WO2024099117A1 - 激光切割物料的加工方法和应用 - Google Patents

激光切割物料的加工方法和应用 Download PDF

Info

Publication number
WO2024099117A1
WO2024099117A1 PCT/CN2023/127409 CN2023127409W WO2024099117A1 WO 2024099117 A1 WO2024099117 A1 WO 2024099117A1 CN 2023127409 W CN2023127409 W CN 2023127409W WO 2024099117 A1 WO2024099117 A1 WO 2024099117A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
trajectory
laser beam
along
focused
Prior art date
Application number
PCT/CN2023/127409
Other languages
English (en)
French (fr)
Inventor
孙思叡
Original Assignee
上海名古屋精密工具股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海名古屋精密工具股份有限公司 filed Critical 上海名古屋精密工具股份有限公司
Publication of WO2024099117A1 publication Critical patent/WO2024099117A1/zh

Links

Definitions

  • the invention relates to a material cutting method, in particular to a method for cutting materials by using laser as a means.
  • Hole machining, milling and reaming are all common material processing methods in industry, which are used to process materials into products with required features, such as plates with hole features and cavities with curved surfaces.
  • the most common means to complete these processes are tools, such as drills, milling cutters and reamers.
  • Using laser (field) as a means to achieve the purpose of removing materials has also been widely used.
  • lasers For example, it is common to use lasers to process materials in the field of metal processing. It uses a focused high-energy laser beam to irradiate the material, and ablate the material through the photothermoelectric effect (such as gasification, evaporation, electron avalanche, etc.) within a spatial range where the beam energy density is higher than the material damage threshold. Then, the beam moves relative to the material to complete the ablation of the material of a specific shape, form and specification (usually also called “cutting"), so as to achieve the purpose of making the desired product.
  • photothermoelectric effect such as gasification, evaporation, electron avalanche, etc.
  • Laser is the light source of laser for industrial processing. Regardless of the type of laser used, laser cutting mainly has two processes: single ablation and multiple ablation, depending on whether the beam reciprocates multiple times relative to the material during processing.
  • the key parameters of the single ablation process are the effective focal depth 11 of the focused laser beam 10 and the diameter of the focused spot 12.
  • the space determined by the two in the focused laser beam is the theoretical effective laser ablation area. Based on optical principles, it can be seen that under the premise that the laser power remains unchanged, the smaller the focused spot diameter, the higher the energy density but the smaller the effective focal depth.
  • the single ablation process needs to ensure that the effective focal depth of the laser is greater than the thickness of the material 20 to ensure that the laser beam can be effectively ablated throughout the thickness of the material, that is, in order to ablate thicker materials at one time, a larger effective focal depth is required, but increasing the effective focal depth will lead to an increase in the focused spot diameter and a decrease in the laser energy density.
  • the material can be ablated (cut) repeatedly (layer by layer) along the processing depth direction, as shown in Figure 3. Since the focused laser beam can be focused to a smaller diameter without being limited by the depth of focus, the requirement for laser power is greatly reduced. Multiple ablations (such as four times, S11, S12, S13 and S14) can achieve finer shape processing, less thermal damage and less edge ablation, and the depth of single ablation processing is more controllable. However, since the efficiency of multiple ablations drops sharply as the processing depth increases, it is usually difficult to achieve such a large processing depth by controlling the focused laser beam, and it is also uneconomical.
  • the focused laser beam When processing materials with a focused laser beam, the focused laser beam is usually directed vertically or almost vertically to the surface of the material to be processed (as shown in Figures 2 and 3), so that the obtained cutting surface always has a certain positive taper.
  • the focused laser beam performs three ablations of S21, S22 and S23 on the material.
  • the part of the focused laser beam directed obliquely to the material will inevitably be blocked by the material 21 on the laser path (for example, the edge of the slit) and cause the actual effective power of the focused spot to drop rapidly to below the threshold required to ablate the material, and the ablation cannot be completed.
  • the greater the processing depth the more serious the power drop at the focused spot.
  • One object of the present invention is to provide a method for laser cutting materials to improve the processing efficiency of laser cutting of thick materials, such as: improving the precision cutting processing efficiency of polycrystalline diamond composite sheets with a thickness greater than 0.5 mm.
  • Another object of the present invention is to provide a method for laser cutting materials, which can achieve efficient laser cutting of thick materials while obtaining high-precision geometric shapes, such as: cut surfaces with precise inverted cone angles, holes with good cylindricity, and grooves with vertical side walls.
  • Lasers are usually understood to be light radiated by atoms due to stimulation. When the electrons in the atoms absorb energy and transition from a low energy level to a high energy level, and then fall back from a high energy level to a low energy level, the released energy is released in the form of photons.
  • Lasers can be divided into continuous lasers and pulsed lasers. Lasers can be divided into thermal lasers and cold lasers based on their pulse width characteristics.
  • Laser emitters such as, but not limited to, nanosecond, femtosecond or picosecond lasers, may generate lasers such as infrared, IR, blue, green, violet or extreme violet.
  • Ultrafast laser refers to a laser with a pulse width of less than tens of nanoseconds, i.e., a pulse laser at the picosecond level or less.
  • the core components of ultrafast lasers include oscillators, stretchers, amplifiers, and compressors.
  • the material or workpiece is usually the material or semi-finished product used to manufacture parts or components, and is the object of machining during the machining process. That is, after machining the workpiece, a product that meets the machining or design requirements is obtained.
  • Precision machining refers to machining technology that achieves extremely high machining accuracy and surface quality. For example, in tool machining, the size, straightness, contour, surface roughness, blade tip radius, and machining accuracy are all higher than micron level.
  • the laser removes material by ablation, that is, after the initial surface material is removed, a new interface is exposed as the material surface, and the laser continues to ablate the material on the new interface again, and this reciprocating process is repeated to remove more material and process the shape of the material (such as cutting). Therefore, in laser processing, the laser always acts on the surface of the material and ablates the material on the surface (surface layer).
  • Machining equipment is a processing equipment with multiple moving axes, that is, in a right-hand rectangular coordinate system, the X, Y and Z axes that move in a straight line, and the A, B and C axes that rotate around the X, Y and Z axes respectively.
  • Machining equipment such as CNC machine tools
  • various control software which receive and issue various instructions in the form of code to perform automated processing on workpieces.
  • a method for laser cutting a material comprises driving the material to move along a preset path (i.e., a processing trajectory), and focusing a laser beam to repeatedly move on the surface of the material;
  • the focused laser beam acts on the material in a direction inclined to the material surface, ablating the material along a set trajectory and repeatedly moving at both ends of the trajectory to form a two-dimensional figure along the processing depth.
  • a large number of two-dimensional figures along the processing depth are generated.
  • These two-dimensional figures are superimposed along the direction of material movement to form a desired shape (usually a three-dimensional shape), such as holes and grooves, or even cutting a piece of material into several parts.
  • the trajectory of the focused laser beam repeatedly moving on the surface of the material is a straight line segment, or a figure including at least two straight line segments intersecting to form an angle less than 90 degrees.
