WO2024100896A1 - パターン測長・欠陥検査方法、画像データ処理システム、およびコンピュータ読み取り可能な記録媒体 - Google Patents

パターン測長・欠陥検査方法、画像データ処理システム、およびコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2024100896A1
WO2024100896A1 PCT/JP2022/042112 JP2022042112W WO2024100896A1 WO 2024100896 A1 WO2024100896 A1 WO 2024100896A1 JP 2022042112 W JP2022042112 W JP 2022042112W WO 2024100896 A1 WO2024100896 A1 WO 2024100896A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
information
position information
periodic
pattern
Prior art date
Application number
PCT/JP2022/042112
Other languages
English (en)
French (fr)
Inventor
竜吾 蔭谷
博之 新藤
郁 深谷
多恵子 柏
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2022/042112 priority Critical patent/WO2024100896A1/ja
Publication of WO2024100896A1 publication Critical patent/WO2024100896A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures

Definitions

  • This disclosure relates to a pattern measurement and defect inspection method, an image data processing system, and a computer-readable recording medium.
  • the circuit patterns on semiconductor integrated circuits are generally measured, inspected, and analyzed.
  • One method for measuring, inspecting, and analyzing circuit patterns is to use CAD (Computer Aided Design) data, which is the design data for the circuit pattern, as a reference pattern.
  • CAD Computer Aided Design
  • the circuit pattern is evaluated and the cells to be analyzed are identified by comparing an SEM image of the actually formed pattern with the CAD data.
  • the design data is used to align the SEM image with the design data.
  • this alignment process As shown in, for example, Patent Documents 1 to 4 below.
  • peripheral patterns In the case of repetitive patterns (hereafter referred to as "periodic patterns") characteristic of semiconductor patterns, there is a problem that, when aligning the patterns, a periodic shift may occur between the circuit pattern actually formed on the semiconductor integrated circuit and the pattern in the design data, resulting in reduced alignment accuracy. In other words, although pattern correlation is achieved between the SEM image and the design data, in the case of periodic patterns, a positional shift of one or more periods may occur. If it is determined that alignment is complete when this periodic shift occurs, it will affect the accuracy of the subsequent length measurement processing results and defect inspection processing results.
  • this disclosure proposes a technology that quickly corrects periodic deviations using periodicity information from design data and coordinate correction.
  • the present disclosure proposes a method for performing a first alignment process between design information of a pattern formation region formed on a sample and a first image obtained by imaging at least a portion of the pattern formation region, thereby identifying first position information of the first image, and performing length measurement or defect inspection of a pattern present in the pattern formation region, the method including: acquiring periodicity information in the pattern formation region based on the results of an autocorrelation process using the design information; and outputting or correcting the first position information of the first image based on the periodicity information, or judging the acceptability of the first alignment process.
  • the technology disclosed herein makes it possible to quickly correct periodic deviations or determine whether the alignment process was successful.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a semiconductor measuring/inspecting system 100 according to an embodiment of the present invention.
  • 2 is a flowchart for explaining an overall outline of a period deviation correction process using the semiconductor measurement/inspection system 100 shown in FIG. 1 .
  • 3 is a flowchart for explaining details of the periodicity information acquisition process in step 204 of FIG. 2 .
  • 4A and 4B are diagrams showing a design data template 401, a first template 402, and an SEM image 403.
  • FIG. 13 illustrates a periodicity search in the X direction and a periodicity search in the Y direction.
  • FIG. 13 illustrates a periodicity search in a diagonal direction.
  • 3 is a flowchart for explaining details of the period deviation correction process in step 208 of FIG.
  • FIG. 13 is a diagram showing an example of an imaging position of an SEM image.
  • FIG. 13 is a diagram for explaining periodicity information and periodic positions (registration candidate 1).
  • FIG. 13 is a diagram for explaining periodicity information and periodic positions (registration candidate 2).
  • FIG. 11 is a diagram for explaining a specific example of coordinate error calculation.
  • 13 is a diagram for explaining a periodic position after adding a result of alignment of the second SEM image;
  • FIG. 13A and 13B are diagrams for explaining periodic positions and coordinate errors after addition of the alignment result of the second SEM image.
  • the embodiments of the present disclosure relate to a pattern measurement inspection device (including an FIB device or a probe device), and to a technique for acquiring periodicity information using design data that represents shapes that serve as a reference for the inspection or measurement of semiconductor patterns, the internal wiring of semiconductor devices, or analysis of electrical characteristics measurement, and for correcting periodic deviations using SEM images and the periodicity information acquired by the pattern measurement inspection device.
  • a pattern measurement inspection device including an FIB device or a probe device
  • design data that represents shapes that serve as a reference for the inspection or measurement of semiconductor patterns, the internal wiring of semiconductor devices, or analysis of electrical characteristics measurement, and for correcting periodic deviations using SEM images and the periodicity information acquired by the pattern measurement inspection device.
  • the semiconductor measurement and inspection system 100 includes a scanning electron microscope (SEM: SCANNING ELECTRON MICROSCOPE) 101 for measuring and inspecting a circuit pattern formed on a wafer, a computer system 1_111, a computer system 2_116, a design information database 120, and an input/output device 121 such as a user PC.
  • the scanning electron microscope 101 and the computer 1_111 are connected via a network 1_110.
  • the computer 1_111, the computer 2_116, the design information database 120, and the input/output device 121 are connected via a network 2_115.
  • the SEM 101 is configured by integrating an electron beam column 102, a vacuum sample chamber 105, and a sample stage (XY stage) 106, which are the basic components of an SEM.
  • an electron beam 104 is irradiated from an electron source 103 onto a sample 107, such as a wafer on which a device is manufactured.
  • the irradiated electron beam is focused using multiple stages of lenses, and deflected and scanned using a scanning deflector. This causes the electron beam to scan the sample surface one-dimensionally or two-dimensionally.
  • Secondary electrons or backscattered electrons 108 emitted from the sample by the scanning of the electron beam are detected by a detector and converted into a digital signal by an A/D converter 109.
  • the digital signal is input to a computer system 1_111 via a network 1_110, and stored in a memory unit 114.
  • Computer system 1_111 controls various modules of the device, including the electron beam column, stage, and vacuum sample chamber, through control unit 113. During pattern inspection, computer system 1_111 reads digital signals stored in memory unit 114 through calculation processing unit 112, executes various calculation processes including signal processing (SEM image generation) and image processing for acquiring information on the object to be measured, and stores and manages the generated SEM image and the various calculation results in memory unit 114.
  • SEM image generation signal processing
  • image processing image generation
  • the arithmetic processing unit 112 of the computer system 1_111 has a function of creating a program (recipe) that controls the operation of the SEM 101 based on the design data of the semiconductor device, and also functions as a recipe setting unit. Specifically, the arithmetic processing unit 112 sets position information (e.g., design data, pattern contour data, desired measurement points on the simulated design data, autofocus points, autostigma points, addressing points, etc.) for the SEM 101 to execute necessary processing in response to input instructions from the operator. Then, the arithmetic processing unit 112 creates a program for automatically controlling the sample stage 106, deflector, etc. of the SEM 101 based on the settings.
  • position information e.g., design data, pattern contour data, desired measurement points on the simulated design data, autofocus points, autostigma points, addressing points, etc.
  • Computer system 2_116 executes measurement and defect inspection processing (generating measurement and inspection result information) and statistical processing using the calculation processing unit 117, and stores the processing results in the memory unit 119. In addition, computer system 2_116 executes image processing and output processing using the image processing unit 118, as well as storing and managing the image processing results in the memory unit 119.
  • the design information database 120 stores design information (design data) for semiconductor circuit patterns.
  • the design data is composed of, for example, layer information, which is information about each layer of the circuit patterns to be stacked, and shape information about the circuit patterns of each layer.
  • the input/output device 121 such as a user PC, is connected to the network 2_115 and is used by the operator to perform various operations on the SEM 101, including recipe execution and recipe creation operations on the computer system 1_111. Also, by connecting the input/output device 121 to the computer system 2_116, processing such as measurement processing and statistical processing can be performed remotely. Furthermore, the operator can access the design information database 120 from the input/output device 121 to inquire about, acquire, save, and create design data.
  • the semiconductor measurement and inspection system 100 shown in FIG. 1 includes multiple computers such as computer 1_111 and computer 2_116, each configured to handle different processes, but it may also include only one computer that executes all processes. Also, computer system 2_116, design information database 120, and input/output device 121 may be configured as a single system, and this system may be connected to computer system 1_111 via a network.
  • Fig. 2 is a flow chart for explaining an overall outline of the period deviation correction process using the semiconductor measurement/inspection system 100 shown in Fig. 1. Details of the periodicity information acquisition process (step 204) included in the overall outline of the period deviation correction process, and details of the periodicity correction process using the periodicity information (step 207) will be described later.
  • Step 201 The arithmetic processing unit 112 of the computer system 1_111 creates an SEM image capture recipe using a recipe creation function based on the design data of the semiconductor device.
  • the SEM 101 executes an image capture operation according to the created recipe.
  • the control unit 113 of the computer system 1_111 executes stage movement according to the recipe.
  • the arithmetic processing unit 112 also performs a pattern inspection of the sample on the SEM 101 using signal processing or the like to acquire an image (hereinafter referred to as an SEM image), and acquires additional information including acquisition condition information at the time of imaging (for example, information on current values and voltage values at the time of imaging, coordinate positions of the wafer and chip, etc.), and stores the information in the storage unit 114 of the computer system 1_111.
  • acquisition condition information at the time of imaging for example, information on current values and voltage values at the time of imaging, coordinate positions of the wafer and chip, etc.
  • Step 202 The computer system 2_116 acquires the captured image (SEM image) and the associated information stored in the storage unit 114 of the computer system 1_111 via the network 2_115, and reads the associated information. In the process of reading the associated information, imaging position information such as wafer coordinates and chip coordinates used in step 702 (see FIG. 7) described later is acquired.
  • the computer system 2_116 reads a design data template created in advance from the design information database 120.
  • the design data template is design data corresponding to the acquired SEM image (image set).
  • This design data template can be configured so that the FOV (Field of View) has a region twice the FOV of the SEM image (twice is an example).
  • Step 204 The computer system 2_116 executes autocorrelation processing using the loaded design data to obtain periodicity information.
  • the computer system 2_116 obtains periodicity information of the target FOV using a first template that is within the target FOV and corresponds to the center part of the design data template.
