WO2024103761A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2024103761A1
WO2024103761A1 PCT/CN2023/103910 CN2023103910W WO2024103761A1 WO 2024103761 A1 WO2024103761 A1 WO 2024103761A1 CN 2023103910 W CN2023103910 W CN 2023103910W WO 2024103761 A1 WO2024103761 A1 WO 2024103761A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting sub
interval
pixel
microlens structure
Prior art date
Application number
PCT/CN2023/103910
Other languages
English (en)
French (fr)
Inventor
孙佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to KR1020237041029A priority Critical patent/KR20240073814A/ko
Priority to US18/288,868 priority patent/US20240164191A1/en
Publication of WO2024103761A1 publication Critical patent/WO2024103761A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present application relates to the field of display, and in particular to a display panel and a display device.
  • OLED Organic Light-Emitting Diode
  • the present application provides a display panel and a display device to improve the viewing angle symmetry of the existing OLED display panel.
  • the present application provides a display panel, the display panel comprising:
  • a light-emitting layer is disposed on one side of the substrate, and the light-emitting layer includes: a plurality of light-emitting sub-pixels;
  • An optical function layer is arranged on a side of the light-emitting layer away from the substrate, and the optical function layer comprises: a plurality of microlens structures, and the microlens structures are arranged in a one-to-one correspondence with the light-emitting sub-pixels;
  • the plurality of microlens structures include: a plurality of periodically arranged repeating units; the repeating units include: a first microlens structure and a second microlens structure; the plurality of light-emitting sub-pixels include: a first light-emitting sub-pixel corresponding to the first microlens structure and a second light-emitting sub-pixel corresponding to the second microlens structure;
  • the center point of the first microlens structure and the center point of the first light-emitting sub-pixel have a first interval in the first direction
  • the center point of the second microlens structure and the center point of the second light-emitting sub-pixel have a second interval in the second direction
  • the first direction is different from the second direction
  • the first direction is opposite to the second direction
  • the first interval and the second interval are the same.
  • the repeating unit further includes: a third microlens structure; the plurality of light-emitting sub-pixels further include: a third light-emitting sub-pixel corresponding to the third microlens structure;
  • a center point of the third microlens structure and a center point of the third light-emitting sub-pixel have a third interval in a third direction, and the first direction, the second direction, and the third direction are all different.
  • the first direction, the second direction, and the third direction are sequentially arranged at intervals of 120 degrees;
  • the first interval, the second interval, and the third interval are all the same.
  • the repeating unit further includes: a fourth microlens structure; the plurality of light-emitting sub-pixels further include: a fourth light-emitting sub-pixel corresponding to the fourth microlens structure;
  • a center point of the fourth microlens structure and a center point of the fourth light-emitting sub-pixel have a fourth interval in a fourth direction, and the first direction, the second direction, the third direction, and the fourth direction are all different.
  • the first direction, the second direction, the third direction, and the fourth direction are sequentially arranged at intervals of 90 degrees;
  • the first interval, the second interval, the third interval, and the fourth interval are all the same.
  • the shape of the microlens structure is the same as the shape of the corresponding light-emitting sub-pixel, and the size of the microlens structure is the same as the size of the corresponding light-emitting sub-pixel.
  • the first interval and the second interval are less than or equal to 5 micrometers.
  • the multiple light-emitting sub-pixels include multiple red light-emitting sub-pixels, multiple green light-emitting sub-pixels and multiple blue light-emitting sub-pixels; the first interval corresponding to the red light-emitting sub-pixels, the first interval corresponding to the green light-emitting sub-pixels, and the first interval corresponding to the blue light-emitting sub-pixels are all equal.
  • the plurality of light-emitting sub-pixels include red light-emitting sub-pixels, green light-emitting sub-pixels and blue light-emitting sub-pixels; the first interval corresponding to the red light-emitting sub-pixels is smaller than the first interval corresponding to the green light-emitting sub-pixels and larger than the first interval corresponding to the blue light-emitting sub-pixels.
  • the first interval corresponding to the red light-emitting sub-pixel is greater than 1 micron and less than or equal to 3 microns
  • the first interval corresponding to the blue light-emitting sub-pixel is greater than 0 micron and less than or equal to 2 microns
  • the first interval corresponding to the green light-emitting sub-pixel is greater than 2 microns and less than or equal to 5 microns.
  • the shape of the microlens structure is the same as the shape of the corresponding light-emitting sub-pixel, and the size of the microlens structure is larger than the size of the corresponding light-emitting sub-pixel.
  • the display panel further includes:
  • a pixel definition layer is disposed between the substrate and the light-emitting layer, and the pixel definition layer comprises: a plurality of first openings corresponding to the light-emitting sub-pixels;
  • the optical functional layer includes: a first refractive index layer arranged on a side of the light-emitting layer away from the substrate, and a second refractive index layer arranged on a side of the first refractive index layer away from the substrate, the first refractive index layer includes a plurality of second openings corresponding to the microlens structure, and the refractive index of the first refractive index layer is less than the refractive index of the second refractive index layer.
  • the present application further provides a display device, the display device comprising a display panel; the display panel comprising:
  • a light-emitting layer is disposed on one side of the substrate, and the light-emitting layer includes: a plurality of light-emitting sub-pixels;
  • An optical function layer is arranged on a side of the light-emitting layer away from the substrate, and the optical function layer comprises: a plurality of microlens structures, and the microlens structures are arranged in a one-to-one correspondence with the light-emitting sub-pixels;
  • the plurality of microlens structures include: a plurality of periodically arranged repeating units; the repeating units include: a first microlens structure and a second microlens structure; the plurality of light-emitting sub-pixels include: a first light-emitting sub-pixel corresponding to the first microlens structure and a second light-emitting sub-pixel corresponding to the second microlens structure;
  • the center point of the first microlens structure and the center point of the first light-emitting sub-pixel have a first interval in the first direction
  • the center point of the second microlens structure and the center point of the second light-emitting sub-pixel have a second interval in the second direction
  • the first direction is different from the second direction
  • the first direction is opposite to the second direction
  • the first interval and the second interval are the same.
  • the repeating unit further includes: a third microlens structure; the plurality of light-emitting sub-pixels further include: a third light-emitting sub-pixel corresponding to the third microlens structure;
  • a center point of the third microlens structure and a center point of the third light-emitting sub-pixel have a third interval in a third direction, and the first direction, the second direction, and the third direction are all different.
  • the first direction, the second direction, and the third direction are sequentially arranged at intervals of 120 degrees;
  • the first interval, the second interval, and the third interval are all the same.
  • the repeating unit further includes: a fourth microlens structure; the plurality of light-emitting sub-pixels further include: a fourth light-emitting sub-pixel corresponding to the fourth microlens structure;
  • a center point of the fourth microlens structure and a center point of the fourth light-emitting sub-pixel have a fourth interval in a fourth direction, and the first direction, the second direction, the third direction, and the fourth direction are all different.
  • the first direction, the second direction, the third direction, and the fourth direction are sequentially arranged at intervals of 90 degrees;
  • the first interval, the second interval, the third interval, and the fourth interval are all the same.
  • the shape of the microlens structure is the same as the shape of the corresponding light-emitting sub-pixel, and the size of the microlens structure is the same as the size of the corresponding light-emitting sub-pixel.
  • the present application sets the first microlens structure in the display panel to be offset relative to the center of the corresponding first light-emitting sub-pixel, and sets the second microlens structure to be offset relative to the center of the corresponding second light-emitting sub-pixel, and the two offset directions are different. This alleviates to a certain extent the problem that all microlens structures in the existing display panel are offset in one direction relative to the corresponding light-emitting sub-pixel, thereby alleviating the viewing angle symmetry problem of the display panel.
  • FIG1 is a schematic diagram of a planar structure of light-emitting sub-pixels of the same color and corresponding micro-lens structures of a display panel under an ideal state;
  • FIG2 is a schematic diagram of the cross-sectional structure along the AA' direction in FIG1;
  • FIG3 is a schematic diagram of a planar structure of light-emitting sub-pixels of the same color and corresponding micro-lens structures of a display panel provided by the prior art;
  • FIG4 is a schematic diagram of the cross-sectional structure along the BB' direction in FIG3 ;
  • FIG5 is a diagram showing the viewing angle symmetry results of a display panel provided by the prior art
  • FIG. 6 is a schematic diagram of a first planar superposition of light-emitting sub-pixels of the same color and corresponding micro-lens structures of a display panel provided in an embodiment of the present application;
  • FIG7 is a schematic diagram of a plane superposition when the microlens structure in FIG6 is offset
  • FIG. 8 is a second planar superposition schematic diagram of light-emitting sub-pixels of the same color and corresponding micro-lens structures of a display panel provided in an embodiment of the present application;
  • FIG9 is a schematic diagram of a plane superposition when the microlens structure in FIG8 is offset
  • FIG10 is a schematic diagram of a third planar superposition of light-emitting sub-pixels of the same color and corresponding micro-lens structures of a display panel provided in an embodiment of the present application;
  • FIG11 is a schematic diagram of a plane superposition when the microlens structure in FIG10 is offset;
  • FIG. 12 is a schematic diagram of a cross-sectional structure of a display panel provided in an embodiment of the present application.
  • Figure 1 is a schematic diagram of the planar structure of the light-emitting sub-pixels of the same color and the corresponding microlens structure of the display panel in an ideal state, specifically a schematic diagram of the planar structure of the sub-pixels of the same color and the corresponding microlens structure in a pixel diamond arrangement mode;
  • Figure 2 is a schematic diagram of the cross-sectional structure along the AA' direction in Figure 1.
