WO2024101452A1 - 非水ナトリウムイオン電池用電解液、非水ナトリウムイオン電池、及び非水ナトリウムイオン電池の製造方法 - Google Patents

非水ナトリウムイオン電池用電解液、非水ナトリウムイオン電池、及び非水ナトリウムイオン電池の製造方法 Download PDF

Info

Publication number
WO2024101452A1
WO2024101452A1 PCT/JP2023/040643 JP2023040643W WO2024101452A1 WO 2024101452 A1 WO2024101452 A1 WO 2024101452A1 JP 2023040643 W JP2023040643 W JP 2023040643W WO 2024101452 A1 WO2024101452 A1 WO 2024101452A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
sodium ion
ion battery
aqueous sodium
Prior art date
Application number
PCT/JP2023/040643
Other languages
English (en)
French (fr)
Inventor
圭 河原
元気 清水
孝敬 森中
幹弘 高橋
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2024101452A1 publication Critical patent/WO2024101452A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One embodiment of the present disclosure relates to an electrolyte for a non-aqueous sodium ion battery, a non-aqueous sodium ion battery using the electrolyte, and a method for manufacturing a non-aqueous sodium ion battery.
  • lithium-ion batteries have been attracting attention as energy storage systems for small, high-energy density applications such as information-related devices and communication devices, i.e., personal computers, video cameras, digital still cameras, and mobile phones, as well as for large, power applications such as auxiliary power sources for electric vehicles, hybrid vehicles, and fuel cell vehicles, and power storage.
  • information-related devices and communication devices i.e., personal computers, video cameras, digital still cameras, and mobile phones
  • power applications such as auxiliary power sources for electric vehicles, hybrid vehicles, and fuel cell vehicles, and power storage.
  • the price of lithium rising sharply, cheaper sodium-ion batteries are attracting attention as the next-generation secondary battery (Patent Document 1).
  • an object of one embodiment of the present disclosure is to provide an electrolyte for a non-aqueous sodium ion battery that can improve at least one of the cycle characteristics at high temperatures of 60° C.
  • the amount of gas generation (the suppression effect) during a high-temperature cycle test and the high-temperature storage characteristics of a non-aqueous sodium ion battery, a non-aqueous sodium ion battery using the electrolyte, and a method for manufacturing a non-aqueous sodium ion battery.
  • a nonaqueous sodium ion battery electrolyte solution containing (I) a fluorosulfate salt, (II) at least one compound having at least two isocyanate groups, a compound represented by the following general formula (1), a compound represented by the following general formula (2), and a compound represented by the following general formula (5), (III) a sodium salt, and (IV) a nonaqueous solvent can provide a nonaqueous sodium ion battery electrolyte solution that can improve at least one of the cycle characteristics at high temperatures of 60° C. or higher, the amount of gas generation (or the suppression effect thereof) during a high-temperature cycle test, and high-temperature storage characteristics of a nonaqueous sodium ion battery, and have completed the present disclosure.
  • this disclosure includes the following embodiments:
  • a non-aqueous sodium ion battery electrolyte comprising: (III) a sodium salt; and (IV) a non-aqueous solvent.
  • n represents an integer of 1 to 4.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of heteroatoms and halogen atoms, and when the hydrocarbon group has 3 or more carbon atoms, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
  • Y 1 and Y 2 each independently represent a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of heteroatoms and halogen atoms, and when the hydrocarbon group has 3 or more carbon atoms, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O - (M 1 A+ ) a , where M 1 A+ represents a proton, a metal cation, or an onium cation, and A represents the valence of the cation. a represents a number such
  • R 3 represents a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of a heteroatom and a halogen atom, and when the carbon number is 3 or more, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O- (M 2 B+ ) b , where M 2 B+ represents a proton, a metal cation, or an onium cation, and B represents the valence of the cation.
  • M 2 B+ represents a proton
  • Y3 represents a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of a heteroatom and a halogen atom, and when the carbon number is 3 or more, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O- ( M3E + ) e , where M3E + represents a proton, a metal cation, or an onium cation, and E represents
  • R 10 and R 11 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have a heteroatom or a halogen atom, and when the carbon number is 3 or more, may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O- (M 5 G+ ) g , where M 5 G+ represents a proton, a metal cation, or an onium cation, and G represents the valence of the
  • the compound represented by the general formula (1) is CH2 ( SO2F ) 2 , CH2( SO2F )( SO2ONa ), CH2(SO2F)(SO2OCH3), C(CH3)2(SO2F)2 , C ( F ) 2 ( SO2F ) 2 , CH2CH2 ( SO2F ) 2 , CF2CF2( SO2F ) 2 , CH2CH2 ( SO2F )(SO2OLi ) , CH2CH2(SO2F)(SO2OCH2CCH ) , CH2 ( SO2CF3 ) 2 , CH2(SO2CF3 ) ( SO2ONa ) , and CH2 ( SO2 CF 3 )(SO 2 OCH 3 ).
  • the compound represented by the general formula (2) is CH 3 SO 2 F, C 2 H 5 SO 2 F, CH 2 ⁇ CH-SO 2 F, CF 3 CH 2 CH 2 SO 2 F, cyclohexylsulfonyl fluoride (C 6 H 11 SO 2 F), phenylsulfonyl fluoride (C 6 H 5 SO 2 F), CH 3 OSO 2 F, CH 3 CH 2 OSO 2 F, CH 2 ⁇ CH-OSO 2 F, CF 3 CH 2 OSO 2 F, (CH 3 ) 2 CH-OSO 2 F, (CF 3 ) 2 CH-OSO 2 F, CH 3 CH 2 SO 2 CF 3 , CH 2 ⁇ CH-SO 2 CF 3 , CF 3 CH 2 CH
  • the non -aqueous sodium ion battery electrolyte according to any one of [1] to [7], wherein the electrolyte is at least one selected from the group consisting of NaO-SO2CF3, CH3OSO2CF3, CH3CH2OSO2CF
  • nonaqueous sodium ion battery electrolyte according to any one of [1] to [10], wherein the nonaqueous solvent contains at least one selected from the group consisting of a cyclic ester, a chain ester, a cyclic ether, and a chain ether.
  • the sodium salt is selected from the group consisting of NaPF6 , NaBF4 , NaBF2 ( C2O4 ) , NaPF4 ( C2O4 ) , NaPF2(C2O4)2, NaSbF6, NaAsF6, NaClO4, NaN(SO2F)2 , NaN ( SO2CF3)2 , NaN ( SO2F ) ( SO2CF3 ), NaN( CaF2a + 1SO2 )( CbF2b +1SO2 ) (wherein a and b are integers satisfying 2 ⁇ a ⁇ 20 and 2 ⁇ b ⁇ 20), NaSO3CF3, NaSO3C4F9 , NaN(POF2)2 , NaN ( POF).
  • the nonaqueous sodium ion battery electrolyte according to any one of [1 ] to [11] , wherein the electrolyte is at least one selected from the group consisting of Na ( SO2F ) , NaPO2F2, NaC( SO2CF3 )
  • R4 and R5 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of heteroatoms and halogen atoms, and when the hydrocarbon group has 3 or more carbon atoms, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
  • X3 represents a phosphorus atom or a sulfur atom.
  • Y 4 to Y 7 each independently represent a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of a heteroatom and a halogen atom, and when the hydrocarbon group has 3 or more carbon atoms, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms,
  • R 6 to R 9 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of heteroatoms and halogen atoms, and when the hydrocarbon group has 3 or more carbon atoms, may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.]
  • a non-aqueous sodium ion battery comprising at least a positive electrode, a negative electrode, and the non-aqueous sodium ion battery electrolyte according to any one of [1] to [14].
  • the embodiments of the present disclosure provide an electrolyte for a non-aqueous sodium ion battery that can improve at least one of the cycle characteristics at high temperatures of 60°C or higher, the amount of gas generated during a high-temperature cycle test (or the effect of suppressing gas generation), and high-temperature storage characteristics of the non-aqueous sodium ion battery, a non-aqueous sodium ion battery using the electrolyte, and a method for manufacturing a non-aqueous sodium ion battery.
  • FIG. 1 is a diagram showing evaluation results of discharge capacity retention after high-temperature cycles in Example 1-1 and Comparative Examples 1-0, 1-1 and 1-2.
  • FIG. 1 is a diagram showing evaluation results of gas generation amounts during high-temperature cycles in Example 1-1 and Comparative Examples 1-0, 1-1 and 1-2.
  • FIG. 1 is a diagram showing the evaluation results of the recovered discharge capacity maintenance rate after high-temperature storage in Example 1-1 and Comparative Examples 1-0, 1-1 and 1-2.
  • a non-aqueous sodium ion battery electrolyte comprises: (I) Fluorosulfate (hereinafter, sometimes referred to as “component (I)” or simply “(I)”); (II) at least one selected from the group consisting of a compound having at least two isocyanate groups, a compound represented by the following general formula (1), a compound represented by the following general formula (2), and a compound represented by the following general formula (5) (hereinafter, sometimes referred to as “component (II)” or simply “(II)”); (III) a sodium salt (hereinafter, may be referred to as “component (III)” or simply “(III)”), and (IV) a non-aqueous solvent (hereinafter, may be referred to as “component (IV)” or simply “(IV)”).
  • n represents an integer of 1 to 4.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of heteroatoms and halogen atoms, and when the hydrocarbon group has 3 or more carbon atoms, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
  • Y 1 and Y 2 each independently represent a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of heteroatoms and halogen atoms, and when the hydrocarbon group has 3 or more carbon atoms, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O - (M 1 A+ ) a , where M 1 A+ represents a proton, a metal cation, or an onium cation, and A represents the valence of the cation. a represents a number such
  • R 3 represents a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of a heteroatom and a halogen atom, and when the carbon number is 3 or more, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O- (M 2 B+ ) b , where M 2 B+ represents a proton, a metal cation, or an onium cation, and B represents the valence of the cation.
  • M 2 B+ represents a proton
  • Y3 represents a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of a heteroatom and a halogen atom, and when the carbon number is 3 or more, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O- ( M3E + ) e , where M3E + represents a proton, a metal cation, or an onium cation, and E represents
  • R 10 and R 11 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have a heteroatom or a halogen atom, and when the carbon number is 3 or more, may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O- (M 5 G+ ) g , where M 5 G+ represents a proton, a metal cation, or an onium cation, and G represents the valence of the
  • the electrolyte for nonaqueous sodium ion batteries according to this embodiment having the above-mentioned configuration, can improve at least one of the cycle characteristics at high temperatures of 60°C or higher, the amount of gas generated during high-temperature cycle testing (the effect of suppressing this amount), and high-temperature storage characteristics. Although the details of this mechanism are not clear, it is presumed that this is because the inclusion of component (II) together with the fluorosulfate allows a good coating to be formed on the electrode.
  • Fluorosulfates are ionic salts having an anion represented by SO 3 F — and a counter cation.
  • the counter cation of the fluorosulfate is not particularly limited and various counter cations can be selected as long as they do not impair the performance of the nonaqueous sodium ion battery electrolyte and the nonaqueous sodium ion battery according to this embodiment.
  • the counter cation include metal cations such as lithium ion, sodium ion, potassium ion, rubidium ion, cesium ion, magnesium ion, calcium ion, barium ion, silver ion, copper ion and iron ion, and onium cations such as tetraalkylammonium ion, tetraalkylphosphonium ion, imidazolium ion and ammonium ion having a spiro skeleton.
  • metal cations such as lithium ion, sodium ion, potassium ion, rubidium ion, cesium ion, magnesium ion, calcium ion, barium ion, silver ion, copper ion and iron ion
  • onium cations such as tetraalkylammonium ion, tetraalkylphosphonium ion, imidazolium ion and ammonium ion having a
  • lithium ion, sodium ion, potassium ion, tetraalkylammonium ion, tetraalkylphosphonium ion, or ammonium ion having a spiro skeleton is preferred, and lithium ion, sodium ion, tetraalkylammonium ion, or ammonium ion having a spiro skeleton is more preferred.
  • the alkyl group in the tetraalkylammonium ion preferably has 1 to 6 carbon atoms, and the alkyl group in the tetraalkylphosphonium ion preferably has 1 to 6 carbon atoms.
  • the four alkyl groups in the tetraalkylammonium ion may be the same or different, and the four alkyl groups in the tetraalkylphosphonium ion may be the same or different.
  • the ammonium ion having a spiro skeleton is preferably, for example, 5-azoniaspiro[4.4]nonane.
  • the fluorosulfate is not particularly limited, but is preferably NaSO 3 F, LiSO 3 F, TEMASO 3 F, SBPSO 3 F or TEASO 3 F, and particularly preferably NaSO 3 F, LiSO 3 F or TEASO 3 F.
  • TEA represents tetraethylammonium
  • TEMA represents triethylmethylammonium
  • SBP represents 5-azoniaspiro[4.4]nonane.
  • the content x of the fluorosulfate is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0.008% by mass or more, more preferably 0.08% by mass or more, and even more preferably 1.5% by mass or more, based on the total amount of the electrolyte for the nonaqueous sodium ion battery.
  • the content x of the fluorosulfate is not particularly limited, but is preferably 11.5% by mass or less, more preferably 10.5% by mass or less, even more preferably 7.5% by mass or less, and particularly preferably 5.5% by mass or less, based on the total amount of the electrolyte for the nonaqueous sodium ion battery.
  • the content x is 0.001% by mass or more, at least one of the cycle characteristics at high temperatures of 60 ° C. or more, the amount of gas generated during a high-temperature cycle test (the suppression effect), and the high-temperature storage characteristics of the nonaqueous sodium ion battery can be improved. If the content x is 11.5% by mass or less, the film formed on the electrode does not become too thick, which is unlikely to lead to an increase in resistance.
  • the fluorosulfates may be used alone or in any combination and ratio of two or more kinds according to the application.
  • the content x of the fluorosulfate is preferably 0.008 mass% ⁇ x ⁇ 11.5 mass%, more preferably 0.008 mass% ⁇ x ⁇ 10.5 mass%, even more preferably 0.008 mass% ⁇ x ⁇ 7.5 mass%, and particularly preferably 1.5 mass% ⁇ x ⁇ 5.5 mass%, relative to the total amount of the electrolyte for the non-aqueous sodium ion battery.
  • Component (II) At least one selected from the group consisting of a compound having at least two isocyanate groups, a compound represented by the following general formula (1), a compound represented by the following general formula (2), and a compound represented by the following general formula (5)]
  • Component (II) will be described below.
  • the compound having at least two isocyanate groups (hereinafter also referred to as compound A) is not particularly limited as long as it is a compound having at least two isocyanate groups.
  • the number of isocyanate groups in the above compound is not particularly limited as long as it is at least two, but it is preferable that the number is six or less.
  • the number of isocyanate groups in the above compound is preferably 2 to 6, more preferably 2 to 4, and even more preferably 2 to 3.
  • the isocyanate group may or may not be present at the end of the compound.
  • the compound has two isocyanate groups at the ends of the compound.
  • Compound A is not particularly limited as long as it is a compound having at least two isocyanate groups, and examples thereof include compounds having 2 to 20 carbon atoms excluding the carbon atoms of the isocyanate groups. In a preferred embodiment, the compound A has 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, and even more preferably 3 to 8 carbon atoms.
  • compounds having at least two isocyanate groups include pentamethylene diisocyanate, hexamethylene diisocyanate, 1,3-diisocyanatobenzene, 1,4-diisocyanatobenzene, 1,3-bis(isocyanatomethyl)benzene, 1,3-bis(isocyanatomethyl)cyclohexane, and 1,3,5-tris(6-isocyanatohexyl)-1,3,5-triazinane-2,4,6-trione.
  • the compound having at least two isocyanate groups is preferably pentamethylene diisocyanate, 1,3-diisocyanatobenzene, 1,4-diisocyanatobenzene, 1,3-bis(isocyanatomethyl)benzene, 1,3-bis(isocyanatomethyl)cyclohexane, or 1,3,5-tris(6-isocyanatohexyl)-1,3,5-triazinane-2,4,6-trione.
  • n represents an integer of 1 to 4.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of heteroatoms and halogen atoms, and when the hydrocarbon group has 3 or more carbon atoms, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
  • Y 1 and Y 2 each independently represent a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of heteroatoms and halogen atoms, and when the hydrocarbon group has 3 or more carbon atoms, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O - (M 1 A+ ) a , where M 1 A+ represents a proton, a metal cation, or an onium cation, and A represents the valence of the cation. a represents a number such
  • R 3 represents a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of a heteroatom and a halogen atom, and when the carbon number is 3 or more, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O - (M 2 B+ ) b , where M 2 B+ represents a proton, a metal cation, or an onium cation, and B represents the valence of the cation.
  • M 2 B+ represents a proto
  • Y3 represents a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of a heteroatom and a halogen atom, and when the carbon number is 3 or more, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O- ( M3E + ) e , where M3E + represents a proton, a metal cation, or an onium cation, and E represents
  • R 10 and R 11 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have a heteroatom or a halogen atom, and when the carbon number is 3 or more, may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O- (M 5 G+ ) g , where M 5 G+ represents a proton, a metal cation, or an onium cation, and G represents the valence of the
  • hydrocarbon group refers to a group having a CH structure in which a carbon atom and a hydrogen atom are bonded.
  • n represents an integer of 1 to 4.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of heteroatoms and halogen atoms, and when the hydrocarbon group has 3 or more carbon atoms, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
  • R 1 and R 2 each represent a halogen atom
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 1 and R 2 represent a hydrocarbon group having 1 to 10 carbon atoms
  • the hydrocarbon group is not particularly limited, and examples thereof include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a cycloalkenyl group having 3 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and a group having 1 to 10 carbon atoms formed by combining these groups.
  • R 1 and R 2 are alkyl groups having 1 to 10 carbon atoms
  • examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-octyl group, and an n-decyl group.
  • R 1 and R 2 are alkenyl groups having 2 to 10 carbon atoms
  • examples of the alkenyl group include a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, a 2-butenyl group, and a 1,3-butadienyl group.
  • examples of the alkynyl group include an ethynyl group, a 1-propynyl group, a 2-propynyl group, and a 1,1-dimethyl-2-propynyl group.
  • R 1 and R 2 are a cycloalkyl group having 3 to 10 carbon atoms
  • examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • examples of the cycloalkenyl group include a cyclopentenyl group and a cyclohexenyl group.
  • examples of the aryl group include a phenyl group and a naphthyl group.
  • the above-mentioned hydrocarbon group may have a heteroatom.
  • the heteroatom include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • Any hydrogen atom in the above-mentioned hydrocarbon group may be substituted with a halogen atom, such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., and preferably a fluorine atom.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., and preferably a fluorine atom.
  • the hydrocarbon group having 1 to 10 carbon atoms and a halogen atom is not particularly limited, but when the hydrocarbon group has 1 carbon atom, an example thereof is a trifluoromethyl group.
  • the number of carbon atoms in the hydrocarbon group having 1 to 10 carbon atoms represents the number of carbon atoms as R 1 and R 2 .
  • R 1 and R 2 each represent an alkoxy group having 1 to 10 carbon atoms
  • the alkoxy group having 1 to 10 carbon atoms is not particularly limited, and may be either linear or branched.
  • the linear alkoxy group an alkoxy group having 1 to 6 carbon atoms is preferable, and an alkoxy group having 1 to 3 carbon atoms is more preferable.
  • the branched alkoxy group an alkoxy group having 3 to 10 carbon atoms is preferable, and an alkoxy group having 3 to 6 carbon atoms is more preferable.
  • R1 and R2 each represent an alkenyloxy group having 2 to 10 carbon atoms
  • the alkenyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched.
  • An alkenyloxy group having 2 to 6 carbon atoms is preferable, and an alkenyloxy group having 2 to 3 carbon atoms is more preferable.
  • R1 and R2 each represent an alkynyloxy group having 2 to 10 carbon atoms
  • the alkynyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched.
  • An alkynyloxy group having 2 to 6 carbon atoms is preferable, and an alkynyloxy group having 2 to 3 carbon atoms is more preferable.
  • R1 and R2 represent a cycloalkoxy group having 3 to 10 carbon atoms
  • the cycloalkoxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkoxy group having 3 to 8 carbon atoms, preferably a cycloalkoxy group having 3 to 6 carbon atoms.
  • R1 and R2 represent a cycloalkenyloxy group having 3 to 10 carbon atoms
  • the cycloalkenyloxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkenyloxy group having 3 to 8 carbon atoms is preferable, and a cycloalkenyloxy group having 3 to 6 carbon atoms is more preferable.
  • R1 and R2 each represent an aryloxy group having 6 to 10 carbon atoms
  • the aryloxy group having 6 to 10 carbon atoms may be a monocyclic or polycyclic aryloxy group, and examples thereof include a phenyloxy group and a naphthyloxy group.
  • n is an integer of 2 to 4
  • multiple R 1 's may be the same or different.
  • multiple R 2 's may be the same or different.
  • R 1 represents a hydrogen atom, a fluorine atom, or a hydrocarbon group having 1 to 10 carbon atoms.
  • R 2 represents a hydrogen atom, a fluorine atom, or a hydrocarbon group having 1 to 10 carbon atoms.
  • Y1 and Y2 each independently represent a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of heteroatoms and halogen atoms, and when the hydrocarbon group has 3 or more carbon atoms, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O- ( M1A + ) a , where M1A + represents a proton, a metal cation, or an onium cation, and A represents the valence of the cation. a represents a number such that
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Y1 and Y2 each represent a hydrocarbon group having 1 to 10 carbon atoms
  • the hydrocarbon group is not particularly limited, and examples thereof include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a cycloalkenyl group having 3 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and a group having 1 to 10 carbon atoms formed by combining these groups.
  • examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-octyl group, and an n-decyl group.
  • examples of the alkenyl group include a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, a 2-butenyl group, and a 1,3-butadienyl group.
  • examples of the alkynyl group include an ethynyl group, a 1-propynyl group, a 2-propynyl group, and a 1,1-dimethyl-2-propynyl group.
  • examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • examples of the cycloalkenyl group include a cyclopentenyl group and a cyclohexenyl group.
  • examples of the aryl group include a phenyl group and a naphthyl group.
  • the above-mentioned hydrocarbon group may have a heteroatom.
  • the heteroatom include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • Any hydrogen atom in the above-mentioned hydrocarbon group may be substituted with a halogen atom, such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., and preferably a fluorine atom.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., and preferably a fluorine atom.
  • the hydrocarbon group having 1 to 10 carbon atoms and a halogen atom is not particularly limited, but when the hydrocarbon group has 1 carbon atom, an example thereof is a trifluoromethyl group.
  • the number of carbon atoms in the hydrocarbon group having 1 to 10 carbon atoms represents the number of carbon atoms as Y 1 and Y 2 .
  • the alkoxy group having 1 to 10 carbon atoms is not particularly limited, and may be either linear or branched.
  • the linear alkoxy group an alkoxy group having 1 to 6 carbon atoms is preferable, and an alkoxy group having 1 to 3 carbon atoms is more preferable.
  • the branched alkoxy group an alkoxy group having 3 to 10 carbon atoms is preferable, and an alkoxy group having 3 to 6 carbon atoms is more preferable.
  • the alkenyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched. An alkenyloxy group having 2 to 6 carbon atoms is preferable, and an alkenyloxy group having 2 to 3 carbon atoms is more preferable.
  • Y1 and Y2 each represent an alkynyloxy group having 2 to 10 carbon atoms
  • the alkynyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched.
  • An alkynyloxy group having 2 to 6 carbon atoms is preferable, and an alkynyloxy group having 2 to 3 carbon atoms is more preferable.
  • the cycloalkoxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkoxy group, preferably a cycloalkoxy group having 3 to 8 carbon atoms, and more preferably a cycloalkoxy group having 3 to 6 carbon atoms.
  • Y1 and Y2 each represent a cycloalkenyloxy group having 3 to 10 carbon atoms
  • the cycloalkenyloxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkenyloxy group having 3 to 8 carbon atoms, preferably a cycloalkenyloxy group having 3 to 6 carbon atoms.
  • aryloxy group having 6 to 10 carbon atoms may be a monocyclic or polycyclic aryloxy group, and examples thereof include a phenyloxy group and a naphthyloxy group.
  • M 1 A+ represents a proton, a metal cation, or an onium cation, and A represents the valence of the cation.
  • M 1 A+ represents a metal cation
  • examples of the metal cation include alkali metal cations such as lithium ion, sodium ion, and potassium ion, and alkaline earth metal cations such as magnesium ion and calcium ion.
  • examples of the onium cation include a trialkylammonium ion, a tetraalkylammonium ion, a tetraalkylphosphonium ion, an imidazolium ion, and an ammonium ion having a spiro skeleton.
  • M 1 A+ represents the valence of a cation.
  • A represents 1, and when M 1 A+ represents a divalent cation, A is 2.
