WO2024103985A1 - 功率模块和具有其的电子设备 - Google Patents

功率模块和具有其的电子设备 Download PDF

Info

Publication number
WO2024103985A1
WO2024103985A1 PCT/CN2023/122869 CN2023122869W WO2024103985A1 WO 2024103985 A1 WO2024103985 A1 WO 2024103985A1 CN 2023122869 W CN2023122869 W CN 2023122869W WO 2024103985 A1 WO2024103985 A1 WO 2024103985A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
base island
power module
power
residual
Prior art date
Application number
PCT/CN2023/122869
Other languages
English (en)
French (fr)
Inventor
周文杰
成章明
李正凯
谢地林
刘剑
Original Assignee
海信家电集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202223074596.9U external-priority patent/CN219017641U/zh
Priority claimed from CN202310495811.2A external-priority patent/CN116631971B/zh
Priority claimed from CN202321049262.8U external-priority patent/CN219937048U/zh
Application filed by 海信家电集团股份有限公司 filed Critical 海信家电集团股份有限公司
Publication of WO2024103985A1 publication Critical patent/WO2024103985A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/49Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions wire-like arrangements or pins or rods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present disclosure relates to the technical field of electronic equipment, and in particular to a power module and an electronic equipment having the same.
  • the power module encapsulated by molded resin contains a power chip and a driver chip for driving the power chip.
  • the application end has higher and higher requirements for the miniaturization of power modules.
  • a power module comprising a power frame and a plurality of power chips.
  • the power frame comprises a plurality of base islands.
  • Each base island comprises a chip welding portion, a connection portion, a bending portion, a platform portion and a power pin connected in sequence along the width direction of the power module, and the chip welding portion, the connection portion, the bending portion, the platform portion and the power pin are an integrated structure.
  • the connection portion comprises at least one oblique edge, and the mutually approaching oblique edges of the two connection portions of adjacent base islands extend in substantially the same direction.
  • the bending portion is arranged obliquely relative to the platform portion.
  • the platform portion of at least the middle base island among the plurality of base islands comprises a chamfer away from one side of the power pin, and the orthographic projection of the chamfered edge of the platform portion of one base island on the plane where the plurality of base islands are located and the orthographic projection of the edge of the bending portion of another base island adjacent thereto on the plane where the plurality of base islands are located extend in substantially the same direction.
  • the plurality of power chips are arranged on the chip welding portions of the plurality of base islands.
  • an electronic device comprising the above-mentioned power module.
  • FIG1 is a plan view of a power module according to some embodiments of the present disclosure.
  • FIG2 is a structural diagram of a plurality of base islands according to some embodiments of the present disclosure.
  • FIG3 is another plan view of a power module according to some embodiments of the present disclosure.
  • FIG4 is a cross-sectional view of a power module according to some embodiments of the present disclosure.
  • FIG5 is a cross-sectional view of another power module according to some embodiments of the present disclosure.
  • 6-7 are schematic diagrams of a packaging process of a power module in the related art
  • FIG. 8 is a structural diagram of a power frame supported by ejector pins in a packaging mold according to some embodiments of the present disclosure
  • FIG. 9 is a structural diagram of ejector pins in a packaging mold detached from a power frame according to some embodiments of the present disclosure.
  • FIGS. 10-12 are schematic diagrams of a packaging process according to some embodiments of the present disclosure.
  • FIG13 is a distribution diagram of a first residual portion in a power module according to some embodiments of the present disclosure.
  • FIG14 is a structural diagram showing adjacent first residual portions being tangent to each other in a power module according to some embodiments of the present disclosure
  • FIG15 is another plan view of a power module according to some embodiments of the present disclosure.
  • FIG16 is a distribution diagram of the second residual portion in the power module according to some embodiments of the present disclosure.
  • FIG. 17 is a distribution diagram of first residual portions and second residual portions in a power module according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • connection and its derivative expressions may be used.
  • the term “connected” may be used to indicate that two or more components are in direct physical or electrical contact with each other.
  • the embodiments disclosed herein are not necessarily limited to the contents of this document.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional views and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions is exaggerated for clarity.
  • the exemplary embodiments of the present disclosure should not be construed as being limited to the shapes of the regions shown herein, but include shape deviations caused by, for example, manufacturing.
  • an etched region shown as a rectangle will typically have curved features. Therefore, the regions shown in the drawings are schematic in nature, and their shapes are not intended to illustrate the actual shapes of regions of the device, and are not intended to limit the scope of the exemplary embodiments.
  • a power module is usually built inside an electronic device to realize its functional application.
  • the power module may include a power frame carrying a power chip and a drive frame carrying a drive chip, and the power frame and the drive frame are encapsulated by a package body formed by a molding resin.
  • the power frame of the power module may include a plurality of chip pads arranged at intervals, and each chip pad needs to be welded to a corresponding pin. In order to ensure sufficient welding strength, the size of the welding part between the chip pad and the corresponding pin is relatively large, which results in a relatively large overall size of the power module, which cannot meet the requirements of the miniaturized design of the power module.
  • the power module 10 includes a plurality of power chips 100 and a power frame 20.
  • the power frame 20 includes a plurality of base islands 200, each of which includes a chip welding portion 210, a connecting portion 220, a bending portion 230, a platform portion 240 and a power pin 250 connected in sequence along the width direction Y of the power module 10, and the chip welding portion 210, the connecting portion 220, the bending portion 230, the platform portion 240 and the power pin 250 are an integrated structure.
  • the power chip 100 is arranged on the chip welding portion 210 of the base island 200.
  • the power frame 20 can provide space for the arrangement of multiple power chips 100, so that the arrangement of multiple power chips 100 on the power frame 20 is simpler and the assembly is more stable.
  • the number of power chips 100 arranged on each base island 200 of the power frame 20 it can be designed according to actual needs. For example, some base islands can be used to arrange the lower bridge chip in the inverter circuit, and other base islands can be used to arrange the upper bridge chip in the inverter circuit.
  • the chip bonding part 210 is configured to provide a location for the power chip 100 .
  • the connection part 220 is connected between the chip bonding part 210 and the bending part 230 .
  • the bending part 230 is connected between the connection part 220 and the platform part 240 .
  • One end of the power pin 250 is connected to the platform part 240 .
  • connection portion 220 may include at least one oblique edge 221, and the oblique edges 221 of two connection portions 220 of adjacent base islands 200 that are close to each other extend in the same or substantially the same direction, for example, parallel to each other. In this way, the distance between adjacent base islands 200 can be reduced, making the structure of the power frame 20 relatively compact, thereby improving space utilization.
  • the extending direction of the chip welding part 210, the connecting part 220, the bending part 230, the platform part 240 and the power pin 250 in an integrated structure is the width direction Y of the power module 10
  • the arrangement direction of the multiple base islands 200 is the length direction X of the power module 10.
  • the direction perpendicular to the plane where the multiple base islands 200 are located is the thickness direction Z of the power module 10, and the thickness direction Z can be, for example, the direction from the power chip 100 to the power frame 20 or the opposite direction thereof.
  • the length direction X intersects with the width direction Y, for example, perpendicularly, and the length direction X and the width direction Y are both perpendicular to the thickness direction Z.
  • the bending portion 230 is inclined relative to the platform portion 240, and at least one of the plurality of base islands 200 is located in the middle.
  • the platform portion 240 of the base island 200 includes a chamfer 241 arranged on the side away from the power pin 250, and the orthographic projection of the edge of the chamfer 241 of the platform portion 240 of one base island 200 on the plane where the multiple base islands 200 are located and the orthographic projection of the edge of the bending portion 230 of another adjacent base island 200 on the plane where the multiple base islands 200 are located extend in the same or substantially the same direction, for example, are parallel to each other.
  • the platform portion 240 is higher than the connecting portion 220 , and the bent portion 230 is connected between the platform portion 240 and the connecting portion 220 .
  • the bent portion 230 is tilted relative to the platform portion 240, which means that the orthographic projection of the side of the bent portion 230 on the plane where the power chip 100 is located intersects with the orthographic projection of the side of the platform portion 240 on the plane where the power chip 100 is located.
  • the angle between the orthographic projection of the side of the bent portion 230 on the plane where the power chip 100 is located and the orthographic projection of the side of the platform portion 240 on the plane where the power chip 100 is located is an obtuse angle, for example, between 100° and 170°.
  • the bending portion 230 has a certain inclination angle relative to the platform portion 240, so that the bending portion 230 located between the connecting portion 220 and the platform portion 240 can be obliquely connected between the two.
  • This can not only avoid the increase in the size of the connecting portion 220 along the length direction X of the power module 10 due to the need to connect the connecting portion 220 with the platform portion 240, but also reduce the size of the connecting portion between the connecting portion 220 and the bending portion 230 along the length direction X of the power module 10, which is beneficial to improving the structural compactness of the power frame 20.
  • the edge of the chamfer 241 of the platform portion 240 of one base island 200 being parallel to the edge of the bent portion 230 of another adjacent base island 200 means that the orthographic projection of the edge of the chamfer 241 of the platform portion 240 of one base island 200 on the plane where the power chip 100 is located and the orthographic projection of the edge of the bent portion 230 of another adjacent base island 200 on the plane where the power chip 100 is located are parallel.
  • the inclined bending portion 230 of one base island 200 cooperates with the platform portion 240 with the chamfer 214 of the adjacent base island 200, and while maintaining the insulation distance between the platform portion 240 and the bending portion 230, the platform portion 240 is closer to the connecting portion 220 in the width direction Y of the power module 10, thereby reducing the overall size of the bending portion 230 and the platform portion 240 in the width direction Y of the power module 10, making the structure of the power frame 20 more compact. In this way, the space utilization rate can be further improved, and the miniaturized design of the power module 10 can be achieved.
  • the chip welding part 210, the connection part 220, the bending part 230, the platform part 240 and the power pin 250 of the same base island 200 can be arranged into an integrated structure.
  • the base island 200 can be an integrally formed copper frame, and the chip welding part 210, the connection part 220, the bending part 230, the platform part 240 and the power pin 250 correspond to different parts of the copper frame.
  • the connection strength between the chip welding part 210, the connection part 220, the bending part 230, the platform part 240 and the power pin 250 can be improved, so as to increase the reliability of the power frame 20, thereby improving its performance.
  • a base island 200 composed of a chip welding portion 210, a connecting portion 220, a bending portion 230, a platform portion 240 and a power pin 250 is used as a function derivation structure of the power chip 100. This can reduce the distance between adjacent base islands 200 and the size of the base island 200 in the width direction Y of the power module 10, making the structural design of the power frame 20 more compact, thereby improving the space utilization of the power frame 20 and realizing the miniaturized design of the power module 10.
  • the plurality of base islands 200 of the power frame 20 include a first base island 201, a second base island 202, a third base island 203, and a fourth base island 204.
  • the first base island 201, the second base island 202, the third base island 203, and the fourth base island 204 are sequentially arranged in a longitudinal direction X of the power module 10.
  • the second base island 202 and the third base island 203 are located between the first base island 201 and the fourth base island 204.
  • the connecting portion 220 of the first base island 201 and the connecting portion 220 of the fourth base island 204 each include a hypotenuse 221, and the connecting portion 220 of the second base island 202 and the connecting portion 220 of the third base island 203 each include two hypotenuses 221.
  • the mutually adjacent hypotenuses 221 of the two connecting portions 220 of adjacent base islands 200 are parallel.