  • the display panel mainly includes a substrate 1, a light-emitting layer 2, a pixel definition layer 3, a packaging layer 4, an optical functional layer 5 and a cover plate 6 which are stacked in sequence.
  • the substrate 1 includes a thin film transistor circuit
  • the light-emitting layer 2 includes a plurality of light-emitting sub-pixels 11
  • the pixel definition layer 3 is arranged between the substrate 1 and the light-emitting layer 2
  • the pixel definition layer 3 includes a plurality of first openings 31 corresponding to the light-emitting sub-pixels 11
  • the optical function layer 5 includes a touch layer 51, a first refractive index layer 52, a second refractive index layer 53 and a polarizer 54 stacked in sequence from bottom to top
  • the refractive index of the first refractive index layer 52 is less than the refractive index of the second refractive index layer 53
  • the first refractive index layer 52 is provided with a second opening 55
  • the second opening 55 corresponds to the light-emitting sub-pixel 11 one by one
  • the orthographic projection of the second opening 55 on the substrate 1 coincides with the projection of the light-emitting sub-pixel 11 on the substrate 1, the first refractive index
  • Figure 3 is a schematic diagram of the plane structure of the light-emitting sub-pixel of the same color and the corresponding microlens structure of the display panel provided by the prior art.
  • Figure 3 (a) is a schematic diagram of the plane structure in which the upward alignment deviation occurs during the preparation of the microlens structure
  • Figure 3 (b) is a schematic diagram of the plane structure in which the downward alignment deviation occurs during the preparation of the microlens structure
  • Figure 3 (c) is a schematic diagram of the plane structure in which the left alignment deviation occurs during the preparation of the microlens structure
  • Figure 3 (d) is a schematic diagram of the plane structure in which the right alignment deviation occurs during the preparation of the microlens structure
  • Figure 4 is a schematic diagram of the cross-sectional structure in the BB' direction of Figure 3.
  • the present application provides a display panel that can solve or alleviate the problems.
  • the present application provides a display panel, the display panel comprising:
  • a light-emitting layer is disposed on one side of the substrate, and the light-emitting layer includes: a plurality of light-emitting sub-pixels;
  • An optical function layer is arranged on a side of the light-emitting layer away from the substrate, and the optical function layer comprises: a plurality of microlens structures, and the microlens structures are arranged in a one-to-one correspondence with the light-emitting sub-pixels;
  • the plurality of microlens structures include: a plurality of periodically arranged repeating units; the repeating units include: a first microlens structure and a second microlens structure; the plurality of light-emitting sub-pixels include: a first light-emitting sub-pixel corresponding to the first microlens structure and a second light-emitting sub-pixel corresponding to the second microlens structure;
  • the center point of the first microlens structure and the center point of the first light-emitting sub-pixel have a first interval in the first direction
  • the center point of the second microlens structure and the center point of the second light-emitting sub-pixel have a second interval in the second direction
  • the first direction is different from the second direction
  • the first microlens structure is set to be offset relative to the center of the corresponding first light-emitting sub-pixel
  • the second microlens structure is set to be offset relative to the center of the corresponding second light-emitting sub-pixel, and the two offset directions are different.
  • the microlens structure of the display panel is explained in detail. Since in the display panel, the light-emitting sub-pixels generally include red light-emitting sub-pixels, green light-emitting sub-pixels, and blue light-emitting sub-pixels, the microlens structure is set in the same manner for light-emitting sub-pixels of any color. For the sake of clarity, the light-emitting sub-pixels of the same color (blue light-emitting sub-pixels) are taken as an example to explain the lens structure.
  • Figure 6 is a first planar superposition diagram of light-emitting sub-pixels of the same color and corresponding microlens structures of the display panel provided in an embodiment of the present application.
  • the shape of the microlens structure 12 is the same as the shape of the corresponding light-emitting sub-pixel 11
  • the size of the microlens structure 12 is the same as the size of the corresponding light-emitting sub-pixel 11.
  • One repeating unit 10 includes two microlens structures 12: a first microlens structure 121 and a second microlens structure 122.
  • the plurality of light-emitting sub-pixels 11 include a first light-emitting sub-pixel 111 corresponding to the first microlens structure 121 and a second light-emitting sub-pixel 112 corresponding to the second microlens structure 122.
  • the center point O 21 of the first microlens structure 121 and the center point O 11 of the first light-emitting sub-pixel 111 have a first interval d1 in the first direction O 21 O 11
  • the center point O 22 of the second microlens structure 122 and the center point O 12 of the second light-emitting sub-pixel 112 have a second interval d2 in the second direction O 22 O 12
  • the first direction O 21 O 11 and the second direction O 22 O 12 are opposite
  • the first interval d1 is equal to the second interval d2.
  • the first direction O 21 O 11 is the upper right
  • the second direction O 22 O 12 is the lower left.
  • the first direction may be the lower right and the second direction may be the upper left, etc., without limitation.
  • the first microlens structure 121 is offset in the first direction O 21 O 11 and the first interval d1 relative to the first light-emitting sub-pixel 111; the light converging effect of the first microlens structure 121 on the first light-emitting sub-pixel 111 is enhanced in the first direction O 21 O 11 , and weakened in the second direction O 22 O 12.
  • the second microlens structure 122 is offset in the second direction O 22 O 12 and the second interval d2 relative to the second light-emitting sub-pixel 112; the light converging effect of the second microlens structure 122 on the second light-emitting sub-pixel 112 is enhanced in the second direction O 22 O 12 , and weakened in the first direction O 21 O 11 .
  • the first microlens structure 121 enhances the light converging effect of the first light-emitting sub-pixel 111 in the first direction O 21 O 11 , which is the same as the second microlens structure 122 enhances the light converging effect of the second light-emitting sub-pixel 112 in the second direction O 22 O 12 ;
  • the second microlens structure 122 weakens the light converging effect of the second light-emitting sub-pixel 112 in the first direction O 21 O 11 , which is the same as the first microlens structure 121 weakens the light converging effect of the first light-emitting sub-pixel 111 in the second direction O 22 O 12 ;
  • the visual effect of the entire display panel in the first direction O 21 O 11 and the second direction O 22 O 12 is the same, that is, visual symmetry.
  • the display panel is visually symmetrical.
  • FIG7 is a plane superposition schematic diagram of the microlens structure in FIG6 when an alignment offset occurs; specifically, FIG7 (a) is a plane superposition schematic diagram of the microlens structure when an upward alignment offset occurs, FIG7 (b) is a plane superposition schematic diagram of the microlens structure when a downward alignment offset occurs, FIG7 (c) is a plane superposition schematic diagram of the microlens structure when a left alignment offset occurs, and FIG7 (d) is a plane superposition schematic diagram of the microlens structure when a right alignment offset occurs.
  • the light-emitting sub-pixels of the display panel include red light-emitting sub-pixels, green light-emitting sub-pixels and blue light-emitting sub-pixels. Furthermore, the light-emitting sub-pixels may also include white light-emitting sub-pixels.
  • the microlens structures corresponding to the red light-emitting sub-pixels, the green light-emitting sub-pixels and the blue light-emitting sub-pixels are respectively arranged in the same manner as the above-mentioned microlens structure 12.
  • the first interval between the red light-emitting sub-pixel and the corresponding microlens structure, the first interval between the green light-emitting sub-pixel and the corresponding microlens structure, and the first interval between the blue light-emitting sub-pixel and the corresponding microlens structure are all equal, and the first interval is less than or equal to 4 microns.
  • the first interval and the second interval after the offset are less than or equal to 5 microns.
  • the first interval between the red light-emitting sub-pixel and the corresponding microlens structure is greater than the first interval between the green light-emitting sub-pixel and the corresponding microlens structure, and is less than the first interval between the blue light-emitting sub-pixel and the corresponding microlens structure.
  • the first interval between the red light-emitting sub-pixel and the corresponding microlens structure is greater than 1 micron and less than or equal to 2 microns
  • the first interval between the green light-emitting sub-pixel and the corresponding microlens structure is less than or equal to 1 micron
  • the first interval between the blue light-emitting sub-pixel and the corresponding microlens structure is greater than 2 microns and less than or equal to 4 microns.
  • the first interval between the red light-emitting sub-pixel and the corresponding microlens structure is greater than 0 and less than or equal to 3 microns, the first interval between the green light-emitting sub-pixel and the corresponding microlens structure is less than or equal to 2 microns, and the first interval between the blue light-emitting sub-pixel and the corresponding microlens structure is greater than 1 micron and less than or equal to 5 microns.
  • the repeating unit may further include one or more third microlens structures, the light-emitting sub-pixel includes a third light-emitting sub-pixel corresponding to the third microlens structure, and the center point of the third microlens structure coincides with the center point of the third light-emitting sub-pixel.
  • Figure 8 is a second planar superposition schematic diagram of light-emitting sub-pixels of the same color and corresponding microlens structures of the display panel provided in an embodiment of the present application.
  • the parts similar to those in this embodiment will not be repeated here, and please refer to the first embodiment for details.
  • a repeating unit 10 includes three microlens structures 12: a first microlens structure 121, a second microlens structure 122, and a third microlens structure 123.
  • the plurality of light-emitting sub-pixels 11 include: a first light-emitting sub-pixel 111 corresponding to the first microlens structure 121, a second light-emitting sub-pixel 112 corresponding to the second microlens structure 122, and a third light-emitting sub-pixel 113 corresponding to the third microlens structure 123.
