WO2024099116A1 - 用于激光加工的方法和装置 - Google Patents

用于激光加工的方法和装置 Download PDF

Info

Publication number
WO2024099116A1
WO2024099116A1 PCT/CN2023/127406 CN2023127406W WO2024099116A1 WO 2024099116 A1 WO2024099116 A1 WO 2024099116A1 CN 2023127406 W CN2023127406 W CN 2023127406W WO 2024099116 A1 WO2024099116 A1 WO 2024099116A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
laser
incident
degrees
processing
Prior art date
Application number
PCT/CN2023/127406
Other languages
English (en)
French (fr)
Inventor
孙思叡
Original Assignee
上海名古屋精密工具股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海名古屋精密工具股份有限公司 filed Critical 上海名古屋精密工具股份有限公司
Publication of WO2024099116A1 publication Critical patent/WO2024099116A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment

Definitions

  • the present invention relates to a material forming method, and in particular to a method for processing and forming materials (such as holes or grooves) by means of laser, and a device for implementing the method.
  • Hole machining, milling and reaming are all common material processing methods in industry, which are used to process materials into products with required features, such as plates with hole features and cavities with curved surfaces.
  • the most common means to complete these processes are tools, such as drills, milling cutters and reamers.
  • Using laser (field) as a means to achieve the purpose of removing materials has also been widely used.
  • Laser technologies such as laser cutting, laser welding, laser quenching, and laser rust removal have been widely used in industrial production. They use a focused high-energy laser beam to irradiate the material, and ablate the material through the photothermoelectric effect (such as gasification evaporation, electron avalanche, etc.) within a spatial range where the beam energy density is higher than the material damage threshold. Subsequently, the ablation of materials of specific shapes, forms, and specifications is completed (usually also called “cutting”) through the movement of the beam relative to the material, so as to achieve the purpose of making the desired product.
  • photothermoelectric effect such as gasification evaporation, electron avalanche, etc.
  • Galvo scanning system also known as galvanometer scanner, consists of an X-Y optical scanning head, an electronic drive amplifier and an optical reflective lens.
  • the signal provided by the computer controller drives the optical scanning head through the drive amplifier circuit, thereby controlling the deflection of the laser beam in the X-Y plane.
  • the design idea of the galvanometer completely follows the design method of the ammeter.
  • the lens replaces the needle, and the signal of the probe is replaced by a computer-controlled DC signal of -5V ⁇ 5V or -10V ⁇ 10V to complete the predetermined action.
  • Its working principle is to make the laser beam incident on two reflectors (scanning mirrors), and use a computer to control the reflection angle of the reflectors.
  • the two reflectors can scan along the X and Y axes respectively, so as to achieve the deflection of the laser beam, so that the laser focus with power density moves on the marking material according to the required requirements, thereby ablating the surface of the material.
  • the galvanometer movement principle controlling the angle of the reflector in the X and Y directions to achieve point-by-point scanning movement of the focused light spot along the X and Y axes
  • the motion trajectory is a curve (such as an arc or a sine curve)
  • the galvanometer drives the focused light spot to move along multiple short straight lines or polygons composed of them through circular arc interpolation or direct end-to-end connection to complete the "drawing" of the aforementioned curve graphics.
  • This technology has the following shortcomings when processing small arc shapes (R ⁇ 0.05mm): on the one hand, it is difficult to "draw” a round shape due to the short side length of the polygon; on the other hand, due to the short "side length” of the polygon, The motor acceleration and deceleration speed requirements are very high. Frequent acceleration and deceleration not only shortens the life of the galvanometer body, but also causes the galvanometer motor temperature rise to increase, amplifies the zero-point temperature rise offset, and easily causes graphic distortion; third, when the "graphic” needs to be filled, the "polygon” will leave space and be difficult to fill.
  • the general practice in the industry is to adopt hardware upgrade measures, such as: improving the resolution of the galvanometer angle sensor, or replacing the relatively low-bandwidth analog signal drive control method with a high-bandwidth digital signal drive control method, or using low-inertia lenses, or increasing active cooling (water, air cooling) and other methods to specifically solve the "symptoms" of temperature rise drift, large acceleration and deceleration inertia, and short polygon "side length". There is no solution to improve the movement mode of the galvanometer body.
  • An object of the present invention is to provide a method for laser processing, which performs laser processing on a material in a patterned manner.
  • Another object of the present invention is to provide a method for laser processing, which reduces the requirements for motor acceleration and deceleration, thereby facilitating continuous implementation of laser processing.
  • Another object of the present invention is to provide a method for laser processing to improve the accuracy of laser processing of materials in a patterned manner.
  • Another object of the present invention is to provide a device for laser processing, so as to facilitate the laser processing of materials in a patterned manner.
  • Lasers are usually understood to be light radiated by atoms due to stimulation. When the electrons in the atoms absorb energy and transition from a low energy level to a high energy level, and then fall back from a high energy level to a low energy level, the released energy is released in the form of photons.
  • Lasers can be divided into continuous lasers and pulsed lasers. Lasers can be divided into thermal lasers and cold lasers based on their pulse width characteristics.
  • Laser emitters such as, but not limited to, nanosecond, femtosecond or picosecond lasers, may generate lasers such as infrared, IR, blue, green, violet or extreme violet.
  • Ultrafast laser refers to a laser with a pulse width of less than tens of nanoseconds, i.e., a pulse laser at the picosecond level or less.
  • the core components of ultrafast lasers include oscillators, stretchers, amplifiers, and compressors.
  • the material or workpiece is usually the material or semi-finished product used to manufacture parts or components, and is the object of machining during the machining process. That is, after machining the workpiece, a product that meets the machining or design requirements is obtained.
  • Precision machining refers to machining technology that achieves extremely high machining accuracy and surface quality. For example, in tool machining, the size, straightness, contour, surface roughness, blade tip radius, and machining accuracy are all higher than micron level.
  • Machining equipment is a processing equipment with multiple moving axes. That is, in a right-hand rectangular coordinate system, there are X, Y and Z axes that move in a straight line, and A, B and C axes that rotate around X, Y and Z axes respectively.
  • CNC machine tools are usually loaded with various control software, which receive and send various instructions in the form of code to perform automated processing on workpieces.
  • a method for laser processing comprising:
  • the laser emitted from the second mirror is focused by the focusing mirror and acts on the material
  • the incident angle of the laser incident on the first mirror is greater than 0 degrees and less than or equal to 90 degrees;
  • the incident angle of the laser incident on the second mirror is greater than 0 degrees and less than 90 degrees;
  • the second mirror deviates from the first mirror, thereby forming a laser-processed pattern on the material.
  • the second mirror moves along a straight path to change the distance from the first mirror, for example, to move closer to the first mirror or farther away from the first mirror.
  • the second mirror rotates around the rotation axis to change the deflection angle relative to the first mirror.
  • the first mirror is further rotated around a rotation axis.
  • the rotation axis for the first mirror and the rotation axis for the second mirror are parallel or coaxial.
  • the first mirror rotates around the rotation axis
  • the second mirror rotates around the rotation axis and moves along a straight path parallel to the axial direction of the rotation axis.