  • hypotenuse 221 of the connection portion 220 of the first base island 201 is parallel to the hypotenuse 221 of the connection portion 220 of the second base island 202 close to the first base island 201
  • hypotenuse 221 of the connection portion 220 of the second base island 202 close to the third base island 203 is parallel to the hypotenuse 221 of the connection portion 220 of the third base island 203 close to the second base island 202
  • hypotenuse 221 of the connection portion 220 of the third base island 203 close to the fourth base island 204 is parallel to the hypotenuse 221 of the connection portion 220 of the fourth base island 204.
  • the hypotenuses 221 of each base island 200 may all be parallel to each other.
  • the hypotenuses 221 of each base island 200 may not be completely parallel.
  • the platform portion 240 of the first base island 201 and the platform portion 240 of the second base island 202 both include chamfers 241.
  • the side of the chamfer 241 of the platform portion 240 of one base island 200 is parallel to the side of the bent portion 230 of another adjacent base island 200.
  • the edge of the chamfer 241 of the platform portion 240 of the first base island 201 is parallel to the edge of the bent portion 230 of the second base island 202
  • the edge of the chamfer 241 of the platform portion 240 of the second base island 202 is parallel to the edge of the bent portion 230 of the third base island 203
  • the edge of the chamfer 241 of the platform portion 240 of the third base island 203 is parallel to the edge of the bent portion 230 of the fourth base island 204.
  • the platform portion 240 of the fourth base island 204 may not be chamfered.
  • the platform portion 240 of the fourth base island 204 may also be provided with a chamfer 241, and the bending portion of the other base island may also be inclined like the bending portion 230 of the fourth base island 204, thereby realizing a compact design of the power frame 20.
  • the power frame 20 may further include a plurality of pads 205 disposed on a side of the first base island 201 away from the second base island 202.
  • the plurality of pads 205 also include a platform portion and a pin portion, and the platform portion of the pad 205 closest to the first base island 201 is provided with a chamfer on a side away from the pin portion, and the chamfer is parallel to the side of the bent portion 230 of the first base island 201.
  • the power frame 20 may include first to fourth base islands 201 to 204, and three pads 205 disposed on a side of the first base island 201 away from the second base island 202.
  • the pins corresponding to the three pads 205 may be direct current (DC) input pins of UVW phases in the power module 10
  • the power pins 250 corresponding to the first to fourth base islands 201 to 204 may be DC output pins of UVW phases in the power module 10.
  • the size of the power frame 20 in the width direction Y of the power module 10 can be reduced, making the structure of the power frame 20 more compact.
  • the bending portions 230 of at least two base islands 200 among the plurality of base islands 200 are arranged in parallel, for example, at least two bending portions 230 among the first base island 201, the second base island 202, the third base island 203, and the fourth base island 204 are arranged in parallel.
  • the structural design of the power frame 20 can be simplified, and the structure of the power module 10 can be made compact.
  • each base island 200 such as the bending parts 230 of the first base island 201, the second base island 202, the third base island 203 and the fourth base island 204, are arranged in parallel. This can greatly simplify the structural design.
  • a plurality of power chips 100 may be arranged on the chip welding portion 210 of each base island 200 of the power frame 20.
  • the plurality of power chips 100 may include three first power chips, such as low-voltage power chips, and three second power chips, such as high-voltage power chips.
  • the three first power chips may be arranged on the first base island 201, the second base island 202 and the third base island 203, respectively, and the three second power chips may be arranged on the fourth base island 204, and the three second power chips are arranged at intervals along the length direction X of the power module 10. That is, a first power chip is arranged on each of the first base island 201, the second base island 202 and the third base island 203, and three second power chips are arranged on the fourth base island 204 at the same time.
  • the first base island 201, the second base island 202 and the third base island 203 can provide a location for the construction of the low-voltage power chip
  • the fourth base island 204 can provide a location for the construction of the high-voltage power chip. Since multiple high-voltage power chips are integrated on the fourth base island 204, space can be saved and the compactness of the structure of the power module 10 can be improved. In addition, the interval setting of the low-voltage power chip and the high-voltage power chip can not only meet the power requirements of different circuits, but also avoid mutual interference between different power areas, thereby ensuring the stability and reliability of the power chip.
  • the power chip 100 may include an IGBT (Insulated Gate Bipolar Transistor) chip, an FRD (Fast Recovery Diode) chip, two chips consisting of an IGBT chip and an FRD chip, or an RC-IGBT (Reverse-Conducting Insulated Gate Bipolar Transistor) chip in which the FRD chip is built into the IGBT chip.
  • the power chip 100 may include an IGBT (Insulated Gate Bipolar Transistor) chip, an FRD chip, and a reverse-conducting insulated gate bipolar transistor chip. It is required to choose to use at least one of the IGBT chip, FRD chip and RC-IGBT chip to improve the convenience of use.
  • the area of the fourth base island 204 is greater than the areas of the first base island 201, the second base island 202, and the third base island 203.
  • the base island with a smaller area is easier to combine with the resin than the base island with a larger area
  • at least one first through hole 206 is disposed on the fourth base island 204 among the first base island 201, the second base island 202, the third base island 203, and the fourth base island 204.
  • the bonding between the base island and the resin can also be enhanced, thereby ensuring the reliability of the power frame 20.
  • the area of the fourth base island 204 is greater than the area of the first base island 201, the area of the first base island 201, the area of the second base island 202 and the area of the third base island 203.
  • the first base island 201 and the fourth base island 204 are located on both sides of the second base island 202 and the third base island 203, so the area of the connecting portion of the first base island 201 is greater than the area of the connecting portion of the second base island 202 and the area of the connecting portion of the third base island 203.
  • the first through hole 206 is provided on the fourth base island 204 and the first base island 201.
  • One first through hole 206 can be provided on the first base island 201, and a plurality of first through holes 206 can be provided on the fourth base island 204.
  • the first through hole 206 can be a long strip through hole, such as a waist-shaped hole. In this way, it can be ensured that the first through hole 206 has a sufficiently large opening, thereby further ensuring the reliability of the combination of the base island and the resin.
  • a first through hole 206 may be provided on the first base island 201, and the first through hole 206 is located on a side of the connection portion 220 of the first base island 201 close to the chip soldering portion 210.
  • a plurality of first through holes 206 may be provided on the fourth base island 204, one of the first through holes 206 is located on a side of the connection portion 220 of the fourth base island 204 close to the chip soldering portion 210, and any of the remaining first through holes 206 is located in a portion of the fourth base island 204 corresponding to an area between adjacent power chips 100.
  • the location of the first through hole 206 can be adjusted according to the design requirements of the power frame 20 or the structural design of the power module 10 , so that the power module 10 has a compact structure.
  • a first notch 242 is provided on the platform portion 240 of the base island 200, and the first notch 242 is provided at a position of the platform portion 240 close to the bending portion 230, for example, at a position of the platform portion 240 adjacent to the connection between the bending portion and the platform portion 240.
  • the first notch 242 provided on the platform portion 240 may be a U-shaped notch.
  • a second through hole 243 is disposed on the platform portion 240 of the base island 200, and the second through hole 243 is disposed on a side of the platform portion 240 close to the power pin 250.
  • the second through hole 243 disposed on the platform portion 240 may be a circular hole or an elliptical hole.
  • the second through hole 243 can enhance the bonding between the base island and the resin, thereby ensuring the reliability of the power frame 20.
  • the second through hole 243 is arranged on the side of the platform part 240 close to the power pin 250, that is, arranged at the edge position close to the outward lead-out part, which can prevent external air or moisture from entering the vicinity of the power chip 100 along the base island 200, thereby ensuring the reliability of the power chip 100.
  • the platform part 240 is also configured to provide a position for wire welding, the wire is used to connect the power chip 100, and the second through hole 243 is arranged at the edge position close to the outward lead-out part, it can also avoid the position of wire welding.
  • an isolation portion 251 is disposed on the power pin 250 of the base island 200, and the isolation portion 251 is disposed near the connection between the isolation portion 251 and the platform portion.
  • the isolation portion 251 disposed on the power pin 250 may include a plurality of grooves parallel to each other.
  • the provision of the isolation portion 251 can increase the wettability of the power pin 250 to isolate external air or moisture from entering the vicinity of the power chip 100 along the base island 200 , thereby ensuring the reliability of the power chip 100 .
  • the power module 10 may further include a driving frame 400 and a driving chip 300 .
  • the driving chip 300 is used to drive the power chip 100 , thereby realizing the functions of the power module 10 .
  • the driving frame 400 may include a plurality of driving pins 500 arranged at intervals along a length direction X of the power module 10 .
  • the driving pins 500 and the power pins 250 are located on both sides of the power module 10 along the width direction Y thereof.
  • the plurality of driving pins 500 and the plurality of power pins 250 are arranged at intervals in the length direction of the power module 10.
  • the driving chip 300 may be arranged on the driving frame 400. That is, in addition to the plurality of driving pins 500, the driving frame 400 may further include a welding portion for providing a welding position for the driving chip 300.
  • the plurality of driving pins 500 and the welding part for providing a welding position for the driving chip 300 may be an integrated structure.
  • the plurality of driving pins 500 may be connected to the welding part of the driving frame 400, that is, the plurality of driving pins 500 and the above-mentioned welding part together constitute the driving frame 400. In this way, the connection structure of the driving frame can be more reliable, thereby ensuring the performance of the driving chip 300.
  • the power module 10 further includes a package 600 .
  • the package 600 is disposed outside the driving frame 400 and the power frame 20 , and the free ends of the driving pins 500 and the power pins 250 extend out of the package 600 .
  • the package body 600 arranged on the outside of the driving frame 400 and the power frame 20 can provide protection, making the assembly of the driving frame 400 and the power frame 20 more reliable, and the driving chip 300 and the power chip 100 can be well protected, thereby improving the performance and reliability of the power module 10.
  • the power module 10 may further include a heat sink 700 and an insulating resin layer 800.
  • the insulating resin layer 800 is disposed on a side of the power frame 20 away from the power chip 100, and the heat sink 700 is disposed on a side of the insulating resin layer 800 away from the power frame 20, and the bottom surface of the heat sink 700 away from the insulating resin layer 800 is flush with the bottom surface of the package 600, so that the bottom surface of the heat sink 700 is exposed at the bottom surface of the package 600.
  • the heat sink 700 can be made of a metal material with good heat dissipation
  • the insulating resin layer 800 can be made of an insulating resin material with good thermal conductivity
  • the insulating resin layer 800 is disposed between the heat sink 700 and the power frame 20
  • the edge of the insulating resin layer 800 is flush with the edge of the heat sink 700
  • the bottom surface of the heat sink 700 is exposed by the package body 600.
  • the insulating resin layer 800 can be used to transfer the heat generated by the power chip 100 during operation to the heat sink 700, and then the heat is dissipated in time through the heat sink 700, so that the power module 10 can be ensured to have good heat dissipation on the basis of avoiding current dissipation, thereby improving the reliability and performance of the power module 10.
  • the power module 10 is a packaging structure obtained by packaging its main structure (including the drive frame 400, the drive chip 300, the power frame 20 and the power chip 100) by molding.
  • the main structure of the power module 10 can be placed in the cavity of the packaging mold, and then liquid resin can be injected into the cavity of the packaging mold, and the external packaging body 600 can be formed after the resin is cured.
  • the packaging effect of the packaging structure will affect the connection reliability between the frame and the chip it carries and between the chips, and the connection reliability will further affect the performance of the power module 10.
  • the thermal conductivity of the resin is low, resulting in poor heat dissipation of the packaging structure, making it easy for small holes to appear in the area of the cavity that is thinned due to the pressure of the resin, and the packaging is not utilized.
