WO2024105861A1 - アブレーション加工方法、アブレーション加工装置、基板、及び基板を製造する方法 - Google Patents
アブレーション加工方法、アブレーション加工装置、基板、及び基板を製造する方法 Download PDFInfo
- Publication number
- WO2024105861A1 WO2024105861A1 PCT/JP2022/042751 JP2022042751W WO2024105861A1 WO 2024105861 A1 WO2024105861 A1 WO 2024105861A1 JP 2022042751 W JP2022042751 W JP 2022042751W WO 2024105861 A1 WO2024105861 A1 WO 2024105861A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- laser beam
- irradiation
- mask
- area
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 330
- 238000012545 processing Methods 0.000 title claims abstract description 167
- 238000002679 ablation Methods 0.000 title claims abstract description 130
- 238000000034 method Methods 0.000 title claims abstract description 64
- 238000003672 processing method Methods 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 230000003287 optical effect Effects 0.000 claims description 42
- 230000001678 irradiating effect Effects 0.000 claims description 32
- 239000004065 semiconductor Substances 0.000 claims description 19
- 238000007493 shaping process Methods 0.000 claims description 8
- 230000035515 penetration Effects 0.000 abstract description 15
- 238000010586 diagram Methods 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 238000009412 basement excavation Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 238000004873 anchoring Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
- B23K26/382—Removing material by boring or cutting by boring
- B23K26/386—Removing material by boring or cutting by boring of blind holes
Definitions
- the present invention relates to an ablation processing method, an ablation processing device, a substrate, and a method for manufacturing a substrate.
- SoCs System on a Chip
- Patent Document 1 describes a laser processing method for processing a workpiece to a specified depth using a laser beam, characterized in that the laser power of the laser beam and the relative movement speed between the workpiece and the laser beam are increased so that the energy per unit length of the laser beam, which is optimally set according to the workpiece, falls within an energy range that does not penetrate the workpiece even when the laser power increases due to power fluctuations in the laser beam oscillator, and the number of irradiations required for laser processing is reduced.
- Patent Document 2 also describes a laser processing method for processing an excavation region of a workpiece by sequentially irradiating the excavation region with laser light having a small beam cross section relative to the excavation region, the method including a first processing step in which the entire excavation region is sequentially irradiated with laser light having a first beam cross section and forming a first irradiation region on the workpiece corresponding to the beam cross section of the first shape, and a second processing step in which the excavation region is sequentially irradiated with laser light having a second beam cross section smaller than the first shape and forming a second irradiation region on the workpiece corresponding to the beam cross section of the second shape, the first processing step being characterized in that the laser light forming the first irradiation region is sequentially irradiated so as to form an overlapping region in which parts of the first irradiation region overlap each other, and the second processing step being characterized in that the laser processing method is sequentially irradiated with laser light forming the second i
- Patent Documents 1 and 2 propose laser processing methods that include overlapping irradiation areas of a laser beam.
- it is necessary to precisely align the ends of each irradiation area of the laser beam but if alignment is not performed at the micrometer level, excessive processing may occur, as shown in FIG. 17, resulting in the formation of a portion 88 with a very large processing depth that may penetrate the substrate 80, or conversely, as shown in FIG. 18, portions 89 of the substrate 80 that cannot be processed may be created.
- conventional methods have the risk of film penetration and problems with partially not obtaining the desired pattern.
- the present invention has been made to solve the above problems, and aims to provide an ablation processing method that can obtain a recess of the desired depth while reducing the risk of membrane penetration using simple procedures, an ablation processing device that can obtain a recess of the desired depth while reducing the risk of membrane penetration using simple procedures, a substrate that can be expected to be highly reliable, and a manufacturing method that can manufacture a substrate that can be expected to be highly reliable.
- the present invention provides an ablation processing method for forming a recess on a surface of a substrate by ablation processing using irradiation energy of a laser beam, the method comprising the steps of: a laser beam irradiating an entire surface of the substrate in the region to be processed with the laser beam by irradiating the substrate with a plurality of shots of the laser beam so that an irradiated region of the substrate in one shot with the laser beam is smaller than a region to be processed with the laser beam;
- the present invention provides an ablation processing method in which, in irradiating the multiple shots, the irradiation area of the laser beam is moved relative to the substrate in a first direction of the substrate and in a second direction perpendicular to the first direction, while a portion of the irradiation area in each shot is overlapped with the irradiation area in another shot in a first direction and in the second direction so as to form the recess having a depth within a specified range in the
- a portion of the irradiation area of each shot is overlapped in the first and second directions with the irradiation area of another shot in order to form a recess having a depth within a specified range in the processed area of the substrate, thereby making it possible to obtain a recess of the desired depth in a simple procedure while preventing film penetration caused by excessive processing.
- the multiple shot irradiation using a light source that oscillates the laser beam and a mask including an effective area having a pattern corresponding to the recess to be formed in the substrate;
- the laser beam from the light source is irradiated onto a mask irradiation region, which is a portion of the effective area of the mask;
- the laser beam that has passed through the mask is irradiated onto a substrate irradiation area, which is at least a part of the processing area of the substrate, and the pattern is projected onto the substrate irradiation area to perform ablation processing;
- the irradiation area of the laser beam is moved relative to the substrate, the mask and the substrate can be moved synchronously in a planar direction substantially perpendicular to the direction in which the laser beam is irradiated.
- ablation processing can be performed using a mask in this manner.
- the processing region is not limited to the area of the lens, an area (angle of view) larger than the area of the lens can be processed.
- the reduction projection optical system required for irradiation can be made small, and the laser irradiation position accuracy and temperature controllability can be improved. Furthermore, since the reduction projection optical system can be made small, image distortion due to irradiation is also small.
- rectangular irradiation can be performed more efficiently than, for example, overlapping circular irradiation, and the position and number of microscopic overlapping irradiations can be controlled more accurately.
- the laser beam irradiation is performed without stopping the mask and the substrate during the irradiation of the multiple shots in the first direction and/or the second direction.
- the multiple shots can be irradiated such that a portion of the substrate irradiation area of the substrate overlaps in the first direction with a portion of the substrate irradiation area produced by the multiple shots irradiated using a first mask.
- not only one mask but two or more masks can be used. By using two or more masks, a larger area of the substrate can be processed efficiently.
- an excimer laser can be used.
- the processing surface of a substrate made of an organic material, such as an ABF substrate can be efficiently ablated, enabling highly productive processing.
- the excimer laser has low coherence, the position and number of microscopic overlapping irradiations can be controlled more accurately by using an excimer laser.
- the substrate can be a semiconductor package substrate that has been ablated.
- the substrate to be processed is not particularly limited, but for example, a semiconductor package substrate can be the substrate to be processed.
- a semiconductor package substrate can be the substrate to be processed.
- the method of the present invention makes it possible to process VIA processing and groove processing in the same process without separating the processes.
- semiconductor package substrates are becoming increasingly dense, and with the conventional laser drilling method for VIA processing, the processing time increases due to the increase in the number of holes that need to be drilled as a result of higher density.
- this method there is no increase in processing time due to the increase in the number of holes or the finer patterns.
- the present invention also provides an ablation processing apparatus for forming recesses on a surface of a substrate by ablation processing using irradiation energy of a laser beam, comprising: a light source that emits the laser beam; a substrate stage for supporting the substrate; A controller, a laser beam irradiating an entire surface of the substrate in the region to be processed with the laser beam by irradiating the substrate with a plurality of shots of the laser beam so that an irradiated region of the substrate in one shot with the laser beam is smaller than a region to be processed with the laser beam; a controller configured to perform control in the irradiation of the multiple shots such that a part of the irradiation area of the laser beam in each shot is superimposed on the irradiation area of another shot in a first direction and a second direction perpendicular to the first direction while moving the irradiation area of the laser beam relative to the substrate in a first direction and a second direction perpendicular to the first direction, so that the rece
- a portion of the irradiation area of each shot can be overlapped with the irradiation area of another shot in the first direction and the second direction so as to form a recess having a depth within a specified range in the processed area of the substrate.
- a recess of the desired depth can be obtained by a simple procedure while preventing film penetration caused by excessive processing.
- a mask including an effective area having a pattern corresponding to the region to be processed of the substrate; a mask stage for supporting the mask; It is preferable that the controller is further configured to synchronously move the mask stage and the substrate stage in a planar direction substantially perpendicular to the direction in which the laser beam is irradiated.
- a mask can be used in this manner.
- the processing region is not limited to the area of the lens, an area (angle of view) larger than the area of the lens can be processed.
- the reduction projection optical system required for irradiation can be made small, and the laser irradiation position accuracy and temperature controllability can be improved. Furthermore, since the reduction projection optical system can be made small, image distortion due to irradiation is also small.
- a shaping optical system between the light source and the mask, which shapes the irradiation shape of the laser beam into a rectangular irradiation shape.
- the ablation processing device it is possible to irradiate a laser beam having a rectangular irradiation shape, and as a result, it is possible to more reliably prevent film penetration caused by excessive processing.
- the position and number of microscopic overlapping irradiations can be controlled more efficiently and more accurately than, for example, overlapping irradiations of circular irradiation.
- the light source may be an excimer laser light source.
- the light source is not particularly limited, but for example, an excimer laser light source can be used.
- an excimer laser By using an excimer laser, the processed surface of a substrate made of an organic material such as an ABF substrate can be efficiently ablated, enabling highly productive processing.
- the excimer laser since the excimer laser has low coherence, the position and number of microscopic overlapping irradiations can be controlled more accurately by using an excimer laser.
- the present invention also provides a substrate having a groove on a surface thereof, comprising: The substrate is provided such that the bottom of the groove has a plurality of recesses periodically arranged in the longitudinal direction of the groove.
- Such a substrate can demonstrate high reliability, as the multiple recesses periodically arranged in the longitudinal direction of the grooves provide an anchoring effect that fixes the layers formed thereon.
- Such a substrate is less susceptible to peeling of the embedded conductive layer, which can occur in the plating process or CMP performed after the ablation processing process of the present invention, and can provide a high-quality product with high resistance to stress caused by thermal cycles, etc., even in the final product after processing is completed.
- This substrate can be, for example, a semiconductor package substrate.
- the type of substrate is not particularly limited, but may be, for example, a semiconductor package substrate.
- processing semiconductor package substrates there are processing patterns that include a mixture of VIA processing, groove processing, etc.
- the method of the present invention makes it possible to process VIA processing and groove processing in the same process without separating the processes.
- semiconductor package substrates are becoming increasingly dense.
- Conventional laser drilling methods for VIA processing increase the number of holes required to accompany higher density, which results in longer processing times.
- the present invention also provides a method for producing a substrate having a groove on a surface by ablation processing using irradiation energy of a laser beam, comprising the steps of: a laser beam irradiating an entire surface of the substrate in the region to be processed with the laser beam by irradiating the substrate with a plurality of shots of the laser beam so that an irradiated region of the substrate in one shot with the laser beam is smaller than a region to be processed with the laser beam; In the irradiation of the multiple shots, the irradiation area of the laser beam is moved relative to the substrate in a first direction of the substrate and in a second direction perpendicular to the first direction, while a part of the irradiation area in each shot is overlapped with the irradiation area in another shot in the first direction and the second direction so as to form the groove having a depth within a specified range in the processed area of the substrate; The irradiation of the multiple shots is performed so as to provide irradiation
- the method for producing a substrate of the present invention can produce a substrate in which the bottom of the groove has a plurality of recesses periodically arranged in the longitudinal direction of the groove.
- Such a substrate can exhibit an anchoring effect for fixing a layer formed thereon, and can exhibit high reliability.
- peeling of the embedded conductive layer which may occur during plating processes or CMP performed after the manufacturing method of the present invention, is unlikely to occur, and even in the final product after processing is completed, it is possible to provide a high-quality product that has high resistance to stress caused by thermal cycles and the like.
- the ablation processing method of the present invention allows for a simple procedure to obtain a recess of the desired depth while preventing membrane penetration caused by excessive processing.
- the ablation processing device of the present invention can obtain a recess of the desired depth using simple procedures while preventing membrane penetration caused by excessive processing.
- the substrate of the present invention is expected to provide a highly reliable package substrate.
- the substrate manufacturing method of the present invention makes it possible to manufacture substrates that are expected to be highly reliable.
- FIG. 1 is a schematic diagram showing an example of an ablation processing apparatus of the present invention.
- 2 is a schematic diagram showing an example of a laser beam irradiation area for one shot in the ablation processing method of the present invention.
- FIG. 1 is a schematic diagram showing an example of overlapping irradiation in the ablation processing method of the present invention.
- FIG. 1 is a schematic diagram showing an example of overlapping irradiation in the ablation processing method of the present invention.
- FIG. 1 is a schematic diagram showing an example of overlapping irradiation in the ablation processing method of the present invention.
- FIG. FIG. 6 is a schematic plan view of a portion of the substrate after the overlapping irradiation shown in FIG. 5 .
- FIG. 1 is a schematic diagram showing an example of overlapping irradiation in the ablation processing method of the present invention.
- FIG. 1 is a schematic diagram showing an example of overlapping irradiation in the ablation processing method of the present invention.
- FIG. 2 is a flow diagram of an example of an ablation processing method of the present invention.
- FIG. 10 is a schematic diagram showing an example of ablation processing in the example shown in FIG. 9 .
- FIG. 13 is a schematic diagram showing an example of overlapping irradiation for forming a recess in the bottom of a groove.
- 10 is a schematic diagram showing an example of overlapping irradiation that suppresses the formation of a recess at the bottom of a groove.
- FIG. 13 is a schematic diagram showing another example of overlapping irradiation that suppresses the formation of recesses at the bottom of the groove.
- FIG. 13 is a schematic diagram showing an example of ideal irradiation that prevents the formation of a recess at the bottom of a groove.
- FIG. 13 is a schematic diagram of overlapping irradiation in a reference example.
- 10 is a schematic diagram showing an example of overlapping irradiation that suppresses the formation of a recess at the bottom of a groove.
- FIG. FIG. 1 is a schematic diagram showing an example of a conventional ablation process.
- FIG. 1 is a schematic diagram showing an example of a conventional ablation process.
- the inventors discovered that by overlapping a portion of the irradiated area of each shot with the irradiated area of another shot in a first direction and a second direction so as to form a recess having a depth within a specified range in the processed area of the substrate, it is possible to obtain a recess of the desired depth in a simple procedure while preventing film penetration caused by excessive processing, and thus completed the present invention.