  • the first mirror rotates around the rotation axis and the second mirror also rotates around the rotation axis, thereby forming a curved pattern, such as an arc or a ring, on the material.
  • the first mirror rotates around the rotation axis, and at the same time, the second mirror rotates around the rotation axis and moves along a straight path parallel to the axial direction of the rotation axis, thereby forming a filling pattern on the material, such as a sector, a circular surface, or an annular surface with a radial width.
  • the first mirror is a wedge-shaped mirror, and the incident angle of the laser incident on the first mirror is greater than 0 degree and less than 90 degrees.
  • the second mirror is a wedge-shaped mirror.
  • the first mirror and the second mirror are identical wedge-shaped mirrors.
  • the first mirror is a plane mirror.
  • the second mirror is a plane mirror.
  • the method provided by the present invention controls the movement of the focused laser point on arc and curve tracks based on polar coordinates, and is used to replace the galvanometer to achieve high-precision depiction of small-sized straight lines, arcs or curves (R ⁇ 0.5mm, especially R ⁇ 0.05mm, such as: 0.03mm ⁇ 0.05mm).
  • the method provided by the present invention can effectively avoid interpolating very small straight line segment polygon fitting, and can form high-precision arc and curve tracks.
  • graphics that need to be filled such as: sectors, circular surfaces or torus surfaces with radial width, polygon omissions can be avoided.
  • the method of the present invention is easier to be integrated into a multi-axis CNC machine tool system, that is, to be controlled as a motion axis of the CNC system.
  • the present invention also provides a device for implementing laser processing, comprising:
  • the rotary motor includes a channel, the laser is incident from one end of the channel and emitted from the other end;
  • a first mirror is arranged on the optical path of laser propagation, driven to rotate by a rotary motor, and includes a first incident surface, so that the incident angle of the laser incident on the first mirror is greater than 0 degrees and less than 90 degrees;
  • a distance motor which is driven by the rotary motor to rotate about a straight line parallel to the axial direction of the optical axis;
  • a second mirror is arranged on the optical path of laser propagation, driven by the rotary motor to rotate, and also driven by the distance motor to move along a straight path parallel to the rotary axis, and includes a second incident surface, so that the incident angle of the laser incident on the second mirror is greater than 0 degrees and less than 90 degrees;
  • a focusing lens which is arranged on the optical path of laser propagation
  • the laser first enters the first mirror, then exits through the second mirror, and is focused by the focusing mirror before acting on the material.
  • the distance motor is also installed on the rotary motor and driven by the rotary motor.
  • the device of the present invention also includes a beam expander, which is arranged on the laser light path before it enters the first mirror.
  • the first mirror is a wedge-shaped mirror, and the incident angle of the laser incident on the first mirror is greater than 0 degree and less than 90 degrees.
  • the second mirror is a wedge-shaped mirror.
  • the first mirror and the second mirror are identical wedge-shaped mirrors.
  • the first mirror is a plane mirror.
  • the second mirror is a plane mirror.
  • the device of the present invention may also be equipped with other optical components, such as a third wedge-shaped mirror to further adjust the direction and angle deviation between the laser beam and the central axis of the rotary motor.
  • other optical components such as a third wedge-shaped mirror to further adjust the direction and angle deviation between the laser beam and the central axis of the rotary motor.
  • the present invention arranges a group of optical mirrors on a rotary motor, so that the motor rotates around the center of rotation to make the focused laser draw an arc on the material, and can achieve precise movement of an arc track with a diameter less than 0.05 mm.
  • the distance between the two optical mirrors is changed by a distance motor, so that the distance between the focused laser point and the laser optical axis can be adjusted.
  • the focused light spot changes its distance from the rotation center while rotating around the rotation center, and an arbitrary curve trajectory rotating around the rotation center can be obtained, thereby realizing the filling of the outlined figure, for example: filling the ring into a circular ring surface with radial width, or completely filling it into a circular surface.
  • FIG1 is a schematic diagram of an embodiment of a device for implementing the laser processing method of the present invention.
  • FIG2 is a schematic diagram of an embodiment of laser processing a material using the method of the present invention.
  • FIG3 is a schematic diagram of an embodiment of laser processing a material using the method of the present invention.
  • FIG4 is a schematic diagram of an embodiment of laser processing of a material using the method of the present invention.
  • FIG5 is a schematic diagram of another embodiment of laser processing a material using the method of the present invention.
  • FIG6 is a schematic diagram of another embodiment of laser processing a material using the method of the present invention.
  • FIG. 7 is a schematic diagram of another embodiment of laser processing a material using the method of the present invention.
  • FIG8 is a schematic diagram of another embodiment of laser processing a material using the method of the present invention.
  • FIG9 is a schematic diagram of another embodiment of laser processing of a material using the method of the present invention.
  • FIG10 is a schematic diagram of another embodiment of laser processing of a material using the method of the present invention.
  • FIG11 is a schematic diagram of another embodiment of laser processing of a material using the method of the present invention.
  • FIG. 12 is a schematic diagram of another embodiment of laser processing of a material using the method of the present invention.
  • FIG1 is a schematic diagram of an embodiment of a device for implementing the laser processing method of the present invention.
  • the device for implementing the laser processing method of this embodiment includes a rotary motor 100 and a distance motor 200.
  • the rotary motor 100 includes a channel 110, and the laser 10 is incident from one end of the channel 100 and then emitted from the other end.
  • the rotary motor 100 model used is DR25/M (direct drive rotary motor)
  • the distance motor 200 model is ZLINK-Y3 (high-speed voice coil motor).
  • the first mirror 310 is disposed on the optical path of the laser 10 and is rotated by the rotary motor 100.
  • the first mirror 310 includes a first incident surface 311, so that the incident angle of the laser 10 incident on the first mirror 310 is greater than 0 degrees and less than 90 degrees.
  • the first mirror 310 is a wedge-shaped mirror.
  • the second mirror 320 is disposed on the optical path of the laser 10, and is driven to rotate by the rotary motor 100, and is also driven by the distance motor 200 to move along a straight path parallel to the rotary axis 111, and includes a second incident surface 321, so that the incident angle of the laser 10 incident on the second mirror 320 is greater than 0 degrees and less than 90 degrees.
  • the second mirror 320 is a wedge-shaped mirror, and has the same specifications as the first mirror 310.
  • FIG2 is a schematic diagram of an embodiment of laser processing a material using the method of the present invention.
  • the laser 10 is first incident on the first mirror 310 and then incident on the second mirror 320.
  • the laser emitted from the second mirror 320 is focused by the focusing mirror 400 and then acts on the material to form a laser ablation point 21 on the material.
  • a beam expander 500 is also included, which is arranged on the laser light path before the laser enters the first mirror 310.
  • the distance motor 200 drives the second mirror 320 to move along a straight path and deviate from the first mirror 310, for example, approaching the first mirror 310 or moving away from the first mirror 310, thereby forming a laser-processed pattern, such as a groove or a seam, on the material.
