WO2024101350A1 - 基板処理方法および基板処理装置 - Google Patents

基板処理方法および基板処理装置 Download PDF

Info

Publication number
WO2024101350A1
WO2024101350A1 PCT/JP2023/040039 JP2023040039W WO2024101350A1 WO 2024101350 A1 WO2024101350 A1 WO 2024101350A1 JP 2023040039 W JP2023040039 W JP 2023040039W WO 2024101350 A1 WO2024101350 A1 WO 2024101350A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
ruthenium
containing layer
substrate processing
etching solution
Prior art date
Application number
PCT/JP2023/040039
Other languages
English (en)
French (fr)
Inventor
宗儒 林
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2024101350A1 publication Critical patent/WO2024101350A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus.
  • ruthenium has been attracting attention as a material for the conductive film. Ruthenium is difficult to remove by simply immersing it in an aqueous solution of an acid or alkali such as hydrochloric acid or sodium hydroxide. Therefore, WO 2019/138814 (Document 1) proposes a ruthenium etching solution (Table 1, Example A32) containing orthoperiodic acid and ammonia and having a pH of 4.5 for etching ruthenium.
  • JP Patent Publication No. 2016-107272 discloses a substrate processing apparatus that effectively removes a film from the peripheral portion of a substrate.
  • the apparatus includes a liquid supplying means for supplying liquid to the peripheral portion of a rotating substrate, a liquid holding member that is disposed in close proximity to a part of the peripheral portion and temporarily holds the liquid in the gap space between the peripheral portion and the liquid-tight space, and a laser irradiation means that applies laser light through the liquid to the part of the peripheral portion that is covered with the liquid to remove the film.
  • Document 3 describes that when a polar solution covers the surface of a material, the work function in the photoelectric effect decreases.
  • the present invention is directed to a substrate processing method that aims to properly etch a ruthenium-containing layer without producing ruthenium tetroxide.
  • Aspect 1 of the present invention is a substrate processing method comprising the steps of: a) preparing a substrate having a ruthenium-containing layer formed on its surface; b) contacting the ruthenium-containing layer on the substrate with an etching solution that contains chlorine and water but does not contain an oxidizing agent; and c) irradiating the ruthenium-containing layer in contact with the etching solution with excitation light that excites ruthenium.
  • the ruthenium-containing layer can be appropriately etched without producing ruthenium tetroxide.
  • Aspect 2 of the present invention is a substrate processing method according to aspect 1, in which a water-soluble compound containing ruthenium and chlorine is produced in step c).
  • Aspect 3 of the present invention is the substrate processing method of aspect 1 (which may be aspect 1 or 2), in which the etching solution contains a surfactant.
  • Aspect 4 of the present invention is a substrate processing method according to aspect 1 (which may be any one of aspects 1 to 3), in which the wavelength of the excitation light is 270 nm or less.
  • Aspect 5 of the present invention is a substrate processing method according to any one of aspects 1 to 4, in which in step b), the etching liquid contacts the peripheral portion of the substrate, and in step c), the peripheral portion is irradiated with the excitation light.
  • Aspect 6 of the present invention is a substrate processing method according to any one of aspects 1 to 4, in which the ruthenium-containing layer is provided on one main surface of the substrate, a puddle of the etching solution is formed on the main surface of the substrate in step b), and the excitation light is irradiated onto the main surface in step c).
  • the present invention is also directed to substrate processing equipment.
  • Aspect 7 of the present invention is a substrate processing apparatus that includes a substrate holding unit that holds a substrate having a ruthenium-containing layer formed on its surface, a liquid supply unit that supplies an etching liquid that contains chlorine and water but does not contain an oxidizing agent onto the substrate to bring it into contact with the ruthenium-containing layer, and a light irradiation unit that irradiates the ruthenium-containing layer in contact with the etching liquid with excitation light that excites ruthenium.
  • FIG. 1 is a diagram showing a layout of a substrate processing system.
  • 1 is a diagram showing a configuration of a substrate processing apparatus according to a first embodiment
  • FIG. 2 is a plan view showing a substrate and a cover member.
  • FIG. 2 is a cross-sectional view showing a substrate and a cover member.
  • FIG. 2 is a cross-sectional view showing a substrate and a cover member.
  • 1 is a diagram showing a flow of substrate processing in a substrate processing apparatus;
  • FIG. 2 is a cross-sectional view showing a portion of a substrate.
  • FIG. 13 is a diagram showing a configuration of a substrate processing apparatus according to a second embodiment. 2 is a diagram showing a part of a flow of substrate processing in the substrate processing apparatus;
  • FIG. 13 is a diagram showing a configuration of a substrate processing apparatus according to a third embodiment.
  • FIG. 2 is a diagram showing a plurality of divided regions on the upper surface of a substrate.
  • FIG. 2 is a cross-sectional view showing a ruthenium-containing layer provided on a substrate.
  • FIG. 2 is a cross-sectional view showing a ruthenium-containing layer provided on a substrate.
  • FIG. 1 is a diagram showing the layout of a substrate processing system 10.
  • the substrate processing system 10 is a system that processes a semiconductor substrate 9 (hereinafter simply referred to as "substrate 9").
  • the substrate processing system 10 includes an indexer block 101 and a processing block 102 coupled to the indexer block 101.
  • the indexer block 101 comprises a carrier holding section 104, an indexer robot 105, and an IR movement mechanism 106.
  • the carrier holding section 104 holds a number of carriers 107, each capable of housing a number of substrates 9.
  • the carriers 107 e.g., FOUPs
  • the IR movement mechanism 106 moves the indexer robot 105 in the carrier arrangement direction.
  • the indexer robot 105 performs an unloading operation to unload the substrates 9 from the carriers 107, and a loading operation to load the substrates 9 into the carriers 107.
  • the substrates 9 are transported in a horizontal position by the indexer robot 105.
  • the processing block 102 includes a plurality of (e.g., four or more) processing units 108 that process the substrates 9, and a center robot 109.
  • the processing units 108 are arranged to surround the center robot 109 in a plan view.
  • the processing units 108 perform various processes on the substrates 9.
  • the substrate processing device described below is one of the processing units 108.
  • the center robot 109 transfers the substrates 9 to and from the indexer robot 105.
  • the center robot 109 also performs a loading operation to load the substrates 9 into the processing units 108, and a unloading operation to unload the substrates 9 from the processing units 108.
  • the center robot 109 also transports the substrates 9 between the processing units 108.
  • the substrates 9 are transported by the center robot 109 in a horizontal position.
  • FIG. 2 is a diagram showing the configuration of the substrate processing apparatus 1 according to the first embodiment.
  • a part of the configuration of the substrate processing apparatus 1 is shown in cross section in a plane including a predetermined central axis J1.
  • the substrate processing apparatus 1 is a single-wafer type apparatus that processes substrates 9 one by one.
  • the substrate processing apparatus 1 performs wet etching on the peripheral portion of the substrate 9.
  • the peripheral portion of the substrate 9 includes the edge end face (apex), the bevel portion, and the areas near the bevel portion on the upper surface 91 and the lower surface 92 described below.
  • the substrate processing apparatus 1 includes a substrate holding unit 21, a substrate rotation mechanism 22, a supply head 3, a light irradiation unit 4, a liquid supply unit 5, a cover member 6, a housing 11, and a control unit 8.
  • the substrate holding unit 21, the substrate rotation mechanism 22, the supply head 3, a part of the light irradiation unit 4, and the cover member 6 are housed in the internal space of the housing 11.
  • the control unit 8 is disposed outside the housing 11, and controls each component of the substrate processing apparatus 1.
  • the control unit 8 is realized, for example, by a computer having a CPU, memory, etc., executing a predetermined program. Part or all of the control unit 8 may be realized by a programmable logic controller (PLC: Programmable Logic Controller) or the like.
  • PLC Programmable Logic Controller
  • the substrate holding part 21 and substrate rotation mechanism 22 shown in FIG. 2 are part of a spin chuck that holds and rotates the approximately disk-shaped substrate 9.
  • the substrate holding part 21 holds the horizontal substrate 9 from below.
  • the substrate holding part 21 is, for example, a vacuum chuck that adsorbs and holds the substrate 9.
  • the substrate holding part 21 has an approximately disk-shaped base part 211 that contacts and adsorbs the center of the lower main surface (hereinafter also referred to as the "lower surface 92") of the substrate 9.
  • the diameter of the base part 211 is smaller than the diameter of the substrate 9.
  • the substrate holding part 21 may hold the substrate 9 by a mechanical chuck or the like.
  • a ruthenium-containing layer 93 containing ruthenium (Ru) is provided on the surface of the substrate 9.
  • the ruthenium-containing layer 93 is a film (i.e., a ruthenium-containing film) that spreads over the entire upper main surface (hereinafter also referred to as the "upper surface 91") of the substrate 9.
  • the ruthenium-containing layer 93 is indicated by a thick line.
  • the ruthenium-containing layer 93 may be a layer that contains ruthenium, and may be a layer containing a ruthenium compound other than a layer of simple ruthenium.
  • the ruthenium-containing layer 93 may be, for example, a film provided over the entire upper surface 91 and/or lower surface 92 of the substrate 9, or may be a pattern that covers only a portion of the surface of the substrate 9.
  • the ruthenium-containing layer 93 is a ruthenium-containing film provided over the entire upper surface 91 of the substrate 9, and the peripheral portion of the substrate 9 is also covered by the ruthenium-containing film.
  • the ruthenium-containing layer 93 is a ruthenium film whose entirety is formed of simple ruthenium.
  • the substrate holder 21 in FIG. 2 holds the substrate 9 from below with the upper surface 91 on which the ruthenium-containing film is formed facing upward.
  • a diffusion prevention film 94 or the like may be provided between the ruthenium-containing layer 93 and the substrate 9 (see FIG. 7 described later).
  • the substrate rotation mechanism 22 is disposed below the substrate holding part 21.
  • the substrate rotation mechanism 22 rotates the substrate 9 together with the substrate holding part 21 around a central axis J1 extending approximately parallel to the vertical direction.
  • the substrate rotation mechanism 22 includes a shaft 221 and a motor 222.
  • the shaft 221 is a substantially columnar or cylindrical member centered on the central axis J1.
  • the shaft 221 extends in the vertical direction and is connected to the center of the lower surface of the base part 211 of the substrate holding part 21.
  • the motor 222 is an electric rotary motor that rotates the shaft 221.
  • the substrate rotation mechanism 22 may be a motor having another structure (for example, a hollow motor, etc.).
  • the supply head 3 is positioned above the center of the substrate 9.
  • the supply head 3 faces the upper surface 91 of the substrate 9 in the vertical direction at a position spaced above the upper surface 91 of the substrate 9.
  • the supply head 3 includes a lower head portion 31, an upper head portion 32, and a center nozzle 33.
  • the lower head portion 31 is a substantially annular plate-shaped portion centered on the central axis J1.
  • the lower surface of the lower head portion 31 is a substantially horizontal plane extending substantially parallel to the upper surface 91 of the substrate 9, and faces the upper surface 91 of the substrate 9 in the vertical direction.
  • the diameter of the outer periphery of the lower head portion 31 in a plan view is smaller than the diameter of the substrate 9.
  • the upper head portion 32 is a substantially cylindrical portion centered on the central axis J1, and extends upward from the upper surface of the lower head portion 31.
  • the upper head portion 32 also serves as a support portion that supports the lower head portion 31 from above.
  • An arm is connected to the head upper portion 32, and the supply head 3 can be moved, for example, in the vertical direction and in the radial direction (radial direction about the central axis J1) by moving the arm using a mechanism having a motor or the like.
  • the center nozzle 33 is disposed in a through hole provided in the center of the lower head portion 31.
  • the center nozzle 33 is supplied with a processing liquid (here, a rinsing liquid) through a pipe provided inside the upper head portion 32.
  • the rinsing liquid supplied to the center nozzle 33 is ejected from the center nozzle 33 toward the center of the substrate 9 and spreads toward the periphery on the upper surface 91 of the rotating substrate 9.
  • the rinsing liquid scattered from the periphery of the substrate 9 is collected on the bottom surface of the housing 11 and discharged to the waste liquid recovery section 12 (the same applies to the etching liquid described below).
  • the rinsing liquid is, for example, DIW (deionized water).
  • the rinsing liquid is not limited to DIW and may be changed in various ways.
  • various types of processing liquid other than the rinsing liquid may be ejected from the center nozzle 33.
  • the light irradiation unit 4 has a light source 41 and an optical system 42.
  • the light source 41 is disposed outside the housing 11.
  • the light source 41 emits light (i.e., excitation light) that excites ruthenium.
  • the light is, for example, ultraviolet light.
  • the wavelength of the light is preferably 270 nm or less, and more preferably less than 264 nm (the reason will be described later).
