WO2024100907A1 - リニアモータ - Google Patents
リニアモータ Download PDFInfo
- Publication number
- WO2024100907A1 WO2024100907A1 PCT/JP2022/043175 JP2022043175W WO2024100907A1 WO 2024100907 A1 WO2024100907 A1 WO 2024100907A1 JP 2022043175 W JP2022043175 W JP 2022043175W WO 2024100907 A1 WO2024100907 A1 WO 2024100907A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- linear motor
- armature
- teeth
- field
- poles
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 5
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
Definitions
- This disclosure relates to a linear motor with reduced cogging force (cogging thrust).
- FIG. 7 is a cross-sectional view of linear motors 130 and 131 in Patent Document 1, which uses an example of an 8-pole, 9-slot, gap-facing type linear motor.
- the linear motor 130 has a stator 115 having a plurality of field poles (permanent magnets) 102 with alternating polarities on a flat field yoke 101, and an armature 103 (also called a mover) arranged to face the surface of the permanent magnet 102 with a gap therebetween.
- the armature 103 runs in the longitudinal direction of the stator 115.
- the armature 103 has an armature core 111 , a coil 107 , and a slot 105 .
- the armature core 111 has the main teeth 104, a yoke portion 106, and two auxiliary teeth 112 on both sides.
- the coil 107 is wound around the main teeth 104. There is a gap 120 between each of the two auxiliary teeth 112 and the coil 107.
- FIG. 7A shows the structure of a linear motor 130 in which the length Ht of the main teeth 104 is fixed and the length Hd of the auxiliary teeth 112 is variable.
- Figure 7 (b) shows the structure of a reference linear motor 131.
- the length Ht of the main teeth 104 and the length Hd of the auxiliary teeth 112 are the same.
- the other configurations are the same as the structure of the linear motor 131.
- the distance between the centers of the two auxiliary teeth 112 provided at both ends of the armature 103 is also called the armature core length, and the center distance of the permanent magnets 102 is called the field pole pitch.
- the armature core length of linear motor 130 is defined as ⁇ p
- the armature core length of linear motor 131 is defined as ⁇ p0 .
- Fig. 8 is Fig. 2 of Patent Document 1.
- Fig. 8 shows the analysis result of calculating the cogging thrust by numerical analysis (three-dimensional finite element analysis) using the armature core length ratio ⁇ p / ⁇ po and the auxiliary teeth ratio Hd/Ht as parameters.
- FIG. 8 shows the contour lines where the cogging thrust is zero.
- Patent Document 1 discloses that, as shown in FIG. 8, when the armature core length ⁇ p satisfies the following formula 2 (m and n are integers), the cogging force can be reduced to approximately zero. (2m-1) ⁇ m /8 ⁇ p ⁇ (2n-1) ⁇ m /2 (Equation 2)
- FIG. 9 is a diagram showing the seven positions in FIG. 2 of Patent Document 1, where the cogging thrust was calculated by three-dimensional finite element analysis (JMAG ver. 17). Table 1 shows the results.
- linear motor 130 in Patent Document 1 is defined by Equation 2, which creates gap 120 between coil 107 at the end of linear motor 130 and auxiliary teeth 112, increasing the width of linear motor 130 by about 5% to 15%. With integer multiples of m and n, it is difficult to actually reduce the size of linear motor 130. In addition, since the increase in thrust is due to the relationship between the main teeth 104 and the permanent magnets 102, it has been confirmed that the auxiliary teeth 112 can only suppress the effect on cogging or thrust ripple. Therefore, the linear motor 130 of Patent Document 1 simply increases the distance between the auxiliary teeth 112 and the main teeth 104, which has almost no effect on increasing thrust and simply increases the width of the linear motor 130. The present disclosure focuses on the above-mentioned problems of the conventional technology and provides a linear motor with reduced cogging thrust and a small-sized linear motor.
- the linear motor according to one embodiment of the present disclosure can reduce the cogging thrust.
- the linear motor can be made smaller.
- FIG. 1A and 1B are diagrams showing an outline of a linear motor according to one embodiment of the present disclosure, in which FIG. 1A is a schematic overall perspective view of the linear motor, and FIG. 1B is a schematic side view of the linear motor.
- FIG. 1 is a schematic exploded perspective view of a linear motor according to one embodiment of the present disclosure.
- 1 is a schematic cross-sectional view of a linear motor according to one embodiment of the present disclosure.
- 1A and 1B are schematic diagrams of a stator according to one embodiment of the present disclosure, in which (a) is a schematic plan view of connected stators, (b) is a schematic plan view of one stator, and (c) is a schematic cross-sectional view of the stator.
- FIG. 11 is a graph showing the relationship between the ratio Hd/Ht and the cogging thrust.
- 13 is a graph showing the cogging thrust when Bd is changed.