- the inventors also discovered that if a substrate has multiple recesses arranged periodically along the longitudinal direction of the groove, an anchoring effect can be achieved to fix layers formed on the multiple recesses, and high reliability can be expected in semiconductor package substrates, leading to the completion of the present invention.
- the present invention provides an ablation processing method for forming a recess on a surface of a substrate by ablation processing using irradiation energy of a laser beam, comprising the steps of: a laser beam irradiating an entire surface of the substrate in the region to be processed with the laser beam by irradiating the substrate with a plurality of shots of the laser beam so that an irradiated region of the substrate in one shot with the laser beam is smaller than a region to be processed with the laser beam;
- the irradiation area of the laser beam in irradiating the multiple shots, the irradiation area of the laser beam is moved relative to the substrate in a first direction of the substrate and in a second direction perpendicular to the first direction, while a portion of the irradiation area in each shot is overlapped with the irradiation area in another shot in a first direction and a second direction so as to form a recess having a depth within a specified range in the processed area of the substrate.
- the present invention also provides an ablation processing apparatus for forming a recess on a surface of a substrate by ablation processing using irradiation energy of a laser beam, comprising: a light source that emits the laser beam; a substrate stage for supporting the substrate; A controller, a laser beam irradiating an entire surface of the substrate in the region to be processed with the laser beam by irradiating the substrate with a plurality of shots of the laser beam so that an irradiated region of the substrate in one shot with the laser beam is smaller than a region to be processed with the laser beam; a controller configured to perform control in the irradiation of the multiple shots such that a part of the irradiation area of the laser beam in each shot is superimposed on the irradiation area of another shot in a first direction and a second direction perpendicular to the first direction while moving the irradiation area of the laser beam relative to the substrate in a first direction and a second direction perpendicular to the first direction, so that
- the present invention also provides a substrate having a groove on a surface thereof, comprising:
- the substrate has a bottom of the groove having a plurality of recesses periodically arranged in the longitudinal direction of the groove.
- the present invention also provides a method for producing a substrate having a groove on a surface by ablation processing using irradiation energy of a laser beam, comprising the steps of: a laser beam irradiating an entire surface of the substrate in the region to be processed with the laser beam by irradiating the substrate with a plurality of shots of the laser beam so that an irradiated region of the substrate in one shot with the laser beam is smaller than a region to be processed with the laser beam; In the irradiation of the multiple shots, the irradiation area of the laser beam is moved relative to the substrate in a first direction of the substrate and in a second direction perpendicular to the first direction, while a part of the irradiation area in each shot is overlapped with the irradiation area in another shot in the first direction and the second direction so as to form the groove having a depth within a specified range in the processed area of the substrate; The irradiation of the multiple shots is performed so as to provide irradiation
- FIG. 1 is a schematic diagram showing an example of an ablation processing apparatus of the present invention.
- the ablation processing apparatus 100 shown in Fig. 1 is an ablation processing apparatus that forms recesses on the surface of a substrate 80 by ablation processing using irradiation energy of a laser beam 4.
- the ablation processing apparatus 100 shown in Fig. 1 is an example of the ablation processing apparatus of the present invention, but the ablation processing apparatus of the present invention is not limited to the apparatus shown in Fig. 1.
- the ablation processing apparatus 100 shown in FIG. 1 includes a light source 11 that emits a laser beam, a substrate stage 40 that supports a substrate 80, and a controller 90.
- the example ablation processing device 100 shown in FIG. 1 includes a first optical function unit 10 and a second optical function unit 20.
- the light source 11 that emits the laser beam is a light source (laser oscillator) 11 that irradiates (emits) the laser beam 1 in a pulsed form, and is included in the first optical function unit 10.
- a light source (laser oscillator) 11 that irradiates (emits) the laser beam 1 in a pulsed form, and is included in the first optical function unit 10.
- an excimer laser can be used as the laser beam 1, but there is no particular limitation.
- the first optical function unit 10 further includes an optional shaping optical system 12 to which the laser beam 1 is irradiated from the light source 11.
- the shaping optical system 12 shapes the irradiation shape of the laser beam 1, for example, as shown in FIG. 1(a), into, for example, a rectangular irradiation shape as shown in FIG. 1(b).
- the laser beam 2 having a rectangular irradiation shape can exhibit a uniform irradiation energy density, and is, for example, a beam profile exhibiting a top hat shape.
- the optional second optical function unit 20 includes a mask 21.
- the mask 21 includes an effective area 22 having a pattern corresponding to the recess to be formed in the substrate 80.
- the size of the mask 21 is not particularly limited.
- a mask 21 having an outer shape of 700 mm x 800 mm and an effective area 22 of 600 mm x 600 mm can be used.
- the mask 21 includes a mask irradiation area onto which the laser beam 2 that has passed through the first optical function unit 10 is irradiated. This mask irradiation area is a portion of the effective area 22 of the mask 21.
- the ablation processing apparatus 100 of the example shown in FIG. 1 is configured so that the laser beam 4 emitted from the third optical function unit 30 is irradiated onto a portion of the substrate 80 held by the substrate stage 40.
- the substrate 80 includes a substrate illumination area onto which a pattern is projected by the laser beam passing through the mask 21 (and optional third optical function portion 30).
- the mask 21 is configured to be scanned along the sweep axes 21X and 21Y shown in FIG. 1.
- the substrate stage 40 is configured to be scanned along the sweep axes 80X and 80Y shown in FIG. 1.
- the controller 90 is configured to perform control so that the irradiation area of the laser beam 4 in one shot on the substrate 80 is smaller than the processed area of the substrate 80, irradiate the substrate 80 with multiple shots of the laser beam 4 to irradiate the entire surface of the processed area of the substrate 80 with the laser beam, and to control the irradiation area of the laser beam 4 to be moved relative to the substrate 80 in a first direction (e.g., the direction of the sweep axis 80X) and a second direction (e.g., the direction of the sweep axis 80Y) perpendicular to the first direction, so that a recess having a depth within a specified range is formed in the processed area of the substrate 80, while overlapping a part of the irradiation area of each shot with the irradiation area of another shot in the first direction and the second direction.
- a first direction e.g., the direction of the sweep axis 80X
- a second direction e.g., the direction
- the ablation processing method of the present invention can be carried out, for example, by using the ablation processing apparatus of the present invention, but can also be carried out by using an apparatus other than the ablation processing apparatus of the present invention.
- the ablation processing method of the present invention is an ablation processing method that forms recesses on the surface of a substrate 80 by ablation processing using the irradiation energy of a laser beam 4.
- the irradiated area 41 of the laser beam 4 in one shot on the substrate 80 is made smaller than the processed area 8 of the substrate 80.
- the irradiation area 41 of the laser beam 4 is moved relative to the substrate 80 in a first direction of the substrate 80 (e.g., the direction of the sweep axis 80X in FIG. 1) and in a second direction perpendicular to the first direction 80X (e.g., the direction of the sweep axis 80Y in FIG. 1), while a part of the irradiation area 41 in each shot is overlapped with the irradiation area 41 in the other shot in the first direction 80X and the second direction 80Y so as to form a recess having a depth within a specified range in the processed area 8 of the substrate 80.
- a part of the irradiation area 41A-1 is overlapped with the irradiation areas 41B-1 and 41C-1 in the first direction 80X
- a part of the irradiation area 41B-1 is overlapped with the irradiation areas 41A-1, 41C-1, and 41D-1 in the first direction 80X
- a part of the irradiation area 41C-1 is overlapped with the irradiation areas 41A-1, 41B-1, and 41D-1 in the first direction 80X
- a part of the irradiation area 41D-1 is overlapped with the irradiation areas 41B-1 and 41C-1 in the first direction 80X.
- irradiation area 41 of laser beam 4 is moved in a first direction 80X relative to substrate 80 and in a second direction 80Y perpendicular to first direction 80X. Specifically, irradiation area 41 is moved so that irradiation area 41A-2 overlaps previous irradiation areas 41A-1, 41B-1, and 41C-1 in second direction 80Y. Thereafter, while moving irradiation area 41 in the first direction 80X relative to substrate 80, overlapping irradiation is performed in the same manner as before.
- FIG. 5(a) The image of the overlapping irradiation while moving the irradiation area 41 in the first direction 80X and the second direction 80Y is shown in FIG. 5.
- the overlapping irradiation is performed while moving the irradiation area 41 relatively in the first direction 80X from the irradiation areas 41A-1 and 41B-1 to the irradiation areas 41Y-1 and 41Z-1.
- the irradiation area 41 of the laser beam 4 is moved in the first direction 80X and in the second direction 80Y perpendicular to the first direction 80X relative to the substrate 80, and then the irradiation area 41 is moved in the first direction 80X relative to the substrate 80, and the laser beam is irradiated from the irradiation area 41A-2 to the irradiation area 41Z-2 so as to overlap the irradiation areas 41A-1 to 41Z-1 in the second direction 80Y and also to overlap the first direction 80X in the same manner as before.
- the irradiation area 41 of the laser beam 4 is moved in a first direction 80X relative to the substrate 80 and in a second direction 80Y perpendicular to the first direction 80X, and then while moving the irradiation area 41 in the first direction 80X relative to the substrate 80, the laser beam is irradiated from the irradiation area 41A-3 to the irradiation area 41Z-3 so as to overlap the irradiation areas 41A-1 to 41Z-1 irradiated in the process of FIG. 5(a) and the irradiation areas 41A-2 to 41Z-2 irradiated in the process of FIG. 5(b) in the second direction 80Y, and also to overlap in the first direction 80X as before.
- the above process is then repeated so that the entire surface of the processed area of the substrate is irradiated with the laser beam.
- FIG. 6 shows a schematic plan view of a portion of the substrate after the overlapping irradiation shown in FIG. 5.
- FIG. 6 shows the result of overlapping a portion of the irradiation region 41 of each shot with the irradiation region 41 of another shot in the first direction 80X and the second direction 80Y while moving the irradiation region 41 of one shot relative to the substrate 80 in the first direction 80X and the second direction 80Y, respectively, as shown in FIG. 5. More specifically, in the overlapping in the first direction 80X, a quarter of the width of the irradiation region 41 of one shot in the first direction 80X overlaps with the irradiation region 41 of the previous shot.
- a third of the width of the irradiation region 41 of one shot in the second direction 80Y overlaps with other irradiation regions 41 located above and below in the second direction 80Y.
- this example of overlapping is merely one example, and the degree of overlapping is not particularly limited in the present invention. In addition, the degree of overlapping can be changed depending on the location.
- the sweep in the first direction 80X is the same for the first, second, and third lines (from left to right on the page), but it is also possible to change the direction for even and odd lines, for example, or to make the sweep direction vertical (second direction 80Y in Figure 6).
- the first shot irradiation area 41I, the tenth shot irradiation area 41X, the twentieth shot irradiation area 41XX, and the thirtieth shot irradiation area 41XXX are shown in order along the first direction 80X. Also, the first row 41-1 to the eighth row 41-8 of a series of overlapping irradiations in the first direction 80X are shown in order along the second direction 80Y.
- the collection of regions that overlap four or more times in the first direction 80X and three or more times in the second direction becomes the effective processing area 82, which is a uniformly irradiated area.
- This effective processing area 82 corresponds to the recess to be processed.
- the overlapping irradiation described in detail above is performed so as to form a recess having a depth within a specified range in the processing area 8 of the substrate 80.
- FIG. 7 A specific example is shown in Figure 7.
- the upper part is a plan view of the irradiation shape 41 of each shot, and the lower part is a cross-sectional view of the substrate 80 after each shot.
- the laser irradiation area for that shot is surrounded by a dotted frame, and traces of previous laser irradiation are shown without a frame.
- the substrate 80 is irradiated with the laser beam 4 having the irradiation shape 41A, forming a recess 83a.
- the substrate 80 is irradiated with the laser beam 4 having the irradiation shape 41B, forming a recess 83b.
- the recess 83b has a portion 84b formed by the overlap of the first and second shots, which has a depth greater than the depth of the recess 83a.
- the substrate 80 is irradiated with the laser beam 4 having the irradiation shape 41C, forming a recess 83c.
- the recess 83c has a portion 84c formed by the overlap of the first, second, and third shots, which has a depth even greater than the maximum depth of the recess 83b.
- the substrate 80 is irradiated with the laser beam 4 having the irradiation shape 41D to form a recess 83d.
- the recess 83d has a portion 84d formed by the overlap of the first, second, third, and fourth shots, which has a maximum depth 85 that is greater than the maximum depth of the recess 83c.
- the substrate 80 is irradiated with laser beam 4 having irradiation shape 41E to form a recess 83e.
- the recess 83e includes a portion 84e formed by overlapping irradiation of the second, third, fourth, and fifth shots, adjacent to the deepest portion 84d formed by the fourth shot. Because this portion 84e is formed by the energy of four shots of laser beam 4, the maximum depth of portion 84e is the same as the maximum depth 85 of portion 84d also formed by the energy of four shots of laser beam 4.
- the substrate 80 is irradiated with the laser beam 4 of irradiation shape 41F, forming a recess 83f.
- the recess 83f includes a portion 84f formed by overlapping irradiation of the third, fourth, fifth, and sixth shots, adjacent to the deepest portion 84e formed by the fifth shot. Because this portion 84f is formed by the energy of four shots of the laser beam 4, the maximum depth of portion 84f is the same as the maximum depth 85 of portion 84e, which is also formed by the energy of four shots of the laser beam 4.
- a recess 83z is finally formed as shown in FIG. 7(g).
- the maximum depth portion 84z of recess 83z is formed by the energy of four shots of laser beam 4, just like portion 84d of recess 83d with maximum depth 85, so the maximum depth of portion 84z is maximum depth 85.
- FIG. 7 illustrates the depth of the recess formed by superimposed irradiation performed while moving the irradiation area 41 in a first direction (e.g., the direction of the sweep axis 80X in FIG. 1) relative to the substrate 80.
- a first direction e.g., the direction of the sweep axis 80X in FIG. 1
- superimposed irradiation is performed while also moving in a second direction perpendicular to the first direction (e.g., the direction of the sweep axis 80Y in FIG. 1), so that the maximum depth of the resulting recess falls within a specified range.
- the depth within the specified range refers to the range of depths of recesses that are permitted to be formed in the substrate 80.
- the depth within the specified range can be, for example, 15 ⁇ m ⁇ 3 ⁇ m.
- the ablation processing method of the present invention can obtain a recess of the desired depth on the substrate 80 using simple steps while preventing film penetration caused by excessive processing.