  • the light source 41 is a laser that emits laser light L, for example, an excimer laser (KrF: wavelength 248 nm, ArF: wavelength 193 nm) or a DUV-YAG quadruple wave laser (wavelength: 266 nm).
  • the power of the laser may be determined appropriately.
  • the light source 41 may be a semiconductor laser or the like.
  • a window portion 111 is provided on the side portion of the housing 11, and the window portion 111 is formed of a material (for example, quartz glass, etc.) that is transparent to the laser light L from the light source 41.
  • the laser light L enters the housing 11 through the window portion 111.
  • the path of the laser light L is indicated by a dashed line with the same reference symbol (the same applies to the paths of the laser light L1 and L2 described below).
  • the light emitted from the light source 41 may be something other than laser light.
  • the optical system 42 is disposed inside the housing 11 and includes a beam splitter 421 and a number of reflecting mirrors 422, 423, and 424.
  • the laser light L incident on the housing 11 is split by the beam splitter 421 into two beams L1 and L2 (hereinafter also referred to as "laser light").
  • One of the two laser lights L1 and L2, the laser light L1 is reflected by the reflecting mirror 422 and is incident on the peripheral portion of the upper surface 91 of the substrate 9 from diagonally above.
  • the path (optical axis) of the laser light L1 between the reflecting mirror 422 and the substrate 9 is inclined with respect to the upper surface 91 of the substrate 9.
  • the other laser light L2 is reflected in turn by the reflecting mirrors 423 and 424 and is incident on the peripheral portion of the lower surface 92 of the substrate 9 from diagonally below.
  • the path (optical axis) of the laser light L2 between the reflecting mirror 424 and the substrate 9 is inclined with respect to the lower surface 92 of the substrate 9.
  • the laser beams L1 and L2 are irradiated onto the peripheral portion of the substrate 9 through the cover member 6.
  • the configuration of the light irradiation unit 4 in FIG. 2 is merely an example and may be modified as appropriate.
  • a light source that irradiates the peripheral portion of the upper surface 91 with laser beams and a light source that irradiates the peripheral portion of the lower surface 92 with laser beams may be provided separately.
  • FIGS. 3 to 5 are diagrams for explaining the structure of the cover member 6.
  • FIG. 3 shows the substrate 9 and cover member 6 viewed from above looking downward, i.e., in a plan view.
  • FIG. 4 shows a cross section of the substrate 9 and cover member 6 at the position of arrows IV-IV in FIG. 3 (upstream end 611, described below).
  • FIG. 5 shows a cross section of the substrate 9 and cover member 6 at the position of arrows V-V in FIG. 3 (downstream end 612, described below).
  • the cover member 6 has a cover portion 61 and a liquid introduction portion 62.
  • the cover portion 61 is an arc-shaped portion that extends along the peripheral portion of the substrate 9. When viewed in a plan view, the cover portion 61 overlaps with a portion of the peripheral portion of the substrate 9.
  • the cover portion 61 has an upstream end 611 and a downstream end 612.
  • the substrate 9 rotates counterclockwise, and the downstream end 612 is located downstream of the upstream end 611 with respect to the direction of movement of the peripheral portion due to the rotation of the substrate 9. In other words, each portion of the peripheral portion of the substrate 9 moves from the upstream end 611 toward the downstream end 612 as it passes the position of the cover portion 61.
  • the shape of the cover part 61 in a cross section parallel to the radial direction is an arc shape that follows the peripheral portion of the substrate 9.
  • the cover part 61 has a cross-sectional shape that is curved in a C-shape so as to surround the peripheral portion of the substrate 9.
  • a gap space G is formed between the peripheral portion and an opposing surface 616 of the cover part 61 that faces the peripheral portion of the substrate 9.
  • the distance between the opposing surface 616 of the cover part 61 and the peripheral portion of the substrate 9 is, for example, 0.5 mm to 1 mm. The distance may be changed appropriately depending on the magnitude of the surface tension of the etching liquid described below.
  • An arm is connected to the cover member 6, and the cover member 6 can be moved, for example, in the vertical direction and the radial direction by moving the arm using a mechanism having a motor or the like.
  • the liquid introduction part 62 is tubular and extends radially outward from the upstream end 611 of the cover part 61.
  • One end of the liquid introduction part 62 opens at the opposing surface 616 of the cover part 61 and connects to the gap space G.
  • the other end of the liquid introduction part 62 is supplied with the etching liquid from the liquid supply part 5.
  • the etching liquid 71 is injected into the gap space G, and the gap space G is filled with the etching liquid 71 (liquid-tight state).
  • the liquid supply part 5 supplies the etching liquid 71 to the peripheral part of the substrate 9 via the cover member 6.
  • each part of the peripheral part of the substrate 9 enters the inside of the cover part 61 (gap space G) from the upstream end 611, i.e., the opening side of the liquid introduction part 62.
  • the etching solution 71 supplied by the liquid supply unit 5 is a chlorine-based electrolyte solution, and contains chlorine and water (solvent).
  • An example of the etching solution 71 is an aqueous solution containing hydrogen chloride (HCl) or ammonium chloride (NH 4 Cl) as a solute.
  • the concentration of the solute is, for example, 0.7 wt % or more, and preferably 1.8 wt % or more.
  • the upper limit of the concentration of the solute is not particularly limited, but is, for example, 3.6 wt %.
  • the etching solution 71 may contain a surfactant.
  • An example of the surfactant is ethanol or isopropyl alcohol (IPA).
  • the etching solution 71 does not contain an oxidizing agent.
  • an oxidizing agent is an agent that reacts with ruthenium to generate ruthenium oxide.
  • the etching solution 71 is also transparent to the laser beams L1 and L2.
  • the laser beams L1 and L2 are irradiated to the peripheral portion of the substrate 9 through the downstream end portion 612 of the cover portion 61 and the etching solution 71 in the gap space G.
  • the irradiation range of the laser beam L1 extends from the edge end surface of the substrate 9 to a portion near the bevel portion on the upper surface 91.
  • the irradiation range of the laser beam L2 extends from the edge end surface of the substrate 9 to a portion near the bevel portion on the lower surface 92. At the edge end surface, the irradiation range of the laser beam L1 and the irradiation range of the laser beam L2 overlap. Therefore, in the cross section of the substrate 9, the range from the area near the bevel on the upper surface 91 through the edge end face to the area near the bevel on the lower surface 92, i.e., the entire peripheral area in the cross section, is included in the irradiation range of the laser beams L1 and L2.
  • the portion of the ruthenium-containing layer 93 on the substrate 9 that is irradiated with the laser light is etched. Therefore, when the ruthenium-containing layer 93 is present only on one of the upper surface 91 side or the lower surface 92 side at the peripheral portion of the substrate 9, only one of the laser lights L1, L2 may be used.
  • the cover portion 61 and the liquid introduction portion 62 may be integrally formed from the same material, or the two may be formed as separate bodies. When the cover portion 61 and the liquid introduction portion 62 are formed as separate bodies, the two may be formed from different materials.
  • step S11 the substrate 9 is first loaded into the substrate processing apparatus 1 and held substantially horizontally by the substrate holding unit 21 (step S11). This prepares the substrate 9 having a ruthenium-containing layer 93 (in this embodiment, a ruthenium film) on its surface. In step S11, the position of the substrate 9 is adjusted so that the center of the substrate 9 coincides with the central axis J1 in a plan view.
  • a ruthenium-containing layer 93 in this embodiment, a ruthenium film
  • the supply head 3 and the cover member 6 are positioned in a retreated position (for example, a position radially outwardly spaced from the substrate 9 in a plan view) that does not impede the loading and unloading of the substrate 9.
  • a retreated position for example, a position radially outwardly spaced from the substrate 9 in a plan view
  • the substrate rotation mechanism 22 starts rotating the substrate 9.
  • the cover member 6 is moved from the retreated position to the position shown in FIG. 2, and a gap space G is formed between the opposing surface 616 of the cover unit 61 and the peripheral portion of the substrate 9.
  • control unit 8 controls the liquid supply unit 5 to start the introduction of the etching liquid 71 into the liquid introduction unit 62 of the cover member 6, and the etching liquid 71 is supplied to the gap space G at the upstream end 611 of the cover unit 61.
  • the etching liquid 71 in the gap space G is carried downstream in the movement direction of the peripheral portion by the rotation of the substrate 9, and is discharged outside the gap space G at the downstream end 612 of the cover unit 61.
  • the discharged etching liquid 71 is shaken off by centrifugal force and scattered radially outward from the peripheral portion of the substrate 9.
  • the liquid supply unit 5 continuously supplies the etching liquid 71 to the gap space G, thereby maintaining the gap space G filled with the etching liquid 71.
  • the etching liquid 71 comes into contact with the ruthenium-containing layer 93 on the peripheral portion of the substrate 9 (step S12). Note that the etching liquid 71 does not proceed much with only contact with the ruthenium-containing layer 93.
  • the centrifugal force caused by the rotation of the substrate 9 prevents the etching solution 71 adhering to the peripheral portion from flowing radially inward.
  • the range in which the etching solution 71 spreads in the circumferential direction around the central axis J1 is roughly limited to the range of the peripheral portion facing the cover portion 61.
  • an inert gas e.g., nitrogen gas
  • the rotation speed of the substrate 9 may be changed as appropriate within a range in which the etching solution 71 can be filled into the gap space G.
  • the control unit 8 controls the light irradiation unit 4, so that the laser beams L1 and L2 from the light irradiation unit 4 are continuously irradiated onto the downstream end 612 of the cover unit 61 and the peripheral portion of the substrate 9 via the etching solution 71 in the gap space G (step S13).
  • the laser beams L1 and L2 are irradiated onto the ruthenium-containing layer 93 in contact with the etching solution 71.
  • the portions of the peripheral portion of the substrate 9 that are in contact with the etching solution 71 and are irradiated with the laser beams L1 and L2 are switched in sequence along the circumferential direction.
  • the irradiation of the laser beams L1 and L2 may be intermittent (pulse irradiation).
  • the laser beams L1 and L2 are excitation beams that excite ruthenium, and photoelectrons (e ⁇ ) are emitted from the surface of the ruthenium contained in the ruthenium-containing layer 93 and holes (h + ) are formed due to the photoelectric effect caused by the irradiation of the laser beams L1 and L2, as shown in FIG. 7.
  • the etching solution 71 reacts with the holes, and the etching of the ruthenium-containing layer 93 proceeds.
  • (Ru(III)-Cl(aq)) represents a water-soluble compound containing ruthenium and chlorine (hereinafter referred to as "Ru-Cl water-soluble compound").
  • Ru-Cl water-soluble compounds include RuCl 2+ , RuCl 2 + , RuCl 3 , and RuCl 4 - .
  • the Ru-Cl water-soluble compound which is a reaction product, is dissolved in the etching solution 71 and is removed from the substrate 9 together with the etching solution 71. This prevents the products containing ruthenium and chlorine from remaining on the surface of the substrate 9. Typically, the Ru-Cl water-soluble compound is not toxic. Furthermore, since the etching solution 71 does not contain an oxidizing agent, gaseous ruthenium tetroxide (RuO 4 ) is not generated.
  • RuO 4 gaseous ruthenium tetroxide
  • etching solution containing an oxidizing agent such as sodium hypochlorite is used, a layer of ruthenium dioxide (RuO 2 ) is generated on the surface of the ruthenium-containing layer 93, which may significantly reduce the etching rate or cause insufficient etching.
  • the etching solution 71 that does not contain hypochlorous acid or salts of hypochlorous acid prevents or prevents the generation of a layer of ruthenium dioxide.
  • the etching solution 71 contains a surfactant (here, ethanol), which suppresses or prevents the occurrence of large irregularities on the surface of the etched ruthenium-containing layer 93.
  • a surfactant here, ethanol
  • the generated hydrogen gas (H 2 ) remains (exists) as bubbles on the surface of the ruthenium-containing layer 93 and inhibits the progress of etching of ruthenium, whereas in the etching solution 71 in which the surface tension is reduced due to the presence of a surfactant, the retention of hydrogen bubbles is suppressed.
  • the surface of the ruthenium-containing layer 93 is covered with the etching solution 71, photoelectrons are emitted from the surface of ruthenium even if the wavelength of the laser light L1, L2 from the light irradiation unit 4 is 264 nm or more.
  • the wavelength of the laser light L1, L2 is 270 nm or less, and more preferably less than 264 nm.
  • the supply of the etching solution 71 to the peripheral portion and the irradiation of the laser beams L1 and L2 are stopped. This stops the etching of the ruthenium-containing layer 93.
  • the cover member 6 then moves from the position shown in FIG. 2 to the above-mentioned retreated position.
  • a camera or the like may be provided to capture an image of the peripheral portion of the substrate 9, and the end point of etching of the peripheral portion may be automatically detected based on the captured image (same below).
  • the supply head 3 is placed in the position shown in FIG. 2 (it may be placed in advance), and the rinsing liquid is supplied from the center nozzle 33 to the center of the upper surface 91 of the substrate 9.
