WO2024104242A1 - 一种车辆及车辆控制方法 - Google Patents

一种车辆及车辆控制方法 Download PDF

Info

Publication number
WO2024104242A1
WO2024104242A1 PCT/CN2023/130636 CN2023130636W WO2024104242A1 WO 2024104242 A1 WO2024104242 A1 WO 2024104242A1 CN 2023130636 W CN2023130636 W CN 2023130636W WO 2024104242 A1 WO2024104242 A1 WO 2024104242A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signal
differential lock
vehicle
controller
signal
Prior art date
Application number
PCT/CN2023/130636
Other languages
English (en)
French (fr)
Inventor
杨亚光
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2024104242A1 publication Critical patent/WO2024104242A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/119Conjoint control of vehicle sub-units of different type or different function including control of all-wheel-driveline means, e.g. transfer gears or clutches for dividing torque between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to the technical field of vehicle control technology, and in particular to a vehicle and a vehicle control method.
  • the transfer case is an important transmission component in longitudinal four-wheel drive vehicles. It realizes the four-wheel drive function of the vehicle by outputting the transmission input torque to the front and rear axles.
  • the switching control between two-wheel drive and four-wheel drive is realized by a transfer case control unit.
  • the differential lock is a locking mechanism in the differential of the front or rear axle of the vehicle.
  • the differential can allow the left and right wheels to rotate at different speeds. When the wheels turn, the left and right wheels of the vehicle rotate at different speeds, ensuring the smoothness of the vehicle when turning.
  • the differential lock control unit controls the differential lock to lock, so that the torque can be transmitted to the wheel that is not slipping, which can get the vehicle out of trouble.
  • the transfer case and the differential lock are controlled by an independent transfer case control unit and a differential lock control unit, respectively, which not only increases the number of control units and corresponding wiring harnesses, but also makes the communication between the control units more complicated.
  • an embodiment of the present application provides a vehicle, which aims to control a transfer case and a differential through a control unit, thereby reducing the number of control units in the vehicle and simplifying the communication between the control units.
  • the present application provides a vehicle, including a transfer case, a differential lock, an engine controller, and a transmission drive controller;
  • the engine controller is used to send a control signal to the transmission drive controller according to the request signal.
  • the control signal includes a motor rotation control signal and a motor drive current control signal;
  • the request signal is a differential lock switch request signal, the control signal includes a differential lock control signal and a differential lock drive current control signal;
  • a transmission drive controller for controlling the motor of the transfer case to rotate to a target position according to the motor rotation control signal and the motor drive current control signal when the received control signal includes a motor rotation control signal and a motor drive current control signal;
  • the transmission drive controller is also used when the received control signal includes a differential lock control signal and a differential lock drive current control signal.
  • the drive current in the coil of the differential lock is controlled according to the differential lock control signal and the differential lock drive current control signal.
  • the motor rotation control signal includes a start rotation control signal and a stop rotation control signal
  • the engine controller is used to send a start rotation control signal to the transmission drive controller according to the drive switch request signal;
  • a transmission drive controller used for controlling the motor of the transfer case to start rotating according to the start rotation control signal and the motor drive current control signal, and feeding back the rotation position to the engine controller;
  • the engine controller is used to send a stop rotation control signal to the transmission drive controller when determining that the rotation position is a target position corresponding to the target drive mode according to the corresponding relationship between the position and the drive mode;
  • the transmission drive controller is used to control the motor of the transfer case to stop rotating according to a stop rotation control signal.
  • the engine controller is further used to obtain the driving speed of the vehicle
  • the engine controller is used to send a start rotation control signal to the transmission drive controller after receiving the drive switch request signal and determining that the vehicle's running speed is less than the drive speed threshold.
  • the vehicle differential lock is in an unlocked state
  • the differential lock control signal is a differential lock locking control signal
  • the differential lock drive current control signal is a differential lock locking current control signal
  • the engine controller is used to send a differential lock control signal to the transmission drive controller according to the differential lock switch request signal;
  • the transmission drive controller is used to control the drive current in the coil of the differential lock to be the current value corresponding to the differential lock current control signal according to the differential lock locking control signal.
  • the vehicle differential lock is in a locked state
  • the differential lock control signal is a differential lock unlocking control signal
  • the differential lock drive current control signal is a differential lock unlocking current control signal
  • the engine controller is used to send a differential lock unlocking control signal to the transmission drive controller according to the differential lock switch request signal;
  • the transmission drive controller is used to control the drive current in the coil of the differential lock to be the current value corresponding to the differential lock unlocking current control signal according to the differential lock unlocking control signal.
  • the engine controller is further configured to start timing after the vehicle differential lock is in a locked state and when it is determined that the vehicle's running speed is greater than a maintaining current speed threshold, and after the timing duration reaches a preset duration, send a differential lock adjustment current control signal to the transmission drive controller;
  • the transmission drive controller is used to adjust the current control signal according to the differential lock to reduce the drive current in the coil of the differential lock.
  • the vehicle further includes: an in-vehicle display device;
  • the transmission drive controller is further used to send a feedback signal to the engine controller after the transfer case is switched to a target drive mode and/or the differential lock is switched to a target differential lock mode
  • the drive mode includes: any one of a two-wheel drive mode, a four-wheel drive mode and a low-speed four-wheel drive mode
  • the target differential lock mode includes any one of a front axle unlocking, a front axle locking, a rear axle unlocking and a rear axle locking
  • the engine controller is further used to send a display signal of a target driving mode and/or a target differential lock mode to an in-vehicle display device according to the feedback signal;
  • the in-vehicle display device is used to display indication information of the target driving mode and/or the target differential lock mode according to the display signal of the target driving mode and/or the target differential lock mode.
  • the vehicle further includes: an in-vehicle display device;
  • the transmission drive controller is further used to send a fault signal of the transfer case and/or the differential lock to the engine controller when it is determined that the transfer case and/or the differential lock has a fault;
  • the engine controller is further used to send a display signal indicating that the transfer case is faulty and/or the differential lock is faulty to an in-vehicle display device according to a fault signal of the transfer case and/or the differential lock;
  • the in-vehicle display device is used to display indication information of the transfer case failure and/or the differential lock failure according to the display signal of the transfer case failure and/or the differential lock failure.
  • the transmission drive controller and the engine controller are connected via a controller area network.
  • the present application provides a vehicle control method, which is applied to a vehicle, wherein the vehicle includes a transfer case, a differential lock, an engine controller, and a transmission drive controller, and the method includes:
  • the transmission drive controller receives a control signal sent by the engine controller based on the request signal; when the request signal is a drive switch request signal, the control signal includes a motor rotation control signal and a motor drive current control signal; when the request signal is a differential lock switch request signal, the control signal includes a differential lock control signal and a differential lock drive current control signal;
  • the transmission drive controller determines that the received control signal includes a motor rotation control signal and a motor drive current control signal
  • the transmission drive controller controls the motor of the transfer case to rotate to a target position according to the motor rotation control signal and the motor drive current control signal;
  • the transmission drive controller determines that the received control signal includes a differential lock control signal and a differential lock drive current control signal
  • the drive current in the coil of the differential lock is controlled according to the differential lock control signal and the differential lock drive current control signal.
  • the motor rotation control signal includes a start rotation control signal and a stop rotation control signal
  • the transmission drive controller receives a control signal sent by the engine controller based on the request signal, including:
  • the transmission drive controller receives a start rotation control signal sent by the engine controller based on the drive switch request signal;
  • the motor of the transfer case is controlled to rotate to a target position, including:
  • the motor of the transfer case is controlled to stop rotating.
  • the method further includes: the engine controller acquiring the driving speed of the vehicle;
  • the transmission drive controller receives a start rotation control signal sent by the engine controller based on the request signal, including:
  • the transmission drive controller receives a start rotation control signal sent by the engine controller after receiving a drive switch request signal and determining that the vehicle's running speed is less than a drive speed threshold.
  • the differential lock is in an unlocked state
  • the differential lock control signal is a differential lock locking control signal
  • the differential lock drive current control signal is a differential lock locking current control signal
  • the transmission drive controller receives a control signal sent by the engine controller based on the request signal, including:
  • the transmission drive controller receives a differential lock control signal sent by the engine controller based on the differential lock switch request signal;
  • the drive current in the coil of the differential lock is controlled, including:
  • the driving current in the coil controlling the differential lock is a current value corresponding to the differential lock locking current control signal.
  • the differential lock is in a locked state
  • the differential lock control signal is a differential lock unlocking control signal
  • the differential lock drive current control signal is a differential lock unlocking current control signal
  • the transmission drive controller receives a control signal sent by the engine controller based on the request signal, including:
  • the transmission drive controller receives a differential lock unlocking control signal sent by the engine controller based on the differential lock switch request signal;
  • the drive current in the coil of the differential lock is controlled, including:
  • the driving current in the coil controlling the differential lock is a current value corresponding to the differential lock unlocking current control signal.
  • the method further includes: after the vehicle differential lock is in a locked state, the engine controller starts timing when it determines that the vehicle's running speed is greater than the current speed threshold, and after the timing reaches a preset time, sends a differential lock adjustment current control signal to the transmission drive controller;
  • the transmission drive controller adjusts the current control signal according to the differential lock to reduce the drive current in the coil of the differential lock.
  • the vehicle further includes: an in-vehicle display device; the method further includes: the transmission drive controller sends a feedback signal to the engine controller after the transfer case switches to the target drive mode and/or the differential lock switches to the target differential lock mode, the drive mode includes: any one of a two-wheel drive mode, a four-wheel drive mode and a low-speed four-wheel drive mode, and the target differential lock mode includes any one of a front axle unlocking, a front axle locking, a rear axle unlocking and a rear axle locking;
  • the engine controller sends a display signal of the target driving mode and/or the target differential lock mode to an in-vehicle display device according to the feedback signal;
  • the in-vehicle display device displays indication information of the target driving mode and/or the target differential lock mode according to the display signal of the target driving mode and/or the target differential lock mode.
  • the method further comprises: the method further comprises: when the transmission drive controller determines that the transfer case and/or the differential lock has a fault, sending a fault signal of the transfer case and/or the differential lock to the engine controller;
  • the engine controller sends a display signal indicating that the transfer case is faulty and/or the differential lock is faulty to an in-vehicle display device according to the fault signal of the transfer case and/or the differential lock;
  • the in-vehicle display device displays indication information of the transfer case failure and/or the differential lock failure according to the display signal of the transfer case failure and/or the differential lock failure.
  • the present application provides an electronic device, which includes a memory and a processor, the memory is used to store signals or codes, and the processor is used to execute signals or codes so that the device executes any method in the aforementioned second aspect.
  • the present application provides a computer storage medium in which codes are stored.
  • a device executing the codes implements any method in the aforementioned second aspect.
  • the present application provides a vehicle, which includes a transfer case, a differential lock, an engine controller, and a transmission drive controller.
  • the transmission drive controller is a newly developed controller that integrates the software of the transfer case controller and the software of the differential lock controller, as well as a drive circuit suitable for large currents. In this way, the number of control chips is reduced, thereby reducing the number of wiring harnesses that need to be connected, and simplifying the communication between control chips.
  • the transfer case and the differential lock are controlled by the transmission drive controller, and there is no need to modify the engine controller. Since the engine controller is an integrated chip that is not easy to modify, the modification cost can be reduced by using the transmission drive controller.
  • FIG1 is a schematic diagram of a component device of a vehicle provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of another component device of a vehicle provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a control logic provided in an embodiment of the present application.
  • FIG. 4 is a flow chart of a vehicle control method provided in an embodiment of the present application.
  • this figure is a schematic diagram of a component device of a vehicle provided in an embodiment of the present application.
  • the vehicle includes a transfer case controller 101 , a transfer case 102 , a differential lock controller 103 , a differential lock 104 , an engine controller 105 , an engine 106 , and wheels 107 .
  • the vehicle may include more or fewer components.
  • the engine controller 105 is used to send a control signal to the transfer case controller 101 and/or the differential lock controller 103 after receiving the request signal.
  • the transfer case controller 101 receives the control signal, it controls the transfer case 102 based on the control signal.
  • the differential lock controller 103 receives the control signal, it controls the differential lock 104 based on the control signal.
  • the transfer case 102 and the differential lock 104 are controlled by independent transfer case controllers 101 and differential lock controllers 103, respectively, which not only increases the number of control units (controllers) and corresponding wiring harnesses, but also makes the communication between control units more complicated.
  • control units controllers
  • differential lock controllers 103 respectively, which not only increases the number of control units (controllers) and corresponding wiring harnesses, but also makes the communication between control units more complicated.
  • the present application proposes a solution to integrate the transfer case controller and the differential lock controller into the engine controller.
  • the current engine controller hardware does not have the ability to drive large currents, that is, the driving circuit on the chip of the engine controller can only withstand a limited current. If the engine controller needs to be driven, the chip of the engine controller needs to be newly modified. However, the chip of the engine controller is integrated, and it is extremely inconvenient to modify each chip, and the modification cost is high.
