WO2024106079A1 - Balloon for balloon catheter, balloon catheter, and method for manufacturing balloon catheter - Google Patents

Balloon for balloon catheter, balloon catheter, and method for manufacturing balloon catheter Download PDF

Info

Publication number
WO2024106079A1
WO2024106079A1 PCT/JP2023/036990 JP2023036990W WO2024106079A1 WO 2024106079 A1 WO2024106079 A1 WO 2024106079A1 JP 2023036990 W JP2023036990 W JP 2023036990W WO 2024106079 A1 WO2024106079 A1 WO 2024106079A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
ridge
straight tube
drug layer
longitudinal direction
Prior art date
Application number
PCT/JP2023/036990
Other languages
French (fr)
Japanese (ja)
Inventor
和明 生駒
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2024106079A1 publication Critical patent/WO2024106079A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters

Definitions

  • the present invention relates to a balloon for a balloon catheter having a drug retained on its surface, a balloon catheter equipped with the balloon, and a method for manufacturing a balloon catheter equipped with the balloon.
  • stenosis in blood vessels which are the channels through which blood circulates in the body
  • blood vessels which are the channels through which blood circulates in the body
  • stenosis in the coronary arteries that supply blood to the heart can lead to serious diseases such as angina pectoris and myocardial infarction.
  • angioplasty PTA, PTCA, etc.
  • PTA angioplasty
  • PTCA PTCA
  • Balloon catheters with ridges on the surface of the balloon are known (see, for example, Patent Documents 1 to 5).
  • the ridges of the balloon can be inserted into the narrowed area when the balloon is inflated, effectively expanding the narrowed area.
  • restenosis can occur at the expanded narrowed area, and balloon catheters with a drug retained on the balloon surface are also known to reduce the frequency of such restenosis (restenosis rate) (see, for example, Patent Documents 4 to 7).
  • the drug can be transferred to the inner wall of the body cavity, such as the blood vessel wall, by expanding the balloon at the narrowed or diseased area of the body cavity, such as a blood vessel, and it is expected that the occurrence of restenosis, etc. can be suppressed.
  • a balloon catheter with a drug retained on the balloon surface it is desirable for a balloon catheter with a drug retained on the balloon surface to be able to efficiently transfer the drug to the inner wall of a body cavity, such as a blood vessel wall, by expanding the balloon at a narrowed or diseased area of a body cavity, such as a blood vessel, and it is desirable to be able to deliver the drug to the inside of the inner wall of the body cavity.
  • the present invention has been made in consideration of the above circumstances, and its object is to provide a balloon for a balloon catheter that can efficiently deliver a drug to the inside of the inner wall of a body cavity, such as a blood vessel, and a balloon catheter equipped with said balloon.
  • the present invention also provides a method for manufacturing a balloon catheter equipped with the balloon of the present invention.
  • a balloon for a balloon catheter having a longitudinal direction extending from a proximal side to a distal side and a radial direction perpendicular to the longitudinal direction,
  • the balloon has a straight tube portion, a proximal tapered portion located proximally of the straight tube portion, and a distal tapered portion located distally of the straight tube portion
  • the straight pipe portion has a cylindrical balloon main body and a protrusion protruding radially outward on an outer surface of the balloon main body, and a protrusion-existing region and a protrusion-free region are formed on the outer surface of the straight pipe portion
  • a drug layer is provided on the outer surface of the straight tube portion
  • a balloon for a balloon catheter wherein, in a vertical cross section of the straight tube portion in the longitudinal direction, the average thickness of the drug layer on the side of the ridge
  • the ridges are made of resin, metal, or a combination thereof.
  • the side surface of the ridge includes a first side surface on one side of an imaginary line extending radially through the apex of the ridge and a second side surface on the other side, and the average thickness of the drug layer on the first side surface is thicker than the average thickness of the drug layer on the second side surface.
  • the method for producing the balloon catheter of the present invention is as follows. [15] A step of preparing a balloon having a longitudinal direction extending from a proximal side to a distal side and a radial direction perpendicular to the longitudinal direction, the balloon having a straight tube portion, a proximal tapered portion located proximal to the straight tube portion, and a distal tapered portion located distal to the straight tube portion, the straight tube portion having a cylindrical balloon main body portion and a ridge protruding radially outward from an outer surface of the balloon main body portion and extending in the longitudinal direction; a coating step of coating an outer surface of the straight tube portion with a medicinal solution and rotating the balloon around a central axis extending in the longitudinal direction.
  • the balloon for a balloon catheter of the present invention has ridges on the outer surface of the straight tube part of the balloon, and a relatively thick drug layer is provided on the side of the ridges. Therefore, when a balloon catheter equipped with the balloon of the present invention is used to expand the balloon at a narrowed or affected part of a body cavity such as a blood vessel, the ridges can bite into the narrowed or affected part to effectively expand it, and because the drug layer is thick on the side of the ridges, the drug can be efficiently delivered to the inside of the inner wall of the body cavity such as a blood vessel at the expanded narrowed part. Furthermore, the manufacturing method for the balloon catheter of the present invention makes it easy to manufacture the balloon catheter of the present invention.
  • FIG. 1 shows an example of the configuration of a balloon catheter according to an embodiment of the present invention, and is a side view of the balloon catheter excluding the drug layer on the balloon surface.
  • FIG. 2 is a perspective view of a balloon provided in the balloon catheter shown in FIG. 1 .
  • 3 shows a cross-sectional view of the balloon catheter shown in FIG. 1 taken along line III-III.
  • 4 shows a cross-sectional view of the balloon catheter shown in FIG. 1 taken along line IV-IV.
  • 1 shows an example of a vertical cross-sectional view of a straight portion of a balloon with a drug layer in the longitudinal direction.
  • 13 shows another example of a vertical cross-sectional view in the longitudinal direction of a straight portion of a balloon provided with a drug layer.
  • FIG. 1 shows an example of the configuration of a balloon catheter according to an embodiment of the present invention, and is a side view of the balloon catheter excluding the drug layer on the balloon surface.
  • FIG. 2 is a perspective view of a balloon provided in the
  • FIG. 7 is an enlarged cross-sectional view of the ridges and their surroundings of the balloon shown in FIGS. 5 and 6 .
  • 13 shows another example of an enlarged cross-sectional view of the area around the convex ridge of a balloon having a drug layer.
  • 13 shows another example of an enlarged cross-sectional view of the area around the convex ridge of a balloon having a drug layer.
  • FIG. 6 illustrates an example of a vertical cross-sectional view in the longitudinal direction of the balloon shown in FIG. 5 in a deflated and folded state.
  • FIG. 6 shows another example of a vertical cross-sectional view in the longitudinal direction of the balloon shown in FIG. 5 in a deflated and folded state.
  • 1 shows a schematic diagram of a method for forming a drug layer on a balloon surface.
  • FIG. 1 shows a side view of a balloon catheter
  • Fig. 2 shows a perspective view of a balloon equipped in the balloon catheter shown in Fig. 1
  • Fig. 3 shows a III-III cross-sectional view of the balloon catheter shown in Fig. 1
  • Fig. 4 shows an IV-IV cross-sectional view of the balloon catheter shown in Fig. 1.
  • Fig. 1 shows an example of the configuration of a rapid exchange type balloon catheter.
  • the balloon catheter 1 has a shaft 2 and a balloon 10 provided on the outside of the shaft 2.
  • the balloon catheter 1 has a proximal side and a distal side, and the balloon 10 is provided on the distal part of the shaft 2.
  • the proximal side of the balloon catheter 1 refers to the direction toward the user's (operator's) hand in the extension direction of the balloon catheter 1, and the distal side refers to the opposite direction of the proximal side, i.e., the direction toward the treatment target.
  • the direction from the proximal side to the distal side of the balloon catheter 1 is referred to as the longitudinal direction.
  • the balloon catheter 1 is configured so that fluid is supplied to the inside of the balloon 10 through the shaft 2, and the expansion and contraction of the balloon 10 can be controlled using an indeflator (a balloon pressurizer/depressurizer).
  • the fluid may be a pressurized fluid pressurized by a pump or the like.
  • the fluid supplied to the inside of the balloon 10 is referred to as the "balloon expansion fluid.”
  • the shaft 2 is composed of, for example, an inner shaft 3 and an outer shaft 4.
  • the inner shaft 3 is disposed in the inner cavity of the outer shaft 4.
  • the inner shaft 3 can function as a passage for a guide wire that guides the progress of the shaft 2, and when the balloon catheter 1 is used, the guide wire is inserted into the inner cavity of the inner shaft 3.
  • the space between the inner shaft 3 and the outer shaft 4 can function as a flow path for the balloon expansion fluid.
  • a guidewire port 7 is provided midway from the distal to the proximal side of the shaft 2, and the proximal end of the inner shaft 3 is connected to the guidewire port 7, and the distal end of the inner shaft 3 extends to the distal part of the shaft 2, forming a guidewire insertion passage that extends from the guidewire port 7 to the distal part of the shaft 2.
  • the outer shaft 4 may have a proximal outer shaft 4A and a distal outer shaft 4B, in which case it is preferable that the inner shaft 3 is disposed in the lumen of the distal outer shaft 4B.
  • the proximal outer shaft 4A and the distal outer shaft 4B may be made of the same material, or may be made of different materials.
  • the proximal outer shaft 4A is made of resin or metal
  • the distal outer shaft 4B is made of resin.
  • the outer shaft 4 may not be divided into the proximal outer shaft 4A and the distal outer shaft 4B, but may be made of a single member, or the proximal outer shaft 4A and the distal outer shaft 4B may be further made of multiple tube members.
  • a hub 5 is preferably provided on the proximal side of the shaft 2.
  • the hub 5 preferably has a fluid injection section 6 that is connected to the flow path of the balloon expansion fluid in the shaft 2.
  • the balloon 10, shaft 2 (inner shaft 3, outer shaft 4), and hub 5 can be joined using conventional joining means such as adhesives or heat welding.
  • the balloon catheter may be an over-the-wire type balloon catheter in which the inner shaft extends from the distal to the proximal part of the shaft and a guidewire passage is formed from the distal to the proximal side of the shaft.
  • the flow path of the balloon expansion fluid and the guidewire passage provided in the shaft extend to the hub, and that the hub is configured to have a fluid injection section communicating with the flow path of the balloon expansion fluid and a treatment section communicating with the guidewire passage.
  • the hub has a bifurcated structure, with the fluid injection section provided on one side of the bifurcated branch and the treatment section provided on the other side.
  • the outer surface of the shaft 2 is preferably coated.
  • a rapid exchange type balloon catheter 1 it is preferable that the outer surface of one or both of the proximal outer shaft 4A and the distal outer shaft 4B is coated, and it is more preferable that the outer surfaces of both the proximal outer shaft 4A and the distal outer shaft 4B are coated.
  • an over-the-wire type balloon catheter it is preferable that the outer surface of the outer shaft is appropriately coated.
  • the coating can be a hydrophilic coating or a hydrophobic coating depending on the purpose.
  • the outer surface of the shaft 2 can be coated by immersing the shaft 2 in a hydrophilic or hydrophobic coating agent, applying a hydrophilic or hydrophobic coating agent to the outer surface of the shaft 2, or covering the outer surface of the shaft 2 with a hydrophilic or hydrophobic coating agent.
  • the coating agent may contain drugs or additives.
  • Hydrophilic coating agents include hydrophilic polymers such as polyvinyl alcohol, polyethylene glycol, polyacrylamide, polyvinylpyrrolidone, and methyl vinyl ether maleic anhydride copolymers, as well as hydrophilic coating agents made from any combination of these.
  • Hydrophobic coating agents include polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), perfluoroalkoxyalkane (PFA), silicone oil, hydrophobic urethane resin, carbon coat, diamond coat, diamond-like carbon (DLC) coat, ceramic coat, and substances with low surface free energy terminated with alkyl groups or perfluoroalkyl groups.
  • PTFE polytetrafluoroethylene
  • FEP fluorinated ethylene propylene
  • PFA perfluoroalkoxyalkane
  • silicone oil silicone oil
  • hydrophobic urethane resin carbon coat
  • diamond coat diamond coat
  • DLC diamond-like carbon
  • ceramic coat and substances with low surface free energy terminated with alkyl groups or perfluoroalkyl groups.
  • a tip tip 8 is provided at the distal end of the balloon catheter 1.
  • the tip tip 8 may be provided as a separate member from the inner shaft 3, distal to the distal end of the inner shaft 3, or the inner shaft 3 may extend distal to the distal end of the balloon 10, so that the distal end of the inner shaft 3 functions as the tip tip 8.
  • the shaft 2 may have an X-ray opaque marker 9 disposed at the portion where the balloon 10 is located in the longitudinal direction, so that the position of the balloon 10 can be confirmed under X-ray fluoroscopy.
  • the X-ray opaque marker 9 may be disposed, for example, on the inner shaft 3 disposed inside the balloon 10, and is preferably disposed at positions corresponding to both ends of the straight tube portion of the balloon 10, or may be disposed at a position corresponding to the center of the straight tube portion of the balloon 10.
  • the balloon 10 has a longitudinal direction and a radial direction, and is formed into a cylindrical shape with openings on the proximal and distal sides (see FIG. 2).
  • the radial direction of the balloon 10 means a direction perpendicular to the longitudinal direction, extending radially from the center of the balloon 10.
  • the balloon 10 also has a circumferential direction, which is the direction along the outer periphery of the balloon 10 in an expanded state in a vertical cross section of the longitudinal direction of the balloon 10.
  • the balloon 10 has a straight tube section 13, a proximal tapered section 12 located proximal to the straight tube section 13, and a distal tapered section 14 located distal to the straight tube section 13 in the longitudinal direction.
  • the straight tube section 13 is formed in an approximately cylindrical shape extending in the longitudinal direction, and is formed to have the largest radial length (outer diameter) in the balloon 10.
  • the proximal tapered section 12 is located proximal to the straight tube section 13 and connects to the proximal end of the straight tube section 13.
  • the proximal tapered section 12 is formed so that the outer diameter decreases with increasing distance from the straight tube section 13.
  • the distal tapered section 14 is located distal to the straight tube section 13 and connects to the distal end of the straight tube section 13.
  • the distal tapered section 14 is formed so that the outer diameter decreases with increasing distance from the straight tube section 13.
  • the balloon 10 preferably further has a proximal sleeve portion 11 located proximal to the proximal taper portion 12 and a distal sleeve portion 15 located distal to the distal taper portion 14.
  • the proximal sleeve portion 11 is located proximal to the proximal taper portion 12 and is connected to the proximal end of the proximal sleeve portion 11.
  • the proximal sleeve portion 11 is formed in a substantially cylindrical shape.
  • the distal sleeve portion 15 is located distal to the distal taper portion 14 and is connected to the distal end of the distal sleeve portion 15.
  • the distal sleeve portion 15 is formed in a substantially cylindrical shape.
  • the straight tube section 13 comes into sufficient contact with the narrowed area, making it easier to perform treatment such as expanding the narrowed area.
  • the balloon 10 has a proximal tapered section 12 and a distal tapered section 14, when the balloon 10 is deflated, the outer diameter of the proximal and distal ends of the balloon 10 can be reduced to reduce the step between the shaft 2 and the balloon 10, making it easier to insert the balloon 10 into a body cavity or a forceps channel of an endoscope.
  • the inner shaft 3 extends distally from the distal end of the outer shaft 4, and that the inner shaft 3 extends through the internal space of the balloon 10 from the proximal sleeve portion 11 to the distal sleeve portion 15. It is also preferable that the outer surface of the inner shaft 3 is joined to the internal surface of the distal sleeve portion 15 of the balloon 10, and the outer surface of the outer shaft 4 is joined to the internal surface of the proximal sleeve portion 11 of the balloon 10.
  • the balloon 10 is preferably made of a resin, more preferably a thermoplastic resin. This makes it easier to manufacture the balloon 10 by molding.
  • resins that make up the balloon 10 include polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymer, polyester resins such as polyethylene terephthalate and polyester elastomer, polyurethane resins such as polyurethane and polyurethane elastomer, polyphenylene sulfide resins, polyamide resins such as polyamide and polyamide elastomer, fluorine-based resins, silicone resins, and natural rubbers such as latex rubber. These may be used alone or in combination of two or more.
  • polyamide resins polyester resins, and polyurethane resins are preferably used.
  • elastomer resins are preferably used in terms of thinning and flexibility of the balloon 10.
  • nylon 12 and nylon 11 are examples of polyamide resins that are suitable for the balloon 10, and nylon 12 is preferably used because it is relatively easy to mold when blow molding.
  • polyamide elastomers such as polyether ester amide elastomers and polyamide ether elastomers are preferably used in terms of thinning and flexibility of the balloon 10.
  • polyether ester amide elastomers are preferably used because they have high yield strength and provide good dimensional stability to the balloon 10.
  • the balloon 10 has a ridge 17 on the outer surface of the straight tube section 13.
  • the ridge 17 on the outer surface of the straight tube section 13 gives the balloon 10 a scoring function, and when the balloon 10 is expanded at a narrowed portion of a blood vessel, it can bite into the calcified narrowed portion and create a crack in the narrowed portion. This allows the narrowed portion to be expanded while suppressing dissection of the vascular intima. It also makes it possible to increase the strength of the balloon 10 and suppress overexpansion when pressurized.
  • the balloon 10 can also be used to treat narrowed portions or lesions in body cavities other than blood vessels, but the following description will be given taking as an example a case in which the balloon 10 is applied to a narrowed portion of a blood vessel.
  • Figs. 5 and 6 show vertical cross-sections in the longitudinal direction of the straight tube section 13 of the balloon 10, and Figs. 7 to 9 show enlarged cross-sections of the ridges 17 and the surroundings of the balloon 10.
  • Figs. 5 to 9 show a balloon 10 in which a drug layer 31 is provided on the outer surface of the straight tube section 13.
  • Fig. 5 shows an example of a configuration in which a drug layer 31 is provided on the outer surface of the balloon 10 shown in Figs. 2 and 4, and the ridges 17 are provided at three locations in the circumferential direction of the straight tube section 13.
  • Fig. 6 shows an example of a configuration in which a ridge 17 is provided at one location in the circumferential direction of the straight tube section 13, and a drug layer 31 is provided on the outer surface of the balloon 10.
  • the straight tube section 13 of the balloon 10 has a cylindrical balloon main body section 16, and a convex rib 17 is provided on the outer surface of the balloon main body section 16.
  • the convex rib 17 is provided so as to protrude radially outward from the outer surface of the balloon main body section 16.
  • the balloon 10 has a convex rib region 21 and a convex rib non-existent region 22 formed on the outer surface of the straight tube section 13.
  • the ridge 17 has an apex 17A and a base 17B (see Figures 7 to 9).
  • the apex 17A refers to the tip of the ridge 17, i.e., the part of the ridge 17 located radially outward
  • the base 17B refers to the boundary between the balloon body 16 and the side surface 18 of the ridge 17, i.e., the part of the ridge 17 located radially inward.
  • the ridges 17 can be made of resin, for example. If the ridges 17 are made of resin, the balloon 10 having the ridges 17 can be manufactured by resin molding, making manufacturing easier. In this case, the ridges 17 and the balloon body 16 are preferably made of the same resin, and the ridges 17 and the balloon body 16 are preferably integrally formed.
  • the balloon body 16 may have an inner layer and an outer layer, and in this case, the ridges 17 are preferably made of the same resin as the outer layer of the balloon body 16. This makes it less likely that the ridges 17 will unintentionally fall off the balloon body 16.
  • the ridges 17 and the balloon body 16 may be made of different resins, as long as there is a certain degree of compatibility between the resin that makes up the ridges 17 and the resin that makes up the balloon body 16.
  • the ridges 17 may be made of metal, or a combination of metal and resin. In this case, it is preferable that the portion including the apex 17A of the ridges 17 is made of metal. This makes it easier for the ridges 17 to create a crack in the narrowed area or to cut open the narrowed area when the balloon 10 is inflated.
  • the entire ridges 17 may be made of metal, or the portion including the base 17B of the ridges 17 may be made of resin, and the portion including the apex 17A of the ridges 17 may be made of metal. Therefore, it is preferable that the ridges 17 are made of resin, metal, or a combination thereof.
  • the balloon main body 16 is defined as a portion having a cylindrical shape.
  • the straight pipe section 13 is composed of the balloon main body 16 excluding the ridges 17 protruding radially outward.
  • the outer surface of the balloon main body 16 can be considered to be formed in a cylindrical shape. Therefore, in a vertical cross section in the longitudinal direction of the straight pipe section 13, the outer shape of the balloon main body 16 is formed in a substantially circular shape, which allows the balloon main body 16 and the ridges 17 to be distinguished from each other.
  • the balloon main body 16 and the ridges 17 are shown separated by dotted lines.
  • the ridge-present region 21 is composed of the balloon main body 16 and the ridges 17, and the ridge-free region 22 is composed of the balloon main body 16.
  • the convex ribs 17 are provided on the outer surface of the straight tube section 13 so as to extend in a ridge-like manner. It is preferable that the convex ribs 17 are provided so as to extend in the longitudinal direction. In this case, the convex ribs 17 may extend approximately parallel to the longitudinal direction of the balloon 10, or may extend in a spiral shape in the longitudinal direction. Note that it is preferable that the convex ribs 17 extend approximately parallel to the longitudinal direction of the balloon 10, in order to enhance the scoring function of the balloon 10 and to facilitate the manufacture of a balloon 10 having the convex ribs 17.
  • Only one or more convex ribs 17 may be provided in a vertical cross section in the longitudinal direction of the straight pipe section 13.
  • the convex ribs 17 are provided at three locations in the circumferential direction of the straight pipe section 13 of the balloon 10
  • the convex rib 17 is provided at only one location in the circumferential direction of the straight pipe section 13 of the balloon 10.
  • the ridges 17 are preferably provided at multiple different circumferential positions on the straight tube section 13 of the balloon 10. That is, the ridges 17 are preferably provided at multiple locations on the balloon 10 in the circumferential direction. In this case, the ridges 17 are preferably arranged at approximately equal intervals on the straight tube section 13 of the balloon 10 in the circumferential direction. This makes it possible to create cracks in multiple locations on the narrowed section when the balloon 10 is expanded.
  • the ridges 17 are preferably provided at two or more locations on the circumferential direction of the balloon 10, more preferably three or more locations, and preferably eight or fewer locations, and more preferably six or fewer locations. In this case, the circumferential interval of the ridges 17 is preferably longer than the circumferential length of one ridge 17.
  • the cross-sectional shape of the convex ribs 17 is not particularly limited.
  • the shape of the convex ribs 17 in a vertical cross section in the longitudinal direction of the straight pipe section 13 may be a polygon such as a triangle or a rectangle, a partial shape of a circle such as a semicircle or a sector, an approximately circular shape, a wedge shape, a convex shape, a spindle shape, an irregular shape, etc.
  • Polygons include polygons with clear corner apexes and straight sides, as well as rounded polygons with rounded corners and polygons with at least some of the sides curved. It is preferable that the convex ribs 17 are formed so that they narrow toward the apex 17A.
  • Figures 7 to 9 show examples of various cross-sectional shapes of the ridges 17.
  • the ridges 17 are formed so that their width narrows steplessly toward the apex 17A.
  • the ridges 17 are formed so that their width narrows stepwise toward the apex 17A. Details of each shape of the ridges 17 shown in Figures 7 to 9 will be described later.
  • the height of the ridge 17 is preferably 0.2 times or more the width (maximum width) of the ridge 17. If the ridge 17 is formed in this manner, when the balloon 10 is expanded at the narrowed portion, the ridge 17 is more likely to bite into the narrowed portion, and the scoring function of the ridge 17 can be improved. In addition, as described below, it becomes easier to form a drug layer on the side surface 18 of the ridge 17.
  • the width of the ridge 17 described here means the circumferential length of the ridge 17.
  • the ridge 17 may be formed so that it is at its widest at the base 17B, so that the ridge 17 is stably installed on the outer surface of the balloon body portion 16.
  • the height of the ridge 17 is more preferably 0.4 times or more the width of the ridge 17, more preferably 0.7 times or more, and more preferably 2.0 times or less, more preferably 1.8 times or less, and even more preferably 1.5 times or less.
  • the thickness of the portion where the ridges 17 are provided i.e., the thickness of the ridge-present region 21, is preferably formed thicker than the thickness of the portion where the ridges 17 are not provided, i.e., the thickness of the ridge-free region 22. This can improve the scoring function of the ridges 17.
  • the thickness (maximum thickness) of the ridge-present region 21 is preferably 1.5 times or more, more preferably 2.0 times or more, and even more preferably 2.5 times or more, the thickness (maximum thickness) of the ridge-free region 22.
  • the ridges 17 are preferably provided over at least 1/2 of the longitudinal length of the straight tube section 13, more preferably over at least 2/3 of the longitudinal length, and even more preferably over at least 3/4 of the longitudinal length. This allows cracks to be created over a wide range of the narrowed area when the balloon 10 is expanded.
  • the ridges 17 may also be provided on the outer surface of the proximal taper section 12 and/or the distal taper section 14. In Figures 1 and 2, the ridges 17 are provided so as to extend from the proximal taper section 12 through the straight tube section 13 to the distal taper section 14.
  • the balloon 10 may have an inner ridge that protrudes radially inward on the inner surface of the balloon 10 (not shown).
  • the ridge 17 and the inner ridge may be located at the same position in the longitudinal or circumferential direction of the balloon 10, and it is preferable that they are integrally molded, so that a portion of the balloon 10 may be formed thick.
  • a drug layer 31 is provided on the outer surface of the straight tube portion 13 of the balloon 10.
  • the drug contained in the drug layer 31 is not particularly limited as long as it is a pharmacologically active substance, and examples of such drugs include drugs that are acceptable as medicines, such as gene therapy drugs, non-gene therapy drugs, small molecules, and cells.
  • drugs that are acceptable as medicines, such as gene therapy drugs, non-gene therapy drugs, small molecules, and cells.
  • anti-restenosis drugs such as antiproliferative agents and immunosuppressants can be preferably used as the drug, and specifically, drugs such as paclitaxel, sirolimus (rapamycin), everolimus, and zotarolimus can be used. Only one type of these drugs may be used, or two or more types may be used.
  • the drug layer 31 may contain, in addition to the pharmacologically active substance, auxiliary agents for improving the dispersibility, solubility, migration to the vascular wall, and storage stability of the drug.
  • auxiliary agents for improving the dispersibility, solubility, migration to the vascular wall, and storage stability of the drug.
  • auxiliary agents include stabilizers, binders, disintegrants, moisture-proofing agents, preservatives, and dissolution aids.
  • lactose sucrose, maltose, dextrin, xylitol, erythritol, mannitol, ethylenediamine, potassium iodide, urea, polysorbate, dibutylhydroxytoluene, polyethylene glycol, lipids, sodium pyrosulfite, ascorbic acid, tocopherol, benzoic acid, paraoxybenzoic acid esters, polyacrylic acid, polylactic acid, polyglycolic acid, hyaluronic acid, chitosan, and gelatin.
  • the drug layer 31 may have a protective layer to prevent the drug from dissolving in the blood or falling off during delivery to the stenotic area.
  • the protective layer is preferably included as part of the drug layer 31 and constitutes the outermost layer of the drug layer 31.
  • the protective layer is composed of, for example, a water-soluble polymer, and can be formed from, for example, carboxymethylcellulose, hydroxypropylcellulose, methylcellulose, hydroxyethylcellulose, polyvinyl alcohol, alginic acid, pectin, gum arabic, gellan gum, guar gum, xanthan gum, carrageenan, gelatin, etc.
  • the drug layer 31 is provided at least in the convex streak region 21 of the straight tube section 13, and specifically, the drug layer 31 is provided on the side surface 18 of the convex streak 17.
  • the drug layer 31 may also be provided in the convex streak-free region 22, but the drug layer 31 is thicker on the side surface 18 of the convex streak 17.
  • the average thickness of the drug layer 31 on the side surface 18 of the convex streak 17 is thicker than the thickness of the drug layer 31 at the farthest point 22F from the convex streak 17 in the convex streak-free region 22.
  • the drug layer 31 in this way, when the balloon 10 is expanded at the narrowed portion, the drug can be efficiently transferred to the inside of the blood vessel wall. That is, when the balloon 10 is expanded at the narrowed portion, the convex streak 17 can bite into the narrowed portion to effectively expand the narrowed portion, and since the drug layer 31 is thick on the side surface 18 of the convex streak 17, the drug can be efficiently delivered to the inside of the blood vessel wall at the expanded narrowed portion.