  • the rotation speed of the substrate 9 by the substrate rotation mechanism 22 is increased. This causes the rinsing liquid to spread over the entire upper surface 91 of the substrate 9, and a rinsing process is performed to wash away the etching liquid 71 and the like adhering to the peripheral portion of the substrate 9 (step S14).
  • the rinsing liquid is scattered radially outward from the peripheral portion of the substrate 9 by the centrifugal force caused by the rotation of the substrate 9, and is collected by the waste liquid collection unit 12.
  • the drying process of the substrate 9 is performed (step S15).
  • the drying process of the substrate 9 is completed, the rotation of the substrate 9 is stopped, and the substrate 9 is removed from the substrate processing apparatus 1.
  • the rinsing process and drying process of the substrate 9 may be performed by a method different from the above example.
  • FIG. 8 is a diagram showing the configuration of a substrate processing apparatus 1a according to a second embodiment.
  • the cover member 6 is omitted compared to the substrate processing apparatus 1 of FIG. 2.
  • a liquid supply unit 5 is connected to a center nozzle 33 of the supply head 3, and an etching liquid 71 and a rinsing liquid are selectively discharged from the center nozzle 33.
  • the other configuration of the substrate processing apparatus 1a is similar to that of the substrate processing apparatus 1, and the same components are denoted by the same reference numerals.
  • a ruthenium-containing layer 93 is provided over the entire upper surface 91 of the substrate 9, and a protective film 97 is provided on the ruthenium-containing layer 93.
  • the protective film 97 is, for example, a spin-on-glass (SOG) film, and is provided over the entire area of the upper surface 91 of the substrate 9 except for the peripheral portion.
  • SOG spin-on-glass
  • the shape of the protective film 97 in a plan view is approximately circular.
  • the processing flow of the substrate 9 in the substrate processing apparatus 1a is the same as that shown in FIG. 6, except that steps S21 and S22 shown in FIG. 9 are performed between the above-mentioned rinsing process (step S14) and drying process (step S15). Specifically, first, the substrate 9 having the above-mentioned protective film 97 provided on the ruthenium-containing layer 93 is prepared by being held by the substrate holder 21 (FIG. 6: step S11). Rotation of the substrate 9 is also started by the substrate rotation mechanism 22.
  • the control unit 8 controls the liquid supply unit 5, so that the etching solution 71 is continuously discharged from the center nozzle 33 of the supply head 3 toward the center of the upper surface 91 of the substrate 9.
  • the etching solution 71 spreads radially outward on the protective film 97 due to the centrifugal force caused by the rotation of the substrate 9, and contacts the ruthenium-containing layer 93 exposed from the protective film 97 at the peripheral portion of the substrate 9 (step S12).
  • the etching solution 71 also flows around to the lower surface 92 side of the substrate 9, and almost the entire peripheral portion is covered with the etching solution 71.
  • control unit 8 controls the light irradiation unit 4, so that the laser beams L1 and L2 from the light irradiation unit 4 are irradiated to the peripheral portion of the substrate 9 through the etching solution 71 (step S13).
  • the control unit 8 controls the light irradiation unit 4, so that the laser beams L1 and L2 from the light irradiation unit 4 are irradiated to the peripheral portion of the substrate 9 through the etching solution 71 (step S13).
  • the control unit 8 controls the light irradiation unit 4, so that the laser beams L1 and L2 from the light irradiation unit 4 are irradiated to the peripheral portion of the substrate 9 through the etching solution 71 (step S13).
  • step S21 When the substrate 9 has been rinsed for a predetermined time, the supply of the rinse liquid to the substrate 9 is stopped, and the protective film 97 is removed from the substrate 9 ( FIG. 9 : step S21).
  • the protective film 97 is an SOG film
  • step S21 for example, hydrogen fluoride (HF) is supplied to the protective film 97 to remove it.
  • the hydrogen fluoride may be ejected from the center nozzle 33 or from a dedicated nozzle.
  • the type of protective film 97 and the method of removing the protective film 97 may be modified in various ways.
  • a rinse liquid is supplied from the center nozzle 33 to the center of the substrate 9, and the substrate 9 is rinsed (step S22).
  • the rotation speed of the substrate 9 is then increased, and the substrate 9 is dried (FIG. 6: step S15).
  • drying of the substrate 9 is complete, the rotation of the substrate 9 is stopped, and the substrate 9 is removed from the substrate processing apparatus 1a.
  • the substrate processing method includes a step of preparing a substrate 9 having a ruthenium-containing layer 93 formed on its surface (step S11), a step of bringing an etching solution 71 containing chlorine and water but no oxidizing agent into contact with the ruthenium-containing layer 93 on the substrate 9 (step S12), and a step of irradiating the ruthenium-containing layer 93 in contact with the etching solution 71 with excitation light that excites ruthenium (step S13).
  • step S12 the etching solution 71 comes into contact with the peripheral portion of the substrate 9, and in step S13, the peripheral portion is irradiated with excitation light.
  • step S13 the peripheral portion is irradiated with excitation light.
  • step S13 a water-soluble compound containing ruthenium and chlorine is produced.
  • This allows the product to be removed from the substrate 9 together with the etching solution 71 and discharged to the outside of the housing 11.
  • the product containing ruthenium is prevented from remaining on the substrate 9 and in the housing 11, and the generation of ruthenium tetroxide can be more reliably prevented or suppressed.
  • the etching solution 71 contains a surfactant. This reduces the unevenness of the surface after etching, i.e., it is possible to achieve uniform etching.
  • the wavelength of the excitation light is 270 nm or less. This allows the ruthenium-containing layer 93 to be etched more reliably.
  • the wavelength of the excitation light may be greater than 270 nm as long as it is possible to excite ruthenium.
  • the substrate processing apparatus 1 includes a substrate holding unit 21 that holds a substrate 9 having a ruthenium-containing layer 93 formed on its surface, a liquid supply unit 5 that supplies an etching solution 71 that contains chlorine and water but does not contain an oxidizing agent onto the substrate 9 to bring it into contact with the ruthenium-containing layer 93, and a light irradiation unit 4 that irradiates the ruthenium-containing layer 93 in contact with the etching solution 71 with excitation light that excites ruthenium.
  • FIG. 10 is a diagram showing the configuration of a substrate processing apparatus 1b according to a third embodiment.
  • the substrate processing apparatus 1b is an apparatus that performs wet etching on the wiring portion on the upper surface 91 of a substrate 9.
  • the cover member 6 is omitted, and a liquid supply unit 5 (not shown) is connected to a center nozzle 33 of a supply head 3.
  • a light irradiation unit 4a is disposed above a housing 11, and an irradiation unit moving mechanism 49 that moves the light irradiation unit 4a is provided.
  • the other configuration of the substrate processing apparatus 1b is similar to that of the substrate processing apparatus 1, and the same components are denoted by the same reference numerals.
  • the light irradiation unit 4a includes a light source and an optical system, and emits light that excites ruthenium (i.e., excitation light).
  • a window 112 is provided on the upper surface of the housing 11, and the window 112 is made of a material (e.g., quartz glass, etc.) that is transparent to the light from the light irradiation unit 4a.
  • the light enters the housing 11 through the window 112 and is irradiated onto an area of a predetermined size on the upper surface 91 of the substrate 9 held by the substrate holding unit 21.
  • the irradiation unit moving mechanism 49 has a motor or the like as a driving source, and can move the light irradiation unit 4a in two directions that are approximately parallel to the upper surface 91 and intersect with each other. As a result, as shown in FIG. 11, the light from the light irradiation unit 4a is irradiated onto each of a plurality of divided areas 911 that divide the upper surface 91 of the substrate 9.
  • FIG. 12A and 12B are cross-sectional views showing a ruthenium-containing layer 93 provided on an upper surface 91 of a substrate 9.
  • An insulating film 95 is provided on the substrate 9, and a wiring portion 96, which is a wiring pattern, is formed in the insulating film 95.
  • a diffusion prevention film 94 made of, for example, tantalum nitride (TaN) is provided between the wiring portion 96 and the insulating film 95.
  • the main body (wiring main body) of the wiring portion 96 is the ruthenium-containing layer 93.
  • the main body of the wiring portion 96 is a metal portion 961 made of copper (Cu) or the like, and a metal film (for example, a liner film) covering the side and bottom surfaces of the metal portion 961 is the ruthenium-containing layer 93.
  • the flow of processing the substrate 9 in the substrate processing apparatus 1b will be described with reference to FIG. 6.
  • the substrate 9 having a ruthenium-containing layer 93 on the upper surface 91 is held by the substrate holder 21 and prepared (step S11).
  • the etching solution 71 is discharged from the center nozzle 33 of the supply head 3 toward the center of the upper surface 91 of the substrate 9 for a certain period of time, and then the discharge of the etching solution 71 is stopped.
  • a paddle of the etching solution 71 (a liquid film of the etching solution 71) is formed on the upper surface 91 of the substrate 9 held in a horizontal state, and the state in which the etching solution 71 is in contact with the ruthenium-containing layer 93 on the upper surface 91 is maintained (step S12).
  • the paddle of the etching solution 71 covers the entire upper surface 91.
  • the substrate 9 may be rotated at a low speed.
  • the light irradiation unit 4a sequentially irradiates the divided regions 911 with light while the substrate 9 is stopped from rotating (step S13). That is, excitation light is irradiated onto the ruthenium-containing layer 93 with which the etching solution 71 is in contact. As a result, holes are formed on the surface of the ruthenium contained in the ruthenium-containing layer 93, and the etching solution 71 reacts with the holes, causing the etching of the ruthenium-containing layer 93 to proceed.
  • the ruthenium-containing layer 93 is etched to form a recess.
  • the metal portion 961 and the ruthenium-containing layer 93 are etched to form a recess.
  • the supply head 3 After the excitation light is irradiated onto the divided regions 911 a predetermined number of times, the supply head 3 is returned to the position shown in FIG. 10, and rinsing liquid is supplied to the center of the substrate 9 from the center nozzle 33.
  • the substrate rotation mechanism 22 starts to rotate the substrate 9. This performs a rinsing process to wash away the etching liquid 71 and the like on the substrate 9 (step S14).
  • an organic solvent such as IPA is supplied from the center nozzle 33 to the center of the upper surface 91 of the substrate 9.
  • the rotation speed of the substrate 9 is further increased and the substrate 9 is dried (step S15).
  • the substrate processing method includes a step of preparing a substrate 9 having a ruthenium-containing layer 93 formed on its surface (step S11), a step of bringing an etching solution 71 containing chlorine and water but no oxidizing agent into contact with the ruthenium-containing layer 93 on the substrate 9 (step S12), and a step of irradiating the ruthenium-containing layer 93 in contact with the etching solution 71 with excitation light that excites ruthenium (step S13).
  • a ruthenium-containing layer 93 is provided on the upper surface 91 of the substrate 9. Then, in step S12, a puddle of the etching solution 71 is formed on the upper surface 91 of the substrate 9, and in step S13, excitation light is irradiated onto the upper surface 91.
  • the peripheral portion of the substrate 9 may also be irradiated with excitation light, and the ruthenium-containing layer 93 on the peripheral portion may be etched.
  • the substrate processing method described above uses isotropic wet etching, which suppresses the occurrence of etching residues; in other words, it is possible to ensure uniformity in the etching depth.
  • the product generated in step S13 may be a water-soluble compound other than the one containing ruthenium and chlorine. Also, the etching solution 71 does not need to contain a surfactant.
  • a nozzle may be provided on the side or on the underside 92 of the substrate 9, and an etching solution may be supplied to the peripheral portion from the nozzle.
  • the substrate 9 may be held by the substrate holding portion 21 with the main surface on which the ruthenium-containing layer 93 is provided facing downward.
  • a plurality of cover members 6 may be arranged in the circumferential direction, and each cover member 6 may supply etching solution 71 to the peripheral portion of the substrate 9 and irradiate excitation light. Furthermore, as shown in FIG. 10, the light irradiating unit 4a may move to irradiate excitation light to the peripheral portion of the stationary substrate 9.
  • a light irradiation unit that irradiates excitation light onto a linear region extending radially outward from the center of the substrate 9 may be provided, and the substrate 9 may be rotated so that the excitation light is irradiated onto substantially the entire upper surface 91.
  • the etching solution 71 may be continuously supplied to the upper surface 91 of the substrate 9.
  • the substrate processing apparatus 1, 1a, 1b may be provided with a heater for heating the etching solution 71.
  • a heater for heating the etching solution 71.
  • One example of the heater is an electric heater that is disposed below the peripheral portion of the substrate 9 and faces the lower surface 92 of the substrate 9.
  • the substrates processed in the substrate processing apparatuses 1, 1a, and 1b are not limited to semiconductor substrates, but may be glass substrates or other substrates.
  • the shape of the substrate may be other than a disk shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Weting (AREA)
  • ing And Chemical Polishing (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