  • M 1 A+ preferably represents a metal cation, more preferably a lithium ion or a sodium ion, and particularly preferably a sodium ion.
  • Y 1 represents a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or --O.sup .- (M 1 A+ ) a .
  • Y 2 represents a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or —O ⁇ (M 1 A+ ) a .
  • R 3 represents a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of a heteroatom and a halogen atom, and when the number of carbon atoms is 3 or more, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O- (M 2 B+ ) b , where M 2 B+ represents a proton, a metal cation, or an onium cation, and B represents the valence of the cation.
  • b represents
  • R3 represents a hydrocarbon group having 1 to 10 carbon atoms
  • the hydrocarbon group is not particularly limited, and examples thereof include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a cycloalkenyl group having 3 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and a group having 1 to 10 carbon atoms formed by combining these groups.
  • R3 is an alkyl group having 1 to 10 carbon atoms
  • examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-octyl group, and an n-decyl group.
  • R 3 is an alkenyl group having 2 to 10 carbon atoms
  • examples of the alkenyl group include a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, a 2-butenyl group, and a 1,3-butadienyl group.
  • examples of the alkynyl group include an ethynyl group, a 1-propynyl group, a 2-propynyl group, and a 1,1-dimethyl-2-propynyl group.
  • R3 is a cycloalkyl group having 3 to 10 carbon atoms
  • examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • examples of the cycloalkenyl group include a cyclopentenyl group and a cyclohexenyl group.
  • examples of the aryl group include a phenyl group and a naphthyl group.
  • the above-mentioned hydrocarbon group may have a heteroatom.
  • the heteroatom include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • Any hydrogen atom in the above-mentioned hydrocarbon group may be substituted with a halogen atom, such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., and preferably a fluorine atom.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.
  • the hydrocarbon group having 1 to 10 carbon atoms and a halogen atom is not particularly limited, but when the hydrocarbon group has 1 carbon atom, an example thereof is a trifluoromethyl group.
  • the number of carbon atoms in the hydrocarbon group having 1 to 10 carbon atoms represents the number of carbon atoms in R3 .
  • the hydrocarbon group having 1 to 10 carbon atoms as R3 may or may not be a methyl group.
  • the hydrocarbon group having 1 to 10 carbon atoms as R3 is not a methyl group, this means that the "methyl group" itself is excluded from the hydrocarbon group having 1 to 10 carbon atoms as R3 .
  • R3 represents an alkoxy group having 1 to 10 carbon atoms
  • the alkoxy group having 1 to 10 carbon atoms is not particularly limited, and may be either linear or branched.
  • As the linear alkoxy group an alkoxy group having 1 to 6 carbon atoms is preferable, and an alkoxy group having 1 to 3 carbon atoms is more preferable.
  • As the branched alkoxy group an alkoxy group having 3 to 10 carbon atoms is preferable, and an alkoxy group having 3 to 6 carbon atoms is more preferable.
  • the alkoxy group having 1 to 10 carbon atoms may have a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • R3 represents an alkenyloxy group having 2 to 10 carbon atoms
  • the alkenyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched.
  • An alkenyloxy group having 2 to 6 carbon atoms is preferable, and an alkenyloxy group having 2 to 3 carbon atoms is more preferable.
  • R3 represents an alkynyloxy group having 2 to 10 carbon atoms
  • the alkynyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched.
  • An alkynyloxy group having 2 to 6 carbon atoms is preferable, and an alkynyloxy group having 2 to 3 carbon atoms is more preferable.
  • R3 represents a cycloalkoxy group having 3 to 10 carbon atoms
  • the cycloalkoxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkoxy group having 3 to 8 carbon atoms is preferable, and a cycloalkoxy group having 3 to 6 carbon atoms is more preferable.
  • R 3 represents a cycloalkenyloxy group having 3 to 10 carbon atoms
  • the cycloalkenyloxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkenyloxy group having 3 to 8 carbon atoms is preferable, and a cycloalkenyloxy group having 3 to 6 carbon atoms is more preferable.
  • R3 represents an aryloxy group having 6 to 10 carbon atoms
  • the aryloxy group having 6 to 10 carbon atoms may be a monocyclic or polycyclic aryloxy group, and examples thereof include a phenyloxy group and a naphthyloxy group.
  • M 2 B+ represents a proton, a metal cation, or an onium cation, and B represents the valence of the cation.
  • examples of the metal cation include alkali metal cations such as lithium ion, sodium ion, and potassium ion, and alkaline earth metal cations such as magnesium ion and calcium ion.
  • examples of the onium cation include a trialkylammonium ion, a tetraalkylammonium ion, a tetraalkylphosphonium ion, an imidazolium ion, and an ammonium ion having a spiro skeleton.
  • M 2 B+ represents the valence of a cation.
  • B represents 1, and when M 2 B+ represents a divalent cation, B is 2.
  • M 2 B+ preferably represents a metal cation, more preferably a lithium ion or a sodium ion, and particularly preferably a sodium ion.
  • R 3 represents a hydrocarbon group having 1 to 10 carbon atoms excluding a methyl group, an alkoxy group having 1 to 10 carbon atoms, or —O ⁇ (M 2 B+ ) b .
  • Y3 represents a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of a heteroatom and a halogen atom, and when the carbon number is 3 or more, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O- ( M3E + ) e , where M3E + represents a proton, a metal cation, or an onium cation, and E represents the valence of the cation. e
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Y3 represents a hydrocarbon group having 1 to 10 carbon atoms
  • the hydrocarbon group is not particularly limited, and examples thereof include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a cycloalkenyl group having 3 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and a group having 1 to 10 carbon atoms formed by combining these groups.
  • examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-octyl group, and an n-decyl group.
  • examples of the alkenyl group include a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, a 2-butenyl group, and a 1,3-butadienyl group.
  • examples of the alkynyl group include an ethynyl group, a 1-propynyl group, a 2-propynyl group, and a 1,1-dimethyl-2-propynyl group.
  • examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • examples of the cycloalkenyl group include a cyclopentenyl group and a cyclohexenyl group.
  • examples of the aryl group include a phenyl group and a naphthyl group.
  • the above-mentioned hydrocarbon group may have a heteroatom.
  • the heteroatom include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • Any hydrogen atom in the above-mentioned hydrocarbon group may be substituted with a halogen atom, such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., and preferably a fluorine atom.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., and preferably a fluorine atom.
  • the hydrocarbon group having 1 to 10 carbon atoms and a halogen atom is not particularly limited, but when the hydrocarbon group has 1 carbon atom, it may be, for example, a trifluoromethyl group.
  • the number of carbon atoms in the hydrocarbon group having 1 to 10 carbon atoms represents the number of carbon atoms as Y3 .
  • the alkoxy group having 1 to 10 carbon atoms is not particularly limited, and may be either linear or branched.
  • the linear alkoxy group an alkoxy group having 1 to 6 carbon atoms is preferable, and an alkoxy group having 1 to 3 carbon atoms is more preferable.
  • the branched alkoxy group an alkoxy group having 3 to 10 carbon atoms is preferable, and an alkoxy group having 3 to 6 carbon atoms is more preferable.
  • the alkoxy group having 1 to 10 carbon atoms may have a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • the alkenyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched. An alkenyloxy group having 2 to 6 carbon atoms is preferable, and an alkenyloxy group having 2 to 3 carbon atoms is more preferable.
  • Y3 represents an alkynyloxy group having 2 to 10 carbon atoms
  • the alkynyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched.
  • An alkynyloxy group having 2 to 6 carbon atoms is preferable, and an alkynyloxy group having 2 to 3 carbon atoms is more preferable.
  • Y3 represents a cycloalkoxy group having 3 to 10 carbon atoms
  • the cycloalkoxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkoxy group having 3 to 8 carbon atoms, preferably a cycloalkoxy group having 3 to 6 carbon atoms.
  • Y3 represents a cycloalkenyloxy group having 3 to 10 carbon atoms
  • the cycloalkenyloxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkenyloxy group having 3 to 8 carbon atoms is preferable, and a cycloalkenyloxy group having 3 to 6 carbon atoms is more preferable.
  • the aryloxy group having 6 to 10 carbon atoms may be a monocyclic or polycyclic aryloxy group, and examples thereof include a phenyloxy group and a naphthyloxy group.
  • M 3 E+ represents a proton, a metal cation, or an onium cation, and E represents the valence of the cation.
  • M 3 E+ represents a metal cation
  • examples of the metal cation include alkali metal cations such as lithium ion, sodium ion, and potassium ion, and alkaline earth metal cations such as magnesium ion and calcium ion.
  • examples of the onium cation include a trialkylammonium ion, a tetraalkylammonium ion, a tetraalkylphosphonium ion, an imidazolium ion, and an ammonium ion having a spiro skeleton.
  • M 3 E+ represents the valence of a cation.
  • E represents 1, and when M 3 E+ represents a divalent cation, E is 2.
  • M 3 E+ preferably represents a metal cation, more preferably a lithium ion or a sodium ion, and particularly preferably a sodium ion.
  • Y 3 represents a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms excluding a methyl group, an alkoxy group having 1 to 10 carbon atoms, or —O ⁇ (M 3 E+ ) e .
  • R 10 and R 11 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have a heteroatom or a halogen atom, and when the carbon number is 3 or more, may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, or -O - (M 5 G + ) g , where M 5 G + represents a proton, a metal cation, or an onium cation, and G represents the valence of the hydrocarbon group having 1 to
  • R 10 and R 11 each represent a halogen atom
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 10 and R 11 each represent a hydrocarbon group having 1 to 10 carbon atoms
  • the hydrocarbon group is not particularly limited, and examples thereof include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a cycloalkenyl group having 3 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and a group having 1 to 10 carbon atoms formed by combining these groups.
  • R 10 and R 11 are an alkyl group having 1 to 10 carbon atoms
  • examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-octyl group, and an n-decyl group.
  • examples of the alkenyl group include a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, a 2-butenyl group, and a 1,3-butadienyl group.
  • examples of the alkynyl group include an ethynyl group, a 1-propynyl group, a 2-propynyl group, and a 1,1-dimethyl-2-propynyl group.
  • R 10 and R 11 are a cycloalkyl group having 3 to 10 carbon atoms
  • examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • examples of the cycloalkenyl group include a cyclopentenyl group and a cyclohexenyl group.
  • examples of the aryl group include a phenyl group and a naphthyl group.
  • the above-mentioned hydrocarbon group may have a heteroatom.
  • the heteroatom include an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, and a boron atom.
  • Any hydrogen atom in the above-mentioned hydrocarbon group may be substituted with a halogen atom, such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., and preferably a fluorine atom.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.
  • the hydrocarbon group having 1 to 10 carbon atoms and a halogen atom is not particularly limited, but when the hydrocarbon group has 1 carbon atom, an example thereof is a trifluoromethyl group.
  • the number of carbon atoms in the hydrocarbon group having 1 to 10 carbon atoms represents the number of carbon atoms as R 10 and R 11 .
  • R 10 and R 11 each represent an alkoxy group having 1 to 10 carbon atoms
  • the alkoxy group having 1 to 10 carbon atoms is not particularly limited, and may be either linear or branched.
  • As the linear alkoxy group an alkoxy group having 1 to 6 carbon atoms is preferable, and an alkoxy group having 1 to 3 carbon atoms is more preferable.
  • As the branched alkoxy group an alkoxy group having 3 to 10 carbon atoms is preferable, and an alkoxy group having 3 to 6 carbon atoms is more preferable.
  • the alkoxy group having 1 to 10 carbon atoms may have a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • R 10 and R 11 each represent an alkenyloxy group having 2 to 10 carbon atoms
  • the alkenyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched.
  • An alkenyloxy group having 2 to 6 carbon atoms is preferable, and an alkenyloxy group having 2 to 3 carbon atoms is more preferable.
  • R 10 and R 11 each represent an alkynyloxy group having 2 to 10 carbon atoms
  • the alkynyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched.
  • An alkynyloxy group having 2 to 6 carbon atoms is preferable, and an alkynyloxy group having 2 to 3 carbon atoms is more preferable.
  • R 10 and R 11 represent a cycloalkoxy group having 3 to 10 carbon atoms
  • the cycloalkoxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkoxy group having 3 to 8 carbon atoms, preferably a cycloalkoxy group having 3 to 6 carbon atoms.
  • R 10 and R 11 each represent a cycloalkenyloxy group having 3 to 10 carbon atoms
  • the cycloalkenyloxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkenyloxy group having 3 to 8 carbon atoms is preferable, and a cycloalkenyloxy group having 3 to 6 carbon atoms is more preferable.
  • R 10 and R 11 each represent an aryloxy group having 6 to 10 carbon atoms
  • the aryloxy group having 6 to 10 carbon atoms may be a monocyclic or polycyclic aryloxy group, and examples thereof include a phenyloxy group and a naphthyloxy group.
  • M 5 G+ represents a proton, a metal cation or an onium cation, and G represents the valence of the cation.
  • examples of the metal cation include alkali metal cations such as lithium ion, sodium ion, and potassium ion, and alkaline earth metal cations such as magnesium ion and calcium ion.
  • examples of the onium cation include a trialkylammonium ion, a tetraalkylammonium ion, a tetraalkylphosphonium ion, an imidazolium ion, and an ammonium ion having a spiro skeleton.
  • M 5 G+ represents the valence of a cation.
  • M 5 G+ represents a monovalent cation
  • G is 1
  • M 5 G+ represents a divalent cation
  • G is 2.
  • M 5 G+ preferably represents a metal cation, more preferably a lithium ion or a sodium ion, and particularly preferably a sodium ion.
  • R 10 and R 11 each represent a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • R 10 and R 11 are preferably bonded to each other to form a cyclic structure, and more preferably form a 5- or 6-membered cyclic structure together with -S-O-S- in general formula (5).
  • the compound having at least two isocyanate groups is preferably at least one selected from the group consisting of pentamethylene diisocyanate and hexamethylene diisocyanate.
  • the compounds represented by the general formula (1) include CH2 ( SO2F ) 2 , CH2( SO2F )( SO2ONa ), CH2(SO2F)(SO2OCH3), C(CH3)2(SO2F)2 , C ( F ) 2 ( SO2F ) 2 , CH2CH2 ( SO2F ) 2 , CF2CF2( SO2F ) 2 , CH2CH2 ( SO2F )(SO2OLi ) , CH2CH2 ( SO2F) ( SO2OCH2CCH ) , CH2 ( SO2CF3 ) 2 , CH2 ( SO2CF3 )( SO2ONa ), and CH2 ( SO2CF 3 ) (SO 2 OCH 3 ).
  • the above compounds correspond to the compounds given as specific examples of the compound represented by the above general formula (1).
  • the compound represented by the general formula (1) is preferably at least one selected from the group consisting of CH2 ( SO2F ) 2 , CH2 ( SO2F )( SO2ONa ), CH2CH2 ( SO2F ) 2 , CH2 ( SO2CF3 ) 2 , and CH2 ( SO2CF3 ) ( SO2ONa ).
  • the compounds represented by the general formula (2) include CH 3 SO 2 F, C 2 H 5 SO 2 F, CH 2 ⁇ CH-SO 2 F, CF 3 CH 2 CH 2 SO 2 F, cyclohexylsulfonyl fluoride (C 6 H 11 SO 2 F), phenylsulfonyl fluoride (C 6 H 5 SO 2 F), CH 3 OSO 2 F, CH 3 CH 2 OSO 2 F, CH 2 ⁇ CH-OSO 2 F, CF 3 CH 2 OSO 2 F, (CH 3 ) 2 CH-OSO 2 F, (CF 3 ) 2 CH-OSO 2 F, CH 3 CH-OSO 2 F, CH 3 CH 2 SO 2 CF 3 , CH 2 ⁇ CH-SO 2 CF 3 , CF 3 CH 2 CH It is preferably at least one selected from the group consisting of CH 3 OSO 2 CF 3 , CH 3 CH 2 OSO 2 CF 3 , NaO—SO 2 CH 3 , and NaO—SO 2 CF 3 .
  • the above compounds correspond to the compounds given as specific examples of the compound represented by the above general formula (2).
  • the compound represented by the general formula (2) is preferably at least one selected from the group consisting of CH 3 SO 2 F, C 2 H 5 SO 2 F, CH 2 ⁇ CH-SO 2 F, CH 3 OSO 2 F, CH 2 ⁇ CH-OSO 2 F, CH 3 OSO 2 CF 3 , NaO-SO 2 CH 3 , and NaO-SO 2 CF 3 .
  • the compound represented by the general formula (2) is C 2 H 5 SO 2 F, CH 2 ⁇ CH-SO 2 F, CF 3 CH 2 CH 2 SO 2 F, cyclohexylsulfonyl fluoride (C 6 H 11 SO 2 F), phenylsulfonyl fluoride (C 6 H 5 SO 2 F), CH 3 OSO 2 F, CH 3 CH 2 OSO 2 F, CH 2 ⁇ CH-OSO 2 F, CF 3 CH 2 OSO 2 F, CH 3 ) 2 CH-OSO 2 F, (CF 3 ) 2 CH-OSO 2 F, CH 3 CH 2 SO 2 CF 3 , CH 2 ⁇ CH-SO 2 CF 3 , CF 3 CH 2 CH 2 SO 2 It is preferably at least one selected from the group consisting of CF 3 , CH 3 OSO 2 CF 3 , CH 3 CH 2 OSO 2 CF 3 , NaO—SO 2 CH 3 , and NaO—SO 2 CF 3 .
  • the compound represented by the general formula (2) is preferably at least one selected from the group consisting of C 2 H 5 SO 2 F, CH 2 ⁇ CH-SO 2 F, CH 3 OSO 2 F, CH 2 ⁇ CH-OSO 2 F, CH 3 OSO 2 CF 3 , NaO-SO 2 CH 3 , and NaO-SO 2 CF 3 .
  • the compound represented by the general formula (5) is preferably at least one selected from the group consisting of methanesulfonic anhydride, 1,2,5-oxadithiolane-2,2,5,5-tetraoxide, and 1,3,2,4-dioxadithiane-2,2,4,4-tetraoxide.
  • the content y of component (II) is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, even more preferably 0.08% by mass or more, particularly preferably 0.1% by mass or more, and most preferably 0.8% by mass or more, based on the total amount of the electrolyte for nonaqueous sodium ion batteries.
  • the content y of component (II) is not particularly limited, but is preferably 10.0% by mass or less, more preferably 8.0% by mass or less, even more preferably 5.5% by mass or less, even more preferably 5.0% by mass or less, particularly preferably 3.5% by mass or less, and most preferably 2.5% by mass or less, based on the total amount of the electrolyte for nonaqueous sodium ion batteries. If the content y is 0.01% by mass or more, at least one of the cycle characteristics at high temperatures of 60 ° C. or more, the amount of gas generated during high-temperature cycle tests (the suppression effect of gas generation), and high-temperature storage characteristics of the nonaqueous sodium ion battery can be improved.
  • the content y of component (II) is preferably 0.01 mass% ⁇ y ⁇ 10.0 mass%, more preferably 0.03 mass% ⁇ y ⁇ 8.0 mass%, even more preferably 0.08 mass% ⁇ y ⁇ 5.5 mass%, even more preferably 0.1 mass% ⁇ y ⁇ 5.0 mass%, particularly preferably 0.1 mass% ⁇ y ⁇ 3.5 mass%, and most preferably 0.8 mass% ⁇ y ⁇ 2.5 mass%, relative to the total amount of the electrolyte for a non-aqueous sodium ion battery.
  • the type of sodium salt as the solute is not particularly limited, and any sodium salt (except for the above-mentioned fluorosulfate) can be used.
  • Specific examples include NaPF6 , NaBF4 , NaBF2 ( C2O4 ) , NaPF4 ( C2O4 ) , NaPF2 ( C2O4 ) 2 , NaSbF6 , NaAsF6 , NaClO4, NaN(SO2F)2, NaN(SO2CF3)2 , NaN ( SO2F ) ( SO2CF3 ) , NaN( CaF2a + 1SO2 )( CbF2b + 1SO2 ) (where a and b are integers satisfying 2 ⁇ a ⁇ 20 and 2 ⁇ b ⁇ 20), NaSO3CF3, NaSO3C4F9 , NaN ( POF2 ) 2 , NaN( POF2 )( SO2F ), NaPO2F2 , NaC(SO2CF3)3, NaPF3(
  • solutes may be used alone or in any combination and ratio of two or more depending on the application.
  • NaPF6 , NaBF2 ( C2O4 ) , NaPF4( C2O4 ), NaPF2 ( C2O4 ) 2 , NaN ( SO2F ) 2 , NaN( SO2CF3 ) 2 , NaN ( SO2C2F5) 2 , NaN( POF2 ) 2 , NaN( POF2 )( SO2F ) and NaPO2F2 are preferred, NaPF6 and NaN( SO2F ) 2 are more preferred, and NaPF6 is even more preferred.
  • the nonaqueous sodium ion battery electrolyte contains NaPF6 as the sodium salt (III).
  • the concentration z of the sodium salt in the electrolyte for a non-aqueous sodium ion battery according to this embodiment is not particularly limited, but is preferably 0.05 mol/L or more, more preferably 0.3 mol/L or more, and even more preferably 0.8 mol/L or more, relative to the total amount of the electrolyte for a non-aqueous sodium ion battery, and is preferably 5.0 mol/L or less, more preferably 2.0 mol/L or less, and even more preferably 1.5 mol/L or less.
  • the component (III) may be used alone or in any combination and ratio of two or more kinds according to the application.
  • the concentration z of the component (III) is preferably 0.3 mol/L ⁇ z ⁇ 5.0 mol/L, more preferably 0.4 mol/L ⁇ z ⁇ 3.0 mol/L, even more preferably 0.5 mol/L ⁇ z ⁇ 2.0 mol/L, and particularly preferably 0.8 mol/L ⁇ z ⁇ 1.5 mol/L, relative to the total amount of the electrolyte for a non-aqueous sodium ion battery.
  • the sodium salt (III) has some overlap with the component (II), but when the content is a predetermined amount or more (the concentration of the sodium salt (III) in the electrolyte for a non-aqueous sodium ion battery is 0.3 mol/L or more relative to the total amount of the electrolyte for a non-aqueous sodium ion battery), it functions as a main electrolyte (sodium salt (III)), and when the content is less than the predetermined amount, it functions as an additive (component (II)).
  • the component (II) is a compound different from the sodium salt of the component (III). For example, when the sodium salt (III) is CF 3 SO 3 Na, the component (II) is a compound other than CF 3 SO 3 Na.
  • Non-aqueous solvent The type of non-aqueous solvent is not particularly limited, and any non-aqueous solvent can be used.
  • Specific examples of the non-aqueous solvent include the following:
  • Examples of the cyclic ester include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, as well as ⁇ -butyrolactone and ⁇ -valerolactone.
  • Examples of the chain ester include chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, as well as methyl acetate, ethyl acetate, methyl propionate, and ethyl propionate.
  • Examples of cyclic ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 2-methyl-1,3-dioxolane, 4-methyl-1,3-dioxolane, and 1,3-dioxane.
  • Examples of the chain ether include dimethoxyethane, diethoxyethane, diethyl ether, ethoxymethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and dipropylene glycol dimethyl ether.
  • Examples of the sulfur-containing non-aqueous solvent include dimethyl sulfoxide and sulfolane. The non-aqueous solvent used in the present embodiment may be used alone or in any combination and ratio of two or more kinds depending on the application.
  • the nonaqueous sodium ion battery electrolyte contains, as the nonaqueous solvent, at least one selected from the group consisting of cyclic esters, chain esters, cyclic ethers, and chain ethers.
  • the nonaqueous sodium ion battery electrolyte contains a cyclic ester as the nonaqueous solvent, and the cyclic ester is a cyclic carbonate.
  • the nonaqueous sodium ion battery electrolyte contains a chain ester as the nonaqueous solvent, and the chain ester is a chain carbonate.
  • the nonaqueous sodium ion battery electrolyte more preferably contains, as the nonaqueous solvent, at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ⁇ -butyrolactone, methyl acetate, ethyl acetate, ethyl propionate, 1,3-dioxolane, 2-methyl-1,3-dioxolane, 4-methyl-1,3-dioxolane, dimethoxyethane, diethoxyethane, ethoxymethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and dipropylene glycol dimethyl ether.
  • These non-aqueous solvents may be used alone or in any combination and ratio of two or more kinds depending on the application.
  • the nonaqueous sodium ion battery electrolyte according to the present embodiment preferably further contains at least one compound selected from the group consisting of a compound represented by the following general formula (3) and a compound represented by the following general formula (4):
  • R4 and R5 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of heteroatoms and halogen atoms, and when the hydrocarbon group has 3 or more carbon atoms, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
  • X3 represents a phosphorus atom or a sulfur atom.
  • Y 4 to Y 7 each independently represent a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of a heteroatom and a halogen atom, and when the hydrocarbon group has 3 or more carbon atoms, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms, an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms,
  • R 6 to R 9 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of heteroatoms and halogen atoms, and when the hydrocarbon group has 3 or more carbon atoms, may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.]
  • R 4 and R 5 each represent a halogen atom
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R4 and R5 each represent a hydrocarbon group having 1 to 10 carbon atoms
  • the hydrocarbon group is not particularly limited, and examples thereof include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a cycloalkenyl group having 3 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and a group having 1 to 10 carbon atoms formed by combining these groups.
  • R4 and R5 are an alkyl group having 1 to 10 carbon atoms
  • examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-octyl group, and an n-decyl group.
  • examples of the alkenyl group include a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, a 2-butenyl group, and a 1,3-butadienyl group.
  • examples of the alkynyl group include an ethynyl group, a 1-propynyl group, a 2-propynyl group, and a 1,1-dimethyl-2-propynyl group.
  • R 4 and R 5 are a cycloalkyl group having 3 to 10 carbon atoms
  • examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • examples of the cycloalkenyl group include a cyclopentenyl group and a cyclohexenyl group.
  • examples of the aryl group include a phenyl group and a naphthyl group.
  • the above-mentioned hydrocarbon group may have a heteroatom.
  • the heteroatom include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • Any hydrogen atom in the above-mentioned hydrocarbon group may be substituted with a halogen atom, such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., and preferably a fluorine atom.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., and preferably a fluorine atom.
  • the hydrocarbon group having 1 to 10 carbon atoms and a halogen atom is not particularly limited, but when the hydrocarbon group has 1 carbon atom, an example thereof is a trifluoromethyl group.
