WO2024103839A1 - 支重轮焊接定位工装、焊接系统及焊接方法 - Google Patents

支重轮焊接定位工装、焊接系统及焊接方法 Download PDF

Info

Publication number
WO2024103839A1
WO2024103839A1 PCT/CN2023/110158 CN2023110158W WO2024103839A1 WO 2024103839 A1 WO2024103839 A1 WO 2024103839A1 CN 2023110158 W CN2023110158 W CN 2023110158W WO 2024103839 A1 WO2024103839 A1 WO 2024103839A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
wheel body
half wheel
station
preheating
Prior art date
Application number
PCT/CN2023/110158
Other languages
English (en)
French (fr)
Inventor
徐轲
陈元锋
刘彬
常艳红
王贝
李凯璇
郝亮亮
张耀
Original Assignee
徐州徐工履带底盘有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州徐工履带底盘有限公司 filed Critical 徐州徐工履带底盘有限公司
Publication of WO2024103839A1 publication Critical patent/WO2024103839A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work

Definitions

  • the present disclosure is based on the Chinese application with application number 202211445418.4 and application date November 18, 2022 , and claims its priority.
  • the disclosed content of the Chinese application is hereby introduced into the present disclosure as a whole.
  • the present invention relates to a track wheel welding positioning tool, a welding system and a welding method.
  • Track rollers are key components of crawler engineering machinery, and their preheating and welding quality and efficiency directly affect product competitiveness.
  • Traditional track roller preheating and welding equipment is designed as a single station (preheating and welding are performed at the same station), with manual or KBK (crane-like hoisting equipment) auxiliary loading, and oxygen-acetylene flame preheating. After preheating, the flame gun is lifted and the welding gun is lowered to the weld position for welding. This welding method is inefficient, the quality of the product after welding is poor, and there are safety hazards.
  • the embodiments of the present disclosure provide a track roller welding positioning tool, a welding system and a welding method, which can improve the product quality of the track roller.
  • a roller welding positioning tool which is used to position two half wheel bodies in a roller so that the two half wheel bodies are welded at a butt joint plane, and the half wheel bodies are provided with through holes along the axial direction.
  • the roller welding positioning tool comprises:
  • the expansion sleeve comprises a cylinder, a side wall of which is provided with a notch, and the expansion sleeve is configured to pass through the respective through holes of the two half-wheel bodies;
  • the core shaft assembly is inserted into the inner hole of the cylinder, and the cushion block is pressed against the inner wall of the through hole of the half wheel body to realize the tension of the two half wheel bodies.
  • the cylinder includes a first section and a second section connected along the axial direction, and a group of notches are respectively provided on the first section and the second section.
  • Two groups of gaskets are provided, and the two groups of gaskets are respectively arranged in the two groups of notches.
  • the two half-wheel bodies are the first half-wheel body and the second half-wheel body, and the two groups of gaskets are respectively used to abut against the inner walls of the through holes of the first half-wheel body and the second half-wheel body.
  • each set of notches includes a plurality of notches spaced circumferentially apart.
  • the supporting wheel welding positioning tool further includes an elastic ring, and radially outer side walls of multiple pads of each group of pads are provided with grooves extending in the circumferential direction, and the elastic ring is embedded in the multiple grooves.
  • the radial inner wall of the gasket includes a slope, the slope is inclined from the end of the cylinder to the docking plane toward the direction close to the central axis of the cylinder, and the outer wall shape of the core shaft assembly matches the radial inner wall of the gasket.
  • the cross-section of the inner cavity of the expansion sleeve and the cross-section of the core shaft assembly are both circular.
  • the spindle assembly includes a first spindle and a second spindle, which are respectively inserted into the inner hole from both ends of the cylinder, and two sets of pads are respectively pressed against the inner walls of the through holes of the first half wheel body and the second half wheel body.
  • the expansion sleeve also includes a first flange portion.
  • first end of the first half wheel body When in use, the first end of the first half wheel body is docked with the first end of the second half wheel body.
  • the first flange portion is arranged at the first end of the first section, and the second end of the first section is connected to the second section.
  • the first flange portion is used to limit the second end of the first half wheel body in the axial direction.
  • the mandrel assembly includes a first mandrel and a second mandrel
  • the track roller welding positioning tool further includes:
  • a first spindle comprises a first housing and a first driving component, wherein the first flange portion is fixedly connected to the first housing, and the first driving component is disposed in the first housing and configured to drive the first spindle to move axially;
  • the second main shaft includes a second shell, a second flange portion and a second driving component.
  • the second flange portion is fixedly connected to the second shell and is used to limit the second end of the second half wheel body in the axial direction.
  • the second driving component is arranged in the second shell and is configured to drive the second core shaft to move axially.
  • a welding system comprising the track roller welding positioning tool of the above embodiment.
  • the welding system is provided with a preheating station and a welding station, the preheating station and the welding station are spaced apart, and the welding system further comprises:
  • the position transfer device is configured to transfer the supporting roller welding positioning tool and the preheated supporting roller from the preheating station to the welding station, and/or transfer the support member and the supporting roller welding positioning tool that are vacant after unloading from the welding station to the preheating station.
  • the welding system further comprises:
  • an induction coil movably disposed at the preheating station, configured to preheat the half wheel body at the docking plane
  • the temperature detection component is configured to detect the preheating temperature at the docking plane.
  • the welding system further comprises:
  • a loading device configured to transport the half wheel body to a preset position
  • a visual recognition device configured to recognize a half wheel body at a preset position and collect position information of the half wheel body
  • the picking device is configured to pick up the half wheel body according to the position information and transfer it to the preheating station.
  • a welding method based on the welding system of the above embodiment comprising a positioning step, wherein the positioning step comprises:
  • the cushion block moves along the side wall of the notch away from the central axis of the expansion sleeve, so that the cushion block abuts against the inner wall of the through hole of the half wheel body to achieve tensioning of the two half wheel bodies.
  • the supporting wheel welding positioning tool further includes a second main shaft, the second main shaft includes a second shell and a second flange portion, the second flange portion is fixedly connected to the second shell, and the positioning step further includes:
  • the second end of the first half wheel body is limited in the axial direction by the first flange portion; and/or
  • the second main shaft is moved toward the direction close to the second end of the second half wheel body, so that the second flange portion limits the second end of the second half wheel body in the axial direction.
  • the cylinder includes a first section and a second section connected in the axial direction, the first section and the second section are respectively provided with a group of notches, two groups of pads are provided, and the two groups of pads are respectively arranged in the two groups of notches, the two half wheel bodies are respectively the first half wheel body and the second half wheel body, the mandrel assembly includes the first mandrel and the second mandrel, the supporting wheel welding positioning tool also includes the first main shaft and the second main shaft, the first main shaft includes the first driving component, and the second main shaft includes the second driving component, and the positioning step also includes:
  • the first driving component drives the first spindle to move axially from one end of the cylinder toward the direction close to the docking plane, so that a group of cushion blocks abut against the inner wall of the through hole of the first half wheel body;
  • the second driving component drives the second core shaft to move axially from the other end of the cylinder toward the direction close to the docking plane, so that another group of cushion blocks abuts against the inner wall of the through hole of the second half wheel body.
  • the welding system further includes a feeding device, a visual recognition device and a picking device, the welding system is provided with a preheating station and a welding station, and the welding method further includes a feeding step, and the feeding step includes:
  • the half wheel body is transported to a preset position by a loading device;
  • the picking device picks up the half wheel body according to the position information and transfers it to the preheating station.
  • the welding system further includes an induction coil and a temperature detection component
  • the welding method further includes a preheating step, the preheating step including:
  • the induction coil is moved to the docking plane to preheat the half wheel body
  • the preheating temperature at the docking plane is detected by a temperature detection component, and when the preheating temperature reaches a preset temperature, the induction coil is moved away.
  • the welding system further includes a position transfer device
  • the welding method further includes a position transfer step
  • the position transfer step includes:
  • the supporting rollers after welding at the welding station are unloaded from the supporting parts
  • the support parts and the supporting wheel welding positioning tooling which are vacant after unloading are transferred from the welding station to the preheating station to wait for the next loading.
  • the welding method further comprises:
  • a weld deposition area is formed at the butt joint plane by a single-sided welding and double-sided forming process
  • the supporting wheel welding positioning tooling of the embodiment of the present disclosure has high positioning accuracy, can effectively ensure the coaxiality requirements of the inner hole of the wheel body welding, and after adopting welding processes such as single-sided welding and double-sided forming, it can eliminate the joint gap between the two halves of the wheel body, improve the cleanliness of the wheel body and the cleanliness of the assembly, thereby improving the product quality of supporting wheels and crawler engineering machinery.
  • FIG. 1 is a schematic structural diagram of some embodiments of the present disclosure in which the supporting wheel welding positioning tool cooperates with the supporting wheel.
  • FIG. 2 is a schematic structural diagram of some embodiments of the track roller welding positioning tooling disclosed herein.
  • FIG3 is a schematic structural diagram of some embodiments of the expansion sleeve and the first main shaft of the supporting wheel welding positioning tooling disclosed in the present invention.
  • FIG. 4 is a cross-sectional view of some embodiments of the expansion sleeve and the first main shaft of the supporting wheel welding positioning tool disclosed in the present invention.
  • FIG. 5 is a schematic structural diagram of some embodiments of the second main shaft of the track wheel welding positioning tooling disclosed in the present invention.
  • FIG. 6 is a schematic diagram of the structure of some embodiments of the welding system disclosed herein.
  • FIG. 7 is a schematic diagram of the weld deposition area of two half-wheel bodies at the butt joint plane in some embodiments of the present disclosure.
  • the positioning accuracy of traditional track wheel welding positioning tooling is poor, and the half-wheel body must adopt a male-female joint matching structure to ensure the coaxiality of the two half-wheel bodies after welding.
  • the male-female joint requires high precision in the rough turning of the half-wheel body, and the overlapping area will increase the length of the half-wheel body, thereby increasing the cost of raw materials.
  • the inventors found that there was an incompletely fused gap at the male-female joint. After the subsequent overall heat treatment of the wheel body, the gap opened and became larger. During the shot blasting and finishing processes, steel shots and iron filings would be mixed in the gap, making it difficult to clean and serious. It seriously affects the cleanliness of the wheel body and the cleanliness of the assembly, and increases the risk of oil leakage in the track wheel assembly.