【課題】四酸化ルテニウムが生成されることなく、ルテニウム含有層を適切にエッチングする。 【解決手段】基板処理方法は、ルテニウム含有層(93)が表面に設けられた基板(9)を準備する工程と、塩素および水を含み、酸化剤を含まないエッチング液(71)を基板(9)上のルテニウム含有層(93)に接触させる工程と、エッチング液(71)が接触しているルテニウム含有層(93)に対して、ルテニウムを励起させる励起光を照射する工程とを備える。これにより、ガス状の四酸化ルテニウムが生成されることなく、ルテニウム含有層(93)を適切にエッチングすることができる。

Description

基板処理方法および基板処理装置
 本発明は、基板処理方法および基板処理装置に関する。
[関連出願の参照]
 本願は、2022年11月9日に出願された日本国特許出願JP2022-179859からの優先権の利益を主張し、当該出願の全ての開示は、本願に組み込まれる。
 従来、半導体基板(以下、単に「基板」という。)の製造工程では、基板に対して様々な処理が施される。例えば、基板の主面に導電膜を形成した後に、当該基板のベベル部等に付着した導電膜を除去する処理が行われる。近年、基板上のデバイスの微細化等に伴い、当該導電膜の材料としてルテニウム(Ru)が注目されている。ルテニウムは、塩酸や水酸化ナトリウムのような酸またはアルカリの水溶液中に単に浸漬するだけでは除去することが難しい。そこで、国際公開第2019/138814号(文献1)では、ルテニウムをエッチング処理するために、オルト過ヨウ素酸およびアンモニアを含み、pHが4.5であるルテニウム用エッチング液(表1、実施例A32)が提案されている。
 なお、特開2016-107272号公報(文献2)では、基板周縁部から良好に膜を除去する基板処理装置が開示されている。当該装置は、回転する基板の周縁部に対して液体を供給する液体供給手段と、周縁部の一部に対して近接配置され、周縁部との間隙空間に液体を一時的に保持して間隙空間を液密状態とする液体保持部材と、周縁部のうち液体により覆われた部位に液体を介してレーザー光を入射させ、膜を除去するレーザー照射手段とを備える。また、L. I. Korshunov、外2名による「The Photoelectric Effect at the Metal-Electrolyte Boundary」(Russian Chemical Reviews、1971年、40巻、8号、699-714頁)(文献3)では、物質表面を極性溶液が覆う場合に、光電効果における仕事関数が低下することが記載されている。
 ところで、文献1のエッチング液を用いてルテニウムのエッチングを行う場合、高いエッチングレートが得られるが、毒性を有するガス状の四酸化ルテニウム(RuO)が生成されるおそれがある。
 本発明は、基板処理方法に向けられており、四酸化ルテニウムが生成されることなく、ルテニウム含有層を適切にエッチングすることを目的としている。
 本発明の態様1は、基板処理方法であって、a)ルテニウム含有層が表面に設けられた基板を準備する工程と、b)塩素および水を含み、酸化剤を含まないエッチング液を前記基板上の前記ルテニウム含有層に接触させる工程と、c)前記エッチング液が接触している前記ルテニウム含有層に対して、ルテニウムを励起させる励起光を照射する工程とを備える。
 本発明によれば、四酸化ルテニウムが生成されることなく、ルテニウム含有層を適切にエッチングすることができる。
 本発明の態様2は、態様1の基板処理方法であって、前記c)工程において、ルテニウムおよび塩素を含む水溶性化合物が生成される。
 本発明の態様3は、態様1(態様1または2であってもよい。)の基板処理方法であって、前記エッチング液が界面活性剤を含む。
 本発明の態様4は、態様1(態様1ないし3のいずれか1つであってもよい。)の基板処理方法であって、前記励起光の波長が270nm以下である。
 本発明の態様5は、態様1ないし4のいずれか1つの基板処理方法であって、前記b)工程において、前記エッチング液が前記基板の周縁部に接触し、前記c)工程において、前記周縁部に前記励起光が照射される。
 本発明の態様6は、態様1ないし4のいずれか1つの基板処理方法であって、前記ルテニウム含有層が前記基板の一の主面に設けられ、前記b)工程において、前記エッチング液のパドルが前記基板の前記主面に形成され、前記c)工程において、前記主面に前記励起光が照射される。
 本発明は、基板処理装置にも向けられている。
 本発明の態様7は、基板処理装置であって、ルテニウム含有層が表面に設けられた基板を保持する基板保持部と、塩素および水を含み、酸化剤を含まないエッチング液を前記基板上に供給して、前記ルテニウム含有層に接触させる液供給部と、前記エッチング液が接触している前記ルテニウム含有層に対して、ルテニウムを励起させる励起光を照射する光照射部とを備える。
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。
基板処理システムのレイアウトを示す図である。 第1の実施の形態に係る基板処理装置の構成を示す図である。 基板およびカバー部材を示す平面図である。 基板およびカバー部材を示す断面図である。 基板およびカバー部材を示す断面図である。 基板処理装置における基板の処理の流れを示す図である。 基板の一部を示す断面図である。 第2の実施の形態に係る基板処理装置の構成を示す図である。 基板処理装置における基板の処理の流れの一部を示す図である。 第3の実施の形態に係る基板処理装置の構成を示す図である。 基板の上面における複数の分割領域を示す図である。 基板に設けられるルテニウム含有層を示す断面図である。 基板に設けられるルテニウム含有層を示す断面図である。
 図1は、基板処理システム10のレイアウトを示す図である。基板処理システム10は、半導体基板9(以下、単に「基板9」という。)を処理するシステムである。基板処理システム10は、インデクサブロック101と、インデクサブロック101に結合された処理ブロック102とを備える。
 インデクサブロック101は、キャリア保持部104と、インデクサロボット105と、IR移動機構106とを備える。キャリア保持部104は、それぞれが複数枚の基板9を収容可能な複数のキャリア107を保持する。複数のキャリア107(例えば、FOUP)は、所定のキャリア配列方向に配列された状態でキャリア保持部104に保持される。IR移動機構106は、キャリア配列方向にインデクサロボット105を移動させる。インデクサロボット105は、基板9をキャリア107から搬出する搬出動作、および、キャリア107に基板9を搬入する搬入動作を行う。基板9は、インデクサロボット105によって水平な姿勢で搬送される。
 処理ブロック102は、基板9を処理する複数(例えば、4つ以上)の処理ユニット108と、センターロボット109とを備える。複数の処理ユニット108は、平面視において、センターロボット109を取り囲むように配置される。複数の処理ユニット108では、基板9に対する様々な処理が施される。後述する基板処理装置は、複数の処理ユニット108のうちの1つである。センターロボット109は、インデクサロボット105との間で基板9の受け渡しを行う。また、センターロボット109は、処理ユニット108に基板9を搬入する搬入動作、および、基板9を処理ユニット108から搬出する搬出動作を行う。センターロボット109は、複数の処理ユニット108間での基板9の搬送も行う。基板9は、センターロボット109によって水平な姿勢で搬送される。
 図2は、第1の実施の形態に係る基板処理装置1の構成を示す図である。図2では、基板処理装置1の構成の一部を、所定の中心軸J1を含む面における断面にて示す。基板処理装置1は、基板9を1枚ずつ処理する枚葉式の装置である。基板処理装置1は、基板9の周縁部に対してウェットエッチングを行う。基板9の周縁部は、エッジ端面(apex)、ベベル部、並びに、後述の上面91および下面92におけるベベル部近傍の部位を含む。
 基板処理装置1は、基板保持部21と、基板回転機構22と、供給ヘッド3と、光照射部4と、液供給部5と、カバー部材6と、ハウジング11と、制御部8とを備える。基板保持部21、基板回転機構22、供給ヘッド3、光照射部4の一部、および、カバー部材6等は、ハウジング11の内部空間に収容される。制御部8は、ハウジング11の外部に配置され、基板処理装置1の各構成を制御する。制御部8は、例えば、CPU、メモリ等を有するコンピュータが所定のプログラムを実行することにより実現される。制御部8の一部または全部が、プログラマブルロジックコントローラ(PLC:Programmable Logic Controller)等により実現されてもよい。
 図2に示す基板保持部21および基板回転機構22は、略円板状の基板9を保持して回転させるスピンチャックの一部である。基板保持部21は、水平状態の基板9を下側から保持する。基板保持部21は、例えば、基板9を吸着して保持するバキュームチャックである。基板保持部21は、基板9の下側の主面(以下、「下面92」とも呼ぶ。)の中央部に接触して吸着する略円板状のベース部211を備える。ベース部211の直径は、基板9の直径よりも小さい。基板処理装置1の設計によっては、基板保持部21が、メカニカルチャック等により基板9を保持するものであってもよい。
 基板9の表面には、ルテニウム(Ru)を含有するルテニウム含有層93が設けられる。図2に示す例では、ルテニウム含有層93は、基板9の上側の主面(以下、「上面91」とも呼ぶ。)の全体に広がる膜状(すなわち、ルテニウム含有膜)である。図2では、ルテニウム含有層93を太線にて示す。ルテニウム含有層93は、ルテニウムを含む層であればよく、ルテニウムの単体の層以外に、ルテニウムの化合物を含む層であってもよい。ルテニウム含有層93は、例えば、基板9の上面91および/または下面92の全体に設けられる膜状であってもよく、基板9の表面の一部のみを覆うパターン状であってもよい。本実施の形態では、ルテニウム含有層93は、基板9の上面91全体に設けられるルテニウム含有膜であり、基板9の周縁部も当該ルテニウム含有膜により覆われている。また、ルテニウム含有層93は、その全体がルテニウムの単体により形成されているルテニウム膜である。図2の基板保持部21は、当該ルテニウム含有膜が形成された上面91を上側に向けた状態で基板9を下方から保持する。なお、ルテニウム含有層93と基板9との間に、拡散防止膜94等が設けられてもよい(後述の図7参照)。