  • FIG3 is a schematic diagram of an embodiment of laser processing a material using the method of the present invention. In combination with FIG1 and FIG2, as shown in FIG3, when the distance motor 200 drives the second mirror 320 to move along a straight path close to the first mirror 310, the position of the focused laser acting on the material moves, and when the second mirror 320 continues to move along the straight path close to the first mirror 310, a laser-processed seam 22 is formed on the material 20.
  • a processing equipment with multiple motion axes, such as: a three-axis machine tool, a four-axis machine tool and a five-axis machine tool.
  • Such processing equipment can provide at least two directions of movement required to drive the material, such as: providing movement in the X-axis direction and the Y-axis direction, and usually also providing movement in the Z-axis direction to meet the needs of processing.
  • movement in the rotation direction around the X-axis i.e., the A-axis direction
  • movement in the rotation direction around the Y-axis i.e., the B-axis direction
  • processing devices equipped with laser light sources and having multiple motion axes such as CN212144994
  • these devices are already equipped with lasers, focusing (field) lenses and driving devices, and can focus the received laser to obtain a focused laser beam, and guide or drive the focused laser beam to repeatedly move along a straight line under the guidance of the driving device.
  • the method or device of this embodiment is integrated into the machining equipment for control, which not only controls the linkage of the distance motor and the rotary motor, so that the focused light spot changes its distance from the rotation center while rotating around the rotation center, but also obtains any curve trajectory rotating around the rotation center, and realizes the processing graphics such as sectors, arcs and circles with the rotation center as the divergence point, as well as the processing graphics filled with sectors and circular surfaces.
  • An additional rotary axis can also be obtained to realize the processing graphics that are not drawn and filled around the rotation center.
  • the distance motor and the rotary motor are also controlled to be linked, so that the distance motor controls the focused light spot to complete the linear trajectory movement from the rotation center to the rotation radius within the unit time of the rotary motor rotating through a motion increment.
  • the rotary motor drives the wedge-shaped lens group to rotate an angle, so that the laser moves a section of the trajectory around the rotation center, and the trajectory is a real arc trajectory with the rotation distance as the radius and the rotation arc length as the distance.
  • FIG4 is a schematic diagram of an embodiment of laser processing of a material using the method of the present invention.
  • the focused laser beam 12 ablates the material (not shown) along the processing track 120, and only one end of the laser beam falls on the processing track 120 where the workpiece moves.
  • the arrow on the processing track 120 indicates the direction of material movement.
  • the angle between the focused laser beam 12 and the normal of the processing track 120 is always maintained in the range of 20° to 70°.
  • the rotary motor 100 rotates a deflection angle (such as 30°), and then the distance motor 200 drives the second mirror 320 to move along a straight path close to the first mirror 310, thereby generating a track 122 on the material, that is, the focused laser beam 12 is rotated around the laser spot falling on the processing track 122 as the center, and the movement direction of the laser beam is adjusted. Keeping the deflection angle of the rotary motor 100 unchanged and moving the material, the material can be processed in the adjusted movement direction of the laser beam.
  • a deflection angle such as 30°
  • FIG5 is a schematic diagram of another embodiment of laser processing materials using the method of the present invention.
  • the rotary motor 100 rotates continuously to drive the first mirror 310 and the second mirror 320 to rotate around the rotation axis 111, so that the laser emitted from the second mirror 320 presents a circular distribution, and then forms a circle-shaped 610 processing pattern on the material after focusing.
  • the rotary motor 100 rotates continuously less than 360°, a curve or arc line is formed on the material.
  • FIG6 is a schematic diagram of another embodiment of laser processing materials using the method of the present invention. As shown in FIG6, a processing pattern of an excellent arc 620 is formed on the material, R ⁇ 0.05mm.
  • FIG. 7 is a schematic diagram of another embodiment of laser processing materials using the method of the present invention.
  • the distance motor 200 drives the second mirror 320 to continuously move along a straight path and approach the first mirror 310, the laser focused by the focusing mirror ablates all the materials located in the circular processing pattern to form a complete circular surface 630 processing pattern.
  • the laser focused by the focusing mirror ablates the materials located outside the circular processing pattern in sequence in the radial direction to form a circular ring 640 processing pattern with a radial width, R ⁇ 0.05mm, as shown in FIG. 12.
  • the distance motor 200 drives the second mirror 320 to continuously move along a straight path close to the first mirror 310, so that a laser-processed seam is formed on the material 20, that is, an edge of the fan-shaped processing pattern is generated. Then, after the rotary motor 100 rotates a deflection angle (such as: 30°), the distance motor 200 drives the second mirror 320 to move along a straight path close to the first mirror 310, so that another laser-processed seam is formed on the material 20, that is, another edge of the fan-shaped processing pattern is generated, and a 30° angle processing pattern is obtained.
  • a deflection angle such as: 30°
  • FIG11 is a schematic diagram of another embodiment of laser processing of materials using the method of the present invention. As shown in FIG11, a plurality of fan-shaped processing patterns 650 partially overlap to form a circular surface processing pattern R ⁇ 0.05mm.
  • FIG8 is a schematic diagram of another embodiment of laser processing a material using the method of the present invention.
  • a plurality of circular surface 630 processing patterns are formed on the material, and these circular surface 630 patterns are superimposed or partially overlapped, thus achieving an effect similar to that of laser processing the material using a galvanometer, thereby achieving laser processing without using a galvanometer device, which not only reduces the requirements for motor acceleration and deceleration, but also improves the accuracy of laser processing the material in a patterned manner.
  • FIG9 is a schematic diagram of another embodiment of laser processing of materials using the method of the present invention.
  • the method of this embodiment is used to first complete a fan-shaped processing pattern 13 with a laser, and the fan-shaped processing pattern is used to ablate the material (not shown) along the processing track 130.
  • the arrow on the processing track 130 indicates the direction of movement of the workpiece.
  • the angle between the fan-shaped processing pattern 13 and the normal of the processing track 130 is always maintained in the range of 20° to 70°.
  • the end point of one corner of the fan-shaped processing pattern 13 falls on the processing track 130 where the material moves.
  • the rotary motor 100 is rotated by an angle (e.g., 30°), so that the fan-shaped processing pattern 13 formed again rotates around the laser spot falling on the processing track 134 as the center, and the movement direction of the fan-shaped processing pattern 13 formed by the laser beam is adjusted.
  • an angle e.g. 30°
  • FIG10 is a schematic diagram of another embodiment of laser processing of materials using the method of the present invention.
  • the method of this embodiment is used to first complete a fan-shaped processing pattern 17 with a laser, and the fan-shaped processing pattern 17 is used to ablate the material (not shown) along the processing trajectory 170.
  • the arrow on the processing trajectory 170 indicates the direction of movement of the workpiece.
  • the end point of one corner of the fan-shaped processing pattern 17 falls on the processing trajectory 170 of the material movement.
  • the angle between the fan-shaped processing pattern 17 and the normal of the processing trajectory 170 is always maintained in the range of 20° to 70°.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光切割物料的方法,包括在激光(10)传播的路径上设置第一镜(310)和第二镜(320),并使激光先以入射角大于0度,且小于90度入射第一镜后,再以入射角大于0度,且小于90度入射第二镜。从第二镜出射的激光再经聚焦镜(400)聚焦后,作用于物料(20)。将第二镜相对第一镜发生位置偏离,进而在物料上形成激光加工的图形。该方法使聚焦后的激光在物料上勾勒圆弧,能实现直径小于0.05mm的圆弧轨迹的精确移动。还涉及一种用于激光加工的装置。