  • the so-called figure includes, but is not limited to, a triangle, a rhombus, and a trapezoid.
  • the closed figure of the present invention preferably adopts a triangle.
  • the depth of laser processing can be increased by moving the material back and forth, or the material can be returned to the starting point of processing, and the aforementioned laser processing scheme can be continued along the processing depth direction to continue to generate another batch of two-dimensional graphics along the depth direction.
  • the device for driving the material usually provides at least two directions of movement. Taking the coordinate axis as an example, it provides movement in the X-axis direction and the Y-axis direction. If necessary, it should also provide movement in the Z-axis direction. According to the needs of the required processing form, the device for driving the material also usually includes movement in the direction of rotation around the X-axis (i.e., the A-axis direction), so as to And movement in the direction of rotation around the Y-axis (i.e., the B-axis direction).
  • a laser should be provided as a light source, and a focusing (field) lens should be provided to focus the received laser light to obtain a focused laser beam.
  • a driving device is also required to guide or drive the focused laser beam to repeatedly move along a straight line, or to repeatedly move along a pattern formed by connecting several straight line segments end to end.
  • the laser beam can be deflected to move the spot on the working plane, and the focused laser beam can complete the motion trajectory along a graphic in a short time.
  • the focused laser beam can be driven by a rotating mechanism to complete the motion trajectory along a graphic.
  • the trajectory When the trajectory is a straight line segment, only one end of it falls on the preset path of movement of the material. When the trajectory is a figure containing an angle, the end point of the angle falls on the preset path of movement of the material.
  • the movement direction of the focused laser beam is adjusted with this position as the rotation center. In this way, the movement direction of the focused laser beam adapts to the change of the preset trajectory, and the angle with the normal of the preset trajectory is always maintained in the range of 20° to 70°, especially the movement direction of the focused laser beam is always maintained in the normal direction of the processing trajectory.
  • the total length of the linear motion of the light spot continues to shrink, and the moving speed of the focused light spot along the preset trajectory continues to increase.
  • the method of the present invention is applied to processing equipment with multiple motion axes (such as three-axis machine tools, four-axis machine tools and five-axis machine tools, etc.), so as to facilitate the automatic laser cutting processing of materials with the assistance of a numerical control system.
  • multiple motion axes such as three-axis machine tools, four-axis machine tools and five-axis machine tools, etc.
  • the laser cutting method provided by the present invention significantly improves the processing efficiency of laser ablation materials by superimposing the straight line or angular graphic (such as triangle or fan-shaped) movement of the focused light spot itself when it moves along the processing trajectory, that is, the speed at which the focused light spot moves along the processing trajectory can be higher, and the processing efficiency can be higher.
  • straight line or angular graphic such as triangle or fan-shaped
  • the technical solution of the present invention uses one end of the motion trajectory of a straight line or an angular figure (such as a triangle or a fan) as the contact point between the figure and the trajectory to adapt to the situation where the processing trajectory changes, which is equivalent to using only a single focused light spot to move along the processing trajectory. Therefore, no additional offset compensation is required when calculating the light spot movement trajectory, which simplifies the relevant algorithms, reduces the programming difficulty and computer performance requirements, and improves the calculation speed.
  • the method of the present invention uses one end of the motion trajectory of a straight line or an angular figure (such as a triangle) as the rotation center to adapt to the change of the processing trajectory, which is equivalent to using only a single light spot to move along the processing trajectory to achieve the required shape of detail processing and improve the processing accuracy.
  • the method of the present invention can adjust and reduce the total length of the motion track of a straight line or an angular figure (such as a triangle) as the processing depth increases, and can use the method of reducing the ablation width as the processing depth increases.
  • the characteristics of the process form a "wide at the top and narrow at the bottom" in macroscopic terms, reducing unnecessary material removal, which further improves processing efficiency.
  • FIG1 is a schematic diagram of focusing a laser beam
  • FIG. 2 is a schematic diagram of an embodiment of a single ablation process for a material using a focused laser beam
  • FIG3 is a schematic diagram of an embodiment of a process in which a focused laser beam performs multiple ablation processes on a material along a processing depth direction;
  • FIG4 is a schematic diagram of an embodiment of a process of performing multiple ablation on a material by focusing a laser beam inclined to the surface of the material;
  • FIG5 is a schematic diagram of an embodiment of laser processing of a material using the method of the present invention.
  • FIG6 is a schematic diagram of another embodiment of laser processing of a material using the method of the present invention.
  • FIG7 is a schematic diagram of another embodiment of laser processing of a material using the method of the present invention.
  • FIG8 is a schematic diagram of another embodiment of laser processing of a material using the method of the present invention.
  • FIG9 is a schematic diagram of another embodiment of laser processing of a material using the method of the present invention.
  • FIG10 is a schematic diagram of another embodiment of laser processing of a material using the method of the present invention.
  • FIG11 is a schematic diagram of another embodiment of laser processing of a material using the method of the present invention.
  • FIG12 is a schematic diagram of an embodiment of laser processing of a material using a circular pattern
  • FIG. 13 is a schematic diagram of an embodiment of laser processing of a material using a circular pattern.
  • a processing equipment with multiple motion axes, such as: a three-axis machine tool, a four-axis machine tool and a five-axis machine tool.
  • Such processing equipment can provide at least two directions of movement required to drive the material, such as: providing movement in the X-axis direction and the Y-axis direction, and usually also providing movement in the Z-axis direction to meet the needs of processing.
  • movement in the rotation direction around the X-axis i.e., the A-axis direction
  • movement in the rotation direction around the Y-axis i.e., the B-axis direction
  • the laser beam is repeatedly moved along a closed track formed by connecting several straight line segments end to end. For example, when the track is a straight line segment, the laser beam is repeatedly moved back and forth between the two ends of the track. When the track is a triangular figure, the laser beam is repeatedly moved along the closed track formed by the three sides of the triangle. When the track is a figure formed by the intersection of two straight line segments with an angle less than 90 degrees, the laser beam is repeatedly moved along the track formed by only two sides.
  • These devices are usually also equipped with a galvanometer. With the assistance of the galvanometer, the focused light spot moves on the working plane.
  • the focused laser beam can complete the motion trajectory along a graphic in a short time, or the focused laser beam can be driven by a rotating mechanism to complete the motion trajectory along a graphic.
  • FIG5 is a schematic diagram of an embodiment of laser processing of a material using the method of the present invention.
  • the laser ablates the workpiece 200 (i.e., the material) along the processing trajectory 110, and the arrow on the processing trajectory 110 indicates the direction in which the workpiece 200 moves.