- 1A and 1B are schematic cross-sectional views of the linear motor of Patent Document 1, in which (a) is a diagram of a linear motor in which the ratio Hd/Ht is changed, and (b) is a diagram of a reference linear motor.
- 1 is a graph showing the cogging thrust force of Patent Document 1.
- FIG. 9 is a diagram showing the positions of seven representative points in FIG. 8 (the seven representative points correspond to the seven points in FIG. 5).
- FIG. 1 is a diagram illustrating a schematic of a linear motor 10 according to one embodiment of the present disclosure.
- a linear motor 10 has an armature 3 and a stator 15 (15a, 15b, 15c).
- the stator 15 includes three stators, ie, a stator 15a, a stator 15b, and a stator 15c, which are connected in a row.
- the armature 3 and the stator 15 are disposed opposite each other with an air gap Ha therebetween.
- the armature 3 has an armature core 11 and a coil 7.
- the stator 15b has a field yoke 1 and field poles (permanent magnets) 2.
- FIG. 3 is a schematic cross-sectional view of the linear motor 10.
- the armature 3 is arranged close to each other on the stator 15b.
- the armature core 11 has main teeth 4, slots 5, and two auxiliary teeth 12 on both sides.
- the coil 7 is wound around the main teeth 4. There are no gaps 20 between each of the two auxiliary teeth 12 and the coil 7. This allows the longitudinal length of the armature 3 to be shortened.
- the linear motor 10 of the present disclosure has 12 poles and 9 slots as a representative example, as shown in Fig. 3. However, it can also accommodate other numbers of pole pairs, such as 8 poles and 6 slots.
- ⁇ pN is the armature core length
- L is the main teeth pitch (distance between the centers of the main teeth).
- ⁇ m is the pitch between field poles (distance between the centers of the permanent magnets 2).
- Ct is the coil width
- Bt is the main teeth width.
- the width Bd of the auxiliary teeth 12 is half the main teeth width Bt .
- the maximum value of the coil width Ct is (L- Bt )/2.
- the height of the main teeth 4 is defined as Ht
- the length of the auxiliary teeth 12 is defined as Hd.
- the armature core length ⁇ pN is newly defined by the following formula 1, and by making the linear motor 10 satisfy the formula 1, it is possible to provide a linear motor 10 with a reduced cogging thrust compared to Patent Document 1.
- the linear motor 10 of the present disclosure can be made compact.
- the number of field poles 2 is defined as p
- the number of slots 5 is defined as s.
- ⁇ pN has the smallest value because there is no gap 20 between the coil 7 and the auxiliary teeth 12.
- ⁇ pN is 180 mm.
- FIG. 5 is a graph in which the horizontal axis represents the ratio Hd/Ht and the vertical axis represents the cogging thrust.
- Hd/Ht seven points in Patent Document 1 in Fig. 9 and Table 1 are plotted.
- ⁇ 0.98 * 1.00 on the right side of Fig. 5 means that ⁇ p / ⁇ p0 is 0.98 and the ratio Hd / Ht is 1.00.
- Other notations have similar meanings.
- ⁇ pN which satisfies Equation 1 of the present disclosure.
- the cogging thrust at No. 7 ( ⁇ : 1.04*0.75) is the lowest at 27.1 N.
- ⁇ pN that satisfies the formula 1 of the present disclosure
- the ratio Hd/Ht is 0.5 or more and 0.8 or less
- the cogging thrust is about 10 to 15 N, which is smaller than the cogging thrust in Patent Document 1.
- the ratio Hd/Ht 0.65
- the cogging thrust becomes 10.2 N, which is desirable.
- FIG. 4 is a schematic diagram of the stator 15 of the linear motor 10. As shown in Fig. 4(a), the stator 15 is composed of a row of stators 15a, 15b, and 15c, each of which has a length of L1. The armature 3 moves linearly on the stator 15. In Fig. 4, three stators, 15a, 15b, and 15c, are connected, but the stator 15 may be lengthened by connecting any number of stators.
- FIG. 4B is a schematic plan view of one stator 15c.
- the length of the stator 15c is L1, which is, for example, 270 mm, and the width of the stator 15b is D1, which is, for example, 75 mm.
- the multiple field poles (permanent magnets) 2 are skewed at an inclined skew angle with respect to a straight line perpendicular to the longitudinal direction of the field yoke 1 .
- the skew angle is preferably in the range of 6 degrees to 22.5 degrees, and more preferably 12.9 degrees.
- the skew size S1 is preferably 5 to 20 mm, and more preferably 11 mm.
- the two ends of the field yoke 1 in the longitudinal direction are inclined at the same skew angle as the skew. According to the above aspect, by inclining the two ends of the field yoke 1, the joining area of the field yoke 1 can be increased, so that the stators can be joined stably in a line.
- FIG. 4C is a schematic cross-sectional view of the stator 15. 4(c), the field pole 2 is disposed on the field yoke 1.
