WO2024098900A1 - 一种可以提高抗退磁性的电机、压缩机和制冷机 - Google Patents

一种可以提高抗退磁性的电机、压缩机和制冷机 Download PDF

Info

Publication number
WO2024098900A1
WO2024098900A1 PCT/CN2023/115788 CN2023115788W WO2024098900A1 WO 2024098900 A1 WO2024098900 A1 WO 2024098900A1 CN 2023115788 W CN2023115788 W CN 2023115788W WO 2024098900 A1 WO2024098900 A1 WO 2024098900A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
diffusion region
diffusion
rare earth
winding
Prior art date
Application number
PCT/CN2023/115788
Other languages
English (en)
French (fr)
Inventor
于岚
李宏涛
邱小华
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Publication of WO2024098900A1 publication Critical patent/WO2024098900A1/zh

Links

Definitions

  • the present application belongs to the technical field of drive devices, and specifically relates to a motor, a compressor and a refrigerator capable of improving resistance to demagnetization.
  • variable frequency motors which generally use permanent magnet motors.
  • the excitation method of the permanent magnet motor rotor is magnet excitation. Due to the high power density of permanent magnet motors and the need to reduce costs, the anti-demagnetization ability of the rotor magnet is weakened. When the magnet is irreversibly demagnetized, it will affect the operating performance and reliability of the motor and compressor, thereby seriously affecting the service life of the product.
  • the present application aims to at least partially solve one of the technical problems existing in the above-mentioned prior art. To this end, the present application proposes a motor, a compressor and a refrigerator that can improve the resistance to demagnetization.
  • the motor according to the first aspect of the present application comprises:
  • a stator assembly comprises a stator core and a winding, wherein the stator core is provided with a protrusion, and a coil surrounds the protrusion to form the winding;
  • a rotor assembly comprising a rotor core and a permanent magnet, wherein the rotor core is provided with a mounting groove, the permanent magnet is arranged in the mounting groove, the stator core is arranged around the outer side of the rotor core, and there is a gap between the stator core and the rotor core, and a diffusion area is provided on the plane where the width and thickness of the permanent magnet are located, and the diffusion area includes:
  • a first diffusion region is arranged on one side of the width center line of the permanent magnet.
  • a second diffusion region is arranged on the other side of the width center line of the permanent magnet
  • the first diffusion region and the second diffusion region both contain rare earth elements
  • the number of turns N of the winding, the number of parallel branches a of the winding, the gap ⁇ between the stator core and the rotor core, the maximum length L 1max of the first diffusion zone along the width direction of the permanent magnet, the maximum length W 1max of the first diffusion zone along the thickness direction of the permanent magnet and the variable c satisfy the following formulas (1) and (2):
  • variable c is selected from 0 or 1, wherein: variable c is 0 when the winding is delta-connected (delta connection), and c is 1 when the winding is star-connected (star connection).
  • a maximum length L 2max of the second diffusion region along the width direction of the permanent magnet and a maximum length W 2max of the second diffusion region along the thickness direction of the permanent magnet satisfy the following formulas (3) and (4):
  • the rare earth element includes at least one of dysprosium, terbium, praseodymium, neodymium, and cerium.
  • the rare earth element is uniformly or non-uniformly distributed in the diffusion region.
  • the content of the rare earth element in the first diffusion region accounts for 0.98%-2.1% of the mass percentage of the permanent magnet g1 .
  • the content of the rare earth element in the second diffusion region accounts for a mass percentage g2 of the permanent magnet of 0.98%-2.1%.
  • the permanent magnet further includes a non-diffusion region, and the content of rare earth elements in the non-diffusion region accounts for a mass percentage of g 3 of the permanent magnet, and g 3 ⁇ g 1 , g 3 ⁇ g 2 .
  • the permanent magnet further includes a plurality of third diffusion regions, the third diffusion regions are arranged between the first diffusion region and the second diffusion region, and the content of rare earth elements in each of the third diffusion regions accounts for a percentage of g i in the weight of the permanent magnet, g i >g 3 .
  • the first diffusion region and the second diffusion region are distributed over the entire area or partially along the axial direction of the permanent magnet.
  • the rotor assembly includes a plurality of permanent magnets, and the diffusion regions in cross sections having different widths and thicknesses of the permanent magnets are the same or different.
  • the permanent magnet is radially magnetized or parallel magnetized.
  • the pole pair number P of the permanent magnet is ⁇ 2.
  • the rotor core is formed by stacking a plurality of silicon steel sheets.
  • the compressor according to the second aspect of the present application includes a housing and a motor as described in any technical solution of the first aspect of the present application, and the motor is arranged inside the housing.
  • the refrigerator according to the third aspect of the present application includes a motor as described in any technical solution of the first aspect of the present application, or a compressor as described in the second aspect of the present application.
  • FIG1 is a schematic diagram of the structure of a motor according to an embodiment of the present application.
  • FIG2 is a schematic diagram of the dimensions of a motor according to an embodiment of the present application.
  • FIG3 is a schematic structural diagram of a block-type stator core according to an embodiment of the present application.
  • FIG4 is a schematic structural diagram of an integrated stator core according to an embodiment of the present application.
  • FIG5 is a schematic diagram of the number of parallel branches of a winding according to an embodiment of the present application.