  • the area to be the first template may be set by an operator from an area in the design data (design data template) using a GUI or the like.
  • the first template may be an area within the target FOV that corresponds to the center part of the design data template. Details of obtaining periodicity information by autocorrelation processing will be described later (see FIG. 3).
  • Step 205 The computer system 2_116 executes pattern matching using template matching or normalized cross-correlation method using the read SEM image and design data, and aligns the SEM image with the design data.
  • Step 206 The computer system 2_116 performs pattern measurement processing and defect inspection processing based on the design data. Note that the pattern measurement processing and defect inspection processing may be performed by the computer system 1_111.
  • Step 207 The computer system 2_116 performs a periodic deviation correction process using the periodicity information acquired in step 204, and the alignment result between the SEM image and the design data acquired in step 205, as well as the imaging position information.
  • the periodic deviation correction process will be described in detail later (see FIG. 7).
  • Step 208 The computer system 2_116 judges whether or not to provide the design data coordinates (periodic shift correction result) identified by the period shift correction to a downstream system based on a predetermined operation.
  • "operation” refers to, for example, a case where an FIB device or a probe device is connected to the downstream of the semiconductor measurement/inspection system 100, and the downstream device is specified to use the design data identified by the period shift correction.
  • the downstream system (FIB device or probe device) uses the period shift correction result to determine the deposition film formation region and the position to apply the probe during cross-sectional analysis.
  • step 208 If the periodic deviation correction results are to be provided to the downstream system (Yes in step 208), the process proceeds to step 209. On the other hand, if the periodic deviation correction results do not need to be provided to the downstream system (No in step 208), the process proceeds to step 210.
  • Step 209 The computer system 2_116 provides the design data coordinates (periodic deviation correction result) identified by the periodic deviation correction to a downstream system.
  • Step 210 The computer system 2_116 transfers the period deviation correction result to the input/output device 121.
  • the input/output device 121 visualizes (for example, displays on a screen) the period deviation correction result (for example, an image in which the SEM image corrected for period deviation and the design data are superimposed, or SEM images before and after the period deviation correction).
  • Fig. 3 is a flowchart for explaining details of the periodicity information acquisition process in step 204 in Fig. 2.
  • Fig. 4 is a diagram showing a design data template 401, a first template 402, and an SEM image 403.
  • Fig. 5 is a diagram showing periodicity search in the X direction and periodicity search in the Y direction.
  • Fig. 6 is a diagram showing periodicity search in an oblique direction.
  • Step 301 The computer system 2_116 performs autocorrelation processing using the design data (design data template) 401 stored in the design information database 120.
  • Step 302 The computer system 2_116 searches for the presence of the first template 402 in a first direction (e.g., X direction) 501 (see FIG. 5) using the autocorrelation processing result (map, distribution, etc.) of step 301 and the first template 402 in a predetermined target FOV, and acquires periodicity information. At this time, if two or more periodicities cannot be confirmed, the search ends at that point.
  • the first template may be determined to have the same FOV as the SEM image 403 of the measurement inspection target.
  • the periodicity information includes information indicating the presence or absence of periodicity of the first template in the search direction, information on the number of periodicity matching points (the presence or absence of periodicity can be determined depending on the presence or absence of matching points), and information on the periodicity interval.
  • Step 303 The computer system 2_116 searches for the presence of the first template in a second direction (e.g., Y direction) 502 (see FIG. 5) using the autocorrelation processing result of step 301 and the first template, and acquires periodicity information. At this time, similarly to step 302, if two or more periodicities cannot be confirmed, the search ends at that point.
  • a second direction e.g., Y direction
  • Step 304 The computer system 2_116 searches for the presence of the first template in the third direction (diagonal direction) 601 (see FIG. 6) using the autocorrelation processing result of step 301 and the first template, and acquires periodicity information. At this time, similarly to steps 302 and 303, if two or more periodicities cannot be confirmed, the search ends at that point.
  • Step 305 The computer system 2_116 outputs the periodicity information acquired in steps 302 to 304 as periodicity information (file data) of each SEM image and design data, or attaches it to the associated SEM image.
  • FIG. 7 is a flowchart for explaining the details of the periodic deviation correction process in step 208 of FIG.
  • Step 701 The computer system 2_116 (e.g., the calculation processing unit 117) uses the periodicity information acquired in step 204 (based on the information on the presence or absence of periodicity) to classify each SEM image into a group of SEM images having a periodic pattern or a group of SEM images having a non-periodic pattern.
  • Step 702 The computer system 2_116 searches (specifies) an SEM image (hereinafter, second SEM image) having a non-periodic pattern located nearest to each image (hereinafter, first SEM image) of the SEM image group having a periodic pattern from among the SEM images having a non-periodic pattern.
  • imaging position information 901 such as wafer coordinates and chip coordinates of the SEM image is used.
  • the computer system 2_116 calculates the distance (two-point distance) between the first SEM image and each SEM image having a non-periodic pattern. For example, in FIG.
  • the two-point distance between the first SEM image 902 and the second SEM image 903 and the two-point distance between the first SEM image 902 and the second SEM image 904 are calculated. Furthermore, the computer system 2_116 specifies a combination with the shortest two-point distance, and sets the SEM image having a non-periodic pattern as the second SEM image used for periodic shift correction. Note that any method may be used to calculate the two-point distance at this time.
  • Step 703 The computer system 2_116 judges whether or not it is necessary to correct a detailed coordinate error between the first SEM image and the second SEM image.
  • the detailed coordinate error refers to a coordinate error other than an error due to alignment with the design data (design template 401).
  • the detailed coordinate error correction is performed, for example, in the following three cases.
  • (iii-1) A case where an operator instructs execution of the periodic deviation correction from a GUI or the like (a GUI or the like displayed on the screen of the input/output device 121) according to a desired coordinate accuracy;
  • (iii-2) A case where the stage moves between the imaging operation of the first SEM image and the imaging operation of the second SEM image;
  • (iii-3) When the distance between two points on the first SEM image and the second SEM image exceeds a predetermined threshold (an arbitrary threshold specified by an operator via a GUI or the like).
  • the period shift correction may be performed when at least one of these three conditions is satisfied, or when two or more of these conditions are satisfied.
  • step 703 If the operator wishes to correct the positional deviation with high accuracy, if there has been stage movement, or if the distance between the two points exceeds a predetermined threshold (Yes in step 703), the process proceeds to step 705. If there is no need to obtain a high-accuracy correction of the positional deviation, if there has been no stage movement, or if the distance between the two points does not exceed a predetermined threshold (No in step 703), the process proceeds to step 704.
  • the coordinate error here means the amount of deviation when the first SEM image and the second SEM image are aligned at ideal positions without any periodic deviation.
  • Step 704 The computer system 2_116 adopts the result of the alignment (alignment shift amount) between the second SEM image and the design data template as the coordinates of the first SEM image after the periodic shift correction.
  • the amount of deviation of the second SEM image from the design data is used as the correction amount of the first SEM image.
  • the computer system 2_116 calculates the coordinate error. To do this, the computer system 2_116 first calculates all periodic positions from the periodicity information of the first SEM image. For example, consider a case where a design data template 1001 having a periodic template 1004 (corresponding to the above-mentioned first template) has a periodic width 1002, a periodic height 1003, and one periodic point number in each direction (X, Y, and diagonal directions, respectively). In this case, nine periodic positions (matching positions) (nine is an example; 1005 to 1009: see FIG. 10, and 1101 to 1104: see FIG. 11) can be calculated from this information.
  • the computer system 2_116 adds the alignment result (the above-mentioned alignment shift amount) 1201 with the design data of the second SEM image to the center of gravity position of the periodic position (1202 to 1206: see FIG. 12, 1301 to 1304: see FIG. 13), and identifies a periodic position 1306 that is closest to the alignment result 1305 of the first SEM image. Then, the computer system 2_116 regards a difference 1307 between the identified periodic position 1306 and the alignment result 1305 of the first SEM image as a coordinate error.
  • FIG. 14 is a diagram for explaining a specific example of coordinate error calculation.
  • the deviation (deviation from the center position) of the first SEM image (periodic pattern) 1401 from the design data (design data template) is set as the detected position (14, 15), and the deviation of the second SEM image (non-periodic pattern) 1402 from the design data is set as the correct position (2, 3).
  • the correct position 2, 3
  • a periodic position list 1403 is obtained as follows: (-10, 10), (0, 10), (10, 10), (-10, 0), (0, 0), (10, 0), (-10, -10), (0, -10), (10, -10).
  • adding the correct position (2,3) obtained from the non-periodic pattern to each periodic position gives (-8,13), (2,13), (12,13), (-8,3), (2,3), (12,3), (-8,-7), (2,-7), and (12,-7).
  • the periodic position (12,13) closest to the detected position (14,15) is identified from among these periodic positions 1404 after addition, and the offset 1405 between (14,15) and (12,13) is found to be (2,2). This offset 1405 is the coordinate error.
  • Step 706 The computer system 2_116 calculates the corrected coordinates by adding the coordinate error calculated in step 705 to the alignment result of the second SEM image.
  • Step 707 The computer system 2_116 outputs the correction result of the first SEM image or the periodic shift correction result calculated in step 704 or step 706.
  • the above-mentioned first embodiment describes a period shift correction process using captured images of discontinuous areas on a wafer or a chip (captured images of randomly taken areas).
  • the second embodiment describes period shift correction using captured images of continuous areas on a wafer or a chip.
  • the system used in the second embodiment may have the same configuration as the semiconductor measurement and inspection system 100 shown in Fig. 1. Therefore, detailed description thereof will be omitted here.
  • ⁇ Periodic deviation correction process Overall process overview> The overall outline of the periodicity correction process and the periodicity information acquisition process according to the second embodiment are the same as those in the first embodiment (see FIG. 2 for the overall outline of the periodicity correction process, and FIG. 3 for the periodicity information acquisition process). Therefore, detailed description will be omitted here.
  • ⁇ Details of Period Deviation Correction Processing> 8 is a flowchart for explaining the details of the period shift correction process according to the second embodiment.
  • the difference from the first embodiment (FIG. 7) is the process of step 802. This difference is due to the fact that the second embodiment performs period shift correction using captured images of a continuous area on a wafer or a chip.
  • Step 801 The computer system 2_116 (e.g., the calculation processing unit 117) uses the periodicity information acquired in step 204 (based on the information on the presence or absence of periodicity) to classify each SEM image into a group of SEM images having a periodic pattern or a group of SEM images having a non-periodic pattern.