 基板回転機構22は、基板保持部21の下方に配置される。基板回転機構22は、上下方向に略平行に延びる中心軸J1を中心として、基板9を基板保持部21と共に回転させる。基板回転機構22は、シャフト221と、モータ222とを備える。シャフト221は、中心軸J1を中心とする略円柱状または略円筒状の部材である。シャフト221は、上下方向に延び、基板保持部21のベース部211の下面中央部に接続される。モータ222は、シャフト221を回転させる電動回転式モータである。なお、基板回転機構22は、他の構造を有するモータ(例えば、中空モータ等)であってもよい。
 供給ヘッド3は、基板9の中央部の上方に配置される。供給ヘッド3は、基板9の上面91から上方に離間した位置にて、基板9の上面91と上下方向に対向する。供給ヘッド3は、ヘッド下部31と、ヘッド上部32と、センターノズル33とを備える。ヘッド下部31は、中心軸J1を中心とする略円環板状の部位である。ヘッド下部31の下面は、基板9の上面91と略平行に広がる略水平面であり、基板9の上面91と上下方向に対向する。平面視におけるヘッド下部31の外周縁の直径は、基板9の直径よりも小さい。ヘッド上部32は、中心軸J1を中心とする略円筒状の部位であり、ヘッド下部31の上面から上方へと延びる。ヘッド上部32は、ヘッド下部31を上側から支持する支持部でもある。ヘッド上部32には、アームが接続されており、モータ等を有する機構による当該アームの移動により、供給ヘッド3は、例えば上下方向および径方向(中心軸J1を中心とする径方向)に移動可能である。
 センターノズル33は、ヘッド下部31の中央部に設けられた貫通孔内に配置される。センターノズル33には、ヘッド上部32の内部に設けられた配管を介して処理液(ここでは、リンス液)が供給される。センターノズル33に供給されたリンス液は、センターノズル33から基板9の中央部に向けて吐出され、回転する基板9の上面91上を周縁部に向かって広がる。基板9の周縁部から飛散したリンス液は、ハウジング11の底面上にて回収され、廃液回収部12に排出される(後述のエッチング液についても同様)。リンス液は、例えば、DIW(脱イオン水)である。リンス液はDIWには限定されず、様々に変更されてよい。また、センターノズル33からは、リンス液以外の様々な種類の処理液が吐出されてもよい。
 光照射部4は、光源41と、光学系42とを有する。光源41は、ハウジング11の外部に配置される。光源41は、ルテニウムを励起させる光(すなわち、励起光)を出射する。当該光は、例えば、紫外線である。当該光の波長は、好ましくは270nm以下であり、より好ましくは264nm未満である(理由については後述する)。本実施の形態では、光源41は、レーザ光Lを出射するレーザであり、例えば、エキシマレーザ(KrF:波長248nm、ArF:波長193nm)、または、DUV-YAG四倍波レーザ(波長:266nm)等である。当該レーザのパワーは適宜決定されてよい。光源41は、半導体レーザ等であってもよい。ハウジング11の側面部には、窓部111が設けられており、窓部111は、光源41からのレーザ光Lに対して透過性を有する材料(例えば、石英ガラス等)により形成される。レーザ光Lは、窓部111を介してハウジング11内に入射する。図2では、レーザ光Lの経路を、同じ符号を付す一点鎖線にて示す(後述のレーザ光L1,L2の経路についても同様)。光源41から出射される光は、レーザ光以外であってもよい。
 光学系42は、ハウジング11の内部に配置され、ビームスプリッタ421と、複数の反射ミラー422,423,424とを備える。ハウジング11内に入射したレーザ光Lは、ビームスプリッタ421により2つの光線L1,L2(以下、同様に「レーザ光」という。)に分岐される。2つのレーザ光L1,L2のうち一方のレーザ光L1は、反射ミラー422にて反射し、基板9の斜め上方から上面91の周縁部に入射する。反射ミラー422と基板9との間のレーザ光L1の経路(光軸)は、基板9の上面91に対して傾斜する。また、他方のレーザ光L2は、反射ミラー423,424にて順に反射し、基板9の斜め下方から下面92の周縁部に入射する。反射ミラー424と基板9との間のレーザ光L2の経路(光軸)は、基板9の下面92に対して傾斜する。後述するように、レーザ光L1,L2は、カバー部材6を介して基板9の周縁部に照射される。図2の光照射部4の構成は一例に過ぎず、適宜変更されてよい。例えば、上面91の周縁部にレーザ光を照射する光源と、下面92の周縁部にレーザ光を照射する光源とが個別に設けられてもよい。この場合、ビームスプリッタ421の省略等、光学系42の構成を簡略化することが可能である。
 図3ないし図5は、カバー部材6の構造を説明するための図である。図3は、基板9の上方から下側を向いて見た、すなわち、平面視した基板9およびカバー部材6を示す。図4は、図3中の矢印IV-IVの位置(後述の上流側端部611)における基板9およびカバー部材6の断面を示す。図5は、図3中の矢印V-Vの位置(後述の下流側端部612)における基板9およびカバー部材6の断面を示す。
 図3に示すように、カバー部材6は、カバー部61と、液導入部62とを有する。カバー部61は、基板9の周縁部に沿って延びる円弧状の部位である。平面視した場合に、カバー部61は基板9の周縁部の一部と重なる。カバー部61は、上流側端部611と、下流側端部612とを有する。図3の例では、矢印A1にて示すように、基板9は反時計回りに回転しており、基板9の回転による周縁部の移動方向に関して、上流側端部611の下流側に下流側端部612が位置する。すなわち、基板9の周縁部の各部位は、カバー部61の位置を通過する際に、上流側端部611から下流側端部612に向かって移動する。
 図4および図5に示すように、径方向に平行な断面におけるカバー部61の形状は、基板9の周縁部に沿う円弧状である。換言すると、カバー部61は、基板9の周縁部を取り囲むようにC字状に湾曲した断面形状を有する。カバー部61において基板9の周縁部に対向する対向面616と、当該周縁部との間にはギャップ空間Gが形成される。カバー部61の対向面616と基板9の周縁部との間隔は、例えば0.5mm~1mmである。当該間隔は、後述のエッチング液の表面張力の大きさ等に応じて適宜変更されてよい。カバー部材6には、アームが接続されており、モータ等を有する機構による当該アームの移動により、カバー部材6は、例えば上下方向および径方向に移動可能である。
 図3および図4に示すように、液導入部62は、管状であり、カバー部61の上流側端部611から径方向外方に向かって延びる。液導入部62の一端は、カバー部61の対向面616において開口し、ギャップ空間Gに接続する。液導入部62の他端には、液供給部5からエッチング液が供給される。これにより、エッチング液71がギャップ空間Gに注入され、ギャップ空間Gがエッチング液71により満たされた状態(液密状態)となる。換言すると、液供給部5により、カバー部材6を介して基板9の周縁部にエッチング液71が供給される。既述のように、基板9の周縁部の各部位は、上流側端部611、すなわち、液導入部62の開口側からカバー部61内(ギャップ空間G)に進入する。
 ここで、液供給部5により供給されるエッチング液71は、塩素系電解液であり、塩素および水(溶媒)を含む。エッチング液71の一例は、塩化水素(HCl)または塩化アンモニウム(NHCl)等を溶質として含む水溶液である。当該溶質の濃度は、例えば、0.7wt%以上であり、好ましくは、1.8wt%以上である。当該溶質の濃度の上限は、特に限定されないが、例えば、3.6wt%である。エッチング液71は、界面活性剤を含んでもよい。界面活性剤の一例は、エタノールまたはイソプロピルアルコール(IPA)等である。また、後述する理由により、エッチング液71は、酸化剤を含まない。本明細書における酸化剤は、ルテニウムと反応してルテニウム酸化物を生成するものである。
 図5に示すカバー部61は、光照射部4からのレーザ光L1,L2に対して透過性を有する材料(例えば、石英ガラス等)により形成される。また、エッチング液71も、レーザ光L1,L2に対して透過性を有する。レーザ光L1,L2は、カバー部61の下流側端部612、および、ギャップ空間Gのエッチング液71を介して基板9の周縁部に照射される。図5に示す基板9の断面において、レーザ光L1の照射範囲は、基板9のエッジ端面から上面91におけるベベル部近傍の部位まで広がる。また、レーザ光L2の照射範囲は、基板9のエッジ端面から下面92におけるベベル部近傍の部位まで広がる。エッジ端面では、レーザ光L1の照射範囲とレーザ光L2の照射範囲とが重なる。したがって、基板9の断面において、上面91におけるベベル部近傍の部位からエッジ端面を経由して下面92におけるベベル部近傍の部位までの範囲、すなわち、当該断面における周縁部の全体が、レーザ光L1,L2の照射範囲に含まれる。
 後述の処理では、基板9上のルテニウム含有層93のうち、レーザ光が照射される部位がエッチングされる。したがって、基板9の周縁部において、上面91側または下面92側の一方のみにルテニウム含有層93が存在する場合には、一方のレーザ光L1,L2のみが利用されてもよい。カバー部材6では、カバー部61と液導入部62とが同じ材料により一体的に形成されてもよく、両者が別体として形成されてもよい。カバー部61と液導入部62とが別体として形成される場合、両者が異なる材料により形成されてもよい。
 次に、基板処理装置1における基板9の処理の流れについて、図6を参照しつつ説明する。基板9が処理される際には、まず、基板処理装置1に基板9が搬入され、基板保持部21により略水平に保持される(ステップS11)。これにより、表面にルテニウム含有層93(本実施の形態では、ルテニウム膜)が存在する基板9が準備される。ステップS11では、基板9の中心と中心軸J1とが平面視において一致するように、基板9の位置が調整される。基板9の搬入時には、供給ヘッド3およびカバー部材6は、基板9の搬出入を阻害しない退避位置(例えば、平面視において基板9から径方向外方に離間した位置)に配置される。基板9が基板保持部21により保持されると、基板回転機構22による基板9の回転が開始される。また、カバー部材6が、上述の退避位置から図2に示す位置へと移動され、カバー部61の対向面616と、基板9の周縁部との間にギャップ空間Gが形成される。
