷凍システム
 102 冷凍回路
 110 室外機
 111 低段圧縮機
 112 高段圧縮機
 113 アキュムレータ
 114 オイルセパレータ
 115 室外熱交換器(熱源側熱交換器)
 116 気液分離器
 118、128、138 送風機
 120 室内機
 121 室内用膨張機構
 122 室内熱交換器(第1利用側熱交換器)
 123 開閉弁
 127 空間温度センサ
 130 冷設機器
 131 冷設用入口側膨張機構
 132 冷設熱交換器(第2利用側熱交換器)
 133 冷設用出口側圧力調節機構
 137 庫内温度センサ
 140 配管
 141 第1の暖房用配管
 142 第1の室外戻り用配管
 150 第1の切替機構(他の切替機構)
 151 第1の冷房用弁
 152 第1の暖房用弁
 153 室外冷媒戻り用弁
 154 第2の切替機構(切替機構)
 155 絞り機構
 158 冷媒戻り用膨張機構
 159 逆止弁
 160 ガス冷媒戻り配管
 161 ガス冷媒流量制御弁
 164 内部熱交換器
 165 液冷媒流量制御弁
 166 接続配管
 171 配管
 172 配管
 173 第1の配管
 174 第2の配管
 175 第3の配管
 176 第4の配管
 177 配管
 178 配管
 179 配管
 180 冷媒圧力センサ
 182 冷媒温度センサ
 190 サービスバルブ
 192 配管接続口
 194 配管接続口
 196 外部接続口
 200 制御装置
 201 制御部
 201a 運転制御部
 201b 判定部
 203 記憶部
 203a 設定データ
 205 室外機I/F
 206 室外機通信部
 210 室内機制御装置
 211 室内機制御部
 213 室内機記憶部
 215 室内機I/F
 220 冷設機器制御装置
 221 冷設機器制御部
 223 冷設機器記憶部
 225 冷設機器I/F
 232 操作パネル
 234 表示パネル
 250 冷媒回収装置
 252 真空引きユニット
 254 冷媒封入ユニット
 256 接続配管
 A、B、C、D 接続部

Claims (13)

  1.  複数の圧縮機、室外熱交換器、気液分離器を有する室外機と、室内熱交換器を有する室内機と、冷設熱交換器を有する冷設機器と、を接続した冷凍サイクル回路と、を備え、
     複数の圧縮機は、低段圧縮機と高段圧縮機とから構成され、
     前記気液分離器のガス冷媒を前記高段圧縮機に送るガス冷媒戻り配管を備え、
     前記ガス冷媒戻り配管には、前記気液分離器のガス冷媒の戻り量を制御するガス冷媒戻り用膨張弁を設けた
     冷凍システム。
  2.  暖房運転時に、前記室内熱交換器および前記室外熱交換器を凝縮器とし、前記冷設熱交換器を蒸発器として前記冷凍サイクル回路を動作させる
     請求項1に記載の冷凍システム。
  3.  暖房運転時に、前記室内熱交換器を凝縮器とし、前記冷設熱交換器および前記室外熱交換器を蒸発器として冷凍サイクル回路を動作させる
     請求項1に記載の冷凍システム。
  4.  暖房運転時に、前記室内熱交換器を凝縮器とし、前記冷設熱交換器のみを蒸発器として前記冷凍サイクル回路を動作させる
     請求項1に記載の冷凍システム。
  5.  複数の圧縮機と、
     熱源側熱交換器と、
     複数の利用側熱交換器と、
     気液分離器と、
     が設けられる冷凍回路を備え、
     複数の前記圧縮機は、
     低段圧縮機と、
     高段圧縮機と、
     で構成され、
     複数の前記利用側熱交換器は、
     第1利用側熱交換器と、
     前記第1利用側熱交換器よりも冷媒の蒸発温度が低い第2利用側熱交換器と、
     で構成され、
     前記冷凍回路には、
     前記高段圧縮機から吐出され、前記熱源側熱交換器と、前記第1利用側熱交換器との少なくとも一方を介して流れる冷媒を前記気液分離器に流す切替機構が設けられ、
     前記熱源側熱交換器、及び前記第1利用側熱交換器と、
     前記気液分離器と、
     の間には、
     冷媒の圧力を調節する絞り機構が設けられる
     冷凍システム。
  6.  前記切替機構は、
     前記熱源側熱交換器と、
     前記第1利用側熱交換器と、
     前記第2利用側熱交換器と、
     前記気液分離器と、
     の各々を互いに接続する配管を備え、
     前記配管の各々には、冷媒の流れを調節する弁体が設けられる
     請求項5に記載の冷凍システム。
  7.  前記切替機構は、前記弁体として、
     逆止弁と、
     前記絞り機構と、
     を備える
     請求項6に記載の冷凍システム。
  8.  前記冷凍回路には、
     前記高段圧縮機から吐出される冷媒が前記熱源側熱交換器に流れる流路と、
     前記高段圧縮機から吐出される冷媒が前記第1利用側熱交換器に流れる流路と、
     前記高段圧縮機から吐出される冷媒が前記熱源側熱交換器と前記第1利用側熱交換器との両方に流れる流路と、
     のいずれかの流路に切り替える他の切替機構が設けられる
     請求項5から請求項7のいずれか一項に記載の冷凍システム。
  9.  前記他の切替機構には、
     前記高段圧縮機の吐出側と前記熱源側熱交換器との間に位置する弁体である第1の冷房用弁と、
     前記第1の冷房用弁の下流側に位置し、前記高段圧縮機の吐出側と前記低段圧縮機の吸入側との間に位置する弁体である室外冷媒戻り用弁と、
     が設けられる
     請求項8に記載の冷凍システム。
  10.  前記冷凍回路の各部を制御する制御部を備え、
     前記制御部は、作業者が操作可能な操作部を備え、
     前記制御部は、前記冷凍回路の運転モードとして、
     前記第1利用側熱交換器と前記第2利用側熱交換器とを流れる冷媒が所定の温度に調節させる第1運転モードと、
     前記冷凍回路に接続される外部機器の動作に伴う運転を実施させる第2運転モードと、
     を備え、
     前記操作部に対する操作に従って、前記第1運転モードと、前記第2運転モードとを切り替える
     請求項5から請求項7のいずれか一項に記載の冷凍システム。
  11.  前記制御部は、複数の前記第2運転モードを備え、前記操作部に対する操作に従って、前記第2運転モードの各々を切り替える
     請求項10に記載の冷凍システム。
  12.  前記制御部は、前記運転モードの各々での前記冷凍回路の状態を表示する表示部を備える
     請求項10に記載の冷凍システム。
  13.  前記第2利用側熱交換器と、
     前記低段圧縮機の吸入側と、
     の間に、外部機器を接続可能な接続口が設けられる
     請求項5から請求項7のいずれか一項に記載の冷凍システム。
PCT/JP2023/041133 2022-11-17 2023-11-15 冷凍システム WO2024106480A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-184006 2022-11-17
JP2022184006A JP2024073027A (ja) 2022-11-17 2022-11-17 冷凍システム
JP2023-142103 2023-09-01
JP2023142103 2023-09-01