  • Step 802 The computer system 2_116 searches (specifies) an SEM image (hereinafter, second SEM image) having a non-periodic pattern located nearest to each image (hereinafter, first SEM image) of the SEM image group having a periodic pattern from among the SEM image group having a non-periodic pattern. Specifically, a continuous area is imaged by an image acquisition method (imaging conditions) on the device side. Therefore, the computer system 2_116 sets an image captured before the first SEM image and classified into the SEM image group having a non-periodic pattern in step 801 as the second SEM image.
  • the computer system 2_116 sets this image as the second SEM image (for periodic shift correction).
  • the second SEM image since captured images in a continuous area are acquired, there is no need to take the trouble of searching for a non-periodic pattern (unique pattern) near the periodic pattern.
  • the second SEM image may be an image within the same chip.
  • Step 803 The computer system 2_116 judges whether or not it is necessary to correct a detailed coordinate error between the first SEM image and the second SEM image.
  • the detailed coordinate error refers to a coordinate error other than an error due to alignment with the design data (design template 401).
  • the detailed coordinate error correction is performed, for example, in the following three cases.
  • (iii-1) A case where an operator instructs execution of the period deviation correction from a GUI or the like (a GUI or the like displayed on the screen of the input/output device 121) according to a desired coordinate accuracy;
  • (iii-2) A case where the stage moves between the imaging operation of the first SEM image and the imaging operation of the second SEM image;
  • (iii-3) When the distance between two points on the first SEM image and the second SEM image exceeds a predetermined threshold (an arbitrary threshold specified by an operator via a GUI or the like).
  • the period shift correction may be performed when at least one of these three conditions is satisfied, or when two or more of these conditions are satisfied.
  • step 803 If the operator wishes to correct the positional deviation with high accuracy, if there has been stage movement, or if the distance between the two points exceeds a predetermined threshold (Yes in step 803), the process proceeds to step 805. If there is no need to obtain a high-accuracy correction of the positional deviation, if there has been no stage movement, or if the distance between the two points does not exceed a predetermined threshold (No in step 803), the process proceeds to step 804.
  • the coordinate error here means the amount of deviation when the first SEM image and the second SEM image are aligned at ideal positions without any periodic deviation.
  • Step 804 The computer system 2_116 adopts the result of the alignment (alignment shift amount) between the second SEM image and the design data template as the coordinates of the first SEM image after the periodic shift correction.
  • the amount of deviation of the second SEM image from the design data is used as the correction amount of the first SEM image.
  • Step 805 The computer system 2_116 calculates the coordinate error. To this end, the computer system 2_116 first calculates all periodic positions from the periodicity information of the first SEM image. For example, consider a case where a design data template 1001 having a periodic template 1004 (corresponding to the first template described above) has a periodic width 1002, a periodic height 1003, and one periodic point number in each direction (X, Y, and diagonal directions, respectively). In this case, nine periodic positions (matching positions) (1005 to 1009: see FIG. 10, and 1101 to 1104: see FIG. 11) can be calculated from this information.
  • the computer system 2_116 adds the alignment result (the above-mentioned alignment shift amount) 1201 with the design data of the second SEM image to the center of gravity position of the periodic positions (1202 to 1206: see FIG. 12, 1301 to 1304: see FIG. 13), and identifies the periodic position 1306 closest to the alignment result 1305 of the first SEM image. Then, the computer system 2_116 determines a difference 1307 between the identified periodic position 1306 and the alignment result 1305 of the first SEM image as a coordinate error.
  • the alignment result the above-mentioned alignment shift amount
  • FIG. 14 is a diagram for explaining a specific example of coordinate error calculation.
  • the deviation (deviation from the center position) of the first SEM image (periodic pattern) 1401 from the design data (design data template) is set as the detected position (14, 15), and the deviation of the second SEM image (non-periodic pattern) 1402 from the design data is set as the correct position (2, 3).
  • the correct position 2, 3
  • a periodic position list 1403 is obtained as follows: (-10, 10), (0, 10), (10, 10), (-10, 0), (0, 0), (10, 0), (-10, -10), (0, -10), (10, -10).
  • adding the correct position (2,3) obtained from the non-periodic pattern to each periodic position gives (-8,13), (2,13), (12,13), (-8,3), (2,3), (12,3), (-8,-7), (2,-7), and (12,-7).
  • the periodic position (12,13) closest to the detected position (14,15) is identified from among these periodic positions 1404 after addition, and the offset 1405 between (14,15) and (12,13) is found to be (2,2). This offset 1405 is the coordinate error.
  • Step 806 The computer system 2_116 calculates the corrected coordinates by adding the coordinate error calculated in step 805 to the alignment result of the second SEM image.
  • Step 807 The computer system 2_116 outputs the correction result of the first SEM image or the periodic shift correction result calculated in step 704 or step 806.
  • the image data processing system constituting the semiconductor measurement and inspection system 100 includes a computer system 2_116, a design information database 120, and an input/output device 121, and performs a first alignment process between the design information of a pattern-formed region formed on a sample (wafer) and a first SEM image obtained by imaging at least a part of the pattern-formed region to identify first position information of the first SEM image, and perform length measurement or defect inspection of a pattern present in the pattern-formed region.
  • the image data processing system executes a process of acquiring periodicity information in the pattern-formed region based on the result (map, distribution, etc.) of an autocorrelation process using the design information, and a process of outputting or correcting the first position information of the first SEM image based on the periodicity information, or a process of determining whether the first alignment process is successful.
  • the present invention performs coordinate correction at the end of the measurement and inspection process, making it possible to eliminate the need for re-matching and perform correction at high speed.
  • the computer system 2_116 extracts periodicity information by searching a search target area (design data template 401: having an area twice the size of the first template 402) corresponding to a part or all of the area of the result of the autocorrelation process (map, distribution, etc.) using a first template 402 corresponding to a part or all of the area of the first SEM image. Since the search target is a limited range that is larger in size than the first template, periodicity information can be extracted efficiently, and throughput can be improved.
  • the periodicity information obtained by the above search process can be extracted by moving the first template in the first direction (X direction), the second direction (Y direction), and/or the third direction (diagonal direction).
  • the first SEM image is classified as a periodic pattern.
  • the first SEM image is classified as a non-periodic pattern.
  • the periodicity information will include at least one of the periodicity determination result and, in the case of a periodic pattern, the number of matching points or the matching interval (period) as parameters.
  • the computer system 2_116 when it is able to identify the presence of two or more repeating patterns (periodic patterns) in the first SEM image by the search process of the search target area, it identifies second position information (alignment information with the design information) of a unique pattern (non-periodic pattern; second SEM image) that exists closest to the repeating patterns based on the first position information (alignment information with the design information) of the first SEM image and the global position information (wafer coordinates or chip coordinates) associated with the first SEM image, and outputs or corrects the first position information of the first SEM image based on the second position information and periodicity information, or judges whether the first alignment process (alignment process with the design information) is successful. In this way, it is possible to correct the periodic shift without performing a rematching process.
  • the global position information includes imaging position information provided by the imaging device that captured the first SEM image and the second SEM image, or imaging position information identified by the optical inspection device.
  • the computer system 2_116 determines the corrected position information by using the second position information (unique pattern alignment information) of the second SEM image as the corrected position information (steps 704 and 804), or by calculating a coordinate error from the second position information and the periodicity information of the first SEM image and adding the coordinate error calculated from the periodicity information to the second position information (see Figures 10 to 14).
  • the computer system 2_116 when the computer system 2_116 is able to identify the presence of two or more repeating patterns (periodic patterns) in the first SEM image by the search process of the search target area, the computer system 2_116 identifies a second SEM image that is a non-periodic pattern that exists closest to the repeating patterns (periodic patterns) based on the acquisition conditions of the first SEM image and the periodicity information. Then, the computer system 2_116 identifies second position information that is the result of alignment with the design information of the second SEM image, and outputs or corrects the first position information of the first image based on the second position information and the periodicity information, or judges whether the first alignment process is successful.
  • the computer system 2_116 when correcting the first position information (alignment with design information) of the first SEM image, determines the second position information (alignment information of the unique pattern) of the second SEM image as the corrected position information (steps 704 and 804), or calculates a coordinate error from the second position information and the periodicity information of the first SEM image and adds the coordinate error calculated from the periodicity information to the second position information to determine the corrected position information (see FIGS. 10 to 14).
  • each embodiment of the present disclosure can also be realized by software program code.
  • a storage medium on which the program code is recorded is provided to a system or device, and the computer (or CPU or MPU) of that system or device reads the program code stored in the storage medium.
  • the program code read from the storage medium itself realizes the functions of the above-mentioned embodiments, and the program code itself and the storage medium on which it is stored constitute the present disclosure.
  • Examples of storage media for supplying such program code include flexible disks, CD-ROMs, DVD-ROMs, hard disks, optical disks, magneto-optical disks, CD-Rs, magnetic tapes, non-volatile memory cards, and ROMs.
  • an operating system (OS) running on a computer may perform all or part of the actual processing based on the instructions of the program code, and the functions of the above-mentioned embodiments may be realized by this processing.
  • OS operating system
  • a CPU of the computer may perform all or part of the actual processing based on the instructions of the program code, and the functions of the above-mentioned embodiments may be realized by this processing.
  • the program code of the software that realizes the functions of each embodiment may be distributed over a network and stored in a storage means such as a hard disk or memory of a system or device, or in a storage medium such as a CD-RW or CD-R, and when used, the computer (or CPU or MPU) of the system or device may read and execute the program code stored in the storage means or storage medium.
  • a storage means such as a hard disk or memory of a system or device
  • a storage medium such as a CD-RW or CD-R
  • control lines and information lines are those considered necessary for the explanation, and not all control lines and information lines in the product are necessarily shown. All components may be interconnected.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本開示は、設計データの周期性情報と座標補正により、高速に周期ずれを補正するため、試料上に形成されたパターン形成領域の設計情報とパターン形成領域の少なくとも一部を撮像して得られる第1画像との第1位置合わせ処理を行うことにより第1画像の第1位置情報を特定し、パターン形成領域内に存在するパターンの測長又は欠陥検査を行う方法であって、設計情報を用いた自己相関処理の結果に基づく、パターン形成領域における周期性情報を取得することと、周期性情報に基づいて、第1画像の第1位置情報を出力又は補正する、或いは、第1位置合わせ処理の良否を判定することと、を含む、方法を提案する(図2参照)。