 続いて、制御部8が液供給部5を制御することにより、カバー部材6の液導入部62へのエッチング液71の導入が開始され、カバー部61の上流側端部611においてギャップ空間Gにエッチング液71が供給される。ギャップ空間G内のエッチング液71は、基板9の回転により周縁部の移動方向における下流側に運ばれ、カバー部61の下流側端部612の下流側においてギャップ空間Gの外部に排出される。排出されたエッチング液71は、遠心力により振り切られ、基板9の周縁部から径方向外方に飛散する。実際には、液供給部5がギャップ空間Gにエッチング液71を連続的に供給することにより、ギャップ空間Gがエッチング液71により満たされた状態が維持される。このようにして、エッチング液71が基板9の周縁部上のルテニウム含有層93と接触する(ステップS12)。なお、エッチング液71が接触するのみでは、ルテニウム含有層93のエッチングはほとんど進行しない。
 このとき、基板9の回転による遠心力により、周縁部に付着したエッチング液71が径方向内方に向かって流れることが抑制される。また、中心軸J1を中心とする周方向においてエッチング液71が広がる範囲は、カバー部61と対向する周縁部の範囲におよそ制限される。基板処理装置1では、図2の位置に配置された供給ヘッド3から基板9の中央部に向かって不活性ガス(例えば、窒素ガス)が噴出され、周縁部に付着したエッチング液71が径方向内方に向かって流れることがより確実に抑制されてもよい。また、基板9の回転速度は、ギャップ空間Gにエッチング液71を充填することが可能な範囲にて適宜変更されてよい。
 続いて、制御部8が光照射部4を制御することにより、光照射部4からのレーザ光L1,L2が、カバー部61の下流側端部612、および、ギャップ空間Gのエッチング液71を介して基板9の周縁部に連続的に照射される(ステップS13)。換言すると、エッチング液71が接触しているルテニウム含有層93にレーザ光L1,L2が照射される。このとき、基板9が回転していることにより、基板9の周縁部において、エッチング液71に接触し、かつ、レーザ光L1,L2が照射される部位が、周方向に沿って順に切り替わる。レーザ光L1,L2の照射は、間欠的(パルス照射)であってもよい。
 図7は、基板9の一部を示す断面図である。図7の例では、ルテニウム含有層93と基板9の本体との間に、拡散防止膜94等が設けられる。既述のように、レーザ光L1,L2は、ルテニウムを励起させる励起光であり、レーザ光L1,L2の照射による光電効果により、図7に示すように、ルテニウム含有層93に含まれるルテニウムの表面から光電子(e)が放出され、ホール(h)が形成される。そして、エッチング液71がホールと反応し、ルテニウム含有層93のエッチングが進行する。
 ルテニウム含有層93のエッチングに係る化学反応は必ずしも明確ではないが、
 Ru+HCl+h→(Ru(III)-Cl(aq))+H・・・(1)
 2H+2e→H・・・(2)
で表される反応が生じていると想定される。上記化学反応式(1)において、(Ru(III)-Cl(aq))は、ルテニウムおよび塩素を含む水溶性化合物(以下、「Ru-Cl水溶性化合物」という。)を示す。Ru-Cl水溶性化合物は、RuCl2+、RuCl 、RuCl、RuCl 等である。
 反応生成物であるRu-Cl水溶性化合物は、エッチング液71に溶解し、エッチング液71と共に基板9上から排除される。これにより、ルテニウムおよび塩素を含む生成物が、基板9の表面に残留することが抑制される。典型的には、Ru-Cl水溶性化合物は、毒性を有しない。また、エッチング液71が酸化剤を含まないため、ガス状の四酸化ルテニウム(RuO)が生成されることはない。仮に、次亜塩素酸ナトリウム等の酸化剤を含むエッチング液を用いる場合、ルテニウム含有層93の表面に二酸化ルテニウム(RuO)の層が生成され、エッチングレートが大幅に低下する、または、エッチングが不十分となることがある。一方、次亜塩素酸および次亜塩素酸の塩類を含まない上記エッチング液71では、二酸化ルテニウムの層が生成されることが抑制または防止される。
 また、本実施の形態では、エッチング液71が界面活性剤(ここでは、エタノール)を含んでいることにより、エッチング後のルテニウム含有層93の表面に大きな凹凸が生じることが抑制または防止される。この理由は、必ずしも明確ではないが、界面活性剤を含まないエッチング液71では、生成される水素ガス(H)(上記化学反応式(2)参照)が、ルテニウム含有層93の表面において気泡として滞留(存在)して、ルテニウムのエッチングの進行を阻害するのに対し、界面活性剤の存在により表面張力が低下したエッチング液71では、水素の気泡の滞留が抑制されるためであると考えられる。
 通常、ルテニウムの表面にホール(h)を形成するには、ルテニウムの仕事関数(4.71eV)よりも大きい光子エネルギが必要であり、この場合、ルテニウムに照射される光の波長は264nm未満であることが求められる。一方、L I Korshunov、外2名による「The Photoelectric Effect at the Metal-Electrolyte Boundary」(Russian Chemical Reviews、1971年、40巻、8号、699-714頁)(上記文献3)に記載のように、物質表面を極性溶液が覆う場合に、光電効果における仕事関数が低下することが知られている。したがって、ルテニウム含有層93の表面がエッチング液71により覆われる本処理例では、光照射部4からのレーザ光L1,L2の波長が、264nm以上である場合でも、ルテニウムの表面から光電子が放出される。ルテニウム含有層93の表面においてホールをより確実に形成するという観点では、レーザ光L1,L2の波長が、270nm以下であることが好ましく、264nm未満であることがより好ましい。
 基板9の周縁部に対するレーザ光L1,L2(励起光)の照射開始から所定の時間が経過すると、周縁部に対するエッチング液71の供給、および、レーザ光L1,L2の照射が停止される。これにより、ルテニウム含有層93のエッチングが停止される。その後、カバー部材6は、図2に示す位置から、上述の退避位置へと移動する。なお、基板9の周縁部を撮像するカメラ等が設けられ、撮像画像に基づいて周縁部に対するエッチングの終点が自動的に検出されてもよい(以下同様)。
 続いて、供給ヘッド3が図2に示す位置に配置され(事前に配置されていてもよい。)、センターノズル33から基板9の上面91の中央部にリンス液が供給される。また、基板回転機構22による基板9の回転速度が増大される。これにより、リンス液が基板9の上面91全体に広がり、基板9の周縁部に付着しているエッチング液71等を洗い流すリンス処理が行われる(ステップS14)。リンス液は、基板9の回転による遠心力によって基板9の周縁部から径方向外方へと飛散し、廃液回収部12により回収される。
 基板9に対するリンス処理が所定の時間行われると、センターノズル33からのリンス液の供給が停止される。その後、基板9の回転速度がさらに増大され、基板9上のリンス液が振り切られて除去される。すなわち、基板9の乾燥処理が行われる(ステップS15)。基板9の乾燥処理が終了すると、基板9の回転が停止され、基板9が基板処理装置1から搬出される。なお、基板9のリンス処理および乾燥処理は、上述の例とは異なる方法により行われてもよい。
 図8は、第2の実施の形態に係る基板処理装置1aの構成を示す図である。基板処理装置1aでは、図2の基板処理装置1と比較して、カバー部材6が省略される。また、液供給部5が、供給ヘッド3のセンターノズル33に接続され、センターノズル33から、エッチング液71およびリンス液が選択的に吐出される。基板処理装置1aの他の構成は、基板処理装置1と同様であり、同じ構成に同じ符号を付す。
 本実施の形態では、基板9の上面91全体にルテニウム含有層93が設けられ、ルテニウム含有層93上に保護膜97が設けられる。保護膜97は、例えばSOG(spin-on-glass)膜であり、基板9の上面91において周縁部を除く領域全体に設けられる。保護膜97の平面視における形状は略円形である。
 基板処理装置1aにおける基板9の処理の流れは、上述のリンス処理(ステップS14)と乾燥処理(ステップS15)との間において、図9に示すステップS21,S22が行われる点を除き、図6に示すものと同様である。具体的には、まず、ルテニウム含有層93上に上述の保護膜97が設けられた基板9が、基板保持部21に保持されて準備される(図6:ステップS11)。また、基板回転機構22により基板9の回転が開始される。
 続いて、制御部8が液供給部5を制御することにより、供給ヘッド3のセンターノズル33から基板9の上面91の中央部に向けてエッチング液71が連続的に吐出される。エッチング液71は、基板9の回転による遠心力によって保護膜97上を径方向外方へと広がり、基板9の周縁部において、保護膜97から露出しているルテニウム含有層93に接触する(ステップS12)。エッチング液71は、基板9の下面92側にも回り込み、周縁部のほぼ全体がエッチング液71に覆われる。また、制御部8が光照射部4を制御することにより、光照射部4からのレーザ光L1,L2が、エッチング液71を介して基板9の周縁部に照射される(ステップS13)。これにより、ルテニウム含有層93に含まれるルテニウムの表面にホールが形成され、エッチング液71がホールと反応して、ルテニウム含有層93のエッチングが進行する。このとき、ルテニウム含有層93のうち保護膜97に被覆されている領域はエッチングされない。
 基板9の周縁部に対するレーザ光L1,L2の照射開始から所定の時間が経過すると、エッチング液71の供給、および、レーザ光L1,L2の照射が停止される。これにより、ルテニウム含有層93のエッチングが停止される。続いて、センターノズル33から基板9の中央部にリンス液が供給されるとともに、基板回転機構22による基板9の回転速度が増大され、リンス処理が行われる(ステップS14)。
 基板9に対するリンス処理が所定の時間行われると、基板9に対するリンス液の供給が停止され、基板9からの保護膜97の除去が行われる(図9:ステップS21)。上述のように、保護膜97がSOG膜である場合、ステップS21では、例えば、フッ化水素(HF)が保護膜97に供給されることにより保護膜97が除去される。フッ化水素は、センターノズル33から吐出されてもよく、専用のノズルから吐出されてもよい。なお、保護膜97の種類、および、保護膜97の除去方法は様々に変更されてよい。
 保護膜97の除去が終了すると、センターノズル33から基板9の中央部にリンス液が供給され、基板9のリンス処理が行われる(ステップS22)。その後、基板9の回転速度が増大され、基板9の乾燥処理が行われる(図6:ステップS15)。基板9の乾燥処理が終了すると、基板9の回転が停止され、基板9が基板処理装置1aから搬出される。