  • FIG6 is a schematic diagram of the number of parallel branches of a winding in another embodiment of the present application.
  • FIG7 is a schematic diagram of the structure and direction of a V-shaped distribution of permanent magnets in one embodiment of the present application.
  • FIG8 is a schematic structural diagram of a W-shaped distribution of permanent magnets in one embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of the combined distribution of permanent magnets in one embodiment of the present application.
  • FIG10 is a schematic structural diagram of a permanent magnet diffusion zone in a rotor assembly according to an embodiment of the present application.
  • FIG11 is a schematic structural diagram of a U-shaped diffusion zone of a permanent magnet according to an embodiment of the present application.
  • FIG12 is a schematic structural diagram of a quadrangular diffusion zone of a permanent magnet according to an embodiment of the present application.
  • FIG13 is a schematic structural diagram of three-strip diffusion regions of a permanent magnet according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the structure of a single diffusion zone of a permanent magnet according to an embodiment of the present application.
  • 100-motor 110-stator assembly, 111-stator core, 112-winding, 1111-protrusion, 120-rotor assembly, 121-rotor core, 122-permanent magnet, 1211-mounting slot, 1221-first diffusion region, 1222-second diffusion region, 1223-third diffusion region, 1224-non-diffusion region.
  • this embodiment proposes an electric motor 100, including a stator assembly 110 and a rotor assembly 120, wherein: the stator assembly 110 includes a stator core 111 and a winding 112, the stator core 111 is provided with a protrusion 1111, the winding 112 is formed by a coil wrapped around the protrusion 1111, and the number of coil turns N of the winding 112 refers to the number of turns of the coil wrapped around the protrusion 1111; the rotor assembly 120 includes a rotor core 121 and a permanent magnet 122, the rotor core 121 is provided with a mounting groove 1211, and the permanent magnet 122 is arranged in the mounting groove 1211; the stator core 111 is arranged around the outside of the rotor core 121, and there is a gap between the stator core 111 and the rotor core 121.
  • a diffusion zone is provided on the plane where the width and thickness of the permanent magnet 122 are located, and the diffusion zone includes a first diffusion zone 1221 and/or a second diffusion zone 1222, wherein: the first diffusion zone 1221 is provided on one side of the width center line of the permanent magnet 122, and the second diffusion zone 1222 is provided on the other side of the width center line of the permanent magnet 122.
  • the first diffusion zone 1221 and the second diffusion zone 1222 refer to a layer of slurry containing rare earth elements coated on the surface of the permanent magnet 122 substrate during the manufacturing process of the permanent magnet 122, so as to enhance the anti-demagnetization performance of the permanent magnet 122.
  • a slurry containing rare earth elements can be coated on one side of the width center line of the permanent magnet 122 to form a first diffusion zone 1221; a slurry containing rare earth elements can also be coated on the other side of the width center line of the permanent magnet to form a second diffusion zone 1222; or a slurry containing high anti-demagnetization properties can be coated on both sides of the width center line of the permanent magnet 122 to form a first diffusion zone 1221 and a second diffusion zone 1222.
  • the content of rare earth elements in the slurry can be controlled to meet the requirements of different anti-demagnetization properties.
  • rare earth elements Since rare earth elements have excellent energy density, coercive force and residual magnetism, after they are prepared into slurry and coated on the surface of the permanent magnet matrix, they will penetrate and diffuse into the permanent magnet matrix to form a diffusion zone, and the higher the content of rare earth elements in the slurry, the stronger the anti-demagnetization ability of the permanent magnet.
  • Both the first diffusion zone 1221 and the second diffusion zone 1222 contain rare earth elements. Since rare earth elements have excellent energy density, coercive force and residual magnetism characteristics, after being prepared into a slurry and coated on the surface of the permanent magnet matrix, they will penetrate and diffuse into the interior of the permanent magnet 122 matrix to form a diffusion zone, thereby improving the anti-demagnetization ability of the permanent magnet 122, and thereby improving the anti-demagnetization ability of the motor 100.
  • the gap between the stator core 111 and the rotor core 121 is positively correlated with the anti-demagnetization performance of the motor 100, that is, as the gap between the stator core 111 and the rotor core 121 increases, the anti-demagnetization performance of the motor 100 also increases.
  • the area of the diffusion zone needs to be reduced; at the same time, the equivalent winding turns are negatively correlated with the anti-demagnetization performance of the motor 100, that is, as the equivalent winding turns increase, the anti-demagnetization performance of the motor 100 will decrease.
  • the area of the diffusion zone needs to be increased, and
  • the area of the diffusion zone is related to the maximum length of each diffusion zone along the thickness direction and the width direction of the permanent magnet 122. Therefore, by reasonably setting the number of coil turns N of the winding, the number of parallel branches a of the winding 112, the gap ⁇ between the stator core 111 and the rotor core 121, the maximum length L 1max of the first diffusion zone 1121 along the width direction of the permanent magnet 122, the maximum length W 1max of the first diffusion zone 1121 along the thickness direction of the permanent magnet 122, the maximum length L 2max of the second diffusion zone 1122 along the width direction of the permanent magnet 122, the maximum length W 2max of the second diffusion zone 1122 along the thickness direction of the permanent magnet 122 and the relationship between the variable c, and making them satisfy the operation relationship of the following formula (1)-(2) or formula (1)-(4), it is possible to improve the local anti-demagnetization ability of the permanent magnet
  • variable c is selected from 0 or 1, wherein: when the winding 112 is delta-connected (delta connection), variable c is 0; when the winding 112 is star-connected (star connection), c is 1.