Description

パターン測長・欠陥検査方法、画像データ処理システム、およびコンピュータ読み取り可能な記録媒体
 本開示は、パターン測長・欠陥検査方法、画像データ処理システム、およびコンピュータ読み取り可能な記録媒体に関する。
 半導体の製造工程では、一般に、半導体集積回路上の回路パターンの計測・検査、及び解析が行われている。回路パターンの計測・検査、及び解析方法の1つに、回路パターンの設計データであるCAD(Computer Aided Design)データを基準パターンとして用いる方法がある。この方法では、実際に形成されたパターンを撮像したSEM画像とCADデータを比較することによって、回路パターンを評価することや解析対象とするセルの特定を行う。
 回路パターンの評価や解析対象とするセルの特定に関して、設計データを用いて、SEM画像と設計データの位置合わせを行う。この位置合わせ処理については、例えば下記特許文献1から4に示すように、多くの公知例が存在する。
特開2017-067442号公報 特開2012-168195号公報 特表2009-516832号公報 特開2020-187876号公報
 半導体パターンで特徴的な繰り返しパターン(以下「周期パターン」という)では、パターンの位置合わせ時に、半導体集積回路上に実際に形成された回路パターンと設計データ上のパターンの間で周期ずれが生じることがあり、位置合わせ精度が低下するという課題がある。つまり、SEM画像と設計データとの間でパターン相関は取れているが、周期パターンの場合、一周期分或いはそれ以上の周期分の位置ずれが生じている場合がある。この周期ずれが生じた状態で位置合わせ完了と判断してしまうと、その後の測長処理結果や欠陥検査処理結果の精度に影響を及ぼしてしまう。
 本開示は、このような状況に鑑み、設計データの周期性情報と座標補正により、高速に周期ずれを補正する技術を提案する。
 上記課題を解決するために、本開示は、試料上に形成されたパターン形成領域の設計情報とパターン形成領域の少なくとも一部を撮像して得られる第1画像との第1位置合わせ処理を行うことにより第1画像の第1位置情報を特定し、パターン形成領域内に存在するパターンの測長又は欠陥検査を行う方法であって、設計情報を用いた自己相関処理の結果に基づく、パターン形成領域における周期性情報を取得することと、周期性情報に基づいて、第1画像の第1位置情報を出力又は補正する、或いは、第1位置合わせ処理の良否を判定することと、を含む、方法を提案する。
 本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される請求の範囲の様態により達成され実現される。
 本明細書の記述は典型的な例示に過ぎず、本開示の請求の範囲又は適用例を如何なる意味においても限定するものではない。
 本開示の技術によれば、高速に周期ずれを補正、或いは位置合わせ処理の良否を判定することができるようになる。
本実施形態による半導体計測・検査システム100の概略構成例を示す図である。 図1に示す半導体計測・検査システム100を用いた周期ずれ補正処理の全体概要を説明するためのフローチャートである。 図2のステップ204の周期性情報取得処理の詳細を説明するためのフローチャートである。 設計データテンプレート401と第1テンプレート402とSEM画像403を示す図である。 X方向における周期性探索、及びY方向における周期性探索を示す図である。 斜め方向における周期性探索を示す図である。 第1の実施形態による、図2のステップ208における周期ずれ補正処理の詳細を説明するためのフローチャートである。 第2の実施形態による、図2のステップ208における周期ずれ補正処理の詳細を説明するためのフローチャートである。 SEM画像の撮像位置の例を示す図である。 周期性情報と周期位置(位置合わせ候補1)を説明するための図である。 周期性情報と周期位置(位置合わせ候補2)を説明するための図である。 座標誤差算出の具体例を説明するための図である。 第2SEM画像の位置合わせ結果加算後の周期位置を説明するための図である。 第2SEM画像の位置合わせ結果加算後の周期位置及び座標誤差を説明するための図である。
 本開示の実施形態は、パターン計測検査装置(FIB装置やプローブ装置を含む)に関し、半導体パターンの検査或いは計測、半導体デバイスの内部配線或いは電気特性測定等の解析の基準となる形状を表す設計データを用いて周期性情報を取得し、パターン計測検査装置によって取得されたSEM画像と周期性情報を用いて周期ずれを補正する技術に関する。
 以下、添付図面を参照して、設計データ上のパターンから周期性情報を取得する方法、及び周期性情報を用いて、座標補正による周期ずれを補正する半導体計測・検査システムの具体例について説明する。本開示の実施形態では、半導体計測・検査装置で撮像するウェハ位置は欠陥位置のみとし、ウェハ内のサンプリングした位置を撮像していることを前提とする。
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
(1)第1の実施形態
 <システム構成例>
 図1は、本実施形態による半導体計測・検査システム100の概略構成例を示す図である。半導体計測・検査システム100では、ウェハ上に形成された回路パターンの計測および検査を行う走査型電子顕微鏡(SEM:SCANNING ELECTRON MICROSCOPE)101と、コンピュータシステム1_111と、コンピュータシステム2_116と、設計情報データベース120と、ユーザPC等の入出力装置121と、を備える。走査型電子顕微鏡101とコンピュータ1_111とはネットワーク1_110を介して接続されている。コンピュータ1_111と、コンピュータ2_116と、設計情報データベース120と、入出力装置121とは、ネットワーク2_115を介して接続されている。
 SEM101は、SEMの基本構成である電子線カラム102と、真空試料室105と、試料ステージ(XYステージ)106とを統合した構成を備える。パターン検査の際は、デバイスが製造されたウェハ等の試料107に、電子源103から電子線104が照射される。照射された電子線は、複数段のレンズを用いて集束され、走査偏向器を用いて偏向走査される。これにより電子線は試料表面上を一次元または二次元的に走査される。電子線の走査によって試料から放出された二次電子又は後方散乱電子108は、検出器によって検出され、A/D変換器109でデジタル信号に変換される。デジタル信号は、ネットワーク1_110を介してコンピュータシステム1_111に入力され、記憶部114に格納される。
 コンピュータシステム1_111は、制御部113により、装置の電子線カラム、ステージおよび真空試料室をはじめとする各種モジュールを制御する。また、コンピュータシステム1_111は、パターン検査の際、演算処理部112により、記憶部114に格納されたデジタル信号を読み込み、測定対象情報取得のための信号処理(SEM画像生成)および画像処理をはじめとする各種演算処理を実行し、生成したSEM画像および各種演算結果を記憶部114に保存し、管理する。
 コンピュータシステム1_111の演算処理部112は、半導体デバイスの設計データに基づいて、SEM101の動作を制御するプログラム(レシピ)を作成する機能を備え、レシピ設定部としても機能する。具体的に、演算処理部112は、オペレータの入力指示に応答して、SEM101に必要な処理を実行させるための位置情報(例えば設計データ、パターンの輪郭線データ、シミュレーションが施された設計データ上の所望の測定点、オートフォーカス点、オートスティグマ点、アドレッシング点等)を設定する。そして、演算処理部112は、当該設定に基づいて、SEM101の試料ステージ106や偏向器等を自動制御するためのプログラムを作成する。
 コンピュータシステム2_116は、演算処理部117によって計測・欠陥検査処理(測定・検査結果情報を生成)および統計処理を実行し、処理結果を記憶部119に格納する。また、コンピュータシステム2_116は、画像処理部118によって、画像処理および出力処理ならびに記憶部119に対する画像処理結果の保存および管理などを行う。
 設計情報データベース120は、半導体回路パターンの設計情報(設計データ)を格納する。設計データは、例えば、積層する回路パターンの各層の情報であるレイヤー情報と各層の回路パターンの形状情報などで構成される。
 ユーザPC等の入出力装置121は、オペレータが、ネットワーク2_115に接続されており、コンピュータシステム1_111のレシピ実行操作やレシピ作成操作をはじめとするSEM101の各種操作を行うために用いられる。また、入出力装置121をコンピュータシステム2_116に接続することで、計測処理および統計処理などの処理をリモートで行うことができる。さらに、オペレータは、入出力装置121から設計情報データベース120へアクセスすることにより、設計データの照会および取得、保存、作成を行うことができる。
 なお、図1に示す半導体計測・検査システム100は、コンピュータ1_111とコンピュータ2_116のように複数のコンピュータを含み、それぞれ別の処理を担うように構成されているが、1つのコンピュータのみを含み、それに全ての処理を実行されるようにしてもよい。また、コンピュータシステム2_116、設計情報データベース120、および入出力装置121を1つのシステムとして構成し、当該システムをネットワークを介してコンピュータシステム1_111と接続するようにしてもよい。
 <周期ずれ補正処理:処理全体概要>
 図2は、図1に示す半導体計測・検査システム100を用いた周期ずれ補正処理の全体概要を説明するためのフローチャートである。当該周期ずれ補正処理の全体概要に含まれる周期性情報取得処理(ステップ204)の詳細、及び周期性情報を用いた周期ずれ補正処理(ステップ207)の詳細については後述する。
(i)ステップ201
 コンピュータシステム1_111の演算処理部112は、半導体デバイスの設計データに基づいて、レシピ作成機能によりSEM画像撮像レシピを作成する。SEM101は、作成されたレシピに従って撮像動作を実行する。このとき、コンピュータシステム1_111の制御部113は、レシピに従ってステージ移動を実行する。また、演算処理部112は、信号処理等によってSEM101上で試料のパターン検査を行い、撮像画像(以下、SEM画像という)を取得するとともに、撮像の際の取得条件情報(例えば、撮像時の電流値や電圧値の情報、ウェハやチップの座標位置など)を含む付帯情報を取得し、コンピュータシステム1_111の記憶部114に保存する。