  • the number of carbon atoms in the hydrocarbon group having 1 to 10 carbon atoms represents the number of carbon atoms as R 4 and R 5 .
  • R 4 and R 5 each represent an alkoxy group having 1 to 10 carbon atoms
  • the alkoxy group having 1 to 10 carbon atoms is not particularly limited, and may be either linear or branched.
  • the linear alkoxy group an alkoxy group having 1 to 6 carbon atoms is preferable, and an alkoxy group having 1 to 3 carbon atoms is more preferable.
  • the branched alkoxy group an alkoxy group having 3 to 10 carbon atoms is preferable, and an alkoxy group having 3 to 6 carbon atoms is more preferable.
  • R4 and R5 each represent an alkenyloxy group having 2 to 10 carbon atoms
  • the alkenyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched.
  • An alkenyloxy group having 2 to 6 carbon atoms is preferable, and an alkenyloxy group having 2 to 3 carbon atoms is more preferable.
  • R4 and R5 each represent an alkynyloxy group having 2 to 10 carbon atoms
  • the alkynyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched.
  • An alkynyloxy group having 2 to 6 carbon atoms is preferable, and an alkynyloxy group having 2 to 3 carbon atoms is more preferable.
  • R4 and R5 represent a cycloalkoxy group having 3 to 10 carbon atoms
  • the cycloalkoxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkoxy group, preferably a cycloalkoxy group having 3 to 8 carbon atoms, and more preferably a cycloalkoxy group having 3 to 6 carbon atoms.
  • R4 and R5 represent a cycloalkenyloxy group having 3 to 10 carbon atoms
  • the cycloalkenyloxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkenyloxy group having 3 to 8 carbon atoms is preferable, and a cycloalkenyloxy group having 3 to 6 carbon atoms is more preferable.
  • R4 and R5 each represent an aryloxy group having 6 to 10 carbon atoms
  • the aryloxy group having 6 to 10 carbon atoms may be a monocyclic or polycyclic aryloxy group, and examples thereof include a phenyloxy group and a naphthyloxy group.
  • R 4 represents a hydrogen atom, a fluorine atom, or a hydrocarbon group having 1 to 10 carbon atoms.
  • R 5 represents a hydrogen atom, a fluorine atom, or a hydrocarbon group having 1 to 10 carbon atoms.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the hydrocarbon group is not particularly limited, and examples thereof include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a cycloalkenyl group having 3 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and a group having 1 to 10 carbon atoms formed by combining these groups.
  • examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-octyl group, and an n-decyl group.
  • alkenyl groups having 2 to 10 carbon atoms examples include a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, a 2-butenyl group, and a 1,3-butadienyl group.
  • alkynyl groups having 2 to 10 carbon atoms examples include an ethynyl group, a 1-propynyl group, a 2-propynyl group, and a 1,1-dimethyl-2-propynyl group.
  • examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • examples of the cycloalkenyl group include a cyclopentenyl group and a cyclohexenyl group.
  • examples of the aryl group include a phenyl group and a naphthyl group.
  • the above-mentioned hydrocarbon group may have a heteroatom.
  • the heteroatom include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • Any hydrogen atom in the above-mentioned hydrocarbon group may be substituted with a halogen atom, such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., and preferably a fluorine atom.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.
  • the hydrocarbon group having 1 to 10 carbon atoms and a halogen atom is not particularly limited, but when the hydrocarbon group has 1 carbon atom, an example thereof is a trifluoromethyl group.
  • the number of carbon atoms in the hydrocarbon group having 1 to 10 carbon atoms represents the number of carbon atoms as Y 4 to Y 7 .
  • the alkoxy group having 1 to 10 carbon atoms is not particularly limited, and may be either linear or branched.
  • the linear alkoxy group an alkoxy group having 1 to 6 carbon atoms is preferable, and an alkoxy group having 1 to 3 carbon atoms is more preferable.
  • the branched alkoxy group an alkoxy group having 3 to 10 carbon atoms is preferable, and an alkoxy group having 3 to 6 carbon atoms is more preferable.
  • the alkenyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched. An alkenyloxy group having 2 to 6 carbon atoms is preferable, and an alkenyloxy group having 2 to 3 carbon atoms is more preferable.
  • the alkynyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched. An alkynyloxy group having 2 to 6 carbon atoms is preferable, and an alkynyloxy group having 2 to 3 carbon atoms is more preferable.
  • the cycloalkoxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkoxy group, preferably a cycloalkoxy group having 3 to 8 carbon atoms, and more preferably a cycloalkoxy group having 3 to 6 carbon atoms.
  • Y to Y represent a cycloalkenyloxy group having 3 to 10 carbon atoms
  • the cycloalkenyloxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkenyloxy group having 3 to 8 carbon atoms is preferable, and a cycloalkenyloxy group having 3 to 6 carbon atoms is more preferable.
  • the aryloxy group having 6 to 10 carbon atoms may be a monocyclic or polycyclic aryloxy group, and examples thereof include a phenyloxy group and a naphthyloxy group.
  • M 4 F+ represents a proton, a metal cation, or an onium cation, and F represents the valence of the cation.
  • examples of the metal cation include alkali metal cations such as lithium ion, sodium ion, and potassium ion, and alkaline earth metal cations such as magnesium ion and calcium ion.
  • examples of the onium cation include a trialkylammonium ion, a tetraalkylammonium ion, a tetraalkylphosphonium ion, an imidazolium ion, and an ammonium ion having a spiro skeleton.
  • M 4 F+ represents the valence of a cation.
  • F represents a monovalent cation
  • F is 1
  • M 4 F+ represents a divalent cation
  • F is 2.
  • M 4 F+ preferably represents a metal cation, more preferably a lithium ion or a sodium ion, and particularly preferably a sodium ion.
  • Y 4 represents a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or —O ⁇ (M 4 F+ ) f .
  • Y 5 represents a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or —O ⁇ (M 4 F+ ) f .
  • Y 6 represents a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or —O ⁇ (M 4 F+ ) f .
  • Y 7 represents a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or —O ⁇ (M 4 F+ ) f .
  • R 6 to R 9 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms (the hydrocarbon group may have at least one selected from the group consisting of heteroatoms and halogen atoms, and when the number of carbon atoms is 3 or more, it may have a branched chain or a cyclic structure), an alkoxy group having 1 to 10 carbon atoms (the alkoxy group may have a halogen atom), an alkenyloxy group having 2 to 10 carbon atoms, an alkynyloxy group having 2 to 10 carbon atoms, a cycloalkoxy group having 3 to 10 carbon atoms, a cycloalkenyloxy group having 3 to 10 carbon atoms, or an aryloxy group having 6 to 10 carbon atoms.
  • R 6 to R 9 each represent a halogen atom
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 6 to R 9 each represent a hydrocarbon group having 1 to 10 carbon atoms
  • the hydrocarbon group is not particularly limited, and examples thereof include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a cycloalkenyl group having 3 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and a group formed by combining these groups to have 1 to 10 carbon atoms.
  • R 6 to R 9 are each an alkyl group having 1 to 10 carbon atoms
  • examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-octyl group, and an n-decyl group.
  • examples of the alkenyl group include a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, a 2-butenyl group, and a 1,3-butadienyl group.
  • examples of the alkynyl group include an ethynyl group, a 1-propynyl group, a 2-propynyl group, and a 1,1-dimethyl-2-propynyl group.
  • R 6 to R 9 are each a cycloalkyl group having 3 to 10 carbon atoms
  • examples of the cycloalkyl group include a cyclopentyl group and a cyclohexyl group.
  • examples of the cycloalkenyl group include a cyclopentenyl group and a cyclohexenyl group.
  • examples of the aryl group include a phenyl group and a naphthyl group.
  • the above-mentioned hydrocarbon group may have a heteroatom.
  • the heteroatom include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • Any hydrogen atom in the above-mentioned hydrocarbon group may be substituted with a halogen atom, such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., and preferably a fluorine atom.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc., and preferably a fluorine atom.
  • the hydrocarbon group having 1 to 10 carbon atoms and a halogen atom is not particularly limited, but when the hydrocarbon group has 1 carbon atom, an example thereof is a trifluoromethyl group.
  • the number of carbon atoms in the hydrocarbon group having 1 to 10 carbon atoms represents the number of carbon atoms as R 6 to R 9 .
  • R 6 to R 9 each represent an alkoxy group having 1 to 10 carbon atoms
  • the alkoxy group having 1 to 10 carbon atoms is not particularly limited, and may be either linear or branched.
  • As the linear alkoxy group an alkoxy group having 1 to 6 carbon atoms is preferable, and an alkoxy group having 1 to 3 carbon atoms is more preferable.
  • As the branched alkoxy group an alkoxy group having 3 to 10 carbon atoms is preferable, and an alkoxy group having 3 to 6 carbon atoms is more preferable.
  • the alkoxy group having 1 to 10 carbon atoms may have a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • R 6 to R 9 each represent an alkenyloxy group having 2 to 10 carbon atoms
  • the alkenyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched.
  • An alkenyloxy group having 2 to 6 carbon atoms is preferable, and an alkenyloxy group having 2 to 3 carbon atoms is more preferable.
  • R 6 to R 9 each represent an alkynyloxy group having 2 to 10 carbon atoms
  • the alkynyloxy group having 2 to 10 carbon atoms is not particularly limited, and may be linear or branched.
  • An alkynyloxy group having 2 to 6 carbon atoms is preferable, and an alkynyloxy group having 2 to 3 carbon atoms is more preferable.
  • R 6 to R 9 each represent a cycloalkoxy group having 3 to 10 carbon atoms
  • the cycloalkoxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkoxy group, preferably a cycloalkoxy group having 3 to 8 carbon atoms, and more preferably a cycloalkoxy group having 3 to 6 carbon atoms.
  • R 6 to R 9 represent a cycloalkenyloxy group having 3 to 10 carbon atoms
  • the cycloalkenyloxy group having 3 to 10 carbon atoms is not particularly limited, and may be a monocyclic or polycyclic cycloalkenyloxy group having 3 to 8 carbon atoms is preferable, and a cycloalkenyloxy group having 3 to 6 carbon atoms is more preferable.
  • R 6 to R 9 each represent an aryloxy group having 6 to 10 carbon atoms
  • the aryloxy group having 6 to 10 carbon atoms may be a monocyclic or polycyclic aryloxy group, and examples thereof include a phenyloxy group and a naphthyloxy group.
  • R6 preferably represents a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • the hydrocarbon group having 1 to 10 carbon atoms preferably represents an alkenyl group having 2 to 10 carbon atoms or an alkynyl group having 2 to 10 carbon atoms.
  • R7 preferably represents a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • the hydrocarbon group having 1 to 10 carbon atoms preferably represents an alkenyl group having 2 to 10 carbon atoms or an alkynyl group having 2 to 10 carbon atoms.
  • R8 preferably represents a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • the hydrocarbon group having 1 to 10 carbon atoms preferably represents an alkenyl group having 2 to 10 carbon atoms or an alkynyl group having 2 to 10 carbon atoms.
  • R 9 preferably represents a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • the hydrocarbon group having 1 to 10 carbon atoms preferably represents an alkenyl group having 2 to 10 carbon atoms or an alkynyl group having 2 to 10 carbon atoms.
  • “other additives” other than those mentioned above include cyclohexylbenzene, biphenyl, t-butylbenzene, t-amylbenzene, fluorobenzene, vinylene carbonate, vinylene carbonate oligomers (number average molecular weight of 170 to 5000.
  • the number average molecular weight is the number average molecular weight converted into standard polystyrene measured by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as the solvent.
  • the electrolyte for a nonaqueous sodium ion battery according to the present embodiment contains fluoroethylene carbonate
  • the content is preferably not too high from the viewpoint of gas generation, and fluoroethylene carbonate may not be substantially contained.
  • substantially not contained means "less than 0.001 mass % with respect to the total amount of the electrolyte.”
  • the nonaqueous sodium ion battery electrolyte according to the present embodiment does not contain fluoroethylene carbonate.
  • the content is preferably not too high from the viewpoint of storage stability, and when the nonaqueous sodium ion battery electrolyte according to the present embodiment contains 1,3,2-dioxathiolane-2,2-dioxide and/or 4-propyl-1,3,2-dioxathiolane-2,2-dioxide, the content is preferably not too high from the viewpoint of storage stability, and may not be substantially contained.
  • a preferred embodiment is one in which the nonaqueous sodium ion battery electrolyte according to the present embodiment does not contain 1,3,2-dioxathiolane-2,2-dioxide and/or 4-propyl-1,3,2-dioxathiolane-2,2-dioxide.
  • the nonaqueous sodium ion battery electrolyte according to this embodiment further contains at least one compound selected from the group consisting of the compound represented by the general formula (3) and the compound represented by the general formula (4)
  • the content of the at least one compound selected from the group consisting of the compound represented by the general formula (3) and the compound represented by the general formula (4) is preferably 0.01% by mass or more and 10% by mass or less with respect to the total amount of the electrolyte.
  • the nonaqueous sodium ion battery electrolyte according to this embodiment contains the above-mentioned other additives, the content of these additives is preferably 0.01% by mass or more and 10% by mass or less with respect to the total amount of the electrolyte.
  • the above-mentioned sodium salts can also be used as other additives.
  • the content of the other additive is preferably 0.3 mass % or more and 1.5 mass % or less based on the total amount of the electrolyte.
  • the other additives may be gelling agents or cross-linked polymers.
  • the electrolyte for non-aqueous sodium ion batteries according to this embodiment can be quasi-solidified using gelling agents or cross-linked polymers, and the quasi-solidified electrolyte is suitable for sodium polymer batteries, for example.
  • the nonaqueous sodium ion battery includes at least a positive electrode, a negative electrode, and the electrolyte for a nonaqueous sodium ion battery according to the present embodiment.
  • the nonaqueous sodium ion battery according to this embodiment is characterized by using the electrolyte for a nonaqueous sodium ion battery according to this embodiment, and other components are the same as those used in general nonaqueous sodium ion batteries, including a positive electrode and a negative electrode capable of absorbing and releasing sodium, a current collector, a separator, an exterior body, and the like.
  • the positive electrode material (positive electrode active material) is not particularly limited, and examples thereof include sodium-containing transition metal composite oxides such as NaCrO2 , NaFe0.5Co0.5O2 , NaFe0.4Mn0.3Ni0.3O2, NaNi0.5Ti0.3Mn0.2O2, Na2/3Ni1 /3Ti1/ 6Mn1 / 2O2 , and Na2 / 3Ni1 / 3Mn2 / 3O2 , mixtures of multiple transition metals such as Co, Mn, and Ni in these sodium-containing transition metal composite oxides, sodium-containing transition metal composite oxides in which a part of the transition metal is replaced with a metal other than the transition metal, NaFePO4 , NaVPO4F , Na3V2 ( PO4 ) 3 , and Na2Fe
  • the material that can be used include polyanion-type compounds such as SiO2 ( SO4 ) 3 , oxides such as TiO2 , V2O5 , and MoO
  • a positive electrode active material layer is formed on at least one surface of the positive electrode current collector.
  • the positive electrode active material layer is composed of, for example, the above-mentioned positive electrode active material, a binder, and, if necessary, a conductive agent.
  • the binder include polytetrafluoroethylene, polyvinylidene fluoride, and styrene butadiene rubber (SBR) resin.
  • SBR styrene butadiene rubber
  • the conductive agent that can be used include carbon materials such as acetylene black, ketjen black, carbon fiber, and graphite (granular graphite or flake graphite), and it is preferable to use acetylene black or ketjen black, which have low crystallinity.
  • the negative electrode material (negative electrode active material) is not particularly limited, but may be sodium metal or a material capable of occluding and releasing sodium ions.
  • sodium metal an alloy of sodium metal and other metals such as tin, an intermetallic compound, various carbon materials including hard carbon, metal oxides such as titanium oxide, metal nitrides, tin (single), tin compounds, activated carbon, conductive polymers, etc. may be used.
  • phosphorus such as red phosphorus and black phosphorus
  • phosphorus compounds such as Co-P, Cu-P, Sn-P, Ge-P, and Mo-P
  • antimony single
  • antimony compounds such as Sb/C and Bi-Sb, etc.
  • These negative electrode active materials may be used alone or in combination of two or more types.
  • a negative electrode active material layer is formed on at least one surface of the negative electrode current collector.
  • the negative electrode active material layer is composed of, for example, the above-mentioned negative electrode active material, a binder, and, if necessary, a conductive agent.
  • the binder include polytetrafluoroethylene, polyvinylidene fluoride, and styrene butadiene rubber (SBR) resin.
  • SBR styrene butadiene rubber
  • the conductive agent that can be used include carbon materials such as acetylene black, ketjen black, carbon fiber, and graphite (granular graphite or flake graphite).
  • the current collectors of the positive and negative electrodes can be made of copper, aluminum, stainless steel, nickel, titanium, alloys thereof, etc.
  • An active material layer is formed on at least one surface of the current collector.
  • separator As a separator for preventing contact between the positive electrode and the negative electrode, a nonwoven fabric, porous sheet, or film made of polyolefin (e.g., polypropylene, polyethylene), paper, glass fiber, etc. is used. These are preferably microporous so that the electrolyte can penetrate and ions can easily pass through.
  • polyolefin e.g., polypropylene, polyethylene
  • Examples of the exterior body that can be used include coin-shaped, cylindrical, square, and other metal cans, and laminate exterior bodies.
  • metal can materials include nickel-plated steel sheets, stainless steel sheets, nickel-plated stainless steel sheets, aluminum or its alloys, nickel, titanium, and the like.
  • Examples of the laminate exterior body that can be used include aluminum laminate films, SUS laminate films, and laminate films of polypropylene, polyethylene, and the like coated with silica.
  • the configuration of the nonaqueous sodium ion battery according to this embodiment is not particularly limited, but may be configured, for example, such that an electrode element in which a positive electrode and a negative electrode are arranged opposite each other, and a nonaqueous electrolyte solution are enclosed in an exterior body.
  • the shape of the nonaqueous sodium ion battery according to this embodiment is not particularly limited, but may be coin-shaped, cylindrical, rectangular, aluminum laminate sheet-shaped, or the like.
  • the present disclosure also relates to a method for manufacturing a non-aqueous sodium-ion battery.
  • the manufacturing method includes: preparing a non-aqueous sodium ion battery electrolyte according to the present disclosure;
  • the method for producing a non-aqueous sodium ion battery includes a step of filling an empty cell having at least a positive electrode and a negative electrode with the electrolyte for a non-aqueous sodium ion battery.
  • the concentrations (mass%) of (I) the fluorosulfate, component (II), and other additives represent the contents (mass%) relative to the total amount of the nonaqueous sodium ion battery electrolyte.
  • the concentration (mol/L) of the sodium salt (III) represents the concentration relative to the total amount of the electrolyte for a nonaqueous sodium ion battery.
  • Example 1-1 Comparative Examples 1-0 to 1-2
  • a high-temperature cycle test was performed on a test cell prepared using the electrolyte solution shown in Table 2 as the test electrolyte solution, NaNi0.5Ti0.3Mn0.2O2 as the positive electrode material, and hard carbon (Carbotron P, manufactured by Kureha Corporation) as the negative electrode material, and the cycle characteristics, amount of gas generated during the high-temperature cycle test, and high-temperature storage characteristics were evaluated.
  • the evaluation results are shown in Table 2.
  • the test cell was prepared as follows.
  • the test positive electrode was prepared in the following manner.
  • As the positive electrode active material 90% by mass of NaNi0.5Ti0.3Mn0.2O2 , 5% by mass of acetylene black as a conductive agent, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder were mixed, and N-methylpyrrolidone was further added as a solvent so that the amount was 50% by mass relative to the total mass of the positive electrode active material, the conductive agent, and the binder, to prepare a slurry solution.
  • This slurry solution was applied onto an aluminum foil as a positive electrode current collector, and dried at 150 ° C. for 12 hours to obtain a test positive electrode having a positive electrode active material layer formed on the current collector.
  • the test negative electrode was prepared in the following manner.
  • a slurry solution was prepared by mixing 90% by mass of hard carbon powder (Kureha Corporation, Carbotron P) as the negative electrode active material and 10% by mass of polyvinylidene fluoride (PVDF) as the binder, and further adding N-methylpyrrolidone as a solvent in an amount of 50% by mass relative to the total mass of the negative electrode active material and the binder.
  • This slurry solution was applied onto an aluminum foil as a negative electrode current collector, and dried at 150° C. for 12 hours to obtain a test negative electrode having a negative electrode active material layer formed on the current collector.
  • test positive electrode and test negative electrode were placed between a polyethylene separator soaked in the test electrolyte, and a 50 mAh test cell with an aluminum laminate exterior was assembled.
  • the test cell was charged and discharged at a current density of 0.32 mA/ cm2 by a constant current/constant voltage method with a charge upper limit voltage of 4.1 V and a discharge lower limit voltage of 1.5 V at an environmental temperature of 25°C, and then a charge/discharge test was carried out at an environmental temperature of 60°C to evaluate cycle characteristics. Charge was performed up to 4.1 V and discharge was performed up to 1.5 V, and a charge/discharge cycle was repeated at a current density of 1.56 mA/ cm2 . The degree of deterioration of the cell was evaluated based on the discharge capacity retention rate at the 500th cycle in the charge/discharge test at an environmental temperature of 60°C.
  • the test cell was charged at a current density of 0.32 mA/cm 2 to a charging upper limit voltage of 4.1 V at an environmental temperature of 25 ° C. by a constant current constant voltage method, and then discharged at a constant current of 0.32 mA/cm 2 to 1.5 V. The same charge and discharge were repeated 10 cycles.
  • the discharge capacity at the 10th cycle is defined as the "initial discharge capacity”.
  • charging was performed at a current density of 0.32 mA/cm 2 to a charging upper limit voltage of 4.1 V by a constant current constant voltage method. This was stored at 60 ° C.
  • Examples 1-2 to 1-6, Comparative Examples 1-3 to 1-7 Test cells were prepared and performance evaluations were carried out in the same manner as in Example 1-1, except that the test electrolyte solutions shown in Tables 3 to 7 were used. The evaluation results are shown in Tables 3 to 7.
  • Examples 2-1 to 2-8, Comparative Examples 2-1 to 2-10 Except for changing the composition of the electrolyte solution to that shown in Table 8, various electrolyte solutions shown in Table 8 were prepared in the same manner as in electrolyte solution No. NaSO 3 F(2.0)-PDI(1.0). Test cells were prepared and performance evaluations were carried out in the same manner as in Example 1-1, except that the test electrolyte solutions shown in Table 9 were used. The evaluation results are shown in Table 9.
  • Examples 3-1 to 3-6 Comparative Examples 3-1 to 3-6
  • various electrolyte solutions shown in Table 10 were prepared in the same manner as in electrolyte solution No. NaSO 3 F(2.0)-PDI(1.0).
  • Test cells were prepared and performance evaluations were carried out in the same manner as in Example 1-1, except that the test electrolyte solutions shown in Table 11 were used. The evaluation results are shown in Table 11.
  • Examples 4-1 to 4-9, Comparative Examples 4-1 to 4-8 Except for changing the composition of the electrolyte solution to that shown in Table 12, various electrolyte solutions shown in Table 12 were prepared in the same manner as in electrolyte solution No. NaSO 3 F(2.0)-PDI(1.0). Test cells were prepared and performance evaluations were carried out in the same manner as in Example 1-1, except that the test electrolyte solutions shown in Table 13 were used. The evaluation results are shown in Table 13.
  • DFPMSF 1-(Difluorophosphinyl)methanesulfonyl fluoride
  • MBPD Methylenebis(phosphonic difluoride)
  • TVS Tetravinylsilane
  • MSF Methanesulfonyl fluoride (CH 3 SO 2 F)
  • an electrolyte for a non-aqueous sodium ion battery that can improve at least one of the cycle characteristics at high temperatures of 60°C or higher, the amount of gas generated during a high-temperature cycle test (or the effect of suppressing gas generation), and high-temperature storage characteristics of a non-aqueous sodium ion battery, a non-aqueous sodium ion battery using the electrolyte, and a method for manufacturing a non-aqueous sodium ion battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本開示は、(I)フルオロ硫酸塩、(II)少なくとも2つのイソシアネート基を有する化合物、特定の一般式(1)で表される化合物、特定の一般式(2)で表される化合物、及び特定の一般式(5)で表される化合物からなる群から選ばれる少なくとも1種、(III)ナトリウム塩、及び(IV)非水溶媒を含む非水ナトリウムイオン電池用電解液、少なくとも、正極と、負極と、前記非水ナトリウムイオン電池用電解液とを備える、非水ナトリウムイオン電池、及び非水ナトリウムイオン電池の製造方法を提供する。