  • the focused laser beam 11 moves from one end to the other end along the straight path 310 on the surface of the workpiece 200 to perform repeated movement, and only one end of the laser beam 11 falls on the processing trajectory 110 where the workpiece 200 moves.
  • the focused laser beam 11 ablates the workpiece 200 along the processing depth surface from the surface of the workpiece 200.
  • the total length of the linear motion of the focused light spot continues to decrease, and the moving speed of the focused light spot along the preset trajectory continues to increase, and a two-dimensional figure 320 with the straight path 310 as the upper boundary is generated.
  • This type of laser processing can usually be completed in a relatively short time, and the workpiece 200 moves along the processing trajectory 100, thereby generating a large number of two-dimensional figures similar to the initially obtained two-dimensional figure 320, and these two-dimensional figures are superimposed along the direction in which the workpiece 200 moves to form a desired three-dimensional shape, such as: holes and grooves.
  • the workpiece 200 is divided into two parts.
  • the workpiece 200 can be divided into several parts.
  • the aforementioned two-dimensional graphic 320 can be completed several times along the direction of the processing depth. That is, a part of the two-dimensional graphic 320 that is processed first is processed to produce another part of the two-dimensional graphic 320 along the direction of the processing depth. These graphics that constitute the two-dimensional graphic 320 are arranged and stacked along the processing depth direction to form a complete two-dimensional graphic 320.
  • a part of the two-dimensional graphic 320 that is processed first can be processed to produce another part of the two-dimensional graphic 320 by continuously increasing the depth of laser processing by reciprocating the workpiece 200, or the workpiece 200 is returned to the starting point of processing, and then the laser processing scheme shown in FIG. 5 is continued to be implemented along the processing depth direction, and a part of the two-dimensional graphic 320 that is processed along the depth direction is continued to be processed, thereby generating a two-dimensional graphic 320 that is complete along the processing depth.
  • FIG6 is a schematic diagram of another embodiment of laser processing of materials using the method of the present invention.
  • the focused laser beam 12 ablates the workpiece (not shown) along the processing track 120, and only one end of the focused laser beam 12 falls on the processing track 120 where the workpiece moves.
  • the arrow on the processing track 120 indicates the direction in which the workpiece moves.
  • the angle between the focused laser beam 12 and the normal of the processing track 120 is always maintained within the range of 20° to 70°.
  • the focused laser beam 12 is rotated around the laser spot falling on the processing track 122 as the center, and the movement direction of the laser beam is adjusted.
  • FIG. 7 is a schematic diagram of another embodiment of laser processing of materials using the method of the present invention.
  • the light spot moves on the working plane and can complete a triangular (or fan-shaped) motion trajectory in a short time.
  • the triangular (or fan-shaped) figure 13 formed by the focused laser beam moves along the processing trajectory 130
  • the workpiece (not shown) is ablated, and the arrow on the processing trajectory 130 indicates the direction in which the workpiece moves.
  • the angle between the triangular figure 13 and the normal of the processing trajectory 130 is always maintained in the range of 20° to 70°.
  • the endpoint of one corner of the triangular (or fan-shaped) figure 13 falls on the processing trajectory 130 where the workpiece moves.
  • the triangular (or fan-shaped) figure 13 is rotated around the laser spot falling on the processing trajectory 134 as the center, and the movement direction of the triangular (or fan-shaped) figure 13 formed by the laser beam is adjusted.
  • FIG8 is a schematic diagram of another embodiment of laser processing of materials using the method of the present invention.
  • the focused laser beam 14 ablates a workpiece (not shown) along a processing track 140, and only one end of the focused laser beam falls on the processing track 140 where the workpiece moves.
  • the arrow on the processing track 140 indicates the direction in which the workpiece moves.
  • the focused laser beam 14 remains in the normal direction of the processing track 140.
  • the focused laser beam 14 is rotated around the laser spot falling on the processing track 142 as the center, and the movement direction of the laser beam is adjusted.
  • FIG9 is a schematic diagram of another embodiment of laser processing of materials using the method of the present invention.
  • the light spot moves on the working plane and can complete a triangular (or fan-shaped) motion trajectory in a short time.
  • the triangular (or fan-shaped) figure 15 formed by the focused laser beam ablates the workpiece (not shown) along the processing trajectory 150, and the arrow on the processing trajectory 150 indicates the direction of movement of the workpiece.
  • the end point of one corner of the triangular figure 15 falls on the processing trajectory 150 where the workpiece moves.
  • the triangular (or fan-shaped) figure 15 maintains the normal direction of the processing trajectory 150.
  • the triangular (or fan-shaped) figure 15 is rotated around the laser spot falling on the processing trajectory 154 as the center, and the movement direction of the triangular (or fan-shaped) figure 15 formed by the laser beam is adjusted.
  • FIG10 is a schematic diagram of another embodiment of laser processing of materials using the method of the present invention.
  • the focused laser beam 16 ablates the workpiece (not shown) along the processing trajectory 160, and only one end of the focused laser beam 16 falls on the processing trajectory 160 where the workpiece moves.
  • the arrow on the processing trajectory 160 indicates the direction in which the workpiece moves.
  • the angle between the focused laser beam 16 and the normal of the processing trajectory 160 is always maintained within the range of 20° to 70°.
  • the processing trajectory changes when a section 161 on the processing trajectory 160 turns to another section 162, the processing can be achieved without changing the direction of movement of the focused laser beam 16.
  • FIG11 is a schematic diagram of another embodiment of laser processing of materials using the method of the present invention.
  • the light spot moves on the working plane and can complete a triangular (or fan-shaped) motion trajectory in a short time.
  • the triangular (or fan-shaped) figure 17 formed by the focused laser beam ablates the workpiece (not shown) along the processing trajectory 170, and the arrow on the processing trajectory 170 indicates the direction of movement of the workpiece.
  • the end point of one corner of the triangular (or fan-shaped) figure 17 falls on the processing trajectory 170 where the workpiece moves.
  • the angle between the triangular (or fan-shaped) figure 17 and the normal of the processing trajectory 170 is always maintained within the range of 20° to 70°.
  • FIG12 is a schematic diagram of an embodiment of laser processing of materials using a circular pattern
  • FIG13 is a schematic diagram of an embodiment of laser processing of materials using a circular pattern.
  • the center of the focused spot is the center of the circular motion. If the center of the circle falls on the processing trajectory, it will cause transitional ablation of the edge of the workpiece, reducing the processing efficiency. If the center of the circle is parallel to the processing trajectory, and the edge of the focused light spot ablates the workpiece, the offset compensation is performed according to the circular radius when calculating the moving trajectory of the light spot. In actual working conditions, there are many situations where compensation and offset directions need to be considered separately, which will complicate the calculation. In addition, when the processing trajectory changes less than the circular movement radius and becomes a concave shape, it is impossible to ablate the area, which also causes a decrease in processing accuracy, as shown in Figure 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光切割物料的方法,包括驱动物料(200)沿预设路径(110,120,130,140,150,160,170)移动,以及聚焦激光光束(11)在物料表面实施重复移动,对物料实施烧蚀,而形成一个沿加工深度面向的二维图形(320),随着物料沿预设路径移动,而产生众多二维图形,这些二维图形相叠加形成一个所需的形态。聚焦激光光束在物料表面沿直线实施重复移动,或者沿图形实施的重复移动。该方法显著提高激光烧蚀物料的加工效率,聚焦光斑沿加工轨迹移动的速度可以更高,加工效率可以更高。