  • the ejector pin 930 in the encapsulation mold 90 can be used to pass through the ejector plate 910 and the sleeve 920 to support the power frame 20 in the thickness direction Z of the power module 10 from the bottom of the power frame 20 (the side away from the power chip 100), so that the power frame 20 will not be deformed due to the pressure of the flowing resin, thereby avoiding the generation of small holes.
  • the resin begins to solidify, the ejector pin 930 begins to reset, and after the encapsulation is completed, the encapsulation mold is completely removed, and multiple dents will be formed on the lower surface of the encapsulation body 600.
  • the ejector pin 930 passes through the ejector plate 910 and the sleeve 920 and is fixed by the bottom plate, and the oil circuit provides power to the ejector rod to eject the ejector pin 930; after the oil circuit power is cut off, the ejector pin 930 is reset by the reset spring or the reverse oil circuit action.
  • the reset positions of the sleeve 920 and the ejector pin 930 are usually higher than the lower surface of the cavity to prevent the resin from filling into the sleeve 920. Therefore, two circular nested annular grooves (the sleeve 920 corresponds to the outer circle, and the ejector pin 930 corresponds to the inner circle) are finally formed on the lower surface of the package body 600, which is the first residual portion 62 hereinafter.
  • the ejector pin 930 is a retractable ejector pin design, which first supports the power frame 20 to prevent it from deforming when the resin is filled, and retracts when the resin is filled and the pressure is maintained to complete the entire plastic packaging process. Since the resin has been filled when the ejector pin 930 is retracted, the power frame 20 can be kept from deforming.
  • the package body 600 has a first surface 610 and a second surface 620, wherein the first surface 610 is the surface relatively far from the power chip 100 among the two surfaces of the package body 600, and the second surface 620 is the surface relatively close to the power chip 100 among the two surfaces of the package body 600.
  • the upper surface of the base island 200 i.e., the surface close to the first surface 610) is used to set the power chip 100
  • the lower surface of the base island 200 i.e., the surface close to the second surface 620
  • the ejector pins 930 during the packaging process.
  • first residual portions 62 are arranged on the second surface 620 of the package body 600.
  • each base island 200 corresponds to at least one first residual portion 62.
  • the first residual portions 62 corresponding to two adjacent base islands 200 are staggered.
  • the correspondence between the base island 200 and the first residual portion 62 means that, along the thickness direction Z of the power module 10, the orthographic projection of the first residual portion 62 on the base island 200 is located inside the base island 200.
  • the first residual portion 62 is substantially a dent left over from the packaging process, so the distribution of the first residual portion 62 on the package body 600 corresponds to the distribution of the support positions of the ejector pins in the packaging mold.
  • the staggered arrangement of the first residual portions 62 corresponding to two adjacent base islands 200 means that, in the length direction X of the power module 10, the first residual portion 62 corresponding to one base island 200 and the first residual portion 62 corresponding to another adjacent base island 200 are not on the same straight line.
  • the same base island 200 corresponds to multiple first residual portions 62
  • the multiple first residual portions 62 may be located on the same straight line or may not be on the same straight line, which is not specifically limited here.
  • the first base island 201, the second base island 202 and the third base island 203 may correspond to one first residual portion 62 respectively, and the fourth base island 204 may correspond to two first residual portions 62.
  • the two first residual portions 62 corresponding to the fourth base island 204 may be located on the same straight line.
  • the first residual portion 62 may be, for example, a circular annular groove.
  • the first residual portions 62 corresponding to two adjacent base islands 200 are staggered along the length direction X of the power module 10, which can avoid interference between adjacent expansion holes of the ejector plate 910 during the packaging process (refer to FIG. 14 ), so that the ejector pins 930 will not damage the ejector plate 910 when retracted, thereby ensuring the strength of the ejector plate without changing the distance between adjacent base islands 200 along the length direction X of the power module 10, so as to achieve a miniaturized design of the power module 10.
  • the area of the fourth base island 204 is relatively large, so the fourth base island 204 is arranged corresponding to the two first residual portions 62, and two ejector pins 930 can be used to support the fourth base island 204 during the packaging process to prevent the fourth base island 204 from tilting, thereby maintaining the balance of the fourth base island.
  • the first residual portion 62 may be disposed at a portion of the corresponding chip bonding portion 210 of the package body away from the power pin 250. This can prevent interference between the power pin 250 and the ejector pins 930 corresponding to the plurality of first residual portions 62 during the packaging process, and is also conducive to supporting the ejector pins 930 at a position of the base island 200 away from the power pin 250, thereby better preventing the position of the base island 200 from changing.
  • the center distance d1 of the first residual portions 62 corresponding to two adjacent base islands 200 along the width direction Y of the power module 10 is greater than or equal to 1.3 mm, that is, d1 satisfies d1 ⁇ 1.3 mm.
  • the minimum distance d2 of the first residual portions 62 corresponding to two adjacent base islands 200 is greater than or equal to 3.292 mm, that is, d2 satisfies d2 ⁇ 3.292 mm.
  • the center distance d1 of the first residual portions 62 corresponding to two adjacent base islands 200 along the width direction Y of the power module 10 is 1.3 mm, 1.4 mm or 1.5 mm
  • the minimum distance d2 of the first residual portions 62 corresponding to two adjacent base islands 200 is 3.292 mm, 3.293 mm or 3.294 mm.
  • the first base island 201, the second base island 202 and the third base island 203 may correspond to one first residual portion 62 respectively
  • the fourth base island 204 may correspond to two first residual portions 62.
  • the first residual portion 62 corresponding to the first base island 201 and the first residual portion 62 corresponding to the third base island 203 are located on the same straight line
  • the first residual portion 62 corresponding to the second base island 202 and the two first residual portions 62 corresponding to the fourth base island 204 are located on another straight line, and the two straight lines are parallel and 1.3 mm apart.
  • the position of the first residual portion 62 can be designed to avoid interference between adjacent expanded holes of the ejector plate 910, thereby ensuring the strength of the ejector plate to extend the service life of the packaging mold and at the same time ensuring that the distance between adjacent base islands 200 in the length direction X and the width direction Y of the power module 10 remains unchanged, thereby realizing the miniaturized design of the power module 10.
  • the center distance d3 of the first residual portions 62 corresponding to two adjacent base islands 200 along the length direction X of the power module 10 is less than 4.5 mm, that is, d3 satisfies d3 ⁇ 4.5 mm.
  • the center distance d3 of the first residual portions 62 corresponding to two adjacent base islands 200 along the length direction X of the power module 10 is 4.5 mm, 4.3 mm, or 4.2 mm.
  • the diameter of the expanded hole of the ejector plate 910 is 4.5 mm
  • the center distance d3 of the first residual portions 62 corresponding to two adjacent base islands 200 along the length direction X of the power module 10 is greater than or equal to 4.5 mm
  • the center distance d3 of the first residual portions 62 corresponding to two adjacent base islands 200 along the length direction X of the power module 10 is less than 4.5 mm, interference will occur between the adjacent expanded holes, and therefore it is necessary to adopt the staggered design solution provided in the embodiment of the present disclosure.
  • the center distance d3 of the first residual portions 62 corresponding to two adjacent base islands 200 along the length direction X of the power module 10 is less than 4.5 mm, which can ensure the miniaturization design of the power module 10.
  • the position of the first residual portion 62 can be designed according to the center distance d3 of the first residual portions 62 corresponding to two adjacent base islands 200 along the length direction X of the power module 10 and the minimum distance d2 of the first residual portions 62 corresponding to two adjacent base islands 200.
  • the center distance d3 of the first residual portions 62 corresponding to two adjacent base islands 200 along the length direction X of the power module 10 is 4.3 mm
  • the minimum distance d2 of the first residual portions 62 corresponding to two adjacent base islands 200 is 3.292 mm
  • the diameter of the expanded hole is 4.5 mm. Based on this, the distribution position of the first residual portions 62 can be designed to avoid interference between adjacent first residual portions 62 and realize the miniaturized design of the power module 10.
  • a line connecting centers of the first residual portions 62 corresponding to at least two base islands 200 among the plurality of base islands 200 may extend along the length direction X of the power module 10 .
  • the center line of the first residual portions 62 corresponding to at least two base islands 200 extends along the length direction X of the power module 10, so at least part of the first residual portions 62 are located on the same straight line.
  • This part of the first residual portion 62 can have the same distance from the straight line where the edges of the plurality of base islands 200 close to the driving frame 400 are located in the width direction Y of the power module 10, so that the force-bearing positions of the part of the base islands 200 are the same, thereby improving the force uniformity of the power frame 20, which is beneficial to the molding reliability of the power module 10.
  • the plurality of base islands 200 may include a plurality of odd-numbered base islands 200 (e.g., the first base island 201 and the third base island 203) and a plurality of even-numbered base islands 200 (e.g., the second base island 202 and the fourth base island 204), and the plurality of odd-numbered base islands 200 and the plurality of even-numbered base islands 200 are alternately arranged in the length direction X of the power module 10.
  • the center lines 63 of the first residual portions 62 corresponding to the plurality of odd-numbered base islands 200 and the center lines 64 of the first residual portions 62 corresponding to the plurality of even-numbered base islands 200 both extend along the length direction X of the power module 10, and are both located on the same side of the central axis 66 of the power module 10 along the width direction Y thereof.
  • a plurality of odd-numbered base islands 200 include a first base island 201 and a third base island 203
  • a plurality of even-numbered base islands 200 include a second base island 202 and a fourth base island 204.
  • the first base island 201, the second base island 202, the third base island 203 and the fourth base island 204 are sequentially arranged in a spaced relationship in the length direction X of the power module 10.
  • the center lines of the first residual portion 62 corresponding to the first base island 201 and the first residual portion 62 corresponding to the third base island 203 are located on a straight line, and the center lines of the first residual portion 62 corresponding to the second base island 202 and the first residual portion 62 corresponding to the fourth base island 204 are located on another straight line, and the two straight lines are parallel to each other and extend along the length direction X of the power module 10, and are both located on the same side of the central axis of the power module 10 along its width direction.
  • the first residual portions 62 corresponding to the plurality of odd-numbered base islands 200 and the first residual portions 62 corresponding to the plurality of even-numbered base islands 200 are arranged alternately in the length direction X of the power module 10.
  • the expanded holes on the ejector plate 910 through which the ejector pins 930 are penetrated correspond to the expanded holes corresponding to the plurality of odd-numbered base islands 200 and the plurality of even-numbered base islands 200, so these expanded holes are arranged alternately on the ejector plate 910 in the length direction X of the power module 10.
  • the straight line connecting the centers of the first residual portion 62 corresponding to the first base island 201 and the first residual portion 62 corresponding to the third base island 203 is aligned with the straight line connecting the centers of the first residual portion 62 corresponding to the second base island 202 and the first residual portion 62 corresponding to the fourth base island 204.
  • the straight lines connecting the centers of the first residual portions 62 are all located on the same side of the central axis of the power module 10 along its width direction, so that all the first residual portions 62 are biased toward the same side of the multiple base islands 200, thereby providing space for the arrangement of the power chip 100, which is beneficial to improving the carrying capacity of the power module 10.
  • the first residual portions 62 corresponding to the even-numbered base islands 200 may intersect with the central axis of the power module 10 along its width direction, so that this portion of the first residual portion 62 is adjacent to the central axis of the power module 10, so as to facilitate the arrangement of the ejector pins 930 in the packaging mold.
  • the first residual portions 62 corresponding to the odd-numbered base islands 200 may be tangent to the edges of the base islands 200 close to the driving frame 400, so that this portion of the first residual portion 62 is arranged adjacent to the edge of the base island 200, thereby ensuring a good support effect.