  • the present disclosure provides a track roller welding positioning tool, as shown in FIGS. 1 to 7 , which is used to position two half-wheel bodies 6 in a track roller 66 so that the two half-wheel bodies 6 are welded at a butt joint plane w, and the half-wheel body 6 is provided with a through hole along the axial direction.
  • the track roller welding positioning tool comprises:
  • the expansion sleeve 1 comprises a cylinder 11, a side wall of which is provided with a notch 12, and the expansion sleeve 1 is configured to pass through the respective through holes of the two half-wheel bodies 6;
  • a spacer block 2 is disposed in the notch 12;
  • the core shaft assembly 3 is inserted into the inner hole of the cylinder 11, and the cushion block 2 is pressed against the inner wall of the through hole of the half wheel body 6 to achieve the tensioning of the two half wheel bodies 6.
  • the expansion sleeve 1 passes through the respective through holes of the two half-wheel bodies 6, that is, the cylinder 11 of the expansion sleeve 1 passes through the through holes.
  • the roller welding positioning tool is used to ensure the coaxiality of the two half-wheel bodies 6 after welding. More specifically, the roller welding positioning tool allows the central axis a of the cylinder 11 to pass through the centers of the through holes of the two half-wheel bodies, and at the same time, there is no gap between the two half-wheel bodies 6 at the docking plane.
  • the length of the cylinder 11 should be sufficient for the two half-wheel bodies 6 to pass through.
  • the axial length of the cylinder 11 can be equal to the sum of the axial lengths of the two half-wheel bodies 6, or equal to the axial length of the roller 66.
  • the spindle assembly 3 pushes the cushion block 2 in a direction away from the central axis a, thereby tightening the inner hole of the half wheel body 6.
  • the cushion block 2 can move in the radial direction of the cylinder 11 to move away from the central axis a, or can move in a direction that forms a certain angle with the radial direction of the cylinder 11 to move away from the central axis a.
  • the notch 12 and the pad 2 are formed by cutting the outer wall of the cylinder 11, and the expansion sleeve 1 and the pad 2 are integrally processed with good consistency, so that the coaxiality of the two half wheel bodies 6 is not affected by the precision of the machine tool guide rails, etc., and can effectively meet the coaxiality requirements of the inner hole of the wheel body welding.
  • the pad 2 can be overlapped on the outer wall of the cylinder 11 to prevent the pad 2 from sliding out of the notch 12 under the action of gravity.
  • the pad 2 can be an elastic member adapted to the shape of the notch 12, so as to tighten the two half wheel bodies 6 tightly through elastic deformation.
  • one or more notches 12 can be set along the circumference of the cylinder 11.
  • the pad 2 can be embedded in the cylinder 11 by a spring or the like, or limited on the cylinder 11 by an elastic member such as a rubber ring, so as to achieve automatic reset after the mandrel assembly 3 is taken out from the inner hole, which is convenient for assembly line production operations.
  • the mandrel assembly 3 may be cylindrical, such as a cylindrical or polygonal prism, or may be conical, or may be prism-shaped, such as a quadrangular prism or other polygonal prisms.
  • the end of the mandrel assembly 3 inserted into the inner hole may be provided with a first chamfer, and the cushion block 2 may also be provided with a second chamfer that matches the first chamfer of the mandrel assembly 3 to increase the mandrel assembly 3.
  • the smoothness and stability of the insertion of the shaft assembly 3 into the inner hole can realize the tightening of the two half-wheel bodies 6 by the core shaft assembly 3 in a simple and reliable manner.
  • the mandrel assembly 3 can be an integrated structure, inserted into the inner hole of the cylinder 11 from one end of the cylinder 11, or a split structure, inserted into the inner hole of the cylinder 11 from both ends of the cylinder 11.
  • only one group of long pads can be set to tighten the two half-wheel bodies 6 together, or two or more groups of pads 2 can be set to tighten the two half-wheel bodies separately.
  • each group of pads 2 can include one or more, and each group of pads 2 can be arranged at intervals along the circumference of the cylinder 11.
  • each group of pads 2 includes at least two, for example, each group of pads 2 is arranged with 4 equal intervals along the circumference of the cylinder 11.
  • a butt weld can be used to achieve a single-sided welding and double-sided forming process, thereby eliminating the butt gap between the two half wheel bodies 6 and improving the cleanliness of the wheel body and the assembly cleanliness.
  • the supporting wheel welding positioning tool of this embodiment has high positioning accuracy and can ensure the coaxiality of the two half-wheel bodies 6 after welding.
  • the two half-wheel bodies 6 do not need to adopt a mother-and-child fitting structure at the docking plane w, which can reduce the length of the half-wheel body and reduce the raw material cost of setting the letter-shaped fitting structure.
  • the use of welding processes such as single-sided welding and double-sided forming can avoid the existence of incompletely fused gaps at the mother-and-child joints, thereby achieving the purpose of eliminating unfused gaps and improving the cleanliness of the wheel body.
  • the track wheel welding positioning tooling of this embodiment can effectively ensure the coaxiality requirements of the inner hole of the wheel body welding, eliminate the joint gap between the two halves of the wheel body, improve the cleanliness of the wheel body and the assembly cleanliness, and thus improve the product quality of track wheels and crawler engineering machinery.
  • the cylinder 11 includes a first section 111 and a second section 112 connected along the axial direction, and a group of notches 12 are respectively provided on the first section 111 and the second section 112.
  • the two half-wheel bodies 6 are respectively the first half-wheel body 61 and the second half-wheel body 62.
  • the two groups of gaskets 2 are respectively used to abut against the inner walls of the through holes of the first half-wheel body 61 and the second half-wheel body 62.
  • the pad 2 includes an outer side wall and an inner side wall.
  • the spindle assembly 3 abuts against the inner side wall of the pad 2, the pad 2 moves in a direction away from the central axis a, and the outer side wall of the pad 2 abuts against the inner wall of the through hole of the half wheel body 6.
  • the entire outer side wall may abut against the inner wall of the through hole of the half wheel body 6, or part of the outer side wall may abut against the inner wall of the through hole of the half wheel body 6.
  • two groups of pads 2 may abut against two half wheel bodies 6 at the same time, or may abut against the two half wheel bodies in sequence.
  • the track wheel welding and positioning tooling of this embodiment can provide a group of pads 2 for each half wheel body 6.
  • the inner wall of the through hole of each half wheel body is tightened more reliably and stably, further improving the docking stability of the two half wheel bodies 6 and improving the docking accuracy of the half wheel bodies at the docking plane, thereby improving the cleanliness of the wheel body and improving the product quality of the supporting wheels and crawler engineering machinery.
  • each group of notches 12 includes a plurality of notches 12 spaced apart in the circumferential direction.
  • each group of notches 12 includes a plurality of notches 12 spaced apart along the circumference of the cylinder 11.
  • the spacing distances between the plurality of notches 12 may be the same or different.
  • the expansion sleeve 1 may be cut evenly along the circumference of the first section 111 and the second section 112 of the cylinder 11 to form two groups of notches 12 and two groups of pads 2, wherein each group of notches 12 may include four, and correspondingly each group of pads 2 includes four.
  • the supporting wheel welding positioning tooling of this embodiment can more reliably and stably tighten the inner wall of the through hole of each half wheel body through the multiple notches 12 arranged at intervals along the circumferential direction, further improve the docking stability of the two half wheel bodies 6, and improve the docking accuracy of the half wheel bodies at the docking plane, thereby improving the cleanliness of the wheel body and improving the product quality of supporting wheels and crawler engineering machinery.
  • the track roller welding positioning tool further includes an elastic ring, and radially outer walls of the multiple pads 2 of each group of pads 2 are provided with grooves 21 extending in the circumferential direction, and the elastic ring is embedded in the multiple grooves 21 .
  • the plurality of cushion blocks 2 can be automatically reset under the elastic force of the elastic ring, so that the cylinder 11 of the expansion sleeve 1 can pass through the half wheel body 6 when loading next time.
  • an overlap portion can be provided on the outer side wall of the cushion block 2, so that the cushion block 2 overlaps the outer side wall of the cylinder 11 to prevent the cushion block 2 from sliding out of the slot 12 under the action of gravity.
  • the groove and elastic ring of this embodiment can make the pad 2 automatically reset after the core shaft assembly 3 is pulled out from the inner hole of the cylinder 11, which can improve the adaptability of the supporting wheel welding positioning tooling to flow welding operations, reduce manual operation, and improve the fluency and work efficiency of the welding system.
  • the radial inner wall of the gasket 2 includes a slope 22, the inclination direction of the slope 22 is from the end of the cylinder 11 to the docking plane w toward the direction close to the central axis a of the cylinder 11, and the shape of the outer wall of the core shaft assembly 3 matches the radial inner wall of the gasket 2.
  • the outer side wall of the mandrel assembly 3 includes a bevel that matches the bevel 22, that is, the bevel of the mandrel assembly 3 should also be inclined in a direction from the end of the cylinder 11 to the docking plane w toward the direction close to the central axis a.
  • the bevel 22 of the cushion block 2 can also be inclined in a direction from one end of the cylinder 11 to the other end toward the direction close to the central axis a.
  • This embodiment provides matching inclined surfaces on the radial inner wall of the cushion block 2 and the outer wall of the core shaft assembly 3, thereby increasing the smoothness and stability of the core shaft assembly 3 when inserted into the inner hole, and realizing the tightening of the two half-wheel bodies 6 by the core shaft assembly 3 in a simple and reliable manner.
  • the inner cavity cross section of the expansion sleeve 1 and the cross section of the core shaft assembly 3 are circular.
  • the core shaft assembly 3 can be horizontally inserted into the inner hole of the cylinder 11 at any angle on the entire circumference, rather than being limited to a few specific angles, thereby increasing the smoothness of the positioning of the supporting wheel welding positioning tooling and improving the positioning efficiency.
  • the inner cavity cross section of the cylinder 11 is circular
  • the inner hole of the cylinder 11 can be a cylindrical hole
  • part of the radial inner sidewalls of the plurality of pads 2 form a truncated cone hole or a conical hole that tapers from both ends of the cylinder 11 to the docking plane w
  • the mandrel assembly 3 can be a tapered truncated cone or conical structure that matches the inner sidewall of the pad 2.
  • part of the radial inner sidewalls of the plurality of pads 2 can also form a truncated cone hole or a conical hole that tapers from one end to the other end of the cylinder 11.
  • This embodiment sets the inner cavity cross section of the expansion sleeve 1 and the cross section of the core shaft assembly 3 to be circular, so that the core shaft assembly 3 can be horizontally inserted into the inner hole of the cylinder at any circumferential angle, thereby increasing the smoothness of the positioning of the supporting wheel welding positioning tooling and improving the positioning efficiency.
  • the core shaft assembly 3 includes a first core shaft 31 and a second core shaft 32, which are respectively inserted into the inner hole from both ends of the cylinder 11, and the two sets of pads 2 are respectively pressed against the inner walls of the through holes of the first half wheel body 61 and the second half wheel body 62.
  • the first mandrel 31 and the second mandrel 32 move toward the docking plane w, the two sets of pads 2 protrude or tend to protrude from the two sets of notches 12 and respectively tighten the first half wheel body 61 and the second half wheel body 62.
  • the first mandrel 31 and the second mandrel 32 can be inserted into the inner hole from both ends of the cylinder 11 at the same time, or can be inserted into the inner hole in sequence.
  • the supporting wheel welding positioning tooling of this embodiment can enable a single core shaft to independently tighten a single half wheel body by setting a first core shaft 31 and a second core shaft 32, further improving the docking stability of the two half wheel bodies 6 and improving the docking accuracy of the half wheel bodies at the docking plane, thereby improving the cleanliness of the wheel body and improving the product quality of supporting wheels and crawler engineering machinery.