Description

用于激光加工的方法和装置 技术领域
本发明涉及一种物料的成型方法,尤其涉及一种以激光为手段对物料实施加工成型(如:孔或槽)的方法,以及实施该方法的装置。
背景技术
孔加工、铣加工和铰削加工等均是工业上较为常见的物料加工手段,以将物料加工成所需特征的产品,比如:具有孔特征的板材和具有弧面的腔体等。完成这些加工的最常见的手段为刀具,比如:钻头、铣刀和铰刀等。以激光(场)为手段达到去除物料的目的也已经被广泛应用。
比如:以激光为手段实施物料的加工在金属加工领域已属常见,诸如:激光切割、激光焊接、激光淬火、激光除锈等激光技术已广泛应用于工业生产,其利用聚焦的高能激光束照射物料,在光束能量密度高于材料损伤阈值的空间范围内通过光热电效应(如:气化蒸发、电子雪崩等)对物料实施烧蚀去除。随后通过光束相对材料的移动,完成特定形状、形体及规格的物料的烧蚀(通常也称为“切割”),达到制作所需产品的目的。
振镜(Galvo scanning system),又称之为电流表计式扫描仪,其由X-Y光学扫描头、电子驱动放大器和光学反射镜片组成。电脑控制器提供的信号通过驱动放大电路驱动光学扫描头,从而在X-Y平面控制激光束的偏转。振镜的设计思路完全沿袭电流表的设计方法,镜片取代了表针,而探头的信号由计算机控制的-5V~5V或-10V~10V的直流信号取代,以完成预定的动作。其工作原理是将激光束入射到两反射镜(扫描镜)上,用计算机控制反射镜的反射角度,这两个反射镜可分别沿X、Y轴扫描,从而达到激光束的偏转,使具有功率密度的激光聚焦点在打标材料上按所需的要求运动,从而在材料表面进行烧蚀。
利用振镜实施的激光加工技术已广泛在工业领域应用,如:激光打标、飞行焊接、激光淬火、增材制造和精密切割等。通过振镜,激光焦点在聚焦平面内可以进行极其精密复杂的高速运动以“绘制”特定形状,根据应用领域不同,振镜“绘制”的形状主要分为矢量图和点阵图。基于振镜运动原理(以控制X、Y两个方向上反射镜角度来实现聚焦光斑沿X轴、Y轴的逐点扫描移动),当运动轨迹是曲线(如:圆弧或正弦曲线)轨迹时就会先被分解成短长度的多段直线,以及由其构成的多边形,再由振镜驱动聚焦光斑通过圆弧插补方式或直接首尾相连方式沿着多段短小直线或由其构成的多边形移动以完成前述曲线图形的“绘制”。
此种技术在处理小圆弧形状(R≤0.05mm)时有如下不足:一方面,受制于多边形对应的边长太短难以“绘制”圆整形状;另一方面,由于多边形“边长”过短,对 电机加减速度要求很高,频繁加减速除了缩短振镜本体寿命,还造成振镜电机温升变大,放大零点温升偏移,并容易造成图形失真;第三,当“图形”需要填充时,对“多边形”实施地填充会留有空间而难以填满。由此,业界的一般做法是采取硬件升级手段,如:提高振镜角度传感器分辨率,或用高带宽的数字信号驱动控制方式替代相对低带宽的模拟信号驱动控制方式,或采用低惯量镜片,或增加主动冷却(水、风冷)等方式针对性地解决温升漂移、加减速惯量大和多边形“边长”过短等“症状”问题。尚未见有针对振镜本体运动方式进行改进的方案。
发明内容
本发明的一个目的在于提供一种用于激光加工的方法,以图样的方式对物料实施激光加工。
本发明的另一个目的在于提供一种用于激光加工的方法,降低对电机加减速度要求很高,利于持续性地实施激光加工。
本发明的再一个目的在于提供一种用于激光加工的方法,提高以图样的方式对物料实施激光加工的精度。
本发明的又一个目的在于提供一种用于激光加工的装置,以利于以图样的方式对物料实施激光加工
通常理解的激光,系原子因受激而辐射的光,原子中的电子吸收能量后从低能级跃迁到高能级,再从高能级回落到低能级的时候,所释放的能量以光子的形式放出。激光的形态可分为连续激光和脉冲激光。依据激光的脉冲宽度特性分为热激光和冷激光。
激光发射器如:但不限于纳秒、飞秒或皮秒激光器,产生的激光如:红外、红外、蓝光、绿光、紫光或极紫光。
超快激光是指输出激光的脉冲宽度数十纳秒以下,即皮秒级别或小于皮秒级别的脉冲激光。超快激光器涉及的核心部件包括振荡器、展宽器、放大器和压缩器等。
在机加工中,所称的物料或工件通常是用于制造零件或部件的材料或半成品,是机械加工过程中的加工对象。即对工件实施机加工后,得到符合加工或设计要求的产品。
精密加工,指加工精度和表面质量达到极高程度的加工技术。比如:刀具加工中,尺寸、直线度、轮廓度、表面粗糙度、刃尖圆弧半径、加工精度均高于达到微米级。
机加工设备(或机加工中心),系具有多个运动轴的加工设备。即在右手直角坐标系中,沿直线方向移动的X、Y和Z轴,以及分别绕X、Y和Z轴的回转的A轴、B轴和C轴。如:数控机床,通常加载了各项控制软件,以代码形式接收和发出各项指令对工件实施自动化加工。
一种用于激光加工的方法,包括:
在激光传播的路径上设置第一镜和第二镜,并使激光先入射第一镜后,再入射第 二镜;
从第二镜出射的激光再经聚焦镜聚焦后,作用于物料;
激光入射第一镜的入射角大于0度,且小于或等于90度;
激光入射第二镜的入射角大于0度,且小于90度;
第二镜相对第一镜发生位置偏离,进而在物料上形成激光加工的图形。
第二镜沿直线路径移动而改变与第一镜的距离,比如:靠近第一镜或远离第一镜。
第二镜绕回转轴旋转而改变相对第一镜的偏转角。
为了使激光在物料上烧蚀的路径发生偏转,还进一步使第一镜绕回转轴旋转。用于第一镜旋转的回转轴和用于第二镜旋转的回转轴平行或共轴。
为了实现多种图形,比如:扇形、圆形和具有径向宽度的圆环等,第一镜绕回转轴旋转,同时,第二镜绕回转轴旋转,还沿与回转轴的轴向平行的直线路径移动。
一种第二镜相对第一镜发生位置偏离的实施方式,第二镜沿与回转轴的轴向平行的直线路径移动,而使第二镜相对第一镜远离或靠近,由此在物料上形成直线图形,如:槽或缝。
另一种第二镜相对第一镜发生位置偏离的实施方式,第一镜绕与回转轴旋转,同时第二镜也绕回转轴旋转,由此在物料上形成曲线图形,如弧形或环形。
另一种第二镜相对第一镜发生位置偏离的实施方式,第一镜绕回转轴旋转,同时,第二镜绕回转轴旋转,还沿与回转轴的轴向平行的直线路径移动,由此在物料上形成填充图形,如:扇面、圆面或具有径向宽度的环形面。