- the irradiation area 41E of the fifth shot is not overlapped with the irradiation area 41A of the first shot, but by overlapping a part of the irradiation area 41E of the fifth shot with the irradiation area 41A of the first shot as shown in FIG. 8(e), a part 86 with a maximum depth 87 can be formed.
- FIG. 7(e) the irradiation area 41E of the fifth shot is not overlapped with the irradiation area 41A of the first shot, but by overlapping a part of the irradiation area 41E of the fifth shot with the irradiation area 41A of the first shot as shown in FIG. 8(e), a part 86 with a maximum depth 87 can be formed.
- the overlapping irradiation described above can be performed without using the mask 21 shown in FIG. 1, for example.
- ablation processing of various fine pattern shapes can be performed.
- the laser beam 2 from the light source 11 is irradiated onto a mask irradiation area, which is a portion of the effective area 22 of the mask 21, and the laser beam 4 that has passed through the mask 21 is irradiated onto a substrate irradiation area, which is at least a portion of the processing area 8 of the substrate 80, to project a pattern onto the substrate irradiation area to perform ablation processing.
- a mask irradiation area which is a portion of the effective area 22 of the mask 21
- the laser beam 4 that has passed through the mask 21 is irradiated onto a substrate irradiation area, which is at least a portion of the processing area 8 of the substrate 80, to project a pattern onto the substrate irradiation area to perform ablation processing.
- the processing area is not limited to the area of the lens (e.g., the third optical function unit 3), so an area (angle of view) larger than the area of the lens can be processed.
- this embodiment allows the reduction projection optical system 31 (described later) required for irradiation to be made smaller, and the laser irradiation position accuracy and temperature controllability can be performed with good accuracy. Furthermore, because the reduction projection optical system 31 can be made smaller, there is less image distortion due to irradiation.
- an ablation processing device 100 such as that shown in FIG. 1 to irradiate the mask irradiation area of the mask 21 with a laser beam 2 having a rectangular irradiation shape.
- the laser beam 4 having a rectangular irradiation shape 41 can be irradiated onto the substrate 80.
- irradiating the laser beam 4 having such a rectangular irradiation shape it is possible to more reliably prevent film penetration caused by excessive processing.
- rectangular irradiation can be performed more efficiently and the position and number of microscopic overlapping irradiations can be controlled more accurately than, for example, overlapping circular irradiation.
- a first mask and a second mask are used as mask 21
- multiple shots of irradiation are performed using the first mask
- the first mask is replaced with a second mask
- multiple shots of irradiation are performed using the second mask so that a portion of the substrate irradiation area of substrate 80 overlaps in the first direction with a portion of the substrate irradiation area produced by multiple shots of irradiation using the first mask.
- the first row 41-1 to the fourth row 41-4 of the overlapping irradiation shown in FIG. 6 can be performed using a first mask
- the fifth row 41-5 to the eighth row 41-8 of the overlapping irradiation shown in FIG. 6 can be performed using a second mask that replaces the first mask.
- the first mask and the second mask can be aligned in the second direction 80Y with respect to the substrate 80.
- laser beam irradiation can be performed without stopping the first mask and the substrate 80 during multiple shots of irradiation using the first mask, and laser beam irradiation can be performed without stopping the second mask and the substrate 80 during multiple shots of irradiation using the second mask.
- the first mask and the substrate 80 can be irradiated with a laser beam without stopping while the first mask is being used, and the second mask and the substrate 80 can be irradiated with a laser beam without stopping while the second mask is being used. In this way, ablation processing can be performed more efficiently and reliably.
- the ablation process can be performed according to the flow diagram shown in Figure 9, as shown in Figure 10.
- the first mask is positioned relative to the substrate 80.
- scanning processing is performed with the first mask as shown in FIG. 10(a).
- the scanning processing here is, for example, superimposed irradiation in the procedure shown in FIG. 8(a)-(g), but is not limited to this. This makes it possible to form recesses 83A that correspond to the mask irradiation area of the first mask.
- the first mask is replaced with the second mask, and the substrate processing start position is changed so that the recess 83A, which has already been processed, and the recess 83B, which is to be processed next, are adjacent to each other.
- This example is a representative example in which the substrate processing position is moved in the first direction 80X.
- the second mask is positioned relative to the substrate 80.
- scanning processing is performed with the second mask as shown in FIG. 10(b).
- the scanning processing here is, for example, superimposed irradiation in the procedure shown in FIG. 8(a)-(g), but is not limited to this. This makes it possible to form recesses 83B that correspond to the mask irradiation areas of the second mask.
- the controller 90 shown in FIG. 1 is configured to control the overlapping irradiation described above, for example.
- the controller 90 is electrically connected to the mask 21 and the substrate stage 40. It is preferable that the controller is further configured to move the mask stage (not shown) supporting the mask 21 and the substrate stage 40 in a synchronous manner in a plane direction substantially perpendicular to the direction in which the laser beam 4 is irradiated (for example, to synchronize the movement on the sweep axis 21X with the movement on the sweep axis 80X, and to synchronize the movement on the sweep axis 21Y with the movement on the sweep axis 80Y).
- the ablation processing apparatus 100 shown in FIG. 1 also includes a mask alignment camera 23 as an imaging means for reading the characteristic portions of the mask 21, and a substrate alignment camera 60 as an imaging means for reading the characteristic portions of the substrate 80.
- the mask alignment camera 23 is configured to send position information of the characteristic portions of the mask 21 to the controller 90.
- the substrate alignment camera 60 is configured to send position information of the characteristic portions of the substrate 80 to the controller 90.
- the controller 90 is configured to align the relative positions of the substrate 80 and the mask 21 based on this position information.
- the ablation processing apparatus 100 shown in FIG. 1 further includes a third optical function unit 30 equipped with an optional reduction projection optical system 31 between the second optical function unit 20 and the substrate stage 40.
- the energy of the laser beam 2 that strikes the mask 21 can be made smaller than the processing energy. If the reduction ratio of the reduction projection optical system 31 is N, the energy of the laser beam that strikes the mask surface is 1/(N 2 ) compared to the processing energy of the substrate 80 surface. This makes it possible to suppress thermal drift caused by the energy of the laser beam 2, thereby suppressing thermal expansion of the mask 21 and enabling high-precision processing even after a long period of processing operation.
- optical components e.g., the shaping optical system 12 and mask 21
- deterioration of optical components caused by the heat of the laser beam can be suppressed, making it possible to extend the life of the optical components.
- the reduction projection optical system 31 can be equipped with a pair of reduction projection lenses.
- the magnification achieved by the reduction projection optical system 31 can be adjusted, for example, by the ratio of the focal lengths of the reduction projection lenses and the distance between the reduction projection lenses.
- the NA of the reduction projection lens is preferably selected according to the energy density required for processing the substrate 80.
- the NA of the reduction projection lens is preferably 0.12 or more.
- the third optical function unit 30 further includes a temperature adjustment means for adjusting the temperature of the reduction projection optical system 31.
- the reduction projection optical system 30 By providing a temperature adjustment means, it is possible to further suppress the influence of heat due to the laser beam energy in the reduction projection optical system 30.
- the laser beam 3 that has passed through the mask 21 is reduced and projected at 1/N, so that the energy of the laser beam that passes through the lens part at the tip of the objective becomes N2 times as much as the laser beam energy irradiated on the mask 21, and this part is prone to heat influence. Therefore, by providing the reduction projection optical system 30 with a temperature adjustment function in order to suppress this heat energy, it is possible to suppress the thermal drift due to the energy of the laser beam, and it becomes possible to perform high-precision processing even after a long-term processing operation.
- the ablation processing method and ablation processing apparatus of the present invention can use a reduction projection lens with a very small aperture.
- the temperature control means for the reduction projection lens cannot be directly attached to the lens itself, but rather the jacket part that holds the lens is cooled. Therefore, when the lens aperture is large, although temperature control is possible in the peripheral parts of the lens, the temperature control effect is difficult to spread near the crucial central part, making heat control difficult. As a result, even a small amount of energy absorbed into the lens due to long-term laser beam irradiation can easily cause distortion due to heat. If the third optical function part 30 has a temperature control function, the lens aperture can be made small, thereby suppressing such problems.
- the ablation processing apparatus 100 shown in FIG. 1 is further equipped with an optional beam image detection camera 70 in addition to the optional mask alignment camera 23 and the optional substrate alignment camera 60.
- the shape of the projected image of the pattern on the mask 21 is not necessarily exactly similar to the processed shape of the substrate 80, and the magnification is not always the same due to the effects of thermal expansion, etc. Also, there are cases where it becomes necessary to deform the processed shape on the substrate 80 relative to the projected image of the mask 21 due to minute distortions or deformations of the substrate 80.
- the positions of the mask 21 and the substrate 80 are acquired by the mask alignment camera 23 and the substrate alignment camera 60, and the projected image of the mask 21 is aligned with the shape of the substrate to be machined based on that information, making it possible to accurately machine the unevenness of the substrate.
- the projection position of the projection image of the mask 21 is acquired by the beam image detection camera 70, and correction is made based on this projection position information to optimize the projection magnification by the third optical function unit 30, and the sweep speed during ablation processing is also optimized based on the above information.
- This makes it possible to arbitrarily change the vertical and horizontal magnifications of the substrate 80 relative to the image of the mask 21 within a certain range, and to apply the optimal substrate processing shape.
- the substrate to be processed using the ablation processing method and ablation processing device of the present invention is not particularly limited, but may be, for example, a semiconductor package substrate.
- the method of the present invention makes it possible to process VIA processing and groove processing in the same process without separating the processes.
- semiconductor package substrates are becoming increasingly dense.
- the conventional laser drilling method for VIA processing the increased number of holes required for high density increases the processing time, but with this method, there is no increase in processing time due to the increased number of holes or finer patterns.
- the components that make up the processed area of the substrate are not particularly limited, but examples include epoxy resins, polyimide resins, and ABS resins (acrylonitrile-butadiene-styrene copolymer synthetic resins).
- an excimer laser can be used as the laser beam.
- the desired depth is divided by the number of laser beam shots, and overlapping irradiation is performed so that the processed depth does not exceed the specified depth.
- a recess pattern of the desired depth can be obtained with a simple procedure while preventing film penetration caused by excessive processing.
- an excimer laser allows for efficient ablation of the processed surface of a substrate made of an organic material, such as an ABF substrate, making it possible to achieve highly productive processing. Furthermore, because the excimer laser has low coherence, the use of an excimer laser allows for more precise control of the position and number of microscopic overlapping irradiations.
- the substrate of the present invention is, for example, a substrate 80 whose cross section is shown in Fig. 8(g). More specifically, the substrate 80 has a recess 83z as a groove (trench), and the bottom of the groove 83z has a plurality of recesses 86 periodically arranged in a longitudinal direction 86A of the groove 83z.
- the multiple recesses 86 periodically arranged in the longitudinal direction 86A of the groove 83z can exert an anchoring effect to fix the layers formed thereon, and can exhibit high reliability.
- peeling of the embedded conductive layer which can occur in the plating process or CMP performed after the ablation processing process of the present invention, is unlikely to occur, and even in the final product after processing is completed, it is possible to provide a high-quality product that is highly resistant to stress caused by thermal cycles, etc.
- the substrate 80 of the present invention is, for example, a semiconductor package substrate, but is not limited to this.
- An example of the method for manufacturing the substrate of the present invention is a processing method including a series of steps outlined in Fig. 8.
- the method for manufacturing the substrate of the present invention can also be said to be one embodiment of the ablation processing method of the present invention.
- the method for manufacturing a substrate of the present invention is a method for manufacturing a substrate 80 having a groove 83z on its surface by ablation processing using the irradiation energy of a laser beam, in which the irradiation area 41 of the laser beam 4 in one shot on the substrate 80 is made smaller than the processed area 8 of the substrate 80, and multiple shots of the laser beam 4 are irradiated onto the substrate 80, so that the entire surface of the processed area 8 of the substrate 80 is irradiated with the laser beam, and in the irradiation of the multiple shots, the irradiation area 41 of the laser beam is adjusted relative to the substrate 80 so that the substrate 80 is irradiated with the laser beam.
- a part of the irradiation area 41 in each shot is overlapped with the irradiation area 41 in the other shot in the first direction 80X and the second direction 80Y so as to form a groove 83z having a depth within a specified range in the processing area 8 of the substrate 80, and multiple shots are irradiated so that irradiation areas with different overlapping times are provided in the first direction 80X and the second direction 80Y, respectively, to manufacture a substrate in which the bottom of the groove 83z has multiple recesses 86 periodically arranged in the longitudinal direction 86A of the groove 83z.
- This method for manufacturing a substrate makes it possible to manufacture the substrate of the present invention.
- the ablation method of the present invention can be used to manufacture a substrate in which the bottom of the groove 83z has multiple recesses 86 periodically arranged in the longitudinal direction 86A of the groove 83z, as shown in FIG. 8(g), but it can also be used to manufacture a substrate in which multiple recesses are not formed in the bottom of the groove 83z, as shown in FIG. 7(g).
- Figure 11 shows an example of overlapping irradiation according to the present invention, which forms a recess 86 in a groove 8a formed in the processing area 8.
- the left side is a schematic plan view of the irradiation area 41
- the right side is a schematic plan view showing the first row 41-1 and the second row 41-2 of overlapping irradiation on the processing area 8
- the center is a schematic cross-sectional view of the processing area 8 after the first row 41-1 and the second row 41-2 of overlapping irradiation.
- the overlapping irradiation shown in FIG. 11 is an example of regularly sweeping overlapping irradiation of a rectangular irradiation area 41. More specifically, in the overlapping irradiation shown in FIG. 11, the long side of the rectangular irradiation area 41 is parallel to the second direction 80Y, and the short side is parallel to the first direction 80X, and a second row 41-2 of overlapping irradiation along the first direction 80X is performed while being partially overlapped in a direction parallel to the second direction 80Y on a first row 41-1 of overlapping irradiation along the first direction 80X. In the overlapping portion 41a of the first row 41-1 and the second row 41-2, a recess 86 within a specified depth range is formed.
- the inclination of the irradiation area 41 can be achieved, for example, by tilting the laser beam relative to the movement direction of the photomask and the substrate (for example, 21X, 21Y, 80X, and 80Y shown in FIG. 1). It is the photomask and the stage that are actually tilted, and it is not necessary to move the laser beam itself.
- the means for suppressing the formation of recesses is not limited to the example shown in FIG. 12, and may be, for example, a method such as the example shown in FIG. 13.
- the laser beam is cut obliquely in front of and behind the photomask to deform the irradiation area 41.