  • the expansion sleeve 1 further includes a first flange portion 13.
  • first end of the first half wheel body 61 is butted against the first end of the second half wheel body 62.
  • the first flange portion 13 is disposed at the first end of the first section 111.
  • the second end of the first section 111 is connected to the second section 112.
  • the first flange portion 13 is used to The second end of the first half wheel body 61 is limited in the axial direction.
  • the butt joint between the first end of the first half wheel body 61 and the first end of the second half wheel body 62 is the butt joint plane w.
  • the cylinder 11 and the first flange portion 13 can be integrally processed to form an expansion sleeve 1 to increase the strength of the supporting wheel welding positioning tooling, for example, the cylinder 11 and the first flange portion 13 are integrally formed.
  • This embodiment limits the first half wheel body 61 in the axial direction through the first flange portion 13, which can improve the docking stability of the two half wheel bodies, thereby improving the docking accuracy of the half wheel bodies at the docking plane and the cleanliness of the wheel body after welding.
  • the mandrel assembly 3 includes a first mandrel 31 and a second mandrel 32
  • the track wheel welding positioning tool further includes:
  • the first spindle 4 comprises a first housing 41 and a first driving component 42, the first flange portion 13 is fixedly connected to the first housing 41, the first driving component 42 is disposed in the first housing 41, and is configured to drive the first spindle 31 to move axially; and/or
  • the second main shaft 5 includes a second shell 51, a second flange portion 52 and a second driving component 53.
  • the second flange portion 52 is fixedly connected to the second shell 51 and is used to limit the second end of the second half wheel body 62 in the axial direction.
  • the second driving component 53 is disposed in the second shell 51 and is configured to drive the second core shaft 32 to move axially.
  • the first flange 13 is fixed to the first housing 41.
  • the first flange 13 can be fixed to the first housing 41 by fasteners 14.
  • the fasteners 14 can be 4 M6 ⁇ 20 bolts.
  • through holes can be provided on the side wall of the first housing 41 to facilitate installation and observation of the internal structure.
  • the first main shaft 4 and the second main shaft 5 can be driven by hydraulic pressure or the like to move axially toward the direction close to the docking plane w to tighten the two half-wheel bodies, that is, to limit the two half-wheel bodies between the first flange portion 13 and the second flange portion 52.
  • the first main shaft 4 and the second main shaft 5 can move synchronously relative to each other, or only one of them can move, for example, the first main shaft 4 is stationary, and the second main shaft 5 moves toward the direction close to the first main shaft 4.
  • the first driving component 42 and the second driving component 53 respectively drive the first mandrel 31 and the second mandrel 32 to move axially toward the docking plane w.
  • the cushion block 2 protrudes or has a tendency to protrude and abuts against the inner wall of the through hole of the half-wheel body 6 to achieve the tensioning of the two half-wheel bodies 6.
  • first spindle 31 is fixedly connected to the first driving component 42
  • second spindle 32 is fixedly connected to the second driving component 53
  • first driving component 42 and the second driving component 53 may be any driving components, for example, the first driving component 42 may include a cylinder 421 and a piston 422, and the piston 422 is connected to the first spindle 31.
  • the piston 422 drives the first mandrel 31 to move toward the direction close to the docking plane w.
  • the pad 2 on the cylinder 11, which is clamped by the elastic ring is lifted up, tightening the first half wheel.
  • the second driving member 53 drives the second mandrel 32 to move in the direction close to the docking plane w and inserted into the inner hole, as the second mandrel 32 moves, the cushion block 2 on the cylinder 11 held by the elastic ring is lifted up, tightening the inner hole of the second half wheel body 62.
  • the first flange portion 13 and the second flange portion 52 of this embodiment can axially limit the two half-wheel bodies to improve the docking stability.
  • the first main shaft 4 and the second main shaft 5 can drive the first core shaft 31 and the second core shaft 32 to move axially through the driving components, saving manpower and improving the accuracy and automation level of the positioning tooling, thereby improving the docking accuracy of the half-wheel bodies at the docking plane and the cleanliness of the wheel body after welding.
  • the present disclosure provides a welding system, as shown in FIG6 , including the track roller welding positioning tooling of the above embodiment.
  • the welding system of this embodiment has high positioning accuracy for the track rollers, and can ensure the coaxiality of the two half-wheel bodies 6 after welding.
  • the two half-wheel bodies 6 do not need to adopt a male-female joint matching structure at the docking plane w, which can reduce the length of the half-wheel body and reduce the cost of raw materials.
  • it can avoid the existence of incompletely fused gaps at the male-female joints, thereby achieving the purpose of eliminating unfused gaps and improving the cleanliness of the wheel body, thereby improving the cleanliness of the assembly and improving the product quality of track rollers and crawler engineering machinery.
  • the welding system is provided with a preheating station 81 and a welding station 82, and the preheating station 81 and the welding station 82 are arranged at intervals.
  • the welding system further includes:
  • the position transfer device 83 is configured to transfer the supporting roller welding positioning tool and the preheated supporting roller 66 from the preheating station 81 to the welding station 82, and/or transfer the support member and the supporting roller welding positioning tool that are vacant after unloading from the welding station 82 to the preheating station 81.
  • the preheated supporting roller 66 and the supporting roller welding positioning tooling are transferred together through the position transfer device 83.
  • the supporting roller 66 has not yet formed a weld at the docking plane w; the idle support parts and the supporting roller welding positioning tooling are transferred together after unloading.
  • the support parts, the supporting roller 66 and the positioning tooling can be rotated 180° to the welding station 82 through the position transfer device 83.
  • the idle support parts and the positioning tooling after unloading at the welding station 82 are rotated to the preheating station 81 at the same time to wait for the next loading.
  • This setting method can shorten the overall equipment cycle and improve production efficiency by more than 50%.
  • the preheating station 81 and the welding station 82 may be provided in multiple groups, for example, two groups, to further improve production efficiency.
  • the support member may be two support plates at a fixed angle, the two support plates being connected by a connecting edge, the support member opening upward in the supporting state, and the opening deflecting toward the unloading channel 89 in the unloading state, so that the unloading of the welded supporting roller 66 is completed.
  • the two support members may be designed as an integrated unit with the position transfer device 83.
  • the dual-station design of the welding system of this embodiment can avoid the potential safety hazards caused by single-station preheating and welding. And improve the preheating and welding efficiency and quality of the supporting wheels.
  • the welding system further comprises:
  • An induction coil 84 movably disposed at the preheating station 81, is configured to preheat the half wheel body 6 at the docking plane w;
  • the temperature detection component is configured to detect the preheating temperature at the docking plane w.
  • the preheating power supply power, preheating time and other parameters of the induction coil 84 can be adjusted according to the size of the workpiece and the temperature requirement.
  • the temperature detection component can be an infrared temperature measuring device, which can monitor the preheating temperature in real time. When the set temperature is reached, the preheating stops and the induction coil is removed.
  • the traditional preheating of the supporting wheel before welding is oxygen-acetylene flame preheating, and the preheating temperature is 200-300°C.
  • the preheating time is about 3-15 minutes, the preheating efficiency is low, and the energy consumption cost is 1.2-6 yuan;
  • electromagnetic induction preheating such as preheating through the induction coil 84, can replace the traditional oxygen-acetylene flame preheating, reduce energy consumption by about 50%, improve efficiency by more than 60%, and at the same time eliminate the safety hazards of open flames.
  • the temperature detection component can detect the preheating temperature at the docking plane w and, when the preheating temperature reaches a preset value, enable the position transfer device 83 to transfer the preheated supporting wheel 66, or enable the induction coil 84 to reduce the preheating intensity, thereby further improving the preheating efficiency, reducing energy consumption, and improving the production efficiency of the welding system.
  • the induction coil 84 of the welding system of this embodiment can replace the traditional oxygen-acetylene flame preheating, reduce energy consumption, improve preheating efficiency, and improve the safety of the welding system.
  • the induction coil 84 and the temperature detection component can cooperate to further improve the preheating efficiency, reduce energy consumption, and improve the production efficiency of the welding system.
  • the welding system further includes:
  • the feeding device 85 is configured to transport the half wheel body 6 to a preset position
  • a visual recognition device 86 configured to recognize the half wheel body 6 at a preset position and collect position information of the half wheel body 6;
  • the picking device 87 is configured to pick up the half wheel body 6 according to the position information and transfer it to the preheating station 81.
  • the loading device 85 may include a transfer trolley, etc.
  • the material frame filled with the half-wheel body 6 is manually hoisted onto the transfer trolley, and the transfer trolley transports the material frame to a specified preset position, which may be inside a safety fence, etc.
  • the visual recognition device 86 can be a 3D visual recognition device, which can scan and identify the position of the half-wheel body 6.
  • the picking device 87 transfers the half-wheel body 6 in the material frame to the preheating station 81 according to the position information collected by the 3D visual recognition device. More specifically, the picking device 87 can be a robotic arm, etc.
  • each layer of half-wheel bodies in the material frame can be separated by a hard PVC board.
  • the robot arm replaces the vacuum suction cup gripper to take out the partition and place it in the designated area before identifying and grabbing the next layer of materials.
  • the transfer cart transports the empty material frame to the outside of the safety fence, and the material frame is replaced by a manually operated crane.
  • the welding system may also include a welding gun 88 and a material discharge channel 89. More specifically, the support member, the positioning fixture and the preheated supporting roller 66 are moved to the welding station 82, and the welding gun 88 is moved to the weld position of the docking plane w for welding. After the welding is completed, the welding gun 88 is lifted, and after the first mandrel 31 and the second mandrel 32 are withdrawn, the cylinder 11 is withdrawn from the welded supporting roller 66, and the support plate of the support member is turned around the connection edge toward the material discharge channel 89, so that the welded supporting roller 66 can be discharged from the support member to the material discharge channel 89.
  • the material discharge channel 89 can be a ramp, etc.
  • the welding system of this embodiment is capable of realizing double-station automated welding of the track roller 66 by providing components such as a feeding device 85, a visual recognition device 86, and a picking device 87, thereby saving manpower, improving the automation level and safety of the welding system, improving the efficiency and quality of preheating and welding of the track rollers, and improving the cleanliness of the wheel body after welding, thereby improving the product quality of track rollers and crawler engineering machinery.
  • the present disclosure also provides a welding method of the welding system based on the above embodiment, including a positioning step, the positioning step including:
  • the cushion block 2 moves along the side wall of the notch 12 away from the central axis a of the expansion sleeve 1 so that the cushion block 2 abuts against the inner wall of the through hole of the half wheel body 6 to achieve tensioning of the two half wheel bodies 6.
