WO2024099052A1 - 用于铝合金的细化剂、铝铌钛硼及两者制备方法及制备铝铌硼的方法 - Google Patents

用于铝合金的细化剂、铝铌钛硼及两者制备方法及制备铝铌硼的方法 Download PDF

Info

Publication number
WO2024099052A1
WO2024099052A1 PCT/CN2023/125665 CN2023125665W WO2024099052A1 WO 2024099052 A1 WO2024099052 A1 WO 2024099052A1 CN 2023125665 W CN2023125665 W CN 2023125665W WO 2024099052 A1 WO2024099052 A1 WO 2024099052A1
Authority
WO
WIPO (PCT)
Prior art keywords
potassium
aluminum
reaction
preparing
niobium
Prior art date
Application number
PCT/CN2023/125665
Other languages
English (en)
French (fr)
Inventor
路洪洲
徐佐
郭爱民
张振栋
王文军
于小川
王巍
师彦春
Original Assignee
中信金属股份有限公司
中信戴卡股份有限公司
中国中信集团有限公司
锦州钒业有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211384647.XA external-priority patent/CN115747537B/zh
Priority claimed from CN202211384037.XA external-priority patent/CN115821119A/zh
Priority claimed from CN202211384001.1A external-priority patent/CN115821082A/zh
Application filed by 中信金属股份有限公司, 中信戴卡股份有限公司, 中国中信集团有限公司, 锦州钒业有限责任公司 filed Critical 中信金属股份有限公司
Publication of WO2024099052A1 publication Critical patent/WO2024099052A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the invention relates to the technical field of refiner reagents, and in particular to a refiner for aluminum alloys and a preparation method thereof.
  • aluminum niobium titanium boron is an important new refiner for casting aluminum alloy parts. It can effectively avoid the silicon poisoning problem caused by traditional aluminum titanium boron refiners and bring performance improvement.
  • the existing aluminum niobium titanium boron preparation method mainly uses pure niobium and aluminum niobium as niobium sources.
  • the use of pure niobium is not economical and the reaction conditions are harsh;
  • the use of aluminum niobium as a niobium source to prepare aluminum niobium boron has a reaction temperature of more than 1000°C, severe aluminum liquid burnout, and difficulty in controlling high-temperature chemical reactions, resulting in low yields and severe precipitation, which is not suitable for large-scale industrial production.
  • the aluminothermic method mainly relies on spontaneous heat generation during preparation, and the reaction temperature is not easy to fully control, resulting in local reaction imbalance.
  • this method also requires a high temperature of more than 1000°C, which makes the reaction control difficult and is not suitable for large-scale industrial production.
  • Aluminum niobium titanium boron is an important new refiner for casting aluminum alloy parts. It can effectively avoid the silicon poisoning problem caused by traditional aluminum titanium boron refiners and bring performance improvement.
  • the existing preparation methods of aluminum niobium titanium boron mainly use pure niobium and aluminum niobium as niobium sources. First, the use of pure niobium is not economical and the reaction conditions are harsh.
  • the use of aluminum niobium as a niobium source to prepare aluminum niobium boron has a reaction temperature of more than 1000°C, severe burnout of aluminum liquid, and difficulty in controlling high-temperature chemical reactions, resulting in low yields and severe precipitation, which is not suitable for large-scale industrial production.
  • the aluminothermic method mainly relies on spontaneous heat generation during preparation, and the reaction temperature is not easy to fully control, resulting in local reaction imbalance.
  • this method also requires a high temperature of more than 1000°C, which makes the reaction difficult to control and is not suitable for large-scale industrial production.
  • Aluminum niobium boron is an important new refiner for casting aluminum alloy parts. It can effectively avoid the silicon poisoning problem caused by traditional aluminum titanium boron refiners and bring performance improvement.
  • the existing aluminum niobium boron preparation method mainly uses pure niobium and aluminum niobium as niobium sources. First, the use of pure niobium is not economical and the reaction conditions are harsh.
  • the use of aluminum niobium as a niobium source to prepare aluminum niobium boron has a reaction temperature of more than 1000°C, which causes serious burnout of aluminum liquid and difficulty in controlling high-temperature chemical reactions, resulting in low yields, severe precipitation, and inappropriate
  • the aluminothermic method mainly relies on spontaneous heat generation during the reaction, and the reaction temperature is not easy to fully control, resulting in local reaction imbalance.
  • this method also requires a high temperature of more than 1000°C, which makes the reaction difficult to control and is not suitable for large-scale industrial production.
  • the present invention provides a method for preparing a refiner for aluminum alloy, and the specific technical scheme is as follows:
  • the reaction temperature of the heating reaction is 700-900°C.
  • the reaction temperature of the heating reaction is 800-900°C.
  • the reaction temperature of the heating reaction is 850-900°C.
  • the reaction time is 10-60 minutes.
  • the reaction time is 10-45 minutes.
  • the reaction time is 10-20 minutes.
  • the potassium fluoroniobate is a crystalline powder
  • the potassium fluoroniobate is any one of potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate, potassium hexafluoroniobate, and potassium heptafluoroniobate.
  • the reaction process is as follows:
  • potassium fluoroniobate is used as a niobium source, which is low in price and highly economical.
  • the refiner prepared by the method has a reaction temperature within the range of 700-900°C, a low reaction temperature, a small amount of aluminum liquid burnout, a sufficient reaction, a reaction time of 10-60 minutes, and a high efficiency.
  • the refiner prepared by the method has a high yield and no sedimentation problem in the preparation process, a high component ratio hit rate, and is suitable for large-scale industrial production.
  • the present invention provides a method for preparing aluminum niobium titanium boron, and the specific technical scheme is as follows:
  • a method for preparing aluminum niobium titanium boron comprises the following steps:
  • Potassium fluoroniobate, potassium fluorotitanate, potassium fluoroborate and aluminum are provided and placed in a reaction furnace for heating reaction.
  • the fluoroaluminate generated after the reaction floats on the surface of the reaction product in the reaction furnace.
  • the fluoroaluminate is poured out and the reaction product is cast to obtain the aluminum niobium titanium boron.
  • the reaction temperature of the heating reaction is 700-900°C.
  • the reaction temperature of the heating reaction is 800-900°C.
  • the reaction temperature of the heating reaction is 850-900°C.
  • the reaction time is 10-60 minutes.
  • the reaction time is 10-45 minutes.
  • the reaction time is 10-20 minutes.
  • the potassium fluoroniobate and potassium fluorotitanate are both crystalline powders
  • the potassium fluoroniobate is any one of potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate, potassium hexafluoroniobate, and potassium heptafluoroniobate
  • the potassium fluorotitanate is potassium hexafluorotitanate.
  • potassium fluoroniobate, potassium fluorotitanate and potassium fluoroborate are added to the aluminum at one time or in multiple times.
  • the reaction process is as follows:
  • Potassium fluoroniobate is used as the niobium source and potassium fluorotitanate is used as the titanium source. Compared with pure metallic niobium and sponge titanium, the price is low and the economy is strong.
  • the aluminum niobium titanium boron refiner prepared by this method has a reaction temperature within the range of 700-900°C, a low reaction temperature, a small amount of aluminum liquid burnout, a full reaction, a reaction time of 10-60 minutes, and a high efficiency.
  • This method has a high yield, and there is no sedimentation problem in the preparation process, and the component ratio hit rate is high, which is suitable for large-scale industrial production.
  • the aluminum niobium titanium boron refiner prepared by this method has the advantages of both aluminum niobium boron and aluminum titanium boron, that is, it can slow down the silicon poisoning problem of aluminum titanium boron, and its density is also lower than that of aluminum niobium boron. In the casting process of aluminum alloy parts, it has better anti-sedimentation and attenuation performance.
  • the present invention provides a method for preparing aluminum niobium boron, and the specific technical scheme is as follows:
  • a method for preparing aluminum niobium boron comprises the following steps:
  • Potassium fluoroniobate, potassium fluoroborate and aluminum are provided and placed in a reaction furnace for heating reaction. Fluoroaluminate generated after the reaction floats on the surface of the reaction product in the reaction furnace. The fluoroaluminate is poured out and then the reaction product is cast to obtain the aluminum niobium boron.