  • the present application designs a transmission drive controller, which integrates the software of the transfer case controller and the differential lock controller and has a drive circuit capable of withstanding large currents (e.g., 50A).
  • a transmission drive controller which integrates the software of the transfer case controller and the differential lock controller and has a drive circuit capable of withstanding large currents (e.g., 50A).
  • FIG. 2 is a schematic diagram of another component device of a vehicle provided in an embodiment of the present application.
  • the vehicle includes a transmission drive controller 201, a transfer case 202, a differential lock 203, an engine controller 204, an engine 205 and wheels 206.
  • the transmission drive controller 201 and the engine controller 204 are connected via a controller area network.
  • the vehicle components shown in FIG. 2 change the original control of the transfer case by the transfer case controller and the control of the differential lock by the differential lock controller to the control of the transmission drive controller and the engine.
  • the transfer case and the differential lock are controlled by the cooperation between the controllers. It can be seen that the number of controllers is reduced in the vehicle components shown in FIG2, that is, the number of chips used is reduced, and the corresponding wiring harnesses are reduced and the communication between the controllers is simplified.
  • the engine controller 204 is used to receive a request signal.
  • the request signal may be a request signal triggered by a user, or may be a request signal triggered by other electronic devices in the vehicle.
  • the user can trigger the request signal by clicking a virtual button or a physical button inside the vehicle.
  • the virtual button can be a button displayed on a display device inside the vehicle (such as a large screen of the vehicle), and the physical button can be a button that actually exists in the vehicle, such as a button or a knob on the steering wheel.
  • other electronic devices in the vehicle trigger a request signal after detecting that relevant information (such as vehicle speed, altitude, elevation angle, etc.) meets preset conditions.
  • the request signal may include a drive switch request signal and a differential lock switch request signal.
  • the drive switch request signal refers to a request signal for changing the vehicle drive mode, for example, for changing the vehicle drive mode to a 2-wheel drive mode.
  • the differential lock switch request signal refers to a request signal for changing the state of the vehicle's differential lock, for example, for locking or unlocking the vehicle's differential lock. As shown in Table 1, this table is a schematic table of request signals provided in an embodiment of the present application.
  • DrvModSwtReq represents the drive switch request signal, and the value it carries can be "0x0: Mode 2WD” (indicating switching to 2-wheel drive mode), “0x1: Mode 4WD” (indicating switching to 4-wheel drive mode) and “0x2: Mode 4WD Low” (indicating switching to low-speed 4-wheel drive mode).
  • VehSpd represents a speed signal, the value of which may be the driving speed of the vehicle.
  • request signal may also be in other forms.
  • the engine controller 204 After receiving the request signal, the engine controller 204 sends a control signal to the transmission drive controller 201 according to the request signal.
  • the control signal corresponds to the request signal.
  • the control signal when the request signal is a drive switch request signal, the control signal includes a motor rotation control signal and a motor drive current control signal; when the request signal is a differential lock switch request signal, the control signal includes a differential lock control signal and a differential lock drive current control signal.
  • the motor rotation control signal refers to a signal that controls the motor to start and stop rotating
  • the motor drive current control signal refers to a signal indicating the size of the drive current provided to drive the motor
  • the differential lock control signal refers to a signal that controls the unlocking or locking of the differential lock
  • the differential lock drive current control signal refers to a signal indicating the size of the drive current provided to drive the differential lock.
  • the transmission drive controller 201 controls the motor of the transfer case 202 to rotate to a target position according to the motor rotation control signal and the motor drive current control signal.
  • the transmission drive controller 201 controls the drive current in the coil of the differential lock 203 according to the differential lock request signal and the differential lock drive current control signal.
  • control logic of the technical solution provided by the embodiment of the present application is introduced below in conjunction with the accompanying drawings.
  • the figure is a schematic diagram of the control logic provided by the embodiment of the present application.
  • the user triggers a drive switch request signal through the drive mode switch 301 in the vehicle, and the drive switch request signal is transmitted to the vehicle body control module BCM 303 through the LIN bus.
  • BCM 303 transmits the drive switch request signal to the engine controller ECM 304 through the CAN bus.
  • ECM 304 sends a motor rotation control signal and a motor drive current control signal to the transmission drive controller WD 305 based on the received drive switch request signal, so that the transmission drive controller WD 305 controls the transfer case 306 based on the motor rotation control signal and the motor drive current control signal.
  • WD 305 may send a feedback signal to ECM 304, for example, a feedback signal that the transfer case is switched to the target drive mode.
  • ECM 304 sends a display signal to the in-vehicle display device (instrument 308) based on the feedback signal, for example, a display signal that displays the target drive mode.
  • the instrument displays the indication information of the target drive mode based on the display signal of the target drive mode.
  • the indication information is used to indicate the current mode, such as the four-wheel drive mode.
  • the indication information may be provided by an indicator light or a mark.
  • the user can also trigger a differential lock switch request signal through the differential lock switch 302 in the vehicle, and the differential lock switch request signal is transmitted to the BCM 303 through the LIN bus.
  • the BCM 303 transmits the differential lock switch request signal to the ECM 304 through the CAN bus.
  • the ECM 304 sends a differential lock control signal and a differential lock drive current control signal to the WD 305 based on the received differential lock switch request signal, so that the WD 305 controls the differential lock 307 based on the differential lock control signal and the differential lock drive current control signal.
  • WD 305 may send a feedback signal to ECM 304, such as a feedback signal of differential lock locking or a feedback signal of differential lock unlocking.
  • ECM 304 sends a display signal to meter 308 based on the feedback signal, such as a display signal of differential lock locking, and the meter displays the indication information of differential lock locking based on the display signal of differential lock locking.
  • the transmission drive controller in this embodiment replaces the original transfer case controller and differential lock controller.
  • the engine controller sends a control signal to the transmission drive controller, and the transmission drive controller controls the transfer case and the differential lock based on the control signal, thereby simplifying multiple control units and meeting the needs of high-current drive.
  • the following two situations are divided into two cases, respectively introducing the process of the transmission drive controller controlling the transfer case and the transmission drive controller controlling the differential lock.
  • Case 1 The transmission drive controller controls the transfer case.
  • the driving modes can be divided into three types: 2WD mode, 4WD mode, and low-speed 4WD mode.
  • the low-speed 4WD mode means that the transmission input torque is amplified K times and then distributed to the front and rear wheels of the vehicle, K>1.
  • the motor rotation control signal includes a start rotation control signal and a stop rotation control signal, wherein the start rotation control signal is a signal for controlling the motor of the transfer case to start rotating, and the stop rotation control signal is a signal for controlling the motor of the transfer case to stop rotating.
  • the engine controller can send a start rotation control signal to the transmission drive controller according to the drive switch request signal.
  • the transmission drive controller controls the motor of the transfer case to start rotating according to the start rotation control signal and the motor drive current control signal, and feeds back the rotation position to the engine controller; when the engine controller determines that the rotation position is the target position corresponding to the target drive mode according to the corresponding relationship between the position and the drive mode, the engine controller sends a stop rotation control signal to the transmission drive controller.
  • the transmission drive controller controls the transfer case motor to stop rotating according to the stop rotation control signal, and then controls the transfer case motor to rotate to the target position.
  • the engine controller may pre-store the corresponding relationship between the position and the drive mode, for example, position 1 corresponds to drive mode 1, and position 2 corresponds to drive mode 2. After the rotation position is determined, it can be determined whether the rotation position is the target position corresponding to the target drive mode. If so, a stop rotation control signal is sent to the transmission drive controller.
  • the target drive mode is the drive mode that the user wants to switch to (the drive mode carried in the drive switch request signal). For example, if the user wants to switch to the 4WD mode, the target drive mode is the 4WD mode.
  • the correspondence between the position and the drive mode is pre-set, for example, a certain position of the motor is set to 0°, and one rotation of the motor is set to 360°, and each rotation of 120° is a drive mode, for example, the 0° position corresponds to the 2WD mode, the 120° position corresponds to the 4WD mode, and the 240° position corresponds to the low-speed 4WD mode.
  • the engine controller receives feedback from the transmission drive controller that the rotation position of the motor is 120°, then determines that the motor has reached the target position corresponding to the 4WD mode, and sends a stop rotation control signal to the transmission drive controller to control the motor to stop rotating.
  • the engine controller can also obtain the vehicle's driving speed, and when it is determined that the vehicle's driving speed is less than a driving speed threshold (a pre-set value), it sends a start rotation control signal to the transmission drive controller.
  • a driving speed threshold a pre-set value
  • the driving mode of the vehicle is the 2WD mode.
  • the vehicle itself can also trigger a driving switch request signal, and the user can also trigger the driving switch request signal through a virtual button or a physical button.
  • the driving switch request signal can be a request signal for switching to the 4WD mode.
  • the transmission drive controller After receiving the start rotation control signal and the motor drive current control signal, the transmission drive controller drives the motor to rotate right with the current value indicated by the motor drive current control signal, detects the rotation position of the motor, and feeds back the rotation position to the engine controller through the CAN bus (for example, it can be position 1, position 2, position 3 or position 4, where MotorEncoder1State indicates position 1, MotorEncoder2State indicates position 2, MotorEncoder3State indicates position 4). Indicates position 3, MotorEncoder4State indicates position 4. Position 1 to position 4 are obtained by evenly dividing the circumference. Different positions correspond to different driving modes).
  • the driving mode of the vehicle is 4WD mode, and the user can trigger the driving switch request signal through a virtual button or a physical button.
  • a user may trigger a request signal to switch to 2WD mode.
  • the transmission drive controller After receiving the start rotation control signal and the motor drive current control signal, the transmission drive controller drives the motor to rotate left with the current value indicated by the motor drive current control signal, detects the rotation position of the motor, and feeds back the rotation position to the engine controller through the CAN bus.
  • the driving mode of the vehicle is a 2WD mode or a 4WD mode, and the user can trigger a driving switch request signal through a virtual button or a physical button.
  • the driving switch request signal can be a request signal for switching to a low-speed 4WD mode.
  • the transmission drive controller After receiving the start rotation control signal and the motor drive current control signal, the transmission drive controller drives the motor to rotate right with the current value indicated by the motor drive current control signal, detects the rotation position of the motor, and feeds back the rotation position to the engine controller through the CAN bus.
  • the driving mode of the vehicle is a low-speed 4WD mode, and the user can trigger a driving switch request signal through a virtual button or a physical button.
  • the driving switch request signal can be a request signal for switching to the 4WD mode.
  • the third speed threshold may be the same as the second speed threshold in 1.3.
  • the transmission drive controller After receiving the start rotation control signal and the motor drive current control signal, the transmission drive controller drives the motor to rotate left with the current value indicated by the motor drive current control signal, detects the rotation position of the motor, and feeds back the rotation position to the engine controller through the CAN bus.
  • Case 2 The transmission drive controller controls the differential lock.
  • the differential lock of a vehicle generally includes the front axle differential lock and the rear axle differential lock. It can be understood that the differential lock is a locking mechanism installed on the differential. Its function is to improve the vehicle's ability to pass on poor roads. When one of the vehicle's drive axles is idling, it can quickly lock the differential, making the two drive axles rigidly connected, and transmitting most or even all of the torque to the non-slip drive axle, making full use of the adhesion of the non-slip drive axle to generate sufficient traction so that the vehicle can continue to drive. In simple terms, the differential lock can connect the left and right drive wheels together to prevent one wheel from not turning when the other wheel slips, so that the vehicle can pass through poor roads smoothly.
  • the differential lock is in an unlocked state
  • the differential lock control signal is a differential lock locking control signal
  • the differential lock driving current control signal is a differential lock locking current control signal.
  • the differential lock locking control signal refers to a signal for controlling the differential lock locking
  • the differential lock locking current control signal refers to a signal for controlling the current provided when the differential lock is locked, for example, the current is 7A.
  • the engine controller sends a differential lock control signal to the transmission drive controller according to the differential lock switch request signal.
  • the transmission drive controller controls the drive current in the differential lock coil to be the current value corresponding to the differential lock current control circuit according to the differential lock control signal.
  • the engine controller may also determine that the vehicle's driving speed is greater than the current speed threshold, start timing, and send a differential lock adjustment current control signal to the transmission drive controller when the timing duration reaches a preset duration.
  • the transmission drive controller reduces the drive current in the differential lock coil (for example, from 7A to 4A) according to the differential lock adjustment current control signal, thereby reducing the duration of the high current and reducing power consumption.
  • the differential lock is in a locked state
  • the differential lock control signal is a differential lock unlocking control signal
  • the differential lock driving current control signal is a differential lock unlocking current control signal.
  • the differential lock unlocking control signal refers to a signal for controlling the differential lock to unlock
  • the differential lock unlocking current control signal refers to a signal for controlling the current provided when the differential lock is unlocked, for example, the current magnitude is 0A.
  • the engine controller sends a differential lock unlocking control signal to the transmission drive controller according to the differential lock switch request signal.
  • the transmission drive controller controls the driving current in the coil of the differential lock to be the current value corresponding to the differential lock unlocking current control signal according to the differential lock unlocking control signal.
  • control logic of the front axle differential lock and the rear axle differential lock are introduced below respectively.
  • the control logic of the rear axle differential lock is introduced below first.
  • the rear axle differential lock switches from unlocked state to locked state.
  • the rear axle differential lock of the vehicle is in an unlocked state, and the user or the vehicle itself needs to switch the state of the differential lock.
  • the user can trigger the differential lock switch request signal through a virtual button or a physical button, and the vehicle itself can also trigger the differential lock switch request signal.