为了便于实施本发明的方法,第一镜为楔形镜激光入射所述第一镜的入射角大于0度,且小于90度。
为了便于实施本发明的方法,第二镜为楔形镜。
为了便于实施本发明的方法,第一镜和第二镜为相同的楔形镜。
为了便于实施本发明的方法,第一镜为平面镜。
为了便于实施本发明的方法,第二镜为平面镜。
本发明提供的方法,基于极坐标方式控制聚焦激光点在圆弧及曲线类轨迹移动,用于替代振镜实现小尺寸的直线、圆弧或曲线类图形(R≤0.5mm,尤其是R≤0.05mm,如:0.03mm~0.05mm)的高精度描绘。
本发明提供的方法,能有效避免插补很小直线段多边形拟合,可以形成高精度的圆弧及曲线轨迹。对于加工需要填充的图形,比如:扇面、圆面或具有径向宽度的环面,避免多边形遗漏的情形。
相比于振镜装置,本发明的方法更容易集成于多轴数控机床系统中,即作为数控系统的运动轴加以控制。
为了实施本发明的激光加工方法,尤其是利于集成与数控机床中,本发明还提供一种用于实施激光加工的装置,包括
回转电机,包括一个通道,激光从通道的一端入射,再从另一端出射;
第一镜,其设置于激光传播的光路上,受回转电机的驱动旋转,包括第一入射面,使激光入射第一镜的入射角大于0度,且小于90度;
距离电机,其受回转电机的驱动而绕与光轴的轴向平行的直线旋转;
第二镜,其设置于激光传播的光路上,受回转电机的驱动而旋转,还受距离电机的驱动沿与沿与回转轴平行的直线路径移动,包括第二入射面,使激光入射第二镜的入射角大于0度,且小于90度;
聚焦镜,其设置于激光传播的光路上;
激光先入射第一镜,再经第二镜后出射,作用于物料前由聚焦镜聚焦。
为提高本发明装置的一体化,距离电机也安装于回转电机上,受回转电机驱动。
本发明的装置,还包括扩束镜,设置于入射第一镜之前的激光光路上。
本发明的装置,第一镜为楔形镜激光入射所述第一镜的入射角大于0度,且小于90度。
本发明的装置,第二镜为楔形镜。
本发明的装置,第一镜和第二镜为相同的楔形镜。
本发明的装置,第一镜为平面镜。
本发明的装置,第二镜为平面镜。
本发明的装置上还可以搭载其它光学零部件,如:第三楔形镜以进一步调整激光束与回转电机中心轴线的方向和角度偏差。
本发明技术方案实现如下加工效果:
本发明将一组光学镜设置于回转电机上,使其绕回转中心转动而使聚焦后的激光在物料上勾勒圆弧,能实现直径小于0.05mm的圆弧轨迹的精确移动。
通过距离电机改变两面光学镜之间的距离,使聚焦后的激光点与激光光轴的距离可调。
控制距离电机和回转电机联动,使聚焦光斑在绕回转中心回转的同时改变其距回转中心的距离,即可获得围绕回转中心回转的任意曲线轨迹,由此实现对所勾勒图形实现填充,比如:将环形,填充为具有径向宽度的圆环面,或完全填充为圆面。
附图说明
图1为用于实施本发明激光加工的方法的装置一实施例的示意图;
图2为运用本发明的方法将激光加工物料一实施例的示意图;
图3为运用本发明的方法将激光加工物料一实施例的示意图;
图4为应用本发明的方法实施物料的激光加工一实施例的示意图;
图5为运用本发明的方法将激光加工物料另一实施例的示意图;
图6为运用本发明的方法将激光加工物料另一实施例的示意图;
图7为运用本发明的方法将激光加工物料另一实施例的示意图;
图8为运用本发明的方法将激光加工物料另一实施例的示意图;
图9为应用本发明的方法实施物料的激光加工另一实施例的示意图;
图10为应用本发明的方法实施物料的激光加工另一实施例的示意图;
图11为应用本发明的方法实施物料的激光加工另一实施例的示意图;
图12为应用本发明的方法实施物料的激光加工另一实施例的示意图。
具体实施方式
以下结合附图详细描述本发明的技术方案。本发明实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。
图1为用于实施本发明激光加工的方法的装置一实施例的示意图。如图1所示,本实施例的用于实施激光加工的方法的装置包括回转电机100和距离电机200。回转电机100包括一个通道110,激光10从通道100的一端入射,再从另一端出射。本实施例中,采用的回转电机100型号为DR25/M(直驱回转电机),距离电机200型号为ZLINK-Y3(高速音圈电机)。
第一镜310设置于激光10传播的光路上,受回转电机100的驱动而旋转,包括第一入射面311,使激光10入射第一镜310的入射角大于0度,且小于90度。本实施例中,第一镜310为一面楔形镜。
第二镜320设置于激光10传播的光路上,受回转电机100的驱动旋转,还受距离电机200的驱动沿与回转轴111平行的直线路径移动,包括第二入射面321,使激光10入射第二镜320的入射角大于0度,且小于90度。本实施例中,第二镜320为一面楔形镜,并与第一镜310规格相同。
图2为运用本发明的方法将激光加工物料一实施例的示意图。如图2所示,激光10先入射第一镜310后,再入射第二镜320。从第二镜320出射的激光再经聚焦镜400聚焦后,作用于物料,并在物料上形成一个激光烧蚀点21。在本实施例中,还包括扩束镜500,设置于入射第一镜310之前的激光光路上。
距离电机200驱动第二镜320沿直线路径移动而相对第一镜310发生位置偏离,比如:靠近第一镜310或远离第一镜310,进而在物料上形成激光加工的图样,如:槽或缝。图3为运用本发明的方法将激光加工物料一实施例的示意图。结合图1和图2,如图3所示,当距离电机200驱动第二镜320沿直线路径移动靠近第一镜310后,经聚焦的激光作用于物料的位置发生移动,当第二镜320沿直线路径靠近第一镜310持续移动时,则在物料20上形成一条激光加工的缝22。
为了实施本发明的方法或装置,较为适合的是在具有多个运动轴的加工设备,如:三轴机床、四轴机床和五轴机床等实施。此类加工设备能提供驱动物料所需的至少2个方向运动,比如:提供X轴方向的运动和Y轴方向的运动,以及通常还能提供Z轴方向的运动,以适应加工的需要。为了实现三维形态的加工,绕X轴旋转方向上的运动(即A轴方向),以及绕Y轴旋转方向上的运动(即B轴方向)也能容易地从这些加工设备中获得。