Description

非水ナトリウムイオン電池用電解液、非水ナトリウムイオン電池、及び非水ナトリウムイオン電池の製造方法
 本開示の実施形態の一つは、非水ナトリウムイオン電池用電解液、それを用いた非水ナトリウムイオン電池、及び非水ナトリウムイオン電池の製造方法に関する。
 近年、情報関連機器、通信機器、即ちパソコン、ビデオカメラ、デジタルスチールカメラ、携帯電話等の小型、高エネルギー密度用途向け蓄電システムや、電気自動車、ハイブリッド車、燃料電池車補助電源、電力貯蔵等の大型、パワー用途向けの蓄電システムとしてリチウムイオン電池が注目を集めている。一方で、リチウム価格が高騰しており、より安価なナトリウムイオン電池が次世代二次電池として着目されている(特許文献1)。
 非水ナトリウムイオン電池において、活性な正極や負極の表面で電解液が分解することによる劣化を種々の添加剤で抑制することが提案されている。特許文献2では、スルホン酸エステル化合物(例えば、メチレンビス(ベンゼンスルホネート、メチレンビス(2-トリフルオロメチルベンゼンスルホネート)、メチルベンゼンスルホネート)や、スルホキシド化合物(例えば、ジメチルスルホキシド)等の-(S=O)-結合を有する化合物を含有することで充放電サイクル特性を向上させたナトリウム二次電池用非水電解液が開示されている。
 他方、特許文献3、4では、非水リチウムイオン電池電解液にフルオロ硫酸塩を添加すると高温耐久性および出力特性が向上することが記載されている。
日本国特開2013-48077号公報 日本国特開2016-181467号公報 日本国特開2011-187440号公報 国際公開第2018/179884号
 非水ナトリウムイオン電池は既に実用化されはじめているが、本発明者らの検討の結果、例えば、自動車用など長期間、温度の高い場所で使用する用途では、サイクル特性、高温サイクル試験中のガス発生量(の抑制効果)や高温貯蔵特性について改善の余地があることが判った。
 したがって、本開示の実施形態の一つは、非水ナトリウムイオン電池の60℃以上の高温でのサイクル特性、高温サイクル試験中のガス発生量(の抑制効果)、及び高温貯蔵特性のうちの少なくとも1つを向上できる非水ナトリウムイオン電池用電解液、それを用いた非水ナトリウムイオン電池、及び非水ナトリウムイオン電池の製造方法を提供することを課題の一つとする。
 本発明者らは、かかる問題に鑑み鋭意検討の結果、(I)フルオロ硫酸塩、(II)少なくとも2つのイソシアネート基を有する化合物、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物、及び下記一般式(5)で表される化合物からなる群から選ばれる少なくとも1種、(III)ナトリウム塩、及び(IV)非水溶媒を含む非水ナトリウムイオン電池用電解液により、非水ナトリウムイオン電池の60℃以上の高温でのサイクル特性、高温サイクル試験中のガス発生量(の抑制効果)、及び高温貯蔵特性のうちの少なくとも1つを向上できる非水ナトリウムイオン電池用電解液が得られることを見出し、本開示を完成させるに至った。
 すなわち、本開示は、以下の実施形態を含むものである。
[1]
(I)フルオロ硫酸塩、
(II)少なくとも2つのイソシアネート基を有する化合物、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物、及び下記一般式(5)で表される化合物からなる群から選ばれる少なくとも1種、
(III)ナトリウム塩、及び
(IV)非水溶媒
を含む非水ナトリウムイオン電池用電解液。
Figure JPOXMLDOC01-appb-C000006
 
[一般式(1)中、nは1~4の整数を表す。
 R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基を表す。
 Y及びYは、それぞれ独立して、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M A+を表し、M A+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Aはカチオンの価数を表す。aは、A×a=1となる数を表す。]
Figure JPOXMLDOC01-appb-C000007
 
[一般式(2)中、Rは、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M B+を表し、M B+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Bはカチオンの価数を表す。bは、B×b=1となる数を表す。
 Yは、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M E+を表し、M E+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Eはカチオンの価数を表す。eは、E×e=1となる数を表す。]
Figure JPOXMLDOC01-appb-C000008
 
[一般式(5)中、R10及びR11は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子やハロゲン原子を有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、又は炭素数が6~10のアリールオキシ基、又は-O(M G+を表し、M G+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Gはカチオンの価数を表す。gは、G×g=1となる数を表す。R10とR11は互いに結合して環状構造を形成してもよい。]
[2]
 前記(I)の含有量xが、非水ナトリウムイオン電池用電解液総量に対して0.008質量%≦x≦7.5質量%である、[1]に記載の非水ナトリウムイオン電池用電解液。
[3]
 前記(I)の対カチオンが、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオン、テトラアルキルホスホニウムイオン又はスピロ骨格を有するアンモニウムイオンである、[1]又は[2]に記載の非水ナトリウムイオン電池用電解液。
[4]
 前記(II)の含有量yが、非水ナトリウムイオン電池用電解液総量に対して0.08質量%≦y≦5.5質量%である、[1]~[3]のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
[5]
 前記少なくとも2つのイソシアネート基を有する化合物が、ペンタメチレンジイソシアナート及びヘキサメチレンジイソシアナートからなる群から選ばれる少なくとも1つである、[1]~[4]のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
[6]
 前記一般式(1)で示される化合物が、CH(SOF)、CH(SOF)(SOONa)、CH(SOF)(SOOCH)、C(CH(SOF)、C(F)(SOF)、CHCH(SOF)、CFCF(SOF)、CHCH(SOF)(SOOLi)、CHCH(SOF)(SOOCHCCH)、CH(SOCF、CH(SOCF)(SOONa)、及びCH(SOCF)(SOOCH)からなる群から選ばれる少なくとも1つである、[1]~[5]のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
[7]
 前記一般式(1)で示される化合物が、CH(SOF)、CH(SOF)(SOONa)、CHCH(SOF)、CH(SOCF、及びCH(SOCF)(SOONa)からなる群から選ばれる少なくとも1つである、[1]~[6]のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
[8]
 前記一般式(2)で示される化合物が、CHSOF、CSOF、CH=CH-SOF、CFCHCHSOF、シクロヘキシルスルホニルフルオライド(C11SOF)、フェニルスルホニルフルオライド(CSOF)、CHOSOF、CHCHOSOF、CH=CH-OSOF、CFCHOSOF、(CHCH-OSOF、(CFCH-OSOF、CHCHSOCF、CH=CH-SOCF、CFCHCHSOCF、CHOSOCF、CHCHOSOCF、NaO-SOCH、及びNaO-SOCFからなる群から選ばれる少なくとも1つである、[1]~[7]のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
[9]
 前記一般式(2)で示される化合物が、CHSOF、CSOF、CH=CH-SOF、CHOSOF、CH=CH-OSOF、CHOSOCF、NaO-SOCH、及びNaO-SOCFからなる群から選ばれる少なくとも1つである、[1]~[8]のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
[10]
 前記一般式(5)で示される化合物が、メタンスルホン酸無水物、1,2,5-オキサジチオラン-2,2,5,5-テトラオキシド、及び1,3,2,4-ジオキサジチアン-2,2,4,4-テトラオキシドからなる群から選ばれる少なくとも1つである、[1]~[9]のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
[11]
 前記非水溶媒として、環状エステル、鎖状エステル、環状エーテル、及び鎖状エーテルからなる群から選ばれる少なくとも一つを含む、[1]~[10]のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
[12]
 前記ナトリウム塩が、NaPF、NaBF、NaBF(C)、NaPF(C)、NaPF(C、NaSbF、NaAsF、NaClO、NaN(SOF)、NaN(SOCF、NaN(SOF)(SOCF)、NaN(C2a+1SO)(C2b+1SO)(ここでa及びbは、2≦a≦20及び2≦b≦20を満たす整数である。)、NaSOCF、NaSO、NaN(POF、NaN(POF)(SOF)、NaPO、NaC(SOCF、NaPF(C、NaB(CF、NaBF(C)、NaAlO、NaAlCl、NaCl、及びNaIからなる群から選ばれる少なくとも一つである、[1]~[11]のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
[13]
 前記(III)の濃度zが、非水ナトリウムイオン電池用電解液総量に対して0.3mol/L≦z≦5.0mol/Lである、[1]~[12]のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
[14]
 更に、下記一般式(3)で表される化合物、及び下記一般式(4)で表される化合物からなる群から選ばれる少なくとも1つの化合物を含有する、[1]~[13]のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
Figure JPOXMLDOC01-appb-C000009
 
 [一般式(3)中、pは1~4の整数を表す。
 R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基を表す。
 Xはリン原子、又は硫黄原子を表す。Xがリン原子の場合はc=1、d=1であり、Xが硫黄原子の場合はc=2、d=0である。
 Y~Yは、それぞれ独立して、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M F+を表し、M F+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Fはカチオンの価数を表す。fは、F×f=1となる数を表す。]
Figure JPOXMLDOC01-appb-C000010
 
 [一般式(4)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基を表す。]
[15]
 少なくとも、正極と、負極と、[1]~[14]のいずれか1項に記載の非水ナトリウムイオン電池用電解液とを備える、非水ナトリウムイオン電池。
[16]
 [1]~[14]のいずれか1項に記載の非水ナトリウムイオン電池用電解液を準備する工程、
 少なくとも正極と負極とを備えた空セルに前記非水ナトリウムイオン電池用電解液を充填する工程を有する、非水ナトリウムイオン電池の製造方法。
 本開示の実施形態により、非水ナトリウムイオン電池の60℃以上の高温でのサイクル特性、高温サイクル試験中のガス発生量(の抑制効果)、及び高温貯蔵特性のうちの少なくとも1つを向上できる非水ナトリウムイオン電池用電解液、それを用いた非水ナトリウムイオン電池、及び非水ナトリウムイオン電池の製造方法が提供される。
実施例1-1、比較例1-0、1-1~1-2の高温サイクル後放電容量維持率にかかる評価結果を示す図である。 実施例1-1、比較例1-0、1-1~1-2の高温サイクル時ガス発生量にかかる評価結果を示す図である。 実施例1-1、比較例1-0、1-1~1-2の高温貯蔵後回復放電容量維持率にかかる評価結果を示す図である。
 以下、本開示の各実施形態について説明する。ただし、本開示は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態や実施例の記載内容に限定して解釈されるものではない。また、以下の実施形態や実施例の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、または当業者が容易に予測し得るものについては、当然に本開示によりもたらされるものと解される。
 本件明細書において、「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
[1.非水ナトリウムイオン電池用電解液]
 本開示の実施形態の一つに係る非水ナトリウムイオン電池用電解液は、
(I)フルオロ硫酸塩(以降、「成分(I)」や単に「(I)」と記載する場合がある)、
(II)少なくとも2つのイソシアネート基を有する化合物、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物、及び下記一般式(5)で表される化合物からなる群から選ばれる少なくとも1種(以降、「成分(II)」や単に「(II)」と記載する場合がある)、
(III)ナトリウム塩(以降、「成分(III)」や単に「(III)」と記載する場合がある)、及び
(IV)非水溶媒(以降、「成分(IV)」や単に「(IV)」と記載する場合がある)を含む。
Figure JPOXMLDOC01-appb-C000011
 