  • the number of side surfaces 18 of the ridges 17 in the vertical cross section of the straight tube section 13 in the longitudinal direction is twice the number of ridges 17, that is, the number of ridges 17 corresponding to the first side surface 18A and the second side surface 18B, but the average thickness of the drug layer 31 on the side surface 18 of the ridges 17 is the average thickness of the drug layer 31 on all the side surfaces 18.
  • the side surface 18 on one side of the imaginary straight line 17L that passes through the top 17A of the ridges 17 and extends in the radial direction is the first side surface 18A
  • the side surface 18 on the other side is the second side surface 18B.
  • the side surface 18 on the left side of the ridges 17 can be the first side surface 18A
  • the side surface 18 on the right side can be the second side surface 18B.
  • a method for determining the average thickness of drug layer 31 on first side 18A of convex rib 17 is described.
  • a line perpendicular to first side 18A is drawn from base 17B of first side 18A of convex rib 17 toward the surface of drug layer 31 to determine radial inner boundary line 33 of drug layer 31
  • a line perpendicular to first side 18A is drawn from top 17A of convex rib 17 to determine radial outer boundary line 34 of drug layer 31.
  • the area of drug layer 31 enclosed by boundary line 33 and boundary line 34 is divided by the length of first side 18A to determine the average thickness of drug layer 31 on first side 18A of convex rib 17.
  • a straight line drawn from the base 17B or the apex 17A perpendicular to the first side surface 18A means a straight line perpendicular to the tangent line at the base 17B or the apex 17A of the first side surface 18A in a vertical cross section of the straight tube section 13 in the longitudinal direction and passing through the base 17B or the apex 17A.
  • the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 is calculated by dividing the sum of the area of the drug layer 31 on the first side surface 18A and the area of the drug layer 31 on the second side surface 18B in a vertical cross section of the straight tube section 13 in the longitudinal direction by the sum of the length of the first side surface 18A and the length of the second side surface 18B.
  • the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the ridge-free region 22 means the radial length from the outer surface of the balloon body 16 to the surface of the drug layer 31 at the farthest point 22F. Note that if the drug layer 31 does not exist at the farthest point 22F from the ridge 17 in the ridge-free region 22, the thickness of the drug layer 31 at the farthest point 22F is 0.
  • the farthest point 22F from the convex rib 17 in the non-convex rib region 22 is determined as follows. As shown in FIG. 6, when only one convex rib 17 is provided in a vertical cross section in the longitudinal direction of the straight pipe section 13, the symmetrical point of the convex rib 17 in the circumferential direction of the straight pipe section 13 (the symmetrical point with respect to the center of the cylindrical balloon main body section 16) becomes the farthest point 22F from the convex rib 17 in the non-convex rib region 22. As shown in FIG. 6, when only one convex rib 17 is provided in a vertical cross section in the longitudinal direction of the straight pipe section 13, the symmetrical point of the convex rib 17 in the circumferential direction of the straight pipe section 13 (the symmetrical point with respect to the center of the cylindrical balloon main body section 16) becomes the farthest point 22F from the convex rib 17 in the non-convex rib region 22. As shown in FIG.
  • the base 17B of the convex rib 17 is present on each of the first side surface 18A and the second side surface 18B of the convex rib 17.
  • the midpoint between the base 17B of the first side surface 18A of the convex rib 17 and the base 17B of the second side surface 18B in the convex rib non-existent region 22 is the farthest point 22F from the convex rib 17 in the convex rib non-existent region 22.
  • multiple convex ribs 17 are provided in the vertical cross section in the longitudinal direction of the straight pipe section 13 as shown in FIG.
  • the midpoint between the base 17B of the first side surface 18A of one convex rib 17 and the base 17B of the second side surface 18B of the convex rib 17 adjacent to the first side surface 18A of the convex rib 17 and the convex rib non-existent region 22 is the farthest point 22F from the convex rib 17 in the convex rib non-existent region 22.
  • multiple ridge-free regions 22 are formed on the outer surface of the straight tube section 13 by the multiple ridges 17, but the average thickness of the drug layer 31 on the side surface 18 of the ridges 17 only needs to be thicker than the average thickness of the drug layer 31 at the farthest point 22F from the ridges 17 in the multiple ridge-free regions 22, and is preferably thicker than each thickness of the drug layer 31 at the farthest point 22F from the ridges 17 in the multiple ridge-free regions 22.
  • the average thickness of the drug layer 31 on the side 18 of the ridge 17 and the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22 can be determined, for example, as follows: The balloon 10 is cut perpendicular to the longitudinal direction at the straight tube portion 13, and the balloon body portion 16 is held in a state in which it is approximately circular, and the average thickness of the drug layer 31 on the side 18 of the ridge 17 and the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22 are measured.
  • the folded balloon 10 may be cut perpendicular to the longitudinal direction at the straight tube portion 13, the outer periphery of the non-ridge region 22 between the ridges 17 of the folded balloon 10 may be measured, the midpoint of the outer periphery between the ridges 17 may be defined as the farthest point 22F, and the thickness of the drug layer 31 at the base 17B of the ridge 17 and the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22 may be measured.
  • the average thickness of the drug layer 31 on the side surface 18 of the ridge 17 can be easily determined by cutting the balloon perpendicular to the longitudinal direction at the straight tube portion 13, taking a photograph of the cut cross section, and processing the image.
  • the average thickness of the drug layer 31 on the side 18 of the ridge 17 is preferably 1.5 times or more, more preferably 2.0 times or more, and even more preferably 2.5 times or more, the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22.
  • the upper limit of the ratio of the average thickness of the drug layer 31 on the side 18 of the ridge 17 to the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22 is not particularly limited, and the drug layer 31 may not be present at the farthest point 22F from the ridge 17 in the non-ridge region 22, or may be present at a very thin thickness.
  • the average thickness of the drug layer 31 on the side 18 of the ridge 17 may be 100 times or less, 50 times or less, 30 times or less, 20 times or less, or 10 times or less, the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22.
  • the balloon 10 may be formed such that the average thickness of the drug layer 31 on the side surface 18 of the ridge 17 is thicker than the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the ridge-free region 22 in at least a portion of the longitudinal direction of the straight tube section 13.
  • the drug layer 31 is formed in this manner in at least a portion of the central 1/2 longitudinal region of the straight tube section 13, more preferably, the drug layer 31 is formed in this manner in more than half of the central 1/2 longitudinal region of the straight tube section 13, and even more preferably, the drug layer 31 is formed in this manner in more than 2/3 of the central 1/2 longitudinal region of the straight tube section 13.
  • a range of 25% to 75% of straight tube section 13 is cut radially at six locations at 10% intervals, and the thickness of drug layer 31 at each cut cross section is measured, and it is preferable that drug layer 31 is formed in this manner at three or more locations.
  • the drug layer 31 may be formed such that the average thickness of the drug layer 31 on the side surface 18 of the ridge 17 is thicker than the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the ridge-free region 22 over the entire central 1/2 region in the longitudinal direction of the straight tube section 13, and the drug layer 31 may be formed in this manner over the entire longitudinal direction of the straight tube section 13.
  • the average thickness of the drug layer 31 on the side surface 18 of the ridge 17 is preferably thicker than the average thickness of the drug layer 31 in the central 1/2 region 22M in the circumferential direction of the non-ridge region 22 (see Figures 5 and 6).
  • the central 1/2 region 22M in the circumferential direction of the non-ridge region 22 refers to the central two sections when the non-ridge region 22 is divided into four equal parts in the circumferential direction.
  • the average thickness of the drug layer 31 in the central 1/2 region 22M in the circumferential direction of the non-ridge region 22 is calculated by dividing the area of the drug layer 31 in the central 1/2 region 22M in the circumferential direction of the non-ridge region 22 when the straight tube section 13 is viewed in a longitudinal vertical cross section by the circumferential length of the central 1/2 region 22M in the circumferential direction of the non-ridge region 22.
  • the average thickness of the drug layer 31 on the side 18 of the ridge 17 is preferably 1.3 times or more, more preferably 1.5 times or more, and even more preferably 2.0 times or more, of the average thickness of the drug layer 31 in the central 1/2 region 22M in the circumferential direction of the non-ridge region 22.
  • the average thickness of the drug layer 31 on the side 18 of the ridge 17 may be 100 times or less, or may be 50 times or less, 30 times or less, 20 times or less, or 10 times or less, of the average thickness of the drug layer 31 in the central 1/2 region 22M in the circumferential direction of the non-ridge region 22.
  • a drug layer 31 is provided on the outer surface of the straight tube section 13 in the ridge-free region 22 as well as in the ridge-free region 21.
  • a drug layer 31 is provided on at least a part of the central 1/2 region 22M in the circumferential direction of the ridge-free region 22, and it is preferable that a drug layer 31 is provided at the farthest point 22F from the ridge 17 in the ridge-free region 22. If a drug layer 31 is provided in the ridge-free region 22 as well, when the balloon 10 is expanded at the stenosis, the drug can be delivered to a wide area of the inner surface of the blood vessel at the stenosis.
  • the drug layer 31 is preferably present on the side surface 18 of the ridge 17 at point 17C, which is 80% of the height of the ridge 17. Specifically, it is preferable that the drug layer 31 is formed in this manner on at least one of the multiple side surfaces 18, and it is more preferable that the drug layer 31 is formed in this manner on at least one of the first side surface 18A and the second side surface 18B on one ridge 17 (or on each ridge 17). If the drug layer 31 is provided on the side surface 18 of the ridge 17 in this manner, the drug can be delivered deeper into the blood vessel wall.
  • Point 17C which is 80% of the height of the ridge 17, represents the relative radial position of the ridge 17 as a percentage, when the radial position at the base 17B on the side surface 18 is 0%, and the radial position at the top 17A is 100%.
  • the average thickness of the drug layer 31 on the side surface 18 at 50% to 100% of the height of the ridge 17 is preferably thicker than the thickness of the drug layer 31 at the furthest point 22F from the ridge 17 in the non-ridge region 22. If the drug layer 31 is provided on the side surface 18 of the ridge 17 in this way, more drug can be delivered to the inside of the blood vessel wall.
  • the average thickness of the drug layer 31 at 50% to 100% of the height of the ridge 17 is thicker than the average thickness of the drug layer 31 at the furthest point 22F from the ridge 17 in the multiple non-ridge regions 22, and it is more preferable that the average thickness is thicker than each of the drug layers 31 at the furthest points 22F from the ridge 17 in the multiple non-ridge regions 22.
  • the average thickness of the drug layer 31 on the side surface 18 at a height of 50% to 100% of the ridge 17 is, for example, preferably 1.2 times or more, more preferably 1.5 times or more, and even more preferably 2.0 times or more, the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22.
  • the method for determining the average thickness of drug layer 31 on side 18 at 50% to 100% of the height of convex rib 17 will be described with reference to FIG. 7, taking drug layer 31 on first side 18A as an example.
  • a line perpendicular to first side 18A is drawn from point 17D at 50% of the height of first side 18A of convex rib 17 toward the surface of drug layer 31, and boundary line 35 of drug layer 31 passing through point 17D at 50% of the height of first side 18A is determined.
  • the area of drug layer 31 surrounded by boundary line 35 and boundary line 34 is divided by the length of first side 18A between boundary line 35 and boundary line 34 to determine the average thickness of drug layer 31 on first side 18A at 50% to 100% of the height of convex rib 17.
  • the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 50% to 100% of the height of the convex rib 17 is preferably at least half the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 0% to 50% of the height of the convex rib 17. If the drug layer 31 is provided on the side surface 18 of the convex rib 17 in this manner, the drug can be efficiently delivered to the inside of the blood vessel wall.
  • the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 50% to 100% of the height of the convex rib 17 is equal to or less than the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 0% to 50% of the height of the convex rib 17.
  • the average thickness of drug layer 31 on side surface 18 of convex rib 17 at 50% to 100% height is obtained by dividing the area of drug layer 31 surrounded by boundary line 35 passing through point 17D at 50% height of side surface 18 and boundary line 34 on the radially outer side of drug layer 31, by the length of side surface 18 between boundary line 35 and boundary line 34.
  • the average thickness of drug layer 31 on side surface 18 of convex rib 17 at 0% to 50% height is obtained by dividing the area of drug layer 31 surrounded by boundary line 33 on the radially inner side of drug layer 31 and boundary line 35 passing through point 17D at 50% height of side surface 18, by the length of side surface 18 between boundary line 33 and boundary line 35.
  • the drug layer 31 is present on the top 17A of the ridge 17, and the top 17A of the ridge 17 may be covered by the drug layer 31, or the top 17A of the ridge 17 may be exposed and not covered by the drug layer 31. This makes it easier for the ridge 17 to bite into the narrowed area when the balloon 10 is expanded at the narrowed area, allowing the balloon 10 to effectively expand the narrowed area.
  • the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 0% to 80% of the height of the convex rib 17 is thicker than the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 80% to 100% of the height of the convex rib 17. If the drug layer 31 is provided on the side surface 18 of the convex rib 17 in this manner, the convex rib 17 will be more likely to bite into the narrowed portion when the balloon 10 is expanded at the narrowed portion.
  • the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 0% to 80% of the height of the convex rib 17 can be determined in accordance with the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 0% to 50% of the height of the convex rib 17 described above.
  • the average thickness of the drug layer 31 on the side surface 18 of the ridge 17 at 80% to 100% of the height of the ridge 17 can be calculated in accordance with the average thickness of the drug layer 31 on the side surface 18 of the ridge 17 at 50% to 100% of the height of the ridge 17 described above.
  • the ridge 17 has a portion that narrows toward the apex 17A and does not have a portion that widens toward the apex 17A.
  • the side surface 18 of the ridge 17 has a portion that approaches the imaginary straight line 17L toward the apex 17A with respect to the imaginary straight line 17L that passes through the apex 17A of the ridge 17 and extends radially, and does not have a portion that moves away from the imaginary straight line 17L toward the apex 17A.
  • the ridge 17 may be formed so that the width narrows toward the apex 17A from the base 17B to the entire apex 17A. That is, the side surface 18 of the ridge 17 may be formed so as to approach the imaginary straight line 17L from the base 17B of the ridge 17 to the entire top 17A toward the top 17A.
  • the ridges 17 may be formed so that their width narrows steplessly toward the apex 17A as shown in FIG. 7, or may be formed so that their width narrows stepwise toward the apex 17A as shown in FIG. 8.
  • the side surfaces 18 of the ridges 17 may be formed in a vertical cross section in the longitudinal direction of the straight pipe section 13 in a straight line extending obliquely with respect to the imaginary straight line 17L, in a curved line bulging radially outward (which may include a straight line portion), or in a curved line bulging radially inward (which may include a straight line portion).
  • the ridges 17 may have at least a portion from the base 17B to the apex 17A where the width narrows stepwise toward the apex 17A.
  • the drug layer 31 is formed on the ridge 17 as follows. That is, the ridge 17 has a first step portion 19 adjacent to the outer surface of the balloon body 16 and a second step portion 20 closer to the apex 17A as a portion where the width narrows stepwise toward the apex 17A, and it is preferable that the average thickness of the drug layer 31 on the side surface 18 of the second step portion 20 is at least half the average thickness of the drug layer 31 on the side surface 18 of the first step portion 19.
  • the second step portion 20 of the ridge 17 is more likely to bite into the narrowed portion, the narrowed portion can be effectively expanded by the balloon 10, and the drug can be efficiently delivered to the inside of the blood vessel wall at the expanded narrowed portion.
  • the average thickness of the drug layer 31 on the side surface 18 of the second step portion 20 be equal to or less than the average thickness of the drug layer 31 on the side surface 18 of the first step portion 19.
  • the method of determining the average thickness of the drug layer 31 on the side surface 18 of the first step portion 19 of the convex rib 17 and the average thickness of the drug layer 31 on the side surface 18 of the second step portion 20 will be described.
  • the average thickness of drug layer 31 on first side surface 18A of first step portion 19 of convex rib 17 is obtained by dividing the area of drug layer 31 surrounded by boundary lines 36 and 37 by the length of first side surface 18A between boundary lines 36 and 37.
  • a radially inner boundary line 38 of drug layer 31 on first side surface 18A of second step portion 20 is determined by drawing a straight line perpendicular to first side surface 18A of second step portion 20 from base 20B of second step portion 20, and a radially outer boundary line 39 of drug layer 31 on first side surface 18A of second step portion 20 is determined by drawing a straight line perpendicular to first side surface 18A of second step portion 20 from top 20A of second step portion 20.
  • the average thickness of the drug layer 31 on the first side 18A of the second step portion 20 of the convex rib 17 is calculated by dividing the area of the drug layer 31 surrounded by the boundary lines 38 and 39 by the length of the first side 18A between the boundary lines 38 and 39.
  • the base 19B of the first step portion 19 of the convex rib 17 coincides with the base 17B of the convex rib 17
  • the top 20A of the second step portion 20 of the convex rib 17 coincides with the top 17A of the convex rib 17.
  • the ridges 17 may be formed such that the average thickness of the drug layer 31 on the first side 18A of the ridges 17 is thicker than the average thickness of the drug layer 31 on the second side 18B of the ridges 17 in a vertical cross section in the longitudinal direction of the straight tube section 13. If the drug layer 31 is formed on the side 18 of the ridges 17 in this manner, the second side 18B of the ridges 17 is able to ensure the ability to bite into the narrowed area, and more drug is retained on the first side 18A of the ridges 17. Therefore, when the balloon 10 is expanded at the narrowed area, the drug can be delivered to the narrowed area efficiently.
  • the thickness of the drug layer 31 at the base 17B of the first side 18A of the convex rib 17 may be formed to be thicker than the thickness of the drug layer 31 at the base 17B of the second side 18B of the convex rib 17.
  • the second side 18B of the convex rib 17 ensures the ability to penetrate into the narrowed area, and more drug is retained on the first side 18A of the convex rib 17, allowing the drug to be delivered efficiently to the narrowed area of the blood vessel.
  • the thickness of the drug layer 31 at the base 17B of the first side 18A of the convex rib 17 means the shortest length from the base 17B of the first side 18A of the convex rib 17 to the surface of the drug layer 31 in a vertical cross section of the straight tube section 13 in the longitudinal direction.
  • the thickness of the drug layer 31 at the base 17B of the second side 18B of the ridge 17 means the shortest length from the base 17B of the second side 18B of the ridge 17 to the surface of the drug layer 31 in a vertical cross section in the longitudinal direction of the straight tube section 13.
  • the drug layer 31 may be provided on the outer surface of the proximal tapered section 12 and/or the outer surface of the distal tapered section 14 in addition to the outer surface of the straight tube section 13. This allows the drug to be delivered to a wide area of the stenosis.
  • the balloon 10 When the balloon 10 is delivered to the treatment target area, such as a narrowed portion of a blood vessel, it is preferable that the balloon 10 is inserted in a deflated state into a guiding catheter or sheath. At this time, it is preferable that the balloon 10 is appropriately folded so that its radial size is small.
  • FIG. 10 and 11 show an example of the balloon 10 shown in FIG. 5 being deflated and folded.
  • the straight tube section 13 is folded back at the non-ridge region 22 with the inner surface of the balloon body 16 facing inward to form a folded wing section 23 in which the non-ridge region 22 is overlapped, and it is preferable that the folded wing section 23 is arranged overlapping the outer surface of the straight tube section 13.
  • the folded wing section 23 is formed by folding back the non-ridge region 22 of the balloon body 16 at the folding line 24, and the non-ridge regions 22 are overlapped.
  • the non-ridge region 22 is folded back with the inner surface of the balloon body 16 facing inward. Therefore, when viewed from the outside of the balloon 10, the folding line 24 is formed as a mountain fold. It is preferable that the folded wing portion 23 is formed only from the non-ridge region 22 of the balloon body portion 16, and not including the ridge region 21.
  • the fold lines 24 are preferably formed so as to extend approximately parallel to the extension direction of the ridges 17.
  • the non-ridge region 22 may be folded back so as to form a clear crease at the fold line 24, or may be folded back with a rounded tip. Note that since the non-ridge region 22 of the balloon body 16 usually has a certain degree of thickness and elasticity, the non-ridge region 22 is folded back with a rounded tip at the fold line 24. In this case, when viewed in a vertical cross section in the longitudinal direction of the straight tube section 13, the tip where the non-ridge region 22 is folded back becomes the fold line 24.
  • the straight tube section 13 may have a fold line (valley fold line when viewed from the outside of the balloon 10) formed on one side and/or the other side of the fold line 24 in the circumferential direction, with the outer surface of the balloon body section 16 facing inward.
  • a fold line valley fold line when viewed from the outside of the balloon 10) formed on one side and/or the other side of the fold line 24 in the circumferential direction, with the outer surface of the balloon body section 16 facing inward.
  • the fold line that becomes the valley fold line forms the base of the folding wing section 23.
  • Only one bend line 24 may be formed in one non-convex streak region 22, or two or more may be formed. Preferably, one or two bend lines 24 are formed in one non-convex streak region 22. In FIG. 10, one bend line 24 is formed in one non-convex streak region 22, and in FIG. 11, two bend lines 24 are formed in one non-convex streak region 22. When only one bend line 24 is formed in one non-convex streak region 22, it is preferable that the folding wing portion 23 is inclined to one side in the circumferential direction when viewed in a vertical cross section in the longitudinal direction of the straight pipe portion 13.
  • the two folding wing portions 23 are inclined in opposite directions to each other in the circumferential direction and inclined toward the convex streak 17 when viewed in a vertical cross section in the longitudinal direction of the straight pipe portion 13. This makes it easier for the ridges 17 to be protected by the folding wing portions 23 when the balloon 10 is in a deflated state.
  • the folding wing portion 23 when the balloon 10 is in a contracted state, the folding wing portion 23 may be positioned to cover the top 17A of the ridge 17.
  • the drug layer 31 provided on the ridge 17 is protected by the folding wing portion 23, and for example, the drug layer 31 provided near the top 17A of the ridge 17 is more likely to be protected. Therefore, the drug layer 31 is less likely to fall off the balloon 10 before the balloon 10 is delivered to the treatment target area.
  • the folding wing portion 23 when the balloon 10 is in a contracted state, may be arranged overlapping the outer surface of the straight tube portion 13 so as not to cover the top portion 17A of the ridge 17. In this case, when the balloon 10 is expanded at the narrowed portion, the ridge 17 quickly bites into the narrowed portion, making it easier for the balloon 10 to effectively expand the narrowed portion.
  • one folding wing portion 23 is formed in one non-protruding region 22, and the folding wing portion 23 is arranged so as to cover the top 17A of the protruding ridge 17, but in FIG. 10, the folding wing portion 23 may be arranged overlapping on the outer surface of the straight pipe portion 13 so as not to cover the top 17A of the protruding ridge 17.
  • two folding wing portions 23 are formed in one non-protruding region 22, and the folding wing portion 23 is arranged overlapping on the outer surface of the straight pipe portion 13 so as not to cover the top 17A of the protruding ridge 17, but the folding wing portion 23 may be arranged so as to cover the top 17A of the protruding ridge 17.
  • the method for manufacturing a balloon catheter according to an embodiment of the present invention includes a step of preparing a balloon having ridges on its outer surface (hereinafter referred to as the "balloon preparation step") and a step of applying a medicinal solution to the outer surface of the balloon (hereinafter referred to as the "application step").
  • the balloon 10 described above is prepared. That is, the balloon 10 has a longitudinal direction extending from the proximal side to the distal side and a radial direction perpendicular to the longitudinal direction, and has a straight tube section 13, a proximal tapered section 12 located proximal to the straight tube section 13, and a distal tapered section 14 located distal to the straight tube section 13, and the straight tube section 13 has a cylindrical balloon main body section 16 and a convex rib 17 that protrudes radially outward from the outer surface of the balloon main body section 16 and extends in the longitudinal direction.
  • the above explanation is referred to for details of the configuration and preferred embodiments of the balloon 10.
  • FIG. 12 shows a vertical longitudinal cross section of the balloon 10 shown in FIG. 2, showing the state in which the drug solution 32 is applied to the outer surface of the straight tube section 13 of the balloon 10.
  • the drug solution 32 applied to the outer surface of the straight tube section 13, particularly the non-ridge region 22 moves circumferentially around the surface of the straight tube section 13 and accumulates on the side surface 18 of the ridge 17, and a thick drug layer 31 can be formed on the side surface 18 of the ridge 17.
  • the chemical solution 32 preferably contains a solvent that dissolves or disperses the chemical.
  • the concentration of the chemical in the chemical solution 32 is not particularly limited, and the concentration can be adjusted appropriately so that the chemical can be applied to the outer surface of the straight pipe section 13 and fluidity is ensured on the surface of the straight pipe section 13.
  • the method of applying the drug solution 32 is not particularly limited, and for example, the drug solution 32 may be applied to the outer surface of the straight pipe section 13 by using a brush, a spray, a coater, etc., or the drug solution 32 may be applied to the outer surface of the straight pipe section 13 by immersing the balloon 10 in the drug solution 32.
  • the drug solution 32 it is preferable to apply the drug solution 32 to the outer surface of the straight pipe section 13 while the balloon 10 is in an expanded state. It is also preferable to rotate the balloon 10 around a central axis extending in the longitudinal direction while the balloon 10 is in an expanded state. This makes it easier for the drug solution 32 applied to the non-ridge region 22 of the straight pipe section 13 to move circumferentially around the surface of the straight pipe section 13 and accumulate on the side surface 18 of the ridge 17.
  • the balloon 10 In the application process, it is preferable to rotate the balloon 10 on its central axis extending in the longitudinal direction so that the drug solution 32 reaches 80% of the height of the ridges 17. This makes it easier to form a thick drug layer 31 on the side surface 18 of the ridges 17.
  • the concentration and viscosity of the drug solution 32 to be applied may be adjusted, the type of solvent for the drug solution 32 may be appropriately selected, or the rotation speed of the balloon 10 when the drug solution 32 is applied may be appropriately set.
  • the drug solution 32 may be applied to the outer surface of the straight pipe section 13 while the balloon 10 is rotated around a central axis extending in the longitudinal direction, or after the drug solution 32 is applied to the outer surface of the straight pipe section 13, the balloon 10 may be rotated around a central axis extending in the longitudinal direction. In either case, the drug solution 32 applied to the outer surface of the straight pipe section 13 can move circumferentially around the surface of the straight pipe section 13 and collect on the side surface 18 of the protruding rib 17.
  • the balloon 10 may be rotated in only one direction around a central axis extending in the longitudinal direction, or may be rotated in both one direction and the opposite direction in turn.
  • the thickness of the drug layer 31 formed on the first side 18A and the second side 18B of the ridge 17 can be adjusted as desired.
  • the solvent may be evaporated by heating the balloon 10 to which the drug solution 32 has been applied, by placing the balloon 10 to which the drug solution 32 has been applied in a reduced pressure state, or by blowing air on the balloon 10 to which the drug solution 32 has been applied.
  • the solvent may be allowed to evaporate naturally while rotating the balloon 10.
  • Balloon catheter 2 Shaft 5: Hub 10: Balloon 11: Proximal sleeve section 12: Proximal tapered section 13: Straight tube section 14: Distal tapered section 15: Distal sleeve section 16: Balloon body section 17: Ridge, 17A: Top, 17B: Base, 17C: Point at 80% of the height of the rib, 17D: Point at 50% of the height of the rib 18: Side, 18A: First side, 18B: Second side 19: First step section 20: Second step section 21: Ridge-present region 22: Ridge-free region, 22F: Farthest point from the rib 23: Folding wing section 24: Bending line 31: Drug layer 32: Drug solution