  • the reaction temperature of the heating reaction is 700-900°C.
  • the reaction temperature of the heating reaction is 800-900°C.
  • the reaction temperature of the heating reaction is 850-900°C.
  • the reaction time is 10-60 minutes.
  • the reaction time is 10-45 minutes.
  • the reaction time is 10-20 minutes.
  • the potassium fluoroniobate is a crystalline powder, which is at least one of monofluoroniobate, difluoroniobate, trifluoroniobate, tetrafluoroniobate, pentafluoroniobate, hexafluoroniobate and heptafluoroniobate.
  • potassium fluoroniobate and potassium fluoroborate are added to the aluminum at once.
  • potassium fluoroniobate and potassium fluoroborate are added to the aluminum in multiple times, and the multiple additions are equal or unequal.
  • the reaction process is as follows:
  • Potassium fluoroniobate is used as the niobium source, which is cheaper and more economical than pure metal niobium.
  • the preparation method can fully react at a relatively low reaction temperature, and the low reaction temperature reduces the amount of aluminum liquid burned.
  • the reaction time of the preparation method is also The process can be greatly shortened and the efficiency is high.
  • This solution solves the yield problem and the sedimentation problem in the preparation process, has a high component ratio hit rate, and is suitable for large-scale industrial production.
  • This method can replace the existing preparation method mentioned in the background technology and can prepare the required aluminum niobium boron.
  • the potassium fluoroniobate is at least one of potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate, potassium hexafluoroniobate and potassium heptafluoroniobate.
  • the raw materials are widely available and easy to obtain.
  • FIG. 1 is a diagram showing the results of phase analysis of a sample of Example 1 of the method for preparing aluminum niobium boron.
  • the present invention provides a method for preparing a refiner for aluminum alloy, wherein the refiner is AlNb(X)B, wherein X is any one of lanthanum and cerium, and comprises the following steps:
  • potassium fluoroniobate is used as a niobium source, which is low in price and highly economical.
  • the refiner prepared by the method has a reaction temperature within the range of 700-900°C, a low reaction temperature, a small amount of aluminum liquid burnout, a sufficient reaction, a reaction time of 10-60 minutes, and a high efficiency.
  • the refiner prepared by the method has a high yield and no sedimentation problem in the preparation process, a high component ratio hit rate, and is suitable for large-scale industrial production.
  • the reaction temperature of the heating reaction is 700-900°C.
  • reaction temperature of the heating reaction is 800-900°C.
  • reaction temperature of the heating reaction is 850-900°C.
  • the reaction temperature of the heating reaction is 700-900° C. Within this temperature range, the reaction can be fully completed and the desired substance can be prepared without the presence of impurities.
  • the reaction time is 10-60 minutes.
  • reaction time is 10-45 minutes.
  • reaction time is 10-20 minutes.
  • the preparation method can fully carry out the reaction within the efficient reaction time.
  • the potassium fluoroniobate is a crystalline powder
  • the potassium fluoroniobate is any one of potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate, potassium hexafluoroniobate, and potassium heptafluoroniobate.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Sample 1 has a Nb content of 2.28%, a La content of 0%, and a B content of 0.27
  • Sample 2 has a Nb content of 4.39%, a La content of 0.92%, and a B content of 0.46%.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Example 2 The difference from Example 1 is that potassium heptafluoroniobate and potassium fluoroborate are added at one time, the reaction temperature is heated to 700° C., the reaction time is 20 minutes, and the sample composition is as follows:
  • Nb content is 4.38%
  • La content is 0.93%
  • B content is 0.45%
  • Example 2 The difference from Example 1 is that potassium heptafluoroniobate and potassium fluoroborate are added at one time, the reaction temperature is heated to 800° C., the reaction time is 45 minutes, and the sample composition is as follows:
  • Nb content is 4.35%
  • La content is 0.96%
  • B content is 0.44%
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • Example 2 The difference from Example 1 is that potassium heptafluoroniobate and potassium fluoroborate are added at one time, the reaction temperature is heated to 900° C., the reaction time is 60 minutes, and the sample composition is as follows:
  • Nb content is 4.37%
  • La content is 0.95%
  • B content is 0.44%
  • Example 2 The difference from Example 1 is that potassium heptafluoroniobate and potassium fluoroborate are added at one time, the reaction temperature is heated to 780° C., the reaction time is 10 minutes, and the sample composition is as follows:
  • Nb content is 4.36%
  • La content is 0.94%
  • B content is 0.44%
  • Example 2 The difference from Example 1 is that potassium heptafluoroniobate and potassium fluoroborate are added at one time, the reaction temperature is heated to 725° C., the reaction time is 16 minutes, and the sample composition is as follows:
  • Nb content is 4.35%
  • La content is 0.94%
  • B content is 0.46%
  • Example 2 The difference from Example 1 is that potassium heptafluoroniobate and potassium fluoroborate are added at one time, the reaction temperature is heated to 760° C., the reaction time is 28 minutes, and the sample composition is as follows:
  • Nb content is 4.37%
  • La content is 0.92%
  • B content is 0.45%
  • the potassium fluoroniobate is not limited to potassium heptafluoroniobate, but can be prepared by using at least one of potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate and potassium hexafluoroniobate according to the preparation method provided by the present invention.
  • potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate and potassium hexafluoroniobate are as follows: Potassium monofluoroniobate K 2 NbO 3 F Potassium difluoroniobate KNbO 2 F 2 Potassium trifluoroniobate K 2 NbO 2 F 3 Potassium Tetrafluoroniobate KNbOF 4 Potassium Pentafluoroniobate K 2 NbOF 5 Potassium hexafluoroniobate KNbF 6
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Example 2 The difference from Example 1 is that potassium heptafluoroniobate and potassium fluoroborate are added at one time, the reaction temperature is heated to 700° C., the reaction time is 10 minutes, and the sample composition is as follows:
  • Nb content is 4.45%, Ce content is 0.95%, B content is 0.42%
  • Example 2 The difference from Example 1 is that potassium heptafluoroniobate and potassium fluoroborate are added at one time, the reaction temperature is heated to 750° C., the reaction time is 20 minutes, and the sample composition is as follows:
  • Nb content is 4.44%
  • Ce content is 0.92%
  • B content is 0.43%
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • Example 2 The difference from Example 1 is that potassium heptafluoroniobate and potassium fluoroborate are added at one time, the reaction temperature is heated to 800° C., the reaction time is 18 minutes, and the sample composition is as follows:
  • Nb content is 4.46%
  • Ce content is 0.96%
  • B content is 0.43%
  • Example 2 The difference from Example 1 is that potassium heptafluoroniobate and potassium fluoroborate are added at one time, the reaction temperature is heated to 900° C., the reaction time is 45 minutes, and the sample composition is as follows:
  • Nb content is 4.46%
  • Ce content is 0.93%
  • B content is 0.41%
  • Example 2 The difference from Example 1 is that potassium heptafluoroniobate and potassium fluoroborate are added at one time, the reaction temperature is heated to 785° C., the reaction time is 60 minutes, and the sample composition is as follows:
  • Nb content is 4.43%, Ce content is 0.94%, B content is 0.46%
  • the potassium fluoroniobate is not limited to potassium heptafluoroniobate, but can be prepared by using at least one of potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate and potassium hexafluoroniobate according to the preparation method provided by the present invention.
  • potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate and potassium hexafluoroniobate are as follows: Potassium monofluoroniobate K 2 NbO 3 F Potassium difluoroniobate KNbO 2 F 2 Potassium trifluoroniobate K 2 NbO 2 F 3 Potassium Tetrafluoroniobate KNbOF 4 Potassium Pentafluoroniobate K 2 NbOF 5 Potassium hexafluoroniobate KNbF 6
  • the present invention provides a method for preparing aluminum niobium titanium boron, comprising the following steps:
  • Potassium fluoroniobate, potassium fluorotitanate, potassium fluoroborate and aluminum are provided and placed in a reaction furnace for heating reaction.
  • the fluoroaluminate generated after the reaction floats on the surface of the reaction product in the reaction furnace.
  • the fluoroaluminate is poured out and the reaction product is cast to obtain the aluminum niobium titanium boron.