- a non-magnetic SUS cover 18 having a thickness of 0.2 mm is disposed on the surfaces of the field yoke 1 and the field pole 2 as a shatterproof cover. Since the magnetic air gap between the surface of the field pole 2 and the lower surface of the main tooth is 1.0 mm, the air gap Ha (FIG. 1) is 0.8 mm. The magnetic air gap is preferably in the range of 0.5 to 1.5 mm.
- the magnet shape does not have to be flat as in Figure 2, but can also be trapezoidal, semi-cylindrical, etc.
- the present disclosure includes the linear motors described in the following items.
- a linear motor including a field yoke having a plurality of field poles and an armature disposed opposite and spaced apart from the field yoke, the armature includes an armature core having main teeth and slots, an armature winding having a coil wound in the slot, and two auxiliary teeth disposed at both ends of the armature core in a longitudinal direction;
- the center distance between the two auxiliary teeth is defined as ⁇ pN
- the pitch between the field poles is defined as ⁇ m
- the number of the field poles is defined as p
- the number of the slots is defined as s
- the pitch of the main teeth is defined as L
- the linear motor of the present disclosure can reduce the cogging thrust and can also reduce the size of the linear motor.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Linear Motors (AREA)
Abstract
本開示に係るリニアモータは、複数の界磁極を有する界磁ヨークと、前記界磁ヨークと離間して対向して配置された電機子とを備えたリニアモータであって、前記電機子は、主ティースとスロットとを備えた電機子コアと、前記スロットにコイルを巻回した電機子巻線と、前記電機子コアの長手方向の両端に配置した2つの補助ティースとを有し、前記2つの補助ティースの中心間距離をτpN、前記界磁極間のピッチをτm、前記界磁極の極数をp、前記スロットの数をs、前記主ティースのピッチをLと定義するとき、下記式(1): τpN=p×τm=s×L (1) を満たすものである。
Description
本開示は、コギング力(コギング推力)を低減したリニアモータに関する。
従来、コギング力を低減したリニアモータについて、特許文献1に開示されている。
図7は、特許文献1のリニアモータ130、131の断面図で、8極、9スロットのギャップ対向形のリニアモータの例を用いたものである。
図7(a)に示す様に、リニアモータ130は、平板状の界磁ヨーク101に極性が交互に異なるように複数の界磁極(永久磁石)102を設けた固定子115と、永久磁石102の表面と空隙を介して対向配置する電機子103(可動子とも呼ぶ)とを有する。電機子103は、固定子115の長手方向に対して走行する。
図7は、特許文献1のリニアモータ130、131の断面図で、8極、9スロットのギャップ対向形のリニアモータの例を用いたものである。
図7(a)に示す様に、リニアモータ130は、平板状の界磁ヨーク101に極性が交互に異なるように複数の界磁極(永久磁石)102を設けた固定子115と、永久磁石102の表面と空隙を介して対向配置する電機子103(可動子とも呼ぶ)とを有する。電機子103は、固定子115の長手方向に対して走行する。
電機子103は、電機子コア111と、コイル107と、スロット105とを有する。
電機子コア111は、主ティース104と、継鉄部106と、両側に2つの補助ティース112とを有する。コイル107は、主ティース104に巻回されている。2つの補助ティース112のそれぞれと、コイル107との間には、空隙120を有している。
図7(a)は、主ティース104の長さHtを固定し、補助ティース112の長さHdを変化させることができるリニアモータ130の構造を示している。