  • the differential lock switch request signal can be a differential lock locking request signal.
  • the engine controller sends a rear axle locking display signal to the instrument based on the feedback signal of the differential lock and the feedback signal of the drive current.
  • the instrument displays the indication information of the rear axle locking based on the display signal of the rear axle locking, such as lighting up the rear axle locking icon.
  • a maintaining current speed threshold for example, it may be 5 km/h or other values
  • the timing of the engine controller if the vehicle's driving speed is lower than the above-mentioned maintaining current speed threshold and the wheel speed difference between the two wheels of the rear axle is greater than the first preset speed (for example, it can be 36rpm or other values), the timing will be restarted.
  • the first preset speed for example, it can be 36rpm or other values
  • maintenance lock current of 4A is only an exemplary description, and those skilled in the art can design a specific value of the maintenance lock current based on actual needs.
  • the rear axle differential lock switches from locked state to unlocked state.
  • the rear axle differential lock of the vehicle is in a locked state, and the user or the vehicle itself needs to switch the state of the differential lock.
  • the user can trigger the differential lock switch request signal through a virtual button or a physical button, and the vehicle itself can also trigger the differential lock switch request signal.
  • the differential lock switch request signal can be a differential lock unlock request signal.
  • the user may trigger a rear axle differential lock unlocking request signal, or the vehicle itself may detect that the vehicle's driving speed is greater than a fifth speed threshold (eg, 38 km/h or other values) to trigger a rear axle differential lock unlocking request signal.
  • a fifth speed threshold eg, 38 km/h or other values
  • the transmission drive controller de-energizes the coil in the rear axle differential lock according to the rear axle differential lock unlock control signal, that is, controls the drive current of the coil in the rear axle differential lock to 0A.
  • a first preset speed range for example, 28km/h-38km/h, or other speed ranges
  • the engine controller may also refuse to lock the differential lock. Specifically, when the rear axle differential lock of the vehicle is in an unlocked state, if the vehicle's driving speed is greater than a sixth speed threshold (for example, it may be 5 km/h, or other values) or the wheel speed difference between the two wheels of the rear axle is greater than a second preset speed (for example, it may be 50 rpm, or other values). At this time, even if the rear axle differential lock lock request signal is triggered, the engine controller will not send a rear axle differential lock lock control signal to the transmission drive controller.
  • a sixth speed threshold for example, it may be 5 km/h, or other values
  • a second preset speed for example, it may be 50 rpm, or other values
  • the control logic of the front axle differential lock is introduced below.
  • the front axle differential lock switches from unlocked state to locked state.
  • the vehicle's front axle differential lock is unlocked.
  • the user can trigger the differential lock switch through the virtual button or physical button.
  • the differential lock switch request signal may be a differential lock request signal.
  • the rear axle differential lock of the vehicle is in a locked state
  • the driving mode of the vehicle is a low-speed four-wheel drive module
  • the seventh speed threshold can be the same as the fourth speed threshold.
  • the instrument displays the indication information of the front axle lock based on the display signal of the front axle lock, such as lighting up the front axle lock icon.
  • control logic of the driving current in the coil of the front axle differential lock is similar to the control logic of the driving current in the coil of the rear axle differential lock, which can be seen in 2.1 above and will not be repeated here.
  • the differential lock switch request signal can be triggered in a variety of ways.
  • the differential lock switch request signal can be a differential lock unlock request signal.
  • a front axle differential lock unlock request signal for example, by pressing the front axle differential lock switch button or the rear axle differential lock switch button
  • the engine controller determines that the vehicle's driving mode has exited the low-speed four-wheel drive mode, it sends a front axle differential lock unlocking control signal to the transmission drive controller; or when the engine controller determines that the vehicle's driving speed is greater than an eighth speed threshold (for example, 38 km/h or other values), it sends a front axle differential lock unlocking control signal to the transmission drive controller.
  • the eighth speed threshold may be the same as the fifth speed threshold.
  • the transmission drive controller After receiving the front axle differential lock unlocking control signal, the transmission drive controller de-energizes the front axle differential lock coil according to the front axle differential lock unlocking control signal, that is, controls the driving current of the front axle differential lock coil to 0A.
  • a second preset speed range and the first preset speed range can be the same.
  • the engine controller may also refuse to lock the differential lock. Specifically, when the front axle differential lock of the vehicle is in an unlocked state, if the vehicle's driving speed is greater than a ninth speed threshold (e.g., 5 km/h or other values), or the wheel speed difference between the two wheels of the front axle is greater than a third preset speed (e.g., 50 rpm or other values), or the rear axle differential lock of the vehicle is in an unlocked state, or the vehicle's driving mode is not a low-speed four-wheel drive mode (e.g., the driving mode is a two-wheel drive mode or a four-wheel drive mode).
  • a ninth speed threshold e.g., 5 km/h or other values
  • a third preset speed e.g., 50 rpm or other values
  • the rear axle differential lock of the vehicle is in an unlocked state
  • the vehicle's driving mode is not a low-speed four-wheel drive mode (e.g., the driving mode is a two-wheel drive mode or
  • the engine controller will not send a front axle differential lock lock control signal to the transmission drive controller.
  • the ninth speed threshold may be the same as the sixth speed threshold
  • the third preset speed may be the same as the second preset speed.
  • the transmission drive controller can also detect whether there is a fault in the transfer case.
  • a fault signal (MotorFaultState) of the transfer case can be sent to the engine controller.
  • the fault of the transfer case can be a coil open circuit, short circuit, etc. Then the engine controller sends a display signal indicating that there is a fault in the transfer case to the in-vehicle display device according to the fault signal of the transfer case.
  • the transmission drive controller can also detect whether there is a fault in the differential.
  • a fault signal (ELockFaultState) of the differential can be sent to the engine controller.
  • the fault of the differential can be a fault such as an open circuit or a short circuit of the differential coil.
  • the engine controller sends a display signal indicating that the differential has a fault to the in-vehicle display device according to the fault signal of the differential.
  • the differential fault light comes on.
  • the transmission drive controller can simultaneously feed back the above-mentioned fault signals such as "MotorFaultState” and "ELockFaultState” to the engine controller.
  • the embodiment of the present application provides a vehicle, which includes a transfer case, a differential lock, an engine controller, and a transmission drive controller.
  • the transmission drive controller is a newly developed controller, which integrates the software of the transfer case controller and the software of the differential lock controller, and a drive circuit suitable for large current. In this way, the number of control chips is reduced, and the wiring harnesses that need to be connected are reduced, and the communication between the control chips is simplified.
  • the engine controller is used to obtain a request signal, and send a control signal to the transmission drive controller according to the request signal.
  • the control signal When the request signal is a drive switch request signal, the control signal includes a motor rotation control signal and a motor drive current control signal; when the request signal is a differential lock switch request signal, the control signal includes a differential lock control signal and a differential lock drive current control signal; the transmission drive controller is used to control the motor of the transfer case to rotate to a target position according to the motor rotation control signal and the motor drive current control signal when the received control signal includes a motor rotation control signal and a motor drive current control signal; and is also used to control the drive current in the coil of the differential lock according to the differential lock control signal and the differential lock drive current control signal when the received control signal includes a differential lock control signal and a differential lock drive current control signal.
  • the transfer case and differential lock are controlled by the transmission drive controller without modifying the engine controller. Since the engine controller is an integrated chip that is not easy to modify, the modification cost can be reduced by using the transmission drive controller.
  • the present application also provides a vehicle control method, which can be applied to the vehicle in the above embodiment.
  • a vehicle control method As shown in FIG4 , this figure is a flow chart of a vehicle control method provided by the present application embodiment, and the method includes:
  • the engine controller receives a request signal
  • the engine controller sends a control signal to the transmission drive controller based on the request signal.
  • the transmission drive controller receives a control signal sent by the engine controller based on a request signal; when the request signal is a drive switch request signal, the control signal includes a motor rotation control signal and a motor drive current control signal; when the request signal is a differential lock switch request signal, the control signal includes a differential lock control signal and a differential lock drive current control signal.
  • the motor rotation control signal includes a start rotation control signal and a stop rotation control signal
  • the transmission drive controller receives a control signal sent by the engine controller based on the request signal, including:
  • the transmission drive controller receives a start rotation control signal sent by the engine controller based on the drive switch request signal;
  • the motor of the transfer case is controlled to rotate to a target position, including:
  • the motor of the transfer case is controlled to stop rotating.
  • the method further includes: the engine controller acquiring the driving speed of the vehicle;
  • the transmission drive controller receives a start rotation control signal sent by the engine controller based on the request signal, including:
  • the transmission drive controller receives a start rotation control signal sent by the engine controller after receiving a drive switch request signal and determining that the vehicle's running speed is less than a drive speed threshold.
  • the differential lock is in an unlocked state
  • the differential lock control signal is a differential lock locking control signal
  • the differential lock drive current control signal is a differential lock locking current control signal
  • the transmission drive controller receives a control signal sent by the engine controller based on the request signal, including:
  • the transmission drive controller receives a differential lock control signal sent by the engine controller based on the differential lock switch request signal;
  • the drive current in the coil of the differential lock is controlled, including:
  • the driving current in the coil controlling the differential lock is a current value corresponding to the differential lock locking current control signal.
  • the differential lock is in a locked state
  • the differential lock control signal is a differential lock unlocking control signal
  • the differential lock drive current control signal is a differential lock unlocking current control signal
  • the transmission drive controller receives a control signal sent by the engine controller based on the request signal, including:
  • the transmission drive controller receives a differential lock unlocking control signal sent by the engine controller based on the differential lock switch request signal;
  • the drive current in the coil of the differential lock is controlled, including:
  • the driving current in the coil controlling the differential lock is a current value corresponding to the differential lock unlocking current control signal.
  • the method further includes: after the vehicle differential lock is in a locked state, the engine controller starts timing when it determines that the vehicle's running speed is greater than the current speed threshold, and after the timing reaches a preset time, sends a differential lock adjustment current control signal to the transmission drive controller;
  • the transmission drive controller adjusts the current control signal according to the differential lock to reduce the drive current in the coil of the differential lock.
  • the vehicle further includes: an in-vehicle display device; the method further includes: the transmission drive controller sends a feedback signal to the engine controller after the transfer case switches to the target drive mode and/or the differential lock switches to the target differential lock mode, the drive mode includes: any one of a two-wheel drive mode, a four-wheel drive mode and a low-speed four-wheel drive mode, and the target differential lock mode includes any one of a front axle unlocking, a front axle locking, a rear axle unlocking and a rear axle locking;
  • the engine controller sends a display signal of the target driving mode and/or the target differential lock mode to an in-vehicle display device according to the feedback signal;
  • the in-vehicle display device displays indication information of the target driving mode and/or the target differential lock mode according to the display signal of the target driving mode and/or the target differential lock mode.
  • the method further includes: when the transmission drive controller determines that the transfer case and/or the differential lock has a fault, sending a fault signal of the transfer case and/or the differential lock to the engine controller;
  • the engine controller sends a display signal indicating that the transfer case is faulty and/or the differential lock is faulty to an in-vehicle display device according to the fault signal of the transfer case and/or the differential lock;
  • the in-vehicle display device displays indication information of the transfer case failure and/or the differential lock failure according to the display signal of the transfer case failure and/or the differential lock failure.
  • the transmission drive controller is a newly developed controller, which integrates the software of the transfer case controller and the software of the differential lock controller, as well as a drive circuit suitable for large currents. In this way, the number of control chips is reduced, and the wiring harnesses that need to be connected are reduced, simplifying the communication between the control chips.
  • the engine controller obtains a request signal, and sends a control signal to the transmission drive controller according to the request signal.
  • the control signal When the request signal is a drive switch request signal, the control signal includes a motor rotation control signal and a motor drive current control signal; when the request signal is a differential lock switch request signal, the control signal includes a differential lock control signal and a differential lock drive current control signal; when the received control signal includes a motor rotation control signal and a motor drive current control signal, the transmission drive controller controls the motor of the transfer case to rotate to the target position according to the motor rotation control signal and the motor drive current control signal; when the received control signal includes a differential lock control signal and a differential lock drive current control signal, the differential lock drive current control signal controls the drive current in the coil.
  • the transfer case and the differential lock are controlled by the transmission drive controller. There is no need to modify the engine controller because the engine controller is an integrated chip that is not easy to modify. The modification cost can be reduced by using a transmission drive controller.
  • the embodiments of the present application also provide corresponding electronic devices and computer storage media for implementing the solutions provided by the embodiments of the present application.
  • the electronic device includes a memory and a processor, the memory is used to store signals or codes, and the processor is used to execute signals or codes so that the computing device executes the method of any embodiment of the present application.
  • the computer storage medium stores codes, and when the codes are executed, the computing device executing the codes implements the method of any embodiment of the present application.
  • the technical solution of the present application can be embodied in the form of a software product, and the computer software product can be stored in a storage medium, such as a read-only memory (ROM)/RAM, a magnetic disk, an optical disk, etc., including a number of signals to enable a computer device (which can be a personal computer, a server, or a network communication device such as a router) to execute the methods of each embodiment of the present application or some parts of the embodiments.
  • ROM read-only memory
  • RAM magnetic disk
  • optical disk etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