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

This balloon (10) is for a balloon catheter, the balloon (10) having a straight tube part (13), a proximal-side tapered part located further toward the proximal side than the straight tube part (13), and a distal-side tapered part located further toward the distal side than the straight tube part (13), wherein: the straight tube part (13) has a cylindrical balloon body part (16), and a protruding bead (17) protruding radially outward on the outer surface of the balloon body part (16); a protruding bead presence region (21) and a protruding bead absence region (22) are formed on the outer surface of the straight tube part (13); a drug layer (31) is provided on the outer surface of the straight tube part (13); and on a vertical cross-section in the longitudinal direction of the straight tube part (13), the average thickness of the drug layer on the side surface of the protruding bead (17)is greater than the thickness of the drug layer (31) in the protruding bead absence region (22) from the protruding bead (17) to the most distal point (22F).

Description

バルーンカテーテル用バルーン、バルーンカテーテル、およびバルーンカテーテルの製造方法Balloon for balloon catheter, balloon catheter, and method for manufacturing balloon catheter
 本発明は、表面に薬剤が保持されたバルーンカテーテル用バルーンと、当該バルーンを備えたバルーンカテーテルと、当該バルーンを備えたバルーンカテーテルの製造方法に関するものである。 The present invention relates to a balloon for a balloon catheter having a drug retained on its surface, a balloon catheter equipped with the balloon, and a method for manufacturing a balloon catheter equipped with the balloon.
 体内で血液が循環するための流路である血管に狭窄が生じ、血液の循環が滞ることにより、様々な疾患が発生することが知られている。特に心臓に血液を供給する冠状動脈に狭窄が生じると、狭心症、心筋梗塞等の重篤な疾病をもたらすおそれがある。このような血管の狭窄部を治療する方法の一つとして、バルーンカテーテルを用いて狭窄部を拡張させる血管形成術(PTA、PTCA等)がある。 It is known that stenosis in blood vessels, which are the channels through which blood circulates in the body, can lead to a variety of diseases due to stagnation of blood circulation. In particular, stenosis in the coronary arteries that supply blood to the heart can lead to serious diseases such as angina pectoris and myocardial infarction. One method of treating such vascular stenosis is angioplasty (PTA, PTCA, etc.), which uses a balloon catheter to expand the stenotic area.
 バルーンカテーテルには、バルーンの表面に凸条が設けられたものが知られている(例えば、特許文献1~5)。このようなバルーンカテーテルを用いれば、バルーンを拡張させた際に、バルーンの凸条を狭窄部に食い込ませて、狭窄部を効果的に拡張させることができる。一方、血管形成術の場合、拡張した狭窄部に再狭窄が生じることがあるが、そのような再狭窄が発生する頻度(再狭窄率)を低減するために、バルーン表面に薬剤を保持させたバルーンカテーテルも知られている(例えば、特許文献4~7)。このように薬剤が保持されたバルーンカテーテルを用いれば、血管等の体腔の狭窄部や病変部でバルーンを拡張することにより薬剤を血管壁等の体腔内壁へ移行させることができ、再狭窄等の発生抑制が期待できる。 Balloon catheters with ridges on the surface of the balloon are known (see, for example, Patent Documents 1 to 5). When such a balloon catheter is used, the ridges of the balloon can be inserted into the narrowed area when the balloon is inflated, effectively expanding the narrowed area. Meanwhile, in the case of angioplasty, restenosis can occur at the expanded narrowed area, and balloon catheters with a drug retained on the balloon surface are also known to reduce the frequency of such restenosis (restenosis rate) (see, for example, Patent Documents 4 to 7). When a balloon catheter with a drug retained in this way is used, the drug can be transferred to the inner wall of the body cavity, such as the blood vessel wall, by expanding the balloon at the narrowed or diseased area of the body cavity, such as a blood vessel, and it is expected that the occurrence of restenosis, etc. can be suppressed.
特開2009-112361号公報JP 2009-112361 A 特開2017-12678号公報JP 2017-12678 A 国際公開第2020/250611号International Publication No. 2020/250611 特表2008-539959号公報JP 2008-539959 A 特開2013-176507号公報JP 2013-176507 A 特表2008-529740号公報JP 2008-529740 A 特開2015-217260号公報JP 2015-217260 A
 バルーン表面に薬剤が保持されたバルーンカテーテルは、血管等の体腔の狭窄部や病変部でバルーンを拡張することにより薬剤を効率的に血管壁等の体腔内壁へ移行できることが望まれ、この際、体腔内壁の内部へ薬剤を届けることができることが望ましい。本発明は前記事情に鑑みてなされたものであり、その目的は、血管等の体腔内壁の内部へ薬剤を効率的に届けることができるバルーンカテーテル用バルーンと当該バルーンを備えたバルーンカテーテルを提供することにある。本発明はまた、本発明のバルーンを備えたバルーンカテーテルの製造方法も提供する。 It is desirable for a balloon catheter with a drug retained on the balloon surface to be able to efficiently transfer the drug to the inner wall of a body cavity, such as a blood vessel wall, by expanding the balloon at a narrowed or diseased area of a body cavity, such as a blood vessel, and it is desirable to be able to deliver the drug to the inside of the inner wall of the body cavity. The present invention has been made in consideration of the above circumstances, and its object is to provide a balloon for a balloon catheter that can efficiently deliver a drug to the inside of the inner wall of a body cavity, such as a blood vessel, and a balloon catheter equipped with said balloon. The present invention also provides a method for manufacturing a balloon catheter equipped with the balloon of the present invention.
 前記課題を解決することができた本発明のバルーンカテーテル用バルーンおよび当該バルーンを備えたバルーンカテーテルは、下記の通りである。
[1] 近位側から遠位側に延びる長手方向と前記長手方向に垂直な径方向とを有するバルーンカテーテル用バルーンであって、
 前記バルーンは、直管部と、前記直管部よりも近位側に位置する近位側テーパー部と、前記直管部よりも遠位側に位置する遠位側テーパー部とを有し、
 前記直管部は、筒形状のバルーン本体部と、前記バルーン本体部の外面に径方向の外方に突出した凸条とを有し、前記直管部の外面に凸条存在領域と凸条非存在領域が形成されており、
 前記直管部の外面には薬剤層が設けられ、
 前記直管部の長手方向の垂直断面において、前記凸条の側面の前記薬剤層の平均厚みは、前記凸条非存在領域における前記凸条からの最遠点での前記薬剤層の厚みよりも厚いバルーンカテーテル用バルーン。
[2] 前記凸条の80%の高さの地点において、前記凸条の側面に前記薬剤層が存在する[1]に記載のバルーン。
[3] 前記直管部の長手方向の垂直断面において、前記凸条の50%~100%の高さにおける前記凸条の側面の前記薬剤層の平均厚みは、前記凸条非存在領域における前記凸条からの最遠点での前記薬剤層の厚みよりも厚い[1]または[2]に記載のバルーン。
[4] 前記直管部の長手方向の垂直断面において、前記凸条の50%~100%の高さにおける前記凸条の側面の前記薬剤層の平均厚みは、前記凸条の0%~50%の高さにおける前記凸条の側面の前記薬剤層の平均厚みの1/2以上である[1]~[3]のいずれかに記載のバルーン。
[5] 前記直管部の長手方向の垂直断面において、前記凸条の0%~80%の高さにおける前記凸条の側面の前記薬剤層の平均厚みは、前記凸条の80%~100%の高さにおける前記凸条の側面の前記薬剤層の平均厚みよりも厚い[1]~[4]のいずれかに記載のバルーン。
[6] 前記凸条の頂部は露出している[1]~[5]のいずれかに記載のバルーン。
[7] 前記直管部の長手方向の垂直断面において、前記凸条は、頂部に向かって段状に幅が狭まる部分を有する[1]~[6]のいずれかに記載のバルーン。
[8] 前記凸条は、前記頂部に向かって段状に幅が狭まる部分として、前記バルーン本体部の外面に隣接した第1段部分と、それよりも頂部側の第2段部分を有し、前記第2段部分の側面における前記薬剤層の平均厚みは、前記第1段部分の側面における前記薬剤層の平均厚みの1/2以上である[7]に記載のバルーン。
[9] 前記凸条は、樹脂製、金属製、またはその組み合わせである[1]~[8]のいずれかに記載のバルーン。
[10] 前記直管部の長手方向の垂直断面において、前記凸条の側面は、前記凸条の頂部を通り径方向に延びる仮想直線に対して一方側にある第1側面と他方側にある第2側面とを含み、前記第1側面における前記薬剤層の平均厚みは、前記第2側面における前記薬剤層の平均厚みよりも厚い[1]~[9]のいずれかに記載のバルーン。
[11] 前記直管部の長手方向の垂直断面において、前記凸条の頂部を通り径方向に延びる仮想直線に対して一方側にある前記凸条の基部における前記薬剤層の厚みは、前記仮想直線に対して他方側にある前記凸条の基部における前記薬剤層の厚みよりも厚い[1]~[10]のいずれかに記載のバルーン。
[12] 前記バルーンの収縮状態で、前記直管部は、前記バルーン本体部の内面を内側にして前記凸条非存在領域で折り返されて、前記凸条非存在領域が重ね合わされた折り畳み羽根部を形成し、前記折り畳み羽根部は、前記直管部の外面に重ねられて配置され、前記凸条の頂部を覆っている[1]~[11]のいずれかに記載のバルーン。
[13] 前記バルーンの収縮状態で、前記直管部は、前記バルーン本体部の内面を内側にして前記凸条非存在領域で折り返されて、前記凸条非存在領域が重ね合わされた折り畳み羽根部を形成し、前記折り畳み羽根部は、前記凸条の頂部を覆わないように、前記直管部の外面に重ねられて配置されている[1]~[11]のいずれかに記載のバルーン。
[14] [1]~[13]のいずれかに記載のバルーンを備えるバルーンカテーテル。
The balloon for a balloon catheter and the balloon catheter including said balloon of the present invention, which are able to solve the above-mentioned problems, are as follows.
[1] A balloon for a balloon catheter having a longitudinal direction extending from a proximal side to a distal side and a radial direction perpendicular to the longitudinal direction,
The balloon has a straight tube portion, a proximal tapered portion located proximally of the straight tube portion, and a distal tapered portion located distally of the straight tube portion,
The straight pipe portion has a cylindrical balloon main body and a protrusion protruding radially outward on an outer surface of the balloon main body, and a protrusion-existing region and a protrusion-free region are formed on the outer surface of the straight pipe portion,
A drug layer is provided on the outer surface of the straight tube portion,
A balloon for a balloon catheter, wherein, in a vertical cross section of the straight tube portion in the longitudinal direction, the average thickness of the drug layer on the side of the ridge is thicker than the thickness of the drug layer at the farthest point from the ridge in the non-ridge area.
[2] The balloon described in [1], wherein the drug layer is present on the side surface of the ridge at a point that is 80% of the height of the ridge.
[3] The balloon described in [1] or [2], wherein, in a vertical cross section of the straight tube portion in the longitudinal direction, the average thickness of the drug layer on the side surface of the ridge at a height of 50% to 100% of the ridge is thicker than the thickness of the drug layer at the farthest point from the ridge in the ridge-free region.
[4] The balloon according to any one of [1] to [3], wherein, in a vertical cross section in the longitudinal direction of the straight tube portion, the average thickness of the drug layer on the side surface of the ridge at a height of 50% to 100% of the ridge is at least half the average thickness of the drug layer on the side surface of the ridge at a height of 0% to 50% of the ridge.
[5] The balloon according to any one of [1] to [4], wherein, in a vertical cross section in the longitudinal direction of the straight tube portion, the average thickness of the drug layer on the side surface of the ridge at 0% to 80% of the height of the ridge is thicker than the average thickness of the drug layer on the side surface of the ridge at 80% to 100% of the height of the ridge.
[6] The balloon according to any one of [1] to [5], wherein the tops of the ridges are exposed.
[7] The balloon according to any one of [1] to [6], wherein in a vertical cross section in the longitudinal direction of the straight tube portion, the convex strip has a portion whose width narrows stepwise toward an apex.
[8] The balloon described in [7], wherein the convex rib has a first stage portion adjacent to the outer surface of the balloon body and a second stage portion further toward the apex, the first stage portion narrowing in a stepped manner toward the apex, and the average thickness of the drug layer on the side surface of the second stage portion is at least half the average thickness of the drug layer on the side surface of the first stage portion.
[9] The balloon according to any one of [1] to [8], wherein the ridges are made of resin, metal, or a combination thereof.
[10] The balloon described in any of [1] to [9], wherein, in a vertical cross section in the longitudinal direction of the straight tube portion, the side surface of the ridge includes a first side surface on one side of an imaginary line extending radially through the apex of the ridge and a second side surface on the other side, and the average thickness of the drug layer on the first side surface is thicker than the average thickness of the drug layer on the second side surface.
[11] The balloon described in any one of [1] to [10], wherein, in a vertical cross section of the straight tube portion in the longitudinal direction, the thickness of the drug layer at the base of the ridge on one side of an imaginary line that passes through the top of the ridge and extends in a radial direction is thicker than the thickness of the drug layer at the base of the ridge on the other side of the imaginary line.
[12] The balloon according to any one of [1] to [11], wherein, in a deflated state of the balloon, the straight tube section is folded back at the non-ridge region with the inner surface of the balloon body section facing inward, forming overlapping folded wing sections where the non-ridge regions are overlapped, and the folded wing sections are arranged overlapping the outer surface of the straight tube section and cover the tops of the ridges.
[13] The balloon according to any one of [1] to [11], wherein, in a deflated state of the balloon, the straight tube section is folded back at the non-ridge region with the inner surface of the balloon body section facing inward to form overlapping folded wing sections of the non-ridge region, and the folded wing sections are arranged overlapping the outer surface of the straight tube section so as not to cover the tops of the ridges.
[14] A balloon catheter comprising the balloon according to any one of [1] to [13].
 本発明のバルーンカテーテルの製造方法は、下記の通りである。
[15] 近位側から遠位側に延びる長手方向と前記長手方向に垂直な径方向とを有するバルーンであって、直管部と、前記直管部よりも近位側に位置する近位側テーパー部と、前記直管部よりも遠位側に位置する遠位側テーパー部とを有し、前記直管部が、筒形状のバルーン本体部と、前記バルーン本体部の外面に径方向の外方に突出し長手方向に延在している凸条とを有するバルーンを準備する工程と、
 前記直管部の外面に薬液を塗布し、前記バルーンを前記長手方向に延びる中心軸を中心に回転させる塗布工程と
 を有するバルーンカテーテルの製造方法。
[16] 前記塗布工程において、前記バルーンを前記長手方向に延びる中心軸を中心に回転させて、前記薬液を前記凸条の80%の高さまで到達させる[15]に記載のバルーンカテーテルの製造方法。
[17] 前記塗布工程において、前記バルーンを拡張させた状態で、前記直管部の外面に薬液を塗布する[15]または[16]に記載のバルーンカテーテルの製造方法。
[18] 前記塗布工程において、前記バルーンを前記長手方向に延びる中心軸を中心に回転させながら、前記直管部の外面に薬液を塗布する[15]~[17]のいずれかに記載のバルーンカテーテルの製造方法。
[19] 前記塗布工程において、前記直管部の外面に薬液を塗布した後、前記バルーンを前記長手方向に延びる中心軸を中心に回転させる[15]~[17]のいずれかに記載のバルーンカテーテルの製造方法。
[20] 前記塗布工程において、前記バルーンを回転させながら、前記薬液に含まれる溶媒の少なくとも一部を蒸発させる[15]~[19]のいずれかに記載のバルーンカテーテルの製造方法。
The method for producing the balloon catheter of the present invention is as follows.
[15] A step of preparing a balloon having a longitudinal direction extending from a proximal side to a distal side and a radial direction perpendicular to the longitudinal direction, the balloon having a straight tube portion, a proximal tapered portion located proximal to the straight tube portion, and a distal tapered portion located distal to the straight tube portion, the straight tube portion having a cylindrical balloon main body portion and a ridge protruding radially outward from an outer surface of the balloon main body portion and extending in the longitudinal direction;
a coating step of coating an outer surface of the straight tube portion with a medicinal solution and rotating the balloon around a central axis extending in the longitudinal direction.
[16] The method for manufacturing a balloon catheter according to [15], wherein in the application step, the balloon is rotated about a central axis extending in the longitudinal direction, so that the medicinal solution reaches 80% of the height of the ridges.
[17] The method for manufacturing a balloon catheter according to [15] or [16], wherein in the coating step, a medicinal solution is applied to the outer surface of the straight tube portion while the balloon is in an expanded state.
[18] The method for manufacturing a balloon catheter according to any one of [15] to [17], wherein in the coating step, a medicinal solution is applied to the outer surface of the straight tube portion while rotating the balloon about a central axis extending in the longitudinal direction.
[19] The method for manufacturing a balloon catheter according to any one of [15] to [17], wherein in the coating step, after a medicinal solution is applied to the outer surface of the straight tube portion, the balloon is rotated around a central axis extending in the longitudinal direction.
[20] The method for manufacturing a balloon catheter according to any one of [15] to [19], wherein in the coating step, at least a portion of the solvent contained in the drug solution is evaporated while rotating the balloon.
 本発明のバルーンカテーテル用バルーンは、バルーンの直管部の外面に凸条が設けられ、凸条の側面に比較的厚く薬剤層が設けられている。そのため、本発明のバルーンを備えたバルーンカテーテルを用いて血管等の体腔の狭窄部や病変部においてバルーンを拡張させると、凸条が狭窄部や病変部に食い込んで効果的に拡張させることができるとともに、凸条の側面に薬剤層が厚く存在するために、拡張させた狭窄部において血管等の体腔内壁の内部に薬剤を効率的に届けることができる。また、本発明のバルーンカテーテルの製造方法によれば、本発明のバルーンカテーテルを容易に製造することができる。 The balloon for a balloon catheter of the present invention has ridges on the outer surface of the straight tube part of the balloon, and a relatively thick drug layer is provided on the side of the ridges. Therefore, when a balloon catheter equipped with the balloon of the present invention is used to expand the balloon at a narrowed or affected part of a body cavity such as a blood vessel, the ridges can bite into the narrowed or affected part to effectively expand it, and because the drug layer is thick on the side of the ridges, the drug can be efficiently delivered to the inside of the inner wall of the body cavity such as a blood vessel at the expanded narrowed part. Furthermore, the manufacturing method for the balloon catheter of the present invention makes it easy to manufacture the balloon catheter of the present invention.
本発明の実施の形態に係るバルーンカテーテルの構成例を表し、バルーン表面の薬剤層を除いたバルーンカテーテルの側面図を表す。FIG. 1 shows an example of the configuration of a balloon catheter according to an embodiment of the present invention, and is a side view of the balloon catheter excluding the drug layer on the balloon surface. 図1に示したバルーンカテーテルに備えられたバルーンの斜視図を表す。FIG. 2 is a perspective view of a balloon provided in the balloon catheter shown in FIG. 1 . 図1に示したバルーンカテーテルのIII-III断面図を表す。3 shows a cross-sectional view of the balloon catheter shown in FIG. 1 taken along line III-III. 図1に示したバルーンカテーテルのIV-IV断面図を表す。4 shows a cross-sectional view of the balloon catheter shown in FIG. 1 taken along line IV-IV. 薬剤層を備えたバルーンの直管部の長手方向の垂直断面図の一例を表す。1 shows an example of a vertical cross-sectional view of a straight portion of a balloon with a drug layer in the longitudinal direction. 薬剤層を備えたバルーンの直管部の長手方向の垂直断面図の他の一例を表す。13 shows another example of a vertical cross-sectional view in the longitudinal direction of a straight portion of a balloon provided with a drug layer. 図5および図6に示したバルーンの凸条周りの拡大断面図を表す。FIG. 7 is an enlarged cross-sectional view of the ridges and their surroundings of the balloon shown in FIGS. 5 and 6 . 薬剤層を備えたバルーンの凸条周りの拡大断面図の他の一例を表す。13 shows another example of an enlarged cross-sectional view of the area around the convex ridge of a balloon having a drug layer. 薬剤層を備えたバルーンの凸条周りの拡大断面図の他の一例を表す。13 shows another example of an enlarged cross-sectional view of the area around the convex ridge of a balloon having a drug layer. 図5に示したバルーンを収縮させて折り畳んだ状態の長手方向の垂直断面図の一例を表す。FIG. 6 illustrates an example of a vertical cross-sectional view in the longitudinal direction of the balloon shown in FIG. 5 in a deflated and folded state. 図5に示したバルーンを収縮させて折り畳んだ状態の長手方向の垂直断面図の他の一例を表す。FIG. 6 shows another example of a vertical cross-sectional view in the longitudinal direction of the balloon shown in FIG. 5 in a deflated and folded state. バルーン表面に薬剤層を形成する方法の模式図を表す。1 shows a schematic diagram of a method for forming a drug layer on a balloon surface.
 以下、下記実施の形態に基づき本発明を具体的に説明するが、本発明はもとより下記実施の形態によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、各図面において、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、明細書や他の図面を参照するものとする。また、図面における種々部材の寸法は、本発明の特徴の理解に資することを優先しているため、実際の寸法とは異なる場合がある。 The present invention will be described in detail below based on the following embodiment, but the present invention is of course not limited to the following embodiment, and can of course be implemented with appropriate modifications within the scope of the intent described above and below, all of which are included in the technical scope of the present invention. In addition, hatching and component symbols may be omitted in each drawing for convenience, but in such cases, reference should be made to the specification or other drawings. Furthermore, the dimensions of various components in the drawings may differ from the actual dimensions, as priority is given to contributing to an understanding of the features of the present invention.
 本発明の実施の形態に係るバルーンカテーテル用バルーンと、当該バルーンを備えたバルーンカテーテルの構成例について、図面を参照して説明する。図1~図4には、バルーンの薬剤層を除いたバルーンカテーテルの構成例を示した。図1は、バルーンカテーテルの側面図を表し、図2は、図1に示したバルーンカテーテルに備えられたバルーンの斜視図を表し、図3は、図1に示したバルーンカテーテルのIII-III断面図を表し、図4は、図1に示したバルーンカテーテルのIV-IV断面図を表す。図1にはラピッドエクスチェンジ型のバルーンカテーテルの構成例が示されている。 A balloon for a balloon catheter according to an embodiment of the present invention and an example of the configuration of a balloon catheter equipped with said balloon will be described with reference to the drawings. Figs. 1 to 4 show an example of the configuration of a balloon catheter excluding the drug layer of the balloon. Fig. 1 shows a side view of a balloon catheter, Fig. 2 shows a perspective view of a balloon equipped in the balloon catheter shown in Fig. 1, Fig. 3 shows a III-III cross-sectional view of the balloon catheter shown in Fig. 1, and Fig. 4 shows an IV-IV cross-sectional view of the balloon catheter shown in Fig. 1. Fig. 1 shows an example of the configuration of a rapid exchange type balloon catheter.
 バルーンカテーテル1は、シャフト2と、シャフト2の外側に設けられたバルーン10とを有する。バルーンカテーテル1は近位側と遠位側を有し、シャフト2の遠位部にバルーン10が設けられる。バルーンカテーテル1の近位側とは、バルーンカテーテル1の延在方向に対して使用者(術者)の手元側の方向を指し、遠位側とは近位側の反対方向、すなわち処置対象側の方向を指す。また、バルーンカテーテル1の近位側から遠位側への方向を長手方向と称する。 The balloon catheter 1 has a shaft 2 and a balloon 10 provided on the outside of the shaft 2. The balloon catheter 1 has a proximal side and a distal side, and the balloon 10 is provided on the distal part of the shaft 2. The proximal side of the balloon catheter 1 refers to the direction toward the user's (operator's) hand in the extension direction of the balloon catheter 1, and the distal side refers to the opposite direction of the proximal side, i.e., the direction toward the treatment target. The direction from the proximal side to the distal side of the balloon catheter 1 is referred to as the longitudinal direction.
 バルーンカテーテル1は、シャフト2を通じてバルーン10の内部に流体が供給されるように構成され、インデフレーター(バルーン用加減圧器)を用いてバルーン10の拡張および収縮を制御することができる。流体は、ポンプ等により加圧された加圧流体であってもよい。以下、バルーン10の内部に供給される流体を「バルーン拡張流体」と称する。 The balloon catheter 1 is configured so that fluid is supplied to the inside of the balloon 10 through the shaft 2, and the expansion and contraction of the balloon 10 can be controlled using an indeflator (a balloon pressurizer/depressurizer). The fluid may be a pressurized fluid pressurized by a pump or the like. Hereinafter, the fluid supplied to the inside of the balloon 10 is referred to as the "balloon expansion fluid."
 シャフト2は、例えば、インナーシャフト3とアウターシャフト4とから構成される。インナーシャフト3はアウターシャフト4の内腔に配置される。インナーシャフト3はシャフト2の進行をガイドするガイドワイヤの挿通路として機能させることができ、バルーンカテーテル1の使用の際、インナーシャフト3の内腔にガイドワイヤが挿通される。インナーシャフト3とアウターシャフト4の間の空間は、バルーン拡張流体の流路として機能させることができる。 The shaft 2 is composed of, for example, an inner shaft 3 and an outer shaft 4. The inner shaft 3 is disposed in the inner cavity of the outer shaft 4. The inner shaft 3 can function as a passage for a guide wire that guides the progress of the shaft 2, and when the balloon catheter 1 is used, the guide wire is inserted into the inner cavity of the inner shaft 3. The space between the inner shaft 3 and the outer shaft 4 can function as a flow path for the balloon expansion fluid.
 ラピッドエクスチェンジ型のバルーンカテーテル1では、シャフト2の遠位側から近位側に至る途中にガイドワイヤポート7が設けられ、インナーシャフト3の近位端がガイドワイヤポート7に接続し、インナーシャフト3の遠位端がシャフト2の遠位部まで延在することにより、ガイドワイヤポート7からシャフト2の遠位部まで延在するガイドワイヤ挿通路が形成される。 In the rapid exchange type balloon catheter 1, a guidewire port 7 is provided midway from the distal to the proximal side of the shaft 2, and the proximal end of the inner shaft 3 is connected to the guidewire port 7, and the distal end of the inner shaft 3 extends to the distal part of the shaft 2, forming a guidewire insertion passage that extends from the guidewire port 7 to the distal part of the shaft 2.
 アウターシャフト4は近位側アウターシャフト4Aと遠位側アウターシャフト4Bを有していてもよく、この場合、遠位側アウターシャフト4Bの内腔にインナーシャフト3が配置されることが好ましい。近位側アウターシャフト4Aと遠位側アウターシャフト4Bは同じ材料から構成されていてもよく、互いに異なる材料から構成されていてもよい。例えば、近位側アウターシャフト4Aは樹脂または金属から構成され、遠位側アウターシャフト4Bは樹脂から構成されることが好ましい。なお、アウターシャフト4は近位側アウターシャフト4Aと遠位側アウターシャフト4Bに区分されず、1つの部材から構成されていてもよく、近位側アウターシャフト4Aと遠位側アウターシャフト4Bがさらに複数のチューブ部材から構成されていてもよい。 The outer shaft 4 may have a proximal outer shaft 4A and a distal outer shaft 4B, in which case it is preferable that the inner shaft 3 is disposed in the lumen of the distal outer shaft 4B. The proximal outer shaft 4A and the distal outer shaft 4B may be made of the same material, or may be made of different materials. For example, it is preferable that the proximal outer shaft 4A is made of resin or metal, and the distal outer shaft 4B is made of resin. Note that the outer shaft 4 may not be divided into the proximal outer shaft 4A and the distal outer shaft 4B, but may be made of a single member, or the proximal outer shaft 4A and the distal outer shaft 4B may be further made of multiple tube members.
 シャフト2の近位側にはハブ5が設けられることが好ましい。ハブ5は、シャフト2のバルーン拡張流体の流路と連通した流体注入部6を有することが好ましい。バルーン10、シャフト2(インナーシャフト3、アウターシャフト4)、ハブ5の接合は、接着剤や熱溶着など従来公知の接合手段を用いて行うことができる。 A hub 5 is preferably provided on the proximal side of the shaft 2. The hub 5 preferably has a fluid injection section 6 that is connected to the flow path of the balloon expansion fluid in the shaft 2. The balloon 10, shaft 2 (inner shaft 3, outer shaft 4), and hub 5 can be joined using conventional joining means such as adhesives or heat welding.
 なお、図面に示されていないが、バルーンカテーテルは、インナーシャフトがシャフトの遠位部から近位部まで延び、シャフトの遠位側から近位側にわたってガイドワイヤの挿通路が形成されたオーバーザワイヤ型のバルーンカテーテルであってもよい。この場合、シャフトに設けられたバルーン拡張流体の流路とガイドワイヤの挿通路がハブまで延在し、ハブは、バルーン拡張流体の流路と連通した流体注入部と、ガイドワイヤの挿通路と連通した処置部とを有するように構成されることが好ましい。ハブは二又に分岐した構造を有し、二又に分岐した一方に流体注入部が設けられ、他方に処置部が設けられることが好ましい。 Although not shown in the drawings, the balloon catheter may be an over-the-wire type balloon catheter in which the inner shaft extends from the distal to the proximal part of the shaft and a guidewire passage is formed from the distal to the proximal side of the shaft. In this case, it is preferable that the flow path of the balloon expansion fluid and the guidewire passage provided in the shaft extend to the hub, and that the hub is configured to have a fluid injection section communicating with the flow path of the balloon expansion fluid and a treatment section communicating with the guidewire passage. It is preferable that the hub has a bifurcated structure, with the fluid injection section provided on one side of the bifurcated branch and the treatment section provided on the other side.
 シャフト2の外面はコーティングが施されていることが好ましい。ラピッドエクスチェンジ型のバルーンカテーテル1では、近位側アウターシャフト4Aと遠位側アウターシャフト4Bの一方または両方の外面にコーティングが施されていることが好ましく、近位側アウターシャフト4Aと遠位側アウターシャフト4Bの両方の外面にコーティングが施されていることがより好ましい。オーバーザワイヤ型のバルーンカテーテルでは、アウターシャフトの外面に適宜コーティングが施されていることが好ましい。 The outer surface of the shaft 2 is preferably coated. In a rapid exchange type balloon catheter 1, it is preferable that the outer surface of one or both of the proximal outer shaft 4A and the distal outer shaft 4B is coated, and it is more preferable that the outer surfaces of both the proximal outer shaft 4A and the distal outer shaft 4B are coated. In an over-the-wire type balloon catheter, it is preferable that the outer surface of the outer shaft is appropriately coated.
 コーティングは、目的に応じて親水性コーティングまたは疎水性コーティングとすることができる。シャフト2を親水性コーティング剤または疎水性コーティング剤に浸漬したり、シャフト2の外面に親水性コーティング剤または疎水性コーティング剤を塗布したり、シャフト2の外面を親水性コーティング剤または疎水性コーティング剤で被覆したりすることにより、シャフト2の外面にコーティングを施すことができる。コーティング剤は、薬剤や添加剤を含んでいてもよい。 The coating can be a hydrophilic coating or a hydrophobic coating depending on the purpose. The outer surface of the shaft 2 can be coated by immersing the shaft 2 in a hydrophilic or hydrophobic coating agent, applying a hydrophilic or hydrophobic coating agent to the outer surface of the shaft 2, or covering the outer surface of the shaft 2 with a hydrophilic or hydrophobic coating agent. The coating agent may contain drugs or additives.
 親水性コーティング剤としては、ポリビニルアルコール、ポリエチレングリコール、ポリアクリルアミド、ポリビニルピロリドン、メチルビニルエーテル無水マレイン酸共重合体などの親水性ポリマーや、これらの任意の組み合わせで作られた親水性コーティング剤等が挙げられる。 Hydrophilic coating agents include hydrophilic polymers such as polyvinyl alcohol, polyethylene glycol, polyacrylamide, polyvinylpyrrolidone, and methyl vinyl ether maleic anhydride copolymers, as well as hydrophilic coating agents made from any combination of these.
 疎水性コーティング剤としては、ポリテトラフルオロエチレン(PTFE)、フッ化エチレンプロピレン(FEP)、パーフルオロアルコキシアルカン(PFA)、シリコーンオイル、疎水性ウレタン樹脂、カーボンコート、ダイヤモンドコート、ダイヤモンドライクカーボン(DLC)コート、セラミックコート、アルキル基やパーフルオロアルキル基で終端された表面自由エネルギーが小さい物質等が挙げられる。 Hydrophobic coating agents include polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), perfluoroalkoxyalkane (PFA), silicone oil, hydrophobic urethane resin, carbon coat, diamond coat, diamond-like carbon (DLC) coat, ceramic coat, and substances with low surface free energy terminated with alkyl groups or perfluoroalkyl groups.