  • the expansion sleeve 1 is passed through the respective through holes of the two half-wheel bodies 6, that is, before welding, the first half-wheel body 61 and the second half-wheel body 62 need to be passed through the cylinder 11 respectively and placed on the support of the preheating station 81.
  • the positioning preparation of the two half-wheel bodies 6 or the supporting wheels 66 can be completed manually, or it can be completed by automated means such as a picking device 87, such as a robot.
  • the positioning step of the welding method of this embodiment can improve the positioning accuracy of the two half-wheel bodies 6, ensure the coaxiality of the two half-wheel bodies 6 after welding, and avoid the existence of incompletely fused gaps at the male and female joints, thereby achieving the purpose of eliminating unfused gaps and improving the cleanliness of the wheel body, thereby improving the cleanliness of the assembly and improving the product quality of supporting wheels and crawler engineering machinery.
  • the first end of the first half wheel body 61 is connected to the first end of the second half wheel body 62, and the first end of the first section 111 of the cylinder 11 is provided with a first flange portion 13, and the supporting wheel welding positioning process
  • the device further includes a second main shaft 5, the second main shaft 5 includes a second shell 51 and a second flange 52, the second flange 52 is fixedly connected to the second shell 51, and the positioning step further includes:
  • the second end of the first half wheel body 61 is limited in the axial direction by the first flange portion 13; and/or
  • the second main shaft 5 is moved toward the direction close to the second end of the second half wheel body 62 , so that the second flange portion 52 limits the second end of the second half wheel body 62 in the axial direction.
  • the positioning step of this embodiment axially limits the first half wheel body 61 through the first flange portion 13, and the second flange portion 52 cooperates with the first flange portion 13 to axially limit the two half wheel bodies 6 through the movement of the second main shaft 5, which can improve the docking stability of the half wheel body 6, thereby improving the welding quality and product quality.
  • the cylinder 11 includes a first section 111 and a second section 112 connected in the axial direction, and a group of notches 12 are respectively provided on the first section 111 and the second section 112, and two groups of pads 2 are provided, and the two groups of pads 2 are respectively arranged in the two groups of notches 12, and the two half wheel bodies 6 are respectively the first half wheel body 61 and the second half wheel body 62, and the mandrel assembly 3 includes a first mandrel 31 and a second mandrel 32, and the supporting wheel welding positioning tool also includes a first main shaft 4 and a second main shaft 5, and the first main shaft 4 includes a first driving component 42, and the second main shaft 5 includes a second driving component 53, and the positioning step also includes:
  • the first driving component 42 drives the first core shaft 31 to move from one end of the cylinder 11 in the axial direction toward the docking plane w, so that a group of cushion blocks 2 abut against the inner wall of the through hole of the first half wheel body 61;
  • the positioning step of this embodiment enables a single core shaft to independently tighten a single half-wheel body by making the first driving component 42 and the second driving component 53 drive the first core shaft 31 and the second core shaft 32 respectively, thereby further improving the docking stability of the two half-wheel bodies 6 and improving the docking accuracy of the half-wheel bodies at the docking plane, thereby improving the cleanliness of the wheel body and improving the product quality of the supporting wheels and crawler engineering machinery.
  • the welding system further includes a feeding device 85, a visual recognition device 86 and a picking device 87.
  • the welding system is provided with a preheating station 81 and a welding station 82.
  • the welding method further includes a feeding step, and the feeding step includes:
  • the half wheel body 6 is conveyed to a preset position by the loading device 85;
  • the half wheel body 6 is picked up by the picking device 87 according to the position information and transferred to the preheating station 81 .
  • the loading step is performed before the positioning step.
  • the loading step of the welding method of this embodiment is to control the loading device 85, the visual recognition device 86 and the picking device 87 to perform actions by the controller, so as to realize the double-station automatic welding of the supporting wheel 66, saving manpower. It can improve the automation level and safety of the welding system, the efficiency and quality of preheating and welding of the track wheels, and the cleanliness of the wheel body after welding, thereby improving the product quality of track wheels and crawler engineering machinery.
  • the welding system further includes an induction coil 84 and a temperature detection component
  • the welding method further includes a preheating step, which includes:
  • the preheating temperature at the docking plane w is detected by a temperature detection component, and when the preheating temperature reaches a preset temperature, the induction coil 84 is moved away.
  • the preheating step is performed after the positioning step.
  • the preheating step of the welding method of this embodiment can further improve the preheating efficiency, reduce energy consumption, and improve the production efficiency of the welding system through the cooperation of the induction coil 84 and the temperature detection component; at the same time, it can also avoid the safety hazard of open flame.
  • the welding system further includes a position transfer device 83
  • the welding method further includes a position transfer step, which includes:
  • Step a transferring the preheated roller 66 from the preheating station 81 to the welding station 82;
  • Step b unloading the roller 66 after welding at the welding station 82 from the support member
  • Step c the support members and the roller welding and positioning tooling which are vacant after unloading are transferred from the welding station 82 to the preheating station 81 to wait for the next loading.
  • step a and step c can be completed synchronously to shorten the production cycle and improve production efficiency.
  • the position transfer step of the welding method of this embodiment can avoid the potential safety hazards caused by single-station preheating and welding, and improve the efficiency and quality of supporting wheel preheating and welding.
  • the welding method further comprises:
  • a weld deposition area is formed at the butt joint plane w by a single-sided welding and double-sided forming process
  • the welding gun 88 is removed after welding is completed.
  • the structure of the two half wheel bodies 6 at the butt joint plane is shown in Figure 1, and the weld deposition area formed at the butt joint plane w by the single-sided welding and double-sided forming process is shown in Figure 7. More specifically, the weld structure is designed with a blunt edge thickness of 4 mm, a first layer welding current of 300 A, a voltage of 31.5 V, and a welding speed of 0.7 rpm, and a second layer welding current of 270 A, a voltage of 32 V, and a welding speed of 0.45 rpm, which can ensure that the blunt edge is melted through without breakdown, eliminate unfused gaps, and prevent the hidden dangers of mixed steel shots and iron filings, effectively ensure the cleanliness of the wheel body, and improve the reliability of the supporting wheel assembly.
  • the welding method of this embodiment adopts a single-sided welding and double-sided forming process, which can ensure that the blunt edge is melted through without breakdown, eliminate unfused gaps, prevent the hidden dangers of mixed steel shots and iron filings, improve the cleanliness of the wheel body and the cleanliness of the assembly, and thus improve the product quality of supporting wheels and crawler engineering machinery.
  • the supporting wheel welding positioning tool further includes a first spindle 4 and a second spindle 5, the first spindle 4 includes a first driving component 42, the second spindle 5 includes a second shell 51, a second flange portion 52 and a second driving component 53, the cylinder 11 includes a first section 111 and a second section 112 connected in the axial direction, and a first flange portion 13 is provided on the first end of the first section 111 of the cylinder 11, the two half wheel bodies 6 are respectively a first half wheel body 61 and a second half wheel body 62, the mandrel assembly 3 includes a first mandrel 31 and a second mandrel 32, the welding system is provided with a preheating station 81 and a welding station 82, the welding system also includes a position transfer device 83, a support, an induction coil 84, a feeding device 85, a visual recognition device 86, a pickup device 87, a welding gun 88 and a feeding channel 89
  • the half wheel body 6 is conveyed to a preset position by the loading device 85;
  • the two half-wheel bodies 6 are picked up by the picking device 87 according to the position information and transferred to the preheating station 81, so that the first half-wheel body 61 and the second half-wheel body 62 are respectively passed through the cylinder 11 and placed on the support of the preheating station 81;
  • the second end of the first half wheel body 61 is limited in the axial direction by the first flange portion 13;
  • the second main shaft 5 is moved toward the direction close to the second end of the second half wheel body 62, so that the second flange portion 52 limits the second end of the second half wheel body 62 in the axial direction, and the second flange portion 52 cooperates with the first flange portion 13 to limit the second ends of the two half wheel bodies 6 in the axial direction;
  • the first driving component 42 drives the first core shaft 31 to move from one end of the cylinder 11 in the axial direction toward the docking plane w, so that a group of cushion blocks 2 abut against the inner wall of the through hole of the first half wheel body 61;
  • the second driving component 53 drives the second core shaft 32 to move from the other end of the cylinder 11 in the axial direction toward the docking plane w, so that the other group of cushion blocks 2 abuts against the inner wall of the through hole of the second half wheel body 62;
  • the preheating temperature at the docking plane w is detected by the temperature detection component, and when the preheating temperature reaches a preset temperature, the induction coil 84 is moved away;
  • the preheated roller 66 is transferred from the preheating station 81 to the welding station 82 by the position transfer device 83, and the support member and the roller welding positioning tooling which are vacant after unloading are transferred from the welding station 82 to the preheating station 81 to wait for the next loading;
  • a weld deposition area is formed at the butt joint plane w by a single-sided welding and double-sided forming process
  • the first driving component 42 and the second driving component 53 respectively drive the first mandrel 31 and the second mandrel 32 to withdraw from the inner hole of the cylinder 11, and the first main shaft 4 drives the cylinder 11 to withdraw from the through hole of the supporting roller 66, so that the support member is turned over to allow the supporting roller 66 after welding to be unloaded from the support member;
  • the vacant supporting member after unloading is turned over and reset to wait for the position transfer device 83 to transfer.
  • the welding method of this embodiment has high docking stability and accuracy, can improve the positioning accuracy of the two half-wheel bodies 6, ensure the coaxiality of the two half-wheel bodies 6 after welding, and avoid the existence of incompletely fused gaps at the female and male joints, thereby achieving the purpose of eliminating unfused gaps and improving the cleanliness of the wheel body, and thus improving the cleanliness of the assembly; it can realize double-station automated welding of the supporting wheels 66, save manpower, improve the automation level and safety of the welding system, improve the preheating and welding efficiency and quality of the supporting wheels, improve the cleanliness of the wheel body after welding, and thus improve the product quality of the supporting wheels and crawler engineering machinery.
  • the welding method can avoid the hidden safety hazards caused by single-station preheating and welding, has high preheating efficiency and low energy consumption, and can improve the preheating and welding efficiency and quality of the supporting wheels;
  • the welding step adopts a single-sided welding and double-sided forming process, which can ensure that the blunt edge is melted through without breakdown, eliminate unfused gaps, and eliminate the hidden dangers of mixed steel shots and iron filings, thereby improving the cleanliness of the wheel body and the cleanliness of the assembly, thereby improving the product quality of supporting wheels and crawler engineering machinery.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