(ii)ステップ202
 コンピュータシステム2_116は、ネットワーク2_115を介して、コンピュータシステム1_111の記憶部114に保存されている撮像画像(SEM画像)と付帯情報を取得し、当該付帯情報の読み込みを行う。なお、付帯情報の読み込み処理では、後述のステップ702(図7参照)で用いられるWafer座標やChip座標等の撮像位置情報が取得される。
(iii)ステップ203
 コンピュータシステム2_116は、設計情報データベース120から、予め作成した設計データテンプレートを読み込む。設計データテンプレートは、取得したSEM画像(画像セット)に対応する設計データである。この設計データテンプレートは、FOV(Field of View)がSEM画像のFOVの2倍領域(2倍は一例)を有するように構成することができる。
(iv)ステップ204
 コンピュータシステム2_116は、読み込んだ設計データを用いて自己相関処理を実行し、周期性情報を取得する。例えば、コンピュータシステム2_116は、対象FOV内であって設計データテンプレートの中心部分に対応する第1テンプレートを用いて、対象FOVの周期性情報を取得する。第1テンプレートとする領域は、設計データ(設計データテンプレート)内の領域からGUI等によりオペレータが設定できるようにしてもよい。また、例えば、第1テンプレートは、対象FOV内であって設計データテンプレートの中心部分に対応する領域とすることができる。なお、自己相関処理による周期性情報取得の詳細については後述する(図3参照)。
(v)ステップ205
 コンピュータシステム2_116は、読み込んだSEM画像と設計データを用いてテンプレートマッチングや正規化相互相関法を用いてパターンマッチングを実行し、SEM画像と設計データの位置合わせを行う。
(vi)ステップ206
 コンピュータシステム2_116は、設計データに基づいて、パターン計測処理や欠陥検査処理を行う。なお、当該パターン計測処理や欠陥検査処理は、コンピュータシステム1_111で行ってもよい。
(vii)ステップ207
 コンピュータシステム2_116は、ステップ204で取得した周期性情報、及びステップ205で取得したSEM画像と設計データの位置合わせ結果、ならびに撮像位置情報を用いて、周期ずれ補正処理を行う。周期ずれ補正処理の詳細については後述する(図7参照)。
(viii)ステップ208
 コンピュータシステム2_116は、予め決められた運用に基づいて、周期ずれ補正によって特定した設計データ座標(周期ずれ補正結果)を後段システムに提供するか否かを判定する。ここで、「運用」とは、例えば、半導体計測・検査システム100の後段にFIB装置やプローブ装置が接続されており、後段の装置で周期ずれ補正によって特定した設計データを用いることが指定されている場合である。この場合、後段システム(FIB装置やプローブ装置)は、断面解析時のデポ膜形成領域の決定やプローブを当てる位置の決定に周期ずれ補正結果を用いる。
 後段システムに周期ずれ補正結果を提供する場合(ステップ208でYesの場合)、処理はステップ209に移行する。一方、後段システムに周期ずれ補正結果を提供する必要がない場合(ステップ208でNoの場合)、処理はステップ210に移行する。
(ix)ステップ209
 コンピュータシステム2_116は、周期ずれ補正によって特定した設計データ座標(周期ずれ補正結果)を後段システムに提供する。
(x)ステップ210
 コンピュータシステム2_116は、周期ずれ補正結果を入出力装置121に受け渡す。入出力装置121は、周期ずれ補正結果(例えば、周期ずれが補正されたSEM画像と設計データとを重なり合わせた画像や周期ずれ補正前後のSEM画像など)を可視化する(例えば、画面上に表示する)。
 <周期性情報取得処理の詳細>
 図3から図6を参照して、周期性情報取得処理について説明する。図3は、図2のステップ204の周期性情報取得処理の詳細を説明するためのフローチャートである。図4は、設計データテンプレート401と第1テンプレート402とSEM画像403を示す図である。図5は、X方向における周期性探索、及びY方向における周期性探索を示す図である。図6は、斜め方向における周期性探索を示す図である。
(i)ステップ301
 コンピュータシステム2_116は、設計情報データベース120に格納されている設計データ(設計データテンプレート)401を用いて、自己相関処理を行う。
(ii)ステップ302
 コンピュータシステム2_116は、ステップ301の自己相関処理結果(マップ、分布等)、及び予め決定した対象FOV内の第1テンプレート402を用いて、第1方向(例えば、X方向)501(図5参照)に第1テンプレート402の存在を探索し、周期性情報を取得する。このとき、2以上の周期性を確認できない場合は、その時点で探索は終了する。なお、第1テンプレートの決定は、計測検査対象のSEM画像403と同一のFOVとしてもよい。また、周期性情報は、探索方向の第1テンプレートの周期性有無を示す情報、周期一致点数(一致点の有無に応じて周期性の有無が判定できる)の情報、および周期間隔の情報を含んでいる。
(iii)ステップ303
 コンピュータシステム2_116は、ステップ301の自己相関処理結果、及び第1テンプレートを用いて、第2方向(例えば、Y方向)502(図5参照)に第1テンプレートの存在を探索し、周期性情報を取得する。このとき、ステップ302と同様に、2以上の周期性を確認できない場合は、その時点で探索は終了する。
(iv)ステップ304
 コンピュータシステム2_116は、ステップ301の自己相関処理結果、及び第1テンプレートを用いて、第3方向(斜め方向)601(図6参照)に第1テンプレートの存在を探索し、周期性情報を取得する。このとき、ステップ302およびステップ303と同様に、2以上の周期性を確認できない場合は、その時点で探索は終了する。
(v)ステップ305
 コンピュータシステム2_116は、ステップ302から304で取得した周期性情報を、各SEM画像および設計データの周期性情報(ファイルデータ)として出力、或いは関連するSEM画像に付帯させる。
 <周期ずれ補正処理の詳細>
 図7は、図2のステップ208における周期ずれ補正処理の詳細を説明するためのフローチャートである。
(i)ステップ701
 コンピュータシステム2_116(例えば、演算処理部117)は、ステップ204で取得した周期性情報を用いて(周期性の有無の情報に基づいて)、各SEM画像を、周期パターンを有するSEM画像群、或いはは非周期パターンを有するSEM画像群に分類する。
(ii)ステップ702
 コンピュータシステム2_116は、非周期パターンを有するSEM画像群の中から、周期パターンを有するSEM画像群の各画像(以下、第1SEM画像)の最近傍に位置する非周期パターンを有するSEM画像(以下、第2SEM画像)を探索(特定)する。探索には、SEM画像のWafer座標やChip座標等の撮像位置情報901が用いられる。そして、コンピュータシステム2_116は、第1SEM画像と非周期パターンを有する各SEM画像との距離(2点間距離)を算出する。例えば、図9では、第1SEM画像902と第2SEM画像903との2点間距離、および第1SEM画像902と第2SEM画像904の2点間距離がそれぞれ算出される。さらに、コンピュータシステム2_116は、この2点間距離が最短となる組み合わせを特定し、非周期パターンを有するSEM画像を周期ずれ補正に用いる第2SEM画像とする。なお、このときの2点間距離の算出方法はどのようなものであってもよい。
(iii)ステップ703
 コンピュータシステム2_116は、第1SEM画像と第2SEM画像との間の詳細な座標誤差を補正する必要性があるか否か判断する。ここで、詳細な座標誤差とは、設計データ(設計テンプレート401)との位置合わせによる誤差以外の座標誤差のことである。詳細な座標誤差補正は、例えば、以下の3つの場合に実行される。
  (iii-1)オペレータが、求める座標精度によってGUI等(入出力装置121の画面上に表示されるGUI等)から周期ずれ補正の実行を指示する場合;
  (iii-2)第1SEM画像の撮像動作と第2SEM画像の撮像動作との間においてステージ移動があった場合;
  (iii-3)第1SEM画像と第2SEM画像の2点間距離が所定の閾値(オペレータがGUI等により指定した任意の閾値)を超えた場合、である。これら3つの場合のうち少なくとも1つの条件を満足した場合に周期ずれ補正を実行するようにしてもよいし、或いは2つ以上の条件を満足した場合に周期ずれ補正を実行するようにしてもよい。
 オペレータが高精度に位置ずれを補正したい場合、ステージ移動があった場合、或いは2点間距離が所定の閾値を超えた場合(ステップ703でYesの場合)、処理はステップ705に移行する。高精度に位置ずれ補正を求める必要がない場合、ステージ移動が無かった場合、或いは2点間距離が所定の閾値を超えない場合(ステップ703でNoの場合)、処理はステップ704に移行する。
 なお、ここで、座標誤差とは、第1SEM画像と第2SEM画像それぞれを、周期ずれのない理想的な位置で位置合わせした場合のずれ量を意味する。
(iv)ステップ704
 コンピュータシステム2_116は、第2SEM画像と設計データテンプレートとの位置合わせ結果(位置合わせシフト量)を第1SEM画像の周期ずれ補正後座標に採用する。つまり、第2SEM画像の設計データとのずれ量をそのまま第1SEM画像の補正量とする。
(v)ステップ705
 コンピュータシステム2_116は、座標誤差を算出する。そのために、まず、コンピュータシステム2_116は、第1SEM画像の周期性情報より、全ての周期位置を算出する。例えば、周期テンプレート1004(前述の第1テンプレートに相当)を持つ設計データテンプレート1001において、周期幅1002、周期高さ1003、および各方向(X,Y、斜め方向にそれぞれ)1つの周期点数がある場合を考える。この場合、これらの情報から9個(9個は一例;1005から1009:図10参照、および1101から1104:図11参照)の周期位置(マッチング位置)を算出することができる。次に、コンピュータシステム2_116は、周期位置の重心位置に第2SEM画像の設計データとの位置合わせ結果(上記位置合わせシフト量)1201を加算し(1202から1206:図12参照、1301から1304:図13参照)、第1SEM画像の位置合わせ結果1305に最も近い、周期位置1306を特定する。そして、コンピュータシステム2_116は、特定した周期位置1306と第1SEM画像の位置合わせ結果1305の差分1307を座標誤差とする。