  • the center point O 21 of the first microlens structure 121 and the center point O 11 of the first light-emitting sub-pixel 111 have a first interval d1 in the first direction O 21 O 11
  • the center point O 22 of the second microlens structure 122 and the center point O 12 of the second light-emitting sub-pixel 112 have a second interval d2 in the second direction O 22 O 12
  • the center point O 23 of the third microlens structure 123 and the center point O 13 of the third light-emitting sub-pixel 113 have a third interval d3 in the third direction O 23 O 13 ;
  • the first direction O 21 O 11 , the second direction O 22 O 12 , and the third direction O 23 O 13 are sequentially spaced 120 degrees apart; the first interval d1, the second interval d2, and the third interval d3 are all equal.
  • the first direction O 21 O 11 is directly above
  • the second direction O 22 O 12 is the lower right
  • the third direction O 23 O 13 is the lower left.
  • other directions may be set, which are not limited here.
  • the three microlens structures 12 in one repeating unit 10 have a comprehensive effect on the corresponding three light-emitting sub-pixels 11, so that the visual effect of the display panel in any two relative directions is symmetrical.
  • Example 1 for the specific principle.
  • FIG. 9 is a schematic diagram of plane superposition when the microlens structure in FIG. 8 is offset from the original position.
  • FIG9 (a) is a schematic diagram of a plane superposition when the microlens structure has an upward alignment deviation.
  • the upward alignment deviation occurs when preparing the first refractive index layer 52, there are two microlens structures 12 in one repeating unit 10, and their center points are on the same horizontal line as the center points of the corresponding light-emitting sub-pixels 11, that is, the light converging effect of the microlens structure 12 on the light-emitting sub-pixels 11 is symmetrical in the vertical direction, thereby improving the viewing angle symmetry of the display panel in the vertical direction, and the improvement degree is 67%.
  • FIG9 (b) is a schematic diagram of a plane superposition when a downward alignment deviation occurs in the microlens structure.
  • a downward alignment deviation occurs when preparing the first refractive index layer 52, there is a microlens structure 12 in one of the repeating units 10, and its center point coincides with the center point of the corresponding light-emitting sub-pixel 11, that is, the light converging effect of the microlens structure 12 on the light-emitting sub-pixel 11 is symmetrical in the vertical direction, thereby improving the viewing angle symmetry of the display panel in the vertical direction, and the improvement degree is 33%.
  • FIG9 (c) is a schematic diagram of a plane superposition when the microlens structure is offset to the left.
  • the first refractive index layer 52 is prepared and the left alignment deviation occurs, there is a microlens structure 12 in one of the repeating units 10, and its center point is on the same vertical line as the center point of the corresponding light-emitting sub-pixel 11, that is, the light converging effect of the microlens structure 12 on the light-emitting sub-pixel 11 is symmetrical in the left and right directions, thereby improving the viewing angle symmetry of the display panel in the left and right directions, and the improvement degree is 33%.
  • FIG9 (d) is a schematic diagram of a plane superposition when the microlens structure is offset to the right.
  • the first refractive index layer 52 is prepared and the rightward offset occurs, there is a microlens structure 12 in one of the repeating units 10, and its center point is on the same vertical line as the center point of the corresponding light-emitting sub-pixel 11, that is, the light converging effect of the microlens structure 12 on the light-emitting sub-pixel 11 is symmetrical in the left and right directions, thereby improving the viewing angle symmetry of the display panel in the left and right directions, and the improvement degree is 33%.
  • Figure 10 is a third planar superposition schematic diagram of the light-emitting sub-pixels of the same color and the corresponding microlens structures of the display panel provided in the embodiment of the present application.
  • the parts similar to those in the present embodiment will not be repeated here, and please refer to the embodiment 1 for details.
  • a repeating unit 10 includes four microlens structures 12: a first microlens structure 121, a second microlens structure 122, a third microlens structure 123 and a fourth microlens structure.
  • the plurality of light-emitting sub-pixels 11 include: a first light-emitting sub-pixel 111 corresponding to the first microlens structure 121, a second light-emitting sub-pixel 112 corresponding to the second microlens structure 122, a third light-emitting sub-pixel 113 corresponding to the third microlens structure 123, and a fourth light-emitting sub-pixel 114 corresponding to the fourth microlens structure 124.
  • the center point O 21 of the first microlens structure 121 and the center point O 11 of the first light-emitting sub-pixel 111 have a first interval d1 in the first direction O 21 O 11
  • the center point O 22 of the second microlens structure 122 and the center point O 12 of the second light-emitting sub-pixel 112 have a second interval d2 in the second direction O 22 O 12
  • the center point O 23 of the third microlens structure 123 and the center point O 13 of the third light-emitting sub-pixel 113 have a third interval d3 in the third direction O 23 O 13
  • the center point O 24 of the fourth microlens structure 124 and the center point O 14 of the fourth light-emitting sub-pixel 114 have a fourth interval d4 in the fourth direction O 24 O 14 .
  • the first direction O 21 O 11 , the second direction O 22 O 12 , the third direction O 23 O 13 , and the fourth direction O 24 O 14 are sequentially spaced 90 degrees apart; the first interval d1 , the second interval d2 , the third interval d3 , and the fourth interval d4 are all equal.
  • the first direction O 21 O 11 is the upper left
  • the second direction O 22 O 12 is the upper right
  • the third direction O 23 O 13 is the lower right
  • the fourth direction O 24 O 14 is the lower left.
  • other directions may be set, which are not limited here.
  • the four microlens structures 12 in one repeating unit 10 have a comprehensive effect on the corresponding four light-emitting sub-pixels 11, so that the visual effect of the display panel in any two relative directions is symmetrical.
  • Example 1 For the specific principle, please refer to Example 1.
  • FIG. 11 is a planar superposition schematic diagram of the microlens structure in FIG. 10 when alignment deviation occurs.
  • FIG. 11 (a) is a schematic diagram of a plane superposition when an upward alignment deviation occurs in the microlens structure.
  • an upward alignment deviation occurs when preparing the first refractive index layer 52, there are two microlens structures 12 in one repeating unit 10, and their center points are on the same horizontal line as the center points of the corresponding light-emitting sub-pixels 11, that is, the light converging effect of the microlens structure 12 on the light-emitting sub-pixels 11 is symmetrical in the vertical direction, thereby improving the viewing angle symmetry of the display panel in the vertical direction, and the improvement degree is 50%.
  • FIG11(b) is a schematic diagram of a plane superposition when a downward alignment deviation occurs in the microlens structure.
  • a downward alignment deviation occurs when preparing the first refractive index layer 52, there are two microlens structures 12 in one repeating unit 10, and their center points are on the same horizontal line as the center points of the corresponding light-emitting sub-pixels 11, that is, the light converging effect of the microlens structure 12 on the light-emitting sub-pixels 11 is symmetrical in the vertical direction, thereby improving the viewing angle symmetry of the display panel in the vertical direction, and the improvement degree is 50%.
  • FIG11 (c) is a schematic diagram of a plane superposition when a microlens structure is offset to the left.
  • a leftward offset occurs when preparing the first refractive index layer 52, two microlens structures 12 exist in one repeating unit 10, and their center points are on the same vertical line as the center points of the corresponding light-emitting sub-pixels 11, that is, the light converging effect of the microlens structures 12 on the light-emitting sub-pixels 11 is symmetrical in the left-right direction, thereby improving the viewing angle symmetry of the display panel in the left-right direction, and the improvement degree is 50%.
  • FIG11 (d) is a schematic diagram of a plane superposition when a microlens structure is offset to the right.
  • a rightward offset occurs when preparing the first refractive index layer 52, two microlens structures 12 exist in one repeating unit 10, and their center points are on the same vertical line as the center points of the corresponding light-emitting sub-pixels 11, that is, the light converging effect of the microlens structures 12 on the light-emitting sub-pixels 11 is symmetrical in the left-right direction, thereby improving the viewing angle symmetry of the display panel in the left-right direction, and the improvement degree is 50%.
  • the repeating unit 10 may also include five or more microlens structures 12, and the intervals between the center points of any two adjacent microlens structures 12 relative to the offset directions of the center points of the corresponding light-emitting sub-pixels 11 are equal, and the intervals between the center points are equal.
  • Figure 12 is a fourth planar superposition schematic diagram of light-emitting sub-pixels of the same color and corresponding microlens structures of the display panel provided in an embodiment of the present application.
  • the shape of the microlens structure 12 is the same as the shape of the corresponding light-emitting sub-pixel 11
  • the size of the microlens structure 12 is larger than the size of the corresponding light-emitting sub-pixel 11
  • the orthographic projection of the microlens structure 12 on the substrate 1 covers the orthographic projection of the corresponding light-emitting sub-pixel 11 on the substrate 1.
  • One repeating unit 10 includes two microlens structures 12: a first microlens structure 121 and a second microlens structure 122.
  • the plurality of light-emitting sub-pixels 11 include a first light-emitting sub-pixel 111 corresponding to the first microlens structure 121 and a second light-emitting sub-pixel 112 corresponding to the second microlens structure 122.
  • a center point O 21 of the first microlens structure 121 and a center point O 11 of the first light-emitting sub-pixel 111 have a first interval d1 in a first direction O 21 O 11 , and the size of the first microlens structure 121 in other directions is the same as the size of the first light-emitting sub-pixel 111, and the size is unilaterally extended in the first direction O 21 O 11.