 バルーンカテーテル1の遠位端部には先端チップ8が設けられていることが好ましい。先端チップ8は、インナーシャフト3の遠位端よりも遠位側にインナーシャフト3とは別部材として設けられてもよく、インナーシャフト3がバルーン10の遠位端よりも遠位側まで延在することにより、インナーシャフト3の遠位端部が先端チップ8として機能してもよい。 It is preferable that a tip tip 8 is provided at the distal end of the balloon catheter 1. The tip tip 8 may be provided as a separate member from the inner shaft 3, distal to the distal end of the inner shaft 3, or the inner shaft 3 may extend distal to the distal end of the balloon 10, so that the distal end of the inner shaft 3 functions as the tip tip 8.
 シャフト2には、バルーン10の位置をX線透視下で確認することを可能にするために、長手方向に対してバルーン10が位置する部分にX線不透過マーカー9が配置されていてもよい。X線不透過マーカー9は、例えば、バルーン10の内部に配置されたインナーシャフト3上に配置することができ、バルーン10の直管部の両端に相当する位置に配されることが好ましく、バルーン10の直管部の中央に相当する位置に配されてもよい。 The shaft 2 may have an X-ray opaque marker 9 disposed at the portion where the balloon 10 is located in the longitudinal direction, so that the position of the balloon 10 can be confirmed under X-ray fluoroscopy. The X-ray opaque marker 9 may be disposed, for example, on the inner shaft 3 disposed inside the balloon 10, and is preferably disposed at positions corresponding to both ends of the straight tube portion of the balloon 10, or may be disposed at a position corresponding to the center of the straight tube portion of the balloon 10.
 バルーン10は、長手方向と径方向を有し、近位側と遠位側に開口を有する筒状に形成されている(図2を参照)。バルーン10の径方向とは、長手方向に垂直な方向であって、バルーン10の中心から放射方向に向かって延びる方向を意味する。バルーン10はまた、バルーン10の長手方向の垂直断面において、拡張状態のバルーン10の外周に沿った方向として、周方向を有する。 The balloon 10 has a longitudinal direction and a radial direction, and is formed into a cylindrical shape with openings on the proximal and distal sides (see FIG. 2). The radial direction of the balloon 10 means a direction perpendicular to the longitudinal direction, extending radially from the center of the balloon 10. The balloon 10 also has a circumferential direction, which is the direction along the outer periphery of the balloon 10 in an expanded state in a vertical cross section of the longitudinal direction of the balloon 10.
 バルーン10は、長手方向に対して、直管部13と、直管部13よりも近位側に位置する近位側テーパー部12と、直管部13よりも遠位側に位置する遠位側テーパー部14とを有する。直管部13は長手方向に延びる略円筒形に形成され、バルーン10において径方向の長さ(外径)が最も大きく形成される。近位側テーパー部12は直管部13の近位側に位置し、直管部13の近位端に接続する。近位側テーパー部12は、直管部13から離れるに従って外径が小さくなるように形成されている。遠位側テーパー部14は直管部13の遠位側に位置し、直管部13の遠位端に接続する。遠位側テーパー部14は、直管部13から離れるに従って外径が小さくなるように形成されている。バルーン10はさらに、近位側テーパー部12よりも近位側に位置する近位側スリーブ部11と、遠位側テーパー部14よりも遠位側に位置する遠位側スリーブ部15を有することが好ましい。近位側スリーブ部11は近位側テーパー部12の近位側に位置し、近位側スリーブ部11の近位端に接続する。近位側スリーブ部11は略円筒形に形成されている。遠位側スリーブ部15は遠位側テーパー部14の遠位側に位置し、遠位側スリーブ部15の遠位端に接続する。遠位側スリーブ部15は略円筒形に形成されている。 The balloon 10 has a straight tube section 13, a proximal tapered section 12 located proximal to the straight tube section 13, and a distal tapered section 14 located distal to the straight tube section 13 in the longitudinal direction. The straight tube section 13 is formed in an approximately cylindrical shape extending in the longitudinal direction, and is formed to have the largest radial length (outer diameter) in the balloon 10. The proximal tapered section 12 is located proximal to the straight tube section 13 and connects to the proximal end of the straight tube section 13. The proximal tapered section 12 is formed so that the outer diameter decreases with increasing distance from the straight tube section 13. The distal tapered section 14 is located distal to the straight tube section 13 and connects to the distal end of the straight tube section 13. The distal tapered section 14 is formed so that the outer diameter decreases with increasing distance from the straight tube section 13. The balloon 10 preferably further has a proximal sleeve portion 11 located proximal to the proximal taper portion 12 and a distal sleeve portion 15 located distal to the distal taper portion 14. The proximal sleeve portion 11 is located proximal to the proximal taper portion 12 and is connected to the proximal end of the proximal sleeve portion 11. The proximal sleeve portion 11 is formed in a substantially cylindrical shape. The distal sleeve portion 15 is located distal to the distal taper portion 14 and is connected to the distal end of the distal sleeve portion 15. The distal sleeve portion 15 is formed in a substantially cylindrical shape.
 上記のようにバルーン10が構成されることにより、バルーン10を狭窄部において拡張させた際に直管部13が狭窄部に十分に接触して、狭窄部の拡張等の治療を行いやすくなる。また、バルーン10が近位側テーパー部12と遠位側テーパー部14を有することにより、バルーン10を収縮させた際にバルーン10の近位端部と遠位端部の外径を小さくしてシャフト2とバルーン10との段差を小さくすることができ、バルーン10を体腔内や内視鏡の鉗子チャネル内を挿通しやすくすることができる。 By configuring the balloon 10 as described above, when the balloon 10 is expanded at the narrowed area, the straight tube section 13 comes into sufficient contact with the narrowed area, making it easier to perform treatment such as expanding the narrowed area. In addition, since the balloon 10 has a proximal tapered section 12 and a distal tapered section 14, when the balloon 10 is deflated, the outer diameter of the proximal and distal ends of the balloon 10 can be reduced to reduce the step between the shaft 2 and the balloon 10, making it easier to insert the balloon 10 into a body cavity or a forceps channel of an endoscope.
 シャフト2の遠位部において、インナーシャフト3がアウターシャフト4の遠位端から遠位側に延出し、インナーシャフト3がバルーン10の内部空間を近位側スリーブ部11から遠位側スリーブ部15にかけて延在することが好ましい。そして、インナーシャフト3の外面がバルーン10の遠位側スリーブ部15の内面に接合し、アウターシャフト4の外面がバルーン10の近位側スリーブ部11の内面に接合することが好ましい。このようにシャフト2の遠位部が構成されることにより、バルーン拡張流体を、インナーシャフト3とアウターシャフト4の間の空間を通ってバルーン10の内部空間に供給することができる。 In the distal portion of the shaft 2, it is preferable that the inner shaft 3 extends distally from the distal end of the outer shaft 4, and that the inner shaft 3 extends through the internal space of the balloon 10 from the proximal sleeve portion 11 to the distal sleeve portion 15. It is also preferable that the outer surface of the inner shaft 3 is joined to the internal surface of the distal sleeve portion 15 of the balloon 10, and the outer surface of the outer shaft 4 is joined to the internal surface of the proximal sleeve portion 11 of the balloon 10. By configuring the distal portion of the shaft 2 in this manner, it is possible to supply balloon expansion fluid to the internal space of the balloon 10 through the space between the inner shaft 3 and the outer shaft 4.
 バルーン10は樹脂から構成されることが好ましく、より好ましくは熱可塑性樹脂から構成される。これにより、成型によりバルーン10を製造することが容易になる。バルーン10を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン樹脂、ポリエチレンテレフタレート、ポリエステルエラストマー等のポリエステル樹脂、ポリウレタン、ポリウレタンエラストマー等のポリウレタン樹脂、ポリフェニレンサルファイド樹脂、ポリアミド、ポリアミドエラストマー等のポリアミド樹脂、フッ素系樹脂、シリコーン樹脂、ラテックスゴム等の天然ゴム等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。なかでも、ポリアミド樹脂、ポリエステル樹脂、ポリウレタン樹脂が好適に用いられる。特に、バルーン10の薄膜化や柔軟性の点から、エラストマー樹脂を用いることが好ましい。例えばポリアミド樹脂の中でバルーン10に好適な材料として、ナイロン12、ナイロン11等が挙げられ、ブロー成形する際に比較的容易に成形可能である点から、ナイロン12が好適に用いられる。また、バルーン10の薄膜化や柔軟性の点から、ポリエーテルエステルアミドエラストマー、ポリアミドエーテルエラストマー等のポリアミドエラストマーが好ましく用いられる。なかでも、降伏強度が高く、バルーン10の寸法安定性が良好な点から、ポリエーテルエステルアミドエラストマーが好ましく用いられる。 The balloon 10 is preferably made of a resin, more preferably a thermoplastic resin. This makes it easier to manufacture the balloon 10 by molding. Examples of resins that make up the balloon 10 include polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymer, polyester resins such as polyethylene terephthalate and polyester elastomer, polyurethane resins such as polyurethane and polyurethane elastomer, polyphenylene sulfide resins, polyamide resins such as polyamide and polyamide elastomer, fluorine-based resins, silicone resins, and natural rubbers such as latex rubber. These may be used alone or in combination of two or more. Among these, polyamide resins, polyester resins, and polyurethane resins are preferably used. In particular, elastomer resins are preferably used in terms of thinning and flexibility of the balloon 10. For example, nylon 12 and nylon 11 are examples of polyamide resins that are suitable for the balloon 10, and nylon 12 is preferably used because it is relatively easy to mold when blow molding. In addition, polyamide elastomers such as polyether ester amide elastomers and polyamide ether elastomers are preferably used in terms of thinning and flexibility of the balloon 10. Among these, polyether ester amide elastomers are preferably used because they have high yield strength and provide good dimensional stability to the balloon 10.
 バルーン10は、直管部13の外面に凸条17を有する。直管部13の外面に凸条17が設けられることにより、バルーン10はスコアリング機能を有するものとなり、バルーン10を血管の狭窄部において拡張させた際に、石灰化した狭窄部に食い込んで、狭窄部に亀裂を入れたりすることが可能となる。そのため、血管内膜の解離を抑えながら狭窄部を拡張させることができる。また、バルーン10の高強度化や加圧時の過拡張の抑制も可能となる。なお、バルーン10は、血管以外の体腔の狭窄部や病変部の治療に用いることもできるが、以下では血管の狭窄部においてバルーン10を適用する場合を例にとって説明する。 The balloon 10 has a ridge 17 on the outer surface of the straight tube section 13. The ridge 17 on the outer surface of the straight tube section 13 gives the balloon 10 a scoring function, and when the balloon 10 is expanded at a narrowed portion of a blood vessel, it can bite into the calcified narrowed portion and create a crack in the narrowed portion. This allows the narrowed portion to be expanded while suppressing dissection of the vascular intima. It also makes it possible to increase the strength of the balloon 10 and suppress overexpansion when pressurized. The balloon 10 can also be used to treat narrowed portions or lesions in body cavities other than blood vessels, but the following description will be given taking as an example a case in which the balloon 10 is applied to a narrowed portion of a blood vessel.
 バルーン10の凸条17について、図5~図9を参照して詳しく説明する。図5および図6には、バルーン10の直管部13の長手方向の垂直断面図が示され、図7~図9には、バルーン10の凸条17周りの拡大断面図が示されている。図5~図9では、直管部13の外面に薬剤層31が設けられたバルーン10が示されている。図5には、図2および図4に示したバルーン10の外面に薬剤層31が設けられた構成例が示されており、凸条17が直管部13の周方向の3箇所に設けられている。図6には、凸条17が直管部13の周方向の1箇所に設けられたバルーン10であって、外面に薬剤層31が設けられた構成例が示されている。 The ridges 17 of the balloon 10 will be described in detail with reference to Figs. 5 to 9. Figs. 5 and 6 show vertical cross-sections in the longitudinal direction of the straight tube section 13 of the balloon 10, and Figs. 7 to 9 show enlarged cross-sections of the ridges 17 and the surroundings of the balloon 10. Figs. 5 to 9 show a balloon 10 in which a drug layer 31 is provided on the outer surface of the straight tube section 13. Fig. 5 shows an example of a configuration in which a drug layer 31 is provided on the outer surface of the balloon 10 shown in Figs. 2 and 4, and the ridges 17 are provided at three locations in the circumferential direction of the straight tube section 13. Fig. 6 shows an example of a configuration in which a ridge 17 is provided at one location in the circumferential direction of the straight tube section 13, and a drug layer 31 is provided on the outer surface of the balloon 10.
 バルーン10の直管部13は、筒形状のバルーン本体部16を有し、バルーン本体部16の外面に凸条17が設けられる。凸条17は、バルーン本体部16の外面から径方向の外方に突出するように設けられる。バルーン10は、凸条17が設けられることにより、直管部13の外面に凸条存在領域21と凸条非存在領域22が形成される。 The straight tube section 13 of the balloon 10 has a cylindrical balloon main body section 16, and a convex rib 17 is provided on the outer surface of the balloon main body section 16. The convex rib 17 is provided so as to protrude radially outward from the outer surface of the balloon main body section 16. By providing the convex rib 17, the balloon 10 has a convex rib region 21 and a convex rib non-existent region 22 formed on the outer surface of the straight tube section 13.
 凸条17は、頂部17Aと基部17Bを有する(図7~図9を参照)。凸条17において、頂部17Aは凸条17の先端、すなわち凸条17の径方向の最も外方に位置する部分を意味し、基部17Bは、凸条17の側面18において、バルーン本体部16との境界、すなわち凸条17の径方向の最も内方に位置する部分を意味する。 The ridge 17 has an apex 17A and a base 17B (see Figures 7 to 9). In the ridge 17, the apex 17A refers to the tip of the ridge 17, i.e., the part of the ridge 17 located radially outward, and the base 17B refers to the boundary between the balloon body 16 and the side surface 18 of the ridge 17, i.e., the part of the ridge 17 located radially inward.
 凸条17は、例えば樹脂から構成することができる。凸条17が樹脂から構成されていれば、凸条17を有するバルーン10を樹脂成型により製造することができ、製造が容易になる。この場合、凸条17とバルーン本体部16は同じ樹脂から構成されることが好ましく、凸条17とバルーン本体部16とが一体形成されていることが好ましい。バルーン本体部16は内層と外層を有していてもよく、この場合、凸条17はバルーン本体部16の外層と同じ樹脂から構成されていることが好ましい。これにより、凸条17が意図せずバルーン本体部16から脱落することが起こりにくくなる。あるいは、凸条17を構成する樹脂とバルーン本体部16を構成する樹脂とがある程度の相溶性があれば、凸条17とバルーン本体部16は互いに異なる樹脂から構成されていてもよい。 The ridges 17 can be made of resin, for example. If the ridges 17 are made of resin, the balloon 10 having the ridges 17 can be manufactured by resin molding, making manufacturing easier. In this case, the ridges 17 and the balloon body 16 are preferably made of the same resin, and the ridges 17 and the balloon body 16 are preferably integrally formed. The balloon body 16 may have an inner layer and an outer layer, and in this case, the ridges 17 are preferably made of the same resin as the outer layer of the balloon body 16. This makes it less likely that the ridges 17 will unintentionally fall off the balloon body 16. Alternatively, the ridges 17 and the balloon body 16 may be made of different resins, as long as there is a certain degree of compatibility between the resin that makes up the ridges 17 and the resin that makes up the balloon body 16.
 凸条17は金属から構成されてもよく、あるいは金属と樹脂の組み合わせから構成されてもよい。この場合、凸条17の頂部17Aを含む部分が金属から構成されることが好ましい。これにより、バルーン10を拡張させた際に、凸条17によって狭窄部に亀裂を入れたり、狭窄部を切開することが容易になる。例えば、凸条17の全体が金属から構成されてもよく、凸条17の基部17Bを含む部分が樹脂から構成され、凸条17の頂部17Aを含む部分が金属から構成されてもよい。従って、凸条17は、樹脂製、金属製、またはその組み合わせであることが好ましい。 The ridges 17 may be made of metal, or a combination of metal and resin. In this case, it is preferable that the portion including the apex 17A of the ridges 17 is made of metal. This makes it easier for the ridges 17 to create a crack in the narrowed area or to cut open the narrowed area when the balloon 10 is inflated. For example, the entire ridges 17 may be made of metal, or the portion including the base 17B of the ridges 17 may be made of resin, and the portion including the apex 17A of the ridges 17 may be made of metal. Therefore, it is preferable that the ridges 17 are made of resin, metal, or a combination thereof.
 直管部13において、バルーン本体部16は筒形状を有する部分として規定される。直管部13において径方向の外方に突出した凸条17を除いた部分がバルーン本体部16となる。バルーン本体部16は外面が円筒形に形成されていると見なすことができる。従って、直管部13の長手方向の垂直断面において、バルーン本体部16の外形は実質的に円形に形成され、これによりバルーン本体部16と凸条17とを区分することができる。図7~図9では、バルーン本体部16と凸条17とが点線で区分されて示されている。凸条存在領域21はバルーン本体部16と凸条17とから構成され、凸条非存在領域22はバルーン本体部16から構成される。 In the straight pipe section 13, the balloon main body 16 is defined as a portion having a cylindrical shape. The straight pipe section 13 is composed of the balloon main body 16 excluding the ridges 17 protruding radially outward. The outer surface of the balloon main body 16 can be considered to be formed in a cylindrical shape. Therefore, in a vertical cross section in the longitudinal direction of the straight pipe section 13, the outer shape of the balloon main body 16 is formed in a substantially circular shape, which allows the balloon main body 16 and the ridges 17 to be distinguished from each other. In Figures 7 to 9, the balloon main body 16 and the ridges 17 are shown separated by dotted lines. The ridge-present region 21 is composed of the balloon main body 16 and the ridges 17, and the ridge-free region 22 is composed of the balloon main body 16.
 凸条17は、直管部13の外面において、畝状に延びるように設けられる。凸条17は、長手方向に延びるように設けられることが好ましく、この場合、凸条17は、バルーン10の長手方向に略平行に延びるものであってもよく、長手方向にらせん状に延びるものであってもよい。なお、バルーン10のスコアリング機能を高め、また凸条17を有するバルーン10の製造が容易な点から、凸条17はバルーン10の長手方向に略平行に延びていることが好ましい。 The convex ribs 17 are provided on the outer surface of the straight tube section 13 so as to extend in a ridge-like manner. It is preferable that the convex ribs 17 are provided so as to extend in the longitudinal direction. In this case, the convex ribs 17 may extend approximately parallel to the longitudinal direction of the balloon 10, or may extend in a spiral shape in the longitudinal direction. Note that it is preferable that the convex ribs 17 extend approximately parallel to the longitudinal direction of the balloon 10, in order to enhance the scoring function of the balloon 10 and to facilitate the manufacture of a balloon 10 having the convex ribs 17.
 凸条17は、直管部13の長手方向の垂直断面において、1つのみ設けられてもよく、複数設けられてもよい。直管部13に凸条17が1つのみ設けられる場合は、直管部13に凸条非存在領域22が1つのみ形成され、直管部13に凸条17が複数設けられる場合は、直管部13に凸条非存在領域22が複数形成される。凸条非存在領域22は、凸条17と等しい数だけ形成される。図5では、凸条17は、バルーン10の直管部13の周方向の3箇所に設けられており、図6では、凸条17は、バルーン10の直管部13の周方向の1箇所のみに設けられている。 Only one or more convex ribs 17 may be provided in a vertical cross section in the longitudinal direction of the straight pipe section 13. When only one convex rib 17 is provided in the straight pipe section 13, only one non-convex rib region 22 is formed in the straight pipe section 13, and when multiple convex ribs 17 are provided in the straight pipe section 13, multiple non-convex rib regions 22 are formed in the straight pipe section 13. The same number of non-convex rib regions 22 are formed as the number of convex ribs 17. In FIG. 5, the convex ribs 17 are provided at three locations in the circumferential direction of the straight pipe section 13 of the balloon 10, and in FIG. 6, the convex rib 17 is provided at only one location in the circumferential direction of the straight pipe section 13 of the balloon 10.
 凸条17は、バルーン10の直管部13において、周方向の異なる位置に複数設けられることが好ましい。すなわち凸条17は、バルーン10の周方向の複数箇所に設けられることが好ましい。この場合、凸条17は、バルーン10の直管部13の周方向に略等間隔に配置されることが好ましい。これにより、バルーン10を拡張させた際に、狭窄部の複数の箇所に亀裂を入れることが可能となる。凸条17は、バルーン10の周方向に対して2箇所以上の位置に設けられることが好ましく、3箇所以上がより好ましく、また8箇所以下が好ましく、6箇所以下がより好ましい。また、この場合の凸条17の周方向の間隔は、1つの凸条17の周方向の長さよりも長いことが好ましい。 The ridges 17 are preferably provided at multiple different circumferential positions on the straight tube section 13 of the balloon 10. That is, the ridges 17 are preferably provided at multiple locations on the balloon 10 in the circumferential direction. In this case, the ridges 17 are preferably arranged at approximately equal intervals on the straight tube section 13 of the balloon 10 in the circumferential direction. This makes it possible to create cracks in multiple locations on the narrowed section when the balloon 10 is expanded. The ridges 17 are preferably provided at two or more locations on the circumferential direction of the balloon 10, more preferably three or more locations, and preferably eight or fewer locations, and more preferably six or fewer locations. In this case, the circumferential interval of the ridges 17 is preferably longer than the circumferential length of one ridge 17.
 凸条17の断面形状は特に限定されない。例えば、直管部13の長手方向の垂直断面における凸条17の形状としては、三角形、四角形等の多角形、半円形、扇形等の円形の部分形状、略円形、楔型、凸形、紡錘形、不定形等が挙げられる。多角形には、角部の頂点が明確であって辺が直線であるものの他に、角部が丸みを帯びている角丸多角形や、辺の少なくとも一部が曲線となっているものも含まれる。なお、凸条17は、頂部17Aに向かって幅狭になるように形成されていることが好ましい。 The cross-sectional shape of the convex ribs 17 is not particularly limited. For example, the shape of the convex ribs 17 in a vertical cross section in the longitudinal direction of the straight pipe section 13 may be a polygon such as a triangle or a rectangle, a partial shape of a circle such as a semicircle or a sector, an approximately circular shape, a wedge shape, a convex shape, a spindle shape, an irregular shape, etc. Polygons include polygons with clear corner apexes and straight sides, as well as rounded polygons with rounded corners and polygons with at least some of the sides curved. It is preferable that the convex ribs 17 are formed so that they narrow toward the apex 17A.
 図7~図9には、凸条17の様々な断面形状の例が示されている。図7および図9では、凸条17は頂部17Aに向かって無段状に幅が狭まるように形成されている。図8では、凸条17は頂部17Aに向かって段状に幅が狭まるように形成されている。図7~図9に示した凸条17の各形態の詳細については、後述する。 Figures 7 to 9 show examples of various cross-sectional shapes of the ridges 17. In Figures 7 and 9, the ridges 17 are formed so that their width narrows steplessly toward the apex 17A. In Figure 8, the ridges 17 are formed so that their width narrows stepwise toward the apex 17A. Details of each shape of the ridges 17 shown in Figures 7 to 9 will be described later.
 直管部13の長手方向の垂直断面において、凸条17の高さは凸条17の幅(最大幅)の0.2倍以上であることが好ましい。このように凸条17が形成されていれば、狭窄部においてバルーン10を拡張させた際に、凸条17が狭窄部に食い込みやすくなり、凸条17によるスコアリング機能を高めることができる。また、後述するように、凸条17の側面18に薬剤層を形成することが容易になる。なお、ここで説明した凸条17の幅は、凸条17の周方向の長さを意味する。凸条17は、基部17Bにおいて最大幅となるように形成されていてもよく、これにより凸条17がバルーン本体部16の外面に安定して設置される。凸条17の高さは凸条17の幅の0.4倍以上がより好ましく、0.7倍以上がさらに好ましく、また2.0倍以下が好ましく、1.8倍以下がより好ましく、1.5倍以下がさらに好ましい。 In the vertical cross section of the straight tube portion 13 in the longitudinal direction, the height of the ridge 17 is preferably 0.2 times or more the width (maximum width) of the ridge 17. If the ridge 17 is formed in this manner, when the balloon 10 is expanded at the narrowed portion, the ridge 17 is more likely to bite into the narrowed portion, and the scoring function of the ridge 17 can be improved. In addition, as described below, it becomes easier to form a drug layer on the side surface 18 of the ridge 17. Note that the width of the ridge 17 described here means the circumferential length of the ridge 17. The ridge 17 may be formed so that it is at its widest at the base 17B, so that the ridge 17 is stably installed on the outer surface of the balloon body portion 16. The height of the ridge 17 is more preferably 0.4 times or more the width of the ridge 17, more preferably 0.7 times or more, and more preferably 2.0 times or less, more preferably 1.8 times or less, and even more preferably 1.5 times or less.
 直管部13において、凸条17が設けられた部分の肉厚、すなわち凸条存在領域21の肉厚は、凸条17が設けられない部分の肉厚、すなわち凸条非存在領域22の肉厚よりも厚く形成されていることが好ましい。これにより、凸条17によるスコアリング機能を高めることができる。凸条存在領域21の肉厚(最大肉厚)は、凸条非存在領域22の肉厚(最大肉厚)の1.5倍以上であることが好ましく、2.0倍以上がより好ましく、2.5倍以上がさらに好ましい。凸条存在領域21の肉厚の上限は特に限定されず、例えば、凸条非存在領域22の肉厚の30倍以下、20倍以下または10倍以下であってもよい。 In the straight pipe section 13, the thickness of the portion where the ridges 17 are provided, i.e., the thickness of the ridge-present region 21, is preferably formed thicker than the thickness of the portion where the ridges 17 are not provided, i.e., the thickness of the ridge-free region 22. This can improve the scoring function of the ridges 17. The thickness (maximum thickness) of the ridge-present region 21 is preferably 1.5 times or more, more preferably 2.0 times or more, and even more preferably 2.5 times or more, the thickness (maximum thickness) of the ridge-free region 22. There is no particular limit to the upper limit of the thickness of the ridge-present region 21, and may be, for example, 30 times or less, 20 times or less, or 10 times or less, the thickness of the ridge-free region 22.
 バルーン10において、凸条17は、直管部13の長手方向の1/2以上の範囲に設けられることが好ましく、2/3以上の範囲に設けられることがより好ましく、3/4以上の範囲に設けられることがさらに好ましい。これにより、バルーン10を拡張させた際に、狭窄部の広い範囲に亀裂を入れることが可能となる。凸条17は、近位側テーパー部12および/または遠位側テーパー部14の外面にも設けられてもよい。図1および図2では、凸条17は、近位側テーパー部12から直管部13を経由して遠位側テーパー部14まで延びるように設けられている。 In the balloon 10, the ridges 17 are preferably provided over at least 1/2 of the longitudinal length of the straight tube section 13, more preferably over at least 2/3 of the longitudinal length, and even more preferably over at least 3/4 of the longitudinal length. This allows cracks to be created over a wide range of the narrowed area when the balloon 10 is expanded. The ridges 17 may also be provided on the outer surface of the proximal taper section 12 and/or the distal taper section 14. In Figures 1 and 2, the ridges 17 are provided so as to extend from the proximal taper section 12 through the straight tube section 13 to the distal taper section 14.
 バルーン10は、バルーン10の内面において径方向の内方に向かって突出している内側凸条を有していてもよい(図示せず)。凸条17と内側凸条はバルーン10の長手方向や周方向に対して同じ位置に配置されていてもよく、これらは一体成形されていることが好ましく、これによりバルーン10の一部が肉厚に形成されていてもよい。 The balloon 10 may have an inner ridge that protrudes radially inward on the inner surface of the balloon 10 (not shown). The ridge 17 and the inner ridge may be located at the same position in the longitudinal or circumferential direction of the balloon 10, and it is preferable that they are integrally molded, so that a portion of the balloon 10 may be formed thick.
 バルーン10の直管部13の外面には薬剤層31が設けられている。薬剤層31に含まれる薬剤は、薬理活性物質であれば特に限定されず、例えば、遺伝子治療薬、非遺伝子治療薬、小分子、細胞等の医薬として許容される薬剤が挙げられる。特に、バルーンカテーテル1を血管形成術における治療後の血管の再狭窄を抑制する目的で使用する場合は、薬剤として抗増殖剤や免疫抑制剤などの抗再狭窄剤を好ましく用いることができ、具体的には、パクリタキセル、シロリムス(ラパマイシン)、エベロリムス、ゾタロリムス等の薬剤を用いることができる。これらの薬剤は、1種のみを用いてもよく、2種以上を用いてもよい。 A drug layer 31 is provided on the outer surface of the straight tube portion 13 of the balloon 10. The drug contained in the drug layer 31 is not particularly limited as long as it is a pharmacologically active substance, and examples of such drugs include drugs that are acceptable as medicines, such as gene therapy drugs, non-gene therapy drugs, small molecules, and cells. In particular, when the balloon catheter 1 is used for the purpose of suppressing vascular restenosis after treatment in angioplasty, anti-restenosis drugs such as antiproliferative agents and immunosuppressants can be preferably used as the drug, and specifically, drugs such as paclitaxel, sirolimus (rapamycin), everolimus, and zotarolimus can be used. Only one type of these drugs may be used, or two or more types may be used.
 薬剤層31には、薬理活性物質とともに、薬剤の分散性、溶解性、血管壁への移行性、保存安定性を向上させるための助剤が含まれていてもよい。助剤としては、安定化剤、結合剤、崩壊剤、防湿剤、防腐剤、溶解助剤などが用いられ、具体的には、乳糖、白糖、麦芽糖、デキストリン、キシリトール、エリスリトール、マンニトール、エチレンジアミン、ヨウ化カリウム、尿素、ポリソルベート、ジブチルヒドロキシトルエン、ポリエチレングリコール、脂質、ピロ亜硫酸ナトリウム、アスコルビン酸、トコフェロール、安息香酸、パラオキシ安息香酸エステル、ポリアクリル酸、ポリ乳酸、ポリグリコール酸、ヒアルロン酸、キトサン、ゼラチン等が挙げられる。 The drug layer 31 may contain, in addition to the pharmacologically active substance, auxiliary agents for improving the dispersibility, solubility, migration to the vascular wall, and storage stability of the drug. Examples of auxiliary agents that can be used include stabilizers, binders, disintegrants, moisture-proofing agents, preservatives, and dissolution aids. Specific examples include lactose, sucrose, maltose, dextrin, xylitol, erythritol, mannitol, ethylenediamine, potassium iodide, urea, polysorbate, dibutylhydroxytoluene, polyethylene glycol, lipids, sodium pyrosulfite, ascorbic acid, tocopherol, benzoic acid, paraoxybenzoic acid esters, polyacrylic acid, polylactic acid, polyglycolic acid, hyaluronic acid, chitosan, and gelatin.
 薬剤層31は、狭窄部への送達中(デリバリー中)に薬剤が血液中に溶出したり脱落することを抑制するために、保護層を有していてもよい。保護層は薬剤層31の一部に含まれ、薬剤層31の最外層を構成することが好ましい。保護層は、例えば水溶性高分子から構成され、例えば、カルボキシルメチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコール、アルギン酸、ペクチン、アラビアガム、ジェランガム、グアガム、キサンタンガム、カラギーナン、ゼラチンなどから形成することができる。 The drug layer 31 may have a protective layer to prevent the drug from dissolving in the blood or falling off during delivery to the stenotic area. The protective layer is preferably included as part of the drug layer 31 and constitutes the outermost layer of the drug layer 31. The protective layer is composed of, for example, a water-soluble polymer, and can be formed from, for example, carboxymethylcellulose, hydroxypropylcellulose, methylcellulose, hydroxyethylcellulose, polyvinyl alcohol, alginic acid, pectin, gum arabic, gellan gum, guar gum, xanthan gum, carrageenan, gelatin, etc.