一种支重轮焊接定位工装,其中,支重轮焊接定位工装用于定位支重轮(66)中的两个半轮体(6),以使两个半轮体在对接平面(w)处焊接,半轮体沿轴向设有通孔,支重轮焊接定位工装包括:涨套(1),包括筒体(11),其侧壁上设有槽口(12),涨套(1)被配置为穿过两个半轮体各自的通孔;垫块(2),设在槽口(12)内;和芯轴组件(3),插入筒体(11)的内孔,并将垫块抵靠于半轮体的通孔内壁,以实现两个半轮体的涨紧。该支重轮焊接定位工装,能够有效保证轮体焊接内孔的同轴度要求,消除两半轮体对接缝隙,提高轮体清洁度和总成装配清洁度。还涉及一种焊接系统和焊接方法。

Description

支重轮焊接定位工装、焊接系统及焊接方法
相关申请的横向引用
本公开是以申请号为202211445418.4,申请日为2022年11月18日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及一种支重轮焊接定位工装、焊接系统及焊接方法。
背景技术
支重轮是履带式工程机械的关键零部件,其预热及焊接质量和效率直接影响产品竞争力。传统的支重轮预热及焊接设备为单工位设计(预热及焊接在同一工位),人工或KBK(类似行车的起重吊装设备)辅助上料,采用氧气-乙炔火焰预热,预热完成后火焰枪提起,焊枪下降至焊缝位置进行焊接。该焊接方式效率低,焊后产品质量差且存在安全隐患。
发明内容
本公开的实施例提供了一种支重轮焊接定位工装、焊接系统及焊接方法,能够提高支重轮的产品质量。
根据本公开的第一方面,提出一种支重轮焊接定位工装,用于定位支重轮中的两个半轮体,以使两个半轮体在对接平面处焊接,半轮体沿轴向设有通孔,支重轮焊接定位工装包括:
涨套,包括筒体,其侧壁上设有槽口,涨套被配置为穿过两个半轮体各自的通孔;
垫块,设在槽口内;和
芯轴组件,插入筒体的内孔,并将垫块抵靠于半轮体的通孔内壁,以实现两个半轮体的涨紧。
在一些实施例中,筒体包括沿轴向连接的第一段和第二段,第一段和第二段上分别设有一组槽口,垫块设有两组,两组垫块分别设在两组槽口内,两个半轮体分别为第一半轮体和第二半轮体,两组垫块分别用于抵靠于第一半轮体和第二半轮体各自的通孔内壁。
在一些实施例中,每组槽口包括沿周向间隔设置的多个槽口。
在一些实施例中,支重轮焊接定位工装还包括弹性环,每组垫块的多个垫块的径向外侧壁上均设有沿周向延伸的凹槽,弹性环嵌设在多个凹槽内。
在一些实施例中,垫块的径向内侧壁包括斜面,斜面的倾斜方向为自筒体端部至对接平面朝向靠近筒体中心轴线的方向,芯轴组件的外侧壁形状与垫块的径向内侧壁匹配。
在一些实施例中,涨套的内腔横截面和芯轴组件的横截面均为圆形。
在一些实施例中,芯轴组件包括第一芯轴和第二芯轴,分别从筒体的两端插入内孔,并将两组垫块分别抵靠于第一半轮体和第二半轮体的通孔内壁。
在一些实施例中,涨套还包括第一法兰部,在使用状态下,第一半轮体的第一端与第二半轮体的第一端对接,第一法兰部设在第一段的第一端,第一段的第二端连接于第二段,第一法兰部用于在轴向上对第一半轮体的第二端进行限位。
在一些实施例中,芯轴组件包括第一芯轴和第二芯轴,支重轮焊接定位工装还包括:
第一主轴,包括第一壳体和第一驱动部件,第一法兰部固定连接于第一壳体,第一驱动部件设在第一壳体内,被配置为驱动第一芯轴沿轴向移动;和/或
第二主轴,包括第二壳体、第二法兰部和第二驱动部件,第二法兰部固定连接于第二壳体,用于在轴向上对第二半轮体的第二端进行限位,第二驱动部件设在第二壳体内,被配置为驱动第二芯轴沿轴向移动。
根据本公开的第二方面,提出一种焊接系统,包括上述实施例的支重轮焊接定位工装。
在一些实施例中,焊接系统设有预热工位和焊接工位,预热工位和焊接工位间隔设置,焊接系统还包括:
位置转移装置,被配置为将支重轮焊接定位工装和完成预热的支重轮从预热工位转移至焊接工位,和/或将下料后空置的支撑件和支重轮焊接定位工装从焊接工位转移至预热工位。
在一些实施例中,焊接系统还包括:
感应线圈,可移动地设在预热工位,被配置为在对接平面处对半轮体进行预热;和
温度检测部件,被配置为检测对接平面处的预热温度。
在一些实施例中,焊接系统还包括:
上料装置,被配置为将半轮体输送至预设位置;
视觉识别装置,被配置为在预设位置识别半轮体并采集半轮体的位置信息;和
拾取装置,被配置为根据位置信息拾取半轮体并将其转移至预热工位。
根据本公开的第三方面,提出一种基于上述实施例的焊接系统的焊接方法,包括定位步骤,定位步骤包括:
使涨套穿过两个半轮体各自的通孔;
使芯轴组件插入筒体的内孔;
在芯轴组件插入内孔的过程中,使垫块沿槽口的侧壁向远离涨套的中心轴线的方向移动,以使垫块抵靠于半轮体的通孔内壁,以实现两个半轮体的涨紧。
在一些实施例中,在使用状态下,第一半轮体的第一端与第二半轮体的第一端对接,筒体的第一段的第一端上设有第一法兰部,支重轮焊接定位工装还包括第二主轴,第二主轴包括第二壳体和第二法兰部,第二法兰部固定连接于第二壳体,定位步骤还包括:
通过第一法兰部在轴向上对第一半轮体的第二端进行限位;和/或
使第二主轴朝向靠近第二半轮体的第二端的方向移动,以使第二法兰部在轴向上对第二半轮体的第二端进行限位。
在一些实施例中,筒体包括沿轴向连接的第一段和第二段,第一段和第二段上分别设有一组槽口,垫块设有两组,两组垫块分别设在两组槽口内,两个半轮体分别为第一半轮体和第二半轮体,芯轴组件包括第一芯轴和第二芯轴,支重轮焊接定位工装还包括第一主轴和第二主轴,第一主轴包括第一驱动部件,第二主轴包括第二驱动部件,定位步骤还包括:
使第一驱动部件驱动第一芯轴从筒体的一端沿轴向朝向靠近对接平面的方向移动,以使一组垫块抵靠于第一半轮体的通孔内壁;
使第二驱动部件驱动第二芯轴从筒体的另一端沿轴向朝向靠近对接平面的方向移动,以使另一组垫块抵靠于第二半轮体的通孔内壁。
在一些实施例中,焊接系统还包括上料装置、视觉识别装置和拾取装置,焊接系统设有预热工位和焊接工位,焊接方法还包括上料步骤,上料步骤包括:
通过上料装置将半轮体输送至预设位置;
通过视觉识别装置在预设位置识别半轮体并采集半轮体的位置信息;
通过拾取装置根据位置信息拾取半轮体并将其转移至预热工位。
在一些实施例中,焊接系统还包括感应线圈和温度检测部件,焊接方法还包括预热步骤,预热步骤包括:
使感应线圈移动至对接平面处以对半轮体进行预热;
通过温度检测部件检测对接平面处的预热温度,在预热温度达到预设温度的情况下,使感应线圈移开。
在一些实施例中,焊接系统还包括位置转移装置,焊接方法还包括位置转移步骤,位置转移步骤包括:
使完成预热的支重轮从预热工位转移至焊接工位;
使位于焊接工位焊接完成后的支重轮从支撑件下料;
使下料后空置的支撑件和支重轮焊接定位工装从焊接工位转移至预热工位等待下次上料。
在一些实施例中,焊接方法还包括:
在支重轮处于焊接工位的情况下,使焊枪移动至对接平面处进行焊接;
通过单面焊双面成型工艺在对接平面处形成焊缝熔敷区域;
在焊接完成后使焊枪移开。
基于上述技术方案,本公开实施例的支重轮焊接定位工装,定位精度高,能够有效保证轮体焊接内孔的同轴度要求,在采用单面焊双面成型等焊接工艺后能够消除两半轮体对接缝隙,提高轮体清洁度和总成装配清洁度,进而提高支重轮及履带式工程机械等的产品质量。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开支重轮焊接定位工装与支重轮配合的一些实施例的结构示意图。
图2为本公开支重轮焊接定位工装的一些实施例的结构示意图。
图3为本公开支重轮焊接定位工装的涨套和第一主轴的一些实施例的结构示意图。
图4为本公开支重轮焊接定位工装的涨套和第一主轴的一些实施例的剖视图。
图5为本公开支重轮焊接定位工装的第二主轴的一些实施例的结构示意图。
图6为本公开焊接系统的一些实施例的结构示意图。
图7为本公开两个半轮体在对接平面处的一些实施例的焊缝熔敷区域示意图。
附图标记说明
1、涨套;2、垫块;3、芯轴组件;4、第一主轴;5、第二主轴;6、半轮体;w、
对接平面;a、中心轴线;
11、筒体;12、槽口;13、第一法兰部;14、紧固件;111、第一段;112、第二
段;21、凹槽;22、斜面;31、第一芯轴;32、第二芯轴;41、第一壳体;42、第一驱动部件;421、油缸;422、活塞;51、第二壳体;52、第二法兰部;53、第二驱动部件;61、第一半轮体;62、第二半轮体;66、支重轮;
81、预热工位;82、焊接工位;83、位置转移装置;84、感应线圈;85、上料装
置;86、视觉识别装置;87、拾取装置;88、焊枪;89、下料通道。
具体实施方式
以下详细说明本公开。在以下段落中,更为详细地限定了实施例的不同方面。如此限定的各方面可与任何其他的一个方面或多个方面组合,除非明确指出不可组合。尤其是,被认为是优选的或有利的任何特征可与其他一个或多个被认为是优选的或有利的特征组合。
本公开中出现的“第一”、“第二”等用语仅是为了方便描述,以区分具有相同名称的不同组成部件,并不表示先后或主次关系。
在本公开的描述中,需要理解的是,术语“上”、“下”、“内”或“外”等指示的方位或位置关系为基于槽口、筒体、侧壁等为基准进行定义,仅是为了便于描述本公开,而不是指示或暗示所指的装置必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
在发明人知晓的相关技术中,受机床精度等多重因素影响,传统的支重轮焊接定位工装定位精度差,半轮体必须采用子母口配合结构以保证焊后两半轮体同轴度。子母口接头对半轮体粗车精度要求较高,且重合区域会增加半轮体长度,从而增加原材料成本。发明人发现子母口接头处存在未完全熔合的缝隙,后续轮体进行整体热处理后缝隙张开变大,抛丸及精加工工序时会在该缝隙内夹杂钢丸和铁屑,清理困难,严 重影响轮体清洁度和总成装配的清洁度,增加支重轮总成漏油风险。
为解决上述问题,首先,本公开提供了一种支重轮焊接定位工装,如图1至图7所示,用于定位支重轮66中的两个半轮体6,以使两个半轮体6在对接平面w处焊接,半轮体6沿轴向设有通孔,支重轮焊接定位工装包括:
涨套1,包括筒体11,其侧壁上设有槽口12,涨套1被配置为穿过两个半轮体6各自的通孔;
垫块2,设在槽口12内;和
芯轴组件3,插入筒体11的内孔,并将垫块2抵靠于半轮体6的通孔内壁,以实现两个半轮体6的涨紧。
具体地,涨套1穿过两个半轮体6各自的通孔即涨套1的筒体11穿过通孔。具体地,支重轮焊接定位工装用于保证两个半轮体6的焊后同轴度,更具体地,支重轮焊接定位工装使得筒体11的中心轴线a穿过两个半轮体通孔圆心,同时使得两个半轮体6在对接平面处没有缝隙。具体地,筒体11的长度应满足供两个半轮体6穿过。可选地,筒体11沿轴向的长度可等于两个半轮体6沿轴向的长度之和,或者说等于支重轮66沿轴向的长度。
具体地,随着芯轴组件3插入筒体11的内孔,芯轴组件3将垫块2朝向远离中心轴线a的方向顶起,从而涨紧半轮体6的内孔。可选地,垫块2可以沿筒体11的径向移动以远离中心轴线a,也可以沿与筒体11的径向成一定夹角的方向移动以远离中心轴线a。
具体地,槽口12和垫块2均通过切削筒体11的外壁成型,涨套1与垫块2整体加工,一致性好,使得两半轮体6同轴度不受机床导轨等精度影响,能有效满足轮体焊接内孔的同轴度要求。可选地,垫块2可以搭接在筒体11的外侧壁上以避免垫块2在重力作用下从槽口12内滑出。可选地,垫块2可为与槽口12形状适配的弹性件,以通过弹性形变更紧密地涨紧两个半轮体6。可选地,槽口12沿筒体11的周向可以设置一个或多个。可选地,垫块2可以通过弹簧等镶嵌在筒体11上,或者通过橡皮圈等弹性件限位在筒体11上,以在芯轴组件3从内孔取出后实现自动复位,便于流水线生产作业。