Description

激光切割物料的加工方法和应用 技术领域
本发明涉及一种物料切割的方法,尤其涉及一种以激光为手段对物料实施切割加工的方法。
背景技术
孔加工、铣加工和铰削加工等均是工业上较为常见的物料加工手段,以将物料加工成所需特征的产品,比如:具有孔特征的板材和具有弧面的腔体等。完成这些加工的最常见的手段为刀具,比如:钻头、铣刀和铰刀等。以激光(场)为手段达到去除物料的目的也已经被广泛应用。
比如:以激光为手段实施物料的加工在金属加工领域已属常见,其利用聚焦的高能激光束照射物料,在光束能量密度高于材料损伤阈值的空间范围内通过光热电效应(如:气化蒸发、电子雪崩等)对物料实施烧蚀去除。随后通过光束相对材料的移动,完成特定形状、形体及规格的物料的烧蚀(通常也称为“切割”),达到制作所需产品的目的。
激光器为实施工业加工的激光的光源。无论采用何种激光器,根据加工时光束相对物料是否多次往复运动区分,激光切割主要有单次烧蚀和多次烧蚀两种工艺。基于激光原理分析,如图1所示,单次烧蚀工艺的关键参数为聚焦激光光束10的有效焦深11和聚焦光斑12直径,在聚焦激光光束中两者所确定的空间即为理论上的激光有效烧蚀区域。基于光学原理可知,激光器功率不变前提下,聚焦光斑直径越小能量密度越高但有效焦深越小。如图2所示,单次烧蚀工艺需要保证激光有效焦深大于物料20厚度以满足激光束在整个物料厚度上均能被有效烧蚀,即为了一次性烧蚀更厚的材料需要更大的有效焦深,但增加有效焦深会导致聚焦光斑直径增加和激光能量密度降低。
业界为了使激光能量密度维持超过材料损伤阈值的水平不得不提高激光器输出功率,即提高厚物料切割能效的现有技术线路之一就是提高激光输出功率。采用这一技术工艺路线的加工效率极高,但由于激光器输出功率的提高会导致激光对物料的热影响区域增大,容易导致材料烧蚀边缘热损伤等瑕疵,因而,该技术手段主要集中于钣金及管材加工等对烧蚀(切割)边缘精度要求不高的工业领域。
另一方面,如果激光设备可以控制聚焦激光光束的加工深度,就可以沿着加工深度方向对物料进行多次(逐层)往复烧蚀(切割),如图3所示。由于可以不受焦深限制将聚焦激光光束聚焦至更小直径,从而大大减小对激光功率的要求,多次烧蚀(如:S11、S12、S13和S14等四次)可以实现更精细的形状加工、更小的热损伤及更小的边缘烧蚀,比单次烧蚀加工的深度更可控。但由于随着加工深度加深多次烧蚀的效率急剧下降,通常此种控制聚焦激光光束的加工大深度是难以实现的,也是不经济的。
以聚焦激光光束加工物料时,通常将聚焦激光光束垂直或几乎垂直地射向物料加工的表面(如图2和图3所示),如此获得切割面总是具有一定正锥度。为了获得更垂直的切面,或者是具有一定倒锥度的切面,理论上需要将聚焦激光光束以偏离于垂直入射方向射向到物料上,而呈倾斜于物料表面实施(倾斜)多次切割(即要求因激光切割产生的面和材料表面成一夹角,如:倒锥角)。如图4所示,聚焦激光光束对物料实施S21、S22和S23三次烧蚀,随着加工深度增加,倾斜射向物料的部分聚焦激光光束将不可避免地受到激光路径上物料21的遮挡(比如:切缝的边缘)并导致聚焦光斑的实际有效功率迅速下降至烧蚀物料所需的阈值以下,而无法完成烧蚀,且加工的深度越大,聚焦光斑处的功率下降越严重。
通过拓宽激光束在物料表层的烧蚀面积可以减缓或消除后续更大深度加工中因物料产生遮挡而避免激光有效功率下降。由此,在呈倾斜于厚物料表面实施(倾斜)多次烧蚀工艺时,除了深度方向的多次加工导致加工效率成倍下降,烧蚀的宽度方向上的多次烧蚀将导致加工效率的进一步地成倍下降。故随着材料厚度和加工深度地增加,从材料表面直至最大所需加工深度间逐层多次烧蚀工艺的加工效率相比于单次烧蚀工艺效率会呈指数级下降,因此这一工艺路线主要集中应用于激光刻印、皮纹深雕等只对物料浅表进行加工的相关领域。
综上,为了实现厚材料(厚度大于0.5mm)的高效精密切割,需要进一步的技术手段,如:设法降低材料损伤阈值(采用皮秒或飞秒等超快光源等作为技术手段来缩短激光脉宽,或采用紫外或极紫外光源等作为技术手段来提高材料吸收率),或改变工艺降低物料对激光束遮挡的影响。比如:采用旋转机构等运动部件在聚焦激光光斑沿加工路径移动的同时叠加光斑的二维圆形或环形运动。又如:CN202210007485.1等记载的,在叠加光斑的二维运动的同时再进一步叠加激光束的偏振、焦距变化以增加多次烧蚀中单次烧蚀的烧蚀深度和烧蚀范围,以此减少往返加工次数并提高加工效率。然而这些技术往往需要昂贵的光源(如:飞秒激光器、极紫外激光器等)和精密的复杂硬件(如:动态焦距装置和动态偏振装置等),并降低了系统的可靠性(比如:更复杂的温度控制和光束指向控制、更复杂的机械电气结构)。
发明内容
本发明的一个目的在于提供一种激光切割物料的方法,提高厚物料激光切割的加工效率,如:提高厚度大于0.5mm的聚晶金刚石复合片的精密切割加工效率。