 薬剤層31は少なくとも直管部13の凸条存在領域21に設けられ、具体的には凸状17の側面18に薬剤層31が設けられる。薬剤層31は凸条非存在領域22にも設けられてもよいが、凸条17の側面18に薬剤層31がより厚く存在する。具体的には、バルーン10は、直管部13の長手方向の垂直断面において、凸条17の側面18の薬剤層31の平均厚みが、凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みよりも厚くなっている。このように薬剤層31が設けられることにより、狭窄部においてバルーン10を拡張させた際に、血管壁の内部に効率的に薬剤を移行させることができる。すなわち、狭窄部においてバルーン10を拡張させた際に、凸条17が狭窄部に食い込んで狭窄部を効果的に拡張させることができるとともに、凸条17の側面18に薬剤層31が厚く存在するために、拡張させた狭窄部において血管壁の内部に薬剤を効率的に届けることができる。 The drug layer 31 is provided at least in the convex streak region 21 of the straight tube section 13, and specifically, the drug layer 31 is provided on the side surface 18 of the convex streak 17. The drug layer 31 may also be provided in the convex streak-free region 22, but the drug layer 31 is thicker on the side surface 18 of the convex streak 17. Specifically, in the vertical cross section of the straight tube section 13 in the longitudinal direction of the balloon 10, the average thickness of the drug layer 31 on the side surface 18 of the convex streak 17 is thicker than the thickness of the drug layer 31 at the farthest point 22F from the convex streak 17 in the convex streak-free region 22. By providing the drug layer 31 in this way, when the balloon 10 is expanded at the narrowed portion, the drug can be efficiently transferred to the inside of the blood vessel wall. That is, when the balloon 10 is expanded at the narrowed portion, the convex streak 17 can bite into the narrowed portion to effectively expand the narrowed portion, and since the drug layer 31 is thick on the side surface 18 of the convex streak 17, the drug can be efficiently delivered to the inside of the blood vessel wall at the expanded narrowed portion.
 直管部13の長手方向の垂直断面における凸条17の側面18の数は、凸条17の数の倍、すなわち凸条17の第1側面18Aと第2側面18Bに対応する分だけ存在するが、凸条17の側面18における薬剤層31の平均厚みは、全ての側面18における薬剤層31の平均厚みとなる。なお、凸条17の第1側面18Aと第2側面18Bとは、直管部13の長手方向の垂直断面において、凸条17の頂部17Aを通り径方向に延びる仮想直線17Lに対して一方側にある側面18が第1側面18Aとなり、他方側にある側面18が第2側面18Bとなる。例えばバルーン10を遠位側から見て、凸条17の左側の側面18を第1側面18Aとし、右側の側面18を第2側面18Bとすることができる。 The number of side surfaces 18 of the ridges 17 in the vertical cross section of the straight tube section 13 in the longitudinal direction is twice the number of ridges 17, that is, the number of ridges 17 corresponding to the first side surface 18A and the second side surface 18B, but the average thickness of the drug layer 31 on the side surface 18 of the ridges 17 is the average thickness of the drug layer 31 on all the side surfaces 18. Note that, in the vertical cross section of the longitudinal direction of the straight tube section 13, the side surface 18 on one side of the imaginary straight line 17L that passes through the top 17A of the ridges 17 and extends in the radial direction is the first side surface 18A, and the side surface 18 on the other side is the second side surface 18B. For example, when the balloon 10 is viewed from the distal side, the side surface 18 on the left side of the ridges 17 can be the first side surface 18A, and the side surface 18 on the right side can be the second side surface 18B.
 凸条17の第1側面18Aにおける薬剤層31の平均厚みの求め方について、図7を参照して説明する。直管部13の長手方向の垂直断面において、凸条17の第1側面18Aの基部17Bから薬剤層31の表面に向かって第1側面18Aに垂直な直線を引くことにより、薬剤層31の径方向の内方側の境界線33を定め、凸条17の頂部17Aから第1側面18Aに垂直な直線を引くことにより、薬剤層31の径方向の外方側の境界線34を定める。そして、境界線33と境界線34で囲まれた薬剤層31の面積を、第1側面18Aの長さで除することにより、凸条17の第1側面18Aにおける薬剤層31の平均厚みが求まる。基部17Bまたは頂部17Aから引く第1側面18Aに垂直な直線は、直管部13の長手方向の垂直断面において、第1側面18Aの基部17Bまたは頂部17Aにおける接線に対して垂直で基部17Bまたは頂部17Aを通る直線を意味する。凸条17の側面18における薬剤層31の平均厚みは、直管部13の長手方向の垂直断面において、第1側面18Aの薬剤層31の面積と第2側面18Bの薬剤層31の面積の和を、第1側面18Aの長さと第2側面18Bの長さの和で除することにより求められる。 7, a method for determining the average thickness of drug layer 31 on first side 18A of convex rib 17 is described. In a vertical cross section of straight tube section 13 in the longitudinal direction, a line perpendicular to first side 18A is drawn from base 17B of first side 18A of convex rib 17 toward the surface of drug layer 31 to determine radial inner boundary line 33 of drug layer 31, and a line perpendicular to first side 18A is drawn from top 17A of convex rib 17 to determine radial outer boundary line 34 of drug layer 31. Then, the area of drug layer 31 enclosed by boundary line 33 and boundary line 34 is divided by the length of first side 18A to determine the average thickness of drug layer 31 on first side 18A of convex rib 17. A straight line drawn from the base 17B or the apex 17A perpendicular to the first side surface 18A means a straight line perpendicular to the tangent line at the base 17B or the apex 17A of the first side surface 18A in a vertical cross section of the straight tube section 13 in the longitudinal direction and passing through the base 17B or the apex 17A. The average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 is calculated by dividing the sum of the area of the drug layer 31 on the first side surface 18A and the area of the drug layer 31 on the second side surface 18B in a vertical cross section of the straight tube section 13 in the longitudinal direction by the sum of the length of the first side surface 18A and the length of the second side surface 18B.
 凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みは、最遠点22Fでのバルーン本体部16の外面から薬剤層31の表面までの径方向の長さを意味する。なお、凸条非存在領域22における凸条17からの最遠点22Fに薬剤層31が存在しない場合は、当該最遠点22Fでの薬剤層31の厚みは0となる。 The thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the ridge-free region 22 means the radial length from the outer surface of the balloon body 16 to the surface of the drug layer 31 at the farthest point 22F. Note that if the drug layer 31 does not exist at the farthest point 22F from the ridge 17 in the ridge-free region 22, the thickness of the drug layer 31 at the farthest point 22F is 0.
 凸条非存在領域22における凸条17からの最遠点22Fは、次のように定められる。図6に示すように、直管部13の長手方向の垂直断面において凸条17が1つのみ設けられる場合は、直管部13の周方向における凸条17の対称点(筒形状のバルーン本体部16の中心に対する対称点)が、凸条非存在領域22における凸条17からの最遠点22Fとなる。図5に示すように、直管部13の長手方向の垂直断面において凸条17が複数設けられる場合は、直管部13の周方向において隣り合う凸条17の周方向における中点が、凸条非存在領域22における凸条17からの最遠点22Fとなる。 The farthest point 22F from the convex rib 17 in the non-convex rib region 22 is determined as follows. As shown in FIG. 6, when only one convex rib 17 is provided in a vertical cross section in the longitudinal direction of the straight pipe section 13, the symmetrical point of the convex rib 17 in the circumferential direction of the straight pipe section 13 (the symmetrical point with respect to the center of the cylindrical balloon main body section 16) becomes the farthest point 22F from the convex rib 17 in the non-convex rib region 22. As shown in FIG. 5, when multiple convex ribs 17 are provided in a vertical cross section in the longitudinal direction of the straight pipe section 13, the midpoint in the circumferential direction of adjacent convex ribs 17 in the circumferential direction of the straight pipe section 13 becomes the farthest point 22F from the convex rib 17 in the non-convex rib region 22.
 これについてさらに詳しく説明する。凸条17には、第1側面18Aと第2側面18Bにそれぞれ凸条17の基部17Bが存在するが、図6に示すように直管部13の長手方向の垂直断面において凸条17が1つのみ設けられる場合は、凸条非存在領域22における凸条17の第1側面18Aの基部17Bと第2側面18Bの基部17Bとの中点が、凸条非存在領域22における凸条17からの最遠点22Fとなる。図5に示すように直管部13の長手方向の垂直断面において凸条17が複数設けられる場合は、一の凸条17の第1側面18Aの基部17Bと、当該凸条17の第1側面18Aと凸条非存在領域22を挟んで隣り合う凸条17の第2側面18Bの基部17Bとの中点が、凸条非存在領域22における凸条17からの最遠点22Fとなる。 This will be explained in more detail. The base 17B of the convex rib 17 is present on each of the first side surface 18A and the second side surface 18B of the convex rib 17. However, when only one convex rib 17 is provided in the vertical cross section in the longitudinal direction of the straight pipe section 13 as shown in FIG. 6, the midpoint between the base 17B of the first side surface 18A of the convex rib 17 and the base 17B of the second side surface 18B in the convex rib non-existent region 22 is the farthest point 22F from the convex rib 17 in the convex rib non-existent region 22. When multiple convex ribs 17 are provided in the vertical cross section in the longitudinal direction of the straight pipe section 13 as shown in FIG. 5, the midpoint between the base 17B of the first side surface 18A of one convex rib 17 and the base 17B of the second side surface 18B of the convex rib 17 adjacent to the first side surface 18A of the convex rib 17 and the convex rib non-existent region 22 is the farthest point 22F from the convex rib 17 in the convex rib non-existent region 22.
 直管部13の長手方向の垂直断面において凸条17が複数設けられる場合は、複数設けられた凸条17によって直管部13の外面に複数の凸条非存在領域22が形成されるが、凸条17の側面18の薬剤層31の平均厚みが、複数の凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みの平均値よりも厚く形成されていればよく、好ましくは、複数の凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の各厚みよりも厚く形成される。 When multiple ridges 17 are provided in a vertical cross section in the longitudinal direction of the straight tube section 13, multiple ridge-free regions 22 are formed on the outer surface of the straight tube section 13 by the multiple ridges 17, but the average thickness of the drug layer 31 on the side surface 18 of the ridges 17 only needs to be thicker than the average thickness of the drug layer 31 at the farthest point 22F from the ridges 17 in the multiple ridge-free regions 22, and is preferably thicker than each thickness of the drug layer 31 at the farthest point 22F from the ridges 17 in the multiple ridge-free regions 22.
 凸条17の側面18の薬剤層31の平均厚みと、凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みは、例えば次のように求めることができる。バルーン10を直管部13で長手方向の垂直方向に切断し、バルーン本体部16が略円形となる状態に保持し、凸条17の側面18の薬剤層31の平均厚みと、凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みを計測する。あるいは、折り畳まれたバルーン10を直管部13で長手方向の垂直方向に切断し、折り畳まれたバルーン10の凸条17間の凸条非存在領域22の外周長を計測し、凸条17間の外周長の中点を最遠点22Fと定め、凸条17の基部17Bにおける薬剤層31の厚みと、凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みを計測してもよい。 The average thickness of the drug layer 31 on the side 18 of the ridge 17 and the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22 can be determined, for example, as follows: The balloon 10 is cut perpendicular to the longitudinal direction at the straight tube portion 13, and the balloon body portion 16 is held in a state in which it is approximately circular, and the average thickness of the drug layer 31 on the side 18 of the ridge 17 and the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22 are measured. Alternatively, the folded balloon 10 may be cut perpendicular to the longitudinal direction at the straight tube portion 13, the outer periphery of the non-ridge region 22 between the ridges 17 of the folded balloon 10 may be measured, the midpoint of the outer periphery between the ridges 17 may be defined as the farthest point 22F, and the thickness of the drug layer 31 at the base 17B of the ridge 17 and the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22 may be measured.
 凸条17の側面18の薬剤層31の平均厚みは、バルーンを直管部13で長手方向に垂直方向に切断し、その切断断面の写真を撮影し画像処理することにより求めることが簡便である。 The average thickness of the drug layer 31 on the side surface 18 of the ridge 17 can be easily determined by cutting the balloon perpendicular to the longitudinal direction at the straight tube portion 13, taking a photograph of the cut cross section, and processing the image.
 凸条17の側面18の薬剤層31の平均厚みは、例えば、凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みの1.5倍以上であることが好ましく、2.0倍以上がより好ましく、2.5倍以上がさらに好ましい。凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みに対する凸条17の側面18の薬剤層31の平均厚みの比の上限値は特に限定されず、凸条非存在領域22における凸条17からの最遠点22Fで薬剤層31は存在しなくてもよく、あるいは非常に薄い厚みで存在してもよい。例えば、凸条17の側面18の薬剤層31の平均厚みは、凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みの100倍以下であってもよく、50倍以下、30倍以下、20倍以下または10倍以下であってもよい。 The average thickness of the drug layer 31 on the side 18 of the ridge 17 is preferably 1.5 times or more, more preferably 2.0 times or more, and even more preferably 2.5 times or more, the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22. The upper limit of the ratio of the average thickness of the drug layer 31 on the side 18 of the ridge 17 to the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22 is not particularly limited, and the drug layer 31 may not be present at the farthest point 22F from the ridge 17 in the non-ridge region 22, or may be present at a very thin thickness. For example, the average thickness of the drug layer 31 on the side 18 of the ridge 17 may be 100 times or less, 50 times or less, 30 times or less, 20 times or less, or 10 times or less, the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22.
 バルーン10は、直管部13の長手方向の少なくとも一部において、凸条17の側面18の薬剤層31の平均厚みが、凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みよりも厚く形成されていればよい。好ましくは、直管部13の長手方向の中央1/2の領域の少なくとも一部において薬剤層31がそのように形成されており、より好ましくは、直管部13の長手方向の中央1/2の領域の半分以上において薬剤層31がそのように形成されており、さらに好ましくは、直管部13の長手方向の中央1/2の領域の2/3以上において薬剤層31がそのように形成されている。例えば、直管部13の長手方向の相対位置として直管部13の近位端を0%とし遠位端を100%としたときに、直管部13の25%~75%の範囲を10%刻みで6箇所で径方向に切断し、各切断断面の薬剤層31の厚みを計測して、3箇所以上においてそのように形成されていることが好ましい。これにより、直管部13の長手方向の中央1/2の領域の半分以上において、凸条17の側面18の薬剤層31の平均厚みが、凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みよりも厚く形成されていると判定することができる。薬剤層31は、直管部13の長手方向の中央1/2の領域の全体において、凸条17の側面18の薬剤層31の平均厚みが、凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みよりも厚く形成されていてもよく、直管部13の長手方向の全体において、薬剤層31がそのように形成されていてもよい。 The balloon 10 may be formed such that the average thickness of the drug layer 31 on the side surface 18 of the ridge 17 is thicker than the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the ridge-free region 22 in at least a portion of the longitudinal direction of the straight tube section 13. Preferably, the drug layer 31 is formed in this manner in at least a portion of the central 1/2 longitudinal region of the straight tube section 13, more preferably, the drug layer 31 is formed in this manner in more than half of the central 1/2 longitudinal region of the straight tube section 13, and even more preferably, the drug layer 31 is formed in this manner in more than 2/3 of the central 1/2 longitudinal region of the straight tube section 13. For example, when the relative longitudinal positions of straight tube section 13 are 0% at the proximal end and 100% at the distal end, a range of 25% to 75% of straight tube section 13 is cut radially at six locations at 10% intervals, and the thickness of drug layer 31 at each cut cross section is measured, and it is preferable that drug layer 31 is formed in this manner at three or more locations. This makes it possible to determine that the average thickness of drug layer 31 on side surface 18 of ridge 17 is formed thicker than the thickness of drug layer 31 at farthest point 22F from ridge 17 in ridge-free region 22 in more than half of the central ½ region in the longitudinal direction of straight tube section 13. The drug layer 31 may be formed such that the average thickness of the drug layer 31 on the side surface 18 of the ridge 17 is thicker than the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the ridge-free region 22 over the entire central 1/2 region in the longitudinal direction of the straight tube section 13, and the drug layer 31 may be formed in this manner over the entire longitudinal direction of the straight tube section 13.
 下記の直管部13の長手方向の垂直断面における薬剤層31の形成に関する様々な説明においても、直管部13の長手方向における薬剤層31の形成について、上記の説明が参照される。 The above explanation regarding the formation of the drug layer 31 in the longitudinal vertical cross section of the straight tube section 13 will also be referred to in the various explanations below regarding the formation of the drug layer 31 in the longitudinal direction of the straight tube section 13.
 直管部13の長手方向の垂直断面において、凸条17の側面18の薬剤層31の平均厚みは、凸条非存在領域22の周方向の中央1/2の領域22Mにおける薬剤層31の平均厚みよりも厚いことが好ましい(図5および図6を参照)。凸条非存在領域22の周方向の中央1/2の領域22Mとは、1つの凸条非存在領域22において、当該凸条非存在領域22を周方向に4等分したときの中央2区間の領域を意味する。凸条非存在領域22の周方向の中央1/2の領域22Mにおける薬剤層31の平均厚みは、直管部13を長手方向の垂直断面で見たときの、凸条非存在領域22の周方向の中央1/2の領域22Mにおける薬剤層31の面積を、凸条非存在領域22の周方向の中央1/2の領域22Mの周方向の長さで除することにより求められる。 In a longitudinal vertical cross section of the straight tube section 13, the average thickness of the drug layer 31 on the side surface 18 of the ridge 17 is preferably thicker than the average thickness of the drug layer 31 in the central 1/2 region 22M in the circumferential direction of the non-ridge region 22 (see Figures 5 and 6). The central 1/2 region 22M in the circumferential direction of the non-ridge region 22 refers to the central two sections when the non-ridge region 22 is divided into four equal parts in the circumferential direction. The average thickness of the drug layer 31 in the central 1/2 region 22M in the circumferential direction of the non-ridge region 22 is calculated by dividing the area of the drug layer 31 in the central 1/2 region 22M in the circumferential direction of the non-ridge region 22 when the straight tube section 13 is viewed in a longitudinal vertical cross section by the circumferential length of the central 1/2 region 22M in the circumferential direction of the non-ridge region 22.
 凸条17の側面18の薬剤層31の平均厚みは、凸条非存在領域22の周方向の中央1/2の領域22Mにおける薬剤層31の平均厚みの1.3倍以上であることが好ましく、1.5倍以上がより好ましく、2.0倍以上がさらに好ましい。凸条非存在領域22の周方向の中央1/2の領域22Mにおける薬剤層31の平均厚みに対する凸条17の側面18の薬剤層31の平均厚みの比の上限値は特に限定されない。例えば、凸条17の側面18の薬剤層31の平均厚みは、凸条非存在領域22の周方向の中央1/2の領域22Mにおける薬剤層31の平均厚みの100倍以下であってもよく、50倍以下、30倍以下、20倍以下または10倍以下であってもよい。 The average thickness of the drug layer 31 on the side 18 of the ridge 17 is preferably 1.3 times or more, more preferably 1.5 times or more, and even more preferably 2.0 times or more, of the average thickness of the drug layer 31 in the central 1/2 region 22M in the circumferential direction of the non-ridge region 22. There is no particular upper limit to the ratio of the average thickness of the drug layer 31 on the side 18 of the ridge 17 to the average thickness of the drug layer 31 in the central 1/2 region 22M in the circumferential direction of the non-ridge region 22. For example, the average thickness of the drug layer 31 on the side 18 of the ridge 17 may be 100 times or less, or may be 50 times or less, 30 times or less, 20 times or less, or 10 times or less, of the average thickness of the drug layer 31 in the central 1/2 region 22M in the circumferential direction of the non-ridge region 22.
 直管部13の外面には、凸条存在領域21とともに凸条非存在領域22にも薬剤層31が設けられることが好ましい。例えば、凸条非存在領域22の周方向の中央1/2の領域22Mの少なくとも一部に薬剤層31が設けられることが好ましく、凸条非存在領域22における凸条17からの最遠点22Fに薬剤層31が設けられることが好ましい。凸条非存在領域22にも薬剤層31が設けられていれば、狭窄部においてバルーン10を拡張させた際に、狭窄部の血管内面の広い範囲に薬剤を届けることができる。 It is preferable that a drug layer 31 is provided on the outer surface of the straight tube section 13 in the ridge-free region 22 as well as in the ridge-free region 21. For example, it is preferable that a drug layer 31 is provided on at least a part of the central 1/2 region 22M in the circumferential direction of the ridge-free region 22, and it is preferable that a drug layer 31 is provided at the farthest point 22F from the ridge 17 in the ridge-free region 22. If a drug layer 31 is provided in the ridge-free region 22 as well, when the balloon 10 is expanded at the stenosis, the drug can be delivered to a wide area of the inner surface of the blood vessel at the stenosis.
 薬剤層31は、凸条17の80%の高さの地点17Cにおいて、凸条17の側面18に存在することが好ましい。具体的には、複数存在する側面18のうち少なくとも1つの側面18において薬剤層31がこのように形成されていることが好ましく、1つの凸条17において(あるいは各凸条17において)、第1側面18Aと第2側面18Bの少なくとも一方の薬剤層31がこのように形成されていることがより好ましい。このように凸条17の側面18に薬剤層31が設けられていれば、血管壁のより内部まで薬剤を届けることができる。凸条17の80%の高さの地点17Cは、側面18において基部17Bにおける径方向の位置を0%、頂部17Aにおける径方向の位置を100%としたときの、凸条17の径方向の相対的位置を百分率で表したものである。 The drug layer 31 is preferably present on the side surface 18 of the ridge 17 at point 17C, which is 80% of the height of the ridge 17. Specifically, it is preferable that the drug layer 31 is formed in this manner on at least one of the multiple side surfaces 18, and it is more preferable that the drug layer 31 is formed in this manner on at least one of the first side surface 18A and the second side surface 18B on one ridge 17 (or on each ridge 17). If the drug layer 31 is provided on the side surface 18 of the ridge 17 in this manner, the drug can be delivered deeper into the blood vessel wall. Point 17C, which is 80% of the height of the ridge 17, represents the relative radial position of the ridge 17 as a percentage, when the radial position at the base 17B on the side surface 18 is 0%, and the radial position at the top 17A is 100%.
 直管部13の長手方向の垂直断面において、凸条17の50%~100%の高さにおける側面18の薬剤層31の平均厚みは、凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みよりも厚いことが好ましい。このように凸条17の側面18に薬剤層31が設けられていれば、血管壁の内部により多くの薬剤を届けることができる。直管部13の長手方向の垂直断面において凸条17が複数設けられる場合は、凸条17の50%~100%の高さにおける薬剤層31の平均厚みが、複数の凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みの平均値より厚く形成されることが好ましく、複数の凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の各厚みよりも厚く形成されることがより好ましい。 In the vertical cross section of the straight tube section 13 in the longitudinal direction, the average thickness of the drug layer 31 on the side surface 18 at 50% to 100% of the height of the ridge 17 is preferably thicker than the thickness of the drug layer 31 at the furthest point 22F from the ridge 17 in the non-ridge region 22. If the drug layer 31 is provided on the side surface 18 of the ridge 17 in this way, more drug can be delivered to the inside of the blood vessel wall. When multiple ridges 17 are provided in the vertical cross section of the straight tube section 13 in the longitudinal direction, it is preferable that the average thickness of the drug layer 31 at 50% to 100% of the height of the ridge 17 is thicker than the average thickness of the drug layer 31 at the furthest point 22F from the ridge 17 in the multiple non-ridge regions 22, and it is more preferable that the average thickness is thicker than each of the drug layers 31 at the furthest points 22F from the ridge 17 in the multiple non-ridge regions 22.
 凸条17の50%~100%の高さにおける側面18の薬剤層31の平均厚みは、例えば、凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みの1.2倍以上であることが好ましく、1.5倍以上がより好ましく、2.0倍以上がさらに好ましい。凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みに対する凸条17の50%~100%の高さにおける側面18の薬剤層31の平均厚みの比の上限値は特に限定されない。例えば、凸条17の50%~100%の高さにおける側面18の薬剤層31の平均厚みは、凸条非存在領域22における凸条17からの最遠点22Fでの薬剤層31の厚みの100倍以下であってもよく、50倍以下、30倍以下、20倍以下または10倍以下であってもよい。 The average thickness of the drug layer 31 on the side surface 18 at a height of 50% to 100% of the ridge 17 is, for example, preferably 1.2 times or more, more preferably 1.5 times or more, and even more preferably 2.0 times or more, the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22. There is no particular upper limit to the ratio of the average thickness of the drug layer 31 on the side surface 18 at a height of 50% to 100% of the ridge 17 to the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22. For example, the average thickness of the drug layer 31 on the side surface 18 at a height of 50% to 100% of the ridge 17 may be 100 times or less, 50 times or less, 30 times or less, 20 times or less, or 10 times or less, the thickness of the drug layer 31 at the farthest point 22F from the ridge 17 in the non-ridge region 22.
 凸条17の50%~100%の高さにおける側面18の薬剤層31の平均厚みの求め方について、第1側面18Aの薬剤層31を例にとり、図7を参照して説明する。凸条17の第1側面18Aの50%の高さの地点17Dから薬剤層31の表面に向かって第1側面18Aに垂直な直線を引くことにより、第1側面18Aの50%の高さの地点17Dを通る薬剤層31の境界線35が定まる。そして、境界線35と境界線34で囲まれた薬剤層31の面積を、境界線35と境界線34の間の第1側面18Aの長さで除することにより、凸条17の50%~100%の高さにおける第1側面18Aの薬剤層31の平均厚みが求められる。 The method for determining the average thickness of drug layer 31 on side 18 at 50% to 100% of the height of convex rib 17 will be described with reference to FIG. 7, taking drug layer 31 on first side 18A as an example. A line perpendicular to first side 18A is drawn from point 17D at 50% of the height of first side 18A of convex rib 17 toward the surface of drug layer 31, and boundary line 35 of drug layer 31 passing through point 17D at 50% of the height of first side 18A is determined. Then, the area of drug layer 31 surrounded by boundary line 35 and boundary line 34 is divided by the length of first side 18A between boundary line 35 and boundary line 34 to determine the average thickness of drug layer 31 on first side 18A at 50% to 100% of the height of convex rib 17.
 直管部13の長手方向の垂直断面において、凸条17の50%~100%の高さにおける凸条17の側面18の薬剤層31の平均厚みは、凸条17の0%~50%の高さにおける凸条17の側面18の薬剤層31の平均厚みの1/2以上であることが好ましい。このように凸条17の側面18に薬剤層31が設けられていれば、血管壁の内部に効率的に薬剤を届けることができる。一方、凸条17の50%~100%の高さにおいて凸条17の側面18に薬剤層31を安定して形成することが容易な点から、凸条17の50%~100%の高さにおける凸条17の側面18の薬剤層31の平均厚みは、凸条17の0%~50%の高さにおける凸条17の側面18の薬剤層31の平均厚み以下であることが好ましい。 In a vertical cross section in the longitudinal direction of the straight tube section 13, the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 50% to 100% of the height of the convex rib 17 is preferably at least half the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 0% to 50% of the height of the convex rib 17. If the drug layer 31 is provided on the side surface 18 of the convex rib 17 in this manner, the drug can be efficiently delivered to the inside of the blood vessel wall. On the other hand, since it is easy to stably form the drug layer 31 on the side surface 18 of the convex rib 17 at 50% to 100% of the height of the convex rib 17, it is preferable that the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 50% to 100% of the height of the convex rib 17 is equal to or less than the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 0% to 50% of the height of the convex rib 17.
 凸条17の50%~100%の高さにおける側面18の薬剤層31の平均厚みは、側面18の50%の高さの地点17Dを通る境界線35と薬剤層31の径方向の外方側の境界線34で囲まれた薬剤層31の面積を、境界線35と境界線34の間の側面18の長さで除することにより求められる。凸条17の0%~50%の高さにおける凸条17の側面18の薬剤層31の平均厚みは、薬剤層31の径方向の内方側の境界線33と側面18の50%の高さの地点17Dを通る境界線35で囲まれた薬剤層31の面積を、境界線33と境界線35の間の側面18の長さで除することにより求められる。 The average thickness of drug layer 31 on side surface 18 of convex rib 17 at 50% to 100% height is obtained by dividing the area of drug layer 31 surrounded by boundary line 35 passing through point 17D at 50% height of side surface 18 and boundary line 34 on the radially outer side of drug layer 31, by the length of side surface 18 between boundary line 35 and boundary line 34. The average thickness of drug layer 31 on side surface 18 of convex rib 17 at 0% to 50% height is obtained by dividing the area of drug layer 31 surrounded by boundary line 33 on the radially inner side of drug layer 31 and boundary line 35 passing through point 17D at 50% height of side surface 18, by the length of side surface 18 between boundary line 33 and boundary line 35.
 薬剤層31は凸条17の頂部17Aに存在し、凸条17の頂部17Aが薬剤層31によって覆われていてもよいが、凸条17の頂部17Aは、薬剤層31に覆われずに、露出していてもよい。これにより、狭窄部においてバルーン10を拡張させた際に凸条17が狭窄部に食い込みやすくなり、バルーン10によって狭窄部を効果的に拡張させることができる。 The drug layer 31 is present on the top 17A of the ridge 17, and the top 17A of the ridge 17 may be covered by the drug layer 31, or the top 17A of the ridge 17 may be exposed and not covered by the drug layer 31. This makes it easier for the ridge 17 to bite into the narrowed area when the balloon 10 is expanded at the narrowed area, allowing the balloon 10 to effectively expand the narrowed area.
 直管部13の長手方向の垂直断面において、凸条17の0%~80%の高さにおける凸条17の側面18の薬剤層31の平均厚みは、凸条17の80%~100%の高さにおける凸条17の側面18の薬剤層31の平均厚みよりも厚いことが好ましい。このように凸条17の側面18に薬剤層31が設けられていれば、狭窄部においてバルーン10を拡張させた際に凸条17が狭窄部に食い込みやすくなる。凸条17の0%~80%の高さにおける凸条17の側面18の薬剤層31の平均厚みは、上記に説明した凸条17の0%~50%の高さにおける凸条17の側面18の薬剤層31の平均厚みに準じて求めることができる。凸条17の80%~100%の高さにおける凸条17の側面18の薬剤層31の平均厚みは、上記に説明した凸条17の50%~100%の高さにおける凸条17の側面18の薬剤層31の平均厚みに準じて求めることができる。 In a vertical cross section in the longitudinal direction of the straight tube section 13, it is preferable that the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 0% to 80% of the height of the convex rib 17 is thicker than the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 80% to 100% of the height of the convex rib 17. If the drug layer 31 is provided on the side surface 18 of the convex rib 17 in this manner, the convex rib 17 will be more likely to bite into the narrowed portion when the balloon 10 is expanded at the narrowed portion. The average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 0% to 80% of the height of the convex rib 17 can be determined in accordance with the average thickness of the drug layer 31 on the side surface 18 of the convex rib 17 at 0% to 50% of the height of the convex rib 17 described above. The average thickness of the drug layer 31 on the side surface 18 of the ridge 17 at 80% to 100% of the height of the ridge 17 can be calculated in accordance with the average thickness of the drug layer 31 on the side surface 18 of the ridge 17 at 50% to 100% of the height of the ridge 17 described above.