 理解をより容易にするために、図14を参照して具体例について説明する。図14は、座標誤差算出の具体例を説明するための図である。一例として、第1SEM画像(周期パターン)1401の設計データ(設計データテンプレート)とのずれ量(中心位置のずれ量)を検出位置(14,15)、第2SEM画像(非周期パターン)1402の設計データとのずれ量を正解位置(2,3)とする。また、上述のようにX方向、Y方向、および斜め方向にそれぞれ周期点(周期位置)が1つずつあるものとし、図10および図11に示すように、周期位置を探索した結果、(-10,10),(0,10),(10,10),(-10,0),(0,0),(10,0),(-10,-10),(0,-10),(10,-10)のように周期位置リスト1403が得られたとする。このとき、各周期位置に非周期パターンから得られた正解位置(2,3)を加算すると、(-8,13),(2,13),(12,13),(-8,3),(2,3),(12,3),(-8,-7),(2,-7),(12,-7)が得られる。この加算後周期位置1404の中から検出位置(14,15)の最近傍の周期位置(12,13)が特定されるので、(14,15)と(12,13)のオフセット1405は(2,2)と分かる。このオフセット1405が座標誤差となる。
(vi)ステップ706
 コンピュータシステム2_116は、第2SEM画像の位置合わせ結果に、ステップ705で求めた座標誤差を加算することにより、補正後座標を算出する。図12の具体例においては、オフセット1405と正解位置(2,3)とを加算することにより、第1SEM画像の正解位置1406=(4,5)が得られる。この正解位置1406が補正後の座標となる。なお、当該具体例における周期ずれ量1407は、正解位置1406から検出位置とのずれ量となり、(4,5)-(14,15)=(-10,-10)となる。
(vii)ステップ707
 コンピュータシステム2_116は、ステップ704或いはステップ706で算出した第1SEM画像の補正結果或いは周期ずれ補正結果を出力する。
(2)第2の実施形態
 上述の第1の実施形態は、ウェハ上やチップ上の連続していない領域の撮像画像(無作為に取った領域における撮像画像)を用いた周期ずれ補正処理について説明した。第2の実施形態は、ウェハ上やチップ上の連続した領域の撮像画像を用いた周期ずれ補正について説明する。
 <システム構成>
 第2の実施形態で用いるシステムとしては、第1の実施形態と同様に、図1に示す半導体計測・検査システム100と同一の構成を採用することができる。よって、ここでは、詳細な説明は省略する。
 <周期ずれ補正処理:処理全体概要>
 第2の実施形態による周期ずれ補正処理の全体概要、および周期性情報取得処理は、第1の実施形態と同一である(周期ずれ補正処理の全体概要については図2、周期性情報取得処理については図3参照)。よって、ここでは、詳細な説明は省略する。
 <周期ずれ補正処理の詳細>
 図8は、第2の実施形態による周期ずれ補正処理の詳細を説明するためのフローチャートである。第1の実施形態(図7)との差異は、ステップ802の処理である。これは、第2の実施形態がウェハ上やチップ上の連続した領域の撮像画像を用いて周期ずれ補正を行っていることに起因する差異である。
(i)ステップ801
 コンピュータシステム2_116(例えば、演算処理部117)は、ステップ204で取得した周期性情報を用いて(周期性の有無の情報に基づいて)、各SEM画像を、周期パターンを有するSEM画像群、或いは非周期パターンを有するSEM画像群に分類する。
(ii)ステップ802
 コンピュータシステム2_116は、非周期パターンを有するSEM画像群の中から、周期パターンを有するSEM画像群の各画像(以下、第1SEM画像)の最近傍に位置する非周期パターンを有するSEM画像(以下、第2SEM画像)を探索(特定)する。具体的には、装置側での画像取得方法(撮像条件)により連続した領域を撮像している。このため、コンピュータシステム2_116は、第1SEM画像よりも前に撮像した画像、かつステップ801で非周期パターンを有するSEM画像群に分類した画像を第2SEM画像とする。一方、コンピュータシステム2_116は、最近傍に既に周期ずれ補正を行った画像が存在する場合は、この画像を第2SEM画像(周期ずれ補正用)に設定する。なお、第2の実施形態では連続した領域における撮像画像を取得しているため、周期パターンの近傍の非周期パターン(ユニークパターン)をわざわざ探索する必要がない。また、第2SEM画像は同一チップ内の画像である場合もある。
(iii)ステップ803
 コンピュータシステム2_116は、第1SEM画像と第2SEM画像との間の詳細な座標誤差を補正する必要性があるか否か判断する。ここで、詳細な座標誤差とは、設計データ(設計テンプレート401)との位置合わせによる誤差以外の座標誤差のことである。詳細な座標誤差補正は、例えば、以下の3つの場合に実行される。
  (iii-1)オペレータが、求める座標精度によってGUI等(入出力装置121の画面上に表示されるGUI等)から周期ずれ補正の実行を指示する場合;
  (iii-2)第1SEM画像の撮像動作と第2SEM画像の撮像動作との間においてステージ移動があった場合;
  (iii-3)第1SEM画像と第2SEM画像の2点間距離が所定の閾値(オペレータがGUI等により指定した任意の閾値)を超えた場合、である。これら3つの場合のうち少なくとも1つの条件を満足した場合に周期ずれ補正を実行するようにしてもよいし、或いは2つ以上の条件を満足した場合に周期ずれ補正を実行するようにしてもよい。
 オペレータが高精度に位置ずれを補正したい場合、ステージ移動があった場合、或いは2点間距離が所定の閾値を超えた場合(ステップ803でYesの場合)、処理はステップ805に移行する。高精度に位置ずれ補正を求める必要がない場合、ステージ移動が無かった場合、或いは2点間距離が所定の閾値を超えない場合(ステップ803でNoの場合)、処理はステップ804に移行する。
 なお、ここで、座標誤差とは、第1SEM画像と第2SEM画像それぞれを、周期ずれのない理想的な位置で位置合わせした場合のずれ量を意味する。
(iv)ステップ804
 コンピュータシステム2_116は、第2SEM画像と設計データテンプレートとの位置合わせ結果(位置合わせシフト量)を第1SEM画像の周期ずれ補正後座標に採用する。つまり、第2SEM画像の設計データとのずれ量をそのまま第1SEM画像の補正量とする。
(v)ステップ805
 コンピュータシステム2_116は、座標誤差を算出する。そのために、まず、コンピュータシステム2_116は、第1SEM画像の周期性情報より、全ての周期位置を算出する。例えば、周期テンプレート1004(前述の第1テンプレートに相当)を持つ設計データテンプレート1001において、周期幅1002、周期高さ1003、および各方向(X,Y、斜め方向にそれぞれ)1つの周期点数がある場合を考える。この場合、これらの情報から9個(1005から1009:図10参照、および1101から1104:図11参照)の周期位置(マッチング位置)を算出することができる。次に、コンピュータシステム2_116は、周期位置の重心位置に第2SEM画像の設計データとの位置合わせ結果(上記位置合わせシフト量)1201を加算し(1202から1206:図12参照、1301から1304:図13参照)、第1SEM画像の位置合わせ結果1305に最も近い、周期位置1306を特定する。そして、コンピュータシステム2_116は、特定した周期位置1306と第1SEM画像の位置合わせ結果1305の差分1307を座標誤差とする。
 理解をより容易にするために、図14を参照して具体例について説明する。図14は、座標誤差算出の具体例を説明するための図である。一例として、第1SEM画像(周期パターン)1401の設計データ(設計データテンプレート)とのずれ量(中心位置のずれ量)を検出位置(14,15)、第2SEM画像(非周期パターン)1402の設計データとのずれ量を正解位置(2,3)とする。また、上述のようにX方向、Y方向、および斜め方向にそれぞれ周期点(周期位置)が1つずつあるものとし、図10および図11に示すように、周期位置を探索した結果、(-10,10),(0,10),(10,10),(-10,0),(0,0),(10,0),(-10,-10),(0,-10),(10,-10)のように周期位置リスト1403が得られたとする。このとき、各周期位置に非周期パターンから得られた正解位置(2,3)を加算すると、(-8,13),(2,13),(12,13),(-8,3),(2,3),(12,3),(-8,-7),(2,-7),(12,-7)が得られる。この加算後周期位置1404の中から検出位置(14,15)の最近傍の周期位置(12,13)が特定されるので、(14,15)と(12,13)のオフセット1405は(2,2)と分かる。このオフセット1405が座標誤差となる。
(vi)ステップ806
 コンピュータシステム2_116は、第2SEM画像の位置合わせ結果に、ステップ805で求めた座標誤差を加算することにより、補正後座標を算出する。図14の具体例においては、オフセット1405と正解位置(2,3)とを加算することにより、第1SEM画像の正解位置1406=(4,5)が得られる。この正解位置1406が補正後の座標となる。なお、当該具体例における周期ずれ量1407は、正解位置1406から検出位置とのずれ量となり、(4,5)-(14,15)=(-10,-10)となる。
(vii)ステップ807
 コンピュータシステム2_116は、ステップ704或いはステップ806で算出した第1SEM画像の補正結果或いは周期ずれ補正結果を出力する。
(3)まとめ