電機子コア111は、主ティース104と、継鉄部106と、両側に2つの補助ティース112とを有する。コイル107は、主ティース104に巻回されている。2つの補助ティース112のそれぞれと、コイル107との間には、空隙120を有している。
図7(a)は、主ティース104の長さHtを固定し、補助ティース112の長さHdを変化させることができるリニアモータ130の構造を示している。
図7(b)は、基準となるリニアモータ131の構造を示している。基準となるリニアモータ131において、主ティース104の長さHtと、補助ティース112の長さHdとは同じ長さである。他の構成は、リニアモータ131の構造と同様である。
リニアモータ130、131において、電機子103の両端に設けられた2つの補助ティース112中心間の距離を電機子コア長さとも呼び、永久磁石102の中心間距離を界磁極間ピッチと呼ぶ。
ここで、リニアモータ130の電機子コア長さをτp、リニアモータ131の電機子コア長さをτp0と定義する。τpの範囲は以下の式2で表すことができ、τp0は式2の右辺で表される(τp0=(2n-1)τm/2)。
ここで、リニアモータ130の電機子コア長さをτp、リニアモータ131の電機子コア長さをτp0と定義する。τpの範囲は以下の式2で表すことができ、τp0は式2の右辺で表される(τp0=(2n-1)τm/2)。
図8は、特許文献1の図2である。図8は、電機子コア長さの比率τp/τpoと、補助ティース比率Hd/Htとをパラメータとして、コギング推力を数値解析(3次元の有限要素解析)より計算した解析結果である。
図8には、コギング推力がゼロとなる等高線が示されている。
特許文献1は、図8より、電機子コア長τpが、下記式2(m、nは整数)を満たすとき、コギング力をほぼ0にできることが開示されている。
(2m-1)τm/8≦τp≦(2n-1)τm/2 (式2)
図8には、コギング推力がゼロとなる等高線が示されている。
特許文献1は、図8より、電機子コア長τpが、下記式2(m、nは整数)を満たすとき、コギング力をほぼ0にできることが開示されている。
(2m-1)τm/8≦τp≦(2n-1)τm/2 (式2)
特許文献1のリニアモータ130に関して、3次元の有限要素解析(JMAG ver.17)を実施したところ、図8(特許文献1の図2)で提示された電機子コア長さの比率(τp/τpo)及び補助ティース比率(Hd/Ht)では、コギング推力は0とならず、大きなコギングがあることが分かった。
図9は、3次元の有限要素解析(JMAG ver.17)にてコギング推力を算出した、特許文献1の図2の7箇所の位置を表した図である。
表1は、その結果である。
図9は、3次元の有限要素解析(JMAG ver.17)にてコギング推力を算出した、特許文献1の図2の7箇所の位置を表した図である。
表1は、その結果である。
また、3次元の有限要素解析(JMAG ver.17)により、特許文献1のティースピッチでは、リニアモータ130は小型化に向かないことが分かった。
なぜなら、特許文献1のリニアモータ130は、式2となっているので、リニアモータ130の端にあるコイル107と補助ティース112の間に空隙120ができてしまい、5%~15%程度のリニアモータ130の幅が大きくなってしまう。整数倍のm、nでは、実際上のリニアモータ130の小型化は難しい。
また、推力アップは、主ティース104と永久磁石102との関係であるため、補助ティース112は、あくまでそのコギングまたは推力リップルへの影響を抑えることしかできないことを確認している。
よって、特許文献1のリニアモータ130は、補助ティース112と主ティース104との間の距離が長くなるだけであり、推力アップに対する効果がほとんどなく、ただリニアモータ130の幅を大きくしていることになる。
本開示は、従来技術の上記した課題に注目し、コギング推力を低減したリニアモータを提供する。また、小型のリニアモータを提供する。
本開示の一態様のリニアモータは、複数の界磁極を有する界磁ヨークと、前記界磁ヨークと離間して対向して配置された電機子とを備えたリニアモータであって、前記電機子は、主ティースとスロットとを備えた電機子コアと、前記スロットにコイルを巻回した電機子巻線と、前記電機子コアの長手方向の両端に配置した2つの補助ティースとを有し、前記2つの補助ティースの中心間距離をτpN、前記界磁極間のピッチをτm、前記界磁極の極数をp、前記スロットの数をs、前記主ティースのピッチをLと定義するとき、下記式(1):
τpN=p×τm=s×L (1)
を満たすものである。
τpN=p×τm=s×L (1)
を満たすものである。
本開示の一態様のリニアモータは、コギング推力を低減できる。また、リニアモータを小型にすることができる。
図1は、本開示の一態様のリニアモータ10の概略を示す図である。
図1(a)に示す様に、リニアモータ10は、電機子3と固定子15(15a、15b、15c)とを有する。
固定子15は、3つの固定子15aと、固定子15bと、固定子15cとが、一列に連結している。
図1(a)に示す様に、リニアモータ10は、電機子3と固定子15(15a、15b、15c)とを有する。
固定子15は、3つの固定子15aと、固定子15bと、固定子15cとが、一列に連結している。
図1(b)に示す様に、電機子3と固定子15とは、エアギャップHaを有して、対向して配置されている。
図2に示す様に、電機子3は、電機子コア11と、コイル7とを有する。固定子15bは、界磁ヨーク1と界磁極(永久磁石)2とを有する。
図2に示す様に、電機子3は、電機子コア11と、コイル7とを有する。固定子15bは、界磁ヨーク1と界磁極(永久磁石)2とを有する。