可选地,芯轴组件3可以是柱状,例如圆柱或多棱柱等,也可以是圆锥状,还可以是棱台状,例如四棱台或其他多棱台等。可选地,芯轴组件3插入内孔的一端可以设置第一倒角,垫块2也可设置与芯轴组件3的第一倒角配合的第二倒角,以增加芯 轴组件3插入内孔的平顺性和稳定性,简洁可靠地实现芯轴组件3对两个半轮体6的涨紧。
可选地,芯轴组件3可以为一体式结构,自筒体11的一端插入筒体11的内孔,也可以为分体式结构,自筒体11的两端分别插入筒体11的内孔。相对应地,可以只设置一组长垫块对两个半轮体6一起进行涨紧,也可以设置两组或多组垫块2分别对两个半轮体单独进行涨紧。可选地,每组垫块2可包括一个或多个,每组垫块2可沿筒体11的周向间隔设置,优选地,每组垫块2至少包括两个,例如每组垫块2沿筒体11的周向等间距间隔设置4个。
可选地,基于支重轮焊接定位工装提高两个半轮体6的定位精度后,采用对接焊缝可实现单面焊双面成型工艺,进而消除两半轮体6的对接缝隙,提高轮体清洁度和总成装配清洁度。
该实施例的支重轮焊接定位工装由于定位精度高,能够保证两个半轮体6的焊后同轴度,两个半轮体6在对接平面w处无需采用子母口配合结构,能够减少半轮体长度,降低设置字母口配合结构的原材料成本,同时采用单面焊双面成型等焊接工艺后可避免子母口接头处存在未完全熔合的缝隙,从而达到消除未熔合缝隙和提高轮体清洁度的目的。
该实施例的支重轮焊接定位工装,能够有效保证轮体焊接内孔的同轴度要求,消除两半轮体对接缝隙,提高轮体清洁度和总成装配清洁度,进而提高支重轮及履带式工程机械等的产品质量。
在一些实施例中,如图1至图4所示,筒体11包括沿轴向连接的第一段111和第二段112,第一段111和第二段112上分别设有一组槽口12,垫块2设有两组,两组垫块2分别设在两组槽口12内,两个半轮体6分别为第一半轮体61和第二半轮体62,两组垫块2分别用于抵靠于第一半轮体61和第二半轮体62各自的通孔内壁。
具体地,垫块2包括外侧壁和内侧壁,在使用状态下,芯轴组件3抵靠于垫块2的内侧壁,垫块2朝向远离中心轴线a的方向移动,垫块2的外侧壁抵靠于半轮体6的通孔内壁。可选地,在垫块2的外侧壁抵靠于半轮体6的情况下,可以是全部外侧壁抵靠于半轮体6的通孔内壁,也可以是部分外侧壁抵靠于半轮体6的通孔内壁。可选地,两组垫块2可以同时抵靠于两个半轮体6,也可以按顺序依次抵靠于两个半轮体。
该实施例的支重轮焊接定位工装通过对每个半轮体6单独设置一组垫块2,能够 更可靠稳定地涨紧每个半轮体的通孔内壁,进一步提高两个半轮体6的对接稳定性,并提高半轮体在对接平面处的对接准确度,从而提高轮体清洁度并提高支重轮及履带式工程机械等的产品质量。
在一些实施例中,如图1至图4所示,每组槽口12包括沿周向间隔设置的多个槽口12。
具体地,每组槽口12包括沿筒体11的周向间隔设置的多个槽口12。可选地,多个槽口12之间的间隔距离可以相同,也可以不同。可选地,涨套1在整体加工完成后可在筒体11的第一段111和第二段112分别沿圆周均布切割以形成两组槽口12和两组垫块2,其中,每组槽口12可包括四个,相对应地每组垫块2包括四块。
该实施例的支重轮焊接定位工装通过沿周向间隔设置的多个槽口12,能够更可靠稳定地涨紧每个半轮体的通孔内壁,进一步提高两个半轮体6的对接稳定性,并提高半轮体在对接平面处的对接准确度,从而提高轮体清洁度并提高支重轮及履带式工程机械等的产品质量。
在一些实施例中,如图1至图4所示,支重轮焊接定位工装还包括弹性环,每组垫块2的多个垫块2的径向外侧壁上均设有沿周向延伸的凹槽21,弹性环嵌设在多个凹槽21内。
具体地,在芯轴组件3从筒体11的内孔抽出后,多个垫块2可以在弹性环的弹力作用下自动复位,从而方便下次上料时涨套1的筒体11穿过半轮体6。可选地,垫块2的外侧壁上可设有搭接部,以使垫块2搭接在筒体11的外侧壁上从而避免垫块2在重力作用下从槽口12内滑出。
该实施例的凹槽和弹性环能够使垫块2在芯轴组件3从筒体11的内孔抽出后自动复位,能够提高支重轮焊接定位工装对流水焊接作业的适应性,减少人力操作,提高焊接系统的流畅性和工作效率。
在一些实施例中,如图1至图4所示,垫块2的径向内侧壁包括斜面22,斜面22的倾斜方向为自筒体11端部至对接平面w朝向靠近筒体11中心轴线a的方向,芯轴组件3的外侧壁形状与垫块2的径向内侧壁匹配。
具体地,芯轴组件3的外侧壁包括与斜面22相匹配的斜面,即芯轴组件3的斜面的倾斜方向也应为自筒体11端部至对接平面w朝向靠近中心轴线a的方向。可选地,垫块2的斜面22的倾斜方向也可为自筒体11的一端至另一端朝向靠近中心轴线a的方向。
该实施例通过在垫块2的径向内侧壁和芯轴组件3的外侧壁设置相匹配的斜面,能够增加芯轴组件3插入内孔的平顺性和稳定性,简洁可靠地实现芯轴组件3对两个半轮体6的涨紧。
在一些实施例中,如图1至图4所示,涨套1的内腔横截面和芯轴组件3的横截面为圆形。
具体地,在涨套1的内腔横截面和芯轴组件3的横截面为圆形的情况下,芯轴组件3在整个圆周上可以以任意角度水平插入筒体11的内孔,而不是局限于几个具体角度,从而可以增加支重轮焊接定位工装定位的流畅性,提高定位效率。
具体地,筒体11的内腔横截面为圆形,筒体11的内孔可为圆柱孔,多个垫块2的部分径向内侧壁形成自筒体11两端至对接平面w渐缩的圆台孔或圆锥孔,相对应地,芯轴组件3可为与垫块2的内侧壁相匹配的渐缩的圆台形或圆锥形结构。可选地,多个垫块2的部分径向内侧壁也可形成自筒体11的一端至另一端渐缩的圆台孔或圆锥孔。
该实施例通过设置涨套1的内腔横截面和芯轴组件3的横截面为圆形,使得芯轴组件3能够以任意圆周角度水平插入筒体的内孔,从而增加支重轮焊接定位工装定位的流畅性,提高定位效率。
在一些实施例中,如图1至图5所示,芯轴组件3包括第一芯轴31和第二芯轴32,分别从筒体11的两端插入内孔,并将两组垫块2分别抵靠于第一半轮体61和第二半轮体62的通孔内壁。
具体地,随着第一芯轴31和第二芯轴32向对接平面w方向移动,两组垫块2从两组槽口12凸出或存在凸出的趋势并分别涨紧第一半轮体61和第二半轮体62。可选地,第一芯轴31和第二芯轴32可以同时从筒体11的两端插入内孔,也可以按顺序依次插入内孔。
该实施例的支重轮焊接定位工装通过设置第一芯轴31和第二芯轴32,能够使单个芯轴独自涨紧单个半轮体,进一步提高两个半轮体6的对接稳定性,并提高半轮体在对接平面处的对接准确度,从而提高轮体清洁度并提高支重轮及履带式工程机械等的产品质量。
在一些实施例中,如图1至图4所示,涨套1还包括第一法兰部13,在使用状态下,第一半轮体61的第一端与第二半轮体62的第一端对接,第一法兰部13设在第一段111的第一端,第一段111的第二端连接于第二段112,第一法兰部13用于在 轴向上对第一半轮体61的第二端进行限位。
具体地,第一半轮体61的第一端与第二半轮体62的第一端的对接处即对接平面w。可选地,筒体11和第一法兰部13可以整体加工形成涨套1以增加支重轮焊接定位工装的强度,例如筒体11和第一法兰部13一体成形。
该实施例通过第一法兰部13在轴向上对第一半轮体61进行限位,能够提高两个半轮体的对接稳定性,进而提高半轮体在对接平面处的对接准确度和焊后轮体清洁度。
在一些实施例中,如图1至图5所示,芯轴组件3包括第一芯轴31和第二芯轴32,支重轮焊接定位工装还包括:
第一主轴4,包括第一壳体41和第一驱动部件42,第一法兰部13固定连接于第一壳体41,第一驱动部件42设在第一壳体41内,被配置为驱动第一芯轴31沿轴向移动;和/或
第二主轴5,包括第二壳体51、第二法兰部52和第二驱动部件53,第二法兰部52固定连接于第二壳体51,用于在轴向上对第二半轮体62的第二端进行限位,第二驱动部件53设在第二壳体51内,被配置为驱动第二芯轴32沿轴向移动。
具体地,第一法兰部13固定于第一壳体41,可选地,第一法兰部13可通过紧固件14固定于第一壳体41,例如,紧固件14可以是4颗M6×20螺栓。可选地,第一壳体41的侧壁上可设置通孔便于安装和观察内部结构。
具体地,第一主轴4和第二主轴5可在液压力等的驱动下沿轴向朝向靠近对接平面w的方向移动以顶紧两个半轮体,即将两个半轮体限位在第一法兰部13和第二法兰部52之间。可选地,第一主轴4和第二主轴5可以同步相对移动,也可以只有其中一个移动,例如第一主轴4静止,第二主轴5朝向靠近第一主轴4的方向移动。具体地,第一驱动部件42和第二驱动部件53分别驱动第一芯轴31和第二芯轴32沿轴向朝向靠近对接平面w的方向移动,随着两芯轴的移动,垫块2凸出或存在凸出的趋势并抵靠于半轮体6的通孔内壁,以实现两个半轮体6的涨紧。
具体地,第一芯轴31固定连接于第一驱动部件42,第二芯轴32固定连接于第二驱动部件53。可选地,第一驱动部件42和第二驱动部件53可为任意驱动部件,例如,第一驱动部件42可包括油缸421和活塞422,活塞422连接于第一芯轴31。
更具体地,在液压驱动力下活塞422带动第一芯轴31向靠近对接平面w的方向移动,随着第一芯轴31移动将筒体11上由弹性环箍住的垫块2顶起,涨紧第一半轮 体61的内孔;同理,第二驱动部件53驱动第二芯轴32向靠近对接平面w的方向移动并插入内孔中,随着第二芯轴32移动将筒体11上由弹性环箍住的垫块2顶起,涨紧第二半轮体62的内孔。
该实施例的第一法兰部13和第二法兰部52能够对两个半轮体进行轴向限位,提高对接稳定性,第一主轴4和第二主轴5能够通过驱动部件驱动第一芯轴31和第二芯轴32沿轴向移动,节省人力,提高定位工装的精确度和自动化水平,进而提高半轮体在对接平面处的对接准确度和焊后轮体清洁度。
其次,本公开提供了一种焊接系统,如图6所示,包括上述实施例的支重轮焊接定位工装。
该实施例的焊接系统的支重轮定位精度高,能够保证两个半轮体6的焊后同轴度,两个半轮体6在对接平面w处无需采用子母口配合结构,能够减少半轮体长度,降低原材料成本,同时避免子母口接头处存在未完全熔合的缝隙,从而达到消除未熔合缝隙和提高轮体清洁度的目的,进而能够提高总成装配清洁度,提高支重轮及履带式工程机械等的产品质量。
在一些实施例中,如图6所示,焊接系统设有预热工位81和焊接工位82,预热工位81和焊接工位82间隔设置,焊接系统还包括:
位置转移装置83,被配置为将支重轮焊接定位工装和完成预热的支重轮66从预热工位81转移至焊接工位82,和/或将下料后空置的支撑件和支重轮焊接定位工装从焊接工位82转移至预热工位81。
具体地,完成预热的支重轮66和支重轮焊接定位工装一起通过位置转移装置83进行转移,此时支重轮66在对接平面w处还没有形成焊缝;下料后空置的支撑件和支重轮焊接定位工装一起转移。具体地,完成定位的支重轮66在预热工位81预热完成后,支撑件、支重轮66和定位工装可通过位置转移装置83旋转180°至焊接工位82,之前焊接工位82下料后空置的支撑件和定位工装同时旋转至预热工位81等待下次上料,该设置方式能够缩短设备整体节拍,提高生产效率50%以上。
可选地,预热工位81和焊接工位82可设置多组以进一步提高生产效率,例如两组。可选地,支撑件可以是两块呈固定夹角的支撑板,两块支撑板通过连接边连接,支撑件在支撑状态开口朝上,在下料状态开口朝向下料通道89方向偏转,使焊接完成的支重轮66完成下料。可选地,两个支撑件可以和位置转移装置83一体化设计。
该实施例的焊接系统的双工位设计能够避免单工位预热和焊接造成的安全隐患, 并提高支重轮预热和焊接效率及质量。
在一些实施例中,焊接系统还包括:
感应线圈84,可移动地设在预热工位81,被配置为在对接平面w处对半轮体6进行预热;和
温度检测部件,被配置为检测对接平面w处的预热温度。
可选地,感应线圈84的预热电源功率、预热时间等参数可以根据工件大小及温度需求进行调节。可选地,温度检测部件可为红外测温装置,能够实时监测预热温度,达到设定温度后,预热停止,感应线圈移开。