  • stator core 111 is a block-type structure, which is convenient for replacement and maintenance and more flexible and convenient during use.
  • the stator core 111 is an integral structure, which is convenient for overall installation and disassembly, and is beneficial to improving the operating reliability of the motor 100 .
  • the shape of the mounting groove 1211 is V-shaped, W-shaped, or a combination of V-shaped and straight-shaped.
  • the different structures of the mounting groove 1211 can meet the requirements of different distribution structures of the permanent magnet 122 to expand the use range of the product. Therefore, mounting grooves 1211 of different shapes can be set according to different requirements, and the shapes of the mounting grooves 1211 can be the same or different.
  • the shape of the mounting groove 1211 is V-shaped, and the V-shaped distribution of the permanent magnets 122 is beneficial to further enhance the anti-demagnetization capability of the motor 100 .
  • the shape of the mounting groove 1211 is W-shaped.
  • the W-shaped mounting groove 1221 is composed of two groups of V-shaped mounting grooves 1221 .
  • the W-shaped permanent magnets 122 have stronger anti-demagnetization capability for the motor 100 than a single group of V-shaped permanent magnets.
  • the mounting groove 1211 is composed of a V-shaped and a straight-shaped structure, which can integrate the structural characteristics of the V-shaped and straight-shaped permanent magnet 122 distributions.
  • the rare earth element includes at least one of dysprosium, terbium, praseodymium, neodymium, and cerium, and the rare earth element is evenly or unevenly distributed in the permanent magnet 122. These rare earth elements penetrate and diffuse into the permanent magnet 122, and can form intermetallic compounds with the transition metal elements in the permanent magnet 122 during the high-temperature treatment process.
  • the strong exchange interaction between the transition metal elements makes the compound have a higher Curie temperature, and the transition metal atoms have a larger magnetic moment to ensure that the compound has a higher saturation magnetization intensity, and the localized 4f electrons of the rare earth elements can provide a stronger anisotropy.
  • the combined effect of the two types of elements is conducive to improving the coercive force of the permanent magnet 122, thereby enhancing the anti-demagnetization ability of the permanent magnet 122, and further improving the anti-demagnetization ability of the motor 100.
  • the rare earth element includes at least one of dysprosium, terbium, and neodymium.
  • the distribution of rare earth elements in the permanent magnet 122 refers to the distribution of rare earth elements in the diffusion region.
  • the rare earth elements in the diffusion region can be evenly distributed or unevenly distributed, which mainly depends on the diffusion process and the requirements of the permanent magnet 122 for anti-demagnetization performance.
  • the permanent magnet 122 when the permanent magnet 122 does not have high requirements on the anti-demagnetization performance, the permanent magnet 122 can be coated with a slurry with a low rare earth element content. At this time, the slurry has a low concentration, good permeability and diffusivity, and is easy to form a uniform distribution of rare earth elements, thereby forming a balanced anti-demagnetization area in the diffusion zone, which can also effectively improve the overall anti-demagnetization ability of the motor 100.
  • the content of the rare earth element in the first diffusion region 1221 accounts for a mass percentage g 1 of the permanent magnet 122 of 0.98%-2.1%.
  • the mass percentage range of the rare earth elements in the first diffusion region 1221 is controlled to meet the low cost requirement of the motor 100.
  • the weight percentage of the rare earth elements in the first diffusion region 1221 needs to be greater than 0.98% to ensure that the first diffusion region 1221 has the minimum requirement for meeting the coercive force of the permanent magnet 122, thereby ensuring that the first diffusion region 1221 can improve the anti-demagnetization ability of the entire permanent magnet 122; at the same time, the weight percentage of the rare earth elements in the first diffusion region 1221 is limited to less than 2.1%, which can reduce the cost of the permanent magnet 122 on the basis of ensuring that the first diffusion region 1221 has a strong anti-demagnetization ability, thereby meeting the low cost requirement of the motor 100.
  • the content of rare earth elements in the second diffusion zone 1222 accounts for a mass percentage of 0.98 %-2.1% of the permanent magnet 122.
  • the mass percentage of rare earth elements in the second diffusion zone 1222 is the same as that of rare earth elements in the first diffusion zone 1221, and can be used as a supplement to the first diffusion zone 1221 or as an independent diffusion zone.
  • the weight percentage of rare earth elements in the second diffusion zone 1222 needs to be greater than 0.98% to ensure that the second diffusion zone 1222 has the minimum requirement for the coercive force of the permanent magnet 122, thereby ensuring that the second diffusion zone 1222 can improve the anti-demagnetization ability of the entire permanent magnet 122; at the same time, the weight percentage of rare earth elements in the second diffusion zone 1222 is limited to less than 2.1%, which can reduce the cost of the permanent magnet 122 on the basis of ensuring that the second diffusion zone 1222 has a strong anti-demagnetization ability, thereby meeting the low cost requirement of the motor 100.