由于已经存在搭载激光光源且具有多个运动轴的加工设备,比如:CN212144994。这些设备中已经配有激光器、聚焦(场)镜和驱动装置,而能将所受到的激光实施聚焦,得到聚焦激光光束,并在驱动装置的引导或驱使聚焦激光光束沿直线实施重复移动。
将本实施例的方法或装置集成于机加工设备中进行控制,不仅控制距离电机和回转电机联动,使聚焦光斑在绕回转中心回转的同时改变其距回转中心的距离,即可获得围绕回转中心回转的任意曲线轨迹,即可实现以回转中心为发散点的扇形、弧形和圆形等加工图形,以及扇面和圆面等填充的加工图形。还可获得额外地回转轴,实现非绕回转中心绘制及填充的加工图形。比如:要对已经绘制的圆进行填充,同样控制距离电机和回转电机联动,使回转电机转过一个运动增量的单位时间内距离电机控制聚焦光斑完成从回转中心到回转半径的直线轨迹移动。通过回转电机驱动楔形镜组回转一个角度,使激光绕回转中心移动一段轨迹,该段轨迹即为以回转距离为半径,以回转弧长为距离的真实弧形轨迹。
图4为应用本发明的方法实施物料的激光加工一实施例的示意图。结合图1、图2和图3,如图4所示,聚焦的激光光束12沿加工轨迹120对物料(未示出)实施烧蚀,其仅有一端落于工件移动的加工轨迹120上,加工轨迹120上箭头表示物料移动的方向。聚焦的激光光束12与加工轨迹120的法向的夹角始终保持在20°~70°范围内。当加工轨迹120上的一段轨迹121转向另一段轨迹122时,回转电机100转动一个偏角(如:30°)后,再由距离电机200驱动第二镜320沿直线路径移动靠近第一镜310,由此在物料上产生轨迹122,即实现了将聚焦的激光束12绕落于加工轨迹122上的激光光斑为中心旋转,而调整激光束的运动方向。保持回转电机100转动的偏角不变化,移动物料,即可实现以调整后激光束的运动方向继续加工物料。
当回转电机100持续转动,使得第一镜310和第二镜320绕回转轴转动,则聚焦后的激光10在物料形成弧线加工轨迹。图5为运用本发明的方法将激光加工物料另一实施例的示意图。结合图1,如图5所示,回转电机100持续转动而带动第一镜310和第二镜320绕回转轴111转动,使得从第二镜320出射的激光呈现圆周分布,再经聚焦后与物料上形成圆圈状610的加工图形。当回转电机100持续转动小于360°时,则在物料上形成曲线或圆弧线。图6为运用本发明的方法将激光加工物料另一实施例的示意图。如图6所示,物料上形成了一个优弧状620的加工图形,R≤0.05mm。
当需要对圆圈状的加工图形内的物料进一步实施加工时,即对位于圆圈状加工图形内的物料实施激光烧蚀时,则由距离电机200驱动第二镜320沿直线路径移动靠近 第一镜310。图7为运用本发明的方法将激光加工物料另一实施例的示意图。结合图1和图5,如图7所示,距离电机200驱动第二镜320沿直线路径连续移动并靠近第一镜310过程中,经聚焦镜聚焦的激光将位于圆圈状加工图形内的物料全部烧蚀后,形成完整的圆面形630加工图案。基于与此类似的方式,距离电机200驱动第二镜320沿直线路径连续移动并远离第一镜310过程中,经聚焦镜聚焦的激光将位于圆圈状加工图形外的物料沿径向依次烧蚀后,形成具有径向宽度的圆环形640加工图案,R≤0.05mm,如图12所示。
将上述方式结合起来还能获得扇形的加工图形。距离电机200驱动第二镜320沿直线路径持续移动靠近第一镜310,则在物料20上形成一条激光加工的缝,即产生组成扇形加工图形的一条边。接着,回转电机100转动一个偏角(如:30°)后,再由距离电机200驱动第二镜320沿直线路径移动靠近第一镜310,则在物料20上又形成一条激光加工的缝,即产生组成扇形加工图形的另一条边,并获得一个30°角加工图形。将回转电机100复位(即消除30°偏角),再次转动30°角的同时,距离电机200驱动第二镜320沿直线路径移动靠近第一镜310,则在物料20上形成一条激光加工的弧形缝,由此最终勾勒出扇形加工图形。进一步调整第二镜320每次沿直线路径移动靠近第一镜310的距离,重复多次后,则实现将勾勒的扇形加工图形内的物料全部烧蚀,而形成扇面加工图形。图11为应用本发明的方法实施物料的激光加工另一实施例的示意图。如图11所示,若干个扇面加工图形650部分重叠,而成一个圆面加工图形R≤0.05mm。
图8为运用本发明的方法将激光加工物料另一实施例的示意图。如图8所示,随着物料的移动,而使得在物料上形成若干个圆面形630加工图案,这些圆面形630图案相互叠加或部分重叠,则实现了类似于采用振镜对物料实施激光加工的效果,从而能够实现不使用振镜装置的激光加工,不仅降低了对电机加减速度要求,还提高了以图样的方式对物料实施激光加工的精度。
图9为应用本发明的方法实施物料的激光加工另一实施例的示意图。如图9所示,采用本实施例的方法先用激光完成一个扇形加工图形13,将此扇形加工图形沿加工轨迹130对物料(未示出)实施烧蚀,加工轨迹130上箭头表示工件移动的方向。扇形加工图形13与加工轨迹130的法向的夹角始终保持在20°~70°范围内。扇形加工图形13一角的端点落于物料移动的加工轨迹130上。当加工轨迹130上的一段轨迹133转向另一段轨迹134时,将回转电机100转动一个偏角(如:30°),而使得再次形成的扇形加工图形13绕落于加工轨迹134上的激光光斑为中心旋转,而调整激光束所成的扇形加工图形13的运动方向。
图10为应用本发明的方法实施物料的激光加工另一实施例的示意图。如图10所示,采用本实施例的方法先用激光完成一个扇形加工图形17,以此扇形加工图形17沿加工轨迹170对物料(未示出)实施烧蚀,加工轨迹170上箭头表示工件移动的方向。扇形加工图形17一角的端点落于物料移动的加工轨迹170上。扇形加工图形17与加工轨迹170的法向的夹角始终保持在20°~70°范围内。虽然当加工轨迹170上的 一段轨迹172转向另一段轨迹173时,加工轨迹的变化,但扇形加工图形17不做运动方向的改变亦能实现加工。