図3は、リニアモータ10の概略の断面図である。
図3に示す様に、リニアモータ10は、電機子3が固定子15b上に近接して配置されている。電機子コア11は、主ティース4と、スロット5と、両側に2つの補助ティース12とを有する。コイル7は、主ティース4に巻回されている。2つの補助ティース12のそれぞれと、コイル7との間の空隙20はない。そのため、電機子3の長手方向の長さを短くできる。
図3に示す様に、リニアモータ10は、電機子3が固定子15b上に近接して配置されている。電機子コア11は、主ティース4と、スロット5と、両側に2つの補助ティース12とを有する。コイル7は、主ティース4に巻回されている。2つの補助ティース12のそれぞれと、コイル7との間の空隙20はない。そのため、電機子3の長手方向の長さを短くできる。
本開示のリニアモータ10は、代表として図3のような12極9スロットとしている。尚、8極6スロットなどその他の極対数にも対応できる。
図3示す様に、τpNは電機子コア長で、Lは主ティースピッチ(主ティース中心間距離)である。τmは界磁極間ピッチ(永久磁石2の中心間距離)である。Ctはコイル幅で、Btは主ティース幅である。補助ティース12の幅Bdは、主ティース幅Btの半分である。コイル幅Ctの最大値は、(L-Bt)/2となる。ここで、主ティース4の高さをHtとし、補助ティース12の長さをHdと定義している。
図3示す様に、τpNは電機子コア長で、Lは主ティースピッチ(主ティース中心間距離)である。τmは界磁極間ピッチ(永久磁石2の中心間距離)である。Ctはコイル幅で、Btは主ティース幅である。補助ティース12の幅Bdは、主ティース幅Btの半分である。コイル幅Ctの最大値は、(L-Bt)/2となる。ここで、主ティース4の高さをHtとし、補助ティース12の長さをHdと定義している。
上記記載したように、特許文献1のリニアモータ130は、図8(特許文献1の図2)で提示された電機子コア長さの比率(τp/τpo)及び補助ティース比率(Hd/Ht)では、コギング推力は0とならず、大きなコギングがあることが分かった。
そこで、本開示のリニアモータ10では、電機子コア長τpNを下記式1で新たに定義し、式1を満たすリニアモータ10とすることで、特許文献1よりコギング推力を低減したリニアモータ10を提供できる。また、本開示のリニアモータ10は、小型化が可能である。
τpN=p×τm=s×L (式1)
ここで、界磁極2の極数をp、スロット5の数をsと定義している。
τpN=p×τm=s×L (式1)
ここで、界磁極2の極数をp、スロット5の数をsと定義している。
本開示のリニアモータ10は、コイル7と補助ティース12の間に空隙20がないことからτpNが最も小さい値をとる。加えて、式1から極対数でτpNが変わる。
第1の例を上げると、τm=22.5mm、L=30mm(12極9スロット)の場合はτpNは、270mmとなる。そのとき、このτpNに近いτp0は前述したように式2の右辺(τp0=(2n-1)τm/2)で表すことから281.25mm(n=13)となり、τpは式2の範囲にあり、最小値は左辺から272.8125mm(m=49)となる。このとき特許文献1の最小比率はτp/τp0=0.97となる。τpN/τp0=0.96であり、特許文献1の範囲を外れることが分かる。
第2の例を上げると、τm=22.5mm、L=30mm(8極6スロット)の場合はτpNは180mmとなる。そのとき、このτpNに近いτp0は式2の右辺で表すことから191.25mm(n=9)となり、τpは式2の範囲にあり、最小値は左辺から182.8125mm(m=33)となる。このとき特許文献1の最小比率はτp/τp0=0.9558となる。τpN/τp0=0.941であり、特許文献1の範囲を外れることが分かる。
これら二つの例によらず、例えば8極9スロットでもτm=22.5mm、L=20mmになるが、式1よりτpN=180mmとなることから、極対数がどのような変化をしてもτpNが最小となり、かつコイル7の空隙20がないことになり、式1のτpNが、式2のτpの最小値よりも小さくなることが分かる。以上のことからτpN/τp0はτp/τp0よりも確実に小さくなり、特許文献1の範囲を外れることとなる。
第1の例を上げると、τm=22.5mm、L=30mm(12極9スロット)の場合はτpNは、270mmとなる。そのとき、このτpNに近いτp0は前述したように式2の右辺(τp0=(2n-1)τm/2)で表すことから281.25mm(n=13)となり、τpは式2の範囲にあり、最小値は左辺から272.8125mm(m=49)となる。このとき特許文献1の最小比率はτp/τp0=0.97となる。τpN/τp0=0.96であり、特許文献1の範囲を外れることが分かる。
第2の例を上げると、τm=22.5mm、L=30mm(8極6スロット)の場合はτpNは180mmとなる。そのとき、このτpNに近いτp0は式2の右辺で表すことから191.25mm(n=9)となり、τpは式2の範囲にあり、最小値は左辺から182.8125mm(m=33)となる。このとき特許文献1の最小比率はτp/τp0=0.9558となる。τpN/τp0=0.941であり、特許文献1の範囲を外れることが分かる。
これら二つの例によらず、例えば8極9スロットでもτm=22.5mm、L=20mmになるが、式1よりτpN=180mmとなることから、極対数がどのような変化をしてもτpNが最小となり、かつコイル7の空隙20がないことになり、式1のτpNが、式2のτpの最小値よりも小さくなることが分かる。以上のことからτpN/τp0はτp/τp0よりも確実に小さくなり、特許文献1の範囲を外れることとなる。