[一般式(1)中、nは1~4の整数を表す。
 R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基を表す。
 Y及びYは、それぞれ独立して、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M A+を表し、M A+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Aはカチオンの価数を表す。aは、A×a=1となる数を表す。]
Figure JPOXMLDOC01-appb-C000012
 
[一般式(2)中、Rは、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M B+を表し、M B+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Bはカチオンの価数を表す。bは、B×b=1となる数を表す。
 Yは、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M E+を表し、M E+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Eはカチオンの価数を表す。eは、E×e=1となる数を表す。]
Figure JPOXMLDOC01-appb-C000013
 
[一般式(5)中、R10及びR11は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子やハロゲン原子を有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、又は炭素数が6~10のアリールオキシ基、又は-O(M G+を表し、M G+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Gはカチオンの価数を表す。gは、G×g=1となる数を表す。R10とR11は互いに結合して環状構造を形成してもよい。]
 また、必要であれば一般に良く知られている別の添加剤の併用も可能である。
 本実施形態に係る非水ナトリウムイオン電池用電解液は、上記構成とすることで、60℃以上の高温でのサイクル特性、高温サイクル試験中のガス発生量(の抑制効果)、及び高温貯蔵特性のうちの少なくとも1つを向上できる。このメカニズムの詳細は明らかではないが、フルオロ硫酸塩と共に成分(II)を含有することで、電極上に良好な被膜を形成できるためと推測される。
 以下、本実施形態に係る非水ナトリウムイオン電池用電解液の各構成要素について詳細に説明する。
[(I)フルオロ硫酸塩]
 フルオロ硫酸塩は、SOで表されるアニオンと対カチオンとを有するイオン性の塩である。
 フルオロ硫酸塩の対カチオンとしては、本実施形態に係る非水ナトリウムイオン電池用電解液及び非水ナトリウムイオン電池の性能を損なうものでなければその種類に特に制限はなく様々なものを選択することができる。
 対カチオンの具体例としては、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン、マグネシウムイオン、カルシウムイオン、バリウムイオン、銀イオン、銅イオン、鉄イオン、等の金属カチオン、テトラアルキルアンモニウムイオン、テトラアルキルホスホニウムイオン、イミダゾリウムイオン、スピロ骨格を有するアンモニウムイオン等のオニウムカチオンが挙げられるが、特に非水ナトリウムイオン電池中でのイオン伝導を助ける役割をするという観点から、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオン、テトラアルキルホスホニウムイオン、又はスピロ骨格を有するアンモニウムイオンが好ましく、リチウムイオン、ナトリウムイオン、テトラアルキルアンモニウムイオン又はスピロ骨格を有するアンモニウムイオンであることがより好ましい。
 テトラアルキルアンモニウムイオンにおけるアルキル基の炭素数は、1~6であることが好ましく、テトラアルキルホスホニウムイオンにおけるアルキル基の炭素数は、1~6であることが好ましい。
 テトラアルキルアンモニウムイオンにおける4つのアルキル基は同一でも互いに異なっていてもよく、テトラアルキルホスホニウムイオンにおける4つのアルキル基は同一でも互いに異なっていてもよい。
 スピロ骨格を有するアンモニウムイオンは、例えば、5-アゾニアスピロ[4.4]ノナンが好ましい。
 フルオロ硫酸塩としては、特に限定されないが、NaSOF、LiSOF、TEMASOF、SBPSOF又はTEASOFが好ましく、NaSOF、LiSOF、又はTEASOFが特に好ましい。ここで、TEAはテトラエチルアンモニウムを表し、TEMAはトリエチルメチルアンモニウムを表し、SBPは5-アゾニアスピロ[4.4]ノナンを表す。
 フルオロ硫酸塩の含有量xは、特に限定されないが、非水ナトリウムイオン電池用電解液総量に対して0.001質量%以上が好ましく、より好ましくは0.008質量%以上であり、より好ましくは0.08質量%以上であり、更に好ましくは1.5質量%以上である。また、フルオロ硫酸塩の含有量は、特に限定されないが、非水ナトリウムイオン電池用電解液総量に対して11.5質量%以下が好ましく、より好ましくは10.5質量%以下であり、更に好ましくは7.5質量%以下であり、特に好ましくは5.5質量%以下である。0.001質量%以上であれば、非水ナトリウムイオン電池の60℃以上の高温でのサイクル特性、高温サイクル試験中のガス発生量(の抑制効果)、及び高温貯蔵特性のうちの少なくとも1つを向上させることができる。また、11.5質量%以下であれば、電極上に形成される皮膜が厚くなりすぎず、抵抗増加につながり難い。
 フルオロ硫酸塩は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組合せ、比率で混合して用いても良い。
 一態様として、前記フルオロ硫酸塩の含有量xは、非水ナトリウムイオン電池用電解液総量に対して0.008質量%≦x≦11.5質量%であることが好ましく、0.008質量%≦x≦10.5質量%であることがより好ましく、0.008質量%≦x≦7.5質量%であることが更に好ましく、1.5質量%≦x≦5.5質量%であることが特に好ましい。
[(II)少なくとも2つのイソシアネート基を有する化合物、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物、及び下記一般式(5)で表される化合物からなる群から選ばれる少なくとも1種]
 以下、成分(II)について記載する。
 少なくとも2つのイソシアネート基を有する化合物(以下、化合物Aともいう)は、少なくとも2つのイソシアネート基を有する化合物であれば、特に限定されない。
 上記化合物におけるイソシアネート基の数は、少なくとも2つであれば、特に限定されないが、6以下であることが好ましい。
 上記化合物におけるイソシアネート基の数は、2~6が好ましく、2~4がより好ましく、2~3がさらに好ましい。
 イソシアネート基は、化合物の末端に存在していてもよく、化合物の末端に存在していなくてもよい。好ましい一態様として、2つのイソシアネート基を化合物の末端に有する化合物が好ましい。
 化合物Aは、少なくとも2つのイソシアネート基を有する化合物であれば特に限定されないが、例えば、イソシアネート基の炭素原子を除いた炭素数2~20の化合物が挙げられる。
 好ましい一態様として、化合物Aの前記炭素数は、2~12であることが好ましく、2~10であることがより好ましく、3~8であることが更に好ましい。
 少なくとも2つのイソシアネート基を有する化合物としては、具体的には、ペンタメチレンジイソシアナート、ヘキサメチレンジイソシアナート、1,3-ジイソシアナトベンゼン、1,4-ジイソシアナートベンゼン、1,3-ビス(イソシアナトメチル)ベンゼン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,3,5-トリス(6-イソシアナトヘキシル)-1,3,5-トリアジナン-2,4,6-トリオン等が挙げられる。
 少なくとも2つのイソシアネート基を有する化合物としては、ペンタメチレンジイソシアナート、1,3-ジイソシアナトベンゼン、1,4-ジイソシアナートベンゼン、1,3-ビス(イソシアナトメチル)ベンゼン、1,3-ビス(イソシアナトメチル)シクロヘキサン、又は、1,3,5-トリス(6-イソシアナトヘキシル)-1,3,5-トリアジナン-2,4,6-トリオンが好ましい。
 一般式(1)で表される化合物、一般式(2)で表される化合物、及び一般式(5)で表される化合物について下記に示す。
Figure JPOXMLDOC01-appb-C000014
 
[一般式(1)中、nは1~4の整数を表す。
 R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基を表す。
 Y及びYは、それぞれ独立して、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M A+を表し、M A+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Aはカチオンの価数を表す。aは、A×a=1となる数を表す。]
Figure JPOXMLDOC01-appb-C000015
 
[一般式(2)中、Rは、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M B+を表し、M B+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Bはカチオンの価数を表す。bは、B×b=1となる数を表す。を表す。
 Yは、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M E+を表し、M E+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Eはカチオンの価数を表す。eは、E×e=1となる数を表す。]
Figure JPOXMLDOC01-appb-C000016
 
[一般式(5)中、R10及びR11は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子やハロゲン原子を有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、又は炭素数が6~10のアリールオキシ基、又は-O(M G+を表し、M G+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Gはカチオンの価数を表す。gは、G×g=1となる数を表す。R10とR11は互いに結合して環状構造を形成してもよい。]
 本明細書において、炭化水素基とは、炭素原子と水素原子が結合したCH構造を有する基を表すものとする。
 一般式(1)中、nは1~4の整数を表す。
 R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基を表す。
 R及びRがハロゲン原子を表す場合のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 R及びRが炭素数1~10の炭化水素基を表す場合の炭化水素基としては、特に限定されないが、例えば、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数3~10のシクロアルキル基、炭素数3~10のシクロアルケニル基、炭素数6~10のアリール基、及びこれらの基を組み合わせて炭素数が1~10となる基が挙げられる。
 R及びRが、炭素数が1~10のアルキル基である場合のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等が挙げられる。
 R及びRが、炭素数が2~10のアルケニル基である場合のアルケニル基としては、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、及び1,3-ブタジエニル基等が挙げられる。
 R及びRが、炭素数が2~10のアルキニル基である場合のアルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、及び1,1-ジメチル-2-プロピニル基等が挙げられる。
 R及びRが、炭素数が3~10のシクロアルキル基である場合のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。
 R及びRが、炭素数が3~10のシクロアルケニル基である場合のシクロアルケニル基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
 R及びRが、炭素数が6~10のアリール基である場合のアリール基としては、フェニル基、ナフチル基等が挙げられる。
 上記炭化水素基は、ヘテロ原子を有していてもよい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。
 上記炭化水素基の任意の水素原子はハロゲン原子で置換されていてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子であることが好ましい。
 ハロゲン原子を有する炭素数1~10の炭化水素基としては、特に限定されないが、例えば、炭素数1の場合は、トリフルオロメチル基等を挙げることができる。
 炭素数1~10の炭化水素基の炭素数は、R、Rとしての炭素数を表す。
 R及びRが、炭素数が1~10のアルコキシ基を表す場合の炭素数が1~10のアルコキシ基としては、特に限定されないが、直鎖状でも分岐状でもよい。
 直鎖状のアルコキシ基としては、炭素数が1~6のアルコキシ基が好ましく。炭素数が1~3のアルコキシ基がより好ましい。
 分岐状のアルコキシ基としては、炭素数が3~10のアルコキシ基が好ましく、炭素数が3~6のアルコキシ基がより好ましい。
 R及びRが、炭素数が2~10のアルケニルオキシ基を表す場合の炭素数が2~10のアルケニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルケニルオキシ基が好ましく、炭素数が2~3のアルケニルオキシ基がより好ましい。
 R及びRが、炭素数が2~10のアルキニルオキシ基を表す場合の炭素数が2~10のアルキニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルキニルオキシ基が好ましく、炭素数が2~3のアルキニルオキシ基がより好ましい。
 R及びRが、炭素数が3~10のシクロアルコキシ基を表す場合の炭素数が3~10のシクロアルコキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数3~8のシクロアルコキシ基が好ましく、炭素数が3~6のシクロアルコキシ基がより好ましい。
 R及びRが、炭素数が3~10のシクロアルケニルオキシ基を表す場合の炭素数が3~10のシクロアルケニルオキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数が3~8のシクロアルケニルオキシ基が好ましく、炭素数が3~6のシクロアルケニルオキシ基がより好ましい。
 R及びRが、炭素数が6~10のアリールオキシ基を表す場合の炭素数が6~10のアリールオキシ基としては、特に限定されないが、単環でも多環でもよく、フェニルオキシ基、ナフチルオキシ基等が挙げられる。
 nが2~4の整数を表す場合、複数のRは、同一であってもよく、異なっていてもよい。
 nが2~4の整数を表す場合、複数のRは、同一であってもよく、異なっていてもよい。
 好ましい一態様として、Rは、水素原子、フッ素原子、又は炭素数1~10の炭化水素基を表すことが好ましい。
 好ましい一態様として、Rは、水素原子、フッ素原子、又は炭素数1~10の炭化水素基を表すことが好ましい。
 Y及びYは、それぞれ独立して、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M A+を表し、M A+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Aはカチオンの価数を表す。aは、A×a=1となる数を表す。
 Y及びYがハロゲン原子を表す場合のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 Y及びYが炭素数1~10の炭化水素基を表す場合の炭化水素基としては、特に限定されないが、例えば、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数3~10のシクロアルキル基、炭素数3~10のシクロアルケニル基、炭素数6~10のアリール基、及びこれらの基を組み合わせて炭素数が1~10となる基が挙げられる。
 Y及びYが、炭素数が1~10のアルキル基である場合のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等が挙げられる。
 Y及びYが、炭素数が2~10のアルケニル基である場合のアルケニル基としては、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、及び1,3-ブタジエニル基等が挙げられる。
 Y及びYが、炭素数が2~10のアルキニル基である場合のアルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、及び1,1-ジメチル-2-プロピニル基等が挙げられる。
 Y及びYが、炭素数が3~10のシクロアルキル基である場合のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。
 Y及びYが、炭素数が3~10のシクロアルケニル基である場合のシクロアルケニル基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
 Y及びYが、炭素数が6~10のアリール基である場合のアリール基としては、フェニル基、ナフチル基等が挙げられる。
 上記炭化水素基は、ヘテロ原子を有していてもよい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。
 上記炭化水素基の任意の水素原子はハロゲン原子で置換されていてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子であることが好ましい。
 ハロゲン原子を有する炭素数1~10の炭化水素基としては、特に限定されないが、例えば、炭素数1の場合は、トリフルオロメチル基等を挙げることができる。
 炭素数1~10の炭化水素基の炭素数は、Y、Yとしての炭素数を表す。
 Y及びYが、炭素数が1~10のアルコキシ基を表す場合の炭素数が1~10のアルコキシ基としては、特に限定されないが、直鎖状でも分岐状でもよい。
 直鎖状のアルコキシ基としては、炭素数が1~6のアルコキシ基が好ましく。炭素数が1~3のアルコキシ基がより好ましい。
 分岐状のアルコキシ基としては、炭素数が3~10のアルコキシ基が好ましく、炭素数が3~6のアルコキシ基がより好ましい。
 Y及びYが、炭素数が2~10のアルケニルオキシ基を表す場合の炭素数が2~10のアルケニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルケニルオキシ基が好ましく、炭素数が2~3のアルケニルオキシ基がより好ましい。
 Y及びYが、炭素数が2~10のアルキニルオキシ基を表す場合の炭素数が2~10のアルキニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルキニルオキシ基が好ましく、炭素数が2~3のアルキニルオキシ基がより好ましい。
 Y及びYが、炭素数が3~10のシクロアルコキシ基を表す場合の炭素数が3~10のシクロアルコキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数3~8のシクロアルコキシ基が好ましく、炭素数が3~6のシクロアルコキシ基がより好ましい。
 Y及びYが、炭素数が3~10のシクロアルケニルオキシ基を表す場合の炭素数が3~10のシクロアルケニルオキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数が3~8のシクロアルケニルオキシ基が好ましく、炭素数が3~6のシクロアルケニルオキシ基がより好ましい。
 Y及びYが、炭素数が6~10のアリールオキシ基を表す場合の炭素数が6~10のアリールオキシ基としては、特に限定されないが、単環でも多環でもよく、フェニルオキシ基、ナフチルオキシ基等が挙げられる。
 M A+はプロトン、金属カチオン、又はオニウムカチオンを表し、Aはカチオンの価数を表す。
 M A+が金属カチオンを表す場合の金属カチオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン等のアルカリ金属カチオン、マグネシウムイオン、カルシウムイオン等のアルカリ土類金属カチオンが挙げられる。
 M A+がオニウムカチオンを表す場合のオニウムカチオンとしては、トリアルキルアンモニウムイオン、テトラアルキルアンモニウムイオン、テトラアルキルホスホニウムイオン、イミダゾリウムイオン、スピロ骨格を有するアンモニウムイオン等が挙げられる。
 Aは、カチオンの価数を表す。M A+が1価のカチオンを表す場合は、Aは1であり、M A+が2価のカチオンを表す場合は、Aは2である。
 M A+は金属カチオンを表すことが好ましく、リチウムイオン又はナトリウムイオンであることがより好ましく、ナトリウムイオンであることが特に好ましい。
 好ましい一態様として、Yは、フッ素原子、炭素数1~10の炭化水素基、炭素数が1~10のアルコキシ基、又は-O(M A+を表すことが好ましい。
 好ましい一態様として、Yは、フッ素原子、炭素数1~10の炭化水素基、炭素数が1~10のアルコキシ基、又は-O(M A+を表すことが好ましい。
 一般式(1)で表される化合物の具体例を以下に示すが、本開示は、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000017
 