本发明的另一个目的在于提供一种激光切割物料的方法,在高效实现厚物料激光切割的同时,获得高精度的几何形态,比如:具有精确倒锥角度的切面,具有良好圆柱度的孔和具有垂直侧壁的槽等。
通常理解的激光,系原子因受激而辐射的光,原子中的电子吸收能量后从低能级跃迁到高能级,再从高能级回落到低能级的时候,所释放的能量以光子的形式放出。激光的形态可分为连续激光和脉冲激光。依据激光的脉冲宽度特性分为热激光和冷激光。
激光发射器如:但不限于纳秒、飞秒或皮秒激光器,产生的激光如:红外、红外、蓝光、绿光、紫光或极紫光。
超快激光是指输出激光的脉冲宽度数十纳秒以下,即皮秒级别或小于皮秒级别的脉冲激光。超快激光器涉及的核心部件包括振荡器、展宽器、放大器和压缩器等。
在机加工中,所称的物料或工件通常是用于制造零件或部件的材料或半成品,是机械加工过程中的加工对象。即对工件实施机加工后,得到符合加工或设计要求的产品。
精密加工,指加工精度和表面质量达到极高程度的加工技术。比如:刀具加工中,尺寸、直线度、轮廓度、表面粗糙度、刃尖圆弧半径、加工精度均高于达到微米级。
在激光加工中,激光通过烧蚀的方式去除材料,即将最初表层的材料去除后再次呈现新的界面作为物料表面而暴露出来,激光则继续对新的界面上的材料再次烧蚀,以此往复,而实现去除更多的材料,实现对物料形状的加工(如:切割)。因此,激光加工中,激光始终作用于物料表面,烧蚀位于表面(表层)的材料。
机加工设备(或机加工中心),系具有多个运动轴的加工设备。即在右手直角坐标系中,沿直线方向移动的X、Y和Z轴,以及分别绕X、Y和Z轴的回转的A轴、B轴和C轴。
机加工设备,如:数控机床,通常加载了各项控制软件,以代码形式接收和发出各项指令对工件实施自动化加工。
一种激光切割物料的方法,包括驱动物料沿预设路径(即加工轨迹)移动,以及聚焦激光光束在物料表面实施重复移动;其中,
以聚焦激光光束倾斜于物料表面的方向作用于物料,沿设定的轨迹对物料实施烧蚀,并于轨迹的两端重复移动,而形成一个沿加工深度面向的二维图形,随着物料沿预设路径移动,而产生众多的沿加工深度面向的二维图形,这些二维图形沿物料移动的方向相叠加,而形成一个所需的形态(通常是三维形态),比如:孔和槽等,甚或将一块物料切断,分为几个部分。
聚焦激光光束在物料表面重复移动的轨迹为直线段,或者为至少包含由两条直线段相交而成一个小于90度交角的图形。所称的图形,如:但不限于三角形、菱形和梯形等。为利于所需形态的加工,并满足提高加工的精度的需要,本发明的封闭图形优先采用三角形。
限于激光的功率,或当加工的物料厚度很大时,通常还需要将前述的二维图形继续沿着加工深度的方向堆叠起来。此时,可以通过往复移动物料的方式继续增加激光加工的深度,或将物料回到加工的起点,沿加工深度方向继续实施前述的激光加工方案,沿深度方向继续产生另一批二维图形。
驱动物料的装置通常至少提供2个运动方向,以坐标轴为例,提供X轴方向的运动和Y轴方向的运动。必要的情况下,还应当提供Z轴方向的运动。根据所需加工形态的需要,驱动物料的装置还通常包括绕X轴旋转方向上的运动(即A轴方向),以 及绕Y轴旋转方向上的运动(即B轴方向)。
为了获得聚焦激光光源以实施本发明的方法,应当配有激光器作为光源,以及聚焦(场)镜将所受到的激光实施聚焦,得到聚焦激光光束。此外,为了使得聚焦激光光束形成一个沿加工深度面向的二维图形,则还需要驱动装置,引导或驱使聚焦激光光束沿直线实施重复移动,或者沿由若干直线段首尾相连形成的图形实施的重复移动。
在振镜的协助下,可以控制激光光束偏转,使得光斑在工作平面上移动,聚焦激光光束能在短时间内完成沿一个图形的运动轨迹。或者通过旋转机构驱动聚焦激光光束完成沿一个图形的运动轨迹。
轨迹为直线段时,其仅有一端落于所述物料的移动的预设路径上。轨迹为含有夹角的图形时,则该夹角的端点落于物料的移动的预设路径上。
当聚焦激光光斑落于预设路径的轨迹上时,以该位置作为旋转中心调整聚焦激光光束的运动方向。以此,使得聚焦激光光束的运动方向适应预设轨迹的变化,并与预设轨迹的法向的夹角始终保持在20°~70°范围内,尤其是使得聚焦激光光束的运动方向始终保持在加工轨迹的法向。
随着加工深度的增加,光斑所进行的直线运动的总长度不断缩小,聚焦光斑运动轨迹沿着预设轨迹的移动速度不断提高。
本发明的方法应用于具有多个运动轴的加工设备(如:三轴机床、四轴机床和五轴机床等),以利于在数控系统的协助下实现对物料的自动化激光切割加工。
本发明技术方案实现的有益效果:
本发明提供的激光切割物料的方法,与现有技术相比,在聚焦光斑沿加工轨迹移动时叠加光斑自身的直线或含角图形(如:三角形或扇形)运动,显著提高的激光烧蚀物料的加工效率,即聚焦光斑沿加工轨迹移动的速度可以更高,加工效率可以更高。