  • the permanent magnet 122 further includes a non-diffusion zone 1224, in which the content of rare earth elements in the non-diffusion zone 1224 accounts for a mass percentage of g 3 of the permanent magnet 122, and g 3 ⁇ g 1 , g 3 ⁇ g 2 .
  • the non-diffusion zone 1224 refers to a region in the permanent magnet 122 where the slurry containing rare earth elements has not penetrated or diffused, and the mass percentage of rare earth elements in the non-diffusion zone 1224 is less than the mass percentage of rare earth elements in the first diffusion zone 1221 and the second diffusion zone, that is, the coercive force of the two diffusion zones is greater than the coercive force of the non-diffusion zone 1224.
  • the strength of the coercive magnetic field that the first diffusion zone 1221 and the second diffusion zone 1222 can resist is greater than the strength of the coercive magnetic field that the non-diffusion zone 1224 can resist. Therefore, when the non-diffusion zone 1224 faces the risk of demagnetization, it can maintain its own magnetic induction intensity, thereby preventing the non-diffusion zone 1224 from irreversible demagnetization, thereby improving the anti-demagnetization ability of the permanent magnet 122, and improving its reliability while extending the service life of the permanent magnet 122.
  • the permanent magnet 122 further includes a plurality of third diffusion regions 1223 , and the weight of the rare earth element in each third diffusion region 1223 accounts for a percentage of the weight of the permanent magnet 122 of g i , g i >g 3 .
  • a plurality of third diffusion zones 1223 may be included, which may serve as a supplement to the first diffusion zone 1221 and the second diffusion zone 1222.
  • the mass proportion of the rare earth elements in each diffusion zone is greater than that of the non-diffusion zone 1224, that is, the coercive force of the third diffusion zone 1223 is greater than that of the non-diffusion zone 1224.
  • the third diffusion zones 1223 and the non-diffusion zones 1224 can be formed on each permanent magnet 122, so as to strengthen the anti-demagnetization performance of the permanent magnet 122 through the gradient anti-demagnetization region, thereby reducing the occurrence of irreversible demagnetization problems of the permanent magnet 122.
  • the first diffusion region 1221, the second diffusion region 1222 and the third diffusion region 1223 can be simultaneously arranged in the permanent magnet 122, or can be arranged separately in the permanent magnet 122.
  • the permanent magnet 122 is easy to demagnetize at both ends of the width and the middle of the width; in addition, the permanent magnet 122 is also easy to demagnetize at both ends of the length direction. Therefore, setting the diffusion region at the position where the permanent magnet 122 is easy to demagnetize can improve the anti-demagnetization and ensure the cost reduction at the same time.
  • the permanent magnet 122 includes a first diffusion region 1221 , a second diffusion region 1222 and a third diffusion region 1223 , and the third diffusion region 1223 is disposed between the first diffusion region 1221 and the second diffusion region 1222 , and the first diffusion region 1221 , the second diffusion region 1222 and the third diffusion region 1223 form a U-shape.
  • the permanent magnet 122 includes a first diffusion region 1221 and a second diffusion region 1222 , and the first diffusion region 1221 and the second diffusion region 1222 are respectively disposed at four corners of the permanent magnet 122 .
  • the permanent magnet 122 includes a first diffusion region 1221 , a second diffusion region 1222 and a third diffusion region 1223 , and the first diffusion region 1221 , the second diffusion region 1222 and the third diffusion region 1223 are respectively arranged in parallel on both sides and the middle of the permanent magnet 122 in a three-strip shape.
  • the permanent magnet 122 includes only the second diffusion region 1222 .
  • the value range of the parameters in each calculation formula arbitrarily satisfies one or more of the following: 40 ⁇ N ⁇ 200; 1 ⁇ a ⁇ 8; 0.35mm ⁇ 1mm; 1mm ⁇ L 1max ⁇ 20mm; 1mm ⁇ L 2max ⁇ 20mm; 1mm ⁇ W 1max ⁇ 4mm; 1mm ⁇ W 2max ⁇ 4mm.
  • the value ranges of the parameters in formula (1) and formula (2) arbitrarily satisfy one or more of the following: 88 ⁇ N ⁇ 134; 1 ⁇ a ⁇ 2; 0.4mm ⁇ 0.6mm; 2.8mm ⁇ L1max ⁇ 4.2mm; 1.5mm ⁇ W1max ⁇ 2.3mm.
  • the value ranges of the parameters in formula (3) and formula (4) arbitrarily satisfy one or more of the following: 40 ⁇ N ⁇ 200; 1 ⁇ a ⁇ 8, 0.35mm ⁇ 1mm; 1mm ⁇ L2max ⁇ 20mm; 1mm ⁇ W2max ⁇ 4mm.
  • the value ranges of the parameters in formula (3) and formula (4) arbitrarily satisfy one or more of the following: 88 ⁇ N ⁇ 134; 1 ⁇ a ⁇ 2; 0.4mm ⁇ 0.6mm; 2.8mm ⁇ L2max ⁇ 4.2mm; 1.5mm ⁇ W2max ⁇ 2.3mm.
  • the local anti-demagnetization capability of the permanent magnet 122 is improved while ensuring the demagnetization reliability and not increasing the volume of the permanent magnet 122, thereby improving the anti-demagnetization capability of the motor 100 and reducing the production cost of the motor 100.