ここで式1が小型化するためには、上記記載にあるように補助ティース12の幅Bd=Bt/2と定義している。Bdを小さくすればより小型化できると考えられるが、Bdを小さくするとコギングが悪化することを解析から確認している。
図6は、Bdを変化させたときのコギング推力を表したグラフで、実線がBd=Bt/2とした場合、点線がBd=Bt/4とした場合の解析結果である。
図6に示す様に、Bd=Bt/2とした場合の振幅(実線)は10.2Nで、Bd=Bt/4とした場合の振幅(点線)は24.1Nとなっている。つまり、Bdが細くなることでコギングが悪化することが分かり、さらなる小型化はできないことが分かる。
図6は、Bdを変化させたときのコギング推力を表したグラフで、実線がBd=Bt/2とした場合、点線がBd=Bt/4とした場合の解析結果である。
図6に示す様に、Bd=Bt/2とした場合の振幅(実線)は10.2Nで、Bd=Bt/4とした場合の振幅(点線)は24.1Nとなっている。つまり、Bdが細くなることでコギングが悪化することが分かり、さらなる小型化はできないことが分かる。
図5は、横軸を比率Hd/Ht、縦軸をコギング推力としたグラフである。
図5において、図9及び表1の特許文献1の7箇所についてプロットした。例えば、図5の右側の■0.98*1.00の意味は、τp/τp0が0.98で、比率Hd/Htが1.00を意味している。他の表記も同様の意味である。
また、本開示の式1を満たすτpNについてもプロットした。
図5において、図9及び表1の特許文献1の7箇所についてプロットした。例えば、図5の右側の■0.98*1.00の意味は、τp/τp0が0.98で、比率Hd/Htが1.00を意味している。他の表記も同様の意味である。
また、本開示の式1を満たすτpNについてもプロットした。
図5示す様に、特許文献1の7箇所の内、No.7(●:1.04*0.75)のコギング推力が、27.1Nで一番低い値である。
一方、本開示の式1を満たすτpNにおいて、比率Hd/Htが、0.5以上0.8以下でコギング推力が、10~15N程度の値となっており、特許文献1のコギング推力より小さくできることが分かる。特に、比率Hd/Ht=0.65の時、コギング推力が10.2Nとなり望ましい。
一方、本開示の式1を満たすτpNにおいて、比率Hd/Htが、0.5以上0.8以下でコギング推力が、10~15N程度の値となっており、特許文献1のコギング推力より小さくできることが分かる。特に、比率Hd/Ht=0.65の時、コギング推力が10.2Nとなり望ましい。
図4は、リニアモータ10の固定子15の概略図である。
図4(a)に示す様に、固定子15は、1つの長さがL1の固定子15aと、固定子15bと、固定子15cとが列をなして連結している。電機子3は、この固定子15上を直線状に移動する。図4では、3つの固定子15aと、固定子15bと、固定子15cとが連結しているが、固定子15は、いくつ連結させて長くしてもよい。
図4(a)に示す様に、固定子15は、1つの長さがL1の固定子15aと、固定子15bと、固定子15cとが列をなして連結している。電機子3は、この固定子15上を直線状に移動する。図4では、3つの固定子15aと、固定子15bと、固定子15cとが連結しているが、固定子15は、いくつ連結させて長くしてもよい。
図4(b)は、1つの固定子15cの概略の平面図である。
固定子15cの長さはL1で、例えば、270mmである。固定子15bの幅はD1で、例えば、75mmである。
固定子15cの長さはL1で、例えば、270mmである。固定子15bの幅はD1で、例えば、75mmである。
複数の界磁極(永久磁石)2は、界磁ヨーク1の長手方向に垂直な直線に対して、傾斜したスキュー角度を有するスキューとなっている。
スキュー角度は、6度以上22.5度以下の範囲が好ましく、特に12.9度が望ましい。一例として、スキューの大きさS1は、5~20mmが好ましい。特に、11mmがよい。
また、長手方向の界磁ヨーク1の2つの端部は、スキューと同じスキュー角度で傾いている。
上記態様よれば、界磁ヨーク1の2つの端部を傾斜させることで、界磁ヨーク1の接合面積を増加できるので、固定子を一列に安定して接合できる。
スキュー角度は、6度以上22.5度以下の範囲が好ましく、特に12.9度が望ましい。一例として、スキューの大きさS1は、5~20mmが好ましい。特に、11mmがよい。
また、長手方向の界磁ヨーク1の2つの端部は、スキューと同じスキュー角度で傾いている。
上記態様よれば、界磁ヨーク1の2つの端部を傾斜させることで、界磁ヨーク1の接合面積を増加できるので、固定子を一列に安定して接合できる。
図4(c)は、固定子15の概略の断面図である。
図4(c)に示す様に、界磁ヨーク1の上に界磁極2が配置されている。そして、界磁ヨーク1及び界磁極2の表面に、飛散防止カバーとして、0.2mmの非磁性SUSカバー18が配置されている。
界磁極2の表面と主ティースの下面との間の磁気的なエアギャップは、1.0mmなので、エアギャップHa(図1)は、0.8mmとなる。磁気的エアギヤップの範囲は、0.5~1.5mmが好ましい。
図4(c)に示す様に、界磁ヨーク1の上に界磁極2が配置されている。そして、界磁ヨーク1及び界磁極2の表面に、飛散防止カバーとして、0.2mmの非磁性SUSカバー18が配置されている。
界磁極2の表面と主ティースの下面との間の磁気的なエアギャップは、1.0mmなので、エアギャップHa(図1)は、0.8mmとなる。磁気的エアギヤップの範囲は、0.5~1.5mmが好ましい。