采用叠加圆形运动轨迹等中心对称运动轨迹时,由于光斑中心也是光斑运动的中心,计算光斑移动轨迹时按圆形半径进行偏移补偿,实际工况中有多种情况需要分别考虑补偿及偏移方向,会导致计算的复杂化。与此相比,本发明的技术方案以直线或含角图形(如:三角形或扇形)运动轨迹的一端为图形和轨迹的接触点,以适应加工轨迹改变的情形,相当于仅用单个聚焦光斑沿着加工轨迹移动,故计算光斑移动轨迹时不需要进行额外的偏移补偿,简化了相关算法,降低了编程难度和计算机性能要求并提高了运算速度。
采用叠加圆形运动轨迹等中心对称运动轨迹时,光斑中心实际在圆形运动的中心,按圆形半径进行偏移光斑移动轨迹后,加工轨迹发生小于该圆形运动半径的改变,而成凹陷形状将无法加工。与之相比,本发明的方法,以直线或含角图形(如:三角形)运动轨迹的一端为旋转中心以适应加工轨迹的改变,相当于仅用单个光斑沿着加工轨迹移动,实现所需形态的细节加工,提高加工精度。
与现有技术相比,本发明的方法,还随着加工深度增加,能调整缩小直线或含角图形(如:三角形)运动轨迹总长度,而能利用随着加工深度增加可减少烧蚀宽度的 特点而形成宏观上“上宽下窄”的“切缝”,减少非必须的材料去除,即进一步提高了加工效率。
附图说明
图1为聚焦激光束的示意图;
图2为以聚焦激光光束对物料实施单次烧蚀工艺一实施例的示意图;
图3为聚焦激光光束沿着加工深度方向对物料实施多次烧蚀工艺一实施例的示意图;
图4为聚焦激光光束呈倾斜于物料表面对物料实施多次烧蚀工艺一实施例的示意图;
图5为应用本发明的方法实施物料的激光加工一实施例的示意图;
图6为应用本发明的方法实施物料的激光加工另一实施例的示意图;
图7为应用本发明的方法实施物料的激光加工另一实施例的示意图;
图8为应用本发明的方法实施物料的激光加工另一实施例的示意图;
图9为应用本发明的方法实施物料的激光加工另一实施例的示意图;
图10为应用本发明的方法实施物料的激光加工另一实施例的示意图;
图11为应用本发明的方法实施物料的激光加工另一实施例的示意图;
图12为应用圆形图形实施物料的激光加工一实施例的示意图;
图13为应用圆形图形实施物料的激光加工一实施例的示意图。
具体实施方式
以下结合附图详细描述本发明的技术方案。本发明实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。
为了实施本发明的方法,较为适合的是在具有多个运动轴的加工设备,如:三轴机床、四轴机床和五轴机床等实施。此类加工设备能提供驱动物料所需的至少2个方向运动,比如:提供X轴方向的运动和Y轴方向的运动,以及通常还能提供Z轴方向的运动,以适应加工的需要。为了实现三维形态的加工,绕X轴旋转方向上的运动(即A轴方向),以及绕Y轴旋转方向上的运动(即B轴方向)也能容易地从这些加工设备中获得。
由于已经存在搭载激光光源且具有多个运动轴的加工设备,比如:CN212144994。这些设备中已经配有激光器、聚焦(场)镜和驱动装置,而能将所受到的激光实施聚焦,得到聚焦激光光束,并在驱动装置的引导或驱使聚焦激光光束沿直线实施重复移 动,或者至少包含由两条直线段相交而成一个小于90度交角的图形,或者沿由若干直线段首尾相连形成的封闭图形实施的重复移动。比如:轨迹为直线段时,聚焦激光光束在轨迹两端间进行往复地重复移动。轨迹为三角形图形时,聚焦激光光束沿着三角形三条边形成的封闭轨迹重复移动。轨迹为两条直线段相交而成一个小于90度交角的图形,聚焦激光光束仅沿着两条边形成的轨迹重复移动。
在这些设备中通常也配置了振镜,在振镜的协助下,聚焦光斑在工作平面上移动,聚焦激光光束能在短时间内完成沿一个图形的运动轨迹,或者通过旋转机构驱动聚焦激光光束完成沿一个图形的运动轨迹。
图5为应用本发明的方法实施物料的激光加工一实施例的示意图。如图5所示,激光沿加工轨迹110对工件200(即物料)实施烧蚀,加工轨迹110上箭头表示工件200移动的方向。在此期间,经聚焦的激光光束11在工件200表面沿直线路径310由一端移动至另一端实施重复移动,其仅有一端落于工件200移动的加工轨迹110上。聚焦的激光光束11则从工件200的表面沿着加工深度面向烧蚀工件200。随着加工深度的增加,聚焦光斑所进行的直线运动的总长度不断缩小,聚焦光斑沿着预设轨迹的移动速度不断提高,并产生一个以直线路径310为上方边界的二维图形320。此类激光加工通常能在较短时间内完成,工件200沿加工轨迹100移动,由此产生众多的与最初获得的二维图形320相似的二维图形,这些二维图形沿工件200移动的方向相叠加形成一个所需的三维形态,比如:孔和槽等。当激光光束11从工件200的一侧持续烧蚀至对面的另一侧时,工件200则被分为两部分,如此可将工件200分割为若干部分。