Claims (21)

  1. 一种激光切割物料的方法,其特征在于包括:
    在激光传播的路径上设置第一镜和第二镜,并使所述激光先入射所述第一镜后,再入射所述第二镜;
    从所述第二镜出射的激光再经聚焦镜聚焦后,作用于物料;
    激光入射所述第一镜的入射角大于0度,且小于或等于90度;
    激光入射所述第二镜的入射角大于0度,且小于90度;
    所述第二镜相对所述第一镜发生位置偏离,进而在物料上形成激光加工的图形。
  2. 根据权利要求1所述的方法,其特征在于所述的第二镜沿直线路径移动而改变与第一镜的距离。
  3. 根据权利要求1所述的方法,其特征在于所述的第二镜绕回转轴旋转而改变相对所述第一镜的偏转角。
  4. 根据权利要求1所述的方法,其特征在于使所述的第一镜绕其回转轴旋转,所述的第二镜绕其回转轴旋转,用于第一镜旋转的回转轴和用于第二镜旋转的回转轴平行或共轴。
  5. 根据权利要求4所述的方法,其特征在于所述的第二镜还沿与其回转轴的轴向平行的直线路径移动。
  6. 根据权利要求1所述的方法,其特征在于所述的第一镜为楔形镜,激光入射所述第一镜的入射角大于0度,且小于90度。
  7. 根据权利要求1所述的方法,其特征在于所述的第二镜为楔形镜。
  8. 根据权利要求1所述的方法,其特征在于所述的第一镜为平面镜。
  9. 根据权利要求1所述的方法,其特征在于所述的第二镜为平面镜。
  10. 根据权利要求1所述的方法,其特征在于用于基于极坐标方式控制聚焦激光点在圆弧及曲线类轨迹移动形成加工图形。
  11. 根据权利要求1所述的方法,其特征在于用于具有多个运动轴的加工设备。
  12. 根据权利要求11所述的方法,其特征在于所述的加工设备为激光加工设备。
  13. 一种用于激光加工的装置,其特征在于包括:
    回转电机,包括一个通道,激光从通道的一端入射,再从另一端出射;
    第一镜,其设置于激光传播的光路上,受回转电机的驱动旋转,包括第一入射面,使激光入射第一镜的入射角大于0度,且小于或等于90度;
    距离电机,其受回转电机的驱动而绕与光轴的轴向平行的直线旋转;
    第二镜,其设置于激光传播的光路上,受回转电机的驱动而旋转,还受距离电机的驱动沿与沿与回转轴平行的直线路径移动,包括第二入射面,使激光入射第二镜的入射角大于0度,且小于90度;
    聚焦镜,其设置于激光传播的光路上;
    激光先入射第一镜,再经第二镜后出射,作用于物料前由聚焦镜聚焦。
  14. 根据权利要求13所述的方法,其特征在于所述的第一镜为楔形镜。
  15. 根据权利要求13所述的方法,其特征在于所述的第二镜为楔形镜。
  16. 根据权利要求13所述的方法,其特征在于所述的第一镜为平面镜。
  17. 根据权利要求13所述的方法,其特征在于所述的第二镜为平面镜。
  18. 根据权利要求13所述的装置,其特征在于所述的距离电机也安装于所述的回转电机上。
  19. 根据权利要求13所述的装置,其特征在于还包括扩束镜,设置于入射所述的第一镜之前的激光光路上。
  20. 根据权利要求13所述的装置,其特征在于还包括第三楔形镜以调整激光与回转电机中心轴线的方向和角度偏差。
  21. 根据权利要求13所述的装置,其特征在于设置于机加工设备上。
PCT/CN2023/127406 2022-11-10 2023-10-27 用于激光加工的方法和装置 WO2024099116A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211409771.7A CN118002912A (zh) 2022-11-10 2022-11-10 用于激光加工的方法和装置
CN202211409771.7 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024099116A1 true WO2024099116A1 (zh) 2024-05-16