  • Potassium fluoroniobate is used as the niobium source and potassium fluorotitanate is used as the titanium source. Compared with pure metallic niobium and sponge titanium, the price is low and the economy is strong.
  • the aluminum niobium titanium boron refiner prepared by this method has a reaction temperature within the range of 700-900°C, a low reaction temperature, a small amount of aluminum liquid burnout, a full reaction, a reaction time of 10-60 minutes, and a high efficiency.
  • This method has a high yield, and there is no sedimentation problem in the preparation process, and the component ratio hit rate is high, which is suitable for large-scale industrial production.
  • the aluminum niobium titanium boron refiner prepared by this method has the advantages of both aluminum niobium boron and aluminum titanium boron, that is, it can slow down the silicon poisoning problem of aluminum titanium boron, and its density is also lower than that of aluminum niobium boron. In the casting process of aluminum alloy parts, it has better anti-sedimentation and attenuation performance.
  • the reaction temperature of the heating reaction is 700-900° C. Within this temperature range, the reaction can be fully completed and the desired substance can be prepared without the presence of impurities.
  • reaction temperature of the heating reaction is 800-900°C.
  • reaction temperature of the heating reaction is 850-900°C.
  • the reaction time is 10-60 minutes.
  • reaction time is 10-45 minutes.
  • reaction time is 10-20 minutes.
  • the preparation method can fully carry out the reaction within the efficient reaction time.
  • potassium fluoroniobate and potassium fluorotitanate are both crystalline powders
  • the potassium fluoroniobate is any one of potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate, potassium hexafluoroniobate, and potassium heptafluoroniobate
  • the potassium fluorotitanate is potassium hexafluorotitanate.
  • the selection of raw materials is relatively wide and easy to obtain.
  • potassium fluoroniobate, potassium fluorotitanate and potassium fluoroborate are added to the aluminum at one time or in multiple times.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Example 1 The difference from Example 1 is that this example is heated to 700°C for reaction, and 3650g of the mixed salt of potassium heptafluoroniobate, potassium fluorotitanate and potassium fluoroborate in Example 1 is added at one time, and the reaction time is 10 minutes. The rest is the same as Example 1.
  • the composition analysis of the sample prepared in this example is as follows:
  • Nb content 2.95%
  • Ti content 2.91%
  • B content 0.63%
  • Example 1 The difference from Example 1 is that this example is heated to 800°C for reaction, and 3650g of the mixed salt of potassium heptafluoroniobate, potassium fluorotitanate and potassium fluoroborate in Example 1 is added at one time, and the reaction time is 60 minutes. The rest is the same as Example 1.
  • the composition analysis of the sample prepared in this example is as follows:
  • Nb content 2.94%
  • Ti content 2.93%
  • B content 0.62%
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • Example 1 The difference from Example 1 is that this example is heated to 900°C for reaction, and 3650g of the mixed salt of potassium heptafluoroniobate, potassium fluorotitanate and potassium fluoroborate in Example 1 is added at one time, and the reaction time is 20 minutes. The rest is the same as Example 1.
  • the composition analysis of the sample prepared in this example is as follows:
  • Nb content 2.93%
  • Ti content 2.94%
  • B content 0.61%
  • Example 1 The difference from Example 1 is that this example is heated to 725°C for reaction, and 3650 g of the mixed salt of potassium heptafluoroniobate, potassium fluorotitanate and potassium fluoroborate in Example 1 is added at one time, and the reaction time is 18 minutes. The rest is the same as Example 1.
  • the composition analysis of the sample prepared in this example is as follows:
  • Examples 1-5 show that the provided preparation method can fully carry out the reaction at a lower reaction temperature and a shorter reaction time.
  • potassium fluoroniobate is certainly not limited to potassium heptafluoroniobate.
  • Aluminum niobate and boron can be prepared by using at least one of potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate and potassium hexafluoroniobate according to the preparation method provided by the present invention.
  • potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate and potassium hexafluoroniobate are as follows: Potassium monofluoroniobate K 2 NbO 3 F Potassium difluoroniobate KNbO 2 F 2 Potassium trifluoroniobate K 2 NbO 2 F 3 Potassium Tetrafluoroniobate KNbOF 4 Potassium Pentafluoroniobate K 2 NbOF 5 Potassium hexafluoroniobate KNbF 6
  • the present invention also provides aluminum niobium titanium boron, which is prepared by the above-mentioned preparation method.
  • the present invention provides a method for preparing aluminum niobium boron, comprising the following steps:
  • Potassium fluoroniobate, potassium fluoroborate and aluminum are provided and placed in a reaction furnace for heating reaction. Fluoroaluminate generated after the reaction floats on the surface of the reaction product in the reaction furnace. The fluoroaluminate is poured out and then the reaction product is cast to obtain the aluminum niobium boron.
  • the reaction process is as follows:
  • Potassium fluoroniobate is used as a niobium source, which is cheaper and more economical than pure metallic niobium.
  • the preparation method can fully react at a relatively low reaction temperature, and the low reaction temperature reduces the amount of aluminum liquid burned.
  • the reaction time of the preparation method can also be greatly shortened, and the efficiency is high.
  • This solution solves the yield problem and the sedimentation problem in the preparation process, has a high component ratio hit rate, and is suitable for large-scale industrial production.
  • This method can replace the existing preparation method mentioned in the background technology, and can prepare the required aluminum niobium boron.
  • the reaction temperature of the heating reaction is 700-900°C.
  • reaction temperature of the heating reaction is 800-900°C.
  • reaction temperature of the heating reaction is 850-900°C.
  • the reaction time is 10-60 minutes.
  • reaction time is 10-45 minutes.
  • reaction time is 10-20 minutes.
  • the preparation method can fully carry out the reaction within the efficient reaction time.
  • the potassium fluoroniobate is a crystalline powder, which is at least one of monofluoroniobate, difluoroniobate, trifluoroniobate, tetrafluoroniobate, and heptafluoroniobate.
  • Potassium fluoroniobate is at least one of potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate, potassium hexafluoroniobate and potassium heptafluoroniobate.
  • the raw materials are widely available and easy to obtain.
  • potassium fluoroniobate and potassium fluoroborate are added to the aluminum at one time.
  • potassium fluoroniobate and potassium fluoroborate are added to the aluminum in multiple times, and the multiple additions are equal or unequal.
  • the fluoroaluminates produced are K 3 AlF 6 and KALF 4 .
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • phase analysis XRD
  • samples for phase analysis were all Al 3 Nb and NbB 2 and excess unreacted aluminum, without any other impurities. It can be seen that the phase analysis verified that the preparation method prepared aluminum niobium boron.
  • phase analysis XRD
  • samples for phase analysis were all Al 3 Nb and NbB 2 and excess unreacted aluminum, without any other impurities. It can be seen that the phase analysis verified that the preparation method prepared aluminum niobium boron.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • phase analysis XRD
  • samples for phase analysis were all Al 3 Nb and NbB 2 and excess unreacted aluminum, without any other impurities. It can be seen that the phase analysis verified that the preparation method prepared aluminum niobium boron.
  • 11Kg of industrial pure aluminum was heated to 900°C in a 25Kg crucible furnace , 190g KBF4 and 1471g K2NbF7 were mixed, preheated to 250°C, dried for 3h and kept warm, and the aluminum liquid temperature was controlled at 900°C, KBF4 and K2NbF7 mixed salt were added, reacted for 18min, fluoroaluminate was poured, cooled to 730°C, degassed and slag was removed, ingots were cast at 710°C, and samples were taken for composition analysis: Nb content was 4.49%, B content was 0.19%, and the rest was aluminum.
  • phase analysis XRD
  • samples for phase analysis were all Al 3 Nb and NbB 2 and excess unreacted aluminum, without any other impurities. It can be seen that the phase analysis verified that the preparation method prepared aluminum niobium boron.
  • phase analysis XRD
  • samples for phase analysis were all Al 3 Nb and NbB 2 and excess unreacted aluminum, without any other impurities. It can be seen that the phase analysis verified that the preparation method prepared aluminum niobium boron.
  • the added commercially pure aluminum is excessive so as to allow potassium heptafluoroniobate and potassium tetrafluoroborate to react fully.