  • the first diffusion region 1221 and the second diffusion region 1222 are distributed in the entire area or partially along the axial direction of the permanent magnet 122 .
  • the first diffusion zone 1221 and the second diffusion zone 1222 can be distributed in the entire area or partially distributed along the axial direction of the permanent magnet 122, which means: the distribution of the first diffusion zone 1221 and the second diffusion zone 1222 along the length direction of the permanent magnet 122 can be distributed in the entire area or in a partial area, which mainly depends on the requirements of the permanent magnet 122 for anti-demagnetization performance.
  • the partial area distribution is mainly to reduce the diffusion area, thereby reducing costs.
  • the rotor assembly 120 includes a plurality of permanent magnets 122, and the diffusion areas of the permanent magnets 122 on the cross section where the width and thickness are located are the same or different.
  • the anti-demagnetization capability of the rotor assembly 120 can be enhanced, thereby further reducing the possibility of irreversible demagnetization of the assembly.
  • the diffusion areas on the planes where the width and thickness are located on different lengths of the permanent magnet 122 can be the same or different, and it is only necessary to ensure the overall anti-demagnetization capability of the permanent magnet 122.
  • the permanent magnet 122 is magnetized radially or in parallel.
  • the magnetization direction of the permanent magnet 122 can be radial magnetization or parallel magnetization, as long as the magnetization direction of each permanent magnet 122 on the rotor assembly 120 is consistent, and the magnetization directions of the first diffusion region 1221, the second diffusion region 1222, the third diffusion region 1223 and the non-diffusion region 1224 in each permanent magnet 122 are consistent.
  • the first diffusion region 1221, the second diffusion region 1222 and the third diffusion region 1223 with strong anti-demagnetization ability can ensure their own magnetism, so that the non-diffusion region 1224 is magnetized by the first diffusion region 1221, the second diffusion region 1222 and the third diffusion region 1223 to avoid the irreversible demagnetization of the permanent magnet 122.
  • the number of pole pairs of the permanent magnet 122 is beneficial to improve the anti-demagnetization capability of the permanent magnet 122 of the motor 100 and meet the reliability required by the use of the compressor, thereby improving the reliability of the operation of the compressor.
  • the rotor core 121 is formed by stacking a plurality of silicon steel sheets.
  • the rotor core 121 is formed by stacking a plurality of silicon steel sheets.
  • the rotor core 121 is processed by stacking, which is beneficial to reducing eddy current loss. When the rotor core 121 is working, it is in a changing magnetic field, and the induced current inside it will cause energy loss, which is called eddy current loss.
  • the rotor core 121 is formed by stacking silicon steel sheets, which can effectively reduce iron loss and improve the reliability of the rotor assembly 120.
  • an embodiment proposes a compressor, including a shell and a motor 100 of any technical solution of the first aspect mentioned above, and the motor 100 is arranged inside the shell. Since the compressor includes the motor 100 of any technical solution mentioned above, it has all the beneficial effects that can be achieved by the motor 100.
  • an embodiment proposes a refrigerator, including a motor 100 of any technical solution of the first aspect or a compressor of any technical solution of the second aspect. Since the refrigerator includes the motor 100 or the compressor of any technical solution, it has all the beneficial effects that can be achieved by the motor 100 or the compressor.
  • the refrigerator also includes a pipeline, which is connected to the compressor, and the refrigerant circulates through the pipeline and the compression mechanism to achieve heat exchange refrigeration.
  • the refrigerator is an air conditioner.
  • a motor 100 includes a stator assembly 110 and a rotor assembly 120, wherein: the stator assembly 110 includes a stator core 111 and a winding 112, the stator core 110 is provided with a protrusion 1111 for fixing the winding 112, the winding 112 is formed by a coil wrapped around the protrusion 1111, and the number of coil turns N of the winding 112 refers to the number of turns of the coil wrapped around the protrusion 1111; the rotor assembly 120 includes a rotor core 121 and a permanent magnet 122, the rotor core 121 is provided with a mounting groove 1211, the rotor core 121 is formed by a plurality of stacked silicon steel sheets, the permanent magnet 122 is arranged in the mounting groove 1211, the permanent magnet 122 is radially magnetized and the pole pair number P is 2; the stator core 111 is arranged around the outer side of the rotor core 121 to form a gap.
  • a permanent magnet with a size/brand of 1.9 ⁇ 13 ⁇ 40/42SH is selected, and a slurry containing the rare earth element neodymium is coated on both ends of the permanent magnet along the length direction and subjected to high temperature treatment to form a first diffusion zone 1221 and a second diffusion zone 1222, and the first diffusion zone 1221 and the second diffusion zone 1222 are evenly distributed in the entire area along the axial direction of the permanent magnet 122, thereby obtaining the permanent magnet 122 of this application example.
  • the weight proportion of the rare earth element neodymium in the first diffusion zone 1221 is 1.5%
  • the weight proportion of the rare earth element neodymium in the second diffusion zone 1221 is 1.5%
  • the non-diffusion zone does not contain the rare earth element neodymium.