- a metal plate 24 is inserted on one or both sides of the photomask.
- the second row 41-2 of the overlapping irradiation along the first direction 80X is performed while the first row 41-1 of the overlapping irradiation along the first direction 80X is partially overlapped in a direction parallel to the second direction 80Y, the number of overlaps in the overlapping portion 41c of the first row 41-1 and the second row 41-2 becomes smaller than the number of overlaps in the overlapping portion 41a in the example of FIG. 11.
- a groove can be formed with, for example, up to four overlapping irradiations while suppressing the formation of depressions at the bottom to a desired level or less, as in the example of Figure 16, by tilting the irradiation area and performing overlapping irradiations on the first row 41-1 and the second row 41-2, the number of overlaps at the overlapping portion 41e will be four, and although the depth of the bottom of the groove will not be completely uniform, the formation of depressions 86 can be suppressed to a desired level or less.
- the method of deforming the irradiation area 41 as shown in Figure 13 can also similarly suppress the formation of depressions.
- the bottom of the groove 83z has multiple recesses 86, as in the substrate 80 described with reference to FIG. 8(g), it is possible to provide an anchoring effect for metal electrodes and the like embedded in the stop processing (trench processing) portion.
- recesses having a depth within a specified range are formed in the processing area of the substrate, so that it is possible to prevent the substrate from being processed excessively or from being insufficiently processed.
- An ablation processing method for forming a recess on a surface of a substrate by ablation processing using irradiation energy of a laser beam comprising the steps of: making an irradiation area of the laser beam in one shot on the substrate smaller than a processed area of the substrate; irradiating the substrate with the laser beam multiple shots to irradiate the substrate with the laser beam to the entire surface of the processed area of the substrate; and, in irradiating the multiple shots, moving the irradiation area of the laser beam relative to the substrate in a first direction of the substrate and in a second direction perpendicular to the first direction, respectively, so as to overlap a portion of the irradiation area in each shot with the irradiation area in another shot in a first direction and in the second direction, so as to form the recess having a depth within a specified range in the processed area of the substrate.
- An ablation processing apparatus for forming a recess on a surface of a substrate by ablation processing using irradiation energy of a laser beam, comprising: a light source for emitting the laser beam; a substrate stage for supporting the substrate; and a controller configured to control the irradiation area of the laser beam in one shot on the substrate to be smaller than the processed area of the substrate, to irradiate the substrate with the laser beam over the entire surface of the processed area of the substrate, and to control the irradiation area of the laser beam in the multiple shots to be moved relative to the substrate in a first direction of the substrate and a second direction perpendicular to the first direction, respectively, so as to form the recess having a depth within a specified range in the processed area of the substrate.
- the substrate according to [12] which is a semiconductor package substrate.
- a method for manufacturing a substrate having a groove on its surface by ablation processing using irradiation energy of a laser beam comprising the steps of: irradiating the substrate with the laser beam in one shot so that the irradiation area of the substrate is smaller than the processed area of the substrate; irradiating the substrate with the laser beam multiple shots to irradiate the substrate with the laser beam over the entire surface of the processed area of the substrate; moving the irradiation area of the laser beam relative to the substrate in a first direction of the substrate and in a second direction perpendicular to the first direction, respectively, in the irradiation of the multiple shots; overlapping a part of the irradiation area of each shot with the irradiation area of another shot in the first direction and the
- the present invention is not limited to the above-described embodiments.
- the above-described embodiments are merely examples, and anything that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits similar effects is included within the technical scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
本発明は、レーザビームの照射エネルギーによるアブレーション加工で基板の表面に凹部を形成するアブレーション加工方法であって、基板における1ショットでのレーザビームの照射領域が基板の被加工領域よりも小さくなるようにし、レーザビームの複数ショットの照射を基板に対して行うことで、基板の被加工領域の全面にレーザビーム照射を行い、複数ショットの照射において、レーザビームの照射領域を、基板に対して相対的に、基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する凹部を基板の被加工領域に形成するように、各ショットでの照射領域の一部を他のショットでの照射領域に第1の方向及び第2の方向において重畳させるアブレーション加工方法である。これにより、簡単な手順で、過剰な加工を原因とした膜貫通を防ぎながら、目的の深さの凹部を得ることができる。
Description
本発明は、アブレーション加工方法、アブレーション加工装置、基板、及び基板を製造する方法に関する。
半導体パッケージ基板は、“More Than More”の流れから、システムをワンチップ化したSoC(System on a Chip)へと流れが移り、この流れに沿って盛んに開発されている。
また、半導体パッケージ基板の構成は複雑化・高密度化しており、そのベース基板製造にエキシマレーザを用いた装置が適用されてきている。
例えば、特許文献1には、被加工物に対し、レーザー光を用いて所定の深さ位置まで形状加工を行うレーザー加工方法であって、前記被加工物に応じて最適設定されるレーザー光の単位長さ当たりにおけるエネルギーが、レーザー光の発振器に於けるパワー変動により当該レーザーパワーが増大したときにも、前記被加工物を貫通させないエネルギー範囲内となるように、レーザー光のレーザーパワー、及び被加工物とレーザー光の間の相対的な移動速度を大きくし、かつ、レーザー加工に必要な照射回数を低減させることを特徴とするレーザー加工方法が記載されている。
また、特許文献2には、被加工物の掘削領域へ、前記掘削領域に対して小さいビーム断面をなすレーザ光を順次照射させ、前記掘削領域を加工するレーザ加工方法であって、第1の形状のビーム断面をなし、前記被加工物上にて、前記第1の形状のビーム断面に相当する第1の照射領域をなすレーザ光を、前記掘削領域の全体へ順次照射させる第1の加工工程と、前記第1の形状より小さい第2の形状のビーム断面をなし、前記被加工物上にて、前記第2の形状のビーム断面に相当する第2の照射領域をなすレーザ光を、前記掘削領域へ順次照射させる第2の加工工程と、を含み、前記第1の加工工程では、前記第1の照射領域の一部分同士が互いに重畳する重畳領域を形成するように、前記第1の照射領域をなすレーザ光を順次照射させ、前記第2の加工工程では、前記掘削領域のうち前記重畳領域以外の領域に前記第2の照射領域が含まれるように、前記第2の照射領域をなすレーザ光を順次照射させることを特徴とするレーザ加工方法が記載されている。
例えば以上に説明した特許文献1及び2では、レーザビームの照射領域を重畳させることを含む、レーザ加工方法が提案されている。これらの方法では、レーザビームの各照射エリアの端部を正確に合わせる必要があるが、マイクロメートルレベルで位置合わせが行なわれていないと、例えば図17に示すように、過剰な加工となって、基板80を貫通し得る部分的に非常に大きな加工深さの部分88が形成されたり、反対に、例えば図18に示すように、基板80に部分的に加工できない部分89が生じたりしてしまう。結果、従来の方法では、膜貫通のリスクや、目的のパターンが部分的に得られないという問題があった。
また、高い信頼性が期待できる基板も求められている。
本発明は、上記問題を解決するためになされたものであり、容易な手順で、膜貫通のリスクを低減させつつ、目的の深さの凹部を得ることができるアブレーション加工方法、容易な手順で、膜貫通のリスクを低減させつつ、目的の深さの凹部が得られるアブレーション加工装置、高い信頼性が期待できる基板、及び高い信頼性が期待できる基板を製造できる製造方法を提供することを目的とする。
上記課題を解決するために、本発明では、レーザビームの照射エネルギーによるアブレーション加工で基板の表面に凹部を形成するアブレーション加工方法であって、
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させるアブレーション加工方法を提供する。
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させるアブレーション加工方法を提供する。
このような本発明のアブレーション加工方法によれば、規定範囲内の深さを有する凹部を基板の被加工領域に形成するように、各ショットでの照射領域の一部を他のショットでの照射領域に第1の方向及び第2の方向において重畳させることにより、簡単な手順で、過剰な加工を原因とした膜貫通を防ぎながら、目的の深さの凹部を得ることができる。
前記複数ショットの照射において、
前記レーザビームを発振する光源と、前記基板に形成しようとする前記凹部に対応するパターンを有する有効エリアを含むマスクとを用い、
前記光源からの前記レーザビームを、前記マスクの前記有効エリアの一部分であるマスク照射領域に照射し、
前記マスクを通った前記レーザビームを、前記基板の前記被加工領域の少なくとも一部である基板照射領域に照射して、前記パターンを前記基板照射領域に投影してアブレーション加工を行い、
前記レーザビームの前記照射領域を前記基板に対して相対的に移動させる際、前記マスク及び前記基板を、前記レーザビームが照射される方向と略垂直な面方向において同期して動かすことができる。
前記レーザビームを発振する光源と、前記基板に形成しようとする前記凹部に対応するパターンを有する有効エリアを含むマスクとを用い、
前記光源からの前記レーザビームを、前記マスクの前記有効エリアの一部分であるマスク照射領域に照射し、
前記マスクを通った前記レーザビームを、前記基板の前記被加工領域の少なくとも一部である基板照射領域に照射して、前記パターンを前記基板照射領域に投影してアブレーション加工を行い、
前記レーザビームの前記照射領域を前記基板に対して相対的に移動させる際、前記マスク及び前記基板を、前記レーザビームが照射される方向と略垂直な面方向において同期して動かすことができる。
本発明では、例えばこのようにマスクを用いて、アブレーション加工を行うことができる。また、この態様では、加工領域がレンズのエリアに制限されないので、レンズのエリアよりも大きな面積(画角)を加工できる。
また、この態様によれば照射に必要な縮小投影光学系を小さくすることができ、レーザ照射位置精度や温度コントロール性も良好に行うことができる。更に、縮小投影光学系が小さくできるので、照射による像の歪みも少ない。
また、この態様によれば照射に必要な縮小投影光学系を小さくすることができ、レーザ照射位置精度や温度コントロール性も良好に行うことができる。更に、縮小投影光学系が小さくできるので、照射による像の歪みも少ない。
この場合、前記マスクの前記マスク照射領域に、矩形状の照射形状を有する前記レーザビームを照射することが好ましい。