  • the first residual portions 62 corresponding to the odd-numbered base islands 200 may intersect with the central axis of the power module 10 along its width direction, so that this portion of the first residual portion 62 is adjacent to the central axis of the power module 10, so as to facilitate the arrangement of the ejector pins 930 in the packaging mold.
  • the first residual portions 62 corresponding to the even-numbered base islands 200 may be tangent to the edges of the base islands 200 close to the driving frame 400, so that this portion of the first residual portion 62 is disposed adjacent to the edge of the base island 200, thereby ensuring a good support effect.
  • the packaging effect of the power module 10 will affect its performance, in order to ensure that the power module 10 has a good packaging effect, during the packaging process, in addition to supporting it on the second surface 620 side of the package body 600 to avoid deformation of the power frame 20, it can also be supported (pressed) on the first surface 610 side of the package body 600 to ensure the structural stability of the power frame 20.
  • the power frame 20 when encapsulating the main structure of the power module 10, the power frame 20 can also be supported (pressed) in the thickness direction Z of the power module 10 from the top of the power frame 20 (the side where the power chip 100 is arranged) with the help of the ejector pins of the encapsulation mold, so that the power frame 20 can be supported in different directions to ensure the stability of the structure and position of the power frame 20, which is conducive to speeding up the plastic encapsulation rate.
  • the ejector pins that support the power frame 20 from the top of the power frame 20 will also gradually reset when the resin begins to solidify.
  • the encapsulation mold is completely removed, and multiple dents will be formed on the upper surface of the encapsulation body 600, namely the second residual portion 61 below. It can be seen that the first residual portion 62 and the second residual portion 61 are both dents left on the surface of the encapsulation body 600 by the encapsulation process.
  • a plurality of second residual portions 61 are provided on the first surface 610 of the package body 600.
  • two base islands 200 located at both ends along the length direction X of the power module 10 among the plurality of base islands 200 correspond to one second residual portion 61 respectively.
  • the second residual portion 61 only corresponds to two base islands 200 located at both ends along the length direction X of the power module 10 among the multiple base islands 200, that is, the ejector pins used to form the second residual portion 61 are only pressed on the surfaces of the two base islands 200, so that pressure from above can be generated on the base islands 200 located on the outside.
  • first residual portions 62 are also disposed on the second surface 620 of the package body 600, and the arrangement and beneficial effects of the plurality of first residual portions 62 can refer to the above-mentioned embodiment.
  • the formation and shape of the second residual portion 61 are similar to those of the above-mentioned first residual portion 62, and will not be repeated here.
  • the front side (i.e., the first surface 610) of the package body 600 of the power module 10 configured in this way can be formed by the same packaging mold as the front side of the package body of a power module with other structures, such as a power module with a DBC (Direct Bond Copper) structure, so the versatility of the packaging mold can be improved, thereby shortening the R&D cycle and reducing R&D costs.
  • DBC Direct Bond Copper
  • the first residual portion 62 and the second residual portion 61 can be disposed at a portion of the package body 600 corresponding to the chip bonding portion 210 away from the power pin 250. This can prevent interference between the power pin and the ejector pins corresponding to the first residual portions 62 and the second residual portions 61 during the packaging process, and is also conducive to supporting the ejector pins at a position of the base island 200 away from the power pin 250, thereby better preventing the position of the base island 200 from changing.
  • the plurality of base islands 200 may include a plurality of odd-numbered base islands 200 (e.g., the first base island 201 and the third base island 203) and a plurality of even-numbered base islands 200 (e.g., the second base island 202 and the fourth base island 204), and the plurality of odd-numbered base islands 200 and the plurality of even-numbered base islands 200 are alternately arranged in the length direction X of the power module 10.
  • the center line 63 of the first residual portion 62 corresponding to the plurality of odd-numbered base islands 200 is aligned with the center line 63 of the first residual portion 62 corresponding to the plurality of even-numbered base islands 200.
  • the center lines 64 of the first residual portions 62 corresponding to the plurality of base islands 200 all extend along the length direction X of the power module 10, and the center lines 65 of the plurality of second residual portions 61 also extend along the length direction X of the power module 10.
  • the center lines 63 of the first residual portions 62 corresponding to the plurality of odd-numbered base islands 200 and the center lines 64 of the first residual portions 62 corresponding to the plurality of even-numbered base islands 200 may both be located between the center lines 65 of the plurality of second residual portions 61 and the central axis 66 of the power module 10 along the width direction Y thereof.
  • the plurality of odd-numbered base islands 200 include a first base island 201 and a third base island 203
  • the plurality of even-numbered base islands 200 include a second base island 202 and a fourth base island 204.
  • the first base island 201, the second base island 202, the third base island 203 and the fourth base island 204 are sequentially arranged in a longitudinal direction X of the power module 10.
  • the first base island 201, the second base island 202 and the third base island 203 may correspond to one first residual portion 62 respectively
  • the fourth base island 204 may correspond to two first residual portions 62
  • the first base island 201 and the fourth base island 204 may also correspond to one second residual portion 61 respectively.
  • a center line 63 between the first residual portion 62 corresponding to the first base island 201 and the first residual portion 62 corresponding to the third base island 203 is located on a first straight line
  • a center line 64 between the first residual portion 62 corresponding to the second base island 202 and the first residual portion 62 corresponding to the fourth base island 204 is located on a second straight line
  • a center line 65 between the second residual portion 61 corresponding to the first base island 201 and the fourth base island 204 is located on a third straight line
  • the first straight line and the second straight line are located between the third straight line and a central axis 66 of the power module 10 along its width direction Y.
  • a plurality of first residual portions 62 are arranged in a staggered manner on the second surface 620 of the package body 600, so that the expanded holes on the ejector plate 910 through which the ejector pins 930 are inserted correspond to the respective first residual portions 62, and these expanded holes are also arranged alternately on the ejector plate in the length direction X of the power module 10.
  • stress concentration on the ejector plate 910 can be prevented, thereby ensuring the strength of the ejector plate 910, and the force uniformity of the power frame 20 can also be improved, which is beneficial to the molding reliability of the power module 10.
  • a plurality of second residual portions 61 are arranged along the same straight line on the first surface 610 of the package body 600, so that the ejector pins corresponding to the second residual portions 61 are also arranged along the same straight line to maintain the balance of pressure from above. Furthermore, the center line 63 of the first residual parts 62 corresponding to the multiple odd-numbered base islands 200 and the center line 64 of the first residual parts 62 corresponding to the multiple even-numbered base islands 200 are located between the center line 65 of the multiple second residual parts 61 and the central axis 66 of the power module 10 along its width direction Y.
  • This not only facilitates the arrangement of multiple ejector pins on different sides of the power frame 20 during the packaging process, but also avoids interference between the power pins 250 and the ejector pins corresponding to the multiple first residual parts 62 and the multiple second residual parts 61.
  • the center distance d4 of the second residual portion 61 corresponding to the first base island 201 and the second residual portion 61 corresponding to the fourth base island 204 may be greater than the center distance d5 of the first residual portion 62 corresponding to the first base island 201 and the first residual portion 62 corresponding to the fourth base island 204 that is farthest from the first base island 201, that is, d4>d5. That is, along the length direction X of the power module 10, the center distance d4 of the two second residual portions 61 at the end is greater than the center distance d5 of the two first residual portions 61 at the end.
  • a second notch 67 and two blind holes 68 are respectively provided on both sides of the package body 600 along the length direction X.
  • the second notch 67 and the two blind holes 68 located on one side of the package body 600 are symmetrical with the second notch 67 and the two blind holes 68 located on the other side of the package body 600 about the center line of the package body 600 in the length direction X.
  • the center of the second notch 67 is located on the center axis 66 of the power module 10 along the width direction Y
  • the two blind holes 68 are located on the second surface 620 (back side) of the package body 600 and are symmetrical with respect to the center axis 66 of the power module 10 along the width direction Y.
  • the second notch 67 can be a U-shaped notch arranged on both sides of the package body 600 along its length direction X, which passes through the thickness direction Z of the power module 10;
  • the blind hole 68 can be a circular shallow groove arranged on the surface of the package body 600, and its depth can be less than the depth of the first residual portion 62.
  • the center of the second notch 67 is located on the central axis 66 of the power module 10 along the width direction Y, which can facilitate the fixing of the package body 600.
  • the two blind holes 68 are located on the second surface 620 (back side) of the package body 600 and are symmetrical with respect to the central axis 66 of the power module 10 along the width direction Y, which can avoid damage to the package body 600 during the demolding process and prevent the package body 600 from being deformed.
  • the intersection of the second notch 67 and the central axis 66 of the power module 10 along the width direction Y thereof is The point can be defined as point A, and the intersection of the center line of the two blind holes 68 and the central axis 66 of the power module 10 along its width direction Y can be defined as point B, and point B is located between the center of the second notch 67 and point A.
  • point A the intersection of the center line of the two blind holes 68 and the central axis 66 of the power module 10 along its width direction Y
  • point B is located between the center of the second notch 67 and point A.
  • the structure of the power module 10 is exemplarily introduced below in conjunction with Figures 13 to 17.
  • the power module 10 may include a power frame 20 and a drive frame 400, a power chip 100 located on the power frame 20, a drive chip 300 located on the drive frame 400, and a package 600 located outside the power frame 20 and the drive frame 400.
  • the power frame 20 may include a first base island 201, a second base island 202, a third base island 203, and a fourth base island 204 arranged in sequence along the length direction X of the power module 10, and each base island may include a chip welding portion 210, a connecting portion 220, a bending portion 230, a platform portion 240, and a power pin 250 connected in sequence along the width direction Y of the power module 10.
  • the drive frame 400 may include a plurality of drive pins 500 arranged in sequence along the length direction X of the power module 10.
  • the package body 600 has a first surface 610 and a second surface 620 .
  • a plurality of first residual portions 62 are provided on the second surface 620 of the package body 600.
  • each base island 200 corresponds to at least one first residual portion 62.
  • the first residual portions 62 corresponding to two adjacent base islands 200 are staggered.
  • the first base island 201 corresponds to the first first residual portion 62
  • the second base island 202 corresponds to the second first residual portion 62
  • the third base island 203 corresponds to the third first residual portion 62
  • the fourth base island 204 corresponds to the fourth first residual portion 62 and the fifth first residual portion 62.
  • a plurality of second residual portions 61 are disposed on the first surface 610 of the package body 600.
  • two base islands 200 located at both ends along the length direction X of the power module 10 among the plurality of base islands 200 correspond to a second residual portion 61 respectively
  • the plurality of second residual portions 61 are arranged along the length direction X of the power module 10 and are located on the same straight line.
  • the first base island 201 corresponds to the first second residual portion 61
  • the fourth base island 204 corresponds to the second second residual portion 61.
  • the ejector plate corresponding to the first surface 610 (front side) of the package body 600 is formed with expansion holes corresponding to the first second residual portion 61 and the second second residual portion 61
  • the ejector plate corresponding to the second surface 620 (back side) of the package body 600 is formed with expansion holes corresponding to the first first residual portion 62, the second first residual portion 62, the third first residual portion 62, the fourth first residual portion 62, and the fifth first residual portion 62.
  • a first feature being “above” or “below” a second feature may include that the first and second features are in direct contact, or may include that the first and second features are not in direct contact but are in contact through another feature between them.
  • a first feature being “above”, “above” or “above” a second feature includes that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