  • Examples 1-6 show that the provided preparation method can fully carry out the reaction at a lower reaction temperature and a shorter reaction time.
  • potassium fluoroniobate is certainly not limited to potassium heptafluoroniobate.
  • Aluminum niobate and boron can be prepared by using at least one of potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate and potassium hexafluoroniobate according to the preparation method provided by the present invention.
  • potassium monofluoroniobate, potassium difluoroniobate, potassium trifluoroniobate, potassium tetrafluoroniobate, potassium pentafluoroniobate and potassium hexafluoroniobate are as follows: Potassium monofluoroniobate K 2 NbO 3 F Potassium difluoroniobate KNbO 2 F 2 Potassium trifluoroniobate K 2 NbO 2 F 3 Potassium Tetrafluoroniobate KNbOF 4 Potassium Pentafluoroniobate K 2 NbOF 5 Potassium hexafluoroniobate KNbF 6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种用于铝合金的细化剂、铝铌钛硼及两者制备方法及制备铝铌硼的方法,细化剂为AlNb(X)B,X为镧和铈中任一,X为镧时,提供氟铌酸钾、铝镧合金、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸倒出后对所述反应产物进行浇铸,得到所述铝铌镧硼;X为铈时,提供氟铌酸钾、铝铈合金、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸盐倒出后对所述反应产物进行浇铸,得到所述铝铌铈硼。该制备方法中,采用氟铌酸钾作为铌源,价格低、经济性强。制备的细化剂,反应温度在700-900℃内,反应温度低,铝液烧损量小,反应充分,反应时间在10-60分钟,效率高。

Description

用于铝合金的细化剂、铝铌钛硼及两者制备方法及制备铝铌硼的方法 技术领域
本发明涉及细化剂试剂技术领域,具体涉及用于铝合金的细化剂及其制备方法。
背景技术
细化剂用于铸造铝合金零部件的应用越来越广泛,例如铝铌钛硼,其是铸造铝合金零部件重要的新型细化剂,可以有效避免传统铝钛硼细化剂等造成的硅中毒问题,并带来性能提升。但现有的铝铌钛硼制备方法主要采用纯铌、铝铌作为铌源制备,首先采用纯铌不经济,反应条件苛刻;其次采用铝铌作为铌源制备铝铌硼,其反应温度在1000℃以上,铝液烧损严重,高温化学反应控制难度大,造成收得率低、沉淀严重,不适于工业大生产。另外铝热法制备时是主要靠反应自发生热,反应温度不易完全控制,造成局部反应不平衡,并且该方法也需要1000℃以上的高温,反应控制难度大,也不适合大批量工业生产。
另外,现有的其他的一些细化剂,同样存在上述成本高、需较高反应温度的缺陷。
因此,如何提供一种能避免上述弊端的用于铝合金的细化剂的制备方法便成为了本领域技术人员急需解决的技术问题。
铝铌钛硼是铸造铝合金零部件重要的新型细化剂,可以有效避免传统铝钛硼细化剂等造成的硅中毒问题,并带来性能提升。但现有的铝铌钛硼制备方法主要采用纯铌、铝铌作为铌源制备,首先采用纯铌不经济,反应条件苛刻;其次采用铝铌作为铌源制备铝铌硼,其反应温度在1000℃以上,铝液烧损严重,高温化学反应控制难度大,造成收得率低、沉淀严重,不适于工业大生产。另外铝热法制备时是主要靠反应自发生热,反应温度不易完全控制,造成局部反应不平衡,并且该方法也需要1000℃以上的高温,反应控制难度大,也不适合大批量工业生产。
因此,如何提供一种能避免上述弊端的制备铝铌钛硼的方法便成为了本领域技术人员急需解决的技术问题。
铝铌硼是铸造铝合金零部件重要的新型细化剂,可以有效避免传统铝钛硼细化剂等造成的硅中毒问题,并带来性能提升。但现有的铝铌硼制备方法主要采用纯铌、铝铌作为铌源制备,首先采用纯铌不经济,反应条件苛刻;其次采用铝铌作为铌源制备铝铌硼,其反应温度在1000℃以上,铝液烧损严重,高温化学反应控制难度大,造成收得率低、沉淀严重,不适 于工业大生产。另外铝热法制备时是主要靠反应自发生热,反应温度不易完全控制,造成局部反应不平衡,并且该方法也需要1000℃以上的高温,反应控制难度大,也不适合大批量工业生产。
因此,如何提供一种能避免上述弊端的制备铝铌硼的方法便成为了本领域技术人员急需解决的技术问题。
发明内容
为实现上述目的,本发明提供一种用于铝合金的细化剂的制备方法,具体技术方案如下:
用于铝合金的细化剂的制备方法,所述细化剂为AlNb(X)B,所述X为镧和铈中任一,包括如下:
所述X为镧时,提供氟铌酸钾、铝镧合金、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸盐浮在所述反应炉中的反应产物的表面,将所述氟铝酸盐倒出后对所述反应产物进行浇铸,得到所述铝铌镧硼;
所述X为铈时,提供氟铌酸钾、铝铈合金、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸盐浮在所述反应炉中的反应产物的表面,将所述氟铝酸盐倒出后对所述反应产物进行浇铸,得到所述铝铌铈硼。
作为优选,加热反应的反应温度为700-900℃。
作为优选,加热反应的反应温度为800-900℃。
作为优选,加热反应的反应温度为850-900℃。
作为优选,反应时间为10-60分钟。
作为优选,反应时间为10-45分钟。
作为优选,反应时间为10-20分钟。
作为优选,所述氟铌酸钾为晶体粉末,所述氟铌酸钾为一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾、六氟铌酸钾、七氟铌酸钾中的任一种。
本发明提供的用于铝合金的细化剂的制备方法,具有如下技术效果:
反应过程如下:
X为镧时,氟铌酸钾+铝镧合金+氟硼酸钾+铝→铝铌镧硼+氟铝酸盐
X为铈时,氟铌酸钾+铝铈合金+氟硼酸钾+铝→铝铌铈硼+氟铝酸盐。
镧和铈均属于稀土元素。
该制备方法中,采用氟铌酸钾作为铌源,价格低、经济性强。本方法制备的细化剂,反应温度在700-900℃内,反应温度低,铝液烧损量小,反应充分,反应时间在10-60分钟,效率高。本方法制备的细化剂,收得率高和制备过程无沉降问题,成分比例命中率高,适合于大批量工业化生产。
为实现上述目的,本发明提供一种铝铌钛硼的制备方法,具体技术方案如下:
一种铝铌钛硼的制备方法,包括如下:
提供氟铌酸钾、氟钛酸钾、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸盐浮在所述反应炉中的反应产物的表面,将所述氟铝酸盐倒出后对所述反应产物进行浇铸,得到所述铝铌钛硼。
作为优选,加热反应的反应温度为700-900℃。
作为优选,加热反应的反应温度为800-900℃。
作为优选,加热反应的反应温度为850-900℃。
作为优选,反应时间为10-60分钟。
作为优选,反应时间为10-45分钟。
作为优选,反应时间为10-20分钟。
作为优选,所述氟铌酸钾和氟钛酸钾均为晶体粉末,所述氟铌酸钾为一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾、六氟铌酸钾、七氟铌酸钾中的任一种,所述氟钛酸钾为六氟钛酸钾。
作为优选,在铝熔化达到反应的温度后,将氟铌酸钾、氟钛酸钾和氟硼酸钾一次投入所述铝或分多次投入所述铝。
本发明提供的铝铌钛硼的制备方法,具有如下技术效果:
反应过程如下:
氟铌酸钾+氟钛酸钾+氟硼酸钾+铝→铌化铝+钛化铝+硼化铌+硼化钛+氟铝酸盐
采用氟铌酸钾作为铌源,氟钛酸钾作为钛源,相比纯金属铌和海绵钛价格低、经济性强。
本方法制备的铝铌钛硼细化剂,反应温度在700-900℃内即可,反应温度低,铝液烧损量小,反应充分,反应时间在10-60分钟,效率高。本方法的收得率高,且制备过程无沉降问题,成分比例命中率高,适合于大批量工业化生产。本方法制备的铝铌钛硼细化剂,兼具铝铌硼和铝钛硼的优势,即可以减缓铝钛硼的硅中毒问题,密度也低于铝铌硼,在铝合金零部件铸造过程,抗沉降和衰减性能更好。
为实现上述目的,本发明提供一种制备铝铌硼的方法,具体技术方案如下:
一种制备铝铌硼的方法,包括如下:
提供氟铌酸钾、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸盐浮在所述反应炉中的反应产物的表面,将所述氟铝酸盐倒出后对所述反应产物进行浇铸,得到所述铝铌硼。
作为优选,加热反应的反应温度为700-900℃。
作为优选,加热反应的反应温度为800-900℃。
作为优选,加热反应的反应温度为850-900℃。
作为优选,反应时间为10-60分钟。
作为优选,反应时间为10-45分钟。
作为优选,反应时间为10-20分钟。
作为优选,所述氟铌酸钾为晶体粉末,为一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾、六氟铌酸钾、七氟铌酸钾中的至少一种。
作为优选,在铝熔化达到反应的温度后,将氟铌酸钾和氟硼酸钾一次投入所述铝。
作为优选,在铝熔化达到反应的温度后,将氟铌酸钾和氟硼酸钾分多次投入所述铝,该多次投入为每次均等投料或非均等投料。
本发明所提供的制备铝铌硼的方法,具有如下技术效果:
反应过程如下:
氟铌酸钾+氟硼酸钾+铝→铌化铝+硼化铌+氟铝酸盐
采用氟铌酸钾作为铌源,相比纯金属铌价格低、经济性强。该制备方法的反应温度在较低情形下,即可进行充分反应,反应温度低使得铝液烧损量小。该制备方法的反应的时间也 可大大缩短,效率高。本方案解决了收得率问题和制备过程的沉降问题,成分比例命中率高,适合于大批量工业化生产。该方法可替代现有的如背景技术所提到的制备方法,并能够制备所需的铝铌硼。
作为优选,氟铌酸钾为一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾、六氟铌酸钾、七氟铌酸钾中的至少一种,原料的选取较为广泛,便于获取。
附图说明
图1为制备铝铌硼的方法的实施例1的样品的相分析的结果图。
具体实施方式
本发明提供一种用于铝合金的细化剂的制备方法,所述细化剂为AlNb(X)B,所述X为镧和铈中任一,包括如下:
所述X为镧时,提供氟铌酸钾、铝镧合金、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸盐浮在所述反应炉中的反应产物的表面,将所述氟铝酸盐倒出后对所述反应产物进行浇铸,得到所述铝铌镧硼;
所述X为铈时,提供氟铌酸钾、铝铈合金、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸盐浮在所述反应炉中的反应产物的表面,将所述氟铝酸盐倒出后对所述反应产物进行浇铸,得到所述铝铌铈硼。
该制备方法中,采用氟铌酸钾作为铌源,价格低、经济性强。本方法制备的细化剂,反应温度在700-900℃内,反应温度低,铝液烧损量小,反应充分,反应时间在10-60分钟,效率高。本方法制备的细化剂,收得率高和制备过程无沉降问题,成分比例命中率高,适合于大批量工业化生产。
其中,加热反应的反应温度为700-900℃。
进一步的,加热反应的反应温度为800-900℃。
进一步的,加热反应的反应温度为850-900℃。
加热反应的反应温度为700-900℃。在该温度范围内即可完成充分反应,且能够制备出所需的物质,而不存在杂质等。
其中,反应时间为10-60分钟。
进一步的,反应时间为10-45分钟。
进一步的,反应时间为10-20分钟。
该制备方法可在该高效的反应时间内充分进行反应。
其中,所述氟铌酸钾为晶体粉末,所述氟铌酸钾为一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾、六氟铌酸钾、七氟铌酸钾中的任一种。
X为镧时:
实施例一:
用25Kg坩埚炉加热8.5Kg工业纯铝,加热至850℃,分两次加入七氟铌酸钾,氟硼酸钾混盐2100g,250℃下烘干1小时,第一次加入七氟铌酸钾,氟硼酸钾混盐1100g混盐,反应8分钟,倒出氟铝酸盐,取样分析成分(试样1);继续升温至850℃,第二次加入加入剩余的七氟铌酸钾,氟硼酸钾混盐1000g,反应45分钟,倒出氟铝酸盐,加入1kgAl10La,保温15分钟,降温至740℃,吹氩气10分钟,除气扒渣,720℃浇铸成华夫(Waffle)锭,取样分析成分(试样2)
试样1Nb含量2.28%,La含量0%,B含量为0.27
试样2Nb含量4.39%,La含量0.92%,B含量为0.46%
实施例二:
区别于实施例一的是,一次性加入七氟铌酸钾,氟硼酸钾,且反应温度为加热至700℃,反应时间为20分钟,测样成分如下:
Nb含量4.38%,La含量0.93%,B含量为0.45%
实施例三:
区别于实施例一的是,一次性加入七氟铌酸钾,氟硼酸钾,且反应温度为加热至800℃,反应时间为45分钟,测样成分如下:
Nb含量4.35%,La含量0.96%,B含量为0.44%
实施例四:
区别于实施例一的是,一次性加入七氟铌酸钾,氟硼酸钾,且反应温度为加热至900℃,反应时间为60分钟,测样成分如下:
Nb含量4.37%,La含量0.95%,B含量为0.44%
实施例五:
区别于实施例一的是,一次性加入七氟铌酸钾,氟硼酸钾,且反应温度为加热至780℃,反应时间为10分钟,测样成分如下:
Nb含量4.36%,La含量0.94%,B含量为0.44%
实施例六:
区别于实施例一的是,一次性加入七氟铌酸钾,氟硼酸钾,且反应温度为加热至725℃,反应时间为16分钟,测样成分如下:
Nb含量4.35%,La含量0.94%,B含量为0.46%
实施例七:
区别于实施例一的是,一次性加入七氟铌酸钾,氟硼酸钾,且反应温度为加热至760℃,反应时间为28分钟,测样成分如下:
Nb含量4.37%,La含量0.92%,B含量为0.45%
并且,对于氟铌酸钾的选用,当然不限于七氟铌酸钾。采用一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾和六氟铌酸钾中的至少一种,并按照本发明所提供的制备方法均能制备。
其中,一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾和六氟铌酸钾的化学式如下:
一氟铌酸钾 K2NbO3F
二氟铌酸钾 KNbO2F2
三氟铌酸钾 K2NbO2F3
四氟铌酸钾 KNbOF4
五氟铌酸钾 K2NbOF5
六氟铌酸钾 KNbF6
X为铈时:
实施例一:
用25Kg坩埚炉加热8.5Kg工业纯铝,加热至850℃,分两次加入七氟铌酸钾,氟硼酸钾混盐2100g,250℃下烘干1小时,第一次加入七氟铌酸钾,氟硼酸钾混盐1100g混盐,反应6分钟,倒出氟铝酸盐,取样分析成分(试样1);继续升温至850℃,第二次加入加入剩余的七氟铌酸钾,氟硼酸钾混盐1000g,反应45分钟,倒出氟铝酸盐,加入1kgAl10Ce,保温15分钟,降温至740℃,吹氩气10分钟,除气扒渣,720℃浇铸成华夫(Waffle)锭,取样分析成分(试样2)
试样1 Nb含量2.31%,Ce含量0%,B含量为0.24
试样2 Nb含量4.46%,Ce含量0.95%,B含量为0.43%
实施例二:
区别于实施例一的是,一次性加入七氟铌酸钾,氟硼酸钾,且反应温度为加热至700℃,反应时间为10分钟,测样成分如下:
Nb含量4.45%,Ce含量0.95%,B含量为0.42%
实施例三:
区别于实施例一的是,一次性加入七氟铌酸钾,氟硼酸钾,且反应温度为加热至750℃,反应时间为20分钟,测样成分如下:
Nb含量4.44%,Ce含量0.92%,B含量为0.43%
实施例四:
区别于实施例一的是,一次性加入七氟铌酸钾,氟硼酸钾,且反应温度为加热至800℃,反应时间为18分钟,测样成分如下:
Nb含量4.46%,Ce含量0.96%,B含量为0.43%
实施例五:
区别于实施例一的是,一次性加入七氟铌酸钾,氟硼酸钾,且反应温度为加热至900℃,反应时间为45分钟,测样成分如下:
Nb含量4.46%,Ce含量0.93%,B含量为0.41%
实施例六:
区别于实施例一的是,一次性加入七氟铌酸钾,氟硼酸钾,且反应温度为加热至785℃,反应时间为60分钟,测样成分如下:
Nb含量4.43%,Ce含量0.94%,B含量为0.46%
并且,对于氟铌酸钾的选用,当然不限于七氟铌酸钾。采用一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾和六氟铌酸钾中的至少一种,并按照本发明所提供的制备方法均能制备。
其中,一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾和六氟铌酸钾的化学式如下:
一氟铌酸钾 K2NbO3F
二氟铌酸钾 KNbO2F2
三氟铌酸钾 K2NbO2F3
四氟铌酸钾 KNbOF4
五氟铌酸钾 K2NbOF5
六氟铌酸钾 KNbF6
本发明提供一种铝铌钛硼的制备方法,包括如下:
提供氟铌酸钾、氟钛酸钾、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸盐浮在所述反应炉中的反应产物的表面,将所述氟铝酸盐倒出后对所述反应产物进行浇铸,得到所述铝铌钛硼。
采用氟铌酸钾作为铌源,氟钛酸钾作为钛源,相比纯金属铌和海绵钛价格低、经济性强。
本方法制备的铝铌钛硼细化剂,反应温度在700-900℃内即可,反应温度低,铝液烧损量小,反应充分,反应时间在10-60分钟,效率高。本方法的收得率高,且制备过程无沉降问题,成分比例命中率高,适合于大批量工业化生产。本方法制备的铝铌钛硼细化剂,兼具铝铌硼和铝钛硼的优势,即可以减缓铝钛硼的硅中毒问题,密度也低于铝铌硼,在铝合金零部件铸造过程,抗沉降和衰减性能更好。
其中,加热反应的反应温度为700-900℃。在该温度范围内即可完成充分反应,且能够制备出所需的物质,而不存在杂质等。
进一步的,加热反应的反应温度为800-900℃。
进一步的,加热反应的反应温度为850-900℃。
该较低温度范围内,即可进行充分反应,避免了现有技术的高温的必要条件所带来的弊端。
其中,反应时间为10-60分钟。
进一步的,反应时间为10-45分钟。
进一步的,反应时间为10-20分钟。
该制备方法可在该高效的反应时间内充分进行反应。
一种具体实施方式中,氟铌酸钾和氟钛酸钾均为晶体粉末,所述氟铌酸钾为一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾、六氟铌酸钾、七氟铌酸钾中的任一种,所述氟钛酸钾为六氟钛酸钾。
原料的选取较为广泛,便于获取。
一种具体实施方式中,在铝熔化达到反应的温度后,将氟铌酸钾、氟钛酸钾和氟硼酸钾一次投入所述铝或分多次投入所述铝。
如下的实施例,采用七氟铌酸钾作为原料,具体的反应如下:
2KBF4+3Al=AlB2+2KAlF4
6K2NbF7+28Al=6Al3Nb+K3AlF6+9KALF4
AlB2+Al3Nb=NbB2+4Al
3K2TiF6+13Al=3Al3Ti+3KAlF4+K3AlF6
AlB2+Al3Ti=TiB2+4Al
总反应:
6K2NbF7+3K2TiF6+4KBF4+39Al=5Al3Nb+2Al3Ti+NbB2+TiB2+2K3AlF6+16KAlF4
实施例一:
用25Kg坩埚炉加热10Kg工业纯铝,加热至850℃,分两次加入七氟铌酸钾、氟钛酸钾和氟硼酸钾混盐3650g,七氟铌酸钾、氟钛酸钾和氟硼酸钾比例为1:1.5:1.15(或者七氟铌酸钾、氟钛酸钾和氟硼酸钾分别为1000g,1500g,1150g),250℃下烘干1小时,第一次加入七氟铌酸钾,氟钛酸钾,氟硼酸钾混盐1850g混盐,反应10分钟,倒出氟铝酸盐,取样分析成分(试样1);继续升温至850℃,第二次加入加入剩余的七氟铌酸钾,氟钛酸钾,氟硼酸钾混盐1800g,反应45分钟,倒出氟铝酸盐,降温至740℃,吹氩气10分钟,除气扒渣,720℃浇铸成华夫(Waffle)锭,取样分析成分(试样2)
试样1 Nb含量1.62%,Ti含量1.65%B含量0.33%
试样2 Nb含量2.96%,Ti含量2.92%B含量0.61%
实施例二:
区别于实施例一的是,该实施例是加热至700℃进行反应,且是一次性加入实施例一的七氟铌酸钾、氟钛酸钾和氟硼酸钾混盐3650g,且反应时间是在10分钟,其余相同于实施例一,该实施例而制备的样品进行成分分析如下:
Nb含量2.95%,Ti含量2.91%B含量0.63%
实施例三:
区别于实施例一的是,该实施例是加热至800℃进行反应,且是一次性加入实施例一的七氟铌酸钾、氟钛酸钾和氟硼酸钾混盐3650g,且反应时间是在60分钟,其余相同于实施例一,该实施例而制备的样品进行成分分析如下:
Nb含量2.94%,Ti含量2.93%B含量0.62%
实施例四:
区别于实施例一的是,该实施例是加热至900℃进行反应,且是一次性加入实施例一的七氟铌酸钾、氟钛酸钾和氟硼酸钾混盐3650g,且反应时间是在20分钟,其余相同于实施例一,该实施例而制备的样品进行成分分析如下:
Nb含量2.93%,Ti含量2.94%B含量0.61%
实施例五:
区别于实施例一的是,该实施例是加热至725℃进行反应,且是一次性加入实施例一的七氟铌酸钾、氟钛酸钾和氟硼酸钾混盐3650g,且反应时间是在18分钟,其余相同于实施例一,该实施例而制备的样品进行成分分析如下:
Nb含量2.91%,Ti含量2.91%B含量0.64%
实施例1-5表明,所提供的制备方法在较低的反应温度和较短的反应时间内充分进行反应。
并且,对于氟铌酸钾的选用,当然不限于七氟铌酸钾。采用一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾和六氟铌酸钾中的至少一种,并按照本发明所提供的制备方法均能制备得出铝铌硼。
其中,一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾和六氟铌酸钾的化学式如下:
一氟铌酸钾 K2NbO3F
二氟铌酸钾 KNbO2F2
三氟铌酸钾 K2NbO2F3
四氟铌酸钾 KNbOF4
五氟铌酸钾 K2NbOF5
六氟铌酸钾 KNbF6
本发明还提供一种铝铌钛硼,其是用上述的的制备方法制备。
本发明提供一种制备铝铌硼的方法,包括如下:
提供氟铌酸钾、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸盐浮在所述反应炉中的反应产物的表面,将所述氟铝酸盐倒出后对所述反应产物进行浇铸,得到所述铝铌硼。
反应过程如下:
氟铌酸钾+氟硼酸钾+铝→铌化铝+硼化铌+氟铝酸盐
采用氟铌酸钾作为铌源,相比纯金属铌价格低、经济性强。该制备方法的反应温度在较低情形下,即可进行充分反应,反应温度低使得铝液烧损量小。该制备方法的反应的时间也可大大缩短,效率高。本方案解决了收得率问题和制备过程的沉降问题,成分比例命中率高,适合于大批量工业化生产。该方法可替代现有的如背景技术所提到的制备方法,并能够制备所需的铝铌硼。
其中,加热反应的反应温度为700-900℃。
进一步的,加热反应的反应温度为800-900℃。
进一步的,加热反应的反应温度为850-900℃。
该较低温度范围内,即可进行充分反应,避免了现有技术的高温的必要条件所带来的弊端。
其中,反应时间为10-60分钟。
进一步的,反应时间为10-45分钟。
进一步的,反应时间为10-20分钟。
该制备方法可在该高效的反应时间内充分进行反应。
一种具体实施方式中,所述氟铌酸钾为晶体粉末,为一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、七氟铌酸钾中的至少一种。
氟铌酸钾为一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾、六氟铌酸钾、七氟铌酸钾中的至少一种,原料的选取较为广泛,便于获取。
一种具体实施方式中,在铝熔化达到反应的温度后,将氟铌酸钾和氟硼酸钾一次投入所述铝。
一种具体实施方式中,在铝熔化达到反应的温度后,将氟铌酸钾和氟硼酸钾分多次投入所述铝,该多次投入为每次均等投料或非均等投料。
如下所述实施例均采用七氟铌酸钾、氟硼酸钾和工业纯铝作为原料,其反应过程如下:
6K2NbF7+2KBF4+27Al=5Al3Nb+NbB2+K3AlF6+11KALF4。所生成的氟铝酸盐为K3AlF6
KALF4
实施例一:
用25Kg坩埚炉加热9.5Kg工业纯铝,加热至850℃,将582g KBF4和1471g K2NbF7混合,预热250℃烘干3h保温,铝液温度控制在850摄氏度加入KBF4和K2NbF7混合盐(加入一半),反应时间10min,倒氟铝酸盐,再升至850℃第二次加盐KBF4和K2NbF7混合盐(剩下的一半盐),反应45min,倒氟铝酸盐,降温至730℃除气扒渣,710℃浇铸锭,取样分析成头尾的成分,头部成分:Nb含量4.39%,B含量0.44%,其余为铝,尾部成分:Nb含量4.57%,B含量0.59%,其余为铝。
并且,取样进行相分析(XRD),结果如图1,均为Al3Nb及NbB2和多余的未反应的铝,无其他任何杂质。可知,该相分析检验了该制备方法所制备的是铝铌硼。
实施例二:
用25Kg坩埚炉加热9.5Kg工业纯铝,加热至880℃,将582g KBF4和1471g K2NbF7混合,预热250℃烘干3h保温,并铝液温度控制在880摄氏度加入KBF4和K2NbF7混合盐,反应10min,倒氟铝酸盐,降温至730℃除气扒渣,710℃浇铸锭,取样分析成分:Nb含量4.49%,B含量0.54%,其余为铝。
并且,取样进行相分析(XRD),也是均为Al3Nb及NbB2和多余的未反应的铝,无其他任何杂质。可知,该相分析检验了该制备方法所制备的是铝铌硼。
实施例三:
用25Kg坩埚炉加热10Kg工业纯铝,加热至700℃,将290g KBF4和1471g K2NbF7混合,预热250℃烘干3h保温,并铝液温度控制在700摄氏度加入KBF4和K2NbF7混合盐,反应20min,倒氟铝酸盐,降温至730℃除气扒渣,710℃浇铸锭,取样分析成分:Nb含量4.46%,B含量0.28%,其余为铝。
并且,取样进行相分析(XRD),也是均为Al3Nb及NbB2和多余的未反应的铝,无其他任何杂质。可知,该相分析检验了该制备方法所制备的是铝铌硼。
实施例四:
用25Kg坩埚炉加热12.5Kg工业纯铝,加热至800℃,将582g KBF4和750g K2NbF7混合,预热250℃烘干3h保温,并铝液温度控制在800摄氏度加入KBF4和K2NbF7混合盐,反应60min,倒氟铝酸盐,降温至730℃除气扒渣,710℃浇铸锭,取样分析成分:Nb含量2.6%,B含量0.54%,其余为铝。
并且,取样进行相分析(XRD),也是均为Al3Nb及NbB2和多余的未反应的铝,无其他任何杂质。可知,该相分析检验了该制备方法所制备的是铝铌硼。
实施例五:
用25Kg坩埚炉加热11Kg工业纯铝,加热至900℃,将190g KBF4和1471g K2NbF7混合,预热250℃烘干3h保温,并铝液温度控制在900摄氏度加入KBF4和K2NbF7混合盐,反应18min,倒氟铝酸盐,降温至730℃除气扒渣,710℃浇铸锭,取样分析成分:Nb含量4.49%,B含量0.19%,其余为铝。
并且,取样进行相分析(XRD),也是均为Al3Nb及NbB2和多余的未反应的铝,无其他任何杂质。可知,该相分析检验了该制备方法所制备的是铝铌硼。
实施例六:
用25Kg坩埚炉加热25Kg工业纯铝,加热至720℃,将1160g KBF4和1471g K2NbF7混合,预热250℃烘干3h保温,并铝液温度控制在720摄氏度加入KBF4和K2NbF7混合盐,反应16min,倒氟铝酸盐,降温至730℃除气扒渣,710℃浇铸锭,取样分析成分:Nb含量4.49%,B含量0.98%,其余为铝。
并且,取样进行相分析(XRD),也是均为Al3Nb及NbB2和多余的未反应的铝,无其他任何杂质。可知,该相分析检验了该制备方法所制备的是铝铌硼。
该些实施例中,所加入的工业纯铝是过量的,以使七氟铌酸钾和四氟硼酸钾能充分的反应。
实施例1-6表明,所提供的制备方法在较低的反应温度和较短的反应时间内充分进行反应。
并且,对于氟铌酸钾的选用,当然不限于七氟铌酸钾。采用一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾和六氟铌酸钾中的至少一种,并按照本发明所提供的制备方法均能制备得出铝铌硼。
其中,一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾和六氟铌酸钾的化学式如下:
一氟铌酸钾 K2NbO3F
二氟铌酸钾 KNbO2F2
三氟铌酸钾 K2NbO2F3
四氟铌酸钾 KNbOF4
五氟铌酸钾 K2NbOF5
六氟铌酸钾 KNbF6

Claims (29)

  1. 用于铝合金的细化剂的制备方法,其特征在于,所述细化剂为AlNb(X)B,所述X为镧和铈中任一,包括如下:
    所述X为镧时,提供氟铌酸钾、铝镧合金、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸盐浮在所述反应炉中的反应产物的表面,将所述氟铝酸盐倒出后对所述反应产物进行浇铸,得到所述铝铌镧硼;
    所述X为铈时,提供氟铌酸钾、铝铈合金、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸盐浮在所述反应炉中的反应产物的表面,将所述氟铝酸盐倒出后对所述反应产物进行浇铸,得到所述铝铌铈硼。
  2. 根据权利要求1所述的用于铝合金的细化剂的制备方法,其特征在于,加热反应的反应温度为700-900℃。
  3. 根据权利要求2所述的用于铝合金的细化剂的制备方法,其特征在于,加热反应的反应温度为800-900℃。
  4. 根据权利要求3所述的用于铝合金的细化剂的制备方法,其特征在于,加热反应的反应温度为850-900℃。
  5. 根据权利要求1所述的用于铝合金的细化剂的制备方法,其特征在于,反应时间为10-60分钟。
  6. 根据权利要求5所述的用于铝合金的细化剂的制备方法,其特征在于,反应时间为10-45分钟。
  7. 根据权利要求6所述的用于铝合金的细化剂的制备方法,其特征在于,反应时间为10-20分钟。
  8. 根据权利要求1所述的用于铝合金的细化剂的制备方法,其特征在于,所述氟铌酸钾为晶体粉末,所述氟铌酸钾为一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾、六氟铌酸钾、七氟铌酸钾中的任一种。
  9. 一种用于铝合金的细化剂,其特征在于,采用权利要求1-8任一项所述的制备方法制备。
  10. 一种铝铌钛硼的制备方法,其特征在于,包括如下:
    提供氟铌酸钾、氟钛酸钾、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸盐浮在所述反应炉中的反应产物的表面,将所述氟铝酸盐倒出后对所述反应产物进行浇铸,得到所述铝铌钛硼。
  11. 根据权利要求10所述的铝铌钛硼的制备方法,其特征在于,加热反应的反应温度为700-900℃。
  12. 根据权利要求11所述的铝铌钛硼的制备方法,其特征在于,加热反应的反应温度为800-900℃。
  13. 根据权利要求12所述的铝铌钛硼的制备方法,其特征在于,加热反应的反应温度为850-900℃。
  14. 根据权利要求10所述的铝铌钛硼的制备方法,其特征在于,反应时间为10-60分钟。
  15. 根据权利要求14所述的铝铌钛硼的制备方法,其特征在于,反应时间为10-45分钟。
  16. 根据权利要求15所述的铝铌钛硼的制备方法,其特征在于,反应时间为10-20分钟。
  17. 根据权利要求10所述的铝铌钛硼的制备方法,其特征在于,所述氟铌酸钾和氟钛酸钾均为晶体粉末,所述氟铌酸钾为一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾、六氟铌酸钾、七氟铌酸钾中的任一种,所述氟钛酸钾为六氟钛酸钾。
  18. 根据权利要求10所述的铝铌钛硼的制备方法,其特征在于,在铝熔化达到反应的温度后,将氟铌酸钾、氟钛酸钾和氟硼酸钾一次投入所述铝或分多次投入所述铝。
  19. 一种铝铌钛硼,其特征在于,采用所述权利要求10-18任一项所述的制备方法制备。
  20. 一种制备铝铌硼的方法,其特征在于,包括如下:
    提供氟铌酸钾、氟硼酸钾和铝,并将其置于反应炉内加热反应,反应后所生成的氟铝酸盐浮在所述反应炉中的反应产物的表面,将所述氟铝酸盐倒出后对所述反应产物进行浇铸,得到所述铝铌硼。
  21. 根据权利要求20所述的制备铝铌硼的方法,其特征在于,加热反应的反应温度为700-900℃。
  22. 根据权利要求21所述的制备铝铌硼的方法,其特征在于,加热反应的反应温度为800-900℃。
  23. 根据权利要求22所述的制备铝铌硼的方法,其特征在于,加热反应的反应温度为850-900℃。