尚、磁石形状は、図2のような平板によらず、台形、かまぼこ形状などでもよい。
尚、本実施形態に係る発明は、矛盾が生じない限り、置き換えたり、組合せたりすることができる。
以上のように、本開示は、以下の項目に記載のリニアモータを含む。
〔項目1〕
複数の界磁極を有する界磁ヨークと、前記界磁ヨークと離間して対向して配置された電機子とを備えたリニアモータであって、
前記電機子は、主ティースとスロットとを備えた電機子コアと、前記スロットにコイルを巻回した電機子巻線と、前記電機子コアの長手方向の両端に配置した2つの補助ティースとを有し、
前記2つの補助ティースの中心間距離をτpN、前記界磁極間のピッチをτm、前記界磁極の極数をp、前記スロットの数をs、前記主ティースのピッチをLと定義するとき、下記式(1):
τpN=p×τm=s×L (1)
を満たすリニアモータ。
上記態様よれば、本開示のリニアモータは、コギング推力を低減できる。また、リニアモータを小型にすることができる。
複数の界磁極を有する界磁ヨークと、前記界磁ヨークと離間して対向して配置された電機子とを備えたリニアモータであって、
前記電機子は、主ティースとスロットとを備えた電機子コアと、前記スロットにコイルを巻回した電機子巻線と、前記電機子コアの長手方向の両端に配置した2つの補助ティースとを有し、
前記2つの補助ティースの中心間距離をτpN、前記界磁極間のピッチをτm、前記界磁極の極数をp、前記スロットの数をs、前記主ティースのピッチをLと定義するとき、下記式(1):
τpN=p×τm=s×L (1)
を満たすリニアモータ。
上記態様よれば、本開示のリニアモータは、コギング推力を低減できる。また、リニアモータを小型にすることができる。
〔項目2〕
前記補助ティース幅が、前記主ティース幅の半分である項目1に記載のリニアモータ。
上記態様よれば、本開示のリニアモータは、コギング推力を低減できる。また、リニアモータを小型にすることができる。
前記補助ティース幅が、前記主ティース幅の半分である項目1に記載のリニアモータ。
上記態様よれば、本開示のリニアモータは、コギング推力を低減できる。また、リニアモータを小型にすることができる。
〔項目3〕
前記複数の界磁極が、前記界磁ヨークの長手方向に垂直な直線に対して、傾斜したスキュー角度を有するスキューとなっている項目1又は2に記載のリニアモータ。
上記態様よれば、固定子を一列に安定して接合できる。
前記複数の界磁極が、前記界磁ヨークの長手方向に垂直な直線に対して、傾斜したスキュー角度を有するスキューとなっている項目1又は2に記載のリニアモータ。
上記態様よれば、固定子を一列に安定して接合できる。
〔項目4〕
前記界磁ヨークが複数であり、前記複数の界磁ヨークが一列に接続されている項目1乃至3のいずれかに記載のリニアモータ。
上記態様よれば、固定子を連結させて長い固定子を配置することで、電機子の移動距離を伸ばすことができる。
前記界磁ヨークが複数であり、前記複数の界磁ヨークが一列に接続されている項目1乃至3のいずれかに記載のリニアモータ。
上記態様よれば、固定子を連結させて長い固定子を配置することで、電機子の移動距離を伸ばすことができる。
〔項目5〕
前記主ティースの長さをHd、前記補助ティースの長さをHtとしたとき、下記式(3):
0.5≦Ht/Hd≦0.8 (3)
を満たす項目1乃至4のいずれかに記載のリニアモータ。
上記態様よれば、本開示のリニアモータは、コギング推力を低減できる。
前記主ティースの長さをHd、前記補助ティースの長さをHtとしたとき、下記式(3):
0.5≦Ht/Hd≦0.8 (3)
を満たす項目1乃至4のいずれかに記載のリニアモータ。
上記態様よれば、本開示のリニアモータは、コギング推力を低減できる。
1 界磁ヨーク
2 界磁極(永久磁石)
3 電機子
4 主ティース
5 スロット
7 コイル
10 リニアモータ
15 固定子
2 界磁極(永久磁石)
3 電機子
4 主ティース
5 スロット
7 コイル
10 リニアモータ
15 固定子
Claims (5)
- 複数の界磁極を有する界磁ヨークと、前記界磁ヨークと離間して対向して配置された電機子とを備えたリニアモータであって、
前記電機子は、主ティースとスロットとを備えた電機子コアと、前記スロットにコイルを巻回した電機子巻線と、前記電機子コアの長手方向の両端に配置した2つの補助ティースとを有し、
前記2つの補助ティースの中心間距離をτpN、前記界磁極間のピッチをτm、前記界磁極の極数をp、前記スロットの数をs、前記主ティースのピッチをLと定義するとき、下記式(1):
τpN=p×τm=s×L (1)
を満たすリニアモータ。 - 前記補助ティース幅が、前記主ティース幅の半分である請求項1に記載のリニアモータ。
- 前記複数の界磁極が、前記界磁ヨークの長手方向に垂直な直線に対して、傾斜したスキュー角度を有するスキューとなっている請求項1又は2に記載のリニアモータ。
- 前記界磁ヨークが複数であり、前記複数の界磁ヨークが一列に接続されている請求項1乃至3のいずれかに記載のリニアモータ。
- 前記主ティースの長さをHd、前記補助ティースの長さをHtとしたとき、下記式(3):
0.5≦Ht/Hd≦0.8 (3)
を満たす請求項1乃至4のいずれかに記載のリニアモータ。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-180186 | 2022-11-10 | ||
JP2022180186 | 2022-11-10 | ||