提供一种功率模块和具有其的电子设备。功率模块包括功率框架和多个功率芯片。所述功率框架包括多个基岛。基岛包括沿功率模块的宽度方向依次连接的芯片焊接部、连接部、折弯部、平台部和功率引脚,且芯片焊接部、连接部、折弯部、平台部和功率引脚为一体结构。连接部包括至少一条斜边,且相邻基岛的两连接部的相互靠近的斜边沿基本相同的方向延伸。折弯部相对于平台部倾斜设置。多个基岛中至少位于中间的基岛的平台部包括远离功率引脚一侧的倒角,且一个基岛的平台部的倒角的边在多个基岛所在的平面上的正投影和与其相邻的另一个基岛的折弯部的边在多个基岛所在的平面上的正投影沿基本相同的方向延伸。多个功率芯片设置于多个基岛的芯片焊接部上。

Description

功率模块和具有其的电子设备
本申请要求于2022年11月17日提交的、申请号为202223074596.9的,2023年4月28日提交的、申请号为202321049262.8的,以及2023年4月28日提交的、申请号为202310495811.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电子设备技术领域,尤其涉及一种功率模块和具有其的电子设备。
背景技术
电子设备的内部通常构建有功率模块以实现其功能的应用。由模塑树脂封装而成的功率模块包含功率芯片以及用于驱动功率芯片的驱动芯片。随着电子设备的普及,应用端对于功率模块的小型化的要求也越来越高。
发明内容
一方面,提供一种功率模块,包括功率框架和多个功率芯片。所述功率框架包括多个基岛。每个基岛包括沿所述功率模块的宽度方向依次连接的芯片焊接部、连接部、折弯部、平台部和功率引脚,且所述芯片焊接部、所述连接部、所述折弯部、所述平台部和所述功率引脚为一体结构。所述连接部包括至少一条斜边,且相邻基岛的两连接部的相互靠近的斜边沿基本相同的方向延伸。所述折弯部相对于所述平台部倾斜设置。所述多个基岛中至少位于中间的基岛的平台部包括远离功率引脚一侧的倒角,且一个基岛的平台部的倒角的边在所述多个基岛所在的平面上的正投影和与其相邻的另一个基岛的折弯部的边在所述多个基岛所在的平面上的正投影沿基本相同的方向延伸。所述多个功率芯片设置于所述多个基岛的芯片焊接部上。
另一方面,提供一种电子设备,包括上述的功率模块。
附图说明
图1是根据本公开的一些实施例的功率模块的一种平面图;
图2是根据本公开的一些实施例的多个基岛的结构图;
图3是根据本公开的一些实施例的功率模块的另一种平面图;
图4是根据本公开的一些实施例的一种功率模块的截面图;
图5是根据本公开的一些实施例的另一功率模块的截面图;
图6-图7是相关技术中功率模块的封装过程的示意图;
图8是根据本公开的一些实施例的封装模具中的顶针支撑功率框架的结构图;
图9是根据本公开的一些实施例的封装模具中的顶针脱离功率框架的结构图;
图10-图12是根据本公开的一些实施例的封装过程的示意图;
图13是根据本公开的一些实施例的功率模块中第一残留部的分布图;
图14是根据本公开的一些实施例的功率模块中相邻第一残留部相切的结构图;
图15是根据本公开的一些实施例功率模块的又一种平面图;
图16是根据本公开的一些实施例功率模块中第二残留部的分布图;
图17是根据本公开的一些实施例功率模块中第一残留部和第二残留部的分布图。
具体实施方式
下面将结合附图,对本公开一些实施例进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表 示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文所使用的那样,“约”、“基本”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。本公开示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
电子设备的内部通常构建有功率模块以实现其功能的应用。功率模块可以包括承载有功率芯片的功率框架和承载有驱动芯片的驱动框架,并由模塑树脂形成的封装体对功率框架和驱动框架进行封装而得到。功率模块的功率框架可以包括间隔设置的多个芯片焊盘,每个芯片焊盘需要与对应的引脚焊接在一起。而为了确保足够的焊接强度,芯片焊盘和与其对应的引脚之间的焊接部位的尺寸相对较大,从而导致功率模块的整体尺寸相对较大,无法满足功率模块的小型化设计的需求。
基于此,本公开的实施例提供了一种功率模块。如图1至图5所示,该功率模块10包括多个功率芯片100和功率框架20。功率框架20包括多个基岛200,每个基岛200包括沿功率模块10的宽度方向Y依次连接的芯片焊接部210、连接部220、折弯部230、平台部240和功率引脚250,且芯片焊接部210、连接部220、折弯部230、平台部240和功率引脚250为一体结构。功率芯片100设置在基岛200的芯片焊接部210上。
可以理解的是,功率框架20可以为多个功率芯片100的设置提供空间,以便使多个功率芯片100在功率框架20上的设置更为简单,组装更为稳定。至于功率框架20的各个基岛200上设置的功率芯片100的数量,可以根据实际需求进行设计。示例的,一些基岛可以用于设置逆变电路中的下桥芯片,另一些基岛可以用于设置逆变电路中的上桥芯片。
芯片焊接部210被配置为给功率芯片100的设置提供位置。连接部220连接在芯片焊接部210与折弯部230之间,折弯部230连接在连接部220与平台部240之间,功率引脚250的一端与平台部240连接。
由于连接部220沿功率模块10的长度方向X的尺寸大于芯片焊接部210沿功率模块10的长度方向X的尺寸,为了实现功率模块10的小型化设计,连接部220可以包括至少一条斜边221,且相邻基岛200的两连接部220的相互靠近的斜边221沿相同或基本相同的方向延伸,例如相互平行。这样一来,可以使相邻基岛200间的距离减小,使得功率框架20的结构相对紧凑,从而提升空间利用率。
需要说明的是,在多个基岛200所在的平面上,呈一体结构的芯片焊接部210、连接部220、折弯部230、平台部240和功率引脚250的延伸方向即为功率模块10的宽度方向Y,多个基岛200的排列方向即为功率模块10的长度方向X。垂直于多个基岛200所在的平面的方向即为功率模块10的厚度方向Z,该厚度方向Z例如可以为由功率芯片100指向功率框架20的方向或其反方向。其中,长度方向X与宽度方向Y相交例如垂直,且长度方向X和宽度方向Y均与厚度方向Z垂直。
在此基础上,折弯部230相对于平台部240倾斜设置,在多个基岛200中至少位于中 间的基岛200的平台部240包括设置在远离功率引脚250一侧的倒角241,且一个基岛200的平台部240的倒角241的边在多个基岛200所在的平面上的正投影和与其相邻的另一个基岛200的折弯部230的边在多个基岛200所在的平面上的正投影沿相同或基本相同的方向延伸,例如相互平行。
可以理解的是,沿功率模块10的厚度方向Z,平台部240高于连接部220,折弯部230连接在平台部240和连接部220之间。
折弯部230相对于平台部240倾斜设置是指,折弯部230的侧边在功率芯片100所在平面上的正投影与平台部240的侧边在功率芯片100所在平面上的正投影交叉。示例的,折弯部230的侧边在功率芯片100所在平面上的正投影与平台部240的侧边在功率芯片100所在平面上的正投影之间的夹角为钝角,例如在100°至170°之间。
这样可以确保折弯部230相对于平台部240呈一定的倾斜角度,使得位于连接部220与平台部240之间的折弯部230能够斜向连接在二者之间,不仅可以避免由于需将连接部220与平台部240相连接而导致的连接部220沿功率模块10的长度方向X的尺寸的增加,还可以减小连接部220与折弯部230之间相连接部分沿功率模块10的长度方向X的尺寸,有利于提高功率框架20的结构紧凑性。
一个基岛200的平台部240的倒角241的边和与其相邻的另一个基岛200的折弯部230的边平行是指,一个基岛200的平台部240的倒角241的边在功率芯片100所在平面的正投影和与其相邻的另一个基岛200的折弯部230的边在功率芯片100所在平面的正投影平行。
这样一来,一个基岛200的倾斜设置的折弯部230与相邻基岛200的设有倒角214的平台部240相互配合,可以在保持平台部240与折弯部230之间的绝缘距离的同时,使得平台部240在功率模块10的宽度方向Y上更加靠近连接部220,从而减小折弯部230和平台部240的整体在功率模块10的宽度方向Y上的尺寸,使得功率框架20的结构更加紧凑。如此一来,可以进一步提升空间利用率,实现功率模块10的小型化设计。
同一个基岛200的芯片焊接部210、连接部220、折弯部230、平台部240和功率引脚250可以设置成一体结构。示例的,基岛200可以为一体成型的铜框架,芯片焊接部210、连接部220、折弯部230、平台部240和功率引脚250对应铜框架的不同部位。这样一来,不仅可以减少功率框架20的制备步骤,简化功率框架20的生产流程,而且还可以提高芯片焊接部210、连接部220、折弯部230、平台部240和功率引脚250之间的连接强度,以增加功率框架20的可靠性,从而提升其使用性能。
本公开的实施例所提供的功率模块10中,使用由芯片焊接部210、连接部220、折弯部230、平台部240和功率引脚250构成的基岛200作为功率芯片100的功能导出结构,可以减小相邻基岛200之间的距离以及基岛200在功率模块10的宽度方向Y上的尺寸,使得功率框架20的结构设计更为紧凑,从而提升功率框架20的空间利用率,实现功率模块10的小型化设计。
在一些实施例中,如图1和图2所示,功率框架20的多个基岛200包括第一基岛201、第二基岛202、第三基岛203和第四基岛204。第一基岛201、第二基岛202、第三基岛203和第四基岛204在功率模块10的长度方向X上依次间隔设置。第二基岛202和第三基岛203位于第一基岛201和第四基岛204的中间。第一基岛201的连接部220和第四基岛204的连接部220均包括一条斜边221,第二基岛202的连接部220和第三基岛203的连接部220均包括两条斜边221。相邻基岛200的两连接部220的相互靠近的斜边221平行。
示例的,第一基岛201的连接部220的斜边221与第二基岛202的连接部220的靠近第一基岛201的斜边221相平行,第二基岛202的连接部220的靠近第三基岛203的斜边221与第三基岛203的连接部220的靠近第二基岛202的斜边221相平行,第三基岛203的连接部220的靠近第四基岛204斜边221与第四基岛204的连接部220的斜边221相平行。此外,各个基岛200的斜边221可以全部相互平行。或者,各个基岛200的斜边221可以不完全平行。
在一些实施例中,如图1所示,第一基岛201的平台部240、第二基岛202的平台部 240和第三基岛203的平台部240均包括倒角241。在第一基岛201、第二基岛202和第三基岛203中,一个基岛200的平台部240的倒角241的边和与其相邻的另一个基岛200的折弯部230的边相平行。
示例的,第一基岛201的平台部240的倒角241的边与第二基岛202的折弯部230的边相平行,第二基岛202的平台部240的倒角241的边与第三基岛203的折弯部230的边相平行,第三基岛203的平台部240的倒角241的边与第四基岛204的折弯部230的边相平行。
可以理解的是,沿功率模块10的长度方向X,若在第四基岛204远离第三基岛203的一侧未设置其它基岛,则第四基岛204的平台部240可以不设倒角。当然,若在第四基岛204远离第三基岛203的一侧还设置有其它基岛,则第四基岛204的平台部240也可以设置倒角241,且该其它基岛的折弯部也可以如第四基岛204的折弯部230一样倾斜设置,从而实现功率框架20的紧凑设计。
在此基础上,如图1所示,沿功率模块10的长度方向X,功率框架20还可以包括设置在第一基岛201远离第二基岛202的一侧的多个焊盘205。该多个焊盘205也包括平台部和引脚部,且最靠近第一基岛201的焊盘205的平台部在远离引脚部的一侧设置有倒角,该倒角与第一基岛201的折弯部230的边相平行。
示例的,功率框架20可以包括第一基岛201至第四基岛204,以及设置在第一基岛201远离第二基岛202的一侧的三个焊盘205。该三个焊盘205对应的引脚可以为功率模块10中UVW相的直流(direct current,DC)输入引脚,第一基岛201至第四基岛204对应的功率引脚250可以为功率模块10中UVW相的DC输出引脚。
基于上述设置,通过使一个基岛200的平台部240的倒角241的边和与其相邻的另一个基岛200的折弯部230的边相平行,并使最靠近第一基岛201的焊盘的平台部的倒角的边与第一基岛201的折弯部230的边相平行,可以减小功率框架20在功率模块10的宽度方向Y上的尺寸,使得功率框架20的结构更加紧凑。
在一些实施例中,如图1所示,多个基岛200中的至少两个基岛200的折弯部230平行设置,例如第一基岛201、第二基岛202、第三基岛203和第四基岛204中的至少两个折弯部230平行设置。这样,通过使第一基岛201、第二基岛202、第三基岛203和第四基岛204中的至少两个折弯部230平行设置,可以使得功率框架20的结构设计得到简化,而且能够使功率模块10的结构紧凑。
示例的,为了使功率框架20的结构更为紧凑,各个基岛200的折弯部230,例如第一基岛201、第二基岛202、第三基岛203和第四基岛204的折弯部230均平行设置。这样可以更大程度的简化结构设计。
在一些实施例中,如图1、图4和图5所示,多个功率芯片100可以设置在功率框架20的各个基岛200的芯片焊接部210上。示例的,多个功率芯片100可以包括三个第一功率芯片例如低压功率芯片和三个第二功率芯片例如高压功率芯片。三个第一功率芯片可以分别设置在第一基岛201、第二基岛202和第三基岛203上,三个第二功率芯片可以均设置在第四基岛204上,且该三个第二功率芯片沿功率模块10的长度方向X间隔设置。也就是说,第一基岛201、第二基岛202和第三基岛203上分别设置有一个第一功率芯片,第四基岛204上同时设置有三个第二功率芯片。