 以上に説明したように、第1および第2の実施の形態に係る基板処理方法は、ルテニウム含有層93が表面に設けられた基板9を準備する工程(ステップS11)と、塩素および水を含み、酸化剤を含まないエッチング液71を基板9上のルテニウム含有層93に接触させる工程(ステップS12)と、エッチング液71が接触しているルテニウム含有層93に対して、ルテニウムを励起させる励起光を照射する工程(ステップS13)とを備える。これにより、毒性を有するガス状の四酸化ルテニウムや、エッチングが困難な二酸化ルテニウムの層が生成されることなく、ルテニウム含有層93を適切にエッチングすることができる。
 上記第1および第2の実施の形態では、ステップS12において、エッチング液71が基板9の周縁部に接触し、ステップS13において、当該周縁部に励起光が照射される。これにより、周縁部のルテニウム含有層93のみを適切に(すなわち、周縁部以外におけるルテニウム含有層93がエッチングされることなく)エッチングすることができる。
 好ましくは、ステップS13において、ルテニウムおよび塩素を含む水溶性化合物が生成される。これにより、生成物をエッチング液71と共に基板9上から排除し、ハウジング11の外部に排出することができる。その結果、ルテニウムを含む生成物が基板9上およびハウジング11内に残存することを抑制して、四酸化ルテニウムの発生をより確実に防止または抑制することができる。
 好ましくは、エッチング液71が界面活性剤を含む。これによりエッチング後の表面の凹凸を低減する、すなわち、均一なエッチングを実現することができる。
 好ましくは、上記励起光の波長が270nm以下である。これにより、ルテニウム含有層93をより確実にエッチングすることができる。なお、ルテニウムを励起させることが可能であるならば、励起光の波長が270nmより大きくてもよい。
 第1および第2の実施の形態に係る基板処理装置1は、ルテニウム含有層93が表面に設けられた基板9を保持する基板保持部21と、塩素および水を含み、酸化剤を含まないエッチング液71を基板9上に供給して、ルテニウム含有層93に接触させる液供給部5と、エッチング液71が接触しているルテニウム含有層93に対して、ルテニウムを励起させる励起光を照射する光照射部4とを備える。これにより、ガス状の四酸化ルテニウム等が生成されることなく、ルテニウム含有層93を適切にエッチングすることができる。
 図10は、第3の実施の形態に係る基板処理装置1bの構成を示す図である。基板処理装置1bは、基板9の上面91の配線部に対してウェットエッチングを行う装置である。基板処理装置1bでは、図2の基板処理装置1と比較して、カバー部材6が省略されるとともに、液供給部5(図示省略)が供給ヘッド3のセンターノズル33に接続される。また、光照射部4aがハウジング11の上方に配置され、光照射部4aを移動する照射部移動機構49が設けられる。基板処理装置1bの他の構成は、基板処理装置1と同様であり、同じ構成に同じ符号を付す。
 光照射部4aは、光源および光学系を含み、ルテニウムを励起させる光(すなわち、励起光)を出射する。ハウジング11の上面部には、窓部112が設けられており、窓部112は、光照射部4aからの光に対して透過性を有する材料(例えば、石英ガラス等)により形成される。当該光は窓部112を介してハウジング11内に入射し、基板保持部21に保持された基板9の上面91において所定の大きさの領域に照射される。照射部移動機構49は、モータ等を駆動源として有し、上面91に略平行、かつ、互いに交差する2方向に光照射部4aを移動可能である。これにより、図11に示すように、基板9の上面91を分割した複数の分割領域911のそれぞれに対して、光照射部4aからの光が照射される。
 図12Aおよび図12Bは、基板9の上面91に設けられるルテニウム含有層93を示す断面図である。基板9上には絶縁膜95が設けられており、配線パターンである配線部96が絶縁膜95中に形成される。配線部96と絶縁膜95との間には、例えば、窒化タンタル(TaN)により形成された拡散防止膜94が設けられる。図12Aの左側の例では、配線部96の本体(配線本体)がルテニウム含有層93である。図12Bの左側の例では、配線部96の本体は、銅(Cu)等により形成される金属部961であり、金属部961の側面および底面を被覆する金属膜(例えば、ライナー膜)が、ルテニウム含有層93である。
 次に、基板処理装置1bにおける基板9の処理の流れについて、図6に準じて説明する。まず、ルテニウム含有層93を上面91に有する基板9が、基板保持部21に保持されて準備される(ステップS11)。続いて、供給ヘッド3のセンターノズル33から基板9の上面91の中央部に向けてエッチング液71が一定時間吐出され、その後、エッチング液71の吐出が停止される。これにより、水平状態で保持された基板9の上面91上に、エッチング液71のパドル(エッチング液71の液膜)が形成され、エッチング液71が上面91のルテニウム含有層93に接触した状態が維持される(ステップS12)。典型的には、エッチング液71のパドルは、上面91の全体を覆う。エッチング液71のパドルの形成では、基板9が低速で回転されてもよい。
 供給ヘッド3が退避位置に移動した後、基板9の回転が停止した状態で、複数の分割領域911に対して、光照射部4aから光が順次照射される(ステップS13)。すなわち、エッチング液71が接触しているルテニウム含有層93に対して励起光が照射される。これにより、ルテニウム含有層93に含まれるルテニウムの表面にホールが形成され、エッチング液71がホールと反応して、ルテニウム含有層93のエッチングが進行する。図12Aの右側の例では、ルテニウム含有層93がエッチングされ、リセスが形成される。図12Bの右側の例では、金属部961およびルテニウム含有層93がエッチングされ、リセスが形成される。
 複数の分割領域911に対する励起光の照射が所定回数行われると、供給ヘッド3が図10に示す位置に戻され、センターノズル33から基板9の中央部にリンス液が供給される。また、基板回転機構22により基板9の回転が開始される。これにより、基板9上のエッチング液71等を洗い流すリンス処理が行われる(ステップS14)。
 基板処理装置1bにおける基板9の処理では、リンス処理後、センターノズル33からIPA等の有機溶剤が基板9の上面91の中央部に供給されることが好ましい。このように、リンス液を表面張力が小さい有機溶剤に置換することにより、基板9の乾燥時におけるパターンの倒壊が防止される。センターノズル33からの有機溶剤の供給が停止された後、基板9の回転速度がさらに増大され、基板9の乾燥処理が行われる(ステップS15)。基板9の乾燥処理が終了すると、基板9の回転が停止され、基板9が基板処理装置1から搬出される。
 以上に説明したように、第3の実施の形態に係る基板処理方法は、ルテニウム含有層93が表面に設けられた基板9を準備する工程(ステップS11)と、塩素および水を含み、酸化剤を含まないエッチング液71を基板9上のルテニウム含有層93に接触させる工程(ステップS12)と、エッチング液71が接触しているルテニウム含有層93に対して、ルテニウムを励起させる励起光を照射する工程(ステップS13)とを備える。これにより、ガス状の四酸化ルテニウム等が生成されることなく、ルテニウム含有層93を適切にエッチングすることができる。
 上記第3の実施の形態では、ルテニウム含有層93が基板9の上面91に設けられる。そして、ステップS12において、エッチング液71のパドルが基板9の上面91に形成され、ステップS13において、当該上面91に励起光が照射される。これにより、上面91の配線部96に含まれるルテニウム含有層93を適切にエッチングすることができる。もちろん、基板9の周縁部にも励起光が照射され、周縁部のルテニウム含有層93がエッチングされてもよい。
 ところで、上記リセスを、仮にドライエッチングにより形成する場合、その異方性により、側面に沿ってエッチング残差(サイドエフェクト)が生じることがある。これに対し、上記基板処理方法では、等方性を有するウエットエッチングが行われるため、エッチング残差の発生を抑制する、換言すると、エッチング深さの均一性を確保することができる。
 上記基板処理方法および基板処理装置1,1a,1bでは様々な変形が可能である。
 エッチング液71の種類等によっては、ステップS13にて生成される生成物は、ルテニウムおよび塩素を含む水溶性化合物以外であってもよい。また、エッチング液71が界面活性剤を含まなくてもよい。
 基板9の周縁部のルテニウム含有層93をエッチングする基板処理装置1,1aにおいて、基板9の側方、または、下面92側にノズルが設けられ、当該ノズルから周縁部にエッチング液が供給されてもよい。また、ルテニウム含有層93が設けられた主面を下方に向けた状態で、基板9が基板保持部21に保持されてもよい。
 基板処理装置1,1aにおいて、複数のカバー部材6が周方向に配列され、各カバー部材6において基板9の周縁部に対するエッチング液71の供給、および、励起光の照射が行われてもよい。さらに、図10のように、光照射部4aが移動することにより、停止した基板9の周縁部に対して励起光が照射されてもよい。
 基板9の上面91のルテニウム含有層93をエッチングする基板処理装置1bにおいて、例えば、基板9の中央部から径方向外方に延びる線状領域に励起光を照射する光照射部が設けられ、基板9を回転することにより、上面91の略全体に励起光が照射されてもよい。この場合に、エッチング液71が基板9の上面91に連続的に供給されてもよい。
 基板処理装置1,1a,1bでは、エッチング液71を加熱するヒータが設けられてもよい。当該ヒータの一例は、基板9の周縁部の下方に配置されて基板9の下面92と対向する電熱ヒータである。
 基板処理装置1,1a,1bにおいて処理が行われる基板は半導体基板には限定されず、ガラス基板や他の基板であってもよい。また、基板の形状は、円板状以外であってもよい。
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。
 1,1a,1b  基板処理装置
 4,4a  光照射部
 5  液供給部
 9  基板
 21  基板保持部
 71  エッチング液
 91  (基板の)上面
 93  ルテニウム含有層
 S11~S15,S21,S22  ステップ