Publications (1)

Publication Number Publication Date
WO2024106480A1 true WO2024106480A1 (ja) 2024-05-23

Family

ID=91084496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041133 WO2024106480A1 (ja) 2022-11-17 2023-11-15 冷凍システム

Country Status (1)

Country Link
WO (1) WO2024106480A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189838A1 (ja) * 2018-03-30 2019-10-03 ダイキン工業株式会社 冷凍装置
JP2021032512A (ja) * 2019-08-27 2021-03-01 ダイキン工業株式会社 熱源ユニット及び冷凍装置
JP2022039365A (ja) * 2020-08-28 2022-03-10 ダイキン工業株式会社 熱源ユニット及び冷凍装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189838A1 (ja) * 2018-03-30 2019-10-03 ダイキン工業株式会社 冷凍装置
JP2021032512A (ja) * 2019-08-27 2021-03-01 ダイキン工業株式会社 熱源ユニット及び冷凍装置
JP2022039365A (ja) * 2020-08-28 2022-03-10 ダイキン工業株式会社 熱源ユニット及び冷凍装置

Similar Documents

Publication Publication Date Title
US10107533B2 (en) Air-conditioning apparatus with subcooling heat exchanger
JP6895901B2 (ja) 空気調和装置
US7578137B2 (en) Air-conditioning system with multiple indoor and outdoor units and control system therefor
JP4804396B2 (ja) 冷凍空調装置
AU2005252962B2 (en) Subcooling apparatus
CN109790995B (zh) 空调装置
WO2013179334A1 (ja) 空気調和装置
US11022354B2 (en) Air conditioner
JP5673738B2 (ja) 空気調和装置
JP6727452B2 (ja) 空気調和装置
JP2007232265A (ja) 冷凍装置
JP5872052B2 (ja) 空気調和装置
WO2024106480A1 (ja) 冷凍システム
WO2024106482A1 (ja) 冷凍システム
JP5216557B2 (ja) 冷凍サイクル装置
US11448433B2 (en) Refrigeration apparatus
US20220268498A1 (en) Intermediate unit for refrigeration apparatus, and refrigeration apparatus
WO2024106481A1 (ja) 冷凍システム
WO2024106478A1 (ja) 冷凍システム及びアキュムレータ
JP3966345B2 (ja) 過冷却装置
WO2020262624A1 (ja) 冷凍装置
WO2024106479A1 (ja) 冷凍システム
JP3824008B2 (ja) 過冷却装置
JP2006300507A (ja) 冷凍装置
JP2006057869A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891627

Country of ref document: EP

Kind code of ref document: A1