JP2022-181026 | 2022-11-11 | ||
JP2022181026 | 2022-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024100907A1 true WO2024100907A1 (ja) | 2024-05-16 |
Family
ID=91032201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/043175 WO2024100907A1 (ja) | 2022-11-10 | 2022-11-22 | リニアモータ |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024100907A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001080408A1 (fr) * | 2000-04-19 | 2001-10-25 | Kabushiki Kaisha Yaskawa Denki | Moteur lineaire synchrone a aimants permanents |
JP2003143829A (ja) * | 2001-10-31 | 2003-05-16 | Yaskawa Electric Corp | リニアモータ |
JP2006025476A (ja) * | 2004-07-06 | 2006-01-26 | Fanuc Ltd | 直線駆動装置 |
JP2015162988A (ja) * | 2014-02-27 | 2015-09-07 | 山洋電気株式会社 | リニアモータ |
WO2019202919A1 (ja) * | 2018-04-17 | 2019-10-24 | Kyb株式会社 | 筒型リニアモータ |
-
2022
- 2022-11-22 WO PCT/JP2022/043175 patent/WO2024100907A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001080408A1 (fr) * | 2000-04-19 | 2001-10-25 | Kabushiki Kaisha Yaskawa Denki | Moteur lineaire synchrone a aimants permanents |
JP2003143829A (ja) * | 2001-10-31 | 2003-05-16 | Yaskawa Electric Corp | リニアモータ |
JP2006025476A (ja) * | 2004-07-06 | 2006-01-26 | Fanuc Ltd | 直線駆動装置 |
JP2015162988A (ja) * | 2014-02-27 | 2015-09-07 | 山洋電気株式会社 | リニアモータ |
WO2019202919A1 (ja) * | 2018-04-17 | 2019-10-24 | Kyb株式会社 | 筒型リニアモータ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8274182B2 (en) | Linear motor including extended tooth tips | |
US9712032B2 (en) | Linear motor and linear motor drive system | |
CN106469968B (zh) | 直线电动机 | |
JP5991326B2 (ja) | リニアモータ | |
US7339290B2 (en) | Linear motor | |
WO2001080408A1 (fr) | Moteur lineaire synchrone a aimants permanents | |
JPH1189208A (ja) | 永久磁石を用いたモータ | |
JP2010141978A (ja) | 推力発生機構 | |
CN110024271B (zh) | 电动机 | |
JP2009219199A (ja) | リニアモータ | |
JP2002209371A (ja) | リニアモータ | |
JP2004297977A (ja) | リニアモータ | |
JP5678025B2 (ja) | 推力発生機構 | |
WO2024100907A1 (ja) | リニアモータ | |
US11955864B2 (en) | Linear motor | |
WO2020261809A1 (ja) | 直動電動機 | |
JP4846350B2 (ja) | リニアモータ | |
JP4402948B2 (ja) | リニアモータ | |
JP3824060B2 (ja) | リニアモータ | |
JP6036221B2 (ja) | リニアモータ | |
JP2002101636A (ja) | リニアモータ | |
JP4988233B2 (ja) | リニアモータ | |
WO2023145014A1 (ja) | リニアモータ | |
WO2023157273A1 (ja) | リニア搬送システム | |
WO2022074821A1 (ja) | 電動機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22965230 Country of ref document: EP Kind code of ref document: A1 |