(i)本開示の実施形態によれば、半導体計測・検査システム100を構成する画像データ処理システムは、コンピュータシステム2_116と、設計情報データベース120と、入出力装置121と、を備え、試料(ウェハ)上に形成されたパターン形成領域の設計情報とパターン形成領域の少なくとも一部を撮像して得られる第1SEM画像との第1位置合わせ処理を行うことにより第1SEM画像の第1位置情報を特定し、パターン形成領域内に存在するパターンの測長又は欠陥検査を行う。より詳細には、画像データ処理システムは、設計情報を用いた自己相関処理の結果(マップや分布等)に基づいた、パターン形成領域における周期性情報を取得する処理と、当該周期性情報に基づいて、第1SEM画像の第1位置情報を出力又は補正する、或いは、第1位置合わせ処理の良否を判定する処理を実行する。このようにすることにより、周期パターンであっても、正確な位置での位置合わせが可能となり、SEM画像上の任意の箇所(計測箇所、又は欠陥箇所)に対応する設計データ座標を正確に特定することが可能となる。また、本発明は計測検査処理の最後に座標補正を行うことで、再マッチングを不要とし、高速に補正することが可能となる。
 コンピュータシステム2_116は、第1SEM画像の一部又は全部の領域に対応した第1テンプレート402を用いて、自己相関処理の結果(マップや分布等)の一部又は全部の領域に対応した探索対象領域(設計データテンプレート401:第1テンプレート402の2倍のサイズの領域を有する)を探索することによって、周期性情報を抽出する。第1テンプレートよりも大きいサイズを有するが限定された範囲を探索対象としているため、効率的に周期性情報を抽出することができ、スループットを向上させることができるようになる。なお、上記探索処理による周期性情報は、第1テンプレートを、第1方向(X方向)、第2方向(Y方向)、及び/又は第3方向(斜め方向)に動かすことによって抽出することができる。このとき、第1SEM画像の中に2以上の周期パターンの存在を特定できた場合には当該第1SEM画像は周期パターンに分類される。一方、第1SEM画像の中に2以上の周期パターンが特定できなかった場合には当該第1SEM画像は非周期パターンに分類される。第1SEM画像の分類の結果、周期判定結果と、周期パターンの場合は一致点数或いは一致間隔(周期)の少なくとも1つとがパラメータとして周期性情報に含まれることになる。
(ii)本開示の第1の実施形態において、コンピュータシステム2_116は、探索対象領域の探索処理によって、第1SEM画像内に2以上の繰り返しパターン(周期パターン)の存在が特定できた場合に、第1SEM画像の第1位置情報(設計情報との位置合わせ情報)と第1SEM画像に付帯するグローバル位置情報(ウェハ座標やチップ座標)とに基づいて、繰り返しパターンの最近傍に存在するユニークパターン(非周期パターン;第2SEM画像)の第2位置情報(設計情報との位置合わせ情報)を特定し、当該第2位置情報および周期性情報に基づいて、第1SEM画像の第1位置情報を出力又は補正する、或いは、第1位置合わせ処理(設計情報との位置合わせ処理)の良否を判定する。このようにすることにより、再マッチング処理を実行することなく、周期ずれを補正することができる。
 なお、ここで、グローバル位置情報(ウェハ座標やチップ座標)は、第1SEM画像および第2SEM画像を撮像した撮像装置によって付帯された撮像位置情報、或いは光学式検査装置によって特定された撮像位置情報を含んでいる。
 コンピュータシステム2_116は、第1SEM画像の第1位置情報(設計情報との位置合わせ)を補正する際に、第2SEM画像の第2位置情報(ユニークパターンの位置合わせ情報)を補正後位置情報とすること(ステップ704やステップ804)、或いは第2位置情報と第1SEM画像の周期性情報から座標誤差を算出し、周期性情報から算出した座標誤差を第2位置情報に加算することにより補正後位置情報を特定する(図10から図14参照)。
(iii)本開示の第2の実施形態において、コンピュータシステム2_116は、探索対象領域の探索処理によって、第1SEM画像内に2以上の繰り返しパターン(周期パターン)の存在が特定できた場合に、第1SEM画像の取得条件と上記周期性情報とに基づいて、繰り返しパターン(周期パターン)の最近傍に存在する非周期パターンである第2SEM画像を特定する。そして、コンピュータシステム2_116は、第2SEM画像の設計情報との位置合わせ結果である第2位置情報を特定し、当該第2位置情報および周期性情報に基づいて、第1画像の第1位置情報を出力又は補正する、或いは、第1位置合わせ処理の良否を判定する。具体的には、第1の実施形態の場合と同様に、コンピュータシステム2_116は、第1SEM画像の第1位置情報(設計情報との位置合わせ)を補正する際に、第2SEM画像の第2位置情報(ユニークパターンの位置合わせ情報)を補正後位置情報とすること(ステップ704やステップ804)、或いは第2位置情報と第1SEM画像の周期性情報から座標誤差を算出し、周期性情報から算出した座標誤差を第2位置情報に加算することにより補正後位置情報を特定する(図10から図14参照)。
(iv)本開示の各実施形態の機能は、ソフトウェアのプログラムコードによっても実現できる。この場合、プログラムコードを記録した記憶媒体をシステム或いは装置に提供し、そのシステム或いは装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコード自体、及びそれを記憶した記憶媒体は本開示を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD-ROM、DVD-ROM、ハードディスク、光ディスク、光磁気ディスク、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。
 また、プログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。さらに、記憶媒体から読み出されたプログラムコードが、コンピュータ上のメモリに書きこまれた後、そのプログラムコードの指示に基づき、コンピュータのCPUなどが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。
 さらに、各実施形態の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することにより、それをシステム又は装置のハードディスクやメモリ等の記憶手段又はCD-RW、CD-R等の記憶媒体に格納し、使用時にそのシステム又は装置のコンピュータ(又はCPUやMPU)が当該記憶手段や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしてもよい。
 ここで述べたプロセス及び技術は本質的にいかなる特定の装置に関連することはなく、各コンポーネントの組み合わせによって実装することもできる。また、汎用目的の多様なタイプのデバイスも追加可能である。本実施形態および各実施例の機能を実行するために、専用の装置を構築してもよい。また、本実施形態および各実施例に開示されている複数の構成要素を適宜組み合わせることにより、種々の機能を形成することもできる。例えば、実施形態および各実施例に示される全構成要素から幾つかの構成要素を削除してもよいし、異なる実施例にわたる構成要素を適宜組み合わせてもよい。
 本開示においては、具体的な実施例を記述しているが、これらは、すべての観点において限定のためではなく説明(本開示の技術の理解)のためである。本技術分野の通常の知識を有する者であれば、本開示の技術を実施するのに相応しいハードウェア、ソフトウェア、及びファームウェアの多数の組み合わせがあることが理解できるものと考えられる。例えば、記述したソフトウェアは、アセンブラ、C/C++、perl、Shell、PHP、Java(登録商標)等の広範囲のプログラム又はスクリプト言語で実装できる。
 さらに、上述の実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていても良い。
 加えて、本技術分野の通常の知識を有する者であれば、本開示のその他の実装について本実施形態および各実施例の考察から明らかにすることができる。明細書と具体例は典型的なものに過ぎず、本開示の技術の範囲と精神は後続する請求範囲で示される。
100 半導体計測・検査システム、101 走査型電子顕微鏡、102 電子線カラム、103 電子源、104 電子線、105 真空試料室、106 試料ステージ(XYステージ)、107 試料、108 二次電子または後方散乱電子、109 A/D変換器、110 ネットワーク1、111 コンピュータシステム1、112 コンピュータシステム1の演算処理部、113 コンピュータシステム1の制御部、114 コンピュータシステム1の記憶部、115 ネットワーク2、116 コンピュータシステム2、117 コンピュータシステム2の演算処理部、118 コンピュータシステム2の画像処理部、119 コンピュータシステム2の記憶部、120 設計情報データベース、121 入出力装置(ユーザPC)、401 設計データ(SEM画像のFOVの2倍領域を持つ)、402 周期性判定に用いる第1テンプレート(403のSEM画像と同一のFOV)、403 周期性判定に用いる第1テンプレート決定のためのSEM画像、501 周期探索時の第1探索方向を表す線分(X方向)、502 周期探索時の第2探索方向を表す線分(Y方向)、601 周期探索時の第3探索方向を表す線分(斜め方向)、901 Wafer座標、902 周期パターンを有するSEM画像の撮像位置、903 非周期パターンを有するSEM画像の撮像位置(1)、904 非周期パターンを有するSEM画像の撮像位置(2)、1001 設計データ、1002 周期性情報(周期幅)、1003 周期性情報(周期高さ)、1004 周期テンプレート、1005から1009 周期位置(位置合わせ候補)、1101から1104 周期位置(位置合わせ候補)、1201 位置合わせ結果、1202から1206 加算した周期位置、1301から1304 加算した周期位置、1305 特定した周期位置と第1SEM画像の位置合わせ結果、1306 特定した周期位置、1307 特定した周期位置1306と第1SEM画像の位置合わせ結果1305の差分、1401 第1SEM画像(周期パターン)、1402 第2SEM画像(非周期パターン)、1403 周期位置(マッチング位置)リスト、1404 加算後周期位置(マッチング位置)リスト、1405 オフセット、1406 正解位置、1407 周期ずれ量