如此一来,第一基岛201、第二基岛202和第三基岛203可以为低压功率芯片的构建提供位置,而在第四基岛204可以为高压功率芯片的构建提供位置。由于多个高压功率芯片均集成在第四基岛204上,因此可以节省空间,提升功率模块10的结构紧凑性。此外,低压功率芯片和高压功率芯片的间隔设置,不仅可以满足不同电路的功率需求,还可以避免不同功率区域之间的互相干扰,从而保证功率芯片的稳定性和可靠性。
示例的,功率芯片100可以包括IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)芯片,FRD(Fast Recovery Diode,快恢复二极管)芯片,IGBT芯片和FRD芯片组成的两颗芯片,或者将FRD芯片内置于IGBT芯片内的RC-IGBT(Reverse-Conducting Insulated Gate Bipolar Transistor,逆导型绝缘栅双极型晶体管)芯片。这样的话,可以根据 需求选择使用IGBT芯片、FRD芯片和RC-IGBT芯片中的至少一个,从而提升使用的便利性。
在一些实施例中,如图1所示,由于第四基岛204上设置有多个功率芯片100,因此第四基岛204的面积大于第一基岛201的面积、第二基岛202的面积和第三基岛203的面积。考虑到在对功率框架20进行模塑树脂封装的过程中,面积较小的基岛相比于面积较大的基岛更易于与树脂结合,因此在第一基岛201、第二基岛202、第三基岛203和第四基岛204中,至少第四基岛204上设置有至少一个第一通孔206。这样一来,在确保由芯片焊接部210、连接部220、折弯部230、平台部240和功率引脚250构成的基岛200的强度的同时,还可以增强基岛与树脂的结合性,从而确保功率框架20的使用可靠性。
示例的,如图1所示,第四基岛204的面积大于第一基岛201的面积、第一基岛201的面积、第二基岛202的面积和第三基岛203的面积。而第一基岛201和第四基岛204位于第二基岛202和第三基岛203的两侧,因此第一基岛201的连接部的面积大于第二基岛202的连接部的面积和第三基岛203的连接部的面积。在此情况下,第四基岛204上和第一基岛201上均设置有第一通孔206。第一基岛201上可以设置一个第一通孔206,而第四基岛204上可以设置多个第一通孔206。其中,第一通孔206可以为长条形通孔,例如腰形孔。这样可以确保第一通孔206具有足够大的开口,从而可以进一步确保基岛与树脂的结合的可靠性。
例如,第一基岛201上可以设置一个第一通孔206,该第一通孔206位于第一基岛201的连接部220靠近芯片焊接部210的一侧。又如,第四基岛204上可以设置多个第一通孔206,其中的一个第一通孔206位于第四基岛204的连接部220靠近芯片焊接部210的一侧,其余第一通孔206中的任一个位于第四基岛204的对应相邻功率芯片100之间的区域的部分。
需要说明的是,第一通孔206的设置位置可以根据功率框架20的设计需求或者功率模块10的结构设计而进行调整,从而使得功率模块10具有紧凑的结构。
在一些实施例中,如图1所示,基岛200的平台部240上设置有第一缺口242,该第一缺口242设置于平台部240的靠近弯折部230的位置,例如设置在平台部240的邻近弯折部与平台部240的连接处的位置。示例的,平台部240上设置的第一缺口242可以为U型缺口。
如此一来,通过在平台部240上设置第一缺口242,有利于释放在功率框架20的构建过程中折弯功率引脚250时的冲压应力,从而使得功率框架20具有更高的结构强度和使用性能。
在一些实施例中,如图1所示,基岛200的平台部240上设置有第二通孔243,该第二通孔243设置于平台部240靠近功率引脚250的一侧。示例的,平台部240上设置的第二通孔243可以为圆形孔或者椭圆形孔。
如此一来,第二通孔243的设置可以增强基岛与树脂的结合性,从而确保功率框架20的使用可靠性。进一步的,第二通孔243设置于平台部240靠近功率引脚250的一侧,也就是设置在靠近向外的引出部的边缘位置,可以防止外部的空气或水分沿着基岛200进入到功率芯片100的附近,从而确保功率芯片100的可靠性。此外,由于平台部240还被配置为提供导线焊接的位置,该导线用于连接功率芯片100,因此第二通孔243设置在靠近向外的引出部的边缘位置,还可以避开导线焊接的位置。
在一些实施例中,如图1所示,基岛200的功率引脚250上设置有隔离部251,该隔离部251靠近其与所述平台部的连接处设置。示例的,功率引脚250上设置的隔离部251可以包括多条相互平行的凹槽。
如此一来,隔离部251的设置可以增加功率引脚250的浸润性,以隔离外部的空气或水分沿着基岛200进入到功率芯片100的附近,从而确保功率芯片100的可靠性。
在一些实施例中,如图1至图5所示,功率模块10还可以包括驱动框架400和驱动芯片300。驱动芯片300用于驱动功率芯片100,从而实现功率模块10的功能。
驱动框架400可以包括沿着功率模块10的长度方向X间隔设置的多个驱动引脚500。 驱动引脚500和功率引脚250位于功率模块10的沿其宽度方向Y上的两侧。多个驱动引脚500和多个功率引脚250均在功率模块10的长度方向上间隔设置。驱动芯片300可以设置在驱动框架400上。也就是说,除了多个驱动引脚500之外,驱动框架400还可以包括用于为驱动芯片300提供焊接位置的焊接部。
多个驱动引脚500和用于为驱动芯片300提供焊接位置的焊接部可以为一体结构。示例的,多个驱动引脚500可以连接于驱动框架400的焊接部,即多个驱动引脚500与上述的焊接部共同构成驱动框架400。这样可以使得驱动框架的连接结构更为可靠,进而使得驱动芯片300的性能得到保证。
在一些实施例中,如图1至图5所示,功率模块10还包括封装体600。封装体600设置在驱动框架400和功率框架20的外部,且驱动引脚500的自由端和功率引脚250的自由端均伸出封装体600。
基于此,设置在驱动框架400和功率框架20外侧的封装体600可以提供保护作用,使得驱动框架400和功率框架20的组装更为可靠,并且驱动芯片300和功率芯片100能够得到良好的保护,从而提升功率模块10的使用性能以及可靠性。
在一些实施例中,如图3和图4所示,功率模块10还可以包括散热片700和绝缘树脂层800。绝缘树脂层800设置于功率框架20远离功率芯片100的一面,散热片700设置于绝缘树脂层800远离功率框架20的一面,且散热片700的远离绝缘树脂层800的底面与封装体600的底面平齐,以使散热片700的底面在封装体600的底面露出。
示例的,散热片700可以采用散热性良好的金属材料,绝缘树脂层800可以采用导热性良好的绝缘树脂材料,绝缘树脂层800设置于散热片700和功率框架20之间,绝缘树脂层800的边缘与散热片700的边缘平齐,且散热片700的底面被封装体600露出。这样一来,可以利用绝缘树脂层800使功率芯片100在工作过程中所产生的热量传递到散热片700,再通过散热片700使得热量及时的散出,因此可以在避免电流逸散的基础上确保功率模块10具有良好的散热性,从而改善功率模块10的可靠性以及使用性能。
需要说明的是,功率模块10是采用模塑成型法对其主体结构(包括驱动框架400、驱动芯片300、功率框架20和功率芯片100)进行封装而得到的封装结构。示例的,可以将功率模块10的主体结构置于封装模具的型腔内,然后向该封装模具的型腔中注入液态的树脂,待树脂固化后即可形成外部的封装体600。封装结构的封装效果会影响框架与其所承载的芯片以及芯片与芯片之间的连接可靠性,而该连接可靠性会进一步影响功率模块10的性能。
为了在实现功率模块10的小型化设计的同时确保良好的封装效果,在对功率模块10的主体结构进行封装时,需对功率框架20的下表面到封装模具的型腔的下表面的间距d进行设计。该间距d越大,越有利于树脂的填充。但在相关技术中,如图6和图7所示,由于树脂的流动性,功率框架20在树脂的压力下会产生变形,从而会导致间距d减小。同时,树脂的导热率较低,导致封装结构的散热性较差,使得型腔内因受树脂压力而变薄的区域容易出现小孔,不利用封装。
基于此,如图8和图9所示,封装模具90可以包括型腔体900、位于型腔体900下方的顶针板910、位于型腔体900内部且靠近顶针板910的套筒920,以及顶针930。
在对功率模块10进行模塑树脂封装的过程中,如图8至图12所示,可以借助封装模具90中的顶针930穿过顶针板910和套筒920,以从功率框架20的下方(远离功率芯片100的一侧)对功率框架20在功率模块10的厚度方向Z上进行支撑,使得功率框架20不会因流动树脂的压力而发生变形,从而可以避免小孔的产生。待树脂开始固化时使顶针930开始复位,封装完成后完全撤去封装模具,在封装体600的下表面上就会形成多个凹痕。示例的,顶针930穿过顶针板910和套筒920并由底板固定、由油路提供动力到顶杆使得顶针930顶出;在切断油路动力后由复位弹簧或者反向油路动作使得顶针930复位。
可以理解的是,套筒920和顶针930的复位位置通常高于型腔的下表面,以防止树脂填充到套筒920内部,因此在封装体600的下表面上最终会形成两个圆形嵌套的环形凹槽(套筒920对应外部的圆形,顶针930对应内部的圆形),即下文中的第一残留部62。此 外,顶针930是一种伸缩顶针设计,在树脂填充时先支撑功率框架20以防止其变形,在树脂填充完成并开始保压时缩回以完成整个塑封流程。由于在顶针930缩回时树脂已完成填充,因此可以保持功率框架20不会变形。
相应的,如图4和图13所示,封装体600具有第一表面610和第二表面620,第一表面610为封装体600的两个表面中相对远离功率芯片100的表面,而第二表面620为封装体600的两个表面中相对靠近功率芯片100的表面。基岛200的上表面(即靠近第一表面610的表面)用于设置功率芯片100,而基岛200的下表面(即靠近第二表面620的表面)即为上述在封装过程中受到顶针930支撑的表面。其中,封装体600的第二表面620上设置有多个第一残留部62。沿着功率模块10的厚度方向Z,每个基岛200对应至少一个第一残留部62。沿着功率模块10的长度方向X,相邻两个基岛200对应的第一残留部62错位设置。
可以理解的是,基岛200与第一残留部62对应是指,沿功率模块10的厚度方向Z,第一残留部62在基岛200上的正投影位于该基岛200内。第一残留部62实质上为封装过程中遗留的凹痕,因此封装体600上第一残留部62的分布与封装模具中顶针的支撑位置的分布相对应。
这里,相邻两个基岛200对应的第一残留部62错位设置是指,在功率模块10的长度方向X上,一个基岛200对应的第一残留部62与相邻的另一个基岛200对应的第一残留部62不在同一条直线上。此外,在同一个基岛200对应多个第一残留部62的情况下,该多个第一残留部62可以位于同一条直线上,也可以不在同一条直线上,这里对此不作具体限定。
示例的,沿着功率模块10的厚度方向Z,第一基岛201、第二基岛202和第三基岛203可以分别对应一个第一残留部62,第四基岛204可以对应两个第一残留部62。其中,第四基岛204对应的两个第一残留部62可以位于同一直线上。该第一残留部62例如可以为圆环形凹槽。
基于上述设计,如图13和图14所示,相邻两个基岛200对应的第一残留部62沿着功率模块10的长度方向X错位设置,可以在封装过程中避免顶针板910的相邻扩孔间发生干涉(参考图14),使得顶针930在缩回时不会对顶针板910造成损伤,从而可以在不改变相邻基岛200之间沿功率模块10的长度方向X的距离的前提下保证顶针板的强度,以实现功率模块10的小型化设计。此外,第四基岛204的面积相对较大,因此第四基岛204对应两个第一残留部62设置,可以在封装过程中采用两个顶针930来支撑第四基岛204,以防止第四基岛204发生倾斜,从而保持第四基岛的平衡。
在一些实施例中,如图15所示,沿功率模块10的宽度方向Y,第一残留部62可以设置在封装体的对应芯片焊接部210远离功率引脚250一侧的部分。如此可以在封装过程中避免功率引脚250与多个第一残留部62相对应的顶针930发生干涉,而且还有利于顶针930在基岛200的远离功率引脚250的位置进行支撑,从而可以更好地避免基岛200的位置发生变化。
在一些实施例中,如图13所示,相邻两个基岛200对应的第一残留部62沿功率模块10的宽度方向Y的中心距离d1大于或等于1.3mm,即d1满足d1≥1.3mm。和/或,相邻两个基岛200对应的第一残留部62的最小距离d2大于或等于3.292mm,即d2满足d2≥3.292mm。基于上述设计,可以通过优化调整顶针930的位置,以在使用相同规格的顶针930的情况下实现对多个基岛200的封装。
示例的,相邻两个基岛200对应的第一残留部62沿功率模块10的宽度方向Y的中心距离d1为1.3mm、1.4mm或1.5mm,相邻两个基岛200对应的第一残留部62的最小距离d2为3.292mm、3.293mm或3.294mm。
示例的,第一基岛201、第二基岛202和第三基岛203可以分别对应一个第一残留部62,第四基岛204可以对应两个第一残留部62。第一基岛201对应的第一残留部62和第三基岛203对应的第一残留部62位于同一直线上,第二基岛202对应的第一残留部62和第四基岛204对应的两个第一残留部62位于另一直线上,这两条直线平行且相距1.3mm。 在顶针板910的扩孔直径为4.5mm的情况下,可以对第一残留部62的位置进行设计,避免顶针板910的相邻扩孔间的干涉,从而保证顶针板的强度以延长封装模具的使用寿命,并同时保证相邻基岛200在功率模块10的长度方向X和宽度方向Y上的距离不变,从而实现功率模块10的小型化设计。
在一些实施例中,如图13所示,相邻两个基岛200对应的第一残留部62沿功率模块10的长度方向X的中心距离d3小于4.5mm,即d3满足d3<4.5mm。示例的,相邻两个基岛200对应的第一残留部62沿功率模块10的长度方向X的中心距离d3为4.5mm、4.3mm或4.2mm。
示例的,在顶针板910的扩孔直径为4.5mm的情况下,当相邻两个基岛200对应的第一残留部62沿功率模块10的长度方向X的中心距离d3大于或等于4.5mm时,相邻扩孔之间不存在干涉的问题,可以直接沿功率模块10的长度方向X设置第一残留部62。而当相邻两个基岛200对应的第一残留部62沿功率模块10的长度方向X的中心距离d3小于4.5mm时,相邻扩孔之间会发生干涉,因此需要采用本公开实施例所提供的错位设计方案。