Claims (7)

  1.  基板処理方法であって、
     a)ルテニウム含有層が表面に設けられた基板を準備する工程と、
     b)塩素および水を含み、酸化剤を含まないエッチング液を前記基板上の前記ルテニウム含有層に接触させる工程と、
     c)前記エッチング液が接触している前記ルテニウム含有層に対して、ルテニウムを励起させる励起光を照射する工程と、
    を備える基板処理方法。
  2.  請求項1に記載の基板処理方法であって、
     前記c)工程において、ルテニウムおよび塩素を含む水溶性化合物が生成される基板処理方法。
  3.  請求項1に記載の基板処理方法であって、
     前記エッチング液が界面活性剤を含む基板処理方法。
  4.  請求項1に記載の基板処理方法であって、
     前記励起光の波長が270nm以下である基板処理方法。
  5.  請求項1ないし4のいずれか1つに記載の基板処理方法であって、
     前記b)工程において、前記エッチング液が前記基板の周縁部に接触し、
     前記c)工程において、前記周縁部に前記励起光が照射される基板処理方法。
  6.  請求項1ないし4のいずれか1つに記載の基板処理方法であって、
     前記ルテニウム含有層が前記基板の一の主面に設けられ、
     前記b)工程において、前記エッチング液のパドルが前記基板の前記主面に形成され、
     前記c)工程において、前記主面に前記励起光が照射される基板処理方法。
  7.  基板処理装置であって、
     ルテニウム含有層が表面に設けられた基板を保持する基板保持部と、
     塩素および水を含み、酸化剤を含まないエッチング液を前記基板上に供給して、前記ルテニウム含有層に接触させる液供給部と、
     前記エッチング液が接触している前記ルテニウム含有層に対して、ルテニウムを励起させる励起光を照射する光照射部と、
    を備える基板処理装置。
PCT/JP2023/040039 2022-11-09 2023-11-07 基板処理方法および基板処理装置 WO2024101350A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022179859A JP2024069069A (ja) 2022-11-09 2022-11-09 基板処理方法および基板処理装置
JP2022-179859 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024101350A1 true WO2024101350A1 (ja) 2024-05-16

Family

ID=91032441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040039 WO2024101350A1 (ja) 2022-11-09 2023-11-07 基板処理方法および基板処理装置

Country Status (2)

Country Link
JP (1) JP2024069069A (ja)
WO (1) WO2024101350A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353191A (ja) * 2001-05-22 2002-12-06 Toshiba Corp 半導体基板上の導電膜の除去方法および除去装置
JP2021158300A (ja) * 2020-03-30 2021-10-07 東京エレクトロン株式会社 基板処理装置および基板処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353191A (ja) * 2001-05-22 2002-12-06 Toshiba Corp 半導体基板上の導電膜の除去方法および除去装置
JP2021158300A (ja) * 2020-03-30 2021-10-07 東京エレクトロン株式会社 基板処理装置および基板処理方法

Also Published As

Publication number Publication date
JP2024069069A (ja) 2024-05-21

Similar Documents

Publication Publication Date Title
TWI667708B (zh) 蝕刻後聚合物及硬遮罩移除之加強型移除用方法及硬體
US7921859B2 (en) Method and apparatus for an in-situ ultraviolet cleaning tool
US8183500B2 (en) Orthogonal beam delivery system for wafer edge processing
US6964724B2 (en) Etching and cleaning methods and etching and cleaning apparatuses used therefor
JP4986565B2 (ja) 基板処理方法および基板処理装置
JP2008071875A (ja) 基板処理装置、液膜凍結方法および基板処理方法
JP7233294B2 (ja) 基板処理方法、半導体製造方法、および、基板処理装置
JP6336022B1 (ja) めっき装置、めっき方法、及びコンピュータ読み取り可能な記録媒体
JP2008098440A (ja) 半導体装置の洗浄装置及び洗浄方法
WO2024101350A1 (ja) 基板処理方法および基板処理装置
TWI753353B (zh) 基板處理方法以及基板處理裝置
KR20060037819A (ko) 웨이퍼 에지의 베벨 식각 장치 및 그를 이용한 베벨 식각방법
TWI679694B (zh) 基板處理方法、基板處理裝置、基板處理系統及記憶媒體
KR102648039B1 (ko) 기판 처리 방법 및 기판 처리 장치
TWI716854B (zh) 基板處理方法以及基板處理裝置
JP2005142309A (ja) 基板の洗浄方法、洗浄装置および洗浄システム
JP2009117597A (ja) 基板処理装置および基板処理方法
JP3976088B2 (ja) 基板処理装置
TWI828373B (zh) 基板處理方法及基板處理裝置
JP2004111775A (ja) 基板処理方法および基板処理装置
JP2024006600A (ja) ウェーハの処理方法及び処理装置
TW202331824A (zh) 基板處理方法及基板處理裝置
JP2024075336A (ja) 基板処理装置および基板処理方法
TW202043544A (zh) 使用受照射蝕刻溶液之材料粗糙度縮減用的處理系統及平台
JP2009081370A (ja) 基板洗浄方法および基板洗浄装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888697

Country of ref document: EP

Kind code of ref document: A1