  • a center point O 22 of the second microlens structure 122 and a center point O 12 of the second light-emitting sub-pixel 112 have a second interval d2 in a second direction O 22 O 12 , and the size of the second microlens structure 122 in other directions is the same as the size of the second light-emitting sub-pixel 112, and the size is unilaterally extended in the second direction O 22 O 12.
  • the first direction O 21 O 11 is opposite to the second direction O 22 O 12
  • the first interval d1 is equal to the second interval d2.
  • the two microlens structures 12 in one repeating unit 10 have a comprehensive effect on the corresponding two light-emitting sub-pixels 11, so that the visual effect of the display panel in any two relative directions is symmetrical.
  • Example 1 for the specific principle.
  • the first interval between the red light-emitting sub-pixel and the corresponding microlens structure, the first interval between the green light-emitting sub-pixel and the corresponding microlens structure, and the first interval between the blue light-emitting sub-pixel and the corresponding microlens structure are all equal, and the first interval is less than or equal to 4 microns.
  • the first interval between the red light-emitting sub-pixel and the corresponding microlens structure is greater than the first interval between the green light-emitting sub-pixel and the corresponding microlens structure, and less than the first interval between the blue light-emitting sub-pixel and the corresponding microlens structure.
  • the first interval between the red light-emitting sub-pixel and the corresponding microlens structure is greater than 1 micron and less than or equal to 2 microns
  • the first interval between the green light-emitting sub-pixel and the corresponding microlens structure is less than or equal to 1 micron
  • the first interval between the blue light-emitting sub-pixel and the corresponding microlens structure is greater than 2 microns and less than or equal to 4 microns.
  • the repeating unit 10 may also include three, four, five, or even more microlens structures 12, and the distance between the center points of any two adjacent microlens structures 12 in the offset direction relative to the center point of the corresponding light-emitting sub-pixel 11 is equal, and the distance between the center points is equal.
  • the microlens structure 12 may be unilaterally extended relative to the corresponding light-emitting sub-pixel 11, or may be bilaterally extended or even multi-dimensionally extended.
  • an embodiment of the present application provides a display panel, please refer to Figure 12, which is a schematic diagram of a cross-sectional structure of the display panel provided by the present application, specifically a schematic diagram of the cross-sectional structure in the CC' direction in Figure 11. It includes a substrate 1, a light-emitting layer 2, a pixel definition layer 3, an encapsulation layer 4, an optical function layer 5 and a cover plate 6 which are stacked in sequence.
  • the light-emitting layer 2 includes a plurality of light-emitting sub-pixels 11, a pixel definition layer 3 is arranged between the substrate 1 and the light-emitting layer 2, the pixel definition layer 3 includes a plurality of first openings 31 corresponding to the light-emitting sub-pixels, the optical function layer 5 includes a touch layer 51, a first refractive index layer 52, a second refractive index layer 53 and a polarizer 54 stacked in sequence from bottom to top, the refractive index of the first refractive index layer 52 is less than the refractive index of the second refractive index layer 53, the first refractive index layer 52 is provided with a second opening 55, the second opening 55 corresponds to the light-emitting sub-pixel 11 one by one, the orthographic projection of the second opening 55 on the substrate 1 partially overlaps with the orthographic projection of the first opening 31 on the substrate 1, and the first refractive index layer 52 and the second refractive index layer 53 at the position of the second opening 55 constitute a micro
  • An embodiment of the present application further provides a display device, which includes the display panel described in any one of the embodiments of the present application.
  • the embodiments of the present application provide a display panel and a display device, by setting the first microlens structure of the display panel to be offset relative to the center of the corresponding first light-emitting sub-pixel, and setting the second microlens structure to be offset relative to the center of the corresponding second light-emitting sub-pixel, and the two offset directions are different, which to a certain extent alleviates the problem that all microlens structures in the existing display panel are offset in one direction relative to the corresponding light-emitting sub-pixel, thereby alleviating the viewing angle symmetry problem of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