Family

ID=90945856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127406 WO2024099116A1 (zh) 2022-11-10 2023-10-27 用于激光加工的方法和装置

Country Status (2)

Country Link
CN (1) CN118002912A (zh)
WO (1) WO2024099116A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444948B1 (en) * 1997-10-15 2002-09-03 Daimlerchrysler Ag Fine and micro-machining process for workpieces by means of laser beams
CN101670486A (zh) * 2009-09-23 2010-03-17 上海市激光技术研究所 旋转双光楔激光微孔加工装置
US20100288740A1 (en) * 2008-02-29 2010-11-18 Toyota Jidosha Kabushiki Kaisha Laser processing apparatus and laser processing method
CN103056519A (zh) * 2012-12-26 2013-04-24 中科中涵激光设备(福建)股份有限公司 一种锥度可控的激光微孔加工光束扫描装置及其控制方法
CN104162741A (zh) * 2014-07-31 2014-11-26 北京万恒镭特机电设备有限公司 激光加工装置及其方法
CN105382425A (zh) * 2015-12-14 2016-03-09 武汉隽龙科技有限公司 用于激光旋转打孔的光学扫描系统及打孔方法
CN106312333A (zh) * 2016-10-09 2017-01-11 中国航空工业集团公司北京航空制造工程研究所 一种激光加工孔的方法以及系统
CN108067730A (zh) * 2018-01-08 2018-05-25 西安中科微精光子制造科技有限公司 用于激光微孔加工的棱镜式光束扫描装置、系统及光束扫描方法
US20190299331A1 (en) * 2016-05-30 2019-10-03 Precitec Gmbh & Co. Kg Device for process monitoring during laser processing comprising an optical distance measuring device and a prism deflection unit; laser processing head comprising such a device
CN216264121U (zh) * 2021-07-07 2022-04-12 广东原点智能技术有限公司 一种激光旋切系统
CN216938931U (zh) * 2021-07-27 2022-07-12 江苏先河激光研究院有限公司 一种基于振镜与道威棱镜组合的旋切系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444948B1 (en) * 1997-10-15 2002-09-03 Daimlerchrysler Ag Fine and micro-machining process for workpieces by means of laser beams
US20100288740A1 (en) * 2008-02-29 2010-11-18 Toyota Jidosha Kabushiki Kaisha Laser processing apparatus and laser processing method
CN101670486A (zh) * 2009-09-23 2010-03-17 上海市激光技术研究所 旋转双光楔激光微孔加工装置
CN103056519A (zh) * 2012-12-26 2013-04-24 中科中涵激光设备(福建)股份有限公司 一种锥度可控的激光微孔加工光束扫描装置及其控制方法
CN104162741A (zh) * 2014-07-31 2014-11-26 北京万恒镭特机电设备有限公司 激光加工装置及其方法
CN105382425A (zh) * 2015-12-14 2016-03-09 武汉隽龙科技有限公司 用于激光旋转打孔的光学扫描系统及打孔方法
US20190299331A1 (en) * 2016-05-30 2019-10-03 Precitec Gmbh & Co. Kg Device for process monitoring during laser processing comprising an optical distance measuring device and a prism deflection unit; laser processing head comprising such a device
CN106312333A (zh) * 2016-10-09 2017-01-11 中国航空工业集团公司北京航空制造工程研究所 一种激光加工孔的方法以及系统
CN108067730A (zh) * 2018-01-08 2018-05-25 西安中科微精光子制造科技有限公司 用于激光微孔加工的棱镜式光束扫描装置、系统及光束扫描方法
CN216264121U (zh) * 2021-07-07 2022-04-12 广东原点智能技术有限公司 一种激光旋切系统
CN216938931U (zh) * 2021-07-27 2022-07-12 江苏先河激光研究院有限公司 一种基于振镜与道威棱镜组合的旋切系统

Also Published As

Publication number Publication date
CN118002912A (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
KR102540188B1 (ko) 다중 축 공작기계 및 이를 제어하는 방법
CN102642082B (zh) 具有可切换激光系统的激光加工设备和激光加工方法
KR100681390B1 (ko) 레이저빔의 초점위치를 임의의 3차원으로 고속이동 시킬 수 있는 광집속장치와 광편향장치를 이용한 반도체웨이퍼의 레이저 다이싱 및 스크라이빙 방법
KR102490377B1 (ko) 다중 축 공작 기계, 이를 제어하는 방법들 및 관련 배치들
CN110385529B (zh) 一种螺旋锥齿轮飞秒激光加工系统及其精微修正方法
CN107584205B (zh) 金属材料的激光加工方法以及相关的机器和计算机程序
US8263901B2 (en) Method for laser micromachining
US20140263212A1 (en) Coordination of beam angle and workpiece movement for taper control
EP3272453B1 (en) A method of laser processing of a metallic material with optical axis position control of the laser relative to an assist gas flow, and a machine and computer program for the implementation of said method
US10549382B2 (en) Laser-assisted micromachining systems and methods
CN109500604B (zh) 五维手动位移平台、含有五维手动位移平台的车削辅助系统及车削辅助系统的调试方法
JPH11207477A (ja) きさげ加工装置およびきさげ加工方法
JP2023552942A (ja) レーザ加工システムおよび方法
CN215393264U (zh) 一种五轴四联动打孔装置
WO2024099116A1 (zh) 用于激光加工的方法和装置
JPS59212185A (ja) レ−ザ加工装置
CN213318327U (zh) 一种光束入射角可控的激光加工装置
CN114654081B (zh) 一种弱自由度深腔内表面图形的激光加工方法
JP7066242B2 (ja) 刃先加工装置
WO2024099117A1 (zh) 激光切割物料的加工方法和应用
EP4417355A1 (en) Laser processing method for superhard material, and apparatus and machine tool using same
JP7240774B2 (ja) 光学ユニット及びレーザー加工装置
JP7144101B2 (ja) 切削装置
CN118046109A (zh) 运用激光实施深孔加工的方法和装置
JP6186049B1 (ja) 多軸制御の容易なレーザ加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887806

Country of ref document: EP

Kind code of ref document: A1