 図7および図8に示すように、凸条17は、頂部17Aに向かって幅が狭まる部分を有し、かつ頂部17Aに向かって幅が広がる部分を有しないように形成されていることが好ましい。すなわち、凸条17の側面18は、凸条17の頂部17Aを通り径方向に延びる仮想直線17Lに対して、頂部17Aに向かって仮想直線17Lに近付く部分を有し、頂部17Aに向かって仮想直線17Lから遠ざかる部分を有しないように形成されていることが好ましい。このように凸条17が形成されていれば、狭窄部においてバルーン10を拡張させた際、凸条17が血管内面に強く押し当てられても、凸条17が折れ曲がったりせずに、狭窄部に食い込みやすくなる。凸条17は、基部17Bから頂部17Aの全体にわたって、頂部17Aに向かって幅が狭まるように形成されてもよい。すなわち、凸条17の側面18は、凸条17の基部17Bから頂部17Aの全体にわたって、頂部17Aに向かって仮想直線17Lに近付くように形成されてもよい。 7 and 8, it is preferable that the ridge 17 has a portion that narrows toward the apex 17A and does not have a portion that widens toward the apex 17A. In other words, it is preferable that the side surface 18 of the ridge 17 has a portion that approaches the imaginary straight line 17L toward the apex 17A with respect to the imaginary straight line 17L that passes through the apex 17A of the ridge 17 and extends radially, and does not have a portion that moves away from the imaginary straight line 17L toward the apex 17A. If the ridge 17 is formed in this manner, even if the ridge 17 is pressed strongly against the inner surface of the blood vessel when the balloon 10 is expanded at the stenosis, the ridge 17 does not bend and is easily embedded in the stenosis. The ridge 17 may be formed so that the width narrows toward the apex 17A from the base 17B to the entire apex 17A. That is, the side surface 18 of the ridge 17 may be formed so as to approach the imaginary straight line 17L from the base 17B of the ridge 17 to the entire top 17A toward the top 17A.
 凸条17は、図7に示すように、頂部17Aに向かって無段状に幅が狭まるように形成されていてもよく、図8に示すように、頂部17Aに向かって段状に幅が狭まるように形成されていてもよい。前者の場合、凸条17の側面18は、直管部13の長手方向の垂直断面において、仮想直線17Lに対して斜めに延びる直線状に形成されたり、径方向の外方に膨らんだ曲線状(一部に直線状の部分が含まれていてもよい)に形成されたり、径方向の内方に膨らんだ曲線状(一部に直線状の部分が含まれていてもよい)に形成されればよい。後者の場合、凸条17は、基部17Bから頂部17Aに至る少なくとも一部に、頂部17Aに向かって段状に幅が狭まる部分を有していればよい。 The ridges 17 may be formed so that their width narrows steplessly toward the apex 17A as shown in FIG. 7, or may be formed so that their width narrows stepwise toward the apex 17A as shown in FIG. 8. In the former case, the side surfaces 18 of the ridges 17 may be formed in a vertical cross section in the longitudinal direction of the straight pipe section 13 in a straight line extending obliquely with respect to the imaginary straight line 17L, in a curved line bulging radially outward (which may include a straight line portion), or in a curved line bulging radially inward (which may include a straight line portion). In the latter case, the ridges 17 may have at least a portion from the base 17B to the apex 17A where the width narrows stepwise toward the apex 17A.
 凸条17が頂部17Aに向かって段状に幅が狭まる部分を有するように形成される場合、凸条17は次のように薬剤層31が形成されることが好ましい。すなわち、凸条17は、頂部17Aに向かって段状に幅が狭まる部分として、バルーン本体部16の外面に隣接した第1段部分19と、それよりも頂部17A側の第2段部分20を有し、第2段部分20の側面18における薬剤層31の平均厚みが、第1段部分19の側面18における薬剤層31の平均厚みの1/2以上であることが好ましい。このように凸部17に薬剤層31が設けられることにより、凸条17の第2段部分20が狭窄部に食い込みやすくなり、バルーン10によって狭窄部を効果的に拡張させることができ、拡張させた狭窄部において、血管壁の内部に薬剤を効率的に届けることができる。一方、凸条17の第2段部分20の側面18に薬剤層31を安定して形成することが容易な点から、第2段部分20の側面18における薬剤層31の平均厚みは、第1段部分19の側面18における薬剤層31の平均厚み以下であることが好ましい。 When the ridge 17 is formed to have a portion where the width narrows stepwise toward the apex 17A, it is preferable that the drug layer 31 is formed on the ridge 17 as follows. That is, the ridge 17 has a first step portion 19 adjacent to the outer surface of the balloon body 16 and a second step portion 20 closer to the apex 17A as a portion where the width narrows stepwise toward the apex 17A, and it is preferable that the average thickness of the drug layer 31 on the side surface 18 of the second step portion 20 is at least half the average thickness of the drug layer 31 on the side surface 18 of the first step portion 19. By providing the drug layer 31 on the ridge 17 in this way, the second step portion 20 of the ridge 17 is more likely to bite into the narrowed portion, the narrowed portion can be effectively expanded by the balloon 10, and the drug can be efficiently delivered to the inside of the blood vessel wall at the expanded narrowed portion. On the other hand, since it is easy to stably form the drug layer 31 on the side surface 18 of the second step portion 20 of the convex rib 17, it is preferable that the average thickness of the drug layer 31 on the side surface 18 of the second step portion 20 be equal to or less than the average thickness of the drug layer 31 on the side surface 18 of the first step portion 19.
 凸条17の第1段部分19の側面18における薬剤層31の平均厚みと第2段部分20の側面18における薬剤層31の平均厚みの求め方について、第1側面18Aの薬剤層31を例にとり、図8を参照して説明する。凸条17の第1側面18Aにおいて、第1段部分19の基部19Bから薬剤層31の表面に向かって第1段部分19の第1側面18Aに垂直な直線を引くことにより、第1段部分19の第1側面18Aにおける薬剤層31の径方向の内方側の境界線36が定まり、同様に、第1段部分19の頂部19Aから第1段部分19の第1側面18Aに垂直な直線を引くことにより、第1段部分19の第1側面18Aにおける薬剤層31の径方向の外方側の境界線37が定まる。そして、境界線36と境界線37で囲まれた薬剤層31の面積を、境界線36と境界線37の間の第1側面18Aの長さで除することにより、凸条17の第1段部分19の第1側面18Aにおける薬剤層31の平均厚みが求められる。凸条17の第1側面18Aにおいて、第2段部分20の基部20Bから第2段部分20の第1側面18Aに垂直な直線を引くことにより、第2段部分20の第1側面18Aにおける薬剤層31の径方向の内方側の境界線38が定まり、第2段部分20の頂部20Aから第2段部分20の第1側面18Aに垂直な直線を引くことにより、第2段部分20の第1側面18Aにおける薬剤層31の径方向の外方側の境界線39が定まる。そして、境界線38と境界線39で囲まれた薬剤層31の面積を、境界線38と境界線39の間の第1側面18Aの長さで除することにより、凸条17の第2段部分20の第1側面18Aにおける薬剤層31の平均厚みが求められる。なお、図8では、凸条17の第1段部分19の基部19Bは凸条17の基部17Bと一致し、凸条17の第2段部分20の頂部20Aは凸条17の頂部17Aと一致する。 8, the method of determining the average thickness of the drug layer 31 on the side surface 18 of the first step portion 19 of the convex rib 17 and the average thickness of the drug layer 31 on the side surface 18 of the second step portion 20 will be described. On the first side surface 18A of the convex rib 17, by drawing a straight line perpendicular to the first side surface 18A of the first step portion 19 from the base 19B of the first step portion 19 toward the surface of the drug layer 31, the radial inner boundary line 36 of the drug layer 31 on the first side surface 18A of the first step portion 19 is determined, and similarly, by drawing a straight line perpendicular to the first side surface 18A of the first step portion 19 from the top 19A of the first step portion 19 to the surface of the drug layer 31, the radial outer boundary line 37 of the drug layer 31 on the first side surface 18A of the first step portion 19 is determined. The average thickness of drug layer 31 on first side surface 18A of first step portion 19 of convex rib 17 is obtained by dividing the area of drug layer 31 surrounded by boundary lines 36 and 37 by the length of first side surface 18A between boundary lines 36 and 37. On first side surface 18A of convex rib 17, a radially inner boundary line 38 of drug layer 31 on first side surface 18A of second step portion 20 is determined by drawing a straight line perpendicular to first side surface 18A of second step portion 20 from base 20B of second step portion 20, and a radially outer boundary line 39 of drug layer 31 on first side surface 18A of second step portion 20 is determined by drawing a straight line perpendicular to first side surface 18A of second step portion 20 from top 20A of second step portion 20. The average thickness of the drug layer 31 on the first side 18A of the second step portion 20 of the convex rib 17 is calculated by dividing the area of the drug layer 31 surrounded by the boundary lines 38 and 39 by the length of the first side 18A between the boundary lines 38 and 39. In FIG. 8, the base 19B of the first step portion 19 of the convex rib 17 coincides with the base 17B of the convex rib 17, and the top 20A of the second step portion 20 of the convex rib 17 coincides with the top 17A of the convex rib 17.
 図9に示すように、凸条17は、直管部13の長手方向の垂直断面において、凸条17の第1側面18Aの薬剤層31の平均厚みが、凸条17の第2側面18Bにおける薬剤層31の平均厚みよりも厚く形成されていてもよい。このように凸条17の側面18に薬剤層31が形成されていれば、凸条17の第2側面18Bにおいて狭窄部での食い込み性能が確保され、凸条17の第1側面18Aにおいてより多くの薬剤が保持される。そのため、狭窄部においてバルーン10を拡張させた際に、狭窄部に効率的に薬剤を届けることができる。 As shown in FIG. 9, the ridges 17 may be formed such that the average thickness of the drug layer 31 on the first side 18A of the ridges 17 is thicker than the average thickness of the drug layer 31 on the second side 18B of the ridges 17 in a vertical cross section in the longitudinal direction of the straight tube section 13. If the drug layer 31 is formed on the side 18 of the ridges 17 in this manner, the second side 18B of the ridges 17 is able to ensure the ability to bite into the narrowed area, and more drug is retained on the first side 18A of the ridges 17. Therefore, when the balloon 10 is expanded at the narrowed area, the drug can be delivered to the narrowed area efficiently.
 直管部13の長手方向の垂直断面において、凸条17の第1側面18Aの基部17Bにおける薬剤層31の厚みが、凸条17の第2側面18Bの基部17Bにおける薬剤層31の厚みよりも厚く形成されていてもよい。この場合も同様に、凸条17の第2側面18Bにおいて狭窄部での食い込み性能が確保され、凸条17の第1側面18Aにおいてより多くの薬剤が保持され、血管の狭窄部に効率的に薬剤を届けることができる。凸条17の第1側面18Aの基部17Bにおける薬剤層31の厚みは、直管部13の長手方向の垂直断面において、凸条17の第1側面18Aの基部17Bから薬剤層31の表面までの最短長さを意味する。凸条17の第2側面18Bの基部17Bにおける薬剤層31の厚みは、直管部13の長手方向の垂直断面において、凸条17の第2側面18Bの基部17Bから薬剤層31の表面までの最短長さを意味する。 In a vertical cross section of the straight tube section 13 in the longitudinal direction, the thickness of the drug layer 31 at the base 17B of the first side 18A of the convex rib 17 may be formed to be thicker than the thickness of the drug layer 31 at the base 17B of the second side 18B of the convex rib 17. In this case as well, the second side 18B of the convex rib 17 ensures the ability to penetrate into the narrowed area, and more drug is retained on the first side 18A of the convex rib 17, allowing the drug to be delivered efficiently to the narrowed area of the blood vessel. The thickness of the drug layer 31 at the base 17B of the first side 18A of the convex rib 17 means the shortest length from the base 17B of the first side 18A of the convex rib 17 to the surface of the drug layer 31 in a vertical cross section of the straight tube section 13 in the longitudinal direction. The thickness of the drug layer 31 at the base 17B of the second side 18B of the ridge 17 means the shortest length from the base 17B of the second side 18B of the ridge 17 to the surface of the drug layer 31 in a vertical cross section in the longitudinal direction of the straight tube section 13.
 薬剤層31は、直管部13の外面に加えて、近位側テーパー部12の外面および/または遠位側テーパー部14の外面にも設けられていてもよい。これにより、狭窄部の広い範囲に薬剤を届けることができる。 The drug layer 31 may be provided on the outer surface of the proximal tapered section 12 and/or the outer surface of the distal tapered section 14 in addition to the outer surface of the straight tube section 13. This allows the drug to be delivered to a wide area of the stenosis.
 バルーン10は、血管の狭窄部などの処置対象部に送達される際、収縮状態でガイディングカテーテルやシース内に挿通されることが好ましい。この際、バルーン10は、径方向の大きさが小さくなるように適切に折り畳まれることが好ましい。 When the balloon 10 is delivered to the treatment target area, such as a narrowed portion of a blood vessel, it is preferable that the balloon 10 is inserted in a deflated state into a guiding catheter or sheath. At this time, it is preferable that the balloon 10 is appropriately folded so that its radial size is small.
 図10および図11には、図5に示したバルーン10を収縮させて折り畳んだ例を示した。図10および図11に示すように、バルーン10の収縮状態で、直管部13は、バルーン本体部16の内面を内側にして凸条非存在領域22で折り返されて、凸条非存在領域22が重ね合わされた折り畳み羽根部23を形成し、折り畳み羽根部23が直管部13の外面に重ねられて配置されることが好ましい。折り畳み羽根部23は、バルーン本体部16の凸条非存在領域22が折り曲げ線24で折り返されることにより形成され、凸条非存在領域22どうしが重ね合わされている。折り曲げ線24において、凸条非存在領域22はバルーン本体部16の内面を内側にして折り返されている。従って、バルーン10の外側から見て、折り曲げ線24は山折りとして形成される。折り畳み羽根部23は、バルーン本体部16の凸条非存在領域22のみから形成され、凸条存在領域21を含んで形成されないことが好ましい。 10 and 11 show an example of the balloon 10 shown in FIG. 5 being deflated and folded. As shown in FIG. 10 and 11, in the deflated state of the balloon 10, the straight tube section 13 is folded back at the non-ridge region 22 with the inner surface of the balloon body 16 facing inward to form a folded wing section 23 in which the non-ridge region 22 is overlapped, and it is preferable that the folded wing section 23 is arranged overlapping the outer surface of the straight tube section 13. The folded wing section 23 is formed by folding back the non-ridge region 22 of the balloon body 16 at the folding line 24, and the non-ridge regions 22 are overlapped. At the folding line 24, the non-ridge region 22 is folded back with the inner surface of the balloon body 16 facing inward. Therefore, when viewed from the outside of the balloon 10, the folding line 24 is formed as a mountain fold. It is preferable that the folded wing portion 23 is formed only from the non-ridge region 22 of the balloon body portion 16, and not including the ridge region 21.
 折り曲げ線24は、凸条17の延在方向に対して略平行に延びるように形成されることが好ましい。凸条非存在領域22は、折り曲げ線24において明確な折り目が形成されるように折り返されてもよく、先端が丸まって折り返されていてもよい。なお、バルーン本体部16の凸条非存在領域22は通常ある程度の厚みと弾性を有するため、凸条非存在領域22は折り曲げ線24において先端が丸まって折り返される。この場合、直管部13の長手方向の垂直断面で見て、凸条非存在領域22が折り返された先端部が折り曲げ線24となる。 The fold lines 24 are preferably formed so as to extend approximately parallel to the extension direction of the ridges 17. The non-ridge region 22 may be folded back so as to form a clear crease at the fold line 24, or may be folded back with a rounded tip. Note that since the non-ridge region 22 of the balloon body 16 usually has a certain degree of thickness and elasticity, the non-ridge region 22 is folded back with a rounded tip at the fold line 24. In this case, when viewed in a vertical cross section in the longitudinal direction of the straight tube section 13, the tip where the non-ridge region 22 is folded back becomes the fold line 24.
 直管部13には、折り曲げ線24に対して周方向の一方側および/または他方側に、バルーン本体部16の外面を内側にして折り返された折り曲げ線(バルーン10の外側から見て谷折り線)が形成されていてもよい。この場合、谷折り線となる折り曲げ線は、折り畳み羽根部23の基部を形成することが好ましい。 The straight tube section 13 may have a fold line (valley fold line when viewed from the outside of the balloon 10) formed on one side and/or the other side of the fold line 24 in the circumferential direction, with the outer surface of the balloon body section 16 facing inward. In this case, it is preferable that the fold line that becomes the valley fold line forms the base of the folding wing section 23.
 折り曲げ線24は、1つの凸条非存在領域22に1つのみ形成されてもよく、2つ以上形成されてもよい。好ましくは、折り曲げ線24は、1つの凸条非存在領域22に1つまたは2つ形成される。図10では、折り曲げ線24は1つの凸条非存在領域22に1つ形成されており、図11では、折り曲げ線24は1つの凸条非存在領域22に2つ形成されている。折り曲げ線24が1つの凸条非存在領域22に1つのみ形成される場合は、直管部13の長手方向の垂直断面で見て、折り畳み羽根部23は周方向の一方側に傾倒していることが好ましい。折り曲げ線24が1つの凸条非存在領域22に2つ形成される場合は、直管部13の長手方向の垂直断面で見て、2つの折り畳み羽根部23が周方向に互いに反対方向に傾倒し、凸条17側に傾倒していることが好ましい。これにより、バルーン10の収縮状態で、凸条17が折り畳み羽根部23によって保護されやすくなる。 Only one bend line 24 may be formed in one non-convex streak region 22, or two or more may be formed. Preferably, one or two bend lines 24 are formed in one non-convex streak region 22. In FIG. 10, one bend line 24 is formed in one non-convex streak region 22, and in FIG. 11, two bend lines 24 are formed in one non-convex streak region 22. When only one bend line 24 is formed in one non-convex streak region 22, it is preferable that the folding wing portion 23 is inclined to one side in the circumferential direction when viewed in a vertical cross section in the longitudinal direction of the straight pipe portion 13. When two bend lines 24 are formed in one non-convex streak region 22, it is preferable that the two folding wing portions 23 are inclined in opposite directions to each other in the circumferential direction and inclined toward the convex streak 17 when viewed in a vertical cross section in the longitudinal direction of the straight pipe portion 13. This makes it easier for the ridges 17 to be protected by the folding wing portions 23 when the balloon 10 is in a deflated state.
 一実施形態として、バルーン10の収縮状態で、折り畳み羽根部23は凸条17の頂部17Aを覆うように配置されてもよい。この場合、凸条17に設けられた薬剤層31が折り畳み羽根部23によって保護されて、例えば凸条17の頂部17A付近に設けられた薬剤層31が保護されやすくなる。そのため、バルーン10が処置対象部に送達されるまでに、薬剤層31がバルーン10から脱落しにくくなる。 In one embodiment, when the balloon 10 is in a contracted state, the folding wing portion 23 may be positioned to cover the top 17A of the ridge 17. In this case, the drug layer 31 provided on the ridge 17 is protected by the folding wing portion 23, and for example, the drug layer 31 provided near the top 17A of the ridge 17 is more likely to be protected. Therefore, the drug layer 31 is less likely to fall off the balloon 10 before the balloon 10 is delivered to the treatment target area.
 他の実施形態として、バルーン10の収縮状態で、折り畳み羽根部23は、凸条17の頂部17Aを覆わないように、直管部13の外面に重ねられて配置されていてもよい。この場合、狭窄部でバルーン10を拡張させた際に、凸条17が速やかに狭窄部に食い込み、バルーン10により狭窄部を効果的に拡張させやすくなる。 In another embodiment, when the balloon 10 is in a contracted state, the folding wing portion 23 may be arranged overlapping the outer surface of the straight tube portion 13 so as not to cover the top portion 17A of the ridge 17. In this case, when the balloon 10 is expanded at the narrowed portion, the ridge 17 quickly bites into the narrowed portion, making it easier for the balloon 10 to effectively expand the narrowed portion.
 図10では、1つの凸条非存在領域22に1つの折り畳み羽根部23が形成され、折り畳み羽根部23が凸条17の頂部17Aを覆うように配置されているが、図10において、折り畳み羽根部23が凸条17の頂部17Aを覆わないように、直管部13の外面に重ねられて配置されていてもよい。図11では、1つの凸条非存在領域22に2つの折り畳み羽根部23が形成され、折り畳み羽根部23が凸条17の頂部17Aを覆わないように、直管部13の外面に重ねられて配置され配置されているが、折り畳み羽根部23が凸条17の頂部17Aを覆うように配置されていてもよい。 In FIG. 10, one folding wing portion 23 is formed in one non-protruding region 22, and the folding wing portion 23 is arranged so as to cover the top 17A of the protruding ridge 17, but in FIG. 10, the folding wing portion 23 may be arranged overlapping on the outer surface of the straight pipe portion 13 so as not to cover the top 17A of the protruding ridge 17. In FIG. 11, two folding wing portions 23 are formed in one non-protruding region 22, and the folding wing portion 23 is arranged overlapping on the outer surface of the straight pipe portion 13 so as not to cover the top 17A of the protruding ridge 17, but the folding wing portion 23 may be arranged so as to cover the top 17A of the protruding ridge 17.
 次に、本発明のバルーンカテーテルの製造方法について説明する。本発明の実施の形態に係るバルーンカテーテルの製造方法は、外面に凸条を有するバルーンを準備する工程(以下、「バルーン準備工程」と称する)と、バルーンの外面に薬液を塗布する工程(以下、「塗布工程」と称する)を有する。 Next, a method for manufacturing a balloon catheter of the present invention will be described. The method for manufacturing a balloon catheter according to an embodiment of the present invention includes a step of preparing a balloon having ridges on its outer surface (hereinafter referred to as the "balloon preparation step") and a step of applying a medicinal solution to the outer surface of the balloon (hereinafter referred to as the "application step").
 バルーン準備工程では、上記に説明したバルーン10を準備する。すなわち、近位側から遠位側に延びる長手方向と長手方向に垂直な径方向とを有するバルーン10であって、直管部13と、直管部13よりも近位側に位置する近位側テーパー部12と、直管部13よりも遠位側に位置する遠位側テーパー部14とを有し、直管部13が、筒形状のバルーン本体部16と、バルーン本体部16の外面に径方向の外方に突出し長手方向に延在している凸条17とを有するバルーン10を準備する。バルーン10の構成や好適態様の詳細は上記の説明が参照される。 In the balloon preparation process, the balloon 10 described above is prepared. That is, the balloon 10 has a longitudinal direction extending from the proximal side to the distal side and a radial direction perpendicular to the longitudinal direction, and has a straight tube section 13, a proximal tapered section 12 located proximal to the straight tube section 13, and a distal tapered section 14 located distal to the straight tube section 13, and the straight tube section 13 has a cylindrical balloon main body section 16 and a convex rib 17 that protrudes radially outward from the outer surface of the balloon main body section 16 and extends in the longitudinal direction. The above explanation is referred to for details of the configuration and preferred embodiments of the balloon 10.
 塗布工程では、図12に示すように、バルーン10の直管部13の外面に薬液32を塗布し、バルーン10を長手方向に延びる中心軸を中心に回転させる。図12には、図2に示したバルーン10の長手方向の垂直断面図が示されており、バルーン10の直管部13の外面に薬液32を塗布している状態が示されている。直管部13の外面に薬液32を塗布し、バルーン10を長手方向に延びる中心軸を中心に回転させることにより、直管部13の外面、特に凸条非存在領域22に塗布された薬液32が直管部13の表面を周方向に移動して凸条17の側面18に溜まり、凸条17の側面18に薬剤層31を厚く形成することができる。 In the application process, as shown in FIG. 12, the drug solution 32 is applied to the outer surface of the straight tube section 13 of the balloon 10, and the balloon 10 is rotated around a central axis extending in the longitudinal direction. FIG. 12 shows a vertical longitudinal cross section of the balloon 10 shown in FIG. 2, showing the state in which the drug solution 32 is applied to the outer surface of the straight tube section 13 of the balloon 10. By applying the drug solution 32 to the outer surface of the straight tube section 13 and rotating the balloon 10 around a central axis extending in the longitudinal direction, the drug solution 32 applied to the outer surface of the straight tube section 13, particularly the non-ridge region 22, moves circumferentially around the surface of the straight tube section 13 and accumulates on the side surface 18 of the ridge 17, and a thick drug layer 31 can be formed on the side surface 18 of the ridge 17.
 薬液32に含まれる薬剤は、上記の説明が参照される。薬液32は、薬剤を溶解または分散する溶媒が含まれることが好ましい。薬液32の薬剤濃度は特に限定されず、直管部13の外面に塗布可能であり、直管部13の表面で流動性が確保されるように、適宜濃度を調整すればよい。 For the chemical contained in the chemical solution 32, please refer to the above description. The chemical solution 32 preferably contains a solvent that dissolves or disperses the chemical. The concentration of the chemical in the chemical solution 32 is not particularly limited, and the concentration can be adjusted appropriately so that the chemical can be applied to the outer surface of the straight pipe section 13 and fluidity is ensured on the surface of the straight pipe section 13.
 薬液32の塗布方法は特に限定されず、例えば、刷毛、スプレー、コーター等により直管部13の外面に薬液32を塗布してもよく、バルーン10を薬液32に浸漬することにより直管部13の外面に薬液32を塗布してもよい。なかでも、図12に示すようにスプレーにより直管部13の外面に薬液32を塗布することが好ましく、これにより直管部13の外面に任意の量の薬液32を広く塗布することが容易になる。また、直管部13の外面に薬剤層31を形成することが容易になる。 The method of applying the drug solution 32 is not particularly limited, and for example, the drug solution 32 may be applied to the outer surface of the straight pipe section 13 by using a brush, a spray, a coater, etc., or the drug solution 32 may be applied to the outer surface of the straight pipe section 13 by immersing the balloon 10 in the drug solution 32. Of these, it is preferable to apply the drug solution 32 to the outer surface of the straight pipe section 13 by spraying as shown in FIG. 12, which makes it easy to widely apply any amount of the drug solution 32 to the outer surface of the straight pipe section 13. It also makes it easy to form a drug layer 31 on the outer surface of the straight pipe section 13.
 塗布工程では、バルーン10を拡張させた状態で、直管部13の外面に薬液32を塗布することが好ましい。また、バルーン10を拡張させた状態で、バルーン10を長手方向に延びる中心軸を中心に回転させることが好ましい。これにより、直管部13の凸条非存在領域22に塗布された薬液32が直管部13の表面を周方向に移動して凸条17の側面18に溜まりやすくなる。 In the application process, it is preferable to apply the drug solution 32 to the outer surface of the straight pipe section 13 while the balloon 10 is in an expanded state. It is also preferable to rotate the balloon 10 around a central axis extending in the longitudinal direction while the balloon 10 is in an expanded state. This makes it easier for the drug solution 32 applied to the non-ridge region 22 of the straight pipe section 13 to move circumferentially around the surface of the straight pipe section 13 and accumulate on the side surface 18 of the ridge 17.
 塗布工程では、バルーン10を長手方向に延びる中心軸を回転させて、薬液32を凸条17の80%の高さまで到達させることが好ましい。これにより、凸条17の側面18に薬剤層31を厚く形成することが容易になる。薬液32を凸条17の80%の高さまで到達させるためには、塗布する薬液32の濃度や粘度を調整したり、薬液32の溶媒の種類を適切に選択したり、薬液32を塗布した際のバルーン10の回転速度を適切に設定すればよい。 In the application process, it is preferable to rotate the balloon 10 on its central axis extending in the longitudinal direction so that the drug solution 32 reaches 80% of the height of the ridges 17. This makes it easier to form a thick drug layer 31 on the side surface 18 of the ridges 17. In order to allow the drug solution 32 to reach 80% of the height of the ridges 17, the concentration and viscosity of the drug solution 32 to be applied may be adjusted, the type of solvent for the drug solution 32 may be appropriately selected, or the rotation speed of the balloon 10 when the drug solution 32 is applied may be appropriately set.
 塗布工程では、バルーン10を長手方向に延びる中心軸を中心に回転させながら、直管部13の外面に薬液32を塗布してもよく、直管部13の外面に薬液32を塗布した後、バルーン10を長手方向に延びる中心軸を中心に回転させてもよい。いずれの場合も、直管部13の外面に塗布された薬液32が、直管部13の表面を周方向に移動して凸条17の側面18に集まるようにすることができる。 In the application process, the drug solution 32 may be applied to the outer surface of the straight pipe section 13 while the balloon 10 is rotated around a central axis extending in the longitudinal direction, or after the drug solution 32 is applied to the outer surface of the straight pipe section 13, the balloon 10 may be rotated around a central axis extending in the longitudinal direction. In either case, the drug solution 32 applied to the outer surface of the straight pipe section 13 can move circumferentially around the surface of the straight pipe section 13 and collect on the side surface 18 of the protruding rib 17.
 塗布工程では、バルーン10は、長手方向に延びる中心軸を中心に一方向のみに回転させてもよく、一方向とその反対方向の両方向に順番に回転させてもよい。バルーン10の回転方向を適宜設定することにより、凸条17の第1側面18Aと第2側面18Bに形成する薬剤層31の厚みを任意に調整することができる。 In the application process, the balloon 10 may be rotated in only one direction around a central axis extending in the longitudinal direction, or may be rotated in both one direction and the opposite direction in turn. By appropriately setting the rotation direction of the balloon 10, the thickness of the drug layer 31 formed on the first side 18A and the second side 18B of the ridge 17 can be adjusted as desired.
 塗布工程では、バルーン10を回転させながら、薬液32に含まれる溶媒の少なくとも一部を蒸発させることが好ましい。これにより、直管部13の外面に薬剤層31を形成することが容易になる。溶媒の蒸発は、薬液32を塗布したバルーン10を加熱することにより行ってもよく、薬液32を塗布したバルーン10を減圧状態に置くことにより行ってもよく、薬液32を塗布したバルーン10に風を当てることにより行ってもよい。また、溶媒として適度な蒸気圧を有する溶媒を選択することにより、バルーン10を回転させながら溶媒が自然に蒸発するようにしてもよい。 In the application process, it is preferable to evaporate at least a portion of the solvent contained in the drug solution 32 while rotating the balloon 10. This makes it easier to form the drug layer 31 on the outer surface of the straight tube section 13. The solvent may be evaporated by heating the balloon 10 to which the drug solution 32 has been applied, by placing the balloon 10 to which the drug solution 32 has been applied in a reduced pressure state, or by blowing air on the balloon 10 to which the drug solution 32 has been applied. In addition, by selecting a solvent with an appropriate vapor pressure as the solvent, the solvent may be allowed to evaporate naturally while rotating the balloon 10.
 本願は、2022年11月16日に出願された日本国特許出願第2022-183692号に基づく優先権の利益を主張するものである。2022年11月16日に出願された日本国特許出願第2022-183692号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2022-183692, filed on November 16, 2022. The entire contents of the specification of Japanese Patent Application No. 2022-183692, filed on November 16, 2022, are incorporated by reference into this application.
 1:バルーンカテーテル
 2:シャフト
 5:ハブ
 10:バルーン
 11:近位側スリーブ部
 12:近位側テーパー部
 13:直管部
 14:遠位側テーパー部
 15:遠位側スリーブ部
 16:バルーン本体部
 17:凸条、17A:頂部、17B:基部、17C:凸条の80%の高さの地点、17D:凸条の50%の高さの地点
 18:側面、18A:第1側面、18B:第2側面
 19:第1段部分
 20:第2段部分
 21:凸条存在領域
 22:凸条非存在領域、22F:凸条からの最遠点
 23:折り畳み羽根部
 24:折り曲げ線
 31:薬剤層
 32:薬液
1: Balloon catheter 2: Shaft 5: Hub 10: Balloon 11: Proximal sleeve section 12: Proximal tapered section 13: Straight tube section 14: Distal tapered section 15: Distal sleeve section 16: Balloon body section 17: Ridge, 17A: Top, 17B: Base, 17C: Point at 80% of the height of the rib, 17D: Point at 50% of the height of the rib 18: Side, 18A: First side, 18B: Second side 19: First step section 20: Second step section 21: Ridge-present region 22: Ridge-free region, 22F: Farthest point from the rib 23: Folding wing section 24: Bending line 31: Drug layer 32: Drug solution