Claims (15)

  1.  試料上に形成されたパターン形成領域の設計情報と前記パターン形成領域の少なくとも一部を撮像して得られる第1画像との第1位置合わせ処理を行うことにより前記第1画像の第1位置情報を特定し、前記パターン形成領域内に存在するパターンの測長又は欠陥検査を行う、パターン測長・欠陥検査方法であって、
     前記設計情報を用いた自己相関処理の結果に基づく、前記パターン形成領域における周期性情報を取得する第1ステップと、
     前記周期性情報に基づいて、前記第1画像の第1位置情報を出力又は補正する、或いは、前記第1位置合わせ処理の良否を判定する第2ステップと、
    を含む、方法。
  2.  請求項1において、
     前記第1ステップは、前記第1画像の一部又は全部の領域に対応した第1テンプレートを用いて、前記自己相関処理の結果の一部又は全部の領域に対応した探索対象領域を探索することによって、前記周期性情報を抽出することを含む、方法。
  3.  請求項2において、
     前記第2ステップは、前記探索によって、前記第1画像内に2以上の繰り返しパターンの存在が特定できた場合に、前記第1画像の前記第1位置情報と、前記第1画像に付帯するグローバル位置情報とに基づいて、前記繰り返しパターンの最近傍に存在する非周期パターンである第2画像の第2位置情報を特定することと、前記第2位置情報および前記周期性情報に基づいて、前記第1画像の第1位置情報を出力又は補正する、或いは、前記第1位置合わせ処理の良否を判定することと、を含む、方法。
  4.  請求項2において、
     前記第1ステップは、前記第1画像の設計情報を用いた自己相関処理の結果を算出して第1テンプレートとすることと、前記第1テンプレートを第1方向又は/及び第2方向、又は/及び第3方向に周期探索して周期性情報を抽出することと、を含む、方法。
  5.  請求項4において、
     前記周期性情報を抽出することは、前記周期探索によって、前記第1画像の中に2以上の周期パターンの存在を特定できた場合には前記第1画像を周期パターンとし、前記2以上の周期パターンが特定できなかった場合には前記第1画像を非周期パターンとして、周期性判定結果を設定または更新することを含む、方法。
  6.  請求項5において、
     前記周期性情報は、それぞれ前記第1方向、又は/及び前記第2方向、又は/及び前記第3方向について、前記周期性判定結果と、前記2以上の周期パターンにおける一致点数或いは一致間隔のいずれか1以上のパラメータと、を含む、方法。
  7.  請求項1において、
     前記第1画像の前記第1位置情報を補正することは、再マッチングをせずに、前記周期性情報を用いた周期探索処理と座標補正処理で前記第1位置情報を補正することにより、前記第1画像の周期ずれを補正することを含む、方法。
  8.  請求項3において、
     前記グローバル位置情報は、前記第1画像および第2画像を撮像した撮像装置によって付帯された撮像位置情報、或いは光学式検査装置によって特定された撮像位置情報を含む、方法。
  9.  請求項3において、
     前記第1画像の前記第1位置情報を補正することは、前記第2位置情報を補正後位置情報とすること、或いは前記第2位置情報と前記第1画像の前記周期性情報から座標誤差を算出することと、前記周期性情報から算出した前記座標誤差を前記第2位置情報に加算することにより前記補正後位置情報を特定することと、を含む、方法。
  10.  試料上に形成されたパターン形成領域の設計情報と前記パターン形成領域の少なくとも一部を撮像して得られる第1画像との第1位置合わせ処理を行うことにより前記第1画像の第1位置情報を特定し、前記パターン形成領域内に存在するパターンの測長又は欠陥検査を行う画像データ処理システムであって、
     前記設計情報を格納する記憶デバイスと、
     前記記憶デバイスから前記設計情報を取得し、前記第1位置合わせ処理および前記測長又は欠陥検査を実行するコンピュータシステムと、を備え、
     前記コンピュータシステムは、
      前記設計情報を用いて自己相関処理を実行し、当該自己相関処理の結果に基づく、前記パターン形成領域における周期性情報を抽出する第1処理と、
     前記周期性情報に基づいて、前記第1画像の第1位置情報を出力又は補正する、或いは、前記第1位置合わせ処理の良否を判定する第2処理と、
    を実行する、画像データ処理システム。
  11.  請求項10において、
     前記コンピュータシステムは、第2処理において、前記自己相関処理における探索処理によって、前記第1画像内に2以上の繰り返しパターンの存在が特定できた場合に、前記第1画像の前記第1位置情報と、前記第1画像に付帯するグローバル位置情報とに基づいて、前記繰り返しパターンの最近傍に存在する非周期パターンの第2位置情報を特定する処理と、前記第2位置情報および前記周期性情報に基づいて、前記第1画像の第1位置情報を出力又は補正する、或いは、前記第1位置合わせ処理の良否を判定する処理と、を実行する、画像データ処理システム。
  12.  請求項11において、
     前記コンピュータシステムは、前記第1画像の前記第1位置情報を補正する際に、前記第2位置情報を補正後位置情報とする処理、或いは前記第2位置情報と前記第1画像の前記周期性情報から座標誤差を算出する処理と、前記周期性情報から算出した前記座標誤差を前記第2位置情報に加算することにより前記補正後位置情報を特定する処理と、を実行する、画像データ処理システム。
  13.  請求項10において、
     前記コンピュータシステムは、前記第1画像の前記第1位置情報を補正する際に、再マッチングをせずに、前記周期性情報を用いた周期探索処理と座標補正処理で前記第1位置情報を補正することにより、前記第1画像の周期ずれを補正する処理を実行する、画像データ処理システム。
  14.  請求項11において、
     前記グローバル位置情報は、前記第1画像および第2画像を撮像した撮像装置によって付帯された撮像位置情報、或いは光学式検査装置によって特定された撮像位置情報を含む、画像データ処理システム。
  15.  コンピュータにパターン測長又は欠陥検査方法を実行させるためのプログラムを記録するコンピュータ読み取り可能な記録媒体であって、
     前記パターン測長又は欠陥検査方法は、試料上に形成されたパターン形成領域の設計情報と前記パターン形成領域の少なくとも一部を撮像して得られる第1画像との第1位置合わせ処理を行うことにより前記第1画像の第1位置情報を特定し、前記パターン形成領域内に存在するパターンの測長又は欠陥検査を行う方法であって、
     前記設計情報を用いた自己相関処理の結果に基づく、前記パターン形成領域における周期性情報を取得することと、
     前記周期性情報に基づいて、前記第1画像の第1位置情報を出力又は補正する、或いは、前記第1位置合わせ処理の良否を判定することと、
    を含む、コンピュータ読み取り可能な記録媒体。
PCT/JP2022/042112 2022-11-11 2022-11-11 パターン測長・欠陥検査方法、画像データ処理システム、およびコンピュータ読み取り可能な記録媒体 WO2024100896A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042112 WO2024100896A1 (ja) 2022-11-11 2022-11-11 パターン測長・欠陥検査方法、画像データ処理システム、およびコンピュータ読み取り可能な記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042112 WO2024100896A1 (ja) 2022-11-11 2022-11-11 パターン測長・欠陥検査方法、画像データ処理システム、およびコンピュータ読み取り可能な記録媒体

Publications (1)

Publication Number Publication Date
WO2024100896A1 true WO2024100896A1 (ja) 2024-05-16

Family

ID=91032151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042112 WO2024100896A1 (ja) 2022-11-11 2022-11-11 パターン測長・欠陥検査方法、画像データ処理システム、およびコンピュータ読み取り可能な記録媒体

Country Status (1)

Country Link
WO (1) WO2024100896A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209488A (ja) * 2004-01-23 2005-08-04 Hitachi High-Technologies Corp 荷電粒子線装置および倍率計測法
JP2009086920A (ja) * 2007-09-28 2009-04-23 Hitachi High-Technologies Corp 検査装置及び検査方法
JP2013246162A (ja) * 2012-05-30 2013-12-09 Hitachi High-Technologies Corp 欠陥検査方法および欠陥検査装置
WO2015011974A1 (ja) * 2013-07-23 2015-01-29 株式会社日立ハイテクノロジーズ パターン寸法計測方法及びその装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209488A (ja) * 2004-01-23 2005-08-04 Hitachi High-Technologies Corp 荷電粒子線装置および倍率計測法
JP2009086920A (ja) * 2007-09-28 2009-04-23 Hitachi High-Technologies Corp 検査装置及び検査方法
JP2013246162A (ja) * 2012-05-30 2013-12-09 Hitachi High-Technologies Corp 欠陥検査方法および欠陥検査装置
WO2015011974A1 (ja) * 2013-07-23 2015-01-29 株式会社日立ハイテクノロジーズ パターン寸法計測方法及びその装置

Similar Documents

Publication Publication Date Title
JP5948262B2 (ja) 欠陥観察方法および欠陥観察装置
KR101828124B1 (ko) 패턴 평가 방법 및 패턴 평가 장치
US8068662B2 (en) Method and system for determining a defect during charged particle beam inspection of a sample
TWI686718B (zh) 判定用於樣本上之關注區域之座標
US20080058977A1 (en) Reviewing apparatus using a sem and method for reviewing defects or detecting defects using the reviewing apparatus
JP5525421B2 (ja) 画像撮像装置および画像撮像方法
JP5444092B2 (ja) 検査方法およびその装置
JP5118872B2 (ja) 半導体デバイスの欠陥観察方法及びその装置
KR101588367B1 (ko) 하전 입자선 장치
JP5783953B2 (ja) パターン評価装置およびパターン評価方法
JP2018502441A (ja) 自動式パターン忠実度測定計画生成
JPH1089931A (ja) パターン検査方法及びその装置並びに半導体ウエハの製造方法
JP2007218711A (ja) 電子顕微鏡装置を用いた計測対象パターンの計測方法
JP2011033423A (ja) パターン形状選択方法、及びパターン測定装置
US9846931B2 (en) Pattern sensing device and semiconductor sensing system
KR101128558B1 (ko) 측정 시스템 및 방법
TW202217902A (zh) 藉由對重疊結構上之反向散射電子建模以量測重疊之目標及演算法
WO2024100896A1 (ja) パターン測長・欠陥検査方法、画像データ処理システム、およびコンピュータ読み取り可能な記録媒体
JP5378266B2 (ja) 測定領域検出方法および測定領域検出プログラム
JP4029882B2 (ja) 欠陥検査方法および欠陥検査システム
JP2008218115A (ja) パターン測定方法、及び電子顕微鏡
JP6207893B2 (ja) 試料観察装置用のテンプレート作成装置
JP6698883B2 (ja) 荷電粒子線装置
US20230194253A1 (en) Pattern Inspection/Measurement Device, and Pattern Inspection/Measurement Program
JP2011179819A (ja) パターン測定方法及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965220

Country of ref document: EP

Kind code of ref document: A1