 一般式(2)中、Rは、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M B+を表し、M B+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Bはカチオンの価数を表す。bは、B×b=1となる数を表す。
 Rが炭素数1~10の炭化水素基を表す場合の炭化水素基としては、特に限定されないが、例えば、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数3~10のシクロアルキル基、炭素数3~10のシクロアルケニル基、炭素数6~10のアリール基、及びこれらの基を組み合わせて炭素数が1~10となる基が挙げられる。
 Rが、炭素数が1~10のアルキル基である場合のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等が挙げられる。
 Rが、炭素数が2~10のアルケニル基である場合のアルケニル基としては、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、及び1,3-ブタジエニル基等が挙げられる。
 Rが、炭素数が2~10のアルキニル基である場合のアルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、及び1,1-ジメチル-2-プロピニル基等が挙げられる。
 Rが、炭素数が3~10のシクロアルキル基である場合のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。
 Rが、炭素数が3~10のシクロアルケニル基である場合のシクロアルケニル基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
 Rが、炭素数が6~10のアリール基である場合のアリール基としては、フェニル基、ナフチル基等が挙げられる。
 上記炭化水素基は、ヘテロ原子を有していてもよい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。
 上記炭化水素基の任意の水素原子はハロゲン原子で置換されていてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子であることが好ましい。
 ハロゲン原子を有する炭素数1~10の炭化水素基としては、特に限定されないが、例えば、炭素数1の場合は、トリフルオロメチル基等を挙げることができる。
 炭素数1~10の炭化水素基の炭素数は、Rとしての炭素数を表す。
 Rとしての炭素数1~10の炭化水素基は、メチル基であってもよく、メチル基でなくてもよい。Rとしての炭素数1~10の炭化水素基がメチル基でないとは、Rとしての炭素数1~10の炭化水素基から、「メチル基」自体は除かれることを示す。
 Rが、炭素数が1~10のアルコキシ基を表す場合の炭素数が1~10のアルコキシ基としては、特に限定されないが、直鎖状でも分岐状でもよい。
 直鎖状のアルコキシ基としては、炭素数が1~6のアルコキシ基が好ましく。炭素数が1~3のアルコキシ基がより好ましい。
 分岐状のアルコキシ基としては、炭素数が3~10のアルコキシ基が好ましく、炭素数が3~6のアルコキシ基がより好ましい。
 炭素数が1~10のアルコキシ基はハロゲン原子を有していてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子であることが好ましい。
 Rが、炭素数が2~10のアルケニルオキシ基を表す場合の炭素数が2~10のアルケニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルケニルオキシ基が好ましく、炭素数が2~3のアルケニルオキシ基がより好ましい。
 Rが、炭素数が2~10のアルキニルオキシ基を表す場合の炭素数が2~10のアルキニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルキニルオキシ基が好ましく、炭素数が2~3のアルキニルオキシ基がより好ましい。
 Rが、炭素数が3~10のシクロアルコキシ基を表す場合の炭素数が3~10のシクロアルコキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数3~8のシクロアルコキシ基が好ましく、炭素数が3~6のシクロアルコキシ基がより好ましい。
 Rが、炭素数が3~10のシクロアルケニルオキシ基を表す場合の炭素数が3~10のシクロアルケニルオキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数が3~8のシクロアルケニルオキシ基が好ましく、炭素数が3~6のシクロアルケニルオキシ基がより好ましい。
 Rが、炭素数が6~10のアリールオキシ基を表す場合の炭素数が6~10のアリールオキシ基としては、特に限定されないが、単環でも多環でもよく、フェニルオキシ基、ナフチルオキシ基等が挙げられる。
 M B+はプロトン、金属カチオン、又はオニウムカチオンを表し、Bはカチオンの価数を表す。
 M B+が金属カチオンを表す場合の金属カチオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン等のアルカリ金属カチオン、マグネシウムイオン、カルシウムイオン等のアルカリ土類金属カチオンが挙げられる。
 M B+がオニウムカチオンを表す場合のオニウムカチオンとしては、トリアルキルアンモニウムイオン、テトラアルキルアンモニウムイオン、テトラアルキルホスホニウムイオン、イミダゾリウムイオン、スピロ骨格を有するアンモニウムイオン等が挙げられる。
 Bは、カチオンの価数を表す。M B+が1価のカチオンを表す場合は、Bは1であり、M B+が2価のカチオンを表す場合は、Bは2である。
 M B+は金属カチオンを表すことが好ましく、リチウムイオン又はナトリウムイオンであることがより好ましく、ナトリウムイオンであることが特に好ましい。
 好ましい一態様として、Rは、メチル基を除く炭素数1~10の炭化水素基、炭素数が1~10のアルコキシ基、又は-O(M B+を表すことが好ましい。
 Yは、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M E+を表し、M E+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Eはカチオンの価数を表す。eは、E×e=1となる数を表す。
 Yがハロゲン原子を表す場合のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 Yが炭素数1~10の炭化水素基を表す場合の炭化水素基としては、特に限定されないが、例えば、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数3~10のシクロアルキル基、炭素数3~10のシクロアルケニル基、炭素数6~10のアリール基、及びこれらの基を組み合わせて炭素数が1~10となる基が挙げられる。
 Yが、炭素数が1~10のアルキル基である場合のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等が挙げられる。
 Yが、炭素数が2~10のアルケニル基である場合のアルケニル基としては、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、及び1,3-ブタジエニル基等が挙げられる。
 Yが、炭素数が2~10のアルキニル基である場合のアルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、及び1,1-ジメチル-2-プロピニル基等が挙げられる。
 Yが、炭素数が3~10のシクロアルキル基である場合のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。
 Yが、炭素数が3~10のシクロアルケニル基である場合のシクロアルケニル基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
 Yが、炭素数が6~10のアリール基である場合のアリール基としては、フェニル基、ナフチル基等が挙げられる。
 上記炭化水素基は、ヘテロ原子を有していてもよい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。
 上記炭化水素基の任意の水素原子はハロゲン原子で置換されていてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子であることが好ましい。
 ハロゲン原子を有する炭素数1~10の炭化水素基としては、特に限定されないが、例えば、炭素数1の場合は、トリフルオロメチル基等を挙げることができる。
 炭素数1~10の炭化水素基の炭素数は、Yとしての炭素数を表す。
 Yが、炭素数が1~10のアルコキシ基を表す場合の炭素数が1~10のアルコキシ基としては、特に限定されないが、直鎖状でも分岐状でもよい。
 直鎖状のアルコキシ基としては、炭素数が1~6のアルコキシ基が好ましく。炭素数が1~3のアルコキシ基がより好ましい。
 分岐状のアルコキシ基としては、炭素数が3~10のアルコキシ基が好ましく、炭素数が3~6のアルコキシ基がより好ましい。
 炭素数が1~10のアルコキシ基はハロゲン原子を有していてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子であることが好ましい。
 Yが、炭素数が2~10のアルケニルオキシ基を表す場合の炭素数が2~10のアルケニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルケニルオキシ基が好ましく、炭素数が2~3のアルケニルオキシ基がより好ましい。
 Yが、炭素数が2~10のアルキニルオキシ基を表す場合の炭素数が2~10のアルキニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルキニルオキシ基が好ましく、炭素数が2~3のアルキニルオキシ基がより好ましい。
 Yが、炭素数が3~10のシクロアルコキシ基を表す場合の炭素数が3~10のシクロアルコキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数3~8のシクロアルコキシ基が好ましく、炭素数が3~6のシクロアルコキシ基がより好ましい。
 Yが、炭素数が3~10のシクロアルケニルオキシ基を表す場合の炭素数が3~10のシクロアルケニルオキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数が3~8のシクロアルケニルオキシ基が好ましく、炭素数が3~6のシクロアルケニルオキシ基がより好ましい。
 Yが、炭素数が6~10のアリールオキシ基を表す場合の炭素数が6~10のアリールオキシ基としては、特に限定されないが、単環でも多環でもよく、フェニルオキシ基、ナフチルオキシ基等が挙げられる。
 M E+はプロトン、金属カチオン、又はオニウムカチオンを表し、Eはカチオンの価数を表す。
 M E+が金属カチオンを表す場合の金属カチオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン等のアルカリ金属カチオン、マグネシウムイオン、カルシウムイオン等のアルカリ土類金属カチオンが挙げられる。
 M E+がオニウムカチオンを表す場合のオニウムカチオンとしては、トリアルキルアンモニウムイオン、テトラアルキルアンモニウムイオン、テトラアルキルホスホニウムイオン、イミダゾリウムイオン、スピロ骨格を有するアンモニウムイオン等が挙げられる。
 Eは、カチオンの価数を表す。M E+が1価のカチオンを表す場合は、Eは1であり、M E+が2価のカチオンを表す場合は、Eは2である。
 M E+は金属カチオンを表すことが好ましく、リチウムイオン又はナトリウムイオンであることがより好ましく、ナトリウムイオンであることが特に好ましい。
 好ましい一態様として、Yは、フッ素原子、メチル基を除く炭素数1~10の炭化水素基、炭素数が1~10のアルコキシ基、又は-O(M E+を表すことが好ましい。
 一般式(2)で表される化合物の具体例を以下に示すが、本開示は、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000018
 
 一般式(5)中、R10及びR11は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子やハロゲン原子を有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、又は炭素数が6~10のアリールオキシ基、又は-O(M G+を表し、M G+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Gはカチオンの価数を表す。gは、G×g=1となる数を表す。R10とR11は互いに結合して環状構造を形成してもよい。
 R10及びR11が、ハロゲン原子を表す場合のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 R10及びR11が、炭素数1~10の炭化水素基を表す場合の炭化水素基としては、特に限定されないが、例えば、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数3~10のシクロアルキル基、炭素数3~10のシクロアルケニル基、炭素数6~10のアリール基、及びこれらの基を組み合わせて炭素数が1~10となる基が挙げられる。
 R10及びR11が、炭素数が1~10のアルキル基である場合のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等が挙げられる。
 R10及びR11が、炭素数が2~10のアルケニル基である場合のアルケニル基としては、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、及び1,3-ブタジエニル基等が挙げられる。
 R10及びR11が、炭素数が2~10のアルキニル基である場合のアルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、及び1,1-ジメチル-2-プロピニル基等が挙げられる。
 R10及びR11が、炭素数が3~10のシクロアルキル基である場合のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。
 R10及びR11が、炭素数が3~10のシクロアルケニル基である場合のシクロアルケニル基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
 R10及びR11が、炭素数が6~10のアリール基である場合のアリール基としては、フェニル基、ナフチル基等が挙げられる。
 上記炭化水素基は、ヘテロ原子を有していてもよい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子等が挙げられる。
 上記炭化水素基の任意の水素原子はハロゲン原子で置換されていてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子であることが好ましい。
 ハロゲン原子を有する炭素数1~10の炭化水素基としては、特に限定されないが、例えば、炭素数1の場合は、トリフルオロメチル基等を挙げることができる。
 炭素数1~10の炭化水素基の炭素数は、R10及びR11としての炭素数を表す。
 R10及びR11が、炭素数が1~10のアルコキシ基を表す場合の炭素数が1~10のアルコキシ基としては、特に限定されないが、直鎖状でも分岐状でもよい。
 直鎖状のアルコキシ基としては、炭素数が1~6のアルコキシ基が好ましく。炭素数が1~3のアルコキシ基がより好ましい。
 分岐状のアルコキシ基としては、炭素数が3~10のアルコキシ基が好ましく、炭素数が3~6のアルコキシ基がより好ましい。
 炭素数が1~10のアルコキシ基はハロゲン原子を有していてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子であることが好ましい。
 R10及びR11が、炭素数が2~10のアルケニルオキシ基を表す場合の炭素数が2~10のアルケニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルケニルオキシ基が好ましく、炭素数が2~3のアルケニルオキシ基がより好ましい。
 R10及びR11が、が、炭素数が2~10のアルキニルオキシ基を表す場合の炭素数が2~10のアルキニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルキニルオキシ基が好ましく、炭素数が2~3のアルキニルオキシ基がより好ましい。
 R10及びR11が、炭素数が3~10のシクロアルコキシ基を表す場合の炭素数が3~10のシクロアルコキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数3~8のシクロアルコキシ基が好ましく、炭素数が3~6のシクロアルコキシ基がより好ましい。
 R10及びR11が、炭素数が3~10のシクロアルケニルオキシ基を表す場合の炭素数が3~10のシクロアルケニルオキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数が3~8のシクロアルケニルオキシ基が好ましく、炭素数が3~6のシクロアルケニルオキシ基がより好ましい。
 R10及びR11が、炭素数が6~10のアリールオキシ基を表す場合の炭素数が6~10のアリールオキシ基としては、特に限定されないが、単環でも多環でもよく、フェニルオキシ基、ナフチルオキシ基等が挙げられる。
 M G+はプロトン、金属カチオン、又はオニウムカチオンを表し、Gはカチオンの価数を表す。
 M G+が金属カチオンを表す場合の金属カチオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン等のアルカリ金属カチオン、マグネシウムイオン、カルシウムイオン等のアルカリ土類金属カチオンが挙げられる。
 M G+がオニウムカチオンを表す場合のオニウムカチオンとしては、トリアルキルアンモニウムイオン、テトラアルキルアンモニウムイオン、テトラアルキルホスホニウムイオン、イミダゾリウムイオン、スピロ骨格を有するアンモニウムイオン等が挙げられる。
 Gは、カチオンの価数を表す。M G+が1価のカチオンを表す場合は、Gは1であり、M G+が2価のカチオンを表す場合は、Gは2である。
 M G+は金属カチオンを表すことが好ましく、リチウムイオン又はナトリウムイオンであることがより好ましく、ナトリウムイオンであることが特に好ましい。
 好ましい一態様として、R10及びR11は、フッ素原子、炭素数1~10の炭化水素基、又は炭素数1~10のアルコキシ基を表すことが好ましい。
 別の好ましい一態様として、R10及びR11は、互いに結合して環状構造を形成することが好ましい。中でも、一般式(5)中の-S-O-S-と共に、5員環又は6員環の環状構造を形成することが好ましい。
 一般式(5)で表される化合物の具体例を以下に示すが、本開示は、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000019
 
 前記少なくとも2つのイソシアネート基を有する化合物は、ペンタメチレンジイソシアナート及びヘキサメチレンジイソシアナートからなる群から選ばれる少なくとも1つであることが好ましい。
 前記一般式(1)で示される化合物は、CH(SOF)、CH(SOF)(SOONa)、CH(SOF)(SOOCH)、C(CH(SOF)、C(F)(SOF)、CHCH(SOF)、CFCF(SOF)、CHCH(SOF)(SOOLi)、CHCH(SOF)(SOOCHCCH)、CH(SOCF、CH(SOCF)(SOONa)、及びCH(SOCF)(SOOCH)からなる群から選ばれる少なくとも1つであることが好ましい。
 なお、上記化合物は、それぞれ、上述の一般式(1)で表される化合物の具体例として記載した化合物に相当するものである。
 なかでも、前記一般式(1)で示される化合物は、CH(SOF)、CH(SOF)(SOONa)、CHCH(SOF)、CH(SOCF、及びCH(SOCF)(SOONa)からなる群から選ばれる少なくとも1つであることが好ましい。
 前記一般式(2)で示される化合物は、CHSOF、CSOF、CH=CH-SOF、CFCHCHSOF、シクロヘキシルスルホニルフルオライド(C11SOF)、フェニルスルホニルフルオライド(CSOF)、CHOSOF、CHCHOSOF、CH=CH-OSOF、CFCHOSOF、(CHCH-OSOF、(CFCH-OSOF、CHCHSOCF、CH=CH-SOCF、CFCHCHSOCF、CHOSOCF、CHCHOSOCF、NaO-SOCH、及びNaO-SOCFからなる群から選ばれる少なくとも1つであることが好ましい。
 なお、上記化合物は、それぞれ、上述の一般式(2)で表される化合物の具体例として記載した化合物に相当するものである。
 なかでも、前記一般式(2)で示される化合物は、CHSOF、CSOF、CH=CH-SOF、CHOSOF、CH=CH-OSOF、CHOSOCF、NaO-SOCH、及びNaO-SOCFからなる群から選ばれる少なくとも1つであることが好ましい。
 一態様として、前記一般式(2)で示される化合物は、CSOF、CH=CH-SOF、CFCHCHSOF、シクロヘキシルスルホニルフルオライド(C11SOF)、フェニルスルホニルフルオライド(CSOF)、CHOSOF、CHCHOSOF、CH=CH-OSOF、CFCHOSOF、CHCH-OSOF、(CFCH-OSOF、CHCHSOCF、CH=CH-SOCF、CFCHCHSOCF、CHOSOCF、CHCHOSOCF、NaO-SOCH、及びNaO-SOCFからなる群から選ばれる少なくとも1つであることが好ましい。
 また、一態様として、前記一般式(2)で示される化合物は、CSOF、CH=CH-SOF、CHOSOF、CH=CH-OSOF、CHOSOCF、NaO-SOCH、及びNaO-SOCFからなる群から選ばれる少なくとも1つであることが好ましい。
 前記一般式(5)で示される化合物は、メタンスルホン酸無水物、1,2,5-オキサジチオラン-2,2,5,5-テトラオキシド、及び1,3,2,4-ジオキサジチアン-2,2,4,4-テトラオキシドからなる群から選ばれる少なくとも1つであることが好ましい。
 成分(II)の含有量yは、特に限定されないが、非水ナトリウムイオン電池用電解液総量に対して0.01質量%以上が好ましく、より好ましくは0.03質量%以上であり、さらに好ましくは0.08質量%以上であり、特に好ましくは0.1質量%以上であり、最も好ましくは0.8質量%以上である。また、成分(II)の含有量yは、特に限定されないが、非水ナトリウムイオン電池用電解液総量に対して10.0質量%以下が好ましく、より好ましくは8.0質量%以下であり、さらに好ましくは5.5質量%以下であり、よりさらに好ましくは5.0質量%以下であり、特に好ましくは3.5質量%以下であり、最も好ましくは2.5質量%以下である。0.01質量%以上であれば、非水ナトリウムイオン電池の60℃以上の高温でのサイクル特性、高温サイクル試験中のガス発生量(の抑制効果)、及び高温貯蔵特性のうちの少なくとも1つを向上させることができる。また、10.0質量%以下であれば、電極上に形成される皮膜が厚くなりすぎず、抵抗増加につながり難い。
 成分(II)は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組合せ、比率で混合して用いても良い。
 一態様として、成分(II)の含有量yは、非水ナトリウムイオン電池用電解液総量に対して0.01質量%≦y≦10.0質量%であることが好ましく、0.03質量%≦y≦8.0質量%であることがより好ましく、0.08質量%≦y≦5.5質量%であることがさらに好ましく、0.1質量%≦y≦5.0質量%であることがよりさらに好ましく、0.1質量%≦y≦3.5質量%であることが特に好ましく、0.8質量%≦y≦2.5質量%であることが最も好ましい。
[(III)ナトリウム塩]
 溶質のナトリウム塩の種類は、特に限定されず、任意のナトリウム塩(前記フルオロ硫酸塩を除く)を用いることができる。具体例としてはNaPF、NaBF、NaBF(C)、NaPF(C)、NaPF(C、NaSbF、NaAsF、NaClO、NaN(SOF)、NaN(SOCF、NaN(SOF)(SOCF)、NaN(C2a+1SO)(C2b+1SO)(ここで、a及びbは、2≦a≦20及び2≦b≦20を満たす整数である。)、NaSOCF、NaSO、NaN(POF、NaN(POF)(SOF)、NaPO、NaC(SOCF、NaPF(C、NaB(CF、NaBF(C)、NaAlO、NaAlCl、NaCl、及びNaIからなる群から選ばれる少なくとも一つに代表される電解質ナトリウム塩が挙げられる。これらの溶質は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組合せ、比率で混合して用いても良い。中でも、電池としてのエネルギー密度、出力特性、寿命等から考えるとNaPF、NaBF(C)、NaPF(C)、NaPF(C、NaN(SOF)、NaN(SOCF、NaN(SO、NaN(POF、NaN(POF)(SOF)、NaPOが好ましく、NaPF6、NaN(SOF)がより好ましく、NaPFが更に好ましい。
 前記非水ナトリウムイオン電池用電解液は、前記(III)ナトリウム塩として、NaPFを含むことが好ましい一態様として挙げられる。
 本実施形態に係る非水ナトリウムイオン電池用電解液におけるナトリウム塩の濃度zは、特に制限はないが、非水ナトリウムイオン電池用電解液の総量に対して0.05mol/L以上が好ましく、より好ましくは0.3mol/L以上、さらに好ましくは0.8mol/L以上であり、また、5.0mol/L以下が好ましく、より好ましくは2.0mol/L以下、さらに好ましくは1.5mol/L以下である。
 0.05mol/L以上とすることによって、イオン伝導度の低下による非水ナトリウムイオン電池のサイクル特性の低下を抑制し易くなる。一方、5.0mol/L以下とすることによって、非水ナトリウムイオン電池用電解液の粘度の上昇、及びそれに伴うイオン伝導度低下による電池特性の低下を抑制し易くなる。
 成分(III)は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組合せ、比率で混合して用いても良い。
 一態様として、成分(III)の濃度zは、非水ナトリウムイオン電池用電解液総量に対して0.3mol/L≦z≦5.0mol/Lであることが好ましく、0.4mol/L≦z≦3.0mol/Lであることがより好ましく、0.5mol/L≦z≦2.0mol/Lであることが更に好ましく、0.8mol/L≦z≦1.5mol/Lであることが特に好ましい。
 前記(III)ナトリウム塩は前記成分(II)と重複するものがあるが、含有量が所定量以上(非水ナトリウムイオン電池用電解液における(III)ナトリウム塩の濃度が、非水ナトリウムイオン電池用電解液の総量に対して0.3mol/L以上)であれば、主電解質((III)ナトリウム塩)として働き、所定量未満だと添加剤(成分(II))として働く。
 なお、前記成分(II)は、前記(III)ナトリウム塩と異なる化合物である。
 例えば、(III)ナトリウム塩がCFSONaである場合は、前記成分(II)はCFSONa以外の化合物である。
[(IV)非水溶媒]
 非水溶媒の種類は、特に限定されず、任意の非水溶媒を用いることができる。具体例としては、例えば以下の非水溶媒が挙げられる。
 環状エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネートの他、γ-ブチロラクトン、γ-バレロラクトン等が挙げられる。
 鎖状エステルとしては、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネートの他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル等が挙げられる。
 環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、2-メチル-1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン等が挙げられる。
 鎖状エーテルとしては、ジメトキシエタン、ジエトキシエタン、ジエチルエーテル、エトキシメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル等が挙げられる。
 含イオウ非水溶媒としてはジメチルスルホキシド、スルホラン等を挙げることができる。
 また、本実施形態に用いる非水溶媒は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組合せ、比率で混合して用いても良い。
 好ましい一態様として、前記非水ナトリウムイオン電池用電解液は、前記非水溶媒として、環状エステル、鎖状エステル、環状エーテル、及び鎖状エーテルからなる群から選ばれる少なくとも一つを含むことが挙げられる。
 前記非水ナトリウムイオン電池用電解液は、前記非水溶媒として、環状エステルを含み、前記環状エステルが環状カーボネートであることが好ましい一態様として挙げられる。また、前記非水ナトリウムイオン電池用電解液は、前記非水溶媒として、鎖状エステルを含み、前記鎖状エステルが鎖状カーボネートであることも好ましい一態様として挙げられる。
 また、前記非水ナトリウムイオン電池用電解液は、前記非水溶媒として、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、酢酸メチル、酢酸エチル、プロピオン酸エチル、1,3-ジオキソラン、2-メチル-1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、ジメトキシエタン、ジエトキシエタン、エトキシメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、及びジプロピレングリコールジメチルエーテルからなる群から選ばれる少なくとも一つを含むことがより好ましい。
 これらの非水溶媒は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組合せ、比率で混合して用いても良い。
[その他の添加剤]
 本開示の要旨を逸脱しない限りにおいて、本実施形態に係る非水ナトリウムイオン電池用電解液には、非水ナトリウムイオン電池用電解液に一般に用いられるその他の添加剤を任意の比率で添加しても良い。
 好ましい一態様として、本実施形態に係る非水ナトリウムイオン電池用電解液は、更に、下記一般式(3)で表される化合物、及び下記一般式(4)で表される化合物からなる群から選ばれる少なくとも1つの化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000020
 
 [一般式(3)中、pは1~4の整数を表す。
 R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基を表す。
 Xはリン原子、又は硫黄原子を表す。Xがリン原子の場合はc=1、d=1であり、Xが硫黄原子の場合はc=2、d=0である。
 Y~Yは、それぞれ独立して、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M F+を表し、M F+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Fはカチオンの価数を表す。fは、F×f=1となる数を表す。]
Figure JPOXMLDOC01-appb-C000021
 