如此一来,相邻两个基岛200对应的第一残留部62沿功率模块10的长度方向X的中心距离d3小于4.5mm可以确保实现功率模块10的小型化设计。在此基础上,根据相邻两个基岛200对应的第一残留部62沿功率模块10的长度方向X的中心距离d3和相邻两个基岛200对应的第一残留部62的最小距离d2可以对第一残留部62的位置进行设计。
示例的,相邻两个基岛200对应的第一残留部62沿功率模块10的长度方向X的中心距离d3取4.3mm,相邻两个基岛200对应的第一残留部62的最小距离d2取3.292mm,扩孔的直径为4.5mm,据此便可以设计出第一残留部62的分布位置,从而避免相邻第一残留部62间的干涉,并实现功率模块10的小型化设计。
在一些实施例中,如图15所示,多个基岛200中至少两个基岛200对应的第一残留部62的中心连线可以沿功率模块10的长度方向X延伸。
由于多个基岛200沿功率模块10的长度方向X间隔设置,至少两个基岛200对应的第一残留部62的中心连线沿功率模块10的长度方向X延伸,因此至少存在部分第一残留部62位于同一直线上。这部分第一残留部62可以在功率模块10的宽度方向Y上与多个基岛200靠近驱动框架400的边缘所在的直线具有相同的距离,使得该部分基岛200的受力位置相同,从而改善功率框架20的受力均匀性,有利于功率模块10的成型可靠性。
在一些实施例中,如图15所示,多个基岛200可以包括多个第奇数个基岛200(例如第一基岛201和第三基岛203)和多个第偶数个基岛200(例如第二基岛202和第四基岛204),且多个第奇数个基岛200和多个第偶数个基岛200在功率模块10的长度方向X上交替排布。其中,多个第奇数个基岛200对应的第一残留部62的中心连线63与多个第偶数个基岛200对应的第一残留部62的中心连线64均沿功率模块10的长度方向X延伸,且均位于功率模块10沿其宽度方向Y上的中轴线66的同一侧。
示例的,多个第奇数个基岛200包括第一基岛201和第三基岛203,多个第偶数个基岛200包括第二基岛202和第四基岛204。第一基岛201、第二基岛202、第三基岛203和第四基岛204在功率模块10的长度方向X上依次间隔设置。其中,第一基岛201对应的第一残留部62和第三基岛203对应的第一残留部62的中心连线位于一条直线上,第二基岛202对应的第一残留部62和第四基岛204对应的第一残留部62的中心连线位于另一直线上,这两条直线相互平行且沿功率模块10的长度方向X延伸,并且均位于功率模块10沿其宽度方向上的中轴线的同一侧。
多个第奇数个基岛200对应的第一残留部62和多个第偶数个基岛200对应的第一残留部62在功率模块10的长度方向X上交替排布。顶针930穿设的顶针板910上的扩孔与多个第奇数个基岛200和多个第偶数个基岛200相对应的扩孔,因此这些扩孔在顶针板910上在功率模块10的长度方向X上交替排布。如此可以防止顶针板910上的应力集中,从而保证顶针板910的强度,还可以改善功率框架20的受力均匀性,有利于功率模块10的成型可靠性。此外,第一基岛201对应的第一残留部62和第三基岛203对应的第一残留部62的中心连线所在的直线与第二基岛202对应的第一残留部62和第四基岛204对应的 第一残留部62的中心连线所在的直线均位于功率模块10沿其宽度方向上的中轴线的同一侧,使得所有第一残留部62偏向于多个基岛200的同一侧,从而为功率芯片100的设置提供空间,有利于提高功率模块10的承载量。
在一些实施例中,如图15所示,多个第偶数个基岛200对应的第一残留部62可以与功率模块10沿其宽度方向上的中轴线相交,使得这部分第一残留部62临近功率模块10的中轴线,以便于封装模具中顶针930布置。多个第奇数个基岛200对应的第一残留部62可以与多个基岛200的靠近驱动框架400的边缘相切,使得这部分第一残留部62临近基岛200的边缘设置,从而可以保证良好的支撑效果。
在另一些实施例中,如图15所示,多个第奇数个基岛200对应的第一残留部62可以与功率模块10沿其宽度方向上的中轴线相交,使得这部分第一残留部62临近功率模块10的中轴线,以便于封装模具中顶针930布置。多个第偶数个基岛200对应的第一残留部62可以与多个基岛200的靠近驱动框架400的边缘相切,使得这部分第一残留部62临近基岛200的边缘设置,从而可以保证良好的支撑效果。
由于功率模块10的封装效果会影响其性能,为了确保功率模块10具有良好的封装效果,在封装过程中,除了可以在封装体600的第二表面620侧对其进行支撑以避免功率框架20发生变形之外,还可以在封装体600的第一表面610侧进行支撑(按压),以确保功率框架20的结构稳定。
因此,在对功率模块10的主体结构进行封装时,还可以借助封装模具的顶针从功率框架20的上方(设置有功率芯片100的一侧)对功率框架20在功率模块10的厚度方向Z上进行支撑(按压),使得功率框架20可以在不同方向上均得到支撑,以保证功率框架20的结构和位置的稳定性,从而有利于加快塑封速率。当然,在封装过程中,从功率框架20的上方对功率框架20进行支撑的顶针也会在树脂开始固化时逐渐复位,封装完成后完全撤去封装模具,在封装体600的上表面上也会形成多个凹痕,即下文中的第二残留部61。由此可知,第一残留部62和第二残留部61均为由封装工艺在封装体600的表面遗留的凹痕。
基于此,如图5、图16和图17所示,封装体600的第一表面610上设置有多个第二残留部61。沿着功率模块10的厚度方向Z,多个基岛200中位于沿功率模块10的长度方向X的两端的两个基岛200分别对应一个第二残留部61。
其中,第二残留部61仅与多个基岛200中位于沿功率模块10的长度方向X的两端的两个基岛200对应,即用于形成第二残留部61的顶针仅按压在该两个基岛200的表面,这样便可以对位于外侧的基岛200形成来自上方的压力。
可以理解的是,封装体600的第二表面620上也设置有多个第一残留部62,且多个第一残留部62的设置方式及有益效果可以参考上述的实施例。此外,第二残留部61的成因与形状与上述第一残留部62相似,这里不再赘述。
如此一来,在对功率框架20进行封装的过程中,可以对其不同方向进行支撑,以保证功率框架20的结构和位置的稳定性,从而有利于加快塑封速率。此外,如此设置的功率模块10的封装体600的正面(即第一表面610)可以与其它结构的功率模块例如含有DBC(Direct Bond Copper,直接键合铜)结构的功率模块的封装体的正面可以通过相同的封装模具形成,因此可以提高封装模具的通用性,从而缩短研发周期并降低研发费用。
在一些实施例中,如图15至图17所示,沿功率模块10的宽度方向Y,第一残留部62和第二残留部61均可以设置在封装体600的对应芯片焊接部210远离功率引脚250一侧的部分。如此可以在封装过程中避免功率引脚与多个第一残留部62和多个第二残留部61相对应的顶针发生干涉,而且还有利于顶针在基岛200的远离功率引脚250的位置进行支撑,从而可以更好地避免基岛200的位置发生变化。
在一些实施例中,如图17所示,多个基岛200可以包括多个第奇数个基岛200(例如第一基岛201和第三基岛203)和多个第偶数个基岛200(例如第二基岛202和第四基岛204),且多个第奇数个基岛200和多个第偶数个基岛200在功率模块10的长度方向X上交替排布。其中,多个第奇数个基岛200对应的第一残留部62的中心连线63与多个第偶 数个基岛200对应的第一残留部62的中心连线64均沿功率模块10的长度方向X延伸,且多个第二残留部61的中心连线65也沿功率模块10的长度方向X延伸。在此基础上,多个第奇数个基岛200对应的第一残留部62的中心连线63和多个第偶数个基岛200对应的第一残留部62的中心连线64可以均位于多个第二残留部61的中心连线65与功率模块10沿其宽度方向Y上的中轴线66之间。
示例的,多个第奇数个基岛200包括第一基岛201和第三基岛203,多个第偶数个基岛200包括第二基岛202和第四基岛204。第一基岛201、第二基岛202、第三基岛203和第四基岛204在功率模块10的长度方向X上依次间隔设置。其中,第一基岛201、第二基岛202和第三基岛203可以分别对应一个第一残留部62,第四基岛204可以对应两个第一残留部62,第一基岛201和第四基岛204还可以分别对应一个第二残留部61。第一基岛201对应的第一残留部62和第三基岛203对应的第一残留部62的中心连线63位于第一直线上,第二基岛202对应的第一残留部62和第四基岛204对应的第一残留部62的中心连线64位于第二直线上,第一基岛201和第四基岛204对应的第二残留部61的中心连线65位于第三直线上,且第一直线和第二直线位于第三直线与功率模块10沿其宽度方向Y上的中轴线66之间。
基于上述设置,多个第一残留部62在封装体600的第二表面620上交错排布,因此顶针930穿设的顶针板910上的扩孔与各个第一残留部62相对应,这些扩孔在顶针板上在功率模块10的长度方向X上也交替排布。如此可以防止顶针板910上的应力集中,从而保证顶针板910的强度,还可以改善功率框架20的受力均匀性,有利于功率模块10的成型可靠性。此外,多个第二残留部61在封装体600的第一表面610上沿同一直线排布,使得第二残留部61对应的顶针也沿同一直线排布,以便保持来自上方的压力的平衡。更进一步的,多个第奇数个基岛200对应的第一残留部62的中心连线63和多个第偶数个基岛200对应的第一残留部62的中心连线64位于多个第二残留部61的中心连线65与功率模块10沿其宽度方向Y上的中轴线66之间,如此不仅可以方便在封装过程中多个顶针在功率框架20的不同侧的设置,而且还可以避免功率引脚250与多个第一残留部62和多个第二残留部61相对应的顶针发生干涉。
在一些实施例中,如图17所示,第一基岛201对应的第二残留部61和第四基岛204对应的第二残留部61的中心距离d4可以大于第一基岛201对应的第一残留部62和第四基岛204对应的最远离第一基岛201的第一残留部62的中心距离d5,即d4>d5。也就是说,沿功率模块10的长度方向X,位于最端部的两个第二残留部61的中心间距d4大于位于最端部的两个第一残留部61的中心间距d5。
如此一来,便可以在封装过程中避免位于两端的两个第二残留部61所对应的顶针与位于两端的两个第一残留部62所对应的顶针在功率模块10的厚度方向Z上的位置完全重叠,从而有利于实现对基岛200在封装体600内的定位。
在一些实施例,如图17所示,在封装体600沿其长度方向X的两侧分别设置有一个第二缺口67和两个盲孔68。其中,位于封装体600一侧的一个第二缺口67和两个盲孔68与位于封装体600另一侧的一个第二缺口67和两个盲孔68关于封装体600的在其长度方向X的中心线对称。其中,第二缺口67的中心位于功率模块10沿其宽度方向Y的中轴线66上,两个盲孔68位于封装体600的第二表面620(背面)且相对于功率模块10沿其宽度方向Y的中轴线66对称。
示例的,第二缺口67可以为设置在封装体600沿其长度方向X的两侧的U型缺口,其沿功率模块10的厚度方向Z贯通;盲孔68可以为设置在封装体600表面的圆形浅槽,其深度可以小于第一残留部62的深度。
基于此,第二缺口67的中心位于功率模块10沿其宽度方向Y的中轴线66上,可以便于对封装体600进行固定。另外,两个盲孔68位于封装体600的第二表面620(背面)且相对于功率模块10沿其宽度方向Y的中轴线66对称,可以在脱模过程中避免对封装体600的破坏,并避免封装体600发生变形。
示例的,如图17所示,第二缺口67与功率模块10沿其宽度方向Y的中轴线66的交 点可以定义为A点,两个盲孔68的中心连线与功率模块10沿其宽度方向Y的中轴线66的交点可以定义为B点,则B点位于第二缺口67的中心和A点之间。如此可以方便脱模,且在脱模过程中还可以避免对封装体600的破坏,从而延长封装模具的使用寿命,并有利于实现功率模块10的小型化设计。
下面结合图13至图17对功率模块10的结构进行示例性介绍。功率模块10可以包括功率框架20和驱动框架400,位于功率框架20上的功率芯片100、位于驱动框架400上的驱动芯片300,以及位于功率框架20和驱动框架400外部的封装体600。功率框架20可以包括沿功率模块10的长度方向X依次间隔排布的第一基岛201、第二基岛202、第三基岛203和第四基岛204,且每个基岛可以包括沿功率模块10的宽度方向Y依次连接的芯片焊接部210、连接部220、折弯部230、平台部240和功率引脚250。驱动框架400可以包括沿功率模块10的长度方向X间隔设置的多个驱动引脚500。
封装体600具有第一表面610和第二表面620。
封装体600的第二表面620上设置有多个第一残留部62。沿着功率模块10的厚度方向Z,每个基岛200对应至少一个第一残留部62。沿着功率模块10的长度方向X,相邻两个基岛200对应的第一残留部62错位设置。例如,在功率模块10的厚度方向Z上,第一基岛201对应有第一个第一残留部62、第二基岛202对应有第二个第一残留部62、第三基岛203对应有第三个第一残留部62、第四基岛204对应有第四个第一残留部62和第五个第一残留部62。
封装体600的第一表面610上设置有多个第二残留部61。沿着功率模块10的厚度方向Z,多个基岛200中位于沿功率模块10的长度方向X的两端的两个基岛200分别对应一个第二残留部61,多个第二残留部61沿着功率模块10的长度方向X排列且位于同一直线上。例如,在功率模块10的厚度方向Z上,第一基岛201对应有第一个第二残留部61,第四基岛204对应有第二个第二残留部61。
相应的,在对功率模块10的主体结构进行封装的过程中,沿功率模块10的厚度方向Z,封装体600的第一表面610(正面)对应的顶针板上形成有与第一个第二残留部61和第二个第二残留部61相对应的扩孔,封装体600的第二表面620(背面)对应的顶针板上形成有与第一个第一残留部62、第二个第一残留部62、第三个第一残留部62、第四个第一残留部62和第五个第一残留部62相对应的扩孔。这样不仅可以避免顶针板的扩孔之间发生干涉,而且还能避免第四基岛204发生倾斜。
在本公开的描述中,第一特征在第二特征“之上”或“之下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请公开的范围受所附权利要求的限制。