  • a motor 100 includes a stator assembly 110 and a rotor assembly 120, wherein: the stator assembly 110 includes a stator core 111 and a winding 112, the stator core 110 is provided with a protrusion 1111 for fixing the winding 112, the winding 112 is formed by a coil wrapped around the protrusion 1111, and the number of coil turns N of the winding 112 refers to the number of turns of the coil wrapped around the protrusion 1111; the rotor assembly 120 includes a rotor core 121 and a permanent magnet 122, the rotor core 121 is provided with a mounting groove 1211, the rotor core 121 is formed by a plurality of stacked silicon steel sheets, the permanent magnet 122 is arranged in the mounting groove 1211, the permanent magnet 122 is radially magnetized and the pole pair number P is 2; the stator core 111 is arranged around the outer side of the rotor core 121 to form a gap.
  • Comparative Example 1 uses a permanent magnet with a size/brand of 1.9 ⁇ 13 ⁇ 40/42SH, but the permanent magnet is not coated with any slurry containing rare earth elements, that is, it does not contain a diffusion zone, and the motor parameters do not satisfy the operational relationship of formulas (1)-(4) of this application.
  • the demagnetization rate of the motor 100 and the intrinsic coercive force of the permanent magnet of the application example 1 and the comparative example 1 are tested, wherein the specific testing process of the demagnetization rate is as follows:
  • the magnetized saturated rotor assembly 120 is placed at room temperature, and the magnetic flux ⁇ 0 of the rotor assembly 120 is measured; then, the rotor assembly 120 after the initial magnetic flux is tested is placed in a constant temperature box for more than 4 hours, and the temperature of the constant temperature box is set at a specified temperature (130° C.); then, the test DC motor is connected to a DC power supply, and the demagnetization current is set according to a preset demagnetization current value (43A, 50A, etc.). When ready, the rotor assembly 120 is taken out of the constant temperature box, and the demagnetization test tooling is installed.
  • the rotor assembly rotates one circle; after completion, the rotor assembly 120 is placed at room temperature for more than 4 hours, and then the temperature of the rotor assembly 120 and the magnetic flux ⁇ 1 after demagnetization are measured.
  • ⁇ 0 is the magnetic flux of the rotor assembly 120 at the beginning of the demagnetization test
  • ⁇ i is the magnetic flux of the rotor assembly 120 after the demagnetization test at the i-th demagnetization current value.
  • Table 1 Performance comparison table of application example 1 and comparative example 1
  • the permanent magnet in the specific diffusion zone provided by the present application has an intrinsic coercive force increased by 150KA/m relative to the permanent magnet without diffusion; at the same time, the demagnetization rate of the motor provided by the present application at 50A/130°C can reach 2.68%, which is 29.66% lower than that of ordinary motors, greatly reducing the production cost of the motor.