受限于激光的功率,或者加工的物料厚度很大时,可沿加工深度的方向分若干次完成前述的二维图形320。即将先加工出的二维图形320的一部分,再继续沿着加工深度的方向加工出二维图形320的另一部分,这些组成二维图形320的图形沿加工深度方向排列并堆叠后组成一个完整的二维图形320。为了实现此种加工方案,可以先加工出的二维图形320的一部分,通过往复移动工件200的方式继续增加激光加工的深度加工出的二维图形320的另一部分,或将工件200回到加工的起点,再沿加工深度方向继续实施如图5所示的激光加工方案,沿深度方向继续加工出的二维图形320的一部分,由此产生一个沿加工深度完整的二维图形320。
图6为应用本发明的方法实施物料的激光加工另一实施例的示意图。参见图5,如图6所示,聚焦的激光光束12沿加工轨迹120对工件(未示出)实施烧蚀,其仅有一端落于工件移动的加工轨迹120上,加工轨迹120上箭头表示工件移动的方向。聚焦的激光光束12与加工轨迹120的法向的夹角始终保持在20°~70°范围内。当加工轨迹120上的一段轨迹121转向另一段轨迹122时,为适应加工轨迹的变化,将聚焦的激光束12绕落于加工轨迹122上的激光光斑为中心旋转,而调整激光束的运动方向。
图7为应用本发明的方法实施物料的激光加工另一实施例的示意图。参见图5,如图7所示,光斑在工作平面上移动,能在短时间内完成沿一个三角形(或扇形)的运动轨迹。以此聚焦的激光光束所形成的三角形(或扇形)图形13沿加工轨迹130 对工件(未示出)实施烧蚀,加工轨迹130上箭头表示工件移动的方向。三角形图形13与加工轨迹130的法向的夹角始终保持在20°~70°范围内。三角形(或扇形)图形13一角的端点落于工件移动的加工轨迹130上。当加工轨迹130上的一段轨迹133转向另一段轨迹134时,为适应加工轨迹的变化,将三角形(或扇形)图形13绕落于加工轨迹134上的激光光斑为中心旋转,而调整激光束所成的三角形(或扇形)图形13的运动方向。
图8为应用本发明的方法实施物料的激光加工另一实施例的示意图。参见图5,如图8所示,聚焦的激光光束14沿加工轨迹140对工件(未示出)实施烧蚀,其仅有一端落于工件移动的加工轨迹140上,加工轨迹140上箭头表示工件移动的方向。聚焦的激光光束14保持在加工轨迹140的法向。当加工轨迹140上的一段轨迹141转向另一段轨迹142时,为适应加工轨迹的变化,将聚焦的激光束14绕落于加工轨迹142上的激光光斑为中心旋转,而调整激光束的运动方向。
图9为应用本发明的方法实施物料的激光加工另一实施例的示意图。参见图5,如图9所示,光斑在工作平面上移动,能在短时间内完成沿一个三角形(或扇形)的运动轨迹。以此聚焦的激光光束所形成的三角形(或扇形)图形15沿加工轨迹150对工件(未示出)实施烧蚀,加工轨迹150上箭头表示工件移动的方向。三角形图形15一角的端点落于工件移动的加工轨迹150上。三角形(或扇形)图形15保持加工轨迹150的法向。当加工轨迹150上的一段轨迹153转向另一段轨迹154时,为适应加工轨迹的变化,将三角形(或扇形)图形15绕落于加工轨迹154上的激光光斑为中心旋转,而调整激光束所成的三角形(或扇形)图形15的运动方向。
图10为应用本发明的方法实施物料的激光加工另一实施例的示意图。参见图5,如图10所示,聚焦的激光光束16沿加工轨迹160对工件(未示出)实施烧蚀,其仅有一端落于工件移动的加工轨迹160上,加工轨迹160上箭头表示工件移动的方向。聚焦的激光光束16与加工轨迹160的法向的夹角始终保持在20°~70°范围内。虽然加工轨迹160上的一段轨迹161转向另一段轨迹162时,加工轨迹发生了变化,但聚焦的激光束16不做运动方向的改变亦能实现加工。
图11为应用本发明的方法实施物料的激光加工另一实施例的示意图。参见图5,如图11所示,光斑在工作平面上移动,能在短时间内完成沿一个三角形(或扇形)的运动轨迹。以此聚焦的激光光束所形成的三角形(或扇形)图形17沿加工轨迹170对工件(未示出)实施烧蚀,加工轨迹170上箭头表示工件移动的方向。三角形(或扇形)图形17一角的端点落于工件移动的加工轨迹170上。三角形(或扇形)图形17与加工轨迹170的法向的夹角始终保持在20°~70°范围内。虽然当加工轨迹170上的一段轨迹172转向另一段轨迹173时,加工轨迹的变化,但三角形(或扇形)图形17不做运动方向的改变亦能实现加工。
图12为应用圆形图形实施物料的激光加工一实施例的示意图,图13为应用圆形图形实施物料的激光加工一实施例的示意图。如图12所示,聚焦光斑的中心即为圆形运动的圆心,若将圆心落于加工轨迹上,则造成对工件边缘的过渡烧蚀,降低了加工 精度。若将圆心平行于加工轨迹,而使聚焦光斑的边沿烧蚀工件,计算光斑移动轨迹时按圆形半径进行偏移补偿,实际工况中有多种情况需要分别考虑补偿及偏移方向,会导致计算的复杂化。此外,当加工轨迹发生小于该圆形运动半径的改变,而成凹陷形状则无法实现将该处烧蚀,同样造成加工精度下降,如图13所示。