Claims (20)

  1.  近位側から遠位側に延びる長手方向と前記長手方向に垂直な径方向とを有するバルーンカテーテル用バルーンであって、
     前記バルーンは、直管部と、前記直管部よりも近位側に位置する近位側テーパー部と、前記直管部よりも遠位側に位置する遠位側テーパー部とを有し、
     前記直管部は、筒形状のバルーン本体部と、前記バルーン本体部の外面に径方向の外方に突出した凸条とを有し、前記直管部の外面に凸条存在領域と凸条非存在領域が形成されており、
     前記直管部の外面には薬剤層が設けられ、
     前記直管部の長手方向の垂直断面において、前記凸条の側面の前記薬剤層の平均厚みは、前記凸条非存在領域における前記凸条からの最遠点での前記薬剤層の厚みよりも厚いバルーンカテーテル用バルーン。
    A balloon for a balloon catheter having a longitudinal direction extending from a proximal side to a distal side and a radial direction perpendicular to the longitudinal direction,
    The balloon has a straight tube portion, a proximal tapered portion located proximally of the straight tube portion, and a distal tapered portion located distally of the straight tube portion,
    The straight pipe portion has a cylindrical balloon main body and a protrusion protruding radially outward on an outer surface of the balloon main body, and a protrusion-existing region and a protrusion-free region are formed on the outer surface of the straight pipe portion,
    A drug layer is provided on the outer surface of the straight tube portion,
    A balloon for a balloon catheter, wherein, in a vertical cross section of the straight tube portion in the longitudinal direction, the average thickness of the drug layer on the side of the ridge is thicker than the thickness of the drug layer at the farthest point from the ridge in the ridge-free region.
  2.  前記凸条の80%の高さの地点において、前記凸条の側面に前記薬剤層が存在する請求項1に記載のバルーン。 The balloon of claim 1, wherein the drug layer is present on the side of the ridge at a point that is 80% of the height of the ridge.
  3.  前記直管部の長手方向の垂直断面において、前記凸条の50%~100%の高さにおける前記凸条の側面の前記薬剤層の平均厚みは、前記凸条非存在領域における前記凸条からの最遠点での前記薬剤層の厚みよりも厚い請求項1に記載のバルーン。 The balloon of claim 1, wherein in a vertical cross section of the straight tube portion in the longitudinal direction, the average thickness of the drug layer on the side of the ridge at a height of 50% to 100% of the ridge is thicker than the thickness of the drug layer at the farthest point from the ridge in the ridge-free region.
  4.  前記直管部の長手方向の垂直断面において、前記凸条の50%~100%の高さにおける前記凸条の側面の前記薬剤層の平均厚みは、前記凸条の0%~50%の高さにおける前記凸条の側面の前記薬剤層の平均厚みの1/2以上である請求項1に記載のバルーン。 The balloon according to claim 1, wherein in a vertical cross section in the longitudinal direction of the straight tube portion, the average thickness of the drug layer on the side of the ridge at 50% to 100% of the height of the ridge is at least half the average thickness of the drug layer on the side of the ridge at 0% to 50% of the height of the ridge.
  5.  前記直管部の長手方向の垂直断面において、前記凸条の0%~80%の高さにおける前記凸条の側面の前記薬剤層の平均厚みは、前記凸条の80%~100%の高さにおける前記凸条の側面の前記薬剤層の平均厚みよりも厚い請求項1に記載のバルーン。 The balloon of claim 1, wherein in a vertical cross section of the straight tube portion in the longitudinal direction, the average thickness of the drug layer on the side of the ridge at 0% to 80% of the height of the ridge is thicker than the average thickness of the drug layer on the side of the ridge at 80% to 100% of the height of the ridge.
  6.  前記凸条の頂部は露出している請求項1に記載のバルーン。 The balloon of claim 1, wherein the top of the ridge is exposed.
  7.  前記直管部の長手方向の垂直断面において、前記凸条は、頂部に向かって段状に幅が狭まる部分を有する請求項1に記載のバルーン。 The balloon according to claim 1, wherein in a vertical cross section of the straight tube portion in the longitudinal direction, the ridge has a portion in which the width narrows in a stepped manner toward the apex.
  8.  前記凸条は、前記頂部に向かって段状に幅が狭まる部分として、前記バルーン本体部の外面に隣接した第1段部分と、それよりも頂部側の第2段部分を有し、
     前記第2段部分の側面における前記薬剤層の平均厚みは、前記第1段部分の側面における前記薬剤層の平均厚みの1/2以上である請求項7に記載のバルーン。
    The convex strip has a first step portion adjacent to the outer surface of the balloon body and a second step portion closer to the top, the first step portion being a portion whose width narrows in a step shape toward the top,
    The balloon of claim 7 , wherein the average thickness of the drug layer on the side surface of the second stage portion is at least half the average thickness of the drug layer on the side surface of the first stage portion.
  9.  前記凸条は、樹脂製、金属製、またはその組み合わせである請求項1に記載のバルーン。 The balloon according to claim 1, wherein the ridges are made of resin, metal, or a combination thereof.
  10.  前記直管部の長手方向の垂直断面において、前記凸条の側面は、前記凸条の頂部を通り径方向に延びる仮想直線に対して一方側にある第1側面と他方側にある第2側面とを含み、
     前記第1側面における前記薬剤層の平均厚みは、前記第2側面における前記薬剤層の平均厚みよりも厚い請求項1に記載のバルーン。
    In a vertical cross section in a longitudinal direction of the straight pipe portion, a side surface of the protrusion includes a first side surface on one side and a second side surface on the other side of an imaginary line passing through the top of the protrusion and extending in a radial direction,
    The balloon of claim 1 , wherein an average thickness of the drug layer on the first side is greater than an average thickness of the drug layer on the second side.
  11.  前記直管部の長手方向の垂直断面において、前記凸条の頂部を通り径方向に延びる仮想直線に対して一方側にある前記凸条の基部における前記薬剤層の厚みは、前記仮想直線に対して他方側にある前記凸条の基部における前記薬剤層の厚みよりも厚い請求項1に記載のバルーン。 The balloon of claim 1, wherein in a vertical cross section of the straight tube portion in the longitudinal direction, the thickness of the drug layer at the base of the ridge on one side of an imaginary line that passes through the top of the ridge and extends in the radial direction is thicker than the thickness of the drug layer at the base of the ridge on the other side of the imaginary line.
  12.  前記バルーンの収縮状態で、前記直管部は、前記バルーン本体部の内面を内側にして前記凸条非存在領域で折り返されて、前記凸条非存在領域が重ね合わされた折り畳み羽根部を形成し、
     前記折り畳み羽根部は、前記直管部の外面に重ねられて配置され、前記凸条の頂部を覆っている請求項1に記載のバルーン。
    When the balloon is in a deflated state, the straight tube portion is folded back at the non-ridge region with the inner surface of the balloon body portion facing inward to form a folded wing portion in which the non-ridge regions are overlapped,
    The balloon according to claim 1 , wherein the folded wing portion is disposed over the outer surface of the straight tube portion and covers the top of the ridge.
  13.  前記バルーンの収縮状態で、前記直管部は、前記バルーン本体部の内面を内側にして前記凸条非存在領域で折り返されて、前記凸条非存在領域が重ね合わされた折り畳み羽根部を形成し、
     前記折り畳み羽根部は、前記凸条の頂部を覆わないように、前記直管部の外面に重ねられて配置されている請求項1に記載のバルーン。
    When the balloon is in a deflated state, the straight tube portion is folded back at the non-ridge region with the inner surface of the balloon body portion facing inward to form a folded wing portion in which the non-ridge regions are overlapped,
    The balloon according to claim 1 , wherein the folded wing portion is arranged overlapping the outer surface of the straight tube portion so as not to cover the top of the convex strip.
  14.  請求項1~13のいずれか一項に記載のバルーンを備えるバルーンカテーテル。 A balloon catheter comprising a balloon according to any one of claims 1 to 13.
  15.  近位側から遠位側に延びる長手方向と前記長手方向に垂直な径方向とを有するバルーンであって、直管部と、前記直管部よりも近位側に位置する近位側テーパー部と、前記直管部よりも遠位側に位置する遠位側テーパー部とを有し、前記直管部が、筒形状のバルーン本体部と、前記バルーン本体部の外面に径方向の外方に突出し長手方向に延在している凸条とを有するバルーンを準備する工程と、
     前記直管部の外面に薬液を塗布し、前記バルーンを前記長手方向に延びる中心軸を中心に回転させる塗布工程と
     を有するバルーンカテーテルの製造方法。
    a step of preparing a balloon having a longitudinal direction extending from a proximal side to a distal side and a radial direction perpendicular to the longitudinal direction, the balloon having a straight tube portion, a proximal tapered portion located proximal to the straight tube portion, and a distal tapered portion located distal to the straight tube portion, the straight tube portion having a cylindrical balloon main body portion and a ridge protruding radially outward from an outer surface of the balloon main body portion and extending in the longitudinal direction;
    a coating step of coating an outer surface of the straight tube portion with a medicinal solution and rotating the balloon around a central axis extending in the longitudinal direction.
  16.  前記塗布工程において、前記バルーンを前記長手方向に延びる中心軸を中心に回転させて、前記薬液を前記凸条の80%の高さまで到達させる請求項15に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to claim 15, wherein in the application step, the balloon is rotated around a central axis extending in the longitudinal direction, so that the drug solution reaches 80% of the height of the ridges.
  17.  前記塗布工程において、前記バルーンを拡張させた状態で、前記直管部の外面に薬液を塗布する請求項15に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to claim 15, wherein in the coating step, a medicinal solution is applied to the outer surface of the straight tube portion while the balloon is in an expanded state.
  18.  前記塗布工程において、前記バルーンを前記長手方向に延びる中心軸を中心に回転させながら、前記直管部の外面に薬液を塗布する請求項15に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to claim 15, wherein in the coating step, the medicinal liquid is applied to the outer surface of the straight tube portion while the balloon is rotated about a central axis extending in the longitudinal direction.
  19.  前記塗布工程において、前記直管部の外面に薬液を塗布した後、前記バルーンを前記長手方向に延びる中心軸を中心に回転させる請求項15に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to claim 15, wherein in the coating step, after the drug solution is applied to the outer surface of the straight tube section, the balloon is rotated around a central axis extending in the longitudinal direction.
  20.  前記塗布工程において、前記バルーンを回転させながら、前記薬液に含まれる溶媒の少なくとも一部を蒸発させる請求項15に記載のバルーンカテーテルの製造方法。 The method for manufacturing a balloon catheter according to claim 15, wherein in the coating step, at least a portion of the solvent contained in the drug solution is evaporated while rotating the balloon.
PCT/JP2023/036990 2022-11-16 2023-10-12 Balloon for balloon catheter, balloon catheter, and method for manufacturing balloon catheter WO2024106079A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022183692 2022-11-16
JP2022-183692 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024106079A1 true WO2024106079A1 (en) 2024-05-23