  • the demagnetization effect of the motor is not good; when k1 is greater than 12.5mm, k2 is greater than 12.5mm, k3 is greater than 6mm, and k4 is greater than 6mm, the demagnetization effect of the motor is similar to that of Example 1, but the cost is much higher than that of Example 1. Therefore, the cost performance of the motor is not high, and the cost is increased.
  • the present application derives and verifies that by reasonably setting the number of coil turns N of the winding, the number of parallel winding branches a, the gap ⁇ between the stator core and the rotor core, the maximum length L1max of the first diffusion zone along the width direction of the permanent magnet, the maximum length W1max of the first diffusion zone along the thickness direction of the permanent magnet, and the relationship between the variable c, and making them satisfy the above formulas (1) and (2), it is possible to improve the local anti-demagnetization ability of the permanent magnet while ensuring the demagnetization reliability and not increasing the volume of the permanent magnet, thereby improving the anti-demagnetization ability of the motor and reducing the production cost of the motor.
  • the motor provided in the present application has a permanent magnet whose demagnetization rate at 50A/130°C can reach 2.68%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本申请公开了一种可以提高抗退磁性的电机、压缩机和制冷机。该电机(100)包括:定子组件(110),包括定子铁芯(111)和绕组(112);转子组件(120),包括转子铁芯(121)和永磁体(122),永磁体(122)的宽度和厚度所在的平面上设置有扩散区,扩散区包括:第一扩散区(1221),设置于永磁体宽度中心线的一侧;和/或第二扩散区(1222),设置于永磁体宽度中心线的另一侧;第一扩散区(1221)和第二扩散区(1222)中含有稀土元素。

Description

一种可以提高抗退磁性的电机、压缩机和制冷机
相关申请的交叉引用
本申请要求于2022年11月10日提交的申请号为202211403606.0、名称为“一种可以提高抗退磁性的电机、压缩机和制冷机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于驱动装置技术领域,具体涉及一种可以提高抗退磁性的电机、压缩机和制冷机。
背景技术
现阶段国内外空调压缩机基本采用变频电机,变频电机一般采用永磁电机,永磁电机转子的励磁方式是由磁铁励磁,由于现在永磁电机高功率密度的特点及降成本的需求,导致转子磁铁的抗退磁能力减弱,当磁铁发生不可逆退磁,将影响电机及压缩机的运行性能及可靠性,从而严重影响产品的使用寿命。
同时,随着稀土材料价格的增长,稀土磁铁材料价格和电机成本直线上升。在保证电机可靠运行的前提下,磁铁和电机的降成本迫在眉睫。磁铁价格上涨的根本原因是稀土元素价格的上涨,而稀土元素的含量影响磁铁的剩磁和矫顽力,其中矫顽力的直接表现是抗退磁能力。当磁铁尺寸相同,搭载相同电机时,矫顽力低的磁铁,转子抗退磁能力差,转子失磁风险更高,且失磁更明显。
因此,亟需设计出一种可有效解决上述技术缺陷的电机,在保证退磁可靠性及不增加永磁体体积的前提下,提高电机的抗退磁能力,以降低生产成本。
发明内容
本申请旨在至少部分解决上述现有技术中存在的技术问题之一。为此,本申请提出一种可以提高抗退磁性的电机、压缩机和制冷机。
根据本申请第一方面的电机包括:
定子组件,包括定子铁芯和绕组,所述定子铁芯设置有凸起部,线圈环绕所述凸起部形成所述绕组;
转子组件,包括转子铁芯和永磁体,所述转子铁芯设置有安装槽,所述永磁体设置于所述安装槽内,所述定子铁芯围设于所述转子铁芯的外侧,且所述定子铁芯与转子铁芯之间具有间隙,所述永磁体的宽度和厚度所在的平面上设置有扩散区,所述扩散区包括:
第一扩散区,设置于所述永磁体宽度中心线的一侧;和/或
第二扩散区,设置于所述永磁体宽度中心线的另一侧;
所述第一扩散区和所述第二扩散区中均含有稀土元素;
其中:所述绕组的线圈匝数N、所述绕组的并联支路数a、所述定子铁芯与所述转子铁芯间的间隙δ、所述第一扩散区沿所述永磁体宽度方向的最大长度L1max、所述第一扩散区沿所述永磁体厚度方向的最大长度W1max和变量c满足以下公式(1)和公式(2):
上述公式中:0.2≤k1≤12.5,0.2≤k3≤6;变量c选自0或1,其中:绕组角接(三角形接法)时变量c为0,绕组星接(星形接法)时,c为1。
在一些实施例中,所述第二扩散区沿所述永磁体宽度方向的最大长度L2max、所述第二扩散区沿所述永磁体厚度方向的最大长度W2max满足以下公式(3)和公式(4):
上述公式中:0.2≤k2≤12.5,0.2≤k4≤6;绕组角接时c=0,绕组星接时c=1。
在一些实施例中,所述稀土元素包括镝、铽、镨、钕、铈中的至少一种。
在一些实施例中,所述稀土元素均匀或非均匀分布于所述扩散区中。
在一些实施例中,所述第一扩散区中稀土元素的含量占所述永磁体的质量百分比g1为0.98%-2.1%。
在一些实施例中,所述第二扩散区中稀土元素的含量占所述永磁体的质量百分比g2为0.98%-2.1%。
在一些实施例中,所述永磁体还包括非扩散区,所述非扩散区中稀土元素的含量占所述永磁体的质量百分比为g3,且g3<g1,g3<g2