具体地,传统的支重轮焊前预热为氧气-乙炔火焰预热,预热温度为200~300℃,根据产品大小不同,预热时间约为3~15min,预热效率较低,能耗成本1.2~6元;而采用电磁感应预热,例如通过感应线圈84进行预热,能够代替传统的氧气-乙炔火焰预热,能耗降低约50%,效率提升60%以上,同时能够杜绝明火安全隐患。
可选地,温度检测部件通过检测对接平面w处的预热温度,能够在预热温度达到预设值的情况下使位置转移装置83转移完成预热的支重轮66,或使感应线圈84减少预热强度,能够进一步提高预热效率,降低能耗,提高焊接系统的生产效率。
该实施例的焊接系统的感应线圈84能够代替传统的氧气-乙炔火焰预热,降低能耗,提升预热效率,提高焊接系统的安全性,感应线圈84和温度检测部件配合能够进一步提高预热效率,降低能耗,提高焊接系统的生产效率。
在一些实施例中,如图6所示,焊接系统还包括:
上料装置85,被配置为将半轮体6输送至预设位置;
视觉识别装置86,被配置为在预设位置识别半轮体6并采集半轮体6的位置信息;和
拾取装置87,被配置为根据位置信息拾取半轮体6并将其转移至预热工位81。
具体地,上料装置85可包括移载小车等,例如人工将装满半轮体6的料框吊装至移载小车上,移载小车将料框输送到指定预设位置,指定预设位置可以是安全围栏内部等。
具体地,视觉识别装置86可为3D视觉识别装置,可扫描并对半轮体6进行位置识别,拾取装置87根据3D视觉识别装置采集的位置信息将料框内的半轮体6转移至预热工位81,更具体地,拾取装置87可以是机械臂等。
更具体地,料框内每层半轮体之间可用硬质PVC板隔开,当上一层的半轮体取 完后,机器臂更换真空吸盘抓手将隔板取出并放置在指定区域后再进行下一层物料的识别抓取,所有物料取完后移栽小车将空料框输送至安全围栏外部,人工操作行车更换料框。
具体地,焊接系统还可包括焊枪88和下料通道89,更具体地,支撑件、定位工装和预热完成的支重轮66移至焊接工位82,焊枪88移至对接平面w的焊缝位置进行焊接,焊接完成后焊枪88提起,退出第一芯轴31和第二芯轴32后,再将筒体11从焊接完成的支重轮66退出,支撑件的支撑板绕连接边朝向下料通道89方向翻转,即可将焊接完成的支重轮66从支撑件下料至下料通道89。可选地,下料通道89可为坡道等。
该实施例的焊接系统通过设置上料装置85、视觉识别装置86、拾取装置87等组件,能够实现对支重轮66的双工位自动化焊接,节省人力,提高焊接系统的自动化水平和安全性,提高支重轮预热和焊接效率及质量,提高焊后轮体清洁度,进而提高支重轮及履带式工程机械等的产品质量。
此外,本公开还提供了一种基于上述实施例的焊接系统的焊接方法,包括定位步骤,定位步骤包括:
使涨套1穿过两个半轮体6各自的通孔;
使芯轴组件3插入筒体11的内孔;
在芯轴组件3插入内孔的过程中,使垫块2沿槽口12的侧壁向远离涨套1的中心轴线a的方向移动,以使垫块2抵靠于半轮体6的通孔内壁,以实现两个半轮体6的涨紧。
具体地,使涨套1穿过两个半轮体6各自的通孔,即在焊接前需要先将第一半轮体61和第二半轮体62分别穿过筒体11并放置在预热工位81的支撑件上,可选地,可以人工完成两个半轮体6或支重轮66的定位准备,也可以通过拾取装置87等自动化手段完成,例如机械手等。
该实施例的焊接方法的定位步骤能够提高两个半轮体6的定位精度,保证两个半轮体6的焊后同轴度,避免子母口接头处存在未完全熔合的缝隙,从而达到消除未熔合缝隙和提高轮体清洁度的目的,进而能够提高总成装配清洁度,提高支重轮及履带式工程机械等的产品质量。
在一些实施例中,在使用状态下,第一半轮体61的第一端与第二半轮体62的第一端对接,筒体11的第一段111的第一端上设有第一法兰部13,支重轮焊接定位工 装还包括第二主轴5,第二主轴5包括第二壳体51和第二法兰部52,第二法兰部52固定连接于第二壳体51,定位步骤还包括:
通过第一法兰部13在轴向上对第一半轮体61的第二端进行限位;和/或
使第二主轴5朝向靠近第二半轮体62的第二端的方向移动,以使第二法兰部52在轴向上对第二半轮体62的第二端进行限位。
该实施例的定位步骤通过第一法兰部13对第一半轮体61进行轴向限位,通过第二主轴5的移动使第二法兰部52与第一法兰部13配合对两个半轮体6进行轴向限位,能够提高半轮体6的对接稳定性,进而提高焊接质量和产品质量。
在一些实施例中,筒体11包括沿轴向连接的第一段111和第二段112,第一段111和第二段112上分别设有一组槽口12,垫块2设有两组,两组垫块2分别设在两组槽口12内,两个半轮体6分别为第一半轮体61和第二半轮体62,芯轴组件3包括第一芯轴31和第二芯轴32,支重轮焊接定位工装还包括第一主轴4和第二主轴5,第一主轴4包括第一驱动部件42,第二主轴5包括第二驱动部件53,定位步骤还包括:
使第一驱动部件42驱动第一芯轴31从筒体11的一端沿轴向朝向靠近对接平面w的方向移动,以使一组垫块2抵靠于第一半轮体61的通孔内壁;
使第二驱动部件53驱动第二芯轴32从筒体11的另一端沿轴向朝向靠近对接平面w的方向移动,以使另一组垫块2抵靠于第二半轮体62的通孔内壁。
该实施例的定位步骤通过使第一驱动部件42和第二驱动部件53分别驱动第一芯轴31和第二芯轴32,能够使单个芯轴独自涨紧单个半轮体,进一步提高两个半轮体6的对接稳定性,并提高半轮体在对接平面处的对接准确度,从而提高轮体清洁度并提高支重轮及履带式工程机械等的产品质量。
在一些实施例中,焊接系统还包括上料装置85、视觉识别装置86和拾取装置87,焊接系统设有预热工位81和焊接工位82,焊接方法还包括上料步骤,上料步骤包括:
通过上料装置85将半轮体6输送至预设位置;
通过视觉识别装置86在预设位置识别半轮体6并采集半轮体6的位置信息;
通过拾取装置87根据位置信息拾取半轮体6并将其转移至预热工位81。
具体地,上料步骤在定位步骤之前进行。
该实施例的焊接方法的上料步骤通过控制器控制上料装置85、视觉识别装置86和拾取装置87等组件执行动作,能够实现对支重轮66的双工位自动化焊接,节省人 力,提高焊接系统的自动化水平和安全性,提高支重轮预热和焊接效率及质量,提高焊后轮体清洁度,进而提高支重轮及履带式工程机械等的产品质量。
在一些实施例中,焊接系统还包括感应线圈84和温度检测部件,焊接方法还包括预热步骤,预热步骤包括:
使感应线圈84移动至对接平面w处以对半轮体6进行预热;
通过温度检测部件检测对接平面w处的预热温度,在预热温度达到预设温度的情况下,使感应线圈84移开。
具体地,预热步骤在定位步骤之后进行。
该实施例的焊接方法的预热步骤通过感应线圈84和温度检测部件配合能够进一步提高预热效率,降低能耗,提高焊接系统的生产效率;同时还能避免明火安全隐患。
在一些实施例中,焊接系统还包括位置转移装置83,焊接方法还包括位置转移步骤,位置转移步骤包括:
步骤a、使完成预热的支重轮66从预热工位81转移至焊接工位82;
步骤b、使位于焊接工位82的焊接完成后的支重轮66从支撑件下料;
步骤c、使下料后空置的支撑件和支重轮焊接定位工装从焊接工位82转移至预热工位81等待下次上料。
具体地,位置转移步骤在预热步骤之后进行。具体地,步骤a和步骤c可同步完成以缩短生产节拍并提高生产效率。
该实施例的焊接方法的位置转移步骤能够避免单工位预热和焊接造成的安全隐患,并提高支重轮预热和焊接效率及质量。
在一些实施例中,焊接方法还包括:
在支重轮66处于焊接工位82的情况下,使焊枪88移动至对接平面w处进行焊接;
通过单面焊双面成型工艺在对接平面w处形成焊缝熔敷区域;
在焊接完成后使焊枪88移开。
具体地,两个半轮体6在对接平面处的结构如图1所示,采用单面焊双面成型工艺在对接平面w处形成的焊缝熔敷区域如图7所示,更具体地,焊缝结构设计钝边厚度为4mm,第一层焊接电流300A,电压31.5V,焊接速度0.7rpm,第二层焊接电流270A,电压32V,焊接速度0.45rpm,既能保证钝边熔透又不会击穿,能够消除未熔合缝隙,杜绝夹杂钢丸及铁屑的隐患,有效保证轮体清洁度,提升支重轮总成可靠性。
该实施例的焊接方法通过采用单面焊双面成型工艺,既能保证钝边熔透又不会击穿,能够消除未熔合缝隙,杜绝夹杂钢丸及铁屑的隐患,提高轮体清洁度和总成装配清洁度,进而提高支重轮及履带式工程机械等的产品质量。
在一些具体的实施例中,支重轮焊接定位工装还包括第一主轴4和第二主轴5,第一主轴4包括第一驱动部件42,第二主轴5包括第二壳体51、第二法兰部52和第二驱动部件53,筒体11包括沿轴向连接的第一段111和第二段112,筒体11的第一段111的第一端上设有第一法兰部13,两个半轮体6分别为第一半轮体61和第二半轮体62,芯轴组件3包括第一芯轴31和第二芯轴32,焊接系统设有预热工位81和焊接工位82,焊接系统还包括位置转移装置83、支撑件、感应线圈84、上料装置85、视觉识别装置86、拾取装置87、焊枪88和下料通道89,焊接方法包括:
通过上料装置85将半轮体6输送至预设位置;
通过视觉识别装置86在预设位置识别半轮体6并采集半轮体6的位置信息;
通过拾取装置87根据位置信息拾取两个半轮体6并将其转移至预热工位81,以将第一半轮体61和第二半轮体62分别穿过筒体11并放置在预热工位81的支撑件上;
通过第一法兰部13在轴向上对第一半轮体61的第二端进行限位;
使第二主轴5朝向靠近第二半轮体62的第二端的方向移动,以使第二法兰部52在轴向上对第二半轮体62的第二端进行限位,并通过第二法兰部52与第一法兰部13配合在轴向上对两个半轮体6的第二端进行限位;
使第一驱动部件42驱动第一芯轴31从筒体11的一端沿轴向朝向靠近对接平面w的方向移动,以使一组垫块2抵靠于第一半轮体61的通孔内壁;
使第二驱动部件53驱动第二芯轴32从筒体11的另一端沿轴向朝向靠近对接平面w的方向移动,以使另一组垫块2抵靠于第二半轮体62的通孔内壁;
使感应线圈84移动至对接平面w处以对支重轮66进行预热;
通过温度检测部件检测对接平面w处的预热温度,在预热温度达到预设温度的情况下,使感应线圈84移开;
通过位置转移装置83使完成预热的支重轮66从预热工位81转移至焊接工位82,同时使下料后空置的支撑件和支重轮焊接定位工装从焊接工位82转移至预热工位81等待下次上料;
在支重轮66处于焊接工位82的情况下,使焊枪88移动至对接平面w处进行焊接;
通过单面焊双面成型工艺在对接平面w处形成焊缝熔敷区域;
在焊接完成后使焊枪88移开;
使第一驱动部件42和第二驱动部件53分别驱动第一芯轴31和第二芯轴32从筒体11的内孔退出,使第一主轴4带动筒体11从支重轮66的通孔退出,使支撑件翻转以使焊接完成后的支重轮66从支撑件下料;
使下料后空置的支撑件翻转复位并等待位置转移装置83转移。
该实施例的焊接方法,对接稳定性和准确度高,能够提高两个半轮体6的定位精度,保证两个半轮体6的焊后同轴度,避免子母口接头处存在未完全熔合的缝隙,从而达到消除未熔合缝隙和提高轮体清洁度的目的,进而能够提高总成装配清洁度;能够实现对支重轮66的双工位自动化焊接,节省人力,提高焊接系统的自动化水平和安全性,提高支重轮预热和焊接效率及质量,提高焊后轮体清洁度,进而提高支重轮及履带式工程机械等的产品质量。
而且,该焊接方法能够避免单工位预热和焊接造成的安全隐患,预热效率高,能耗低,可提高支重轮预热和焊接效率及质量;焊接步骤通过采用单面焊双面成型工艺,既能保证钝边熔透又不会击穿,能够消除未熔合缝隙,杜绝夹杂钢丸及铁屑的隐患,提高轮体清洁度和总成装配清洁度,进而提高支重轮及履带式工程机械等的产品质量。
以上对本公开所提供的一种支重轮焊接定位工装、焊接系统及焊接方法进行了详细介绍。本文中应用了具体的实施例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以对本公开进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。