一种车辆及车辆控制方法,车辆包括分动器(202)、差速锁(203)、发动机控制器(204)、传动驱动控制器(201),传动驱动控制器(201)接收发动机控制器(204)发送的控制信号,当接收的控制信号包括电机转动控制信号和电机驱动电流控制信号时,根据电机转动控制信号和电机驱动电流控制信号,控制分动器(202)的电机转动至目标位置;当接收的控制信号包括差速锁控制信号和差速锁驱动电流控制信号时,根据差速锁控制信号和差速锁驱动电流控制信号,控制差速锁的线圈中的驱动电流。通过传动驱动控制器(201)与发动机控制器(204)之间的配合,实现对分动器(202)和差速锁(203)的控制。

Description

一种车辆及车辆控制方法
本发明要求于2022年11月15日提交中华人民共和国国家知识产权局、申请号为202211425177.7、发明名称为“一种车辆及车辆控制方法”的中国专利申请的优先权。
技术领域
本申请涉及车辆控制技术领域技术领域,尤其涉及一种车辆及车辆控制方法。
背景技术
分动器是纵置四驱车辆中重要的传动部件,其通过将变速器输入扭矩输出至前桥和后桥实现车辆四驱功能。现有技术中通过分动器控制单元实现两驱和四驱的切换控制。差速锁是车辆前桥或后桥的差速器中的锁止机构,差速器可以允许左右车轮以不同速度转动。当车轮转弯时,车辆左右车轮以不同的转速转动,保证了车辆转弯时的平顺性。但是,当其中一个车轮空转时,另一个在良好的路面上的车轮也得不到扭矩,汽车就失去了行驶的动力,此时通过差速锁控制单元控制差速锁锁止,使扭矩能够传递到未打滑测的车轮,可以使车辆脱困。
目前,分动器和差速锁分别通过独立的分动器控制单元和差速锁控制单元进行控制,这不仅增加了控制单元以及对应线束的数量,同时也使得控制单元之间的通讯更加复杂。
因此,如何减少车辆中控制单元的数量,简化控制单元之间的通讯是本领域技术人员需要解决的技术问题。
发明内容
有鉴于此,本申请实施例提供了一种车辆,旨在通过一个控制单元实现对分动器和差速器的控制,从而减少车辆中控制单元的数量,简化控制单元之间的通讯。
第一方面,本申请提供了一种车辆,包括分动器、差速锁、发动机控制器、传动驱动控制器;
发动机控制器,用于获取请求信号;
发动机控制器,用于根据请求信号向传动驱动控制器发送控制信号,当请求信号为驱动开关请求信号时,控制信号包括电机转动控制信号和电机驱动电流控制信号;当请求信号为差速锁开关请求信号时,控制信号包括差速锁控制信号和差速锁驱动电流控制信号;
传动驱动控制器,用于当接收的控制信号包括电机转动控制信号和电机驱动电流控制信号时,根据电机转动控制信号和电机驱动电流控制信号,控制分动器的电机转动至目标位置;
传动驱动控制器,还用于当接收的控制信号包括差速锁控制信号和差速锁驱动电流控 制信号时,根据差速锁控制信号和差速锁驱动电流控制信号,控制差速锁的线圈中的驱动电流。
可选的,电机转动控制信号包括开始转动控制信号和停止转动控制信号;
发动机控制器,用于根据驱动开关请求信号向传动驱动控制器发送开始转动控制信号;
传动驱动控制器,用于根据开始转动控制信号和电机驱动电流控制信号控制分动器的电机开始转动,并向发动机控制器反馈转动位置;
发动机控制器,用于根据位置与驱动模式的对应关系,确定转动位置为目标驱动模式对应的目标位置时,向传动驱动控制器发送停止转动控制信号;
传动驱动控制器,用于根据停止转动控制信号,控制分动器的电机停止转动。
可选的,发动机控制器,还用于,获取车辆的行驶速度;
发动机控制器,用于在接收到驱动开关请求信号后,并确定车辆的行驶速度小于驱动速度阈值时,向传动驱动控制器发送开始转动控制信号。
可选的,车辆差速锁处于解锁状态,差速锁控制信号为差速锁锁止控制信号,差速锁驱动电流控制信号为差速锁锁止电流控制信号;
发动机控制器,用于根据差速锁开关请求信号向传动驱动控制器发送差速锁锁止控制信号;
传动驱动控制器,用于根据差速锁锁止控制信号,控制差速锁的线圈中的驱动电流为差速锁锁止电流控制信号对应的电流值。
可选的,车辆差速锁处于锁止状态,差速锁控制信号为差速锁解锁控制信号,差速锁驱动电流控制信号为差速锁解锁电流控制信号;
发动机控制器,用于根据差速锁开关请求信号向传动驱动控制器发送差速锁解锁控制信号;
传动驱动控制器,用于根据差速锁解锁控制信号,控制差速锁的线圈中的驱动电流为差速锁解锁电流控制信号对应的电流值。
可选的,发动机控制器,还用于在车辆差速锁处于锁止状态后,并确定车辆的行驶速度大于维持电流速度阈值时,启动计时,计时时长达到预设时长后,向传动驱动控制器发送差速锁调整电流控制信号;
传动驱动控制器,用于根据差速锁调整电流控制信号,降低差速锁的线圈中的驱动电流。
可选的,车辆还包括:车内显示装置;
传动驱动控制器,还用于在分动器切换至目标驱动模式和/或差速锁切换至目标差速锁模式后,向发动机控制器发送反馈信号,驱动模式包括:两驱模式、四驱模式和低速四驱模式中的任一项,目标差速锁模式包括前桥解锁、前桥锁止、后桥解锁和后桥锁止中的任一项;
发动机控制器,还用于根据反馈信号,向车内显示装置发送目标驱动模式和/或目标差速锁模式的显示信号;
车内显示装置,用于根据目标驱动模式和/或目标差速锁模式的显示信号,显示目标驱动模式和/或目标差速锁模式的指示信息。
可选的,车辆还包括:车内显示装置;
传动驱动控制器,还用于确定分动器和/或差速锁存在故障时,向发动机控制器发送分动器和/或差速锁的故障信号;
发动机控制器,还用于根据分动器和/或差速锁的故障信号,向车内显示装置发送分动器存在故障和/或差速锁存在故障的显示信号;
车内显示装置,用于根据分动器存在故障和/或差速锁存在故障的显示信号,显示分动器存在故障和/或差速锁存在故障的指示信息。
可选的,传动驱动控制器和发动机控制器通过控制器局域网络连接。
第二方面,本申请提供了一种车辆控制方法,应用于车辆,车辆包括分动器、差速锁、发动机控制器和传动驱动控制器,方法包括:
传动驱动控制器接收发动机控制器基于请求信号发送的控制信号;当请求信号为驱动开关请求信号时,控制信号包括电机转动控制信号和电机驱动电流控制信号;当请求信号为差速锁开关请求信号时,控制信号包括差速锁控制信号和差速锁驱动电流控制信号;
传动驱动控制器确定接收的控制信号包括电机转动控制信号和电机驱动电流控制信号时,根据电机转动控制信号和电机驱动电流控制信号,控制分动器的电机转动至目标位置;
传动驱动控制器确定接收的控制信号包括差速锁控制信号和差速锁驱动电流控制信号时,根据差速锁控制信号和差速锁驱动电流控制信号,控制差速锁的线圈中的驱动电流。
可选的,电机转动控制信号包括开始转动控制信号和停止转动控制信号;
传动驱动控制器接收发动机控制器基于请求信号发送的控制信号,包括:
传动驱动控制器接收发动机控制器基于驱动开关请求信号发送的开始转动控制信号;
根据电机转动控制信号和电机驱动电流控制信号,控制分动器的电机转动至目标位置,包括:
根据开始转动控制信号和电机驱动电流控制信号控制分动器的电机开始转动,并向发动机控制器反馈转动位置;
接收发动机控制器根据位置与驱动模式的对应关系,确定转动位置为目标驱动模式对应的目标位置时,发送的停止转动控制信号;
根据停止转动控制信号,控制分动器的电机停止转动。
可选的,方法还包括:发动机控制器获取车辆的行驶速度;
传动驱动控制器接收发动机控制器基于请求信号发送的开始转动控制信号,包括:
传动驱动控制器接收发动机控制器在接收到驱动开关请求信号后,并确定车辆的行驶速度小于驱动速度阈值时,发送的开始转动控制信号。
可选的,差速锁处于解锁状态,差速锁控制信号为差速锁锁止控制信号,差速锁驱动电流控制信号为差速锁锁止电流控制信号;
传动驱动控制器接收发动机控制器基于请求信号发送的控制信号,包括:
传动驱动控制器接收发动机控制器基于差速锁开关请求信号发送的差速锁锁止控制信号;
根据差速锁控制信号和差速锁驱动电流控制信号,控制差速锁的线圈中的驱动电流,包括:
根据差速锁锁止控制信号,控制差速锁的线圈中的驱动电流为差速锁锁止电流控制信号对应的电流值。
可选的,差速锁处于锁止状态,差速锁控制信号为差速锁解锁控制信号,差速锁驱动电流控制信号为差速锁解锁电流控制信号;
传动驱动控制器接收发动机控制器基于请求信号发送的控制信号,包括:
传动驱动控制器接收发动机控制器基于差速锁开关请求信号发送的差速锁解锁控制信号;
根据差速锁控制信号和差速锁驱动电流控制信号,控制差速锁的线圈中的驱动电流,包括:
根据差速锁解锁控制信号,控制差速锁的线圈中的驱动电流为差速锁解锁电流控制信号对应的电流值。
可选的,方法还包括:发动机控制器在车辆差速锁处于锁止状态后,并确定车辆的行驶速度大于维持电流速度阈值时,启动计时,计时时长达到预设时长后,向传动驱动控制器发送差速锁调整电流控制信号;
传动驱动控制器根据差速锁调整电流控制信号,降低差速锁的线圈中的驱动电流。
可选的,车辆还包括:车内显示装置;方法还包括:传动驱动控制器在分动器切换至目标驱动模式和/或差速锁切换至目标差速锁模式后,向发动机控制器发送反馈信号,驱动模式包括:两驱模式、四驱模式和低速四驱模式中的任一项,目标差速锁模式包括前桥解锁、前桥锁止、后桥解锁和后桥锁止中的任一项;
发动机控制器根据反馈信号,向车内显示装置发送目标驱动模式和/或目标差速锁模式的显示信号;
车内显示装置根据目标驱动模式和/或目标差速锁模式的显示信号,显示目标驱动模式和/或目标差速锁模式的指示信息。
可选的,方法还包括:方法还包括:传动驱动控制器确定分动器和/或差速锁存在故障时,向发动机控制器发送分动器和/或差速锁的故障信号;
发动机控制器根据分动器和/或差速锁的故障信号,向车内显示装置发送分动器存在故障和/或差速锁存在故障的显示信号;
车内显示装置根据分动器存在故障和/或差速锁存在故障的显示信号,显示分动器存在故障和/或差速锁存在故障的指示信息。
第三方面,本申请实供了一种电子设备,电子设备包括存储器和处理器,存储器用于存储信号或代码,处理器用于执行信号或代码,以使设备执行前述第二方面中任一项的方法。
第四方面,本申请提供了一种计算机存储介质,计算机存储介质中存储有代码,当代码被运行时,运行代码的设备实现前述第二方面中任一项的方法。
由上述技术方案可知,本申请具有如下有益效果:
本申请提供了一种车辆,该车辆包括分动器、差速锁、发动机控制器、传动驱动控制器,该传动驱动控制器为重新开发的控制器,集成了分动器控制器的软件以及差速锁控制器的软件,以及适用于大电流的驱动电路。如此,减少了控制芯片的数量,进而减少了需要连接的线束等,简化了控制芯片之间的通讯。通过传动驱动控制器来对分动器和差速锁进行控制,无需对发动机控制器进行改造,由于发动机控制器为集成的芯片不易改造,通过使用传动驱动控制器能够降低改造成本。
附图说明
图1为本申请实施例提供的一种车辆的组件器件示意图;
图2为本申请实施例提供的又一种车辆的组件器件示意图;
图3为本申请实施例提供的控制逻辑的示意图;
图4为本申请实施例提供的一种车辆控制方法的流程图。
具体实施方式
如图1所示,该图为本申请实施例提供的一种车辆的组件器件示意图。该车辆包括分动器控制器101、分动器102、差速锁控制器103、差速锁104、发动机控制器105、发动机106和车轮107。
需要说明的是,在其他实施例中,车辆还可以包括更多或更少的部件。
其中,发动机控制器105用于在接收到请求信号后,向分动器控制器101和/或差速锁控制器103发送控制信号,分动器控制器101接收到控制信号后,基于控制信号对分动器102进行控制,差速锁控制器103接收到控制信号后,基于控制信号对差速锁104进行控制。
图1中,分动器102和差速锁104分别通过独立的分动器控制器101和差速锁控制器103进行控制,这不仅增加了控制单元(控制器)以及对应线束的数量,同时也使得控制单元之间的通讯更加复杂。另外随着当前芯片供应危机的影响,控制器数量越多越容易受到芯片危机的影响,导致控制器出现断供情况。
由此,本申请提出一种方案,将分动器控制器和差速锁控制器集成在发动机控制器,但是由于分动器和差速锁在驱动过程中均需要大电流驱动,当前发动机控制器的硬件不具备驱动大电流的能力,即发动机控制器的芯片上的驱动电路能够承受的电流有限,如需发动机控制器驱动,则需新改造动机控制器的芯片,但是发动机控制器的芯片为集成的,对每一个芯片进行改造极其不便,并且改造成本较高。
因此,本申请设计了一个传动驱动控制器,该传动驱动控制器集成有分动器控制器和差速锁控制器的软件以及具有能够承受大电流(例如50A)的驱动电路,通过利用一个控制单元对分动器和差速器进行控制,减少车辆中控制单元的数量,进而简化控制单元之间的通讯。