矩形状の照射形状を有するレーザビームを照射することにより、より確実に、過剰な加工を原因とした膜貫通を防ぐことができる。
特に矩形照射を行なうことで、例えば円形照射の重ね照射に比べて、より効率よく、且つ、微視的な重ね照射の位置や回数をより正確にコントロールすることができる。
特に矩形照射を行なうことで、例えば円形照射の重ね照射に比べて、より効率よく、且つ、微視的な重ね照射の位置や回数をより正確にコントロールすることができる。
また、前記第1方向及び/又は前記第2方向における前記複数ショットの照射中、前記マスク及び前記基板を停止せずにレーザビーム照射を行うことが好ましい。
このようにすることで、より効率よくアブレーション加工を行うことができる。
また、前記マスクとして、第1のマスク及び第2のマスクを用いた場合には、
前記第1のマスクを用いて前記複数ショットの照射を行い、
次に、前記第1のマスクを前記第2のマスクと交換し、
前記第2のマスクを用いて、前記基板の前記基板照射領域の一部が、第1のマスクを用いた前記複数ショットの照射による前記基板照射領域の一部と前記第1の方向において重畳するように、前記複数ショットの照射を行うことができる。
前記第1のマスクを用いて前記複数ショットの照射を行い、
次に、前記第1のマスクを前記第2のマスクと交換し、
前記第2のマスクを用いて、前記基板の前記基板照射領域の一部が、第1のマスクを用いた前記複数ショットの照射による前記基板照射領域の一部と前記第1の方向において重畳するように、前記複数ショットの照射を行うことができる。
本発明では、1つのマスクだけでなく、2つ又はそれ以上のマスクを用いることもできる。2つ以上のマスクを用いることにより、基板のより大面積の被加工領域を効率よく加工することができる。
例えば、前記レーザビームとしてエキシマレーザを用いることができる。
本発明のアブレーション加工方法では、例えばエキシマレーザを用いることができる。エキシマレーザを用いることによって、ABF基板のような有機材料からなる基板の加工表面を効率よくアブレーションし、生産性の高い加工が可能となる。また、エキシマレーザは可干渉性が低いため、エキシマレーザを用いることにより、微視的な重ね照射の位置や回数をより正確にコントロールすることができる。
例えば、前記基板として、半導体パッケージ基板をアブレーション加工することができる。
加工対象の基板は特に限定されないが、例えば半導体パッケージ基板を加工対象とすることができる。
特に半導体パッケージ基板の加工の場合、VIA加工や溝加工などが混在するような加工パターンがある。この場合、VIA加工と溝加工の工程を分けることなく、本発明の方法により同一工程で加工が可能となる。
また、半導体パッケージ基板は高密度化が進んでおり、従来から行われているVIA加工におけるレーザドリル方式では高密度化に伴う穴加工数の増大によって加工時間が大きくなるものに比べて、本方式では穴加工数の増加やパターンの高精細化による加工時間の増加がない。
特に半導体パッケージ基板の加工の場合、VIA加工や溝加工などが混在するような加工パターンがある。この場合、VIA加工と溝加工の工程を分けることなく、本発明の方法により同一工程で加工が可能となる。
また、半導体パッケージ基板は高密度化が進んでおり、従来から行われているVIA加工におけるレーザドリル方式では高密度化に伴う穴加工数の増大によって加工時間が大きくなるものに比べて、本方式では穴加工数の増加やパターンの高精細化による加工時間の増加がない。
また、本発明は、レーザビームの照射エネルギーによるアブレーション加工で基板の表面に凹部を形成するアブレーション加工装置であって、
前記レーザビームを発振する光源と、
前記基板を支持する基板ステージと、
コントローラであって、
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させる
制御を行うように構成されたコントローラと、
を具備するものであるアブレーション加工装置を提供する。
前記レーザビームを発振する光源と、
前記基板を支持する基板ステージと、
コントローラであって、
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させる
制御を行うように構成されたコントローラと、
を具備するものであるアブレーション加工装置を提供する。
このような本発明のアブレーション加工装置を用いれば、規定範囲内の深さを有する凹部を基板の被加工領域に形成するように、各ショットでの照射領域の一部を他のショットでの照射領域に第1の方向及び第2の方向において重畳させることができる。その結果、簡単な手順で、過剰な加工を原因とした膜貫通を防ぎながら、目的の深さの凹部を得ることができる。
前記基板の前記被加工領域に対応するパターンを有する有効エリアを含むマスクと、
前記マスクを支持するマスクステージと
を更に具備し、
前記コントローラが、更に、前記マスクステージ及び前記基板ステージを、前記レーザビームが照射される方向と略垂直な面方向において同期して動かすように更に構成されたものであることが好ましい。
前記マスクを支持するマスクステージと
を更に具備し、
前記コントローラが、更に、前記マスクステージ及び前記基板ステージを、前記レーザビームが照射される方向と略垂直な面方向において同期して動かすように更に構成されたものであることが好ましい。
本発明のアブレーション加工装置では、例えば、このようにマスクを用いることができる。また、この態様では、加工領域がレンズのエリアに制限されないので、レンズのエリアよりも大きな面積(画角)を加工できる。
また、この態様によれば照射に必要な縮小投影光学系を小さくすることができ、レーザ照射位置精度や温度コントロール性も良好に行うことができる。更に、縮小投影光学系が小さくできるので、照射による像の歪みも少ない。
また、この態様によれば照射に必要な縮小投影光学系を小さくすることができ、レーザ照射位置精度や温度コントロール性も良好に行うことができる。更に、縮小投影光学系が小さくできるので、照射による像の歪みも少ない。
この場合、前記光源と前記マスクとの間に、前記レーザビームの照射形状を矩形状の照射形状に成型する成形光学系を更に具備するものであることが好ましい。
この好ましい態様のアブレーション加工装置であれば、矩形状の照射形状を有するレーザビームを照射することができ、その結果、より確実に、過剰な加工を原因とした膜貫通を防ぐことができる。
特に矩形照射を行なうことで、例えば円形照射の重ね照射に比べて、より効率よく、且つ微視的な重ね照射の位置や回数をより正確にコントロールすることができる。
特に矩形照射を行なうことで、例えば円形照射の重ね照射に比べて、より効率よく、且つ微視的な重ね照射の位置や回数をより正確にコントロールすることができる。
前記光源がエキシマレーザ光源であるものとすることができる。
光源は特に限定されないが、例えばエキシマレーザ光源を用いることができる。エキシマレーザを用いることによって、ABF基板のような有機材料からなる基板の加工表面を効率よくアブレーションし、生産性の高い加工が可能となる。また、エキシマレーザは可干渉性が低いため、エキシマレーザを用いることにより、微視的な重ね照射の位置や回数をより正確にコントロールすることができる。
また、本発明は、表面に溝を有する基板であって、
前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有するものである基板を提供する。
前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有するものである基板を提供する。
このような基板は、溝の長手方向に周期的に配置した複数の凹部が、その上に形成する層などを固定するアンカリング効果を発揮することができ、高い信頼性を発揮できる。このような基板であれば、本発明のアブレーション加工工程以降に行われるメッキ工程やCMPなどで発生の恐れがある埋め込み導電層の剥離が起こりにくく、加工が完了した最終製品においても熱サイクルなどによる応力に対する耐性が高い、高品質の製品の提供が可能である。
この基板は、例えば半導体パッケージ基板であり得る。
基板の種類は特に限定されないが、例えば半導体パッケージ基板とすることができる。
特に半導体パッケージ基板の加工の場合、VIA加工や溝加工などが混在するような加工パターンがある。この場合、VIA加工と溝加工の工程を分けることなく、本発明の方法により同一工程で加工が可能となる。
また、半導体パッケージ基板は高密度化が進んでおり。従来から行われているVIA加工におけるレーザドリル方式では高密度化に伴う穴加工数の増大によって加工時間が大きくなるものに比べて、本方式では穴加工数の増加やパターンの高精細化による加工時間の増加がない。
特に半導体パッケージ基板の加工の場合、VIA加工や溝加工などが混在するような加工パターンがある。この場合、VIA加工と溝加工の工程を分けることなく、本発明の方法により同一工程で加工が可能となる。
また、半導体パッケージ基板は高密度化が進んでおり。従来から行われているVIA加工におけるレーザドリル方式では高密度化に伴う穴加工数の増大によって加工時間が大きくなるものに比べて、本方式では穴加工数の増加やパターンの高精細化による加工時間の増加がない。
また、本発明は、レーザビームの照射エネルギーによるアブレーション加工により、表面に溝を有する基板を製造する方法であって、
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記溝を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させ、
前記複数ショットの照射を、重畳した回数が異なる照射領域を前記第1の方向及び前記第2の方向にそれぞれ設けるように行って、
前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有する基板を製造する方法を提供する。
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記溝を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させ、
前記複数ショットの照射を、重畳した回数が異なる照射領域を前記第1の方向及び前記第2の方向にそれぞれ設けるように行って、
前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有する基板を製造する方法を提供する。
本発明の基板を製造する方法であれば、溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有するものである基板を製造できる。このような基板は、溝の長手方向に周期的に配置した複数の凹部が、その上に形成する層などを固定するアンカリング効果を発揮することができ、高い信頼性を発揮できる。
このような製造方法によれば、本発明の製造方法以降に行われるメッキ工程やCMPなどで発生の恐れがある埋め込み導電層の剥離が起こりにくく、加工が完了した最終製品においても熱サイクルなどによる応力に対する耐性が高い、高品質の製品の提供が可能である。
このような製造方法によれば、本発明の製造方法以降に行われるメッキ工程やCMPなどで発生の恐れがある埋め込み導電層の剥離が起こりにくく、加工が完了した最終製品においても熱サイクルなどによる応力に対する耐性が高い、高品質の製品の提供が可能である。
以上のように、本発明のアブレーション加工方法であれば、簡単な手順で、過剰な加工を原因とした膜貫通を防ぎながら、目的の深さの凹部を得ることができる。
また、本発明のアブレーション加工装置であれば、簡単な手順で、過剰な加工を原因とした膜貫通を防ぎながら、目的の深さの凹部を得ることができるものとなる。
また、本発明の基板は、信頼性の高いパッケージ基板の提供が期待できる。
そして、本発明の基板の製造方法によれば、高い信頼性が期待できる基板を製造できる。
上述のように、容易な手順で、膜貫通のリスクを低減させつつ、目的の深さの凹部を得ることができるアブレーション加工方法、容易な手順で、膜貫通のリスクを低減させつつ、目的の深さの凹部が得られるアブレーション加工装置、高い信頼性が期待できる基板、及び高い信頼性が期待できる基板を製造できる製造方法の開発が求められていた。
本発明者らは、上記課題について鋭意検討を重ねた結果、規定範囲内の深さを有する凹部を基板の被加工領域に形成するように、各ショットでの照射領域の一部を他のショットでの照射領域に第1の方向及び第2の方向において重畳させることにより、簡単な手順で、過剰な加工を原因とした膜貫通を防ぎながら、目的の深さの凹部を得ることができることを見出し、本発明を完成させた。
また、本発明者らは、溝の長手方向に周期的に複数の凹部を配置した基板であれば、複数の凹部上に形成する層などを固定するアンカリング効果を発揮することができ、半導体パッケージ基板における高い信頼性が期待できることを見出し、本発明を完成させた。
即ち、本発明は、レーザビームの照射エネルギーによるアブレーション加工で基板の表面に凹部を形成するアブレーション加工方法であって、
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させるアブレーション加工方法である。
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させるアブレーション加工方法である。
また、本発明は、レーザビームの照射エネルギーによるアブレーション加工で基板の表面に凹部を形成するアブレーション加工装置であって、
前記レーザビームを発振する光源と、
前記基板を支持する基板ステージと、
コントローラであって、
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させる
制御を行うように構成されたコントローラと、
を具備するものであるアブレーション加工装置である。
前記レーザビームを発振する光源と、
前記基板を支持する基板ステージと、
コントローラであって、
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させる
制御を行うように構成されたコントローラと、
を具備するものであるアブレーション加工装置である。
また、本発明は、表面に溝を有する基板であって、
前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有するものである基板である。
前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有するものである基板である。
また、本発明は、レーザビームの照射エネルギーによるアブレーション加工により、表面に溝を有する基板を製造する方法であって、
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記溝を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させ、
前記複数ショットの照射を、重畳した回数が異なる照射領域を前記第1の方向及び前記第2の方向にそれぞれ設けるように行って、
前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有する基板を製造する方法である。
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記溝を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させ、
前記複数ショットの照射を、重畳した回数が異なる照射領域を前記第1の方向及び前記第2の方向にそれぞれ設けるように行って、
前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有する基板を製造する方法である。
以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
[アブレーション加工装置]
図1は、本発明のアブレーション加工装置の一例を示す概略図である。図1に示すアブレーション加工装置100は、基板80の表面にレーザビーム4の照射エネルギーによるアブレーション加工で凹部を形成するアブレーション加工装置である。なお、図1に示すアブレーション加工装置100は本発明のアブレーション加工装置の一例であるが、本発明のアブレーション加工装置は、図1に示す装置に限定されるものではない。
図1は、本発明のアブレーション加工装置の一例を示す概略図である。図1に示すアブレーション加工装置100は、基板80の表面にレーザビーム4の照射エネルギーによるアブレーション加工で凹部を形成するアブレーション加工装置である。なお、図1に示すアブレーション加工装置100は本発明のアブレーション加工装置の一例であるが、本発明のアブレーション加工装置は、図1に示す装置に限定されるものではない。
図1に示すアブレーション加工装置100は、レーザビームを発振する光源11と、基板80を支持する基板ステージ40と、コントローラ90とを具備する。
更に詳細には、図1に示す例のアブレーション加工装置100は、第一光学機能部10と、第二光学機能部20とを含む。
レーザビームを発振する光源11は、パルス状にレーザビーム1を照射(出射)する光源(レーザ発振器)11であり、第一光学機能部10に含まれる。レーザビーム1として、例えばエキシマレーザを用いることができるが、特に限定されない。
第一光学機能部10は、光源11からレーザビーム1を照射される任意の成形光学系12を更に備えている。成形光学系12は、レーザビーム1の例えば図1(a)に示す照射形状を、例えば図1(b)に示す矩形状の照射形状に成型するものである。矩形状の照射形状を有するレーザビーム2は、均一な照射エネルギー密度を示すことができ、例えばトップハット形状を示すビームプロファイルである。