公开一种显示面板及显示装置,包括叠置的发光层和光学功能层;光学功能层包括第一微透镜结构和第二微透镜结构;发光层包括第一发光子像素和第二发光子像素;第一微透镜结构与第一发光子像素的中心点在第一方向上具有第一间隔,第二微透镜结构与第二发光子像素的中心点在第二方向上具有第二间隔,第一方向与第二方向不同。

Description

显示面板及显示装置 技术领域
本申请涉及显示领域,尤其涉及一种显示面板及显示装置。
背景技术
OLED(Organic Light-Emitting Diode,有机发光二极管)显示器件因其具有重量轻巧、视角广、响应时间快、耐低温、发光效率高等优点,一直被视其为下一代新型显示技术。
为降低OLED显示面板的功耗,本领域的研发人员依据几何光学原理,提出在OLED屏体内设置MLP(Micro Lens Pattern,微透镜图案),将OLED屏体发出的较为发散的光汇聚至屏体正上方,从而提高OLED屏体效率,降低OLED面板的功耗的技术方案。然而,该技术方案需要将MLP结构与像素一一对应,对位偏差的存在为OLED显示面板带来了视角对称性差的问题。
发明概述
本申请提供一种显示面板及显示装置,以提高现有OLED显示面板的视角对称性。
第一方面,本申请提供一种显示面板,所述显示面板包括:
基板;
发光层,设置于所述基板的一侧,所述发光层包括:多个发光子像素;
光学功能层,设置在所述发光层远离所述基板的一侧,所述光学功能层包括:多个微透镜结构,所述微透镜结构与所述发光子像素一一对应设置;
其中,多个所述微透镜结构包括:多个周期性排布的重复单元;所述重复单元包括:第一微透镜结构、第二微透镜结构;多个所述发光子像素包括:与所述第一微透镜结构对应的第一发光子像素、与所述第二微透镜结构对应的第二发光子像素;
所述第一微透镜结构的中心点与所述第一发光子像素的中心点在第一方向上具有第一间隔,所述第二微透镜结构的中心点与所述第二发光子像素的中心点在第二方向上具有第二间隔,所述第一方向与所述第二方向不同。
在本申请所提供的显示面板中,所述第一方向与所述第二方向相反;
所述第一间隔和所述第二间隔相同。
在本申请所提供的显示面板中,所述重复单元还包括:第三微透镜结构;多个所述发光子像素还包括:与所述第三微透镜结构对应的第三发光子像素;
所述第三微透镜结构的中心点与所述第三发光子像素的中心点在第三方向上具有第三间隔,所述第一方向、所述第二方向、所述第三方向均不同。
在本申请所提供的显示面板中,所述第一方向、所述第二方向、所述第三方向依次间隔120度设置;
所述第一间隔、所述第二间隔、所述第三间隔均相同。
在本申请所提供的显示面板中,所述重复单元还包括:第四微透镜结构;多个所述发光子像素还包括:与所述第四微透镜结构对应的第四发光子像素;
所述第四微透镜结构的中心点与所述第四发光子像素的中心点在第四方向上具有第四间隔,所述第一方向、所述第二方向、所述第三方向、所述第四方向均不同。
在本申请所提供的显示面板中,所述第一方向、所述第二方向、所述第三方向、所述第四方向依次间隔90度设置;
所述第一间隔、所述第二间隔、所述第三间隔、所述第四间隔均相同。
在本申请所提供的显示面板中,所述微透镜结构的形状与对应的所述发光子像素的形状相同,所述微透镜结构的尺寸与对应的所述发光子像素的尺寸相同。
在本申请所提供的显示面板中,所述第一间隔、所述第二间隔小于等于5微米。
在本申请所提供的显示面板中,多个所述发光子像素包括多个红色发光子像素、多个绿色发光子像素和多个蓝色发光子像素;所述红色发光子像素对应的所述第一间隔、所述绿色发光子像素对应的所述第一间隔、所述蓝色发光子像素对应的所述第一间隔均相等。
在本申请所提供的显示面板中,多个所述发光子像素包括红色发光子像素、绿色发光子像素和蓝色发光子像素;所述红色发光子像素对应的所述第一间隔,小于所述绿色发光子像素对应的所述第一间隔,且大于所述蓝色发光子像素对应的所述第一间隔。
在本申请所提供的显示面板中,所述红色发光子像素对应的所述第一间隔大于1微米且小于等于3微米,所述蓝色发光子像素对应的所述第一间隔大于0微米且小于等于2微米,所述绿色发光子像素对应的所述第一间隔大于2微米且小于等于5微米。
在本申请所提供的显示面板中,所述微透镜结构的形状与对应的所述发光子像素的形状相同,所述微透镜结构的尺寸大于与之对应的所述发光子像素的尺寸。
在本申请所提供的显示面板中,所述显示面板还包括:
像素定义层,设置在所述基板和所述发光层之间,所述像素定义层包括:多个与所述发光子像素对应的第一开口;
所述光学功能层包括:设置在所述发光层远离所述基板一侧的第一折射率层、设置在所述第一折射率层远离所述基板一侧的第二折射率层,所述第一折射率层包括多个与所述微透镜结构对应的第二开口,所述第一折射率层的折射率小于所述第二折射率层的折射率。
第二方面,本申请还提供一种显示装置,所述显示装置包括显示面板;所述显示面板包括:
基板;
发光层,设置于所述基板的一侧,所述发光层包括:多个发光子像素;
光学功能层,设置在所述发光层远离所述基板的一侧,所述光学功能层包括:多个微透镜结构,所述微透镜结构与所述发光子像素一一对应设置;
其中,多个所述微透镜结构包括:多个周期性排布的重复单元;所述重复单元包括:第一微透镜结构、第二微透镜结构;多个所述发光子像素包括:与所述第一微透镜结构对应的第一发光子像素、与所述第二微透镜结构对应的第二发光子像素;
所述第一微透镜结构的中心点与所述第一发光子像素的中心点在第一方向上具有第一间隔,所述第二微透镜结构的中心点与所述第二发光子像素的中心点在第二方向上具有第二间隔,所述第一方向与所述第二方向不同。
在本申请所提供的显示装置中,所述第一方向与所述第二方向相反;
所述第一间隔和所述第二间隔相同。
在本申请所提供的显示装置中,所述重复单元还包括:第三微透镜结构;多个所述发光子像素还包括:与所述第三微透镜结构对应的第三发光子像素;
所述第三微透镜结构的中心点与所述第三发光子像素的中心点在第三方向上具有第三间隔,所述第一方向、所述第二方向、所述第三方向均不同。
在本申请所提供的显示装置中,所述第一方向、所述第二方向、所述第三方向依次间隔120度设置;
所述第一间隔、所述第二间隔、所述第三间隔均相同。
在本申请所提供的显示装置中,所述重复单元还包括:第四微透镜结构;多个所述发光子像素还包括:与所述第四微透镜结构对应的第四发光子像素;
所述第四微透镜结构的中心点与所述第四发光子像素的中心点在第四方向上具有第四间隔,所述第一方向、所述第二方向、所述第三方向、所述第四方向均不同。
在本申请所提供的显示装置中,所述第一方向、所述第二方向、所述第三方向、所述第四方向依次间隔90度设置;
所述第一间隔、所述第二间隔、所述第三间隔、所述第四间隔均相同。
在本申请所提供的显示装置中,所述微透镜结构的形状与对应的所述发光子像素的形状相同,所述微透镜结构的尺寸与对应的所述发光子像素的尺寸相同。
有益效果
相较于现有技术,本申请通过显示面板内的第一微透镜结构设置为相对于对应的第一发光子像素中心偏移,将第二微透镜结构设置为相对于对应的第二子发光像素中心偏移,且两个偏移方向不同,一定程度上缓解了现有显示面板中所有的微透镜结构均相对于对应的发光子像素朝向一个方向偏移的问题,进而缓解了显示面板的视角对称性问题。
附图说明
图1为理想状态下显示面板的同种颜色的发光子像素和对应的微透镜结构的平面结构示意图;
图2为图1中AA’方向的剖面结构示意图;
图3为现有技术提供的显示面板的同种颜色的发光子像素和对应的微透镜结构的平面结构示意图;
图4为图3中BB’方向的剖面结构示意图;
图5为现有技术提供的显示面板的视角对称性结果图;
图6为本申请实施例提供的显示面板的同种颜色的发光子像素和对应的微透镜结构的第一种平面叠加示意图;
图7为图6中微透镜结构发生对位偏移时的平面叠加示意图;
图8为本申请实施例提供的显示面板的同种颜色的发光子像素和对应的微透镜结构的第二种平面叠加示意图;
图9为图8中微透镜结构发生对位偏移时的平面叠加示意图;
图10为本申请实施例提供的显示面板的同种颜色的发光子像素和对应的微透镜结构的第三种平面叠加示意图;
图11为图10中微透镜结构发生对位偏移时的平面叠加示意图;
图12为本申请实施例提供的显示面板的一种剖面结构示意图。
本发明的实施方式
下面将结合本申请的具体实施方案,对本申请实施方案和/或实施例中的技术方案进行清楚、完整的描述,显而易见的,下面所描述的实施方案和/或实施例仅仅是本申请一部分实施方案和/或实施例,而不是全部的实施方案和/或实施例。基于本申请中的实施方案和/或实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方案和/或实施例,都属于本申请保护范围。
本申请所提到的方向用语,例如[上]、[下]、[左]、[右]、[前]、[后]、[内]、[外]、[侧]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明和理解本申请,而非用以限制本申请。术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或是暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。
请参照图1,图1为理想状态下显示面板的同种颜色的发光子像素和对应的微透镜结构的平面结构示意图,具体为像素钻石排布方式下,同种颜色的子像素和对应的微透镜结构的平面结构示意图;图2为图1中AA’方向的剖面结构示意图。理想状态下,所述显示面板主要包括依次层叠设置的基板1、发光层2、像素定义层3、封装层4、光学功能层5和盖板6。基板1包括薄膜晶体管电路,发光层2包括多个发光子像素11,像素定义层3设置在所述基板1和所述发光层2之间,所述像素定义层3包括多个与所述发光子像素11对应的第一开口31,光学功能层5包括从下至上依次层叠设置的触控层51、第一折射率层52、第二折射率层53和偏光片54,所述第一折射率层52的折射率小于所述第二折射率层53的折射率,所述第一折射率层52设有第二开口55,第二开口55与发光子像素11一一对应,且第二开口55在基板1上的正投影与发光子像素11在基板1上的投影重合,第二开口55位置的第一折射率层52和第二折射率层53构成微透镜结构12,发光子像素11出射的光线在微透镜结构12处发生汇聚,进而提高显示面板正视角下的出光量,提升显示面板的出光效率。