如图2所示,该图为本申请实施例提供的又一种车辆的组件器件示意图。该车辆包括传动驱动控制器201、分动器202、差速锁203、发动机控制器204、发动机205和车轮206。传动驱动控制器201和发动机控制器204通过控制器局域网络连接。
图2所示的车辆组成器件与图1所示的车辆组成器件相比,将原有的通过分动器控制器控制分动器和通过差速锁控制器控制差速锁转变为,通过传动驱动控制器与发动机控制 器之间的配合来控制分动器和差速锁。可见,图2所示的车辆组成器件中减少了控制器的数量,即减少了芯片的使用量,进而减少了相应的线束以及简化了控制器之间的通讯。
具体地,发动机控制器204用于接收请求信号。该请求信号可以是用户触发的请求信号,也可以是车辆中其他电子器件触发的请求信号。
在一些示例中,用户可以通过点击车辆内部的虚拟按键或实体按键,触发请求信号。虚拟按键可以是车内显示装置(例如车机大屏)所显示的按键,实体按键可以是车内实际存在的按键,例如可以是方向盘上的按钮或者是旋钮。
在另一些示例中,车辆中的其他电子器件在检测到相关信息(例如可以是车速、海拔、仰角等)满足预设条件后,触发请求信号。
请求信号可以包括驱动开关请求信号和差速锁开关请求信号。其中,驱动开关请求信号是指用于更改车辆驱动模式的请求信号,例如,用于将车辆驱动模式改为2驱模式。差速锁开关请求信号是指用于更改车辆的差速锁的状态的请求信号,例如,用于将车辆的差速锁锁止或解锁。如表1所示,该表为本申请实施例提供的请求信号示意表。
表1:
其中,“DrvModSwtReq”表示驱动开关请求信号,其携带的值可以是“0x0:Mode 2WD”(表示切换至2驱模式)、“0x1:Mode 4WD”(表示切换至4驱模式)和“0x2:Mode 4WD Low”(表示切换至低速4驱模式)。
“VehSpd”表示速度信号,其携带的值可以是车辆的行驶速度。
“RearLckSwtReq”和“FrntLckSwtReq”均为差速锁开关请求信号,“RearLckSwtReq”为后桥差速锁锁止请求信号,“FrntLckSwtReq”为前桥差速锁锁止请 求信号。
需要说明的是,以上仅仅是对请求信号的示意说明,在其他实施例中,请求信号还可以是其他形式。
发动机控制器204获取到请求信号后,根据请求信号向传动驱动控制器201发送控制信号。
其中,控制信号与请求信号相对应,例如,当请求信号为驱动开关请求信号时,控制信号包括电机转动控制信号和电机驱动电流控制信号;当请求信号为差速锁开关请求信号时,控制信号包括差速锁控制信号和差速锁驱动电流控制信号。
其中,电机转动控制信号是指控制电机开始转动以及停止转动的信号,电机驱动电流控制信号是指指示提供驱动电机的驱动电流大小的信号;差速锁控制信号是指控制差速锁解锁或锁止的信号,差速锁驱动电流控制信号是指指示提供驱动差速锁的驱动电流大小的信号。
当传动驱动控制器201接收的控制信号包括电机转动控制信号以及电机驱动电流控制信号时,传动驱动控制器201根据电机转动控制信号和电机驱动电流控制信号,控制分动器202的电机转动至目标位置。
当传动驱动控制器201接收的控制信号为差速锁控制信号和差速锁驱动电流控制信号时,传动驱动控制器201根据差速锁请求信号和差速锁驱动电流控制信号,控制差速锁203的线圈中的驱动电流。
为了便于理解,下面结合附图,对本申请实施例提供的技术方案的控制逻辑进行介绍。如图为本申请实施例提供的控制逻辑的示意图。
用户通过车内的驱动模式切换开关301触发驱动开关请求信号,该驱动开关请求信号通过LIN总线传递给车体控制模块BCM 303。BCM 303将驱动开关请求信号通过CAN总线传递给发动机控制器ECM 304,ECM 304基于接收到驱动开关请求信号,向传动驱动控制器WD 305发送电机转动控制信号和电机驱动电流控制信号,以便传动驱动控制器WD 305基于电机转动控制信号和电机驱动电流控制信号对分动器306进行控制。
接着,WD 305可以向ECM 304发送反馈信号,例如,发送分动器切换至目标驱动模式的反馈信号。ECM 304接收到反馈信号后,基于该反馈信号,向车内显示装置(仪表308)发送显示信号,例如发送显示目标驱动模式的显示信号,仪表基于该目标驱动模式的显示信号,显示目标驱动模式的指示信息,该指示信息用于指示当前所处的模式,如四驱模式,指示信息可以是通过指示灯提供,也可以是通过标记提供。
用户也可以通过车内的差速锁开关302触发差速锁开关请求信号,该差速锁开关请求信号通过LIN总线传递给BCM 303。BCM 303将该差速锁开关请求信号通过CAN总线传递给ECM 304,ECM 304基于接收到的差速锁开关请求信号,向WD 305发送差速锁控制信号和差速锁驱动电流控制信号,以便WD 305基于差速锁控制信号和差速锁驱动电流控制信号对差速锁307进行控制。
接着,WD 305可以向ECM 304发送反馈信号,发送差速锁锁止的反馈信号或差速锁解锁的反馈信号。ECM 304接收到反馈信号后,基于该反馈信号,向仪表308发送显示信号,例如发送差速锁锁止的显示信号,仪表基于该差速锁锁止的显示信号,显示差速锁锁止的指示信息。
本实施例中的传动驱动控制器代替了原有的分动器控制器和差速锁控制器,发动机控制器向传动驱动控制器发送控制信号,传动驱动控制器基于控制信号对分动器和差速锁进行控制,将多个控制单元进行了简化,又能够满足大电流驱动的需要,本方案中无需对已经集成的发动机控制器进行改造,因此,能够在较低的成本下,实现降低控制单元的数量,进而简化相应的线束以及简化控制单元之间的通讯。
下面分两种情况,分别介绍传动驱动控制器对分动器以及传动驱动控制器对差速锁进行控制的过程。
情况1:传动驱动控制器对分动器进行控制。
可以理解的是,车辆具有多种驱动模式,例如驱动模式可以分为三种:2驱模式、4驱模式、低速4驱模式。其中,低速四驱模式是指将变速器输入扭矩进行K倍放大后再分配到车辆前后轮,K>1。
在一些实施例中,电机转动控制信号包括开始转动控制信号和停止转动控制信号。其中,开始转动控制信号是指控制分动器的电机开始转动的信号,停止转动控制信号是指控制分动器的电机停止转动的信号。
发动机控制器可以根据驱动开关请求信号向传动驱动控制器发送开始转动控制信号。传动驱动控制器根据开始转动控制信号和电机驱动电流控制信号控制分动器的电机开始转动,并向发动机控制器反馈转动位置;发动机控制器根据位置与驱动模式的对应关系,确定转动位置为目标驱动模式对应的目标位置时,向传动驱动控制器发送停止转动控制信号。
传动驱动控制器根据停止转动控制信号,控制分动器的电机停止转动,进而控制分动器的电机转动至目标位置。其中,发动机控制器中可以是预先存储有位置与驱动模式的对应关系,例如位置1对应驱动模式1,位置2对应驱动模式2。在传动驱动控制器反馈电机 的转动位置后,可以判断该转动位置是否为目标驱动模式对应的目标位置,如果是,则向传动驱动控制器发送停止转动控制信号。其中,目标驱动模式为用户所要切换到的驱动模式(驱动开关请求信号中携带的驱动模式),例如用户要想切换到4驱模式,则目标驱动模式为4驱模式。
需要说明的是,位置与驱动模式的对应关系为预先设定好的,例如将电机的某一位置设置为0°,将电机转动一周设置为360°,每次转动120°为一种驱动模式,例如0°位置对应2驱模式,120°位置对应4驱模式,240°位置对应低速4驱模式。当电机的角度转到120°时,发动机控制器接收到传动驱动控制器反馈电机的转动位置为120°,那么确定此时电机已经到达4驱模式对应的目标位置,则向传动驱动控制器发送停止转动控制信号,控制电机停止转动。
在一些实施例中,发动机控制器在接收到驱动开关请求信号后,还可以获取车辆的行驶速度,在确定该车辆的行驶速度小于驱动速度阈值(为预先设定的数值)时,向传动驱动控制器发送开始转动控制信号。
下面结合示例进行介绍。
1.1、2驱模式切换至4驱模式。
车辆的驱动模式为2驱模式,如上述,当用户或者车辆本身需要对驱动模式进行切换,车辆本身也可以触发驱动开关请求信号,用户也可以通过虚拟按键或实体按键触发驱动开关请求信号。该驱动开关请求信号可以是切换至4驱模式的请求信号。
在一些示例中,用户可以触发切换至4驱模式的请求信号(例如DrvModSwtReq=0x1:Mode 4WD)。
发动机控制器接收到该切换至4驱模式的请求信号后,发动机控制器确定车辆的行驶速度是否小于第一速度阈值,第一速度阈值可以是80km/h,也可以是其他数值。如果车辆的行驶速度小于第一速度阈值,则通过CAN总线向传动驱动控制器发送开始转动控制信号(例如ShiftMotorCmd=0x1:Motor DriveToRight)和电机驱动电流控制信号(例如MotorDutyCycle=100%),其中,“ShiftMotorCmd=0x1:Motor DriveToRight”表示开始向右转动,“MotorDutyCycle=100%”表示驱动电流的比例大小为100%。
传动驱动控制器接收到开始转动控制信号和电机驱动电流控制信号后,以电机驱动电流控制信号指示的电流值驱动电机向右转动,并检测电机的转动位置,通过CAN总线向发动机控制器反馈转动位置(例如可以是位置1、位置2、位置3或位置4,其中MotorEncoder1State表示位置1、MotorEncoder2State表示位置2、MotorEncoder3State 表示位置3、MotorEncoder4State表示位置4,位置1-位置4是对圆周均分得到,不同的位置,对应的驱动模式不同)。
发动机控制器接收到传动驱动控制器反馈的转动位置后,确定转动后的位置是否为四驱模式对应的目标位置,若是,则向传动驱动控制器发送停止转动控制信号(例如ShiftMotorCmd=0x0:Motor Off)和电机驱动电流控制信号(例如MotorDutyCycle=0),其中“ShiftMotorCmd=0x0:Motor Off”表示停止转动,“MotorDutyCycle=0”表示驱动电流的电流值为0。
传动驱动控制器接收到“ShiftMotorCmd=0x0:Motor Off”以及“MotorDutyCycle=0”后,控制分动器的电机停止转动。
进一步的,发动机控制器还可以向车内显示装置发送四驱模式的显示信号(例如SystemOperMod=0x1:Mode 4WD),车内显示装置基于“SystemOperMod=0x1:Mode 4WD”显示四驱模式的指示信息,例如点亮四驱模式的图标。
需要说明的是,以上示例中,仅仅是以由两驱模式切换至四驱模式为向右转动为例进行介绍,在本申请实施例中,以开始转动控制信号为ShiftMotorCmd=0x1:Motor DriveToRight时,驱动模式的切换顺序为两驱模式、四驱模式、低速四驱模式,开始转动控制信号为ShiftMotorCmd=0x1:Motor DriveToLeft时,驱动模式的切换顺序为低速四驱模式、四驱模式、两驱模式为例。本领域技术人员可以基于实现需要设定电机的转动方向。
1.2、4驱模式切换至2驱模式。
车辆的驱动模式为4驱模式,用户可以通过虚拟按键或实体按键触发驱动开关请求信号。驱动开关请求信号可以是切换至2驱模式的请求信号(例如DrvModSwtReq=0x0:Mode2WD)。
在一些示例中,用户可以触发切换至2驱模式的请求信号。
发动机控制器接收到该切换至2驱模式的请求信号后,发动机控制器通过CAN总线向传动驱动控制器发送开始转动控制信号(例如ShiftMotorCmd=0x2:Motor DriveToLeft)和电机驱动电流控制信号(例如MotorDutyCycle=100%),其中,“ShiftMotorCmd=0x2:Motor DriveToLeft”表示电机开始向左转动,“MotorDutyCycle=100%”表示驱动电流的比例大小为100%。
传动驱动控制器接收到开始转动控制信号和电机驱动电流控制信号后,以电机驱动电流控制信号指示的电流值驱动电机向左转动,并检测电机的转动位置,通过CAN总线向发动机控制器反馈转动位置。
发动机控制器接收到传动驱动控制器反馈的转动位置后,确定该位置是否为两驱模式对应的目标位置,若是,则向传动驱动控制器发送停止转动控制信号(例如ShiftMotorCmd=0x0:Motor Off)和电机驱动电流控制信号(例如MotorDutyCycle=0),其中“ShiftMotorCmd=0x0:Motor Off”表示停止转动,“MotorDutyCycle=0”表示驱动电流的电流值为0。
传动驱动控制器接收到“ShiftMotorCmd=0x0:Motor Off”以及“MotorDutyCycle=0”后,控制分动器的电机停止转动。
进一步的,发动机控制器还可以向车内显示装置发送两驱模式的显示信号(例如SystemOperMod=0x1:Mode 2WD),车内显示装置基于“SystemOperMod=0x1:Mode 2WD”显示两驱模式的指示信息,例如点亮两驱模式的图标。