任意の第二光学機能部20は、マスク21を備える。マスク21は、基板80に形成しようとする凹部に対応するパターンを有する有効エリア22を含む。マスク21の大きさは、特に限定されない。例えば、外形が700mm×800mmであり、有効エリア22の大きさが600mm×600mmのマスク21を用いることができる。
マスク21は、第一光学機能部10を通ったレーザビーム2が照射されるマスク照射エリアを含む。このマスク照射エリアは、マスク21の有効エリア22の一部分である。
第二光学機能部20を通り、例えば図1(c)に示す照射形状を有するレーザビーム3は、任意の折り返しミラー50により図1(d)に示すように進行方向が変えられ、任意の第三光学機能部30(後段で説明する)に入射する。図1に示す例のアブレーション加工装置100は、第三光学機能部30から出たレーザビーム4が、基板ステージ40に保持された基板80の一部分に照射されるように構成されている。
基板80は、マスク21(及び任意の第三光学機能部30)を通ったレーザビームによりパターンが投影される基板照射エリアを含む。
図1の例では、マスク21は、図1に示す掃引軸21X及び21Yに沿ってスキャン(掃引)されるように構成されている。また、基板ステージ40は、図1に示す掃引軸80X及び80Yに沿ってスキャンされるように構成されている。
コントローラ90は、基板80における1ショットでのレーザビーム4の照射領域が基板80の被加工領域よりも小さくなるようにし、レーザビーム4の複数ショットの照射を基板80に対して行うことで、基板80の前記被加工領域の全面にレーザビーム照射を行い、複数ショットの照射において、レーザビーム4の照射領域を、基板80に対して相対的に、基板80の第1の方向(例えば掃引軸80Xの方向)及び第1の方向に直交する第2の方向(例えば掃引軸80Yの方向)にそれぞれ移動させながら、規定範囲内の深さを有する凹部を基板80の被加工領域に形成するように、各ショットでの照射領域の一部を他のショットでの照射領域に第1の方向及び前記第2の方向において重畳させる制御を行うように構成されている。このような制御については、以下に詳細に説明する。
[アブレーション加工方法]
本発明のアブレーション加工方法は、例えば、本発明のアブレーション加工装置を用いて行うことができるが、本発明のアブレーション加工装置以外の装置を用いて行うこともできる。
本発明のアブレーション加工方法は、例えば、本発明のアブレーション加工装置を用いて行うことができるが、本発明のアブレーション加工装置以外の装置を用いて行うこともできる。
以下では、図1に示すアブレーション加工装置100を用いて行うことができる本発明のアブレーション加工方法の例を具体的に説明する。
本発明のアブレーション加工方法は、レーザビーム4の照射エネルギーによるアブレーション加工で基板80の表面に凹部を形成するアブレーション加工方法である。
本発明のアブレーション加工方法では、例えば図2に概略的に示すように、基板80における1ショットでのレーザビーム4の照射領域41が基板80の被加工領域8よりも小さくなるようにする。
そして、レーザビーム4の複数ショットの照射を基板80に対して行うことで、基板80の被加工領域8の全面にレーザビーム照射を行う。
この際、本発明のアブレーション加工方法では、複数ショットの照射において、レーザビーム4の照射領域41を、基板80に対して相対的に、基板80の第1の方向(例えば図1の掃引軸80Xの方向)及び該第1の方向80Xに直交する第2の方向(例えば図1の掃引軸80Yの方向)にそれぞれ移動させながら、規定範囲内の深さを有する凹部を基板80の被加工領域8に形成するように、各ショットでの照射領域41の一部を他のショットでの照射領域41に第1の方向80X及び第2の方向80Yにおいて重畳させる。
本発明における重畳照射(以下、スティッチングともいう)の具体例を以下に説明する。なお、上記規定範囲内の深さについては、図7及び図8を参照しながら後段で説明する。
図3に示す重畳照射の例では、照射領域41A-1、41B-1、41C-1及び41D-1を、基板80に対して相対的に第1の方向80Xに移動させながら、照射領域41A-1の一部を照射領域41B-1及び41C-1に第1の方向80Xにおいて重畳させ、照射領域41B-1の一部を照射領域41A-1、41C-1及び41D-1に第1の方向80Xにおいて重畳させ、照射領域41C-1の一部を照射領域41A-1、41B-1及び41D-1に第1の方向80Xにおいて重畳させ、照射領域41D-1の一部を照射領域41B-1及び41C-1に第1の方向80Xにおいて重畳させている。
このような重畳照射を繰り返し、図4に示す照射領域41Z-1を呈するレーザビーム照射のショットまで行う。次に、レーザビーム4の照射領域41を、基板80に対して相対的に第1の方向80X及び第1の方向80Xに直交する第2の方向80Yに移動させる。具体的には、先の照射領域41A-1、41B-1及び41C-1に第2の方向80Yにおいて重畳する照射領域41A-2となるように、照射領域41を移動させる。その後、照射領域41を基板80に対して相対的に第1の方向80Xに移動させながら、先と同様の重畳照射を行う。
照射領域41をこのように第1の方向80X及び第2の方向80Yにそれぞれ移動させながら重畳照射を行うイメージ図を、図5に示す。図5(a)では、照射領域41A-1及び41B-1から照射領域41Y-1及び41Z-1まで、第1の方向80Xに相対的に照射領域41を移動させながら重畳照射を行う。次いで、図5(b)では、レーザビーム4の照射領域41を、基板80に対して相対的に第1の方向80X及び第1の方向80Xに直交する第2の方向80Yに移動させ、次いで照射領域41を基板80に対して相対的に第1の方向80Xに移動させながら、上記照射領域41A-1~41Z-1に第2の方向80Yに重畳するように、且つ第1の方向80Xにも先と同様に重畳するように、照射領域41A-2から照射領域41Z-2までのレーザビーム照射を行う。次いで、図5(c)では、レーザビーム4の照射領域41を、基板80に対して相対的に第1の方向80X及び第1の方向80Xに直交する第2の方向80Yに移動させ、次いで照射領域41を基板80に対して相対的に第1の方向80Xに移動させながら、図5(a)の工程で照射した照射領域41A-1~41Z-1及び図5(b)の工程で照射した照射領域41A-2~41Z-2に第2の方向80Yに重畳するように、且つ第1の方向80Xにも先と同様に重畳するように、照射領域41A-3から照射領域41Z-3までのレーザビーム照射を行う。その後、基板の被加工領域の全面がレーザビーム照射を受けるように、上記工程を繰り返して行う。
図6に、図5に示す重畳照射後の基板の一部の概略平面図を示す。図6では、図5に示すように1ショットの照射領域41を基板80に対して相対的に第1の方向80X及び第2の方向80Yにそれぞれ移動させながら、各ショットでの照射領域41の一部を他のショットでの照射領域41に第1の方向80X及び第2の方向80Yにおいて重畳させた結果である。より詳細には、第1の方向80Xでの重畳では、1ショットの照射領域41の第1の方向80Xでの幅の4分の1が前のショットの照射領域41と重畳するようにしている。また、第2の方向80Yでの重畳では、1ショットの照射領域41の第2の方向80Yでの幅の3分の1が第2の方向80Yの上下に位置する他の照射領域41と重畳するようにしている。なお、この重畳の例はあくまで一例であり、本発明において、重畳の程度は特に限定されない。また、場所によって重畳の程度を変更することもできる。
また、図5及び図6に示す例では、第1の方向80Xにおける掃引は、1行目、2行目、3行目で同じ方向(書面左から右方向)であるが、例えば偶数行と奇数行とで方向を変えたり、掃引方向を縦方向(図6の第2方向80Y)にしたりすることも可能である。
図6では、第1の方向80Xに沿って順に、1ショット目の照射領域41I、10ショット目の照射領域41X、20ショット目の照射領域41XX、及び30ショット目の照射領域41XXXを図示している。また、第2の方向80Yに沿って順に、第1の方向80Xの一連の重畳照射の1行目41-1~8行目41-8を図示している。
そして、図6において、第1の方向80Xに4回以上重畳し且つ第2の方向に3回以上重畳した領域の集合が、均一照射部である加工有効エリア82となる。この加工有効エリア82が、加工目的の凹部に相当する。
本発明のアブレーション加工方法では、規定範囲内の深さを有する凹部を基板80の被加工領域8に形成するように、以上に詳細に説明した重畳照射を行う。
図7に、具体例を示す。図7に示すフローにおいて、上段が各ショットの照射形状41の平面図であり、下段が各ショット後の基板80の断面図である。図7の上段では、そのショットでのレーザ照射領域を点線の枠線で囲み、それより前のレーザ照射の痕跡を枠線なしで示している。
1ショット目では、図7(a)に示すように、照射形状41Aのレーザビーム4を基板80に照射し、凹部83aが形成する。
2ショット目では、図7(b)に示すように、照射形状41Bのレーザビーム4を基板80に照射し、凹部83bを形成する。凹部83bは、1ショット目と2ショット目との重複で形成される部分84bが、凹部83aの深さよりも大きな深さを有することになる。
3ショット目では、図7(c)に示すように、照射形状41Cのレーザビーム4を基板80に照射し、凹部83cを形成する。凹部83cは、1ショット目と2ショット目と3ショット目との重複で形成される部分84cが、凹部83bの最大深さよりもさらに大きな深さを有することになる。
4ショット目では、図7(d)に示すように、照射形状41Dのレーザビーム4を基板80に照射し、凹部83dを形成する。凹部83dは、1ショット目と2ショット目と3ショット目と4ショット目との重複で形成される部分84dが、凹部83cの最大深さよりも大きな最大深さ85を有することになる。
5ショット目では、図7(e)に示すように、照射形状41Eのレーザビーム4を基板80に照射し、凹部83eを形成する。凹部83eは、4ショット目で形成された最大深さの部分84dに隣接する部分に、2ショット目と3ショット目と4ショット目と5ショット目との重複照射により形成された部分84eを含む。この部分84eは4ショット分のレーザビーム4のエネルギーで形成されるため、部分84eの最大深さは、同じく4ショット分のレーザビーム4のエネルギーで形成される部分84dの最大深さ85と同じになる。
6ショット目では、図7(f)に示すように、照射形状41Fのレーザビーム4が基板80に照射され、凹部83fが形成される。凹部83fは、5ショット目で形成された最大深さの部分84eに隣接する部分に、3ショット目と4ショット目と5ショット目と6ショット目との重複照射により形成された部分84fを含む。この部分84fは4ショット分のレーザビーム4のエネルギーで形成されるため、部分84fの最大深さは、同じく4ショット分のレーザビーム4のエネルギーで形成される部分84eの最大深さ85と同じになる。
7ショット目以降も同様に重畳照射をすることにより、最終的に図7(g)に示すように、凹部83zが形成される。凹部83zの最大深さの部分84zは、凹部83dの最大深さ85の部分84dと同じく4ショット分のレーザビーム4のエネルギーで形成されるため、部分84zの最大深さは最大深さ85となる。
図7は、照射領域41を基板80に対して相対的に第1の方向(例えば図1の掃引軸80Xの方向)に移動させながら行う重畳照射によって形成される凹部の深さについて説明したものである。本発明のアブレーション加工方法では、図5及び図6を参照しながら説明したように、第1の方向に直交する第2の方向(例えば図1の掃引軸80Yの方向)にも移動させながら重畳照射を行い、その結果得られる凹部の最大深さが規定範囲内になるようにする。
本発明における規定範囲内の深さとは、基板80に形成されることが許容される凹部の深さの範囲内である。15μmの深さの凹部を形成しようとする場合、規定範囲内の深さは、例えば15μm±3μmとすることができる。
このようにすることで、本発明のアブレーション加工方法は、簡単な手順で、過剰な加工を原因とした膜貫通を防ぎながら、基板80上に目的の深さの凹部を得ることができる。
また、変形例として例えば図8に示すように、ショットの重畳の程度を変更することにより最大深さが異なる部分を周期的に形成することができる。具体的には、図7(e)では5ショット目の照射領域41Eを1ショット目の照射領域41Aに重畳させないが、図8(e)のように5ショット目の照射領域41Eの一部を1ショット目の照射領域41Aに重畳させることにより、最大深さ87の部分86を形成することができる。続いて図8(f)に示すように、図8(e)に示す、5ショット目の照射領域41Eと1ショット目の照射領域41Aとの重畳と同じ程度で、6ショット目の照射領域41Fの一部を2ショット目の照射領域41Bに重畳させることにより、5ショット目の照射で形成したのと同じ最大深さ87の部分86をもう一つ形成することができる。そして、同じ重畳を周期的に繰り返すことで、図8(g)に示すように、凹部83zの底部に、1つの方向86Aに周期的に配置された複数の凹部86を形成することができる。ただし、複数の部分86の最大深さ87が上記規定範囲内に入るように、重畳照射を行うことが肝要である。
以上に説明した重畳照射は、例えば図1に示すマスク21を用いずに行うこともできる。一方、図1に示すマスク21を用いることで、様々な微細形状パターンのアブレーション加工を行うことができる。
マスク21を用いて行う場合、光源11からのレーザビーム2を、マスク21の有効エリア22の一部分であるマスク照射領域に照射し、マスク21を通ったレーザビーム4を、基板80の被加工領域8の少なくとも一部である基板照射領域に照射して、パターンを基板照射領域に投影してアブレーション加工を行い、レーザビーム4の照射領域41を基板80に対して相対的に移動させる際、マスク21及び基板80を、レーザビーム4が照射される方向と略垂直な面方向において同期して動かすことが好ましい。
この好ましい態様では、加工領域がレンズ(例えば第3光学機能部3)のエリアに制限されないので、レンズのエリアよりも大きな面積(画角)を加工できる。
また、この態様によれば照射に必要な縮小投影光学系31(後述する)を小さくすることができ、レーザ照射位置精度や温度コントロール性も良好に行うことができる。更に、縮小投影光学系31が小さくできるので、照射による像の歪みも少ない。
また、例えば図1に示すようなアブレーション加工装置100を用いて、マスク21のマスク照射領域に、矩形状の照射形状を有するレーザビーム2を照射することが好ましい。
このようにすることで、基板80に矩形状の照射形状41を有するレーザビーム4を掃射することができる。このような矩形状の照射形状を有するレーザビーム4を照射することにより、より確実に、過剰な加工を原因とした膜貫通を防ぐことができる。
特に矩形照射を行なうことで、例えば円形照射の重ね照射に比べて、より効率よく、且つ、微視的な重ね照射の位置や回数をより正確にコントロールすることができる。
また、第1方向80X及び/又80Yは第2方向における複数ショットの照射中、マスク21及び基板80を停止せずにレーザビーム4の照射を行うことが好ましい。
このようにすることで、より効率よくアブレーション加工を行うことができる。
また、マスク21を用いる場合、マスク21として、第1のマスク及び第2のマスクを用い、第1のマスクを用いて複数ショットの照射を行い、次に、第1のマスクを第2のマスクと交換し、第2のマスクを用いて、基板80の基板照射領域の一部が、第1のマスクを用いた複数ショットの照射による基板照射領域の一部と第1の方向において重畳するように、複数ショットの照射を行うことができる。
例えば、図6に示した重畳照射の1行目41-1~4行目41-4を第1のマスクを用いて行い、図6に示した重畳照射の5行目41-5~8行目41-8を第1のマスクと交換した第2のマスクを用いて行うこともできる。この場合、第1のマスク及び第2のマスクを基板80に対する第2の方向80Yに並べても良い。
また、この場合、第1のマスクを用いた複数ショットの照射中、第1のマスク及び基板80を停止せずにレーザビーム照射を行い、第2のマスクを用いた複数ショットの照射中、第2のマスク及び基板80を停止せずにレーザビーム照射を行うことができる。
このように、本発明のアブレーション加工方法では、第1のマスクを使用中は第1のマスク及び基板80を非停止でレーザビーム照射を行うことができ、第2のマスクを使用中は第2のマスク及び基板80を非停止でレーザビーム照射を行うことができる。このようにすることで、より効率的に且つ確実にアブレーション加工を行うことができる。
或いは、2つ以上のマスクを用いる場合、図9に示すフロー図に従い、図10に示すようにアブレーション加工を行うこともできる。
図9及び図10に示す例のアブレーション加工方法では、まず、基板80に対して相対的に第1のマスクの位置決めを行う。
位置決めをした第1のマスクを用いて、図10(a)に示すように、第1のマスクでのスキャン加工を行う。ここでのスキャン加工は、例えば図8(a)~(g)に示した手順での重畳照射としているが、これに限定されるものではない。これにより、第1のマスクのマスク照射エリアに対応する凹部83Aを形成することができる。
次に、第1のマスクと第2のマスクとを交換し、基板加工位置を先に加工が完了している凹部83Aに、次に加工される予定の凹部83Bがちょうど隣り合って接する位置関係になるように基板加工開始位置を変更する。この例は、代表的に基板加工位置を第1の方向80Xに移動させたものである。
次に、基板80に対して相対的に第2のマスクの位置決めを行う。
位置決めをした第2のマスクを用いて、図10(b)に示すように、第2のマスクでのスキャン加工を行う。ここでのスキャン加工は、例えば図8(a)~(g)に示した手順での重畳照射としているが、これに限定されるものではない。これにより、第2のマスクのマスク照射エリアに対応する凹部83Bを形成することができる。