Claims (20)

  1. 一种支重轮焊接定位工装,用于定位支重轮(66)中的两个半轮体(6),以使两个所述半轮体(6)在对接平面(w)处焊接,所述半轮体(6)沿轴向设有通孔,所述支重轮焊接定位工装包括:
    涨套(1),包括筒体(11),其侧壁上设有槽口(12),所述涨套(1)被配置为穿过两个所述半轮体(6)各自的通孔;
    垫块(2),设在所述槽口(12)内;和
    芯轴组件(3),插入所述筒体(11)的内孔,并将所述垫块(2)抵靠于所述半轮体(6)的通孔内壁,以实现两个所述半轮体(6)的涨紧。
  2. 根据权利要求1所述的支重轮焊接定位工装,其中所述筒体(11)包括沿轴向连接的第一段(111)和第二段(112),所述第一段(111)和所述第二段(112)上分别设有一组所述槽口(12),所述垫块(2)设有两组,两组所述垫块(2)分别设在两组所述槽口(12)内,两个所述半轮体(6)分别为第一半轮体(61)和第二半轮体(62),两组所述垫块(2)分别用于抵靠于所述第一半轮体(61)和所述第二半轮体(62)各自的通孔内壁。
  3. 根据权利要求2所述的支重轮焊接定位工装,其中每组所述槽口(12)包括沿周向间隔设置的多个槽口(12)。
  4. 根据权利要求3所述的支重轮焊接定位工装,还包括弹性环,每组垫块(2)的多个垫块(2)的径向外侧壁上均设有沿周向延伸的凹槽(21),所述弹性环嵌设在多个所述凹槽(21)内。
  5. 根据权利要求1~4任一项所述的支重轮焊接定位工装,其中所述垫块(2)的径向内侧壁包括斜面(22),所述斜面(22)的倾斜方向为自所述筒体(11)端部至所述对接平面(w)朝向靠近所述筒体(11)中心轴线(a)的方向,所述芯轴组件(3)的外侧壁形状与所述垫块(2)的径向内侧壁匹配。
  6. 根据权利要求1~5任一项所述的支重轮焊接定位工装,其中所述涨套(1)的内腔横截面和所述芯轴组件(3)的横截面均为圆形。
  7. 根据权利要求1~6任一项所述的支重轮焊接定位工装,其中所述芯轴组件(3)包括第一芯轴(31)和第二芯轴(32),分别从所述筒体(11)的两端插入内孔,并将两组所述垫块(2)分别抵靠于第一半轮体(61)和第二半轮体(62)的通孔内壁。
  8. 根据权利要求1~7任一项所述的支重轮焊接定位工装,其中所述涨套(1)还包括第一法兰部(13),在使用状态下,第一半轮体(61)的第一端与第二半轮体(62)的第一端对接,所述第一法兰部(13)设在第一段(111)的第一端,所述第一段(111)的第二端连接于第二段(112),所述第一法兰部(13)用于在轴向上对所述第一半轮体(61)的第二端进行限位。
  9. 根据权利要求1~8任一项所述的支重轮焊接定位工装,其中所述芯轴组件(3)包括第一芯轴(31)和第二芯轴(32),所述支重轮焊接定位工装还包括:
    第一主轴(4),包括第一壳体(41)和第一驱动部件(42),第一法兰部(13)固定连接于所述第一壳体(41),所述第一驱动部件(42)设在所述第一壳体(41)内,被配置为驱动所述第一芯轴(31)沿轴向移动;和/或
    第二主轴(5),包括第二壳体(51)、第二法兰部(52)和第二驱动部件(53),所述第二法兰部(52)固定连接于所述第二壳体(51),用于在轴向上对第二半轮体(62)的第二端进行限位,所述第二驱动部件(53)设在所述第二壳体(51)内,被配置为驱动所述第二芯轴(32)沿轴向移动。
  10. 一种焊接系统,包括权利要求1~9任一项所述的支重轮焊接定位工装。
  11. 根据权利要求10所述的焊接系统,其中设有预热工位(81)和焊接工位(82),所述预热工位(81)和所述焊接工位(82)间隔设置,所述焊接系统还包括:
    位置转移装置(83),被配置为将所述支重轮焊接定位工装和完成预热的所述支重轮(66)从所述预热工位(81)转移至所述焊接工位(82),和/或将下料后空置的支撑件和所述支重轮焊接定位工装从所述焊接工位(82)转移至所述预热工位(81)。
  12. 根据权利要求11所述的焊接系统,还包括:
    感应线圈(84),可移动地设在所述预热工位(81),被配置为在所述对接平面(w)处对所述半轮体(6)进行预热;和
    温度检测部件,被配置为检测所述对接平面(w)处的预热温度。
  13. 根据权利要求11或12所述的焊接系统,还包括:
    上料装置(85),被配置为将所述半轮体(6)输送至预设位置;
    视觉识别装置(86),被配置为在所述预设位置识别所述半轮体(6)并采集所述半轮体(6)的位置信息;和
    拾取装置(87),被配置为根据所述位置信息拾取所述半轮体(6)并将其转移至所述预热工位(81)。
  14. 一种基于权利要求10~13任一项所述的焊接系统的焊接方法,包括定位步骤,所述定位步骤包括:
    使所述涨套(1)穿过两个所述半轮体(6)各自的通孔;
    使所述芯轴组件(3)插入所述筒体(11)的内孔;
    在所述芯轴组件(3)插入所述内孔的过程中,使所述垫块(2)沿所述槽口(12)的侧壁向远离所述涨套(1)的中心轴线(a)的方向移动,以使所述垫块(2)抵靠于所述半轮体(6)的通孔内壁,以实现两个所述半轮体(6)的涨紧。
  15. 根据权利要求14所述的焊接方法,其中在使用状态下,第一半轮体(61)的第一端与第二半轮体(62)的第一端对接,所述筒体(11)的第一段(111)的第一端上设有第一法兰部(13),所述支重轮焊接定位工装还包括第二主轴(5),所述第二主轴(5)包括第二壳体(51)和第二法兰部(52),所述第二法兰部(52)固定连接于所述第二壳体(51),所述定位步骤还包括:
    通过所述第一法兰部(13)在轴向上对所述第一半轮体(61)的第二端进行限位;和/或
    使第二主轴(5)朝向靠近所述第二半轮体(62)的第二端的方向移动,以使所述第二法兰部(52)在轴向上对所述第二半轮体(62)的第二端进行限位。
  16. 根据权利要求14或15所述的焊接方法,其中所述筒体(11)包括沿轴向连接的第一段(111)和第二段(112),所述第一段(111)和所述第二段(112)上分别设有一组所述槽口(12),所述垫块(2)设有两组,两组所述垫块(2)分别设在两组所述槽口(12)内,两个所述半轮体(6)分别为第一半轮体(61)和第二半轮体(62),所述芯轴组件(3)包括第一芯轴(31)和第二芯轴(32),所述支重轮焊接定位工装还包括第一主轴(4)和第二主轴(5),所述第一主轴(4)包括第一驱动部件(42),所述第二主轴(5)包括第二驱动部件(53),所述定位步骤还包括:
    使所述第一驱动部件(42)驱动所述第一芯轴(31)从所述筒体(11)的一端沿轴向朝向靠近所述对接平面(w)的方向移动,以使一组所述垫块(2)抵靠于所述第一半轮体(61)的通孔内壁;
    使所述第二驱动部件(53)驱动所述第二芯轴(32)从所述筒体(11)的另一端沿轴向朝向靠近所述对接平面(w)的方向移动,以使另一组所述垫块(2)抵靠于所述第二半轮体(62)的通孔内壁。
  17. 根据权利要求14~16任一项所述的焊接方法,其中所述焊接系统还包括上料装置(85)、视觉识别装置(86)和拾取装置(87),所述焊接系统设有预热工位(81)和焊接工位(82),所述焊接方法还包括上料步骤,所述上料步骤包括:
    通过所述上料装置(85)将所述半轮体(6)输送至预设位置;
    通过所述视觉识别装置(86)在所述预设位置识别所述半轮体(6)并采集所述半轮体(6)的位置信息;
    通过所述拾取装置(87)根据所述位置信息拾取所述半轮体(6)并将其转移至所述预热工位(81)。
  18. 根据权利要求17所述的焊接方法,其中所述焊接系统还包括感应线圈(84)和温度检测部件,所述焊接方法还包括预热步骤,所述预热步骤包括:
    使所述感应线圈(84)移动至所述对接平面(w)处以对所述半轮体(6)进行预热;
    通过所述温度检测部件检测所述对接平面(w)处的预热温度,在所述预热温度达到预设温度的情况下,使所述感应线圈(84)移开。
  19. 根据权利要求18所述的焊接方法,其中所述焊接系统还包括位置转移装置(83),所述焊接方法还包括位置转移步骤,所述位置转移步骤包括:
    使完成预热的所述支重轮(66)从所述预热工位(81)转移至所述焊接工位(82);
    使位于所述焊接工位(82)焊接完成后的所述支重轮(66)从支撑件下料;
    使下料后空置的所述支撑件和所述支重轮焊接定位工装从所述焊接工位(82)转移至所述预热工位(81)等待下次上料。
  20. 根据权利要求14~19任一项所述的焊接方法,还包括:
    在所述支重轮(66)处于焊接工位(82)的情况下,使焊枪(88)移动至所述对接平面(w)处进行焊接;
    通过单面焊双面成型工艺在所述对接平面(w)处形成焊缝熔敷区域;
    在焊接完成后使所述焊枪(88)移开。
PCT/CN2023/110158 2022-11-18 2023-07-31 支重轮焊接定位工装、焊接系统及焊接方法 WO2024103839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211445418.4A CN115673643A (zh) 2022-11-18 2022-11-18 支重轮焊接定位工装、焊接系统及焊接方法
CN202211445418.4 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024103839A1 true WO2024103839A1 (zh) 2024-05-23

Family

ID=85054224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110158 WO2024103839A1 (zh) 2022-11-18 2023-07-31 支重轮焊接定位工装、焊接系统及焊接方法

Country Status (2)

Country Link
CN (1) CN115673643A (zh)
WO (1) WO2024103839A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115673643A (zh) * 2022-11-18 2023-02-03 徐州徐工履带底盘有限公司 支重轮焊接定位工装、焊接系统及焊接方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201342671Y (zh) * 2009-01-09 2009-11-11 厦门思尔特机器人系统有限公司 支重轮焊接机器人设备
WO2012093226A1 (fr) * 2011-01-05 2012-07-12 Serimax Dispositif et procédé d'aide au raboutage de pièces tubulaires
CN203853697U (zh) * 2014-05-29 2014-10-01 天津市远大阀门有限公司 支重轮轮体的焊接装置
CN106077865A (zh) * 2016-08-01 2016-11-09 昆山土山建设部件有限公司 一种支重轮的焊接装置
CN107649814A (zh) * 2017-11-01 2018-02-02 湖州华科建设工程质量检测有限公司 一种支重轮毛坯的焊接工装
CN212577921U (zh) * 2020-07-20 2021-02-23 济宁市五创机械有限公司 支重轮轮体焊接膨胀芯轴
CN212744750U (zh) * 2020-06-24 2021-03-19 成都思创精密机械有限公司 一种轮轴涨套连接结构
CN113523819A (zh) * 2021-06-18 2021-10-22 福建恒劲科技有限公司 一种支重轮精加工自动化生产装配线及工艺
CN115673643A (zh) * 2022-11-18 2023-02-03 徐州徐工履带底盘有限公司 支重轮焊接定位工装、焊接系统及焊接方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201342671Y (zh) * 2009-01-09 2009-11-11 厦门思尔特机器人系统有限公司 支重轮焊接机器人设备
WO2012093226A1 (fr) * 2011-01-05 2012-07-12 Serimax Dispositif et procédé d'aide au raboutage de pièces tubulaires
CN203853697U (zh) * 2014-05-29 2014-10-01 天津市远大阀门有限公司 支重轮轮体的焊接装置
CN106077865A (zh) * 2016-08-01 2016-11-09 昆山土山建设部件有限公司 一种支重轮的焊接装置
CN107649814A (zh) * 2017-11-01 2018-02-02 湖州华科建设工程质量检测有限公司 一种支重轮毛坯的焊接工装
CN212744750U (zh) * 2020-06-24 2021-03-19 成都思创精密机械有限公司 一种轮轴涨套连接结构
CN212577921U (zh) * 2020-07-20 2021-02-23 济宁市五创机械有限公司 支重轮轮体焊接膨胀芯轴
CN113523819A (zh) * 2021-06-18 2021-10-22 福建恒劲科技有限公司 一种支重轮精加工自动化生产装配线及工艺
CN115673643A (zh) * 2022-11-18 2023-02-03 徐州徐工履带底盘有限公司 支重轮焊接定位工装、焊接系统及焊接方法

Also Published As

Publication number Publication date
CN115673643A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2024103839A1 (zh) 支重轮焊接定位工装、焊接系统及焊接方法
CN110757032B (zh) 一种管-法兰和管-套管的全自动组对焊接工作站
CN104001836A (zh) 换热器芯体胀管用自动上下搬运装置和使用方法
CN101108443A (zh) 大型滑履磨筒体进、出口滑环的装焊工艺方法
CN110102868B (zh) 一种应用于机器人的搅拌摩擦焊结构
CN109290808B (zh) 管道模块化预制生产线以及管道模块预制方法
CN106944564B (zh) 自动送料系统、螺栓圆角滚压机及螺栓圆角滚压方法
CN203900322U (zh) 换热器芯体胀管用自动上下搬运装置
CN215280790U (zh) 一种液压油缸的组合加工设备
WO2021022756A1 (zh) 一种电机定子铁芯的注油松动系统
WO2015160201A1 (ko) 맞대기 열융착을 이용한 폴리에틸렌 파이프 연결방법
CN210160674U (zh) 螺纹套筒生产线
CN112453903B (zh) 一种嵌入式螺母自动生产方法
CN211102297U (zh) 一种回转链板传输和支撑管件的数控相贯线切割设备
CN109396774B (zh) 一种活塞制造方法和活塞生产线
CN113857937A (zh) 一种气缸套自动化生产线及加工方法
CN108393763A (zh) 一种自动去毛刺设备及其控制方法
CN220421616U (zh) 一种铁芯熔接设备
CN206883449U (zh) 铸造类零件智能打磨生产线
CN104438345B (zh) 一种万能轧机水平辊装配结构及配作、装配方法
CN110508699A (zh) 一种基于管类扩孔设备的扩孔方法
CN110640468A (zh) 一种分块式钢管环流水线式加工装置及其加工方法
CN220289453U (zh) 一种用于固体火箭发动机无损检测的高效防护装置
CN214827152U (zh) 一种连杆自动上下料抓具
CN218612565U (zh) 一种用于变压器散热片管的焊接设备