1.3、由2驱模式或4驱模式切换至低速4驱模式。
车辆的驱动模式为2驱模式或4驱模式,用户可以通过虚拟按键或实体按键触发驱动开关请求信号。该驱动开关请求信号可以是切换至低速4驱模式的请求信号。
在一些示例中,用户可以触发切换至低速4驱模式的请求信号(例如DrvModSwtReq=0x2:Mode 4WD Low Range)。
发动机控制器接收到该切换至低速4驱模式的请求信号后,发动机控制器确定车辆的行驶速度是否小于第二速度阈值,该第二速度阈值可以是3km/h,也可以是其他数值,例如5km/h。如果车辆的行驶速度小于第二速度阈值,则通过CAN总线向传动驱动控制器发送开始转动控制信号(例如ShiftMotorCmd=0x1:Motor DriveToRight)和电机驱动电流控制信号(例如MotorDutyCycle=100%),其中,“ShiftMotorCmd=0x1:Motor DriveToRight”表示开始向右转动,“MotorDutyCycle=100%”表示驱动电流的比例大小为100%。
传动驱动控制器接收到开始转动控制信号和电机驱动电流控制信号后,以电机驱动电流控制信号指示的电流值驱动电机向右转动,并检测电机的转动位置,通过CAN总线向发动机控制器反馈转动位置。
发动机控制器接收到传动驱动控制器反馈的转动位置后,确定该位置是否为低速四驱模式对应的目标位置,若是,则向传动驱动控制器发送停止转动控制信号(例如ShiftMotorCmd=0x0:Motor Off)和电机驱动电流控制信号(例如MotorDutyCycle=0),其中“ShiftMotorCmd=0x0:Motor Off”表示停止转动,“MotorDutyCycle=0”表示驱动电流的电流值为0。
传动驱动控制器接收到“ShiftMotorCmd=0x0:Motor Off”以及 “MotorDutyCycle=0”后,控制分动器的电机停止转动。
进一步的,发动机控制器还可以向车内显示装置发送低速四驱模式的显示信号(例如SystemOperMod=0x2:Mode 4WD Low Range),车内显示装置基于“SystemOperMod=0x2:Mode4WD Low Range”显示低速四驱模式的指示信息,例如点亮低速四驱模式的图标。
1.4、由低速4驱模式切换至2驱模式或4驱模式。
车辆的驱动模式为低速4驱模式,用户可以通过虚拟按键或实体按键触发驱动开关请求信号。该驱动开关请求信号可以是切换至4驱模式的请求信号。
需要说明的是,为了便于理解,1.4中以切换至4驱模式为例仅介绍,如要切换至2驱模式,则控制分动器的电机转动至2驱模式对应的位置即可。
在一些示例中,用户可以触发切换至4驱模式的请求信号(例如DrvModSwtReq=0x1:Mode 4WD)。
发动机控制器接收到该切换至4驱模式的请求信号后,发动机控制器确定车辆的行驶速度是否小于第三速度阈值,该第三速度阈值可以是3/h,也可以是其他数值,例如5。如果车辆的行驶速度小于第三速度阈值,则通过CAN总线向传动驱动控制器发送开始转动控制信号(例如ShiftMotorCmd=0x1:Motor DriveToLeft)和电机驱动电流控制信号(例如MotorDutyCycle=100%),其中,“ShiftMotorCmd=0x1:Motor DriveToLeft”表示开始向左转动,“MotorDutyCycle=100%”表示驱动电流的比例大小为100%。其中,第三速度阈值可以是与1.3中的第二速度阈值相同。
传动驱动控制器接收到开始转动控制信号和电机驱动电流控制信号后,以电机驱动电流控制信号指示的电流值驱动电机向左转动,并检测电机的转动位置,通过CAN总线向发动机控制器反馈转动位置。
发动机控制器接收到传动驱动控制器反馈的转动位置后,确定该位置是否为四驱模式对应的目标位置,若是,则向传动驱动控制器发送停止转动控制信号(例如ShiftMotorCmd=0x0:Motor Off)和电机驱动电流控制信号(例如MotorDutyCycle=0),其中“ShiftMotorCmd=0x0:Motor Off”表示停止转动,“MotorDutyCycle=0”表示驱动电流的电流值为0。
传动驱动控制器接收到“ShiftMotorCmd=0x0:Motor Off”以及“MotorDutyCycle=0”后,控制分动器的电机停止转动。
进一步的,发动机控制器还可以向车内显示装置发送四驱模式的显示信号(例如SystemOperMod=0x1:Mode 4WD),车内显示装置基于“SystemOperMod=0x1:Mode 4WD”显示 四驱模式的指示信息,例如点亮四驱模式的图标。
情况2:传动驱动控制器对差速锁进行控制。
车辆的差速锁一般包括前桥差速锁和后桥差速锁,可以理解的是,差速锁是安装在差速器上的一种锁止机构,其作用是为了提高汽车在不良路面上的通过能力,当车辆的一个驱动桥空转时,能迅速锁死差速器,使两驱动桥变为刚性联接,把大部分的扭矩甚至全部扭矩传给不滑转的驱动桥,充分利用不滑转的驱动桥的附着力产生足够牵引力,使车辆能够继续行驶。简单来说,差速锁能够使左右驱动轮连在一起,以防止在一个轮打滑时,另一轮不转,使车辆能够顺利通过不良路面。
在一些实施例中,差速锁处于解锁状态,差速锁控制信号为差速锁锁止控制信号,差速锁驱动电流控制信号为差速锁锁止电流控制信号。其中,差速锁锁止控制信号是指控制差速锁锁止的信号,差速锁锁止电流控制信号是指控制差速锁锁止时,提供的电流的信号,例如,电流大小为7A。
发动机控制器根据差速锁开关请求信号向传动驱动控制器发送差速锁锁止控制信号,传动驱动控制器,根据差速锁锁止控制信号,控制差速锁的线圈中的驱动电流为差速锁锁止电流控制电路对应的电流值。
在一些实施例中,在车辆处于锁止状态后,发动机控制器还可以确定车辆的行驶速度大于维持电流速度阈值时,启动计时,当计时时长达到预设时长后,向传动驱动控制器发送差速锁调整电流控制信号。传动驱动控制器根据差速锁调整电流控制信号,降低差速锁的线圈中的驱动电流(例如由7A降低至4A),进而能够减少大电流的持续时长,能够减少功耗。
在另一些实施例中,差速锁处于锁止状态,差速锁控制信号为差速锁解锁控制信号,差速锁驱动电流控制信号为差速锁解锁电流控制信号。其中,差速锁解锁控制信号是指控制差速锁解锁的信号,差速锁解锁电流控制信号是指控制差速锁解锁时,提供的电流的信号,例如,电流大小为0A。
发动机控制器根据差速锁开关请求信号向传动驱动控制器发送差速锁解锁控制信号,传动驱动控制器根据该差速锁解锁控制信号,控制差速锁的线圈中的驱动电流为差速锁解锁电流控制信号对应的电流值。
为了便于理解,下面分别对前桥差速锁和后桥差速锁的控制逻辑进行介绍,下面先介绍后桥差速锁的控制逻辑。
2.1、后桥差速锁由解锁状态切换至锁止状态。
车辆的后桥差速锁处于解锁状态,用户或车辆本身需要对差速锁的状态进行切换,用户可以通过虚拟按键或实体按键触发差速锁开关请求信号,车辆本身也可以触发差速锁开关请求信号。该差速锁开关请求信号可以是差速锁锁止请求信号。
在一些示例中,用户可以触发差速锁锁止请求信号(例如RearLckSwtReq=0x1:Request)。
发动机控制器接收到该差速锁锁止请求信号后,发动机控制器确定车辆的行驶速度是否小于第四速度阈值,该第四速度阈值可以是5km/h,也可以是其他数值。如果车辆的行驶速度小于第四速度阈值,则通过CAN总线向传动驱动控制器发送差速锁锁止控制信号(例如RearLckReq=0x1:Lock Req)和差速锁锁止电流控制信号(例如RearlckCurtLvelReq=0x0:Start up current(7A))。
传动驱动控制器接收到差速锁锁止控制信号和差锁锁锁止电流控制信号后,给后桥差速锁的线圈通电,如上述,控制后桥差速锁的线圈中的驱动电流为7A,以锁止后桥差速锁,并向发动机控制器发送后桥差速锁锁止的反馈信号(例如RearLckSts=0x1:Locked)以及驱动电流的反馈信号(例如RearlckActCurtLvel=0x0:Start up current(7A))。
发动机控制器基于上述差速锁锁止的反馈信号以及驱动电流的反馈信号向仪表发送后桥锁止的显示信号。仪表基于后桥锁止的显示信号,显示后桥锁止的指示信息,例如点亮后桥锁止的图标。
在一些实施例中,发动机控制器可以在确定后桥差速锁锁止(RearLckActSts=0X1:lock)且车辆的行驶速度大于维持电流速度阈值(例如可以是5km/h,也可以是其他数值)时,启动计时,在计时时长达到预设时长后(预设时长例如可以是5s,也可以是其他数值),向传动驱动控制器发送差速锁调整电流控制信号(RearlckCurtLvelReq=0X1:holding current(4A)),传动驱动控制器根据该差速锁调整电流控制信号,降低后桥差速锁的线圈中的驱动电流,例如,将后桥差速锁的线圈中的驱动电流由7A降低至维持锁止电流4A,并向发动机控制器发送维持低电流的反馈信号(RearlckActCurtLvel=0X1:holding current(4A))。
其中,在发动机控制器计时过程中,若车辆的行驶速度低于上述维持电流速度阈值并且,后轴两轮之间的轮速差大于第一预设转速(例如可以是36rpm,也可以是其他数值),则重新开始计时。
需要说明的是,上述维持锁止电流4A仅仅是示例性说明,本领域技术人员可以基于实际需要设计维持锁止电流的具体数值。
2.2、后桥差速锁由锁止状态切换至解锁状态。
车辆的后桥差速锁处于锁止状态,用户或车辆本身需要对差速锁的状态进行切换,用户可以通过虚拟按键或实体按键触发差速锁开关请求信号,车辆本身也可以触发差速锁开关请求信号。该差速锁开关请求信号可以是差速锁解锁请求信号。
在一些示例中,用户可以触发后桥差速锁解锁请求信号或者车辆本身检测车辆的行驶速度大于第五速度阈值(例如可以是38km/h,也可以是其他数值)触发后桥差速锁解锁请求信号。
发动机控制器接收到该后桥差速锁解锁请求信号后,通过CAN总线向传动驱动控制器发送后桥差速锁解锁控制信号(例如RearLckReq=0x0:Unlock Req),传动驱动控制器根据该后桥差速锁解锁控制信号给后桥差速锁中线圈断电处理,即,控制后桥差速锁中线圈的驱动电流为0A。然后向发动机控制器发送后桥差速锁解锁的反馈信号(例如RearLckActSts=0x0:Unlock)。
发动机控制器接收到后桥差速锁解锁的反馈信号后,向仪表发送后桥差速锁解锁的显示信号(例如RearLckSts=0x0:UnLocked),仪表显示后桥差速锁解锁的指示信息,例如可以是点亮后桥差速锁解锁的指示灯,当然也可以是熄灭后桥差速锁锁止的指示灯。
在一些实施例中,发动机控制器还可以在车辆的后桥差速锁处于锁止状态下,获取车辆的行驶速度,如果车辆的行驶速度在第一预设速度区间(例如可以是28km/h-38km/h,也可以是其他速度区间),则向车内显示装置发送车速过高的显示信号(例如RearLckSts=0x2:Over-Speed Warning),仪表基于该车速过高的显示信号,显示车速过高的指示信息,以提示用户车速过高。
在一些实施例中,发动机控制器还可以拒绝锁止差速锁。具体地,当车辆的后桥差速锁处于解锁状态下,如果车辆的行驶速度大于第六速度阈值(例如可以是5km/h,也可以是其他数值)或者后轴两轮之间的轮速差大于第二预设转速(例如可以是50rpm,也可以是其他数值)。此时,即使触发了后桥差速锁锁止请求信号,发动机控制器也不会向传动驱动控制器发送后桥差速锁锁止控制信号。并且,发动机控制器向仪表发送不可锁止的显示信号(例如RearLckSts=0x3:Lock Request Deny),然后仪表基于该不可锁止的显示信号显示不可锁止的指示信息,以提示用户当前无法锁止差速器。
下面介绍前桥差速锁的控制逻辑。
3.1、前桥差速锁由解锁状态切换至锁止状态。
车辆的前桥差速锁处于解锁状态,用户可以通过虚拟按键或实体按键触发差速锁开关 请求信号。该差速锁开关请求信号可以是差速锁锁止请求信号。
在一些示例中,车辆的后桥差速锁处于锁止状态,并且车辆的驱动模式为低速四驱模块,用户可以触发差速锁锁止请求信号(例如FrntLckSwtReq=0x1:Request)。
发动机控制器接收到该差速锁锁止请求信号后,发动机控制器确定车辆的行驶速度是否小于第七速度阈值,该第七速度阈值可以是5km/h,也可以是其他数值。如果车辆的行驶速度小于第七速度阈值,则通过CAN总线向传动驱动控制器发送差速锁锁止控制信号(例如FrntLckReq=0x1:Lock Req)和差速锁锁止电流控制信号(例如FrntlckCurtLvelReq=0x0:Start up current(7A))。其中,该第七速度阈值可以与第四速递阈值相同。