その後、必要に応じ、例えば図5及び図6に示したのと同様に第1の方向80X及び第2の方向80Yにも重畳照射によるアブレーション加工を繰り返し実施する。
そして、最終的にスティッチングが完了し、図10(c)に示したように、基板80の表面に目的の凹部83Cを形成することができる。
このようにして基板加工位置を変更しながら2つ以上のマスクを用いることにより、マスクの有効エリアに相当する基板加工エリアよりも大きな面積を有する基板の被加工領域を、継ぎはぎ加工により加工することができる。
図1に示したコントローラ90は、例えば以上に説明した重畳照射を制御して行うように構成されたものである。例えば、図1に示したアブレーション加工装置100では、コントローラ90は、マスク21及び基板ステージ40に電気的に接続されている。コントローラが、更に、マスク21を支持するマスクステージ(図示しない)及び基板ステージ40を、レーザビーム4が照射される方向と略垂直な面方向において同期して動かす(例えば、掃引軸21Xでの移動と掃引軸80Xでの移動とを同期させ、掃引軸21Yでの移動と掃引軸80Yでの移動とを同期させる)ように更に構成されたものであることが好ましい。
また、図1に示したアブレーション加工装置100は、マスク21の特徴部分を読み取る撮像手段としてのマスク用アライメントカメラ23と、基板80の特徴部分を読み取る撮像手段としての基板用アライメントカメラ60とを含んでいる。マスク用アライメントカメラ23は、コントローラ90にマスク21の特徴部分の位置情報を送るように構成されている。基板用アライメントカメラ60は、コントローラ90に基板80の特徴部分の位置情報を送るように構成されている。コントローラ90は、これら位置情報に基づいて、基板80とマスク21との相対位置を合わせるように構成されている。
図1に示したアブレーション加工装置100は、第二光学機能部20と基板ステージ40との間に、任意の縮小投影光学系31を備えた第三光学機能部30を更に含む。
近年では基板の加工の微細化が進んでおり、その加工の最小幅として数μmが要求されてきている。これは微細なゴミに対しても影響してしまい、特にマスク部分に付着した微細ゴミは、大量の加工不良を引き起こす。そのため、マスク21を実際の加工よりも拡大しておき、マスク21を通ったレーザビーム3をその後段の縮小投影光学系31で縮小投影露光することで、微細ゴミに対しての影響を最小化できる。
また、マスク21を実際の加工パターンよりも拡大化しておくことで、マスク21に当たるレーザビーム2のエネルギーを加工エネルギーよりも小さくすることが出来る。縮小投影光学系31の縮小倍率をNとすると、基板80面の加工エネルギーに比べてマスク面に当たるレーザビームのエネルギーは1/(N2)となる。これにより、レーザビーム2のエネルギーによる熱ドリフトを抑えることが出来るため、マスク21の熱膨張を抑制でき、長時間の加工動作後でも高精度の加工を行うことが可能となる。
更に、レーザビームの熱による光学部材(例えば、成形光学系12及びマスク21)の劣化も抑えることが出来ることから、光学部材の寿命を長くすることが可能である。
縮小投影光学系31は、1対の縮小投影レンズを備えることができる。縮小投影光学系31が無限遠光学系である場合、縮小投影光学系31による倍率は、例えば、縮小投影レンズの焦点距離の比と、縮小投影レンズ間の距離とによって調整することができる。
縮小投影レンズのNAは、基板80の加工に必要なエネルギー密度に合わせて選択することが好ましい。縮小投影レンズのNAは、0.12以上であることが好ましい。
第三光学機能部30は、縮小投影光学系31の温度を調節する温度調節手段を更に備えるものであることが好ましい。
温度調節手段を備えることにより、更に縮小投影光学系30でのレーザビームエネルギーによる熱の影響を抑えることが出来る。縮小投影光学系30では、マスク21を通ったレーザビーム3が1/Nの縮小投影をされるため、対物先端のレンズ部分を通るレーザビームのエネルギーは、マスク21に照射されるレーザビームエネルギーに比べてN2倍になり、この部分での熱影響が出やすい。そのため、この熱エネルギーを抑えるべく、縮小投影光学系30に温度調節機能を付与することで、レーザビームのエネルギーによる熱ドリフトを抑えることが出来、長時間の加工動作後でも高精度の加工を行うことが可能となる。
そして、本発明のアブレーション加工方法及びアブレーション加工装置では、非常に小さい口径の縮小投影レンズを使用することが出来る。縮小投影レンズの温度調節手段は、レンズそのものに温度調節手段を直接付与できるわけではなく、レンズを保持するジャケット部を冷却するため、レンズ口径が大きくなると、レンズの周囲部分では温度管理ができるものの、肝心な中央部分付近では温度調節効果が行き渡りにくく、熱管理がしにくい。その為、長時間のレーザビーム照射によるレンズ内への僅かなエネルギー吸収でも、熱による歪みが発生しやすくなる。第三光学機能部30が温度調節機能を有したものであれば、レンズ口径を小さくできることから、このような不具合を抑えることが出来る。
更に、縮小投影光学系31へのレーザビーム照射による不良を抑制し、寿命を延ばすことも可能となる。
図1に示すアブレーション加工装置100は、任意のマスク用アライメントカメラ23及び任意の基板用アライメントカメラ60に加えて、任意のビーム像検出カメラ70を更に具備している。
基板80の加工形状に対して、マスク21のパターンの投影像の形状が正確に相似形状であるとは限らず、また、熱膨張などの影響により倍率も常に同一であるとは限らない。また、基板80の微小な歪みや変形などによっても基板80への加工形状をマスク21の投影像に対して変形させる必要が出てくる場合がある。
そこで、マスク21の位置と基板80の位置とをマスク用アライメントカメラ23及び基板用アライメントカメラ60によって取得し、それらの情報に基づいてマスク21の投影像を基板の加工すべき形状に合わせることで、正確な基板への凹凸加工が可能となる。
具体的には、例えば、マスク21の投影像の投影位置を、ビーム像検出カメラ70によって取得し、この投影位置の情報に基づいて補正して、第三光学機能部30による投影倍率を最適化し、また、アブレーション加工時の掃引速度を前記情報に基づいて最適化する。これによって、マスク21の像に対する基板80の縦方向倍率、横方向倍率をある程度の範囲で任意に変更することが出来、最適な基板加工形状を適用することが出来る。
本発明のアブレーション加工方法及びアブレーション加工装置で加工対象とする基板は、特に限定されないが、例えば半導体パッケージ基板を加工対象とすることができる。
特に半導体パッケージ基板の加工の場合、VIA加工や溝加工などが混在するような加工パターンがある。この場合、VIA加工と溝加工の工程を分けることなく、本発明の方法により同一工程で加工が可能となる。
また、半導体パッケージ基板は高密度化が進んでおり。従来から行われているVIA加工におけるレーザドリル方式では高密度化に伴う穴加工数の増大によって加工時間が大きくなるものに比べて、本方式では穴加工数の増加やパターンの高精細化による加工時間の増加がない。
基板の被加工領域を構成する成分は特に限定されないが、例えば、エポキシ系樹脂、ポリイミド樹脂、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合合成樹脂)を挙げることができる。
また、本発明では、例えば、レーザビームとしてエキシマレーザを用いることができる。
パルスエキシマレーザの1ショットのレーザビーム照射では、これらの材料を含む基板の表面の被加工領域に約0.5μmの深さの凹部を形成することができる。本発明では、目的の深さをレーザビームのショット数で分割しつつ、加工深さが規定深さを超えないように重畳照射を行うものである。それにより、本発明では、簡単な手順で、過剰な加工を原因とした膜貫通を防ぎながら、目的の深さの凹部のパターンを得ることができる。
また、エキシマレーザを用いることによって、ABF基板のような有機材料からなる基板の加工表面を効率よくアブレーションし、生産性の高い加工が可能となる。そして、エキシマレーザは可干渉性が低いため、エキシマレーザを用いることにより、微視的な重ね照射の位置や回数をより正確にコントロールすることができる。
[基板]
本発明の基板は、例えば図8(g)に断面を示す基板80である。より具体的には、この基板80は、溝(トレンチ)としての凹部83zを有し、溝83zの底部が、溝83zの長手方向86Aに周期的に配置した複数の凹部86を有する。
本発明の基板は、例えば図8(g)に断面を示す基板80である。より具体的には、この基板80は、溝(トレンチ)としての凹部83zを有し、溝83zの底部が、溝83zの長手方向86Aに周期的に配置した複数の凹部86を有する。
このような基板80では、溝83zの長手方向86Aに周期的に配置した複数の凹部86が、その上に形成する層などを固定するアンカリング効果を発揮することができ、高い信頼性を発揮できる。このような基板であれば、本発明のアブレーション加工工程以降に行われるメッキ工程やCMPなどで発生の恐れがある埋め込み導電層の剥離が起こりにくく、加工が完了した最終製品においても熱サイクルなどによる応力に対する耐性が高い、高品質の製品の提供が可能である。
また、複数の凹部86の存在により、電気伝導性の好ましい変化を呈することができる。
本発明の基板80は、例えば半導体パッケージ基板であるが、これに限定されるものではない。
[基板を製造する方法]
本発明の基板を製造する方法の一例は、図8に概略的に示した一連の工程を含む加工方法である。本発明に係る基板を製造する方法は、本発明のアブレーション加工方法の一態様ということもできる。
本発明の基板を製造する方法の一例は、図8に概略的に示した一連の工程を含む加工方法である。本発明に係る基板を製造する方法は、本発明のアブレーション加工方法の一態様ということもできる。
図1、図2及び図8を再度参照しながら概して述べると、本発明の基板を製造する方法は、レーザビームの照射エネルギーによるアブレーション加工により、表面に溝83zを有する基板80を製造する方法であって、基板80における1ショットでのレーザビーム4の照射領域41が基板80の被加工領域8よりも小さくなるようにし、レーザビーム4の複数ショットの照射を基板80に対して行うことで、基板80の被加工領域8の全面にレーザビーム照射を行い、複数ショットの照射において、レーザビームの照射領域41を、基板80に対して相対的に、基板80の第1の方向80X及び該第1の方向80Xに直交する第2の方向80Yにそれぞれ移動させながら、規定範囲内の深さを有する溝83zを基板80の被加工領域8に形成するように、各ショットでの照射領域41の一部を他のショットでの照射領域41に第1の方向80X及び第2の方向80Yにおいて重畳させ、複数ショットの照射を、重畳した回数が異なる照射領域を第1の方向80X及び第2の方向80Yにそれぞれ設けるように行って、溝83zの底部が、溝83zの長手方向86Aに周期的に配置した複数の凹部86を有する基板を製造する方法である。
この基板の製造方法によれば、本発明の基板を製造することができる。
なお、本発明のアブレーション方法によれば、図8(g)に示すような、溝83zの底部が、溝83zの長手方向86Aに周期的に配置した複数の凹部86を有する基板を製造することができるが、図7(g)に示すような、溝83zの底部に複数の凹部が形成されていない基板を製造することもできる。
以下、溝への凹部の形成の制御について、説明する。
図11に、被加工領域8に形成した溝8aに凹部86を形成する、本発明による重畳照射の一例を示す。左が照射領域41の概略平面図であり、右が被加工領域8に対する重畳照射の第1行目41-1及び第2行目41-2を示す概略平面図であり、中央が重畳照射の第1行目41-1及び第2行目41-2後の被加工領域8の概略断面図である。
図11に示す重畳照射は、長方形の照射領域41を規則正しく掃引重畳照射する例である。より具体的には、図11に示す重畳照射では、長方形の照射領域41の長辺を第2の方向80Yに平行とし、短辺を第1の方向80Xに平行として、第1の方向80Xに沿った重畳照射の第1行目41-1に第2の方向80Yに平行な方向に一部重畳させながら、第1の方向80Xに沿った重畳照射の第2行目41-2を行なっている。第1行目41-1及び第2行目41-2の重なり部分41aにおいて、規定深さの範囲内にある凹部86が形成される。
一方、例えば図12に示すように、長方形の照射領域41の長辺を第2の方向80Yに対し傾斜させ、第1の方向80Xに沿った重畳照射の第1行目41-1に第2の方向80Yに平行な方向に一部重畳させながら、第1の方向80Xに沿った重畳照射の第2行目41-2を行うと、第1行目41-1及び第2行目41-2の重なり部分41bでの重畳回数が、図11の例における重なり部分41aでの重畳回数よりも少なくなる。これにより、図12に示すように、図11の例で形成したような凹部86が溝8aに形成するのを抑制することができる。
照射領域41の傾きは、例えば、フォトマスク及び基板の移動方向(例えば図1に示す21X、21Y、80X及び80Y)に対し、レーザビームを相対的に傾けることで達成できる。実際に傾けるのはフォトマスクやステージとして、レーザビーム自体を必ずしも動かす必要はない。
凹部形成の抑制の手段は、図12に示す例に限定されず、例えば図13に示す例などの方法であってもよい。図13に示す例では、フォトマスクの前後でレーザビームを斜めにカットし、照射領域41を変形している。例えば、フォトマスクの片側又は両側に金属板24を入れる。図13のように照射領域41を変形して、第1の方向80Xに沿った重畳照射の第1行目41-1に第2の方向80Yに平行な方向に一部重畳させながら、第1の方向80Xに沿った重畳照射の第2行目41-2を行なうと、第1行目41-1及び第2行目41-2の重なり部分41cでの重畳回数が、図11の例における重なり部分41aでの重畳回数よりも少なくなる。
なお、図14に示すように、第1の方向80Xに沿った重畳照射の第1行目41-1と第2の方向80Yにおいて重畳しないように、すなわち領域41dで重ならないように、重畳照射の第2行目41-2を行なうことができれば、溝への凹部の形成を完全に防止できる。しかし、このような制御をして重畳照射を行うことは、現実的には困難である。例えば、図15(a)のように、第1行目41-1と第2行目41-2との間に全く重ならないズレ部41eが生じる場合や、図15(b)に示すように、第1行目41-1と第2行目41-2とが重なり部分41fにおいて重畳する場合がある。
一方、例えば4重照射までであれば底部の凹部の形成を所望程度以下に抑えて溝を形成できる場合、図16の例のように、照射領域を傾斜させて、重畳照射の第1行目41-1及び第2行目41-2を行なうことにより、重なり部分41eでの重畳回数が4回となり、溝の底部の深さが完全に均一ではないが、凹部86の形成を所望程度以下に抑えることができる。図13のように照射領域41を変形させる方法でも、同様に凹部形成を抑制できる。
図8(g)を参照しながら説明した基板80のように、溝83zの底部が複数の凹部86を有するものであれば、止め加工(トレンチ加工)部分に埋め込まれる金属電極などのアンカリング効果を発揮することができる。なお、本発明のアブレーション加工方法では、規定範囲内の深さを有する凹部を基板の被加工領域に形成するので、基板を過度に加工したり、加工深さの不足などが起こるのを防ぐことができる。
一方、図7(g)に示したように、底部に凹部が形成されるのを抑制して溝83zを形成することにより、加工対象である基板80を突き抜けたり、加工深さの不足による不具合(電極抵抗の増加)などをより確実に防ぐことができる。
そして、例えば図12、図13及び図16を参照しながら説明した方法によれば、アブレーション加工の継ぎ目部分での底部凹凸状態を制御でき、その凹凸形状を緩和できることから、高品質の止め(トレンチ)加工を行うことができる。
本明細書は、以下の態様を包含する。
[1]レーザビームの照射エネルギーによるアブレーション加工で基板の表面に凹部を形成するアブレーション加工方法であって、前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させるアブレーション加工方法。
[2]前記複数ショットの照射において、前記レーザビームを発振する光源と、前記基板に形成しようとする前記凹部に対応するパターンを有する有効エリアを含むマスクとを用い、前記光源からの前記レーザビームを、前記マスクの前記有効エリアの一部分であるマスク照射領域に照射し、前記マスクを通った前記レーザビームを、前記基板の前記被加工領域の少なくとも一部である基板照射領域に照射して、前記パターンを前記基板照射領域に投影してアブレーション加工を行い、前記レーザビームの前記照射領域を前記基板に対して相対的に移動させる際、前記マスク及び前記基板を、前記レーザビームが照射される方向と略垂直な面方向において同期して動かす[1]に記載のアブレーション加工方法。
[3]前記マスクの前記マスク照射領域に、矩形状の照射形状を有する前記レーザビームを照射する[2]に記載のアブレーション加工方法。
[4]前記第1方向及び/又は前記第2方向における前記複数ショットの照射中、前記マスク及び前記基板を停止せずにレーザビーム照射を行う[2]又は[3]に記載のアブレーション加工方法。
[5]前記マスクとして、第1のマスク及び第2のマスクを用い、前記第1のマスクを用いて前記複数ショットの照射を行い、次に、前記第1のマスクを前記第2のマスクと交換し、前記第2のマスクを用いて、前記基板の前記基板照射領域の一部が、第1のマスクを用いた前記複数ショットの照射による前記基板照射領域の一部と前記第1の方向において重畳するように、前記複数ショットの照射を行う[2]~[4]の何れか1つに記載のアブレーション加工方法。
[6]前記レーザビームとしてエキシマレーザを用いる[1]~[5]の何れか1つに記載のアブレーション加工方法。