然而,由于第一折射率层52在制备过程中,不可避免的会存在一定程度的对位偏差,这就导致微透镜结构12与发光子像素之间存在错位。请参照图3和图4,图3为现有技术提供的显示面板的同种颜色的发光子像素和对应的微透镜结构的平面结构示意图,具体的,图3中(a)为微透镜结构制备过程中出现向上对位偏差的平面结构示意图,图3中(b)为微透镜结构制备过程中出现向下对位偏差的平面结构示意图,图3中(c)为微透镜结构制备过程中出现向左对位偏差的平面结构示意图,图3中(d)为微透镜结构制备过程中出现向右对位偏差的平面结构示意图;图4为图3中BB’方向的剖面结构示意图。由图3可以看出,无论于哪个方向,第一折射率层52制备过程中一旦出现对位偏差,所有的微透镜结构12均相对于发光子像素11发生同一方向的偏差,这种情况会恶化显示面板的视角对称性。请参照图5,图5为现有技术提供的显示面板的视角对称性结果图。由图5可以看出,现有显示面板在对称的视觉角度上,观测到的显示面板的亮度不同,存在视角对称性问题。
针对现有存在的上述问题,本申请提供一种显示面板,可以予以解决或缓解。
本申请提供一种显示面板,所述显示面板包括:
基板;
发光层,设置于所述基板的一侧,所述发光层包括:多个发光子像素;
光学功能层,设置在所述发光层远离所述基板的一侧,所述光学功能层包括:多个微透镜结构,所述微透镜结构与所述发光子像素一一对应设置;
其中,多个所述微透镜结构包括:多个周期性排布的重复单元;所述重复单元包括:第一微透镜结构、第二微透镜结构;多个所述发光子像素包括:与所述第一微透镜结构对应的第一发光子像素、与所述第二微透镜结构对应的第二发光子像素;
所述第一微透镜结构的中心点与所述第一发光子像素的中心点在第一方向上具有第一间隔,所述第二微透镜结构的中心点与所述第二发光子像素的中心点在第二方向上具有第二间隔,所述第一方向与所述第二方向不同。
本申请实施例通过将第一微透镜结构设置为相对于对应的第一发光子像素中心偏移,将第二微透镜结构设置为相对于对应的第二子发光像素中心偏移,且两个偏移方向不同,一定程度上缓解了现有显示面板中所有的微透镜结构均相对于对应的发光子像素朝向一个方向偏移的问题,进而缓解了显示面板的视角对称性问题。
下面,以具体的实施例对本申请提供的显示面板进行详细的阐释说明,具体为对所述显示面板的微透镜结构进行详细的阐释说明。由于在所述显示面板中,发光子像素通常包括红色发光子像素、绿色发光子像素和蓝色发光子像素,对于任意一种颜色的发光子像素,所述微透镜结构的设置方式均相同,下面为了阐释清楚明了,将以同一种颜色的发光子像素(以蓝色发光子像素为例)为例,对所述为透镜结构进行解释说明。
实施例一
请参照图6,图6为本申请实施例提供的显示面板的同种颜色的发光子像素和对应的微透镜结构的第一种平面叠加示意图。在本申请实施例中,所述微透镜结构12的形状与对应的所述发光子像素11的形状相同,所述微透镜结构12的尺寸大小与对应的所述发光子像素11的尺寸大小相同。
一个重复单元10包括两个所述微透镜结构12:第一微透镜结构121和第二微透镜结构122。多个所述发光子像素11包括:与所述第一微透镜结构121对应的第一发光子像素111、与所述第二微透镜结构122对应的第二发光子像素112。
所述第一微透镜结构121的中心点O 21与所述第一发光子像素111的中心点O 11在第一方向O 21O 11上具有第一间隔d1,所述第二微透镜结构122的中心点O 22与所述第二发光子像素112的中心点O 12在第二方向O 22O 12上具有第二间隔d2,所述第一方向O 21O 11与所述第二方向O 22O 12向反,所述第一间隔d1和所述第二间隔d2相等。
图6中所示的所述第一方向O 21O 11为右上方,所述第二方向O 22O 12为左下方。在本申请的其他实施例中,也可以是第一方向为右下方且第二方向为左上方等,不做限定。
这样,相当于所述第一微透镜结构121相对于所述第一发光子像素111发生所述第一方向O 21O 11、所述第一间隔d1的偏移;所述第一微透镜结构121对所述第一发光子像素111的光线汇聚作用在所述第一方向O 21O 11增强,在所述第二方向O 22O 12减弱。所述第二微透镜结构122相对于所述第二发光子像素112发生所述第二方向O 22O 12、所述第二间隔d2的偏移;所述第二微透镜结构122对所述第二发光子像素112的光线汇聚作用在所述第二方向O 22O 12增强,在所述第一方向O 21O 11减弱。
由于所述第一间隔d1和所述第二间隔d2相等,则所述第一微透镜结构121对所述第一发光子像素111的光线汇聚作用在所述第一方向O 21O 11增强效果,与所述第二微透镜结构122对所述第二发光子像素112的光线汇聚作用在所述第二方向O 22O 12增强效果相同;所述第二微透镜结构122对所述第二发光子像素112的光线汇聚作用在所述第一方向O 21O 11减弱效果,与所述第一微透镜结构121对所述第一发光子像素111的光线汇聚作用在所述第二方向O 22O 12减弱效果相同;最终,使得整个显示面板在所述第一方向O 21O 11和所述第二方向O 22O 12上的视觉效果相同,即视觉对称。在其他方向上,由于所述第一微透镜结构121与所述第一发光子像素111相互重叠,所述第二微透镜结构122与所述第二发光子像素112相互重叠,因此所述显示面板视觉对称。
当在制备所述第一折射率层52时发生对位偏差时,请参照图7,图7为图6中微透镜结构发生对位偏移时的平面叠加示意图;具体的,图7中(a)为微透镜结构出现向上对位偏移时的平面叠加示意图,图7中(b)为微透镜结构出现向下对位偏移时的平面叠加示意图,图7中(c)为微透镜结构出现向左对位偏移时的平面叠加示意图,图7中(d)为微透镜结构出现向右对位偏移时的平面叠加示意图。
如图7中(a)所示,当制备所述第一折射率层52时发生向上对位偏差时,一个所述重复单元10内,存在一个所述微透镜结构12,其中心点与对应的所述发光子像素11的中心点在同一水平线上,即所述微透镜结构12对所述发光子像素11的光线汇聚作用,在上下方向上相互对称,从而改善了所述显示面板在上下方向上的视角对称性,改善程度为50%。
如图7中(b)所示,当制备所述第一折射率层52时发生向下对位偏差时,一个所述重复单元10内,存在一个所述微透镜结构12,其中心点与对应的所述发光子像素11的中心点在同一水平线上,即所述微透镜结构12对所述发光子像素11的光线汇聚作用,在上下方向上相互对称,从而改善了所述显示面板在上下方向上的视角对称性,改善程度为50%。
如图7中(c)所示,当制备所述第一折射率层52时发生向左对位偏差时,一个所述重复单元10内,存在一个所述微透镜结构12,其中心点与对应的所述发光子像素11的中心点在同一垂直线上,即所述微透镜结构12对所述发光子像素11的光线汇聚作用,在左右方向上相互对称,从而改善了所述显示面板在左右方向上的视角对称性,改善程度为50%。
如图7中(d)所示,当制备所述第一折射率层52时发生向右对位偏差时,一个所述重复单元10内,存在一个所述微透镜结构12,其中心点与对应的所述发光子像素11的中心点在同一垂直线上,即所述微透镜结构12对所述发光子像素11的光线汇聚作用,在左右方向上相互对称,从而改善了所述显示面板在左右方向上的视角对称性,改善程度为50%。
所述显示面板的发光子像素包括红色发光子像素、绿色发光子像素和蓝色发光子像素,进一步,所述发光子像素还可以包括白色发光子像素。所述红色发光子像素、所述绿色发光子像素和所述蓝色发光子像素所对应的微透镜结构的设置方式分别与上述微透镜结构12的设置方式相同。
在一种实施方案中,所述红色发光子像素和对应的所述微透镜结构之间的所述第一间隔、所述绿色发光子像素和对应的所述微透镜结构之间的所述第一间隔、所述蓝色发光子像素和对应的所述微透镜结构之间的所述第一间隔均相等,且所述第一间隔小于等于4微米。当发生对位偏差时,偏移之后的所述第一间隔、所述第二间隔小于等于5微米。
在另一种实施方案中,所述红色发光子像素和对应的所述微透镜结构之间的所述第一间隔,大于所述绿色发光子像素和对应的所述微透镜结构之间的所述第一间隔,且小于所述蓝色发光子像素和对应的所述微透镜结构之间的所述第一间隔。具体的,所述红色发光子像素和对应的所述微透镜结构之间的所述第一间隔大于1微米且小于等于2微米,所述绿色发光子像素和对应的所述微透镜结构之间的所述第一间隔小于等于1微米,所述蓝色发光子像素和对应的所述微透镜结构之间的所述第一间隔大于2微米且小于等于4微米。当发生偏对位偏差时,偏移之后所述红色发光子像素和对应的所述微透镜结构之间的所述第一间隔大于0且小于等于3微米,所述绿色发光子像素和对应的所述微透镜结构之间的所述第一间隔小于等于2微米,所述蓝色发光子像素和对应的所述微透镜结构之间的所述第一间隔大于1微米且小于等于5微米。
在本实施例的基础上,所述重复单元还可以进一步包括一个或多个第三微透镜结构,所述发光子像素包括与所述第三微透镜结构对应的第三发光子像素,所述第三微透镜结构的中心点与所述第三发光子像素的中心点重合。
实施例二
请参照图8,图8为本申请实施例提供的显示面板的同种颜色的发光子像素和对应的微透镜结构的第二种平面叠加示意图。本实施例与实施例一相类似的部分不再赘述,具体请参照实施例一,本实施例相比于实施例一,不同点在于:一个重复单元10包括三个所述微透镜结构12:第一微透镜结构121、第二微透镜结构122和第三微透镜结构123。多个所述发光子像素11包括:与所述第一微透镜结构121对应的第一发光子像素111、与所述第二微透镜结构122对应的第二发光子像素112、以及与所述第三微透镜结构123对应的第三发光子像素113。
所述第一微透镜结构121的中心点O 21与所述第一发光子像素111的中心点O 11在第一方向O 21O 11上具有第一间隔d1,所述第二微透镜结构122的中心点O 22与所述第二发光子像素112的中心点O 12在第二方向O 22O 12上具有第二间隔d2,所述第三微透镜结构123的中心点O 23与所述第三发光子像素113的中心点O 13在第三方向O 23O 13上具有第三间隔d3;所述第一方向O 21O 11、所述第二方向O 22O 12、所述第三方向O 23O 13依次间隔120度;所述第一间隔d1、所述第二间隔d2、所述第三间隔d3均相等。
图8中所示的所述第一方向O 21O 11为正上方,所述第二方向O 22O 12为右下方,所述第三方向O 23O 13为左下方。在本申请的其他实施例中,也可以是其他的方向设定,在此不做限定。
同样的,由于所述第一方向O 21O 11、所述第二方向O 22O 12、所述第三方向O 23O 13依次间隔120度,所述第一间隔d1、所述第二间隔d2、所述第三间隔d3均相等,一个所述重复单元10内的所述三个微透镜结构12,对对应的三个所述发光子像素11的综合作用,使得在任意两个相对的方向上所述显示面板的视觉效果相对称,具体原理请参照实施例一。
当在制备所述第一折射率层52时发生对位偏差时,请参照图9,图9为图8中微透镜结构发生对位偏移时的平面叠加示意图。
如图9中(a)所示,图9中(a)为微透镜结构出现向上对位偏移时的平面叠加示意图。当制备所述第一折射率层52时发生向上对位偏差时,一个所述重复单元10内,存在两个所述微透镜结构12,其中心点与对应的所述发光子像素11的中心点在同一水平线上,即所述微透镜结构12对所述发光子像素11的光线汇聚作用,在上下方向上相互对称,从而改善了所述显示面板在上下方向上的视角对称性,改善程度为67%。
如图9中(b)所示,图9中(b)为微透镜结构出现向下对位偏移时的平面叠加示意图。当制备所述第一折射率层52时发生向下对位偏差时,一个所述重复单元10内,存在一个所述微透镜结构12,其中心点与对应的所述发光子像素11的中心点重合,即所述微透镜结构12对所述发光子像素11的光线汇聚作用,在上下方向上相互对称,从而改善了所述显示面板在上下方向上的视角对称性,改善程度为33%。