  24. 根据权利要求20所述的制备铝铌硼的方法,其特征在于,反应时间为10-60分钟。
  25. 根据权利要求24所述的制备铝铌硼的方法,其特征在于,反应时间为10-45分钟。
  26. 根据权利要求25所述的制备铝铌硼的方法,其特征在于,反应时间为10-20分钟。
  27. 根据权利要求20所述的制备铝铌硼的方法,其特征在于,所述氟铌酸钾为晶体粉末,为一氟铌酸钾、二氟铌酸钾、三氟铌酸钾、四氟铌酸钾、五氟铌酸钾、六氟铌酸钾、七氟铌酸钾中的至少一种。
  28. 根据权利要求20所述的制备铝铌硼的方法,其特征在于,在铝熔化达到反应的温度 后,将氟铌酸钾和氟硼酸钾一次投入所述铝。
  29. 根据权利要求20所述的制备铝铌硼的方法,其特征在于,在铝熔化达到反应的温度后,将氟铌酸钾和氟硼酸钾分多次投入所述铝,该多次投入为每次均等投料或非均等投料。
PCT/CN2023/125665 2022-11-07 2023-10-20 用于铝合金的细化剂、铝铌钛硼及两者制备方法及制备铝铌硼的方法 WO2024099052A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211384647.XA CN115747537B (zh) 2022-11-07 2022-11-07 一种制备铝铌硼的方法
CN202211384647.X 2022-11-07
CN202211384001.1 2022-11-07
CN202211384037.XA CN115821119A (zh) 2022-11-07 2022-11-07 用于铝合金的细化剂及其制备方法
CN202211384001.1A CN115821082A (zh) 2022-11-07 2022-11-07 一种铝铌钛硼及其制备方法
CN202211384037.X 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024099052A1 true WO2024099052A1 (zh) 2024-05-16

Family

ID=91031906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125665 WO2024099052A1 (zh) 2022-11-07 2023-10-20 用于铝合金的细化剂、铝铌钛硼及两者制备方法及制备铝铌硼的方法

Country Status (1)

Country Link
WO (1) WO2024099052A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030049196A1 (en) * 2000-11-29 2003-03-13 Yoshitsugu Uchino Process for producing potassium fluoroniobate crystal and potassium fluoroniobate crystal
CN1678418A (zh) * 2002-07-02 2005-10-05 吴在浣 粉末制造装置及粉末的制造方法
CN105624477A (zh) * 2015-12-31 2016-06-01 北京航空航天大学 一种铸造铝合金用低冷速敏感高形核能力AlNbBRE晶粒细化剂及其制备方法
CN109385542A (zh) * 2018-09-17 2019-02-26 上海大学 用于晶粒细化的铝铌硼合金杆的制备方法
CN112048629A (zh) * 2020-01-17 2020-12-08 上海大学 铸造铝硅合金用Al-Ti-Nb-B细化剂的制备方法
CN115747537A (zh) * 2022-11-07 2023-03-07 中信金属股份有限公司 一种制备铝铌硼的方法
CN115821119A (zh) * 2022-11-07 2023-03-21 中信金属股份有限公司 用于铝合金的细化剂及其制备方法
CN115821082A (zh) * 2022-11-07 2023-03-21 中信金属股份有限公司 一种铝铌钛硼及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030049196A1 (en) * 2000-11-29 2003-03-13 Yoshitsugu Uchino Process for producing potassium fluoroniobate crystal and potassium fluoroniobate crystal
CN1678418A (zh) * 2002-07-02 2005-10-05 吴在浣 粉末制造装置及粉末的制造方法
CN105624477A (zh) * 2015-12-31 2016-06-01 北京航空航天大学 一种铸造铝合金用低冷速敏感高形核能力AlNbBRE晶粒细化剂及其制备方法
CN109385542A (zh) * 2018-09-17 2019-02-26 上海大学 用于晶粒细化的铝铌硼合金杆的制备方法
CN112048629A (zh) * 2020-01-17 2020-12-08 上海大学 铸造铝硅合金用Al-Ti-Nb-B细化剂的制备方法
CN115747537A (zh) * 2022-11-07 2023-03-07 中信金属股份有限公司 一种制备铝铌硼的方法
CN115821119A (zh) * 2022-11-07 2023-03-21 中信金属股份有限公司 用于铝合金的细化剂及其制备方法
CN115821082A (zh) * 2022-11-07 2023-03-21 中信金属股份有限公司 一种铝铌钛硼及其制备方法

Similar Documents

Publication Publication Date Title
US4772452A (en) Process for forming metal-second phase composites utilizing compound starting materials
CN112048629A (zh) 铸造铝硅合金用Al-Ti-Nb-B细化剂的制备方法
CN103074506B (zh) 一种两步加料法制备高质量Al-Ti-B中间合金细化剂的方法
CN109536751B (zh) 一种铝热还原生产镁锂合金副产镁铝尖晶石的方法
JP2009515041A (ja) 結晶粒微細化母合金の製造方法
JPS6383239A (ja) 金属−セラミツク複合体の製造方法
NO974518L (no) Kompositter med metallgrunnmasse av Al-legering forsterket med keramiske TiB2-partikler
CN100410400C (zh) 铝热还原制备铝钪合金的方法
CN112593110B (zh) 一种纳米碳化物增强铝基复合材料焊丝的制备方法
CN108439422B (zh) 一种铝热还原制备硼化钛合金的方法
CN104789811A (zh) 一种铝钛硼中间合金的制备方法
WO2024099050A1 (zh) 一种铝铌中间合金及其制备方法
CN113136496B (zh) 基于金属氧化物MxOy的Al-M-B细化剂制备方法
WO2024099052A1 (zh) 用于铝合金的细化剂、铝铌钛硼及两者制备方法及制备铝铌硼的方法
CN115821082A (zh) 一种铝铌钛硼及其制备方法
US4169722A (en) Aluminothermic process
CN115747537B (zh) 一种制备铝铌硼的方法
CN1226438C (zh) 含有TiC和Al2O3粒子的铝基合金的制备方法
CN115821119A (zh) 用于铝合金的细化剂及其制备方法
RU2138572C1 (ru) Способ приготовления лигатуры алюминий-титан-бор
CN114427048A (zh) 一种含高熵硼化物的铝基晶粒细化剂及其制备方法
CN108796261B (zh) 一种原位自生TiB2颗粒增强铝基复合材料及其制备方法
CN101117670A (zh) 一种铝-钛-碳中间合金的制备方法
CN114351001B (zh) 可调控TiB2原位增强铝基复合材料制备方法
CN108330338B (zh) 一种铝锰铌三元素中间合金及其制备方法