Claims (21)

  1. 一种功率模块,包括:
    功率框架,包括多个基岛;所述基岛包括沿所述功率模块的宽度方向依次连接的芯片焊接部、连接部、折弯部、平台部和功率引脚,且所述芯片焊接部、所述连接部、所述折弯部、所述平台部和所述功率引脚为一体结构;及
    多个功率芯片,设置于所述多个基岛的芯片焊接部上;
    其中,所述连接部包括至少一条斜边,且相邻基岛的两连接部的相互靠近的斜边沿基本相同的方向延伸;所述折弯部相对于所述平台部倾斜设置;所述多个基岛中至少位于中间的基岛的平台部包括远离功率引脚一侧的倒角,且一个基岛的平台部的倒角的边在所述多个基岛所在的平面上的正投影和与其相邻的另一个基岛的折弯部的边在所述多个基岛所在的平面上的正投影沿基本相同的方向延伸。
  2. 根据权利要求1所述的功率模块,其中,所述多个基岛包括第一基岛、第二基岛、第三基岛和第四基岛;所述第一基岛、所述第二基岛、所述第三基岛和所述第四基岛在所述功率模块的长度方向上依次间隔设置;
    所述第一基岛的连接部和所述第四基岛的连接部均包括一条斜边,所述第二基岛的连接部和所述第三基岛的连接部均包括两条斜边,且相邻基岛的两连接部的相互靠近的斜边平行。
  3. 根据权利要求2所述的功率模块,其中,所述第四基岛的面积大于所述第一基岛的面积,所述第二基岛的面积和所述第三基岛的面积;
    所述第一基岛、所述第二基岛、所述第三基岛和所述第四基岛中,至少所述第四基岛上设置有至少一个第一通孔。
  4. 根据权利要求3所述的功率模块,其中,所述第一基岛上设置有一个第一通孔,所述一个第一通孔位于所述第一基岛的连接部靠近芯片焊接部的一侧;和/或
    所述第四基岛上设置有多个第一通孔;所述多个功率芯片中的部分功率芯片设置在所述第四基岛上;所述多个第一通孔中的一个第一通孔位于所述第四基岛的连接部靠近芯片焊接部的一侧,所述多个第一通孔中的其余第一通孔中的任一个位于所述第四基岛对应相邻功率芯片之间的区域的部分。
  5. 根据权利要求2至4任一项所述的功率模块,其中,所述第一基岛的平台部、所述第二基岛的平台部和所述第三基岛的平台部包括倒角;
    在所述第一基岛、所述第二基岛和所述第三基岛中,一个基岛的平台部的倒角的边和与其相邻的另一个基岛的折弯部的边相平行。
  6. 根据权利要求1至5任一项所述的功率模块,其中,所述多个基岛中的至少两个基岛的折弯部平行设置。
  7. 根据权利要求1至6任一项所述的功率模块,其中,所述平台部包括第一缺口,所述第一缺口设置于所述平台部靠近所述弯折部的位置;和/或
    所述平台部包括第二通孔,所述第二通孔设置于所述平台部靠近所述功率引脚的一侧;和/或
    所述功率引脚包括隔离部,所述隔离部靠近其与所述平台部的连接处,被配置为隔离外部的空气和水分。
  8. 根据权利要求1至7任一项所述的功率模块,还包括:
    驱动框架,包括沿所述功率模块的长度方向间隔设置的多个驱动引脚;所述驱动引脚和所述功率引脚位于沿所述功率模块宽度方向的两侧;
    驱动芯片,设置在所述驱动框架上;以及
    封装体,设置在所述驱动框架和所述功率框架的外侧,且所述驱动引脚的自由端和所述功率引脚的自由端伸出所述封装体。
  9. 根据权利要求8所述的功率模块,还包括:
    绝缘树脂层,设置于所述功率框架远离所述功率芯片的一侧;以及
    散热片,设置于所述绝缘树脂层远离所述功率框架的一侧,且所述散热片的远离所述绝缘树脂层的底面与所述封装体的底面平齐,以使所述散热片的底面在所述封装体的底面露出。
  10. 根据权利要求1所述的功率模块,还包括:
    封装体,封装在所述多个基岛的外部且具有第一表面和第二表面;所述功率引脚的一端位于所述封装体内,另一端伸出所述封装体外;所述多个功率芯片设置在所述多个基岛的靠近所述第一表面的表面上;
    其中,所述封装体的第二表面上设置有多个第一残留部;沿所述功率模块的厚度方向,每个基岛对应至少一个第一残留部;沿所述功率模块的长度方向,相邻两个基岛对应的第一残留部错位设置。
  11. 根据权利要求10所述的功率模块,其中,相邻两个基岛对应的第一残留部沿所述功率模块的宽度方向的中心距离d1满足d1≥1.3mm;和/或
    相邻两个基岛对应的第一残留部的最小距离d2满足d2≥3.292mm;和/或
    相邻两个基岛对应的第一残留部沿所述功率模块的长度方向的中心距离d3满足d3<4.5mm。
  12. 根据权利要求10或11所述的功率模块,其中,沿所述功率模块的宽度方向,所述第一残留部设置在所述封装体的对应所述芯片焊接部远离所述功率引脚一侧的部分。
  13. 根据权利要求10或11所述的功率模块,其中,所述多个基岛中至少两个基岛对应的第一残留部的中心连线沿所述功率模块的长度方向延伸。
  14. 根据权利要求13所述的功率模块,其中,所述多个基岛包括多个第奇数个基岛和多个第偶数个基岛;所述多个第奇数个基岛和所述多个第偶数个基岛在所述功率模块的长度方向上交替排布;
    所述多个第奇数个基岛对应的第一残留部的中心连线与所述多个第偶数个基岛对应的第一残留部的中心连线均沿所述功率模块的长度方向延伸,且位于所述功率模块沿其宽度方向上的中轴线的同一侧。
  15. 根据权利要求14所述的功率模块,其中,所述封装体的第一表面上设置有多个第二残留部;沿所述功率模块的厚度方向,所述多个基岛中位于沿所述功率模块的长度方向的两端的两个基岛分别对应一个第二残留部。
  16. 根据权利要求15所述的功率模块,其中,所述第一残留部和所述第二残留部均设置在所述封装体的对应所述芯片焊接部远离所述功率引脚一侧的部分。
  17. 根据权利要求15或16所述的功率模块,其中,所述多个第二残留部的中心连线沿所述功率模块的长度方向延伸;所述多个第奇数个基岛对应的第一残留部的中心连线和所述多个第偶数个基岛对应的第一残留部的中心连线位于所述多个第二残留部的中心连线与所述功率模块沿其宽度方向上的中轴线之间。
  18. 根据权利要求15-17任一项所述的功率模块,其中,所述多个基岛包括沿所述功率模块的长度方向依次设置的第一基岛、第二基岛、第三基岛和第四基岛;
    所述多个第一残留部包括与所述第一基岛对应的第一个第一残留部、与所述第二基岛对应的第二个第一残留部、与所述第三基岛对应的第三个第一残留部、以及与所述第四基岛对应的第四个第一残留部和第五个第一残留部;
    所述多个第二残留部包括与所述第一基岛对应的第一个第二残留部和与所述第四基岛对应的第二个第二残留部。
  19. 根据权利要求18所述的功率模块,其中,所述多个功率芯片包括三个第一功率 芯片和三个第二功率芯片;
    所述三个第一功率芯片分别设置在所述第一基岛、所述第二基岛和所述第三基岛上;所述三个第二功率芯片均设置在所述第四基岛上,且沿所述功率模块的长度方向间隔设置。
  20. 根据权利要求18所述的功率模块,其中,所述第一个第二残留部和所述第二个第二残留部的中心距离d4大于所述第一个第一残留部和所述第五个第一残留部的中心距离d5。
  21. 一种电子设备,包括根据权利要求1-20中任一项所述的功率模块。
PCT/CN2023/122869 2022-11-17 2023-09-28 功率模块和具有其的电子设备 WO2024103985A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202223074596.9U CN219017641U (zh) 2022-11-17 2022-11-17 功率模块及具有其的电子设备
CN202223074596.9 2022-11-17
CN202310495811.2A CN116631971B (zh) 2023-04-28 2023-04-28 功率模块
CN202310495811.2 2023-04-28
CN202321049262.8 2023-04-28
CN202321049262.8U CN219937048U (zh) 2023-04-28 2023-04-28 功率模块

Publications (1)

Publication Number Publication Date
WO2024103985A1 true WO2024103985A1 (zh) 2024-05-23

Family

ID=91083782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122869 WO2024103985A1 (zh) 2022-11-17 2023-09-28 功率模块和具有其的电子设备

Country Status (1)

Country Link
WO (1) WO2024103985A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150595A (ja) * 2003-11-19 2005-06-09 Mitsubishi Electric Corp 電力用半導体装置
CN109994447A (zh) * 2017-12-22 2019-07-09 三菱电机株式会社 半导体模块
CN112041984A (zh) * 2018-05-09 2020-12-04 三菱电机株式会社 功率半导体装置及其制造方法以及电力变换装置
CN113394119A (zh) * 2020-03-12 2021-09-14 富士电机株式会社 半导体装置的制造方法以及半导体装置
CN219017641U (zh) * 2022-11-17 2023-05-12 海信家电集团股份有限公司 功率模块及具有其的电子设备
CN116631971A (zh) * 2023-04-28 2023-08-22 海信家电集团股份有限公司 功率模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150595A (ja) * 2003-11-19 2005-06-09 Mitsubishi Electric Corp 電力用半導体装置
CN109994447A (zh) * 2017-12-22 2019-07-09 三菱电机株式会社 半导体模块
CN112041984A (zh) * 2018-05-09 2020-12-04 三菱电机株式会社 功率半导体装置及其制造方法以及电力变换装置
CN113394119A (zh) * 2020-03-12 2021-09-14 富士电机株式会社 半导体装置的制造方法以及半导体装置
CN219017641U (zh) * 2022-11-17 2023-05-12 海信家电集团股份有限公司 功率模块及具有其的电子设备
CN116631971A (zh) * 2023-04-28 2023-08-22 海信家电集团股份有限公司 功率模块

Similar Documents

Publication Publication Date Title
US9917031B2 (en) Semiconductor device, and method for assembling semiconductor device
US10262948B2 (en) Semiconductor module having outflow prevention external terminals
KR102239259B1 (ko) 고효율 열 경로 및 몰딩된 언더필을 구비한 적층형 반도체 다이 조립체
US6208023B1 (en) Lead frame for use with an RF powered semiconductor
TWI492348B (zh) 樹脂密封半導體裝置及製造此裝置之方法
US8952520B2 (en) Power semiconductor device
TW200529406A (en) Semiconductor apparatus
JP6149932B2 (ja) 半導体装置
JP4254527B2 (ja) 半導体装置
CN102820288A (zh) 功率模块及其制造方法
JP4146785B2 (ja) 電力用半導体装置
JP2008263210A (ja) 電力用半導体装置
CN109713912B (zh) 用于空调器的功率集成模块及其制造方法
CN110010579B (zh) 一种信号端子嵌入式功率半导体模块及其封装工艺
JP2014154736A (ja) 半導体装置
JP5623367B2 (ja) 半導体装置および半導体装置モジュール
CN112331632B (zh) 半导体装置
WO2024103985A1 (zh) 功率模块和具有其的电子设备
CN211719598U (zh) 一种线路可靠的散热型贴片式二极管
CN116053254B (zh) 功率模块和具有其的电子设备
WO2024104117A1 (zh) 功率模块和具有其的电子设备
CN111681997B (zh) 功率封装模块及电子装置
JP7512659B2 (ja) 半導体モジュール及び半導体モジュールの製造方法
WO2024104114A1 (zh) 功率模块和具有其的电子设备
US20230050112A1 (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890422

Country of ref document: EP

Kind code of ref document: A1