 [一般式(4)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基を表す。]
 R及びRがハロゲン原子を表す場合のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 R及びRが炭素数1~10の炭化水素基を表す場合の炭化水素基としては、特に限定されないが、例えば、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数3~10のシクロアルキル基、炭素数3~10のシクロアルケニル基、炭素数6~10のアリール基、及びこれらの基を組み合わせて炭素数が1~10となる基が挙げられる。
 R及びRが、炭素数が1~10のアルキル基である場合のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等が挙げられる。
 R及びRが、炭素数が2~10のアルケニル基である場合のアルケニル基としては、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、及び1,3-ブタジエニル基等が挙げられる。
 R及びRが、炭素数が2~10のアルキニル基である場合のアルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、及び1,1-ジメチル-2-プロピニル基等が挙げられる。
 R及びRが、炭素数が3~10のシクロアルキル基である場合のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。
 R及びRが、炭素数が3~10のシクロアルケニル基である場合のシクロアルケニル基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
 R及びRが、炭素数が6~10のアリール基である場合のアリール基としては、フェニル基、ナフチル基等が挙げられる。
 上記炭化水素基は、ヘテロ原子を有していてもよい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。
 上記炭化水素基の任意の水素原子はハロゲン原子で置換されていてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子であることが好ましい。
 ハロゲン原子を有する炭素数1~10の炭化水素基としては、特に限定されないが、例えば、炭素数1の場合は、トリフルオロメチル基等を挙げることができる。
 炭素数1~10の炭化水素基の炭素数は、R、Rとしての炭素数を表す。
 R及びRが、炭素数が1~10のアルコキシ基を表す場合の炭素数が1~10のアルコキシ基としては、特に限定されないが、直鎖状でも分岐状でもよい。
 直鎖状のアルコキシ基としては、炭素数が1~6のアルコキシ基が好ましく。炭素数が1~3のアルコキシ基がより好ましい。
 分岐状のアルコキシ基としては、炭素数が3~10のアルコキシ基が好ましく、炭素数が3~6のアルコキシ基がより好ましい。
 R及びRが、炭素数が2~10のアルケニルオキシ基を表す場合の炭素数が2~10のアルケニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルケニルオキシ基が好ましく、炭素数が2~3のアルケニルオキシ基がより好ましい。
 R及びRが、炭素数が2~10のアルキニルオキシ基を表す場合の炭素数が2~10のアルキニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルキニルオキシ基が好ましく、炭素数が2~3のアルキニルオキシ基がより好ましい。
 R及びRが、炭素数が3~10のシクロアルコキシ基を表す場合の炭素数が3~10のシクロアルコキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数3~8のシクロアルコキシ基が好ましく、炭素数が3~6のシクロアルコキシ基がより好ましい。
 R及びRが、炭素数が3~10のシクロアルケニルオキシ基を表す場合の炭素数が3~10のシクロアルケニルオキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数が3~8のシクロアルケニルオキシ基が好ましく、炭素数が3~6のシクロアルケニルオキシ基がより好ましい。
 R及びRが、炭素数が6~10のアリールオキシ基を表す場合の炭素数が6~10のアリールオキシ基としては、特に限定されないが、単環でも多環でもよく、フェニルオキシ基、ナフチルオキシ基等が挙げられる。
 好ましい一態様として、Rは、水素原子、フッ素原子、又は炭素数1~10の炭化水素基を表すことが好ましい。
 好ましい一態様として、Rは、水素原子、フッ素原子、又は炭素数1~10の炭化水素基を表すことが好ましい。
 Y~Yがハロゲン原子を表す場合のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 Y~Yが炭素数1~10の炭化水素基を表す場合の炭化水素基としては、特に限定されないが、例えば、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数3~10のシクロアルキル基、炭素数3~10のシクロアルケニル基、炭素数6~10のアリール基、及びこれらの基を組み合わせて炭素数が1~10となる基が挙げられる。
 Y~Yが、炭素数が1~10のアルキル基である場合のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等が挙げられる。
 Y~Yが、炭素数が2~10のアルケニル基である場合のアルケニル基としては、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、及び1,3-ブタジエニル基等が挙げられる。
 Y~Yが、炭素数が2~10のアルキニル基である場合のアルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、及び1,1-ジメチル-2-プロピニル基等が挙げられる。
 Y~Yが、炭素数が3~10のシクロアルキル基である場合のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。
 Y~Yが、炭素数が3~10のシクロアルケニル基である場合のシクロアルケニル基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
 Y~Yが、炭素数が6~10のアリール基である場合のアリール基としては、フェニル基、ナフチル基等が挙げられる。
 上記炭化水素基は、ヘテロ原子を有していてもよい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。
 上記炭化水素基の任意の水素原子はハロゲン原子で置換されていてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子であることが好ましい。
 ハロゲン原子を有する炭素数1~10の炭化水素基としては、特に限定されないが、例えば、炭素数1の場合は、トリフルオロメチル基等を挙げることができる。
 炭素数1~10の炭化水素基の炭素数は、Y~Yとしての炭素数を表す。
 Y~Yが、炭素数が1~10のアルコキシ基を表す場合の炭素数が1~10のアルコキシ基としては、特に限定されないが、直鎖状でも分岐状でもよい。
 直鎖状のアルコキシ基としては、炭素数が1~6のアルコキシ基が好ましく。炭素数が1~3のアルコキシ基がより好ましい。
 分岐状のアルコキシ基としては、炭素数が3~10のアルコキシ基が好ましく、炭素数が3~6のアルコキシ基がより好ましい。
 Y~Yが、炭素数が2~10のアルケニルオキシ基を表す場合の炭素数が2~10のアルケニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルケニルオキシ基が好ましく、炭素数が2~3のアルケニルオキシ基がより好ましい。
 Y~Yが、炭素数が2~10のアルキニルオキシ基を表す場合の炭素数が2~10のアルキニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルキニルオキシ基が好ましく、炭素数が2~3のアルキニルオキシ基がより好ましい。
 Y~Yが、炭素数が3~10のシクロアルコキシ基を表す場合の炭素数が3~10のシクロアルコキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数3~8のシクロアルコキシ基が好ましく、炭素数が3~6のシクロアルコキシ基がより好ましい。
 Y~Yが、炭素数が3~10のシクロアルケニルオキシ基を表す場合の炭素数が3~10のシクロアルケニルオキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数が3~8のシクロアルケニルオキシ基が好ましく、炭素数が3~6のシクロアルケニルオキシ基がより好ましい。
 Y~Yが、炭素数が6~10のアリールオキシ基を表す場合の炭素数が6~10のアリールオキシ基としては、特に限定されないが、単環でも多環でもよく、フェニルオキシ基、ナフチルオキシ基等が挙げられる。
 M F+はプロトン、金属カチオン、又はオニウムカチオンを表し、Fはカチオンの価数を表す。
 M F+が金属カチオンを表す場合の金属カチオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン等のアルカリ金属カチオン、マグネシウムイオン、カルシウムイオン等のアルカリ土類金属カチオンが挙げられる。
 M F+がオニウムカチオンを表す場合のオニウムカチオンとしては、トリアルキルアンモニウムイオン、テトラアルキルアンモニウムイオン、テトラアルキルホスホニウムイオン、イミダゾリウムイオン、スピロ骨格を有するアンモニウムイオン等が挙げられる。
 Fは、カチオンの価数を表す。M F+が1価のカチオンを表す場合は、Fは1であり、M F+が2価のカチオンを表す場合は、Fは2である。
 M F+は金属カチオンを表すことが好ましく、リチウムイオン又はナトリウムイオンであることがより好ましく、ナトリウムイオンであることが特に好ましい。
 好ましい一態様として、Yは、フッ素原子、炭素数1~10の炭化水素基、炭素数が1~10のアルコキシ基、又は-O(M F+を表すことが好ましい。
 好ましい一態様として、Yは、フッ素原子、炭素数1~10の炭化水素基、炭素数が1~10のアルコキシ基、又は-O(M F+を表すことが好ましい。
 好ましい一態様として、Yは、フッ素原子、炭素数1~10の炭化水素基、炭素数が1~10のアルコキシ基、又は-O(M F+を表すことが好ましい。
 好ましい一態様として、Yは、フッ素原子、炭素数1~10の炭化水素基、炭素数が1~10のアルコキシ基、又は-O(M F+を表すことが好ましい。
 一般式(3)で表される化合物の具体例を以下に示すが、本開示は、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000022
 
 一般式(4)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基を表す。
 R~Rがハロゲン原子を表す場合のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 R~Rが炭素数1~10の炭化水素基を表す場合の炭化水素基としては、特に限定されないが、例えば、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数3~10のシクロアルキル基、炭素数3~10のシクロアルケニル基、炭素数6~10のアリール基、及びこれらの基を組み合わせて炭素数が1~10となる基が挙げられる。
 R~Rが、炭素数が1~10のアルキル基である場合のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等が挙げられる。
 R~Rが、炭素数が2~10のアルケニル基である場合のアルケニル基としては、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、及び1,3-ブタジエニル基等が挙げられる。
 R~Rが、炭素数が2~10のアルキニル基である場合のアルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、及び1,1-ジメチル-2-プロピニル基等が挙げられる。
 R~Rが、炭素数が3~10のシクロアルキル基である場合のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。
 R~Rが、炭素数が3~10のシクロアルケニル基である場合のシクロアルケニル基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
 R~Rが、炭素数が6~10のアリール基である場合のアリール基としては、フェニル基、ナフチル基等が挙げられる。
 上記炭化水素基は、ヘテロ原子を有していてもよい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。
 上記炭化水素基の任意の水素原子はハロゲン原子で置換されていてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子であることが好ましい。
 ハロゲン原子を有する炭素数1~10の炭化水素基としては、特に限定されないが、例えば、炭素数1の場合は、トリフルオロメチル基等を挙げることができる。
 炭素数が1~10の炭化水素基の炭素数は、R~Rとしての炭素数を表す。
 R~Rが、炭素数が1~10のアルコキシ基を表す場合の炭素数が1~10のアルコキシ基としては、特に限定されないが、直鎖状でも分岐状でもよい。
 直鎖状のアルコキシ基としては、炭素数が1~6のアルコキシ基が好ましく。炭素数が1~3のアルコキシ基がより好ましい。
 分岐状のアルコキシ基としては、炭素数が3~10のアルコキシ基が好ましく、炭素数が3~6のアルコキシ基がより好ましい。
 炭素数が1~10のアルコキシ基はハロゲン原子を有していてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子であることが好ましい。
 R~Rが、炭素数が2~10のアルケニルオキシ基を表す場合の炭素数が2~10のアルケニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルケニルオキシ基が好ましく、炭素数が2~3のアルケニルオキシ基がより好ましい。
 R~Rが、炭素数が2~10のアルキニルオキシ基を表す場合の炭素数が2~10のアルキニルオキシ基としては、特に限定されないが、直鎖状でも分岐状でもよく、炭素数が2~6のアルキニルオキシ基が好ましく、炭素数が2~3のアルキニルオキシ基がより好ましい。
 R~Rが、炭素数が3~10のシクロアルコキシ基を表す場合の炭素数が3~10のシクロアルコキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数3~8のシクロアルコキシ基が好ましく、炭素数が3~6のシクロアルコキシ基がより好ましい。
 R~Rが、炭素数が3~10のシクロアルケニルオキシ基を表す場合の炭素数が3~10のシクロアルケニルオキシ基としては、特に限定されないが、単環でも多環でもよく、炭素数が3~8のシクロアルケニルオキシ基が好ましく、炭素数が3~6のシクロアルケニルオキシ基がより好ましい。
 R~Rが、炭素数が6~10のアリールオキシ基を表す場合の炭素数が6~10のアリールオキシ基としては、特に限定されないが、単環でも多環でもよく、フェニルオキシ基、ナフチルオキシ基等が挙げられる。
 好ましい一態様として、Rは、フッ素原子、炭素数が1~10の炭化水素基、又は炭素数が1~10のアルコキシ基を表すことが好ましい。炭素数が1~10の炭化水素基としては、炭素数が2~10のアルケニル基又は炭素数が2~10のアルキニル基を表すこと好ましい。
 好ましい一態様として、Rは、フッ素原子、炭素数が1~10の炭化水素基、又は炭素数が1~10のアルコキシ基を表すことが好ましい。炭素数が1~10の炭化水素基としては、炭素数が2~10のアルケニル基又は炭素数が2~10のアルキニル基を表すこと好ましい。
 好ましい一態様として、Rは、フッ素原子、炭素数が1~10の炭化水素基、又は炭素数が1~10のアルコキシ基を表すことが好ましい。炭素数が1~10の炭化水素基としては、炭素数が2~10のアルケニル基又は炭素数が2~10のアルキニル基を表すこと好ましい。
 好ましい一態様として、Rは、フッ素原子、炭素数が1~10の炭化水素基、又は炭素数が1~10のアルコキシ基を表すことが好ましい。炭素数が1~10の炭化水素基としては、炭素数が2~10のアルケニル基又は炭素数が2~10のアルキニル基を表すこと好ましい。
 一般式(4)で表される化合物の具体例を以下に示すが、本開示は、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
 また、上記以外の「その他の添加剤」として、シクロヘキシルベンゼン、ビフェニル、t-ブチルベンゼン、t-アミルベンゼン、フルオロベンゼン、ビニレンカーボネート、ビニレンカーボネートのオリゴマー(数平均分子量が170~5000。ここで、数平均分子量とは、溶媒をテトラヒドロフラン(THF)としたゲルパーミエーションクロマトグラフィー(GPC)により測定した標準ポリスチレン換算の数平均分子量である。以下同じ。)、ビニルエチレンカーボネート、ジフルオロアニソール、フルオロエチレンカーボネート、エチニルエチレンカーボネート、trans-ジフルオロエチレンカーボネート、ジメチルビニレンカーボネート、1,3,2-ジオキサチオラン-2,2-ジオキシド、4-プロピル-1,3,2-ジオキサチオラン-2,2-ジオキシド、メチレンメタンジスルホネート、スクシノニトリル、(エトキシ)ペンタフルオロシクロトリホスファゼン、テトラフルオロ(ピコリナト)ホスフェート、及び1,3-ジメチル-1,3-ジビニル-1,3-ジ(1,1,1,3,3,3-ヘキサフルオロイソプロピル)ジシロキサン等の過充電防止効果、負極皮膜形成効果、正極保護効果を有する化合物を添加してもよい。
 本実施形態に係る非水ナトリウムイオン電池用電解液がフルオロエチレンカーボネートを含む場合の含有量は、ガス発生の観点で多過ぎないほうが好ましく、フルオロエチレンカーボネートは実質的に含まれなくてもよい。実質的に含まれないとは、「上記電解液総量に対して0.001質量%未満」を意味する。
 好ましい一態様として、本実施形態に係る非水ナトリウムイオン電池用電解液がフルオロエチレンカーボネートを含まない態様が挙げられる。
 本実施形態に係る非水ナトリウムイオン電池用電解液が1,3,2-ジオキサチオラン-2,2-ジオキシド及び/又は4-プロピル-1,3,2-ジオキサチオラン-2,2-ジオキシドを含む場合の含有量は、保存安定性の観点で多過ぎないほうが好ましく、1,3,2-ジオキサチオラン-2,2-ジオキシド及び/又は4-プロピル-1,3,2-ジオキサチオラン-2,2-ジオキシドを含む場合の含有量は、保存安定性の観点で多過ぎないほうが好ましく、実質的に含まれなくてもよい。
 好ましい一態様として、本実施形態に係る非水ナトリウムイオン電池用電解液が1,3,2-ジオキサチオラン-2,2-ジオキシド及び/又は4-プロピル-1,3,2-ジオキサチオラン-2,2-ジオキシドを含まない態様が挙げられる。
 本実施形態に係る非水ナトリウムイオン電池用電解液が、更に、上記一般式(3)で表される化合物、及び上記一般式(4)で表される化合物からなる群から選ばれる少なくとも1つの化合物を含有する場合、上記一般式(3)で表される化合物、及び上記一般式(4)で表される化合物からなる群から選ばれる少なくとも1つの化合物の含有量は、電解液総量に対して0.01質量%以上、10質量%以下であることが好ましい。
 本実施形態に係る非水ナトリウムイオン電池用電解液が上記その他の添加剤を含む場合の含有量は、電解液総量に対して0.01質量%以上、10質量%以下であることが好ましい。
 また、上記ナトリウム塩(溶質として用いられるナトリウム塩以外のナトリウム塩(前記成分(I)、前記成分(II)に該当するものを除く))もその他の添加剤として用いることができる。
 上記ナトリウム塩をその他の添加剤として用いる場合は、その他の添加剤の含有量は、電解液総量に対して0.3質量%以上、1.5質量%以下であることが好ましい。
 また、その他の添加剤は、ゲル化剤や架橋ポリマーであってもよい。本実施形態に係る非水ナトリウムイオン電池用電解液をゲル化剤や架橋ポリマーにより擬固体化することも可能であり、擬固体化したものは、例えば、ナトリウムポリマー電池に好適である。
[2.非水ナトリウムイオン電池]
 次に本開示の実施形態の一つに係る非水ナトリウムイオン電池の構成について説明する。
 前記非水ナトリウムイオン電池は、少なくとも、正極と、負極と、上記の本実施形態に係る非水ナトリウムイオン電池用電解液とを備えるものである。
 本実施形態に係る非水ナトリウムイオン電池は、上記の本実施形態に係る非水ナトリウムイオン電池用電解液を用いることが特徴であり、その他の構成部材には一般の非水ナトリウムイオン電池に使用されているものが用いられる。即ち、その他の構成部材には、ナトリウムの吸蔵及び放出が可能な正極及び負極、集電体、セパレーター、外装体等が含まれる。
[正極]
 正極材料(正極活物質)としては、特に限定されないが、例えば、NaCrO、NaFe0.5Co0.5、NaFe0.4Mn0.3Ni0.3、NaNi0.5Ti0.3Mn0.2、Na2/3Ni1/3Ti1/6Mn1/2、Na2/3Ni1/3Mn2/3等のナトリウム含有遷移金属複合酸化物、それらのナトリウム含有遷移金属複合酸化物のCo、Mn、Ni等の遷移金属が複数混合したもの、それらのナトリウム含有遷移金属複合酸化物の遷移金属の一部が他の遷移金属以外の金属に置換されたもの、NaFePO、NaVPOF、Na(PO、NaFe(SO等のポリアニオン型化合物、TiO、V、MoO等の酸化物、TiS、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が使用される。
 正極では、例えば、正極集電体の少なくとも一方の面に正極活物質層が形成される。正極活物質層は、例えば、前述の正極活物質と、結着剤と、必要に応じて導電剤とにより構成される。結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、又はスチレンブタジエンゴム(SBR)樹脂等が挙げられる。導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、炭素繊維、又は黒鉛(粒状黒鉛や燐片状黒鉛)等の炭素材料を用いることができ、結晶性の低いアセチレンブラックやケッチェンブラックを用いることが好ましい。
[負極]
 負極材料(負極活物質)としては、特に限定されないが、ナトリウム金属またはナトリウムイオンの吸蔵放出の可能な材料が挙げられる。例えば、ナトリウム金属、ナトリウム金属とスズなどの他の金属との合金、金属間化合物、ハードカーボンをはじめとする種々のカーボン材料、酸化チタン等の金属酸化物、金属窒化物、スズ(単体)、スズ化合物、活性炭、導電性ポリマー等が用いられる。これらの他にも、赤リン、黒リンなどのリン(単体)、Co-P、Cu-P、Sn-P、Ge-P、Mo-Pなどのリン化合物、アンチモン(単体)、Sb/C、Bi-Sbなどのアンチモン化合物等が用いられる。これら負極活物質は1種類を単独で使用しても、2種類以上を併用してもよい。
 負極では、例えば、負極集電体の少なくとも一方の面に負極活物質層が形成される。負極活物質層は、例えば、前述の負極活物質と、結着剤と、必要に応じて導電剤とにより構成される。結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、又はスチレンブタジエンゴム(SBR)樹脂等が挙げられる。導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、炭素繊維、又は黒鉛(粒状黒鉛や燐片状黒鉛)等の炭素材料を用いることができる。
[集電体]
 正極、負極の集電体には、銅、アルミニウム、ステンレス鋼、ニッケル、チタン又はこれらの合金等を用いることができる。集電体の少なくとも一方の面に活物質層が形成される。
[セパレーター]
 正極と負極の接触を防ぐためのセパレーターとしては、ポリオレフィン(例えば、ポリプロピレン、ポリエチレン)、紙、及びガラス繊維等で作られた不織布や多孔質シート、フィルムが使用される。これらは、電解液がしみ込んでイオンが透過し易いように、微多孔化されているものが好ましい。
[外装体]
 外装体としては、例えば、コイン型、円筒型、角型等の金属缶や、ラミネート外装体を用いることができる。金属缶材料としては、例えば、ニッケルメッキを施した鉄鋼板、ステンレス鋼板、ニッケルメッキを施したステンレス鋼板、アルミニウム又はその合金、ニッケル、チタン等が挙げられる。ラミネート外装体としては、例えば、アルミニウムラミネートフィルム、SUS製ラミネートフィルム、シリカをコーティングしたポリプロピレンやポリエチレン等のラミネートフィルム等を用いることができる。
 本実施形態に係る非水ナトリウムイオン電池の構成は、特に制限されるものではないが、例えば、正極及び負極が対向配置された電極素子と、非水系電解液とが、外装体に内包されている構成とすることができる。また、本実施形態に係る非水ナトリウムイオン電池の形状は、特に限定されるものではないが、コイン状、円筒状、角形、又はアルミラミネートシート型等の形状とすることができる。
[3.非水ナトリウムイオン電池の製造方法]
 また、本開示は、非水ナトリウムイオン電池の製造方法にも関する。
 前記製造方法は、
 本開示の非水ナトリウムイオン電池用電解液を準備する工程、
 少なくとも正極と負極とを備えた空セルに前記非水ナトリウムイオン電池用電解液を充填する工程を有する、非水ナトリウムイオン電池の製造方法である。
 以下、実施例により本開示を具体的に説明するが、本開示はかかる実施例により限定されるものではない。
[非水ナトリウムイオン電池用電解液の作製]
(電解液No.NaSOF(2.0)-PDI(1.0)の作製)
 (IV)非水溶媒として、プロピレンカーボネート(以下、「PC」とも記載する)、エチレンカーボネート(以下「EC」とも記載する)、エチルメチルカーボネート(以下「EMC」とも記載する)を体積比PC:EC:EMC=30:20:50で混合した混合溶媒を用い、該溶媒中に、(III)ナトリウム塩としてNaPF、(I)フルオロ硫酸塩としてフルオロ硫酸ナトリウム(以下、「NaSOF」とも記載する)、(II)としてペンタメチレンジイソシアナート(PDI)を、表1に記載の濃度となるように溶解し、電解液No.NaSOF(2.0)-PDI(1.0)を調製した。上記の調製は、液温を20~30℃の範囲に維持しながら行った。
 下記表1、8、10及び12において、(I)フルオロ硫酸塩、成分(II)、及びその他添加剤にかかる濃度(質量%)は、非水ナトリウムイオン電池用電解液の総量に対する含有量(質量%)を表したものである。
 下記表1、8、10及び12において、(III)ナトリウム塩にかかる濃度(mol/L)は、非水ナトリウムイオン電池用電解液の総量に対する濃度を表したものである。
Figure JPOXMLDOC01-appb-T000025
 