传动驱动控制器接收到差速锁锁止控制信号和差锁锁锁止电流控制信号后,给前桥差速锁的线圈通电,如上述,控制前桥差速锁的线圈中的驱动电流为7A,以锁止前桥差速锁,并向发动机控制器发送前桥差速锁锁止的反馈信号(例如FrntLckSts=0x1:Locked)以及驱动电流的反馈信号(例如FrntlckActCurtLvel=0x0:Start up current(7A))。
发动机控制器基于上述差速锁锁止的反馈信号以及驱动电流的反馈信号向仪表发送前桥锁止的显示信号(例如FrntLckSts=0x1:Locked)。仪表基于前桥锁止的显示信号,显示前桥锁止的指示信息,例如点亮前桥锁止的图标。
需要说明的是,前桥差速锁的线圈中的驱动电流的控制逻辑与后桥差速锁的线圈中的驱动电流的控制逻辑类似,可以参见上述2.1,此处不再赘述。
3.2前桥差速锁由锁止状态切换至解锁状态。
车辆的前桥差速锁处于锁止状态时,可以通过多种方式触发差速锁开关请求信号。该差速锁开关请求信号可以是差速锁解锁请求信号。
在一些示例中,用户可以触发前桥差速锁解锁请求信号(例如按下前桥差速锁开关按键或后桥差速锁开关按键),发动机控制器接收该前桥差速锁解锁请求信号,然后向传动驱动控制器发送前桥差速锁解锁控制信号(例如FrntLckReq=0x0:Unlock Req)。
在另一些示例中,发动机控制器确定车辆的驱动模式退出了低速四驱模式后,向传动驱动控制器发送前桥差速锁解锁控制信号;也可以是发动机控制器确定车辆的行驶速度大于第八速度阈值(例如可以是38km/h,也可以是其他数值)时,向传动驱动控制器发送前桥差速锁解锁控制信号。其中,该第八速度阈值可以与上述第五速度阈值相同。
传动驱动控制器接收到前桥差速锁解锁控制信号后,根据该前桥差速锁解锁控制信号给前桥差速锁中线圈断电处理,即,控制前桥差速锁中线圈的驱动电流为0A。然后向发动 机控制器发送前桥差速锁解锁的反馈信号(例如FrntLckActSts=0x0:Unlock)。
发动机控制器接收到前桥差速锁解锁的反馈信号后,向仪表发送前桥差速锁解锁的显示信号(例如FrntLckSts=0x1:Locked),仪表显示前桥差速锁解锁的指示信息,例如可以是点亮前桥差速锁解锁的指示灯,当然也可以是熄灭前桥差速锁锁止的指示灯。
在一些实施例中,发动机控制器还可以在车辆的前桥差速锁处于锁止状态下,获取车辆的行驶速度,如果车辆的行驶速度在第二预设速度区间(例如可以是28km/h-38km/h,也可以是其他速度区间),则向车内显示装置发送车速过高的显示信号(例如FrntLckSts=0x2:Over-Speed Warning),仪表基于该车速过高的显示信号,显示车速过高的指示信息,以提示用户车速过高。其中,上述第二预设速度区间和第一预设速度区间可以相同。
在一些实施例中,发动机控制器还可以拒绝锁止差速锁。具体地,当车辆的前桥差速锁处于解锁状态下,如果车辆的行驶速度大于第九速度阈值(例如可以是5km/h,也可以是其他数值),或者前轴两轮之间的轮速差大于第三预设转速(例如可以是50rpm,也可以是其他数值),或者车辆的后桥差速锁处于解锁状态,或者车辆的驱动模式不为低速四驱模式(例如驱动模式为两驱模式或四驱模式)。此时,即使触发了前桥差速锁锁止请求信号,发动机控制器也不会向传动驱动控制器发送前桥差速锁锁止控制信号。并且,发动机控制器向仪表发送不可锁止的显示信号(例如FrntLckSts=0x3:Lock Request Deny),然后仪表基于该不可锁止的显示信号显示不可锁止的指示信息,以提示用户当前无法锁止差速器。其中,第九速度阈值可以与第六速度阈值相同,第三预设转速与第二预设转速可以相同。
在一些实施例中,传动驱动控制器还可以对分动器是否存在故障进行检测,当确定分动器存在故障时,可以向发动机控制器发送分动器的故障信号(MotorFaultState),分动器的故障可以是线圈开路、短路等故障。然后发动机控制器根据分动器的故障信号向车内显示装置发送分动器存在故障的显示信号。车内显示装置根据该分动器存在故障的显示信号(例如DiagLmpReq=0x1:Lamp is being requested),显示分动器存在故障的指示信息,例如仪表点亮分动器故障灯。
在另一些实施例中,传动驱动控制器还可以对差速器是否存在故障进行检测,当确定差速器存在故障时,可以向发动机控制器发送差速器的故障信号(ELockFaultState),差速器的故障可以是差速器的线圈开路、短路等故障。然后发动机控制器根据差速器的故障信号向车内显示装置发送差速器存在故障的显示信号。车内显示装置根据该差速器存在故障的显示信号(例如FrntLckSts=0x4:Fault),显示差速器存在故障的指示信息,例如仪 表点亮差速器故障灯。
需要说明的是,在分动器和差速锁同时存在故障时,传动驱动控制器可以同时向发动机控制器反馈上述“MotorFaultState”以及“ELockFaultState”等故障信号。
基于上述内容描述,本申请实施例提供了一种车辆,该车辆包括分动器、差速锁、发动机控制器、传动驱动控制器,该传动驱动控制器为重新开发的控制器,集成了分动器控制器的软件以及差速锁控制器的软件,以及适用于大电流的驱动电路。如此,减少了控制芯片的数量,进而减少了需要连接的线束等,简化了控制芯片之间的通讯。具体地,发动机控制器,用于获取请求信号,根据请求信号向传动驱动控制器发送控制信号,当请求信号为驱动开关请求信号时,控制信号包括电机转动控制信号和电机驱动电流控制信号;当请求信号为差速锁开关请求信号时,控制信号包括差速锁控制信号和差速锁驱动电流控制信号;传动驱动控制器,用于当接收的控制信号包括电机转动控制信号和电机驱动电流控制信号时,根据电机转动控制信号和电机驱动电流控制信号,控制分动器的电机转动至目标位置;还用于当接收的控制信号包括差速锁控制信号和差速锁驱动电流控制信号时,根据差速锁控制信号和差速锁驱动电流控制信号,控制差速锁的线圈中的驱动电流。通过传动驱动控制器来对分动器和差速锁进行控制,无需对发动机控制器进行改造,由于发动机控制器为集成的芯片不易改造,通过使用传动驱动控制器能够降低改造成本。
本申请实施例还提供了一种车辆控制方法,该方法可以应用于上述实施例中的车辆,如图4所示,该图为本申请实施例提供的一种车辆控制方法的流程图,该方法包括:
S401、发动机控制器接收请求信号;
S402、发动机控制器基于请求信号,向传动驱动控制器发送控制信号。
其中,传动驱动控制器接收发动机控制器基于请求信号发送的控制信号;当请求信号为驱动开关请求信号时,控制信号包括电机转动控制信号和电机驱动电流控制信号;当请求信号为差速锁开关请求信号时,控制信号包括差速锁控制信号和差速锁驱动电流控制信号。
S403、传动驱动控制器确定接收的控制信号包括电机转动控制信号和电机驱动电流控制信号时,根据电机转动控制信号和电机驱动电流控制信号,控制分动器的电机转动至目标位置。
S404、传动驱动控制器确定接收的控制信号包括差速锁控制信号和差速锁驱动电流控制信号时,根据差速锁控制信号和差速锁驱动电流控制信号,控制差速锁的线圈中的驱动电流。
可选的,电机转动控制信号包括开始转动控制信号和停止转动控制信号;
传动驱动控制器接收发动机控制器基于请求信号发送的控制信号,包括:
传动驱动控制器接收发动机控制器基于驱动开关请求信号发送的开始转动控制信号;
根据电机转动控制信号和电机驱动电流控制信号,控制分动器的电机转动至目标位置,包括:
根据开始转动控制信号和电机驱动电流控制信号控制分动器的电机开始转动,并向发动机控制器反馈转动位置;
接收发动机控制器根据位置与驱动模式的对应关系,确定转动位置为目标驱动模式对应的目标位置时,发送的停止转动控制信号;
根据停止转动控制信号,控制分动器的电机停止转动。
可选的,方法还包括:发动机控制器获取车辆的行驶速度;
传动驱动控制器接收发动机控制器基于请求信号发送的开始转动控制信号,包括:
传动驱动控制器接收发动机控制器在接收到驱动开关请求信号后,并确定车辆的行驶速度小于驱动速度阈值时,发送的开始转动控制信号。
可选的,差速锁处于解锁状态,差速锁控制信号为差速锁锁止控制信号,差速锁驱动电流控制信号为差速锁锁止电流控制信号;
传动驱动控制器接收发动机控制器基于请求信号发送的控制信号,包括:
传动驱动控制器接收发动机控制器基于差速锁开关请求信号发送的差速锁锁止控制信号;
根据差速锁控制信号和差速锁驱动电流控制信号,控制差速锁的线圈中的驱动电流,包括:
根据差速锁锁止控制信号,控制差速锁的线圈中的驱动电流为差速锁锁止电流控制信号对应的电流值。
可选的,差速锁处于锁止状态,差速锁控制信号为差速锁解锁控制信号,差速锁驱动电流控制信号为差速锁解锁电流控制信号;
传动驱动控制器接收发动机控制器基于请求信号发送的控制信号,包括:
传动驱动控制器接收发动机控制器基于差速锁开关请求信号发送的差速锁解锁控制信号;
根据差速锁控制信号和差速锁驱动电流控制信号,控制差速锁的线圈中的驱动电流,包括:
根据差速锁解锁控制信号,控制差速锁的线圈中的驱动电流为差速锁解锁电流控制信号对应的电流值。
可选的,方法还包括:发动机控制器在车辆差速锁处于锁止状态后,并确定车辆的行驶速度大于维持电流速度阈值时,启动计时,计时时长达到预设时长后,向传动驱动控制器发送差速锁调整电流控制信号;
传动驱动控制器根据差速锁调整电流控制信号,降低差速锁的线圈中的驱动电流。
可选的,车辆还包括:车内显示装置;方法还包括:传动驱动控制器在分动器切换至目标驱动模式和/或差速锁切换至目标差速锁模式后,向发动机控制器发送反馈信号,驱动模式包括:两驱模式、四驱模式和低速四驱模式中的任一项,目标差速锁模式包括前桥解锁、前桥锁止、后桥解锁和后桥锁止中的任一项;
发动机控制器根据反馈信号,向车内显示装置发送目标驱动模式和/或目标差速锁模式的显示信号;
车内显示装置根据目标驱动模式和/或目标差速锁模式的显示信号,显示目标驱动模式和/或目标差速锁模式的指示信息。
可选的,方法还包括:传动驱动控制器确定分动器和/或差速锁存在故障时,向发动机控制器发送分动器和/或差速锁的故障信号;
发动机控制器根据分动器和/或差速锁的故障信号,向车内显示装置发送分动器存在故障和/或差速锁存在故障的显示信号;
车内显示装置根据分动器存在故障和/或差速锁存在故障的显示信号,显示分动器存在故障和/或差速锁存在故障的指示信息。
本申请中,该传动驱动控制器为重新开发的控制器,集成了分动器控制器的软件以及差速锁控制器的软件,以及适用于大电流的驱动电路。如此,减少了控制芯片的数量,进而减少了需要连接的线束等,简化了控制芯片之间的通讯。具体地,发动机控制器获取请求信号,根据请求信号向传动驱动控制器发送控制信号,当请求信号为驱动开关请求信号时,控制信号包括电机转动控制信号和电机驱动电流控制信号;当请求信号为差速锁开关请求信号时,控制信号包括差速锁控制信号和差速锁驱动电流控制信号;传动驱动控制器当接收的控制信号包括电机转动控制信号和电机驱动电流控制信号时,根据电机转动控制信号和电机驱动电流控制信号,控制分动器的电机转动至目标位置;当接收的控制信号包括差速锁控制信号和差速锁驱动电流控制信号时,根据差速锁控制信号和差速锁驱动电流控制信号,控制差速锁的线圈中的驱动电流。通过传动驱动控制器来对分动器和差速锁进 行控制,无需对发动机控制器进行改造,由于发动机控制器为集成的芯片不易改造,通过使用传动驱动控制器能够降低改造成本。
本申请实施例还提供了对应的电子设备以及计算机存储介质,用于实现本申请实施例提供的方案。
其中,电子设备包括存储器和处理器,存储器用于存储信号或代码,处理器用于执行信号或代码,以使计算设备执行本申请任一实施例的方法。
计算机存储介质中存储有代码,当代码被运行时,运行代码的计算设备实现本申请任一实施例的方法。
本申请实施例中提到的“第一”、“第二”(若存在)等名称中的“第一”、“第二”只是用来做名字标识,并不代表顺序上的第一、第二。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到上述实施例方法中的全部或部分步骤可借助软件加通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如只读存储器(英文:read-only memory,ROM)/RAM、磁碟、光盘等,包括若干信号用以使得一台计算机设备(可以是个人计算机,服务器,或者诸如路由器等网络通信设备)执行本申请各个实施例或者实施例的某些部分的方法。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。