Claims (10)

  1. 一种激光切割物料的方法,其特征在于包括驱动物料沿预设路径移动,以及聚焦激光光束在物料表面实施重复移动;其中,
    以所述的聚焦激光光束倾斜于物料表面的方向作用于物料,沿设定的轨迹对物料实施烧蚀,并于所述轨迹的两端重复移动,而形成一个沿加工深度面向的二维图形,
    随着物料沿预设路径移动,而产生众多沿加工深度面向的所述二维图形,这些二维图形相叠加形成一个所需的形态;
    所述的聚焦激光光束的重复移动的轨迹为直线段,或者至少包含由两条直线段相交而成一个小于90度交角的图形;
    所述轨迹为直线段时,其仅有一端落于所述物料的移动的预设路径上;
    所述轨迹为含有夹角的图形时,则夹角的端点落于所述物料的移动的预设路径上。
  2. 根据权利要求1所述的方法,其特征在于图形选自于三角形、菱形和梯形。
  3. 根据权利要求1所述的方法,其特征在于驱动物料的装置通常至少提供2个运动方向。
  4. 根据权利要求1所述的方法,其特征在于聚焦激光光斑落于预设路径的轨迹上时,以该位置作为旋转中心调整所述的聚焦激光光束的运动方向。
  5. 根据权利要求1所述的方法,其特征在于聚焦激光光束的运动方向适应预设轨迹的变化,并与预设轨迹的法向的夹角始终保持在20°~70°范围内。
  6. 根据权利要求1所述的方法,其特征在于聚焦激光光束的运动方向适应预设轨迹的变化,聚焦激光光束的运动方向始终保持在加工轨迹的法向。
  7. 根据权利要求1所述的方法,其特征在于随着加工深度的增加,聚焦光斑所进行的直线运动的总长度不断缩小,聚焦光斑沿着预设轨迹的移动速度不断提高。
  8. 根据权利要求1所述的方法,其特征在于以振镜控制激光光束偏转而形成所述的图形。
  9. 根据权利要求1所述的方法,其特征在于用于具有多个运动轴的加工设备。
  10. 根据权利要求9所述的方法,其特征在于所述的加工设备为激光加工设备。
PCT/CN2023/127409 2022-11-10 2023-10-27 激光切割物料的加工方法和应用 WO2024099117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211409088.3 2022-11-10
CN202211409088.3A CN118046102A (zh) 2022-11-10 2022-11-10 激光切割物料的加工方法和应用

Publications (1)

Publication Number Publication Date
WO2024099117A1 true WO2024099117A1 (zh) 2024-05-16

Family

ID=91031926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127409 WO2024099117A1 (zh) 2022-11-10 2023-10-27 激光切割物料的加工方法和应用

Country Status (2)

Country Link
CN (1) CN118046102A (zh)
WO (1) WO2024099117A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002700A1 (de) * 1998-07-07 2000-01-20 Schott Spezialglas Gmbh Verfahren und vorrichtung zum schneiden eines werkstückes aus sprödbrüchigem werkstoff
JP2012121071A (ja) * 2012-03-23 2012-06-28 Mitsuboshi Diamond Industrial Co Ltd レーザー加工方法、被加工物の分割方法およびレーザー加工装置
CN107790894A (zh) * 2016-08-30 2018-03-13 上海微电子装备(集团)股份有限公司 一种激光切割系统及方法
CN108568597A (zh) * 2018-05-04 2018-09-25 深圳市有道腾达科技有限公司 一种激光束往复摆动式加工装置及方法
CN110449732A (zh) * 2018-05-07 2019-11-15 大族激光科技产业集团股份有限公司 一种激光加工系统及激光加工方法
CN114105466A (zh) * 2021-12-22 2022-03-01 华中科技大学 一种玻璃大幅面激光切孔方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002700A1 (de) * 1998-07-07 2000-01-20 Schott Spezialglas Gmbh Verfahren und vorrichtung zum schneiden eines werkstückes aus sprödbrüchigem werkstoff
JP2012121071A (ja) * 2012-03-23 2012-06-28 Mitsuboshi Diamond Industrial Co Ltd レーザー加工方法、被加工物の分割方法およびレーザー加工装置
CN107790894A (zh) * 2016-08-30 2018-03-13 上海微电子装备(集团)股份有限公司 一种激光切割系统及方法
CN108568597A (zh) * 2018-05-04 2018-09-25 深圳市有道腾达科技有限公司 一种激光束往复摆动式加工装置及方法
CN110449732A (zh) * 2018-05-07 2019-11-15 大族激光科技产业集团股份有限公司 一种激光加工系统及激光加工方法
CN114105466A (zh) * 2021-12-22 2022-03-01 华中科技大学 一种玻璃大幅面激光切孔方法

Also Published As

Publication number Publication date
CN118046102A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
JP5432285B2 (ja) 面取りした端部を有する形状にガラスをレーザ加工する方法
JP4976576B2 (ja) 切削工具とその製造方法および製造装置
JP5985834B2 (ja) 切替え可能なレーザシステムを有するレーザ加工装置及びレーザ加工方法
KR100681390B1 (ko) 레이저빔의 초점위치를 임의의 3차원으로 고속이동 시킬 수 있는 광집속장치와 광편향장치를 이용한 반도체웨이퍼의 레이저 다이싱 및 스크라이빙 방법
JP2011098390A (ja) 半完成品の表面形成用レーザ加工装置及び方法
CN110076464B (zh) 姿态可控激光铣削复合抛光同步加工的方法
US6769962B2 (en) Scraping method
Pham et al. Laser milling
JP2008515643A (ja) 106〜109Wcm−2の範囲の放射照度と、10〜50kHzの範囲の繰返し率とを有するレーザを使用する硬質材料の加工処理装置及び加工処理方法
Kibria et al. Investigation into the effect of overlap factors and process parameters on surface roughness and machined depth during micro-turning process with Nd: YAG laser
JP5899904B2 (ja) 炭素膜被覆エンドミルおよびその製造方法
Mathew et al. A study on the micromachining of molybdenum using nanosecond and femtosecond lasers
WO2024099117A1 (zh) 激光切割物料的加工方法和应用
JP6065518B2 (ja) 切削工具の製造方法及び製造装置
JP6980216B2 (ja) 切削工具製造方法
JP2012045581A (ja) レーザ加工方法
CN111940930A (zh) 一种微孔激光加工方法及设备
US20210402520A1 (en) Method for the material-removing laser machining of a workpiece
Charee et al. Underwater Laser Turning of Commercially-Pure Titanium
Tsoukantas et al. Overview of 3D laser materials processing concepts
WO2024099116A1 (zh) 用于激光加工的方法和装置
CN118046109A (zh) 运用激光实施深孔加工的方法和装置
Genna et al. Experimental study on fiber laser microcutting of Nimonic 263 superalloy
JP2018176355A (ja) 加工方法
JP2003251482A (ja) レーザ加工方法およびその装置