Family

ID=91084104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036990 WO2024106079A1 (en) 2022-11-16 2023-10-12 Balloon for balloon catheter, balloon catheter, and method for manufacturing balloon catheter

Country Status (1)

Country Link
WO (1) WO2024106079A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090258049A1 (en) * 2008-04-11 2009-10-15 Richard Klein Drug eluting expandable devices
US20100055294A1 (en) * 2008-08-29 2010-03-04 Lutonix, Inc. Methods and apparatuses for coating balloon catheters
WO2021132141A1 (en) * 2019-12-26 2021-07-01 株式会社グッドマン Balloon catheter
CN114712672A (en) * 2022-04-14 2022-07-08 四川大学华西医院 Medicine-carrying balloon catheter
WO2022158100A1 (en) * 2021-01-21 2022-07-28 株式会社カネカ Balloon for balloon catheter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090258049A1 (en) * 2008-04-11 2009-10-15 Richard Klein Drug eluting expandable devices
US20100055294A1 (en) * 2008-08-29 2010-03-04 Lutonix, Inc. Methods and apparatuses for coating balloon catheters
WO2021132141A1 (en) * 2019-12-26 2021-07-01 株式会社グッドマン Balloon catheter
WO2022158100A1 (en) * 2021-01-21 2022-07-28 株式会社カネカ Balloon for balloon catheter
CN114712672A (en) * 2022-04-14 2022-07-08 四川大学华西医院 Medicine-carrying balloon catheter

Similar Documents

Publication Publication Date Title
JP7467797B2 (en) Cutting balloon and balloon catheter
WO2022158100A1 (en) Balloon for balloon catheter
JP6933646B2 (en) Balloon catheter
CN114712672A (en) Medicine-carrying balloon catheter
WO2024106079A1 (en) Balloon for balloon catheter, balloon catheter, and method for manufacturing balloon catheter
WO2024106078A1 (en) Balloon for balloon catheter, balloon catheter, and manufacturing method of balloon catheter
US20200282190A1 (en) Drug transfer device and method for forming drug layer
WO2024106082A1 (en) Balloon for balloon catheter, balloon catheter, and manufacturing method of balloon catheter
WO2024106081A1 (en) Balloon for balloon catheter, balloon catheter, and manufacturing method of balloon catheter
WO2024106080A1 (en) Balloon for balloon catheter, balloon catheter, and method for manufacturing balloon catheter
WO2024106084A1 (en) Balloon for balloon catheter and balloon catheter
WO2024106083A1 (en) Balloon for balloon catheter, and balloon catheter
US11123528B2 (en) Balloon catheter and method for manufacturing same
JP2024072699A (en) Balloon for balloon catheter and balloon catheter
WO2024106402A1 (en) Balloon-catheter balloon, balloon catheter equipped with same, and manufacturing method for balloon catheter
WO2024106176A1 (en) Balloon for balloon-catheter, balloon catheter equipped with same, and method for manufacturing balloon catheter
JP7100666B2 (en) Balloon catheter and its manufacturing method
WO2023079906A1 (en) Balloon for balloon catheter
WO2024042978A1 (en) Balloon for balloon catheter and balloon catheter provided therewith
WO2022137763A1 (en) Balloon for balloon catheter
WO2022137764A1 (en) Balloon for balloon catheter
JP2024072607A (en) Balloon for balloon catheter, balloon catheter including same, and method for manufacturing balloon catheter
WO2024042977A1 (en) Balloon catheter-use balloon, and balloon catheter provided with same
CN217661084U (en) Medicine carrying balloon catheter
WO2024029272A1 (en) Balloon-catheter balloon, balloon catheter equipped with same, and manufacturing method for balloon catheter