[7]前記基板として、半導体パッケージ基板をアブレーション加工する[1]~[6]の何れか1つに記載のアブレーション加工方法。
[8]レーザビームの照射エネルギーによるアブレーション加工で基板の表面に凹部を形成するアブレーション加工装置であって、前記レーザビームを発振する光源と、前記基板を支持する基板ステージと、コントローラであって、前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させる制御を行うように構成されたコントローラと、を具備するものであるアブレーション加工装置。
[9]前記基板の前記被加工領域に対応するパターンを有する有効エリアを含むマスクと、前記マスクを支持するマスクステージとを更に具備し、前記コントローラが、更に、前記マスクステージ及び前記基板ステージを、前記レーザビームが照射される方向と略垂直な面方向において同期して動かすように更に構成されたものである[8]に記載のアブレーション加工装置。
[10]前記光源と前記マスクとの間に、前記レーザビームの照射形状を矩形状の照射形状に成型する成形光学系を更に具備するものである[9]に記載のアブレーション加工装置。
[11]前記光源がエキシマレーザ光源である[8]~[10]の何れか1つに記載のアブレーション加工装置。
[12]表面に溝を有する基板であって、前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有するものである基板。
[13]半導体パッケージ基板である[12]に記載の基板。
[14]レーザビームの照射エネルギーによるアブレーション加工により、表面に溝を有する基板を製造する方法であって、前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記溝を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させ、前記複数ショットの照射を、重畳した回数が異なる照射領域を前記第1の方向及び前記第2の方向にそれぞれ設けるように行って、前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有する基板を製造する方法。
[1]レーザビームの照射エネルギーによるアブレーション加工で基板の表面に凹部を形成するアブレーション加工方法であって、前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させるアブレーション加工方法。
[2]前記複数ショットの照射において、前記レーザビームを発振する光源と、前記基板に形成しようとする前記凹部に対応するパターンを有する有効エリアを含むマスクとを用い、前記光源からの前記レーザビームを、前記マスクの前記有効エリアの一部分であるマスク照射領域に照射し、前記マスクを通った前記レーザビームを、前記基板の前記被加工領域の少なくとも一部である基板照射領域に照射して、前記パターンを前記基板照射領域に投影してアブレーション加工を行い、前記レーザビームの前記照射領域を前記基板に対して相対的に移動させる際、前記マスク及び前記基板を、前記レーザビームが照射される方向と略垂直な面方向において同期して動かす[1]に記載のアブレーション加工方法。
[3]前記マスクの前記マスク照射領域に、矩形状の照射形状を有する前記レーザビームを照射する[2]に記載のアブレーション加工方法。
[4]前記第1方向及び/又は前記第2方向における前記複数ショットの照射中、前記マスク及び前記基板を停止せずにレーザビーム照射を行う[2]又は[3]に記載のアブレーション加工方法。
[5]前記マスクとして、第1のマスク及び第2のマスクを用い、前記第1のマスクを用いて前記複数ショットの照射を行い、次に、前記第1のマスクを前記第2のマスクと交換し、前記第2のマスクを用いて、前記基板の前記基板照射領域の一部が、第1のマスクを用いた前記複数ショットの照射による前記基板照射領域の一部と前記第1の方向において重畳するように、前記複数ショットの照射を行う[2]~[4]の何れか1つに記載のアブレーション加工方法。
[6]前記レーザビームとしてエキシマレーザを用いる[1]~[5]の何れか1つに記載のアブレーション加工方法。
[7]前記基板として、半導体パッケージ基板をアブレーション加工する[1]~[6]の何れか1つに記載のアブレーション加工方法。
[8]レーザビームの照射エネルギーによるアブレーション加工で基板の表面に凹部を形成するアブレーション加工装置であって、前記レーザビームを発振する光源と、前記基板を支持する基板ステージと、コントローラであって、前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させる制御を行うように構成されたコントローラと、を具備するものであるアブレーション加工装置。
[9]前記基板の前記被加工領域に対応するパターンを有する有効エリアを含むマスクと、前記マスクを支持するマスクステージとを更に具備し、前記コントローラが、更に、前記マスクステージ及び前記基板ステージを、前記レーザビームが照射される方向と略垂直な面方向において同期して動かすように更に構成されたものである[8]に記載のアブレーション加工装置。
[10]前記光源と前記マスクとの間に、前記レーザビームの照射形状を矩形状の照射形状に成型する成形光学系を更に具備するものである[9]に記載のアブレーション加工装置。
[11]前記光源がエキシマレーザ光源である[8]~[10]の何れか1つに記載のアブレーション加工装置。
[12]表面に溝を有する基板であって、前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有するものである基板。
[13]半導体パッケージ基板である[12]に記載の基板。
[14]レーザビームの照射エネルギーによるアブレーション加工により、表面に溝を有する基板を製造する方法であって、前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記溝を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させ、前記複数ショットの照射を、重畳した回数が異なる照射領域を前記第1の方向及び前記第2の方向にそれぞれ設けるように行って、前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有する基板を製造する方法。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
Claims (14)
- レーザビームの照射エネルギーによるアブレーション加工で基板の表面に凹部を形成するアブレーション加工方法であって、
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させるアブレーション加工方法。 - 前記複数ショットの照射において、
前記レーザビームを発振する光源と、前記基板に形成しようとする前記凹部に対応するパターンを有する有効エリアを含むマスクとを用い、
前記光源からの前記レーザビームを、前記マスクの前記有効エリアの一部分であるマスク照射領域に照射し、
前記マスクを通った前記レーザビームを、前記基板の前記被加工領域の少なくとも一部である基板照射領域に照射して、前記パターンを前記基板照射領域に投影してアブレーション加工を行い、
前記レーザビームの前記照射領域を前記基板に対して相対的に移動させる際、前記マスク及び前記基板を、前記レーザビームが照射される方向と略垂直な面方向において同期して動かす請求項1に記載のアブレーション加工方法。 - 前記マスクの前記マスク照射領域に、矩形状の照射形状を有する前記レーザビームを照射する請求項2に記載のアブレーション加工方法。
- 前記第1方向及び/又は前記第2方向における前記複数ショットの照射中、前記マスク及び前記基板を停止せずにレーザビーム照射を行う請求項2に記載のアブレーション加工方法。
- 前記マスクとして、第1のマスク及び第2のマスクを用い、
前記第1のマスクを用いて前記複数ショットの照射を行い、
次に、前記第1のマスクを前記第2のマスクと交換し、
前記第2のマスクを用いて、前記基板の前記基板照射領域の一部が、第1のマスクを用いた前記複数ショットの照射による前記基板照射領域の一部と前記第1の方向において重畳するように、前記複数ショットの照射を行う請求項2~4の何れか1項に記載のアブレーション加工方法。 - 前記レーザビームとしてエキシマレーザを用いる請求項1~4の何れか1項に記載のアブレーション加工方法。
- 前記基板として、半導体パッケージ基板をアブレーション加工する請求項1~4の何れか1項に記載のアブレーション加工方法。
- レーザビームの照射エネルギーによるアブレーション加工で基板の表面に凹部を形成するアブレーション加工装置であって、
前記レーザビームを発振する光源と、
前記基板を支持する基板ステージと、
コントローラであって、
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記凹部を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させる
制御を行うように構成されたコントローラと、
を具備するものであるアブレーション加工装置。 - 前記基板の前記被加工領域に対応するパターンを有する有効エリアを含むマスクと、
前記マスクを支持するマスクステージと
を更に具備し、
前記コントローラが、更に、前記マスクステージ及び前記基板ステージを、前記レーザビームが照射される方向と略垂直な面方向において同期して動かすように更に構成されたものである請求項8に記載のアブレーション加工装置。 - 前記光源と前記マスクとの間に、前記レーザビームの照射形状を矩形状の照射形状に成型する成形光学系を更に具備するものである請求項9に記載のアブレーション加工装置。
- 前記光源がエキシマレーザ光源である請求項8~10の何れか1項に記載のアブレーション加工装置。
- 表面に溝を有する基板であって、
前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有するものである基板。 - 半導体パッケージ基板である請求項12に記載の基板。
- レーザビームの照射エネルギーによるアブレーション加工により、表面に溝を有する基板を製造する方法であって、
前記基板における1ショットでの前記レーザビームの照射領域が前記基板の被加工領域よりも小さくなるようにし、前記レーザビームの複数ショットの照射を前記基板に対して行うことで、前記基板の前記被加工領域の全面にレーザビーム照射を行い、
前記複数ショットの照射において、前記レーザビームの前記照射領域を、前記基板に対して相対的に、前記基板の第1の方向及び該第1の方向に直交する第2の方向にそれぞれ移動させながら、規定範囲内の深さを有する前記溝を前記基板の前記被加工領域に形成するように、各ショットでの前記照射領域の一部を他のショットでの前記照射領域に第1の方向及び前記第2の方向において重畳させ、
前記複数ショットの照射を、重畳した回数が異なる照射領域を前記第1の方向及び前記第2の方向にそれぞれ設けるように行って、
前記溝の底部が、前記溝の長手方向に周期的に配置した複数の凹部を有する基板を製造する方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/042751 WO2024105861A1 (ja) | 2022-11-17 | 2022-11-17 | アブレーション加工方法、アブレーション加工装置、基板、及び基板を製造する方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/042751 WO2024105861A1 (ja) | 2022-11-17 | 2022-11-17 | アブレーション加工方法、アブレーション加工装置、基板、及び基板を製造する方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024105861A1 true WO2024105861A1 (ja) | 2024-05-23 |
Family
ID=91084157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042751 WO2024105861A1 (ja) | 2022-11-17 | 2022-11-17 | アブレーション加工方法、アブレーション加工装置、基板、及び基板を製造する方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024105861A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11504264A (ja) * | 1995-04-26 | 1999-04-20 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | ステップアンドリピート露光の方法および装置 |
JP2009032903A (ja) * | 2007-07-27 | 2009-02-12 | Sharp Corp | レーザ照射装置、レーザ照射方法、結晶材料、および、機能素子 |
JP2017062348A (ja) * | 2015-09-24 | 2017-03-30 | ウシオ電機株式会社 | 光照射方法、基板上構造体の製造方法および基板上構造体 |
-
2022
- 2022-11-17 WO PCT/JP2022/042751 patent/WO2024105861A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11504264A (ja) * | 1995-04-26 | 1999-04-20 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | ステップアンドリピート露光の方法および装置 |
JP2009032903A (ja) * | 2007-07-27 | 2009-02-12 | Sharp Corp | レーザ照射装置、レーザ照射方法、結晶材料、および、機能素子 |
JP2017062348A (ja) * | 2015-09-24 | 2017-03-30 | ウシオ電機株式会社 | 光照射方法、基板上構造体の製造方法および基板上構造体 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10208373B2 (en) | Production method for deposition mask | |
KR100659478B1 (ko) | 레이저 가공방법 및 가공장치 | |
CN106914697B (zh) | 激光加工方法 | |
CN106664798A (zh) | 在基板上进行激光烧蚀的设备及方法 | |
JP2023104449A (ja) | 半導体ウエハ表面の平坦化装置 | |
WO2024105861A1 (ja) | アブレーション加工方法、アブレーション加工装置、基板、及び基板を製造する方法 | |
US20080237204A1 (en) | Laser Beam Machining Method for Printed Circuit Board | |
TW202436010A (zh) | 燒蝕加工方法、燒蝕加工裝置、基板及基板的製造方法 | |
JP2023104450A (ja) | 半導体ウエハ表面の平坦化方法 | |
WO2024218897A1 (ja) | プリント配線基板用露光装置、露光方法及びプリント配線基板の製造方法 | |
WO2024218894A1 (ja) | 加工装置、加工方法及び基板の製造方法 | |
CN221447142U (zh) | 基板以及半导体封装基板 | |
WO2023062842A1 (ja) | 加工装置、加工方法及び基板の製造方法 | |
TWI244956B (en) | Laser processing method and processing apparatus | |
JP2006202876A (ja) | レーザ加工方法 | |
WO2024219462A1 (ja) | レーザ照射装置、レーザ加工装置、レーザ加工方法、マスクの設置方法、レーザ加工装置の設置方法及びマスク | |
WO2024219457A1 (ja) | レーザ照射装置、レーザ加工装置、露光装置、レーザ加工方法、露光処理方法、マスクの設置方法、レーザ加工装置の設置方法、露光装置の設置方法及びマスク | |
JP2003251475A (ja) | レーザ加工方法 | |
WO2024218918A1 (ja) | レーザ照射装置、レーザ加工装置、レーザ加工方法、レーザ露光装置、レーザ露光方法、マスクの設置方法、レーザ加工装置の設置方法、レーザ露光装置の設置方法、マスク及びレーザ照射システム | |
WO2024218915A1 (ja) | レーザ照射装置、レーザ加工装置、露光装置、レーザ加工方法、露光処理方法、マスクの設置方法、レーザ加工装置の設置方法、露光装置の設置方法、マスク及びレーザ照射システム | |
JP7278868B2 (ja) | レーザ加工装置 | |
JP2023066566A (ja) | 照明光学系及びレーザ加工装置 | |
JP2024104954A (ja) | 面取り加工装置、及び、面取り加工方法 | |
JP2023066565A (ja) | 照明光学系及びレーザ加工装置 | |
TWM659070U (zh) | 基板以及半導體封裝基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22965837 Country of ref document: EP Kind code of ref document: A1 |