Claims (12)

  1. 一种车辆,其特征在于,所述车辆包括分动器、差速锁、发动机控制器、传动驱动控制器;
    所述发动机控制器,用于获取请求信号;
    所述发动机控制器,用于根据所述请求信号向所述传动驱动控制器发送控制信号,当所述请求信号为驱动开关请求信号时,所述控制信号包括电机转动控制信号和电机驱动电流控制信号;当所述请求信号为差速锁开关请求信号时,所述控制信号包括差速锁控制信号和差速锁驱动电流控制信号;
    所述传动驱动控制器,用于当接收的所述控制信号包括所述电机转动控制信号和所述电机驱动电流控制信号时,根据所述电机转动控制信号和所述电机驱动电流控制信号,控制所述分动器的电机转动至目标位置;
    所述传动驱动控制器,还用于当接收的所述控制信号包括所述差速锁控制信号和所述差速锁驱动电流控制信号时,根据所述差速锁控制信号和所述差速锁驱动电流控制信号,控制所述差速锁的线圈中的驱动电流。
  2. 根据权利要求1所述的车辆,其特征在于,所述电机转动控制信号包括开始转动控制信号和停止转动控制信号;
    所述发动机控制器,用于根据驱动开关请求信号向所述传动驱动控制器发送所述开始转动控制信号;
    所述传动驱动控制器,用于根据所述开始转动控制信号和所述电机驱动电流控制信号控制所述分动器的电机开始转动,并向所述发动机控制器反馈转动位置;
    所述发动机控制器,用于根据位置与驱动模式的对应关系,确定所述转动位置为目标驱动模式对应的目标位置时,向所述传动驱动控制器发送停止转动控制信号;
    所述传动驱动控制器,用于根据所述停止转动控制信号,控制所述分动器的电机停止转动。
  3. 根据权利要求2所述的车辆,其特征在于,所述发动机控制器,还用于,获取车辆的行驶速度;
    所述发动机控制器,用于在接收到所述驱动开关请求信号后,并确定所述车辆的行驶速度小于驱动速度阈值时,向所述传动驱动控制器发送所述开始转动控制信号。
  4. 根据权利要求1所述的车辆,其特征在于,所述差速锁处于解锁状态,所述差速锁控制信号为差速锁锁止控制信号,所述差速锁驱动电流控制信号为差速锁锁止电流控制信 号;
    所述发动机控制器,用于根据差速锁开关请求信号向所述传动驱动控制器发送所述差速锁锁止控制信号;
    所述传动驱动控制器,用于根据所述差速锁锁止控制信号,控制所述差速锁的线圈中的驱动电流为所述差速锁锁止电流控制信号对应的电流值。
  5. 根据权利要求1所述的车辆,其特征在于,所述差速锁处于锁止状态,所述差速锁控制信号为差速锁解锁控制信号,所述差速锁驱动电流控制信号为差速锁解锁电流控制信号;
    所述发动机控制器,用于根据差速锁开关请求信号向所述传动驱动控制器发送所述差速锁解锁控制信号;
    所述传动驱动控制器,用于根据所述差速锁解锁控制信号,控制所述差速锁的线圈中的驱动电流为所述差速锁解锁电流控制信号对应的电流值。
  6. 根据权利要求4所述的车辆,其特征在于,所述发动机控制器,还用于在所述车辆差速锁处于锁止状态后,并确定所述车辆的行驶速度大于维持电流速度阈值时,启动计时,计时时长达到预设时长后,向所述传动驱动控制器发送差速锁调整电流控制信号;
    所述传动驱动控制器,用于根据所述差速锁调整电流控制信号,降低所述差速锁的线圈中的驱动电流。
  7. 根据权利要求1所述的车辆,其特征在于,所述车辆还包括:车内显示装置;
    所述传动驱动控制器,还用于在所述分动器切换至目标驱动模式和/或所述差速锁切换至目标差速锁模式后,向所述发动机控制器发送反馈信号,所述驱动模式包括:两驱模式、四驱模式和低速四驱模式中的任一项,目标差速锁模式包括前桥解锁、前桥锁止、后桥解锁和后桥锁止中的任一项;
    所述发动机控制器,还用于根据所述反馈信号,向所述车内显示装置发送所述目标驱动模式和/或所述目标差速锁模式的显示信号;
    所述车内显示装置,用于根据所述目标驱动模式和/或目标差速锁模式的显示信号,显示所述目标驱动模式和/或目标差速锁模式的指示信息。
  8. 根据权利要求1所述的车辆,其特征在于,所述车辆还包括:车内显示装置;
    所述传动驱动控制器,还用于确定所述分动器和/或所述差速锁存在故障时,向所述发动机控制器发送所述分动器和/或所述差速锁的故障信号;
    所述发动机控制器,还用于根据所述分动器和/或所述差速锁的故障信号,向所述车内 显示装置发送所述分动器存在故障和/或所述差速锁存在故障的显示信号;
    所述车内显示装置,用于根据所述分动器存在故障和/或所述差速锁存在故障的显示信号,显示所述分动器存在故障和/或所述差速锁存在故障的指示信息。
  9. 根据权利要求1-8任一项所述的车辆,其特征在于,所述传动驱动控制器和所述发动机控制器通过控制器局域网络连接。
  10. 一种车辆控制方法,其特征在于,应用于车辆,所述车辆包括分动器、差速锁、发动机控制器和传动驱动控制器,所述方法包括:
    所述传动驱动控制器接收所述发动机控制器基于请求信号发送的控制信号;当所述请求信号为驱动开关请求信号时,所述控制信号包括电机转动控制信号和电机驱动电流控制信号;当所述请求信号为差速锁开关请求信号时,所述控制信号包括差速锁控制信号和差速锁驱动电流控制信号;
    所述传动驱动控制器确定接收的所述控制信号包括所述电机转动控制信号和所述电机驱动电流控制信号时,根据所述电机转动控制信号和所述电机驱动电流控制信号,控制所述分动器的电机转动至目标位置;
    所述传动驱动控制器确定接收的所述控制信号包括所述差速锁控制信号和所述差速锁驱动电流控制信号时,根据所述差速锁控制信号和所述差速锁驱动电流控制信号,控制所述差速锁的线圈中的驱动电流。
  11. 一种电子设备,其特征在于,所述电子设备包括:
    存储器和处理器,所述存储器用于存储信号或代码,所述处理器用于执行所述信号或代码以使所述电子设备实现权利要求10所述的方法。
  12. 一种计算机存储介质,其特征在于,所述计算机存储介质上中存储有代码,当所述代码被运行时,运行所述代码的电子设备实现权利要求10所述的方法。
PCT/CN2023/130636 2022-11-15 2023-11-09 一种车辆及车辆控制方法 WO2024104242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211425177.7A CN115635950A (zh) 2022-11-15 2022-11-15 一种车辆及车辆控制方法
CN202211425177.7 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024104242A1 true WO2024104242A1 (zh) 2024-05-23

Family

ID=84948169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130636 WO2024104242A1 (zh) 2022-11-15 2023-11-09 一种车辆及车辆控制方法

Country Status (2)

Country Link
CN (1) CN115635950A (zh)
WO (1) WO2024104242A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115635950A (zh) * 2022-11-15 2023-01-24 长城汽车股份有限公司 一种车辆及车辆控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522777A (en) * 1994-05-05 1996-06-04 Dana Corporation Electronic transfer case shifting apparatus
US20050004732A1 (en) * 2003-06-19 2005-01-06 Adrian Berry Vehicle control method and apparatus
US20060074530A1 (en) * 2004-10-01 2006-04-06 Ford Global Technologies, Llc Roll stability control using four-wheel drive
CN105905105A (zh) * 2015-02-20 2016-08-31 三菱自动车工业株式会社 四轮驱动车的控制装置
CN114810985A (zh) * 2021-07-14 2022-07-29 长城汽车股份有限公司 差速锁的控制方法、装置、计算机介质、电子设备和车辆
CN115635950A (zh) * 2022-11-15 2023-01-24 长城汽车股份有限公司 一种车辆及车辆控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522777A (en) * 1994-05-05 1996-06-04 Dana Corporation Electronic transfer case shifting apparatus
US20050004732A1 (en) * 2003-06-19 2005-01-06 Adrian Berry Vehicle control method and apparatus
US20060074530A1 (en) * 2004-10-01 2006-04-06 Ford Global Technologies, Llc Roll stability control using four-wheel drive
CN105905105A (zh) * 2015-02-20 2016-08-31 三菱自动车工业株式会社 四轮驱动车的控制装置
CN114810985A (zh) * 2021-07-14 2022-07-29 长城汽车股份有限公司 差速锁的控制方法、装置、计算机介质、电子设备和车辆
CN115635950A (zh) * 2022-11-15 2023-01-24 长城汽车股份有限公司 一种车辆及车辆控制方法

Also Published As

Publication number Publication date
CN115635950A (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2024104242A1 (zh) 一种车辆及车辆控制方法
CN105408180B (zh) 用于控制具有独立的后部电动机的混合动力车辆的系统和方法
WO2019024648A1 (zh) 电动汽车的控制系统和汽车
CN108016441B (zh) 车辆扭矩的控制方法、系统及车辆
US20090079262A1 (en) Start-up control device for electric vehicle
CN111746295B (zh) 一种电动汽车的分布式驱动控制方法及装置
US20200122534A1 (en) Systems and methods for tire warmup and vehicle launch optimization
WO2019119945A1 (zh) 一种汽车底盘集成控制方法及系统
WO2009064092A2 (en) System and method for driving hybrid electric vehicle
US8315763B2 (en) Control apparatus for vehicle
US20150336608A1 (en) Techniques for deactivating steering wheel actuators to prevent unintended actuation
US10277680B2 (en) Communication method of electronic module in vehicle, and vehicle including the electronic module
CN115092111A (zh) 车辆的驱动力控制装置
CN107901788B (zh) 一种电机的输出扭矩控制方法、装置及汽车
CN112549974A (zh) 一种氢能汽车能量回馈管理系统及其管理方法
CN112153120A (zh) 车载咖啡机控制系统及车载咖啡机
CN112319478B (zh) 车辆驱动模式切换方法、装置及存储介质、电动商用车
KR101713758B1 (ko) 4륜 구동 하이브리드 차량의 클러치 제어 장치 및 방법
CN111824241B (zh) 辅助转向的控制方法、装置和车辆
CN209928230U (zh) 一种电子排挡背光灯功能休眠唤醒装置
JP2002345105A (ja) 電気自動車
WO2022174678A1 (zh) 用于车辆的差速锁的控制方法、控制装置及车辆
CN110667579A (zh) 机动车的巡航控制方法及电子设备
CN113978244A (zh) 一种新型后桥电子差速锁控制系统
CN217283397U (zh) 一种新型的横摆角速度传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890678

Country of ref document: EP

Kind code of ref document: A1