(その他表1に係る電解液の作製)
 また、(I)の濃度、(II)の種類及び濃度を表1に記載のものに変更すること以外は電解液No.NaSOF(2.0)-PDI(1.0)と同様に表1に記載の各種電解液を調製した。なお、表中の略称は、以下の通りである。
 PDI: ペンタメチレンジイソシアナート
 HDI: ヘキサメチレンジイソシアナート
 MBSF: CH(SOF)
 ESF: CSO
 MSAn: メタンスルホン酸無水物
 ODTO: 1,2,5-オキサジチオラン-2,2,5,5-テトラオキシド
[実施例1-1、比較例1-0~1-2]
 試験用電解液として表2に記載の電解液、正極材料としてNaNi0.5Ti0.3Mn0.2、負極材料としてハードカーボン(クレハ社製、カーボトロンP)を用いて作製した試験用セルに対し、高温サイクル試験を行い、サイクル特性、高温サイクル試験中のガス発生量、高温貯蔵特性をそれぞれ評価した。評価結果を表2に示す。なお、試験用セルは以下のように作製した。
 試験用正極は、以下の手順で作製した。
 正極活物質としてNaNi0.5Ti0.3Mn0.2を90質量%と、導電剤として5質量%のアセチレンブラックと、結着剤として5質量%のポリフッ化ビニリデン(PVDF)とを混合し、さらに溶媒としてN-メチルピロリドンを前記正極活物質と、導電剤と、結着剤との総質量に対し、50質量%となるように添加し、スラリー溶液を調製した。このスラリー溶液を、正極集電体であるアルミニウム箔上に塗布して、150℃で12時間乾燥させることにより、集電体上に正極活物質層を形成した試験用正極を得た。
 試験用負極は、以下の手順で作製した。
 負極活物質としてハードカーボン粉末(クレハ社製、カーボトロンP)90質量%と、結着剤としてポリフッ化ビニリデン(PVDF)10質量%とを混合し、さらに溶媒としてN-メチルピロリドンを前記負極活物質と結着剤との総質量に対し50質量%となるように添加し、スラリー溶液を調製した。このスラリー溶液を、負極集電体であるアルミニウム箔上に塗布して、150℃で12時間乾燥させることにより、集電体上に負極活物質層を形成した試験用負極を得た。
 試験用電解液を浸み込ませたポリエチレン製セパレーターを介して試験用正極と試験用負極を配置し、アルミラミネート外装の50mAhの試験用セルを組み立てた。
[高温サイクル特性評価]
 試験用セルに対し、25℃の環境温度において充電上限電圧4.1V、放電下限電圧1.5Vとして、定電流定電圧法で、電流密度0.32mA/cmで充放電を行った後、60℃の環境温度での充放電試験を実施し、サイクル特性を評価した。充電は4.1Vまで、放電は1.5Vまで行い、電流密度1.56mA/cmで充放電サイクルを繰り返した。そして、60℃の環境温度での充放電試験における500サイクル目の放電容量維持率でセルの劣化の具合を評価した。
 500サイクル目の放電容量維持率で表される「高温サイクル後放電容量維持率」は下記式で求めた。なお、60℃の環境温度での充放電試験における1サイクル目の放電容量を初放電容量とした。
 高温サイクル後放電容量維持率(%)=(500サイクル目の放電容量/初放電容量)×100
[ガス発生量評価]
 上記の高温サイクル特性評価の実施前後において、シリコーンオイル(信越化学工業社製、シリコーンオイルKF54)を用いたアルキメデス法によりセルの容積を測定し、ガス発生量V(単位:cm)(ガス発生量V=高温サイクル特性評価実施後のセルの容積V2-高温サイクル特性評価実施前のセルの容積V1)を求めた。このガス発生量Vに基づき、「高温サイクル時ガス発生量」を評価した。
[高温貯蔵特性評価]
 試験用セルに対し、25℃の環境温度において充電上限電圧4.1Vまで定電流定電圧法で、電流密度0.32mA/cmで充電を行った後、0.32mA/cmの定電流で1.5Vまで放電した。同じ充放電を10サイクル繰り返した。10サイクル目の放電容量を「初期放電容量」と定義する。その後、25℃の環境温度において充電上限電圧4.1Vまで定電流定電圧法で、電流密度0.32mA/cmで充電を行った。これを60℃で4週間保存し、電池を25℃まで冷却させた後、25℃の環境温度において、0.32mA/cmの定電流で1.5Vまで放電した。充電上限電圧4.1Vまで定電流定電圧法で、電流密度0.32mA/cmで充電を行った後、0.32mA/cmの定電流で1.5Vまで放電した。このときの放電容量を「回復容量」と定義する。「高温貯蔵後回復放電容量維持率」を下記式で求めた。
 <高温貯蔵後回復放電容量維持率>
 高温貯蔵後回復放電容量維持率(%)=( 回復容量 / 初期放電容量 )×100
Figure JPOXMLDOC01-appb-T000026
 
 表2における実施例及び比較例の評価結果は、比較例1-0の評価結果を100%とする相対値である。また、以降の表3~7においても同様である。
 なお、「高温サイクル後放電容量維持率」は値が大きいほど望ましく、「高温貯蔵後回復放電容量維持率」は値が大きいほど望ましく、「高温サイクル時ガス発生量」は値が小さいほど望ましい。
 表2の評価結果から、非水電解液中に(I)と(II)とを共に含有することにより(実施例1-1)、(I)のみ含有した場合(比較例1-1)の添加効果と、(II)のみ含有した場合(比較例1-2)の添加効果とを、単純に合算した結果に比べて、高温サイクル後放電容量維持率が一層向上することが判った(図1)。
 また、高温サイクル時ガス発生量の抑制効果、及び、高温貯蔵後回復放電容量維持率についても、上記と同様のより一層の向上傾向が確認された(図2、図3)。
 上述のより一層の向上傾向が発現するメカニズムは明らかではないが、非水電解液中に(I)と(II)とを共に含有することで、電極上に良好な被膜を形成したためと推察される。
[実施例1-2~1-6、比較例1-3~1-7]
 試験用電解液として表3~7に記載の電解液を用いた以外は、実施例1-1と同様にして、試験用セルを作製して、性能評価を実施した。評価結果を表3~7に示す。
Figure JPOXMLDOC01-appb-T000027
 
Figure JPOXMLDOC01-appb-T000028
 
Figure JPOXMLDOC01-appb-T000029
 
Figure JPOXMLDOC01-appb-T000030
 
Figure JPOXMLDOC01-appb-T000031
 
 表3~7の評価結果から、(II)の種類を変えても、実施例1-1と同様に、高温サイクル後放電容量維持率、高温サイクル時ガス発生量の抑制効果、及び、高温貯蔵後回復放電容量維持率について、より一層の向上傾向が確認された。
[実施例2-1~2-8、比較例2-1~2-10]
 電解液の組成を、表8に記載の電解液組成に変更した以外は、電解液No.NaSOF(2.0)-PDI(1.0)と同様にして、表8に記載の各種電解液を調製した。
 試験用電解液として表9に記載の電解液を用いた以外は、実施例1-1と同様にして、試験用セルを作製して、性能評価を実施した。評価結果を表9に示す。
Figure JPOXMLDOC01-appb-T000032
 
Figure JPOXMLDOC01-appb-T000033
 
 表9の評価結果から、(I)の濃度を種々変更した場合であっても、非水電解液中に(I)と(II)とを共に含有することにより、対応する(I)のみ含有した場合(比較例2-1~2-8)の添加効果と、(II)のみ含有した場合(比較例2-9)の添加効果とを、単純に合算した結果に比べて、高温サイクル後放電容量維持率、高温サイクル時ガス発生量の抑制効果、及び、高温貯蔵後回復放電容量維持率のうちの少なくとも1つが一層向上することが判った。
 特に、(I)の濃度が0.1~7.0質量%であると、向上効果が大きいことがわかる。
 DMCはジメチルカーボネートを表す。
 表9における実施例及び比較例の評価結果は、比較例2-10の評価結果を100%とする相対値である。また、以降のすべての表においても同様である。
[実施例3-1~3-6、比較例3-1~3-6]
 電解液の組成を、表10に記載の電解液組成に変更した以外は、電解液No.NaSOF(2.0)-PDI(1.0)と同様にして、表10に記載の各種電解液を調製した。
 試験用電解液として表11に記載の電解液を用いた以外は、実施例1-1と同様にして、試験用セルを作製して、性能評価を実施した。評価結果を表11に示す。
Figure JPOXMLDOC01-appb-T000034
 
Figure JPOXMLDOC01-appb-T000035
 
 表11の評価結果から、(II)の濃度を種々変更した場合であっても、非水電解液中に(I)と(II)とを共に含有することにより、(I)のみ含有した場合(比較例2-5)の添加効果と、対応する(II)のみ含有した場合(比較例3-1~3-6)の添加効果とを、単純に合算した結果に比べて、高温サイクル後放電容量維持率、高温サイクル時ガス発生量の抑制効果、及び、高温貯蔵後回復放電容量維持率のうちの少なくとも1つが一層向上することが判った。
 特に、(II)の濃度が0.1~5質量%であると、向上効果が大きいことが判った。
[実施例4-1~4-9、比較例4-1~4-8]
 電解液の組成を、表12に記載の電解液組成に変更した以外は、電解液No.NaSOF(2.0)-PDI(1.0)と同様にして、表12に記載の各種電解液を調製した。
 試験用電解液として表13に記載の電解液を用いた以外は、実施例1-1と同様にして、試験用セルを作製して、性能評価を実施した。評価結果を表13に示す。
 なお、表中の略称は、以下の通りである。
 DFPMSF: 1-(ジフルオロホスフィニル)メタンスルホニル フロライド(1-(Difluorophosphinyl)methanesulfonyl fluoride)
 MBPD: メチレンビス(ホスホニック ジフロライド)(Methylenebis(phosphonic difluoride)
 TVS: テトラビニルシラン
 MSF: メタンスルホニル フロライド(CHSOF)(Methanesulfonyl fluoride)
Figure JPOXMLDOC01-appb-T000036
 
Figure JPOXMLDOC01-appb-T000037
 
 表13の結果から、その他添加剤をさらに含有した場合は、高温サイクル後放電容量維持率、高温サイクル時ガス発生量の抑制効果、及び、高温貯蔵後回復放電容量維持率のうちの少なくとも1つが一層向上することが判った。
 本開示によれば、非水ナトリウムイオン電池の60℃以上の高温でのサイクル特性、高温サイクル試験中のガス発生量(の抑制効果)、及び高温貯蔵特性のうちの少なくとも1つを向上できる非水ナトリウムイオン電池用電解液、それを用いた非水ナトリウムイオン電池、及び非水ナトリウムイオン電池の製造方法を提供することができる。
 本開示を詳細にまた特定の実施態様を参照して説明したが、本開示の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2022年11月11日出願の日本特許出願(特願2022-181330)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (16)

  1. (I)フルオロ硫酸塩、
    (II)少なくとも2つのイソシアネート基を有する化合物、下記一般式(1)で表される化合物、下記一般式(2)で表される化合物、及び下記一般式(5)で表される化合物からなる群から選ばれる少なくとも1種、
    (III)ナトリウム塩、及び
    (IV)非水溶媒
    を含む非水ナトリウムイオン電池用電解液。
    Figure JPOXMLDOC01-appb-C000001
     
    [一般式(1)中、nは1~4の整数を表す。
     R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基を表す。
     Y及びYは、それぞれ独立して、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M A+を表し、M A+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Aはカチオンの価数を表す。aは、A×a=1となる数を表す。]
    Figure JPOXMLDOC01-appb-C000002
     
    [一般式(2)中、Rは、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M B+を表し、M B+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Bはカチオンの価数を表す。bは、B×b=1となる数を表す。
     Yは、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M E+を表し、M E+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Eはカチオンの価数を表す。eは、E×e=1となる数を表す。]
    Figure JPOXMLDOC01-appb-C000003
     
    [一般式(5)中、R10及びR11は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子やハロゲン原子を有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、又は炭素数が6~10のアリールオキシ基、又は-O(M G+を表し、M G+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Gはカチオンの価数を表す。gは、G×g=1となる数を表す。R10とR11は互いに結合して環状構造を形成してもよい。]
  2.  前記(I)の含有量xが、非水ナトリウムイオン電池用電解液総量に対して0.008質量%≦x≦7.5質量%である、請求項1に記載の非水ナトリウムイオン電池用電解液。
  3.  前記(I)の対カチオンが、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオン、テトラアルキルホスホニウムイオン又はスピロ骨格を有するアンモニウムイオンである、請求項1に記載の非水ナトリウムイオン電池用電解液。
  4.  前記(II)の含有量yが、非水ナトリウムイオン電池用電解液総量に対して0.08質量%≦y≦5.5質量%である、請求項1に記載の非水ナトリウムイオン電池用電解液。
  5.  前記少なくとも2つのイソシアネート基を有する化合物が、ペンタメチレンジイソシアナート及びヘキサメチレンジイソシアナートからなる群から選ばれる少なくとも1つである、請求項1に記載の非水ナトリウムイオン電池用電解液。
  6.  前記一般式(1)で示される化合物が、CH(SOF)、CH(SOF)(SOONa)、CH(SOF)(SOOCH)、C(CH(SOF)、C(F)(SOF)、CHCH(SOF)、CFCF(SOF)、CHCH(SOF)(SOOLi)、CHCH(SOF)(SOOCHCCH)、CH(SOCF、CH(SOCF)(SOONa)、及びCH(SOCF)(SOOCH)からなる群から選ばれる少なくとも1つである、請求項1に記載の非水ナトリウムイオン電池用電解液。
  7.  前記一般式(1)で示される化合物が、CH(SOF)、CH(SOF)(SOONa)、CHCH(SOF)、CH(SOCF、及びCH(SOCF)(SOONa)からなる群から選ばれる少なくとも1つである、請求項1に記載の非水ナトリウムイオン電池用電解液。
  8.  前記一般式(2)で示される化合物が、CHSOF、CSOF、CH=CH-SOF、CFCHCHSOF、シクロヘキシルスルホニルフルオライド(C11SOF)、フェニルスルホニルフルオライド(CSOF)、CHOSOF、CHCHOSOF、CH=CH-OSOF、CFCHOSOF、(CHCH-OSOF、(CFCH-OSOF、CHCHSOCF、CH=CH-SOCF、CFCHCHSOCF、CHOSOCF、CHCHOSOCF、NaO-SOCH、及びNaO-SOCFからなる群から選ばれる少なくとも1つである、請求項1に記載の非水ナトリウムイオン電池用電解液。
  9.  前記一般式(2)で示される化合物が、CHSOF、CSOF、CH=CH-SOF、CHOSOF、CH=CH-OSOF、CHOSOCF、NaO-SOCH、及びNaO-SOCFからなる群から選ばれる少なくとも1つである、請求項1に記載の非水ナトリウムイオン電池用電解液。
  10.  前記一般式(5)で示される化合物が、メタンスルホン酸無水物、1,2,5-オキサジチオラン-2,2,5,5-テトラオキシド、及び1,3,2,4-ジオキサジチアン-2,2,4,4-テトラオキシドからなる群から選ばれる少なくとも1つである、請求項1に記載の非水ナトリウムイオン電池用電解液。
  11.  前記非水溶媒として、環状エステル、鎖状エステル、環状エーテル、及び鎖状エーテルからなる群から選ばれる少なくとも一つを含む、請求項1~10のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
  12.  前記ナトリウム塩が、NaPF、NaBF、NaBF(C)、NaPF(C)、NaPF(C、NaSbF、NaAsF、NaClO、NaN(SOF)、NaN(SOCF、NaN(SOF)(SOCF)、NaN(C2a+1SO)(C2b+1SO)(ここでa及びbは、2≦a≦20及び2≦b≦20を満たす整数である。)、NaSOCF、NaSO、NaN(POF、NaN(POF)(SOF)、NaPO、NaC(SOCF、NaPF(C、NaB(CF、NaBF(C)、NaAlO、NaAlCl、NaCl、及びNaIからなる群から選ばれる少なくとも一つである、請求項1~10のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
  13.  前記(III)の濃度zが、非水ナトリウムイオン電池用電解液総量に対して0.3mol/L≦z≦5.0mol/Lである、請求項1~10のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
  14.  更に、下記一般式(3)で表される化合物、及び下記一般式(4)で表される化合物からなる群から選ばれる少なくとも1つの化合物を含有する、請求項1~10のいずれか1項に記載の非水ナトリウムイオン電池用電解液。
    Figure JPOXMLDOC01-appb-C000004
     
     [一般式(3)中、pは1~4の整数を表す。
     R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基を表す。
     Xはリン原子、又は硫黄原子を表す。Xがリン原子の場合はc=1、d=1であり、Xが硫黄原子の場合はc=2、d=0である。
     Y~Yは、それぞれ独立して、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基、又は-O(M F+を表し、M F+は、プロトン、金属カチオン、又はオニウムカチオンを表し、Fはカチオンの価数を表す。fは、F×f=1となる数を表す。]
    Figure JPOXMLDOC01-appb-C000005
     
     [一般式(4)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10の炭化水素基(前記炭化水素基はヘテロ原子及びハロゲン原子からなる群から選ばれる少なくとも1つを有していてもよく、炭素数が3以上の場合にあっては、分岐鎖あるいは環状構造を有してもよい)、炭素数が1~10のアルコキシ基(前記アルコキシ基はハロゲン原子を有していてもよい)、炭素数が2~10のアルケニルオキシ基、炭素数が2~10のアルキニルオキシ基、炭素数が3~10のシクロアルコキシ基、炭素数が3~10のシクロアルケニルオキシ基、炭素数が6~10のアリールオキシ基を表す。]
  15.  少なくとも、正極と、負極と、請求項1~10のいずれか1項に記載の非水ナトリウムイオン電池用電解液とを備える、非水ナトリウムイオン電池。
  16.  請求項1~10のいずれか1項に記載の非水ナトリウムイオン電池用電解液を準備する工程、
     少なくとも正極と負極とを備えた空セルに前記非水ナトリウムイオン電池用電解液を充填する工程を有する、非水ナトリウムイオン電池の製造方法。
PCT/JP2023/040643 2022-11-11 2023-11-10 非水ナトリウムイオン電池用電解液、非水ナトリウムイオン電池、及び非水ナトリウムイオン電池の製造方法 WO2024101452A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-181330 2022-11-11
JP2022181330 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024101452A1 true WO2024101452A1 (ja) 2024-05-16

Family

ID=91032998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040643 WO2024101452A1 (ja) 2022-11-11 2023-11-10 非水ナトリウムイオン電池用電解液、非水ナトリウムイオン電池、及び非水ナトリウムイオン電池の製造方法

Country Status (1)

Country Link
WO (1) WO2024101452A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019053984A (ja) * 2017-09-12 2019-04-04 セントラル硝子株式会社 非水電解液用添加剤、非水電解液、及び非水電解液電池
WO2021006238A1 (ja) * 2019-07-09 2021-01-14 セントラル硝子株式会社 非水系電解液、及び非水系電解液二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019053984A (ja) * 2017-09-12 2019-04-04 セントラル硝子株式会社 非水電解液用添加剤、非水電解液、及び非水電解液電池
WO2021006238A1 (ja) * 2019-07-09 2021-01-14 セントラル硝子株式会社 非水系電解液、及び非水系電解液二次電池

Similar Documents

Publication Publication Date Title
JP7016019B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
US11652238B2 (en) Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
CN113782817B (zh) 非水电解液电池用电解液和使用其的非水电解液电池
KR101636427B1 (ko) 비수 전해액 전지용 전해액 및 비수 전해액 전지
EP2863468A1 (en) Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
US20160141720A1 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium ion secondary battery
JP2015005328A (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
EP2528152A1 (en) Electrolyte for non-aqueous electrolyte batteries and non-aqueous electrolyte battery using the same
JP7172015B2 (ja) 非水電解液用添加剤、非水電解液電池用電解液、及び非水電解液電池
JP6476611B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
KR20200053565A (ko) 비수전해액용 첨가제, 비수전해액, 및 비수전해액 전지
KR101432456B1 (ko) 비수 전해질 조성물 및 비수 전해질 이차 전지
WO2022239813A1 (ja) 非水ナトリウムイオン電池用電解液、非水ナトリウムイオン電池、及び非水ナトリウムイオン電池の製造方法
WO2024101452A1 (ja) 非水ナトリウムイオン電池用電解液、非水ナトリウムイオン電池、及び非水ナトリウムイオン電池の製造方法
JP6603014B2 (ja) 非水電解液及びこれを備えたリチウムイオン二次電池
WO2022239812A1 (ja) 非水ナトリウムイオン電池用電解液、非水ナトリウムイオン電池、及びその製造方法
JP2018200893A (ja) 非水電解液及びこれを備えたリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888797

Country of ref document: EP

Kind code of ref document: A1