如图9中(c)所示,图9中(c)为微透镜结构出现向左对位偏移时的平面叠加示意图。当制备所述第一折射率层52时发生向左对位偏差时,一个所述重复单元10内,存在一个所述微透镜结构12,其中心点与对应的所述发光子像素11的中心点在同一垂直线上,即所述微透镜结构12对所述发光子像素11的光线汇聚作用,在左右方向上相互对称,从而改善了所述显示面板在左右方向上的视角对称性,改善程度为33%。
如图9中(d)所示,图9中(d)为微透镜结构出现向右对位偏移时的平面叠加示意图。当制备所述第一折射率层52时发生向右对位偏差时,一个所述重复单元10内,存在一个所述微透镜结构12,其中心点与对应的所述发光子像素11的中心点在同一垂直线上,即所述微透镜结构12对所述发光子像素11的光线汇聚作用,在左右方向上相互对称,从而改善了所述显示面板在左右方向上的视角对称性,改善程度为33%。
实施例三
请参照图10,图10为本申请实施例提供的显示面板的同种颜色的发光子像素和对应的微透镜结构的第三种平面叠加示意图。本实施例与实施例一相类似的部分不再赘述,具体请参照实施例一,本实施例相比于实施例一,不同点在于:一个重复单元10包括四个所述微透镜结构12:第一微透镜结构121、第二微透镜结构122、第三微透镜结构123和第四微透镜结构。多个所述发光子像素11包括:与所述第一微透镜结构121对应的第一发光子像素111、与所述第二微透镜结构122对应的第二发光子像素112、以及与所述第三微透镜结构123对应的第三发光子像素113、以及与所述第四微透镜结构124对应的第四发光子像素114。
所述第一微透镜结构121的中心点O 21与所述第一发光子像素111的中心点O 11在第一方向O 21O 11上具有第一间隔d1,所述第二微透镜结构122的中心点O 22与所述第二发光子像素112的中心点O 12在第二方向O 22O 12上具有第二间隔d2,所述第三微透镜结构123的中心点O 23与所述第三发光子像素113的中心点O 13在第三方向O 23O 13上具有第三间隔d3,所述第四微透镜结构124的中心点O 24与所述第四发光子像素114的中心点O 14在第四方向O 24O 14上具有第四间隔d4。所述第一方向O 21O 11、所述第二方向O 22O 12、所述第三方向O 23O 13、所述第四方向O 24O 14依次间隔90度;所述第一间隔d1、所述第二间隔d2、所述第三间隔d3、所述第四间隔d4均相等。
图10中所示的所述第一方向O 21O 11为左上方,所述第二方向O 22O 12为右上方,所述第三方向O 23O 13为右下方,所述第四方向O 24O 14为左下方。在本申请的其他实施例中,也可以是其他的方向设定,在此不做限定。
同样的,由于所述第一方向O 21O 11、所述第二方向O 22O 12、所述第三方向O 23O 13、所述第四方向O 24O 14依次间隔90度,所述第一间隔d1、所述第二间隔d2、所述第四间隔d4均相等,一个所述重复单元10内的所述四个微透镜结构12,对对应的四个所述发光子像素11的综合作用,使得在任意两个相对的方向上所述显示面板的视觉效果相对称,具体原理请参照实施例一。
当在制备所述第一折射率层52时发生对位偏差时,请参照图11,图11为图10中微透镜结构发生对位偏移时的平面叠加示意图。
如图11中(a)所示,图11中(a)为微透镜结构出现向上对位偏移时的平面叠加示意图。当制备所述第一折射率层52时发生向上对位偏差时,一个所述重复单元10内,存在两个所述微透镜结构12,其中心点与对应的所述发光子像素11的中心点在同一水平线上,即所述微透镜结构12对所述发光子像素11的光线汇聚作用,在上下方向上相互对称,从而改善了所述显示面板在上下方向上的视角对称性,改善程度为50%。
如图11中(b)所示,图11中(b)为微透镜结构出现向下对位偏移时的平面叠加示意图。当制备所述第一折射率层52时发生向下对位偏差时,一个所述重复单元10内,存在两个所述微透镜结构12,其中心点与对应的所述发光子像素11的中心点在同一水平线上,即所述微透镜结构12对所述发光子像素11的光线汇聚作用,在上下方向上相互对称,从而改善了所述显示面板在上下方向上的视角对称性,改善程度为50%。
如图11中(c)所示,图11中(c)为微透镜结构出现向左对位偏移时的平面叠加示意图。当制备所述第一折射率层52时发生向左对位偏差时,一个所述重复单元10内,存在两个所述微透镜结构12,其中心点与对应的所述发光子像素11的中心点在同一垂直线上,即所述微透镜结构12对所述发光子像素11的光线汇聚作用,在左右方向上相互对称,从而改善了所述显示面板在左右方向上的视角对称性,改善程度为50%。
如图11中(d)所示,图11中(d)为微透镜结构出现向右对位偏移时的平面叠加示意图。当制备所述第一折射率层52时发生向右对位偏差时,一个所述重复单元10内,存在两个所述微透镜结构12,其中心点与对应的所述发光子像素11的中心点在同一垂直线上,即所述微透镜结构12对所述发光子像素11的光线汇聚作用,在左右方向上相互对称,从而改善了所述显示面板在左右方向上的视角对称性,改善程度为50%。
在实施例一至实施例三的基础上,沿伸至其他实施例,所述重复单元10还可以包括五个乃至更多个所述微透镜结构12,且任意两个相邻所述微透镜结构12的中心点相对于对应的所述发光子像素11的中心点的偏移方向之间的间隔相等,且中心点之间的间隔距离相等。
实施例四
请参照图12,图12为本申请实施例提供的显示面板的同种颜色的发光子像素和对应的微透镜结构的第四种平面叠加示意图。在本申请实施例中,所述微透镜结构12的形状与对应的所述发光子像素11的形状相同,所述微透镜结构12的尺寸比对应的所述发光子像素11的尺寸大,且所述微透镜结构12在所述基板1上的正投影覆盖对应的所述发光子像素11在所述基板1上的正投影。
一个重复单元10包括两个所述微透镜结构12:第一微透镜结构121和第二微透镜结构122。多个所述发光子像素11包括:与所述第一微透镜结构121对应的第一发光子像素111、与所述第二微透镜结构122对应的第二发光子像素112。
所述第一微透镜结构121的中心点O 21与所述第一发光子像素111的中心点O 11在第一方向O 21O 11上具有第一间隔d1,所述第一微透镜结构121在其他方向上的尺寸与所述第一发光子像素111的尺寸相同,在所述第一方向O 21O 11上尺寸单边延长。所述第二微透镜结构122的中心点O 22与所述第二发光子像素112的中心点O 12在第二方向O 22O 12上具有第二间隔d2,所述第二微透镜结构122在其他方向上的尺寸与所述第二发光子像素112的尺寸相同,在所述第二方向O 22O 12上尺寸单边延长。所述第一方向O 21O 11与所述第二方向O 22O 12向反,所述第一间隔d1和所述第二间隔d2相等。
同样的,由于所述第一方向O 21O 11、所述第二方向O 22O 12向反,所述第一间隔d1、所述第二间隔d2相等,一个所述重复单元10内的所述两个微透镜结构12,对对应的两个所述发光子像素11的综合作用,使得在任意两个相对的方向上所述显示面板的视觉效果相对称,具体原理请参照实施例一。
在一种实施方案中,所述红色发光子像素和对应的所述微透镜结构之间的所述第一间隔、所述绿色发光子像素和对应的所述微透镜结构之间的所述第一间隔、所述蓝色发光子像素和对应的所述微透镜结构之间的所述第一间隔均相等,且所述第一间隔小于等于4微米。
在另一种实施方案中,所述红色发光子像素和对应的所述微透镜结构之间的所述第一间隔,大于所述绿色发光子像素和对应的所述微透镜结构之间的所述第一间隔,且小于所述蓝色发光子像素和对应的所述微透镜结构之间的所述第一间隔。具体的,所述红色发光子像素和对应的所述微透镜结构之间的所述第一间隔大于1微米且小于等于2微米,所述绿色发光子像素和对应的所述微透镜结构之间的所述第一间隔小于等于1微米,所述蓝色发光子像素和对应的所述微透镜结构之间的所述第一间隔大于2微米且小于等于4微米。
在其他实施例中,所述重复单元10还可以包括三个、四个、五个、乃至更多个所述微透镜结构12,且任意两个相邻所述微透镜结构12的中心点相对于对应的所述发光子像素11的中心点的偏移方向之间的间隔相等,且中心点之间的间隔距离相等。在其他实施例中,所述微透镜结构12可以是相对于对应的发光子像素11单边延长,也可以是双边乃至多变延长。
相应的,本申请实施例提供一种显示面板,请参照图12,图12为本申请提供的显示面板的一种剖面结构示意图,具体为图11中CC’方向的剖面结构示意图。包括依次层叠设置的基板1、发光层2、像素定义层3、封装层4、光学功能层5和盖板6。发光层2包括多个发光子像素11,像素定义层3设置在所述基板1和所述发光层2之间,所述像素定义层3包括多个与所述发光子像素对应的第一开口31,光学功能层5包括从下至上依次层叠设置的触控层51、第一折射率层52、第二折射率层53和偏光片54,所述第一折射率层52的折射率小于所述第二折射率层53的折射率,所述第一折射率层52设有第二开口55,第二开口55与发光子像素11一一对应,第二开口55在基板1上的正投影与所述第一开口31在基板1上的正投影部分重合,第二开口55位置的第一折射率层52和第二折射率层53构成微透镜结构12。
本申请实施例还提供一种显示装置,所述显示装置包括本申请任意一项实施例所述的显示面板。
综上所述,本申请实施例提供了一种显示面板及显示装置,通过将显示面板的第一微透镜结构设置为相对于对应的第一发光子像素中心偏移,将第二微透镜结构设置为相对于对应的第二子发光像素中心偏移,且两个偏移方向不同,一定程度上缓解了现有显示面板中所有的微透镜结构均相对于对应的发光子像素朝向一个方向偏移的问题,进而缓解了显示面板的视角对称性问题。
以上对本申请实施例所提供的显示面板及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示面板,包括:
    基板;
    发光层,设置于所述基板的一侧,所述发光层包括:多个发光子像素;
    光学功能层,设置在所述发光层远离所述基板的一侧,所述光学功能层包括:多个微透镜结构,所述微透镜结构与所述发光子像素一一对应设置;
    其中,多个所述微透镜结构包括:多个周期性排布的重复单元;所述重复单元包括:第一微透镜结构、第二微透镜结构;多个所述发光子像素包括:与所述第一微透镜结构对应的第一发光子像素、与所述第二微透镜结构对应的第二发光子像素;
    所述第一微透镜结构的中心点与所述第一发光子像素的中心点在第一方向上具有第一间隔,所述第二微透镜结构的中心点与所述第二发光子像素的中心点在第二方向上具有第二间隔,所述第一方向与所述第二方向不同。
  2. 如权利要求1所述的显示面板,其中,所述第一方向与所述第二方向相反;
    所述第一间隔和所述第二间隔相同。
  3. 如权利要求1所述的显示面板,其中,所述重复单元还包括:第三微透镜结构;多个所述发光子像素还包括:与所述第三微透镜结构对应的第三发光子像素;
    所述第三微透镜结构的中心点与所述第三发光子像素的中心点在第三方向上具有第三间隔,所述第一方向、所述第二方向、所述第三方向均不同。
  4. 如权利要求3所述的显示面板,其中,所述第一方向、所述第二方向、所述第三方向依次间隔120度设置;
    所述第一间隔、所述第二间隔、所述第三间隔均相同。
  5. 如权利要求3所述的显示面板,其中,所述重复单元还包括:第四微透镜结构;多个所述发光子像素还包括:与所述第四微透镜结构对应的第四发光子像素;
    所述第四微透镜结构的中心点与所述第四发光子像素的中心点在第四方向上具有第四间隔,所述第一方向、所述第二方向、所述第三方向、所述第四方向均不同。
  6. 如权利要求5所述的显示面板,其中,所述第一方向、所述第二方向、所述第三方向、所述第四方向依次间隔90度设置;
    所述第一间隔、所述第二间隔、所述第三间隔、所述第四间隔均相同。
  7. 如权利要求1所述的显示面板,其中,所述微透镜结构的形状与对应的所述发光子像素的形状相同,所述微透镜结构的尺寸与对应的所述发光子像素的尺寸相同。
  8. 如权利要求7所述的显示面板,其中,所述第一间隔、所述第二间隔小于等于5微米。
  9. 如权利要求8所述的显示面板,其中,多个所述发光子像素包括多个红色发光子像素、多个绿色发光子像素和多个蓝色发光子像素;所述红色发光子像素对应的所述第一间隔、所述绿色发光子像素对应的所述第一间隔、所述蓝色发光子像素对应的所述第一间隔均相等。
  10. 如权利要求8所述的显示面板,其中,多个所述发光子像素包括红色发光子像素、绿色发光子像素和蓝色发光子像素;所述红色发光子像素对应的所述第一间隔,小于所述绿色发光子像素对应的所述第一间隔,且大于所述蓝色发光子像素对应的所述第一间隔。
  11. 如权利要求10所述的显示面板,其中,所述红色发光子像素对应的所述第一间隔大于1微米且小于等于3微米,所述蓝色发光子像素对应的所述第一间隔大于0微米且小于等于2微米,所述绿色发光子像素对应的所述第一间隔大于2微米且小于等于5微米。
  12. 如权利要求1所述的显示面板,其中,所述微透镜结构的形状与对应的所述发光子像素的形状相同,所述微透镜结构的尺寸大于与之对应的所述发光子像素的尺寸。
  13. 如权利要求1所述的显示面板,其中,所述显示面板还包括:
    像素定义层,设置在所述基板和所述发光层之间,所述像素定义层包括:多个与所述发光子像素对应的第一开口;
    所述光学功能层包括:设置在所述发光层远离所述基板一侧的第一折射率层、设置在所述第一折射率层远离所述基板一侧的第二折射率层,所述第一折射率层包括多个与所述微透镜结构对应的第二开口,所述第一折射率层的折射率小于所述第二折射率层的折射率。
  14. 一种显示装置,包括如权利要求1所述的显示面板。
  15. 如权利要求14所述的显示装置,其中,所述第一方向与所述第二方向相反;
    所述第一间隔和所述第二间隔相同。
  16. 如权利要求14所述的显示装置,其中,所述重复单元还包括:第三微透镜结构;多个所述发光子像素还包括:与所述第三微透镜结构对应的第三发光子像素;
    所述第三微透镜结构的中心点与所述第三发光子像素的中心点在第三方向上具有第三间隔,所述第一方向、所述第二方向、所述第三方向均不同。
  17. 如权利要求16所述的显示装置,其中,所述第一方向、所述第二方向、所述第三方向依次间隔120度设置;
    所述第一间隔、所述第二间隔、所述第三间隔均相同。
  18. 如权利要求16所述的显示装置,其中,所述重复单元还包括:第四微透镜结构;多个所述发光子像素还包括:与所述第四微透镜结构对应的第四发光子像素;
    所述第四微透镜结构的中心点与所述第四发光子像素的中心点在第四方向上具有第四间隔,所述第一方向、所述第二方向、所述第三方向、所述第四方向均不同。
  19. 如权利要求18所述的显示装置,其中,所述第一方向、所述第二方向、所述第三方向、所述第四方向依次间隔90度设置;
    所述第一间隔、所述第二间隔、所述第三间隔、所述第四间隔均相同。
  20. 如权利要求14所述的显示装置,其中,所述微透镜结构的形状与对应的所述发光子像素的形状相同,所述微透镜结构的尺寸与对应的所述发光子像素的尺寸相同。
PCT/CN2023/103910 2022-11-14 2023-06-29 显示面板及显示装置 WO2024103761A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237041029A KR20240073814A (ko) 2022-11-14 2023-06-29 디스플레이 패널 및 디스플레이 장치
US18/288,868 US20240164191A1 (en) 2022-11-14 2023-06-29 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211425569.3 2022-11-14
CN202211425569.3A CN115696965A (zh) 2022-11-14 2022-11-14 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2024103761A1 true WO2024103761A1 (zh) 2024-05-23

Family

ID=85052023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103910 WO2024103761A1 (zh) 2022-11-14 2023-06-29 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN115696965A (zh)
WO (1) WO2024103761A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115696965A (zh) * 2022-11-14 2023-02-03 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111694154A (zh) * 2019-03-12 2020-09-22 三星显示有限公司 虚拟图像显示装置
CN111834544A (zh) * 2020-06-30 2020-10-27 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置
CN112054131A (zh) * 2020-09-14 2020-12-08 京东方科技集团股份有限公司 显示面板、显示装置及显示设备
KR20210006767A (ko) * 2019-07-09 2021-01-19 엘지디스플레이 주식회사 발광 표시 장치
CN114361365A (zh) * 2021-12-31 2022-04-15 湖北长江新型显示产业创新中心有限公司 一种显示面板和显示装置
US20220209197A1 (en) * 2020-12-29 2022-06-30 Seeya Optronics Co., Ltd. Display panel and display device
CN114725297A (zh) * 2022-03-25 2022-07-08 武汉天马微电子有限公司 一种显示面板和显示装置
CN115696965A (zh) * 2022-11-14 2023-02-03 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111694154A (zh) * 2019-03-12 2020-09-22 三星显示有限公司 虚拟图像显示装置
KR20210006767A (ko) * 2019-07-09 2021-01-19 엘지디스플레이 주식회사 발광 표시 장치
CN111834544A (zh) * 2020-06-30 2020-10-27 湖北长江新型显示产业创新中心有限公司 显示面板和显示装置
CN112054131A (zh) * 2020-09-14 2020-12-08 京东方科技集团股份有限公司 显示面板、显示装置及显示设备
US20220209197A1 (en) * 2020-12-29 2022-06-30 Seeya Optronics Co., Ltd. Display panel and display device
CN114361365A (zh) * 2021-12-31 2022-04-15 湖北长江新型显示产业创新中心有限公司 一种显示面板和显示装置
CN114725297A (zh) * 2022-03-25 2022-07-08 武汉天马微电子有限公司 一种显示面板和显示装置
CN115696965A (zh) * 2022-11-14 2023-02-03 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN115696965A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
CN106292051B (zh) 一种显示装置及其显示方法
WO2019153948A1 (zh) 显示基板和显示装置
TW202001842A (zh) 顯示基板、顯示面板及顯示裝置
WO2020024848A1 (zh) 显示面板和显示装置
WO2017140038A1 (zh) 像素排列结构、显示面板及显示装置
WO2017084396A1 (zh) 显示基板、显示面板以及显示装置
WO2024103761A1 (zh) 显示面板及显示装置
WO2020155400A1 (zh) 有机发光二极管显示器像素排列
CN105789264A (zh) 一种曲面显示面板及其制备方法、显示装置
WO2022193691A1 (zh) 显示面板及其制备方法、显示装置
CN109870855A (zh) 一种阵列基板、液晶显示面板及液晶显示装置
WO2020187108A1 (zh) 显示面板及其制造方法、显示装置
WO2020077714A1 (zh) 显示面板及其制作方法、显示模组
US12001092B2 (en) Display panel and display device
WO2019042048A1 (zh) 像素结构、掩膜版及显示装置
CN206074956U (zh) 一种显示装置
WO2021142558A1 (zh) 一种Micro-LED像素排列结构、排列方法及显示面板
WO2018161704A1 (zh) 一种显示器件及其制造方法
WO2020143212A1 (zh) 像素排布结构、显示面板及显示装置
WO2022121401A1 (zh) 像素排布结构及显示面板
WO2022241963A1 (zh) 像素排列结构、金属掩膜板以及有机发光显示装置
WO2024045987A1 (zh) 显示基板、显示装置及显示基板的制备方法
WO2024125170A1 (zh) 显示装置
CN110109294A (zh) 一种液晶显示面板、制作方法和显示装置
WO2023279450A1 (zh) 显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890203

Country of ref document: EP

Kind code of ref document: A1