在一些实施例中,所述永磁体还包括若干个第三扩散区,所述第三扩散区设置于所述第一扩散区和所述第二扩散区之间,每个所述第三扩散区中稀土元素的含量占所述永磁体重量的百分比为gi,gi>g3
在一些实施例中,所述第一扩散区和所述第二扩散区沿所述永磁体轴向方向全区域分布或局部分布。
在一些实施例中,所述转子组件包括多个永磁体,在所述永磁体不同宽度和厚度所在截面上的所述扩散区相同或不同。
在一些实施例中,所述永磁体采用径向充磁或平行充磁。
在一些实施例中,所述永磁体的极对数P≥2。
在一些实施例中,所述转子铁芯由多个硅钢片层叠而成。
根据本申请第二方面的压缩机包括壳体以及如本申请第一方面任一技术方案所述的电机,所述电机设于所述壳体的内部。
根据本申请第三方面的制冷机包括如本申请第一方面任一技术方案所述的电机,或如本申请第二方面所述的压缩机。
附图说明
图1为本申请一种实施例的电机的结构示意图;
图2为本申请一种实施例的电机的尺寸示意图;
图3为本申请一种实施例的分块式定子铁芯的结构示意图;
图4为本申请一种实施例的整体式定子铁芯的结构示意图;
图5为本申请一种实施例的绕组的并联支路数示意图;
图6为本申请另一种实施例的绕组的并联支路数示意图;
图7为本申请一种实施例的永磁体V字型分布的结构及方向示意图;
图8为本申请一种实施例的永磁体W字型分布的结构示意图;
图9为本申请一种实施例的永磁体组合式分布的结构示意图;
图10为本申请一种实施例的转子组件中永磁体扩散区的结构示意图;
图11为本申请一种实施例的永磁体的回字型扩散区的结构示意图;
图12为本申请一种实施例的永磁体的四角型扩散区的结构示意图;
图13为本申请一种实施例的永磁体的三条型扩散区的结构示意图;以及
图14为本申请一种实施例的永磁体的单一扩散区的结构示意图。
附图中:100-电机,110-定子组件,111-定子铁芯,112-绕组,1111-凸起部,120-转子组件,121-转子铁芯,122-永磁体,1211-安装槽,1221-第一扩散区,1222-第二扩散区,1223-第三扩散区,1224-非扩散区。
具体实施方式
下面结合附图和具体实施方式对本申请进行具体描述,以便于所属技术领域的人员对本申请的理解。有必要在此特别指出的是,实施例只是用于对本申请做进一步说明,不能理解为对本申请保护范围的限制,所属领域技术熟练人员,根据上述发明内容对本申请作出的非本质性的改进和调整,应仍属于本申请的保护范围。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是本申请还可以采用其他不同于在此描述的其他方式来实施,因此本申请的保护范围并不受下面公开的具体实施例的限制。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。
下面参照图1-14描述本申请一些实施例的电机、压缩机和制冷机。
实施例1
如图1所示,根据本申请的第一方面,此实施例提出了一种电机100,包括定子组件110和转子组件120,其中:定子组件110包括定子铁芯111和绕组112,定子铁芯111设置有凸起部1111,绕组112由线圈环绕凸起部1111形成,绕组112的线圈匝数N是指线圈环绕凸起部1111的圈数;转子组件120包括转子铁芯121和永磁体122,转子铁芯121设置有安装槽1211,永磁体122设置于安装槽1211内;定子铁芯111围设于转子铁芯121的外侧,且定子铁芯111与转子铁芯121间具有间隙。
永磁体122的宽度和厚度所在的平面上设置有扩散区,该扩散区包括第一扩散区1221和/或第二扩散区1222,其中:第一扩散区1221设置于永磁体122宽度中心线的一侧,第二扩散区1222设置于永磁体122宽度中心线的另一侧。第一扩散区1221和第二扩散区1222是指在永磁体122的制造过程中,通过在永磁体122基体的表面涂覆一层含有稀土元素的浆料,以增强永磁体122的抗退磁性能。为满足不同抗磁性能的要求,可在永磁体122的宽度中心线的一侧涂覆含有稀土元素的浆料,形成第一扩散区1221;也可在永磁体的宽度中心线的另一侧涂覆含有稀土元素的浆料,形成第二扩散区1222;或者在永磁体122的宽度中心线的两侧同时涂覆含有高抗退磁性能的浆料,形成第一扩散区1221和第二扩散区1222。此外,还可通过控制浆料中稀土元素的含量,以适应不同抗退磁性能的要求。由于稀土元素具有优异的能量密度、矫顽力和剩磁特性,将其制备成浆料并涂覆于永磁体基体表面后,将渗透并扩散至永磁体基体内部形成扩散区,且浆料中稀土元素的含量越高,则永磁体的抗退磁能力越强。同时,在永磁体基体的表面涂覆含有稀土元素的浆料后,还需 进行高温处理(约800-950℃,10-18小时),以进一步提高稀土元素与永磁体基体间的结合力,形成稳定的晶界状态,改进永磁体的矫顽力及其对温度的稳定性,从而提高永磁体的抗退磁能力,进而提高电机的抗退磁能力。
第一扩散区1221和第二扩散区1222中均含有稀土元素,由于稀土元素具有优异的能量密度、矫顽力和剩磁特性,将其制备成浆料并涂覆于永磁体基体表面后,将渗透并扩散至永磁体122基体内部形成扩散区,以提高永磁体122的抗退磁能力,进而提高电机100的抗退磁能力。
如图2所示,定子铁芯111与转子铁芯121间的间隙与电机100的抗退磁性能正相关,即随着定子铁芯111与转子铁芯121间的间隙的增加,电机100的抗退磁性能也随之增加,在实现相同抗退磁性能的前提下,需要扩散区的面积减少;同时,等效绕组匝数与电机100的抗退磁性能负相关,即随着等效绕组匝数的增加,电机100的抗退磁性能将下降,在实现相同抗退磁性能的前提下,需要扩散区的面积增加,且此外,扩散区的面积与各扩散区沿永磁体122厚度方向和宽度方向的最大长度有关。因此,通过合理设置绕组的线圈匝数N、绕组112并联支路数a、定子铁芯111与转子铁芯121间的间隙δ、第一扩散区1121沿永磁体122宽度方向的最大长度L1max、第一扩散区1121沿永磁体122厚度方向的最大长度W1max、第二扩散区1122沿永磁体122宽度方向的最大长度L2max、第二扩散1122区沿永磁体122厚度方向的最大长度W2max和变量c间的关系,并使之满足下述公式(1)-(2)或公式(1)-(4)的运算关系,可实现在保证退磁可靠性及不增加永磁体122体积的前提下,提高永磁体122局部抗退磁的能力,进而提高电机100的抗退磁能力,降低电机100的生产成本。

上述公式中:0.2≤k1≤12.5,0.2≤k2≤12.5,0.2≤k3≤6,0.2≤k4≤6;变量c选自0或1,其中:绕组112角接(三角形接法)时变量c为0;绕组112星接(星形接法)时,c为1。
在一些实施例中,在公式(1)和公式(2)中,0.9≤k1≤1.4,0.7≤k3≤1.1。
如图3所示,定子铁芯111为分块式的结构,以便于更换与维修,使用过程中更为灵活与便捷。
如图4所示,定子铁芯111为整体式结构,以便于整体安装与拆卸,有利于提高电机100运行的可靠性。
如图5所示,当三相星接绕组112时,c为1,绕组112并联支路数a为3。
如图6所示,当三相角接绕组112时,c为0,绕组112并联支路数a为1。
如图7-9所示,安装槽1211的形状呈V字型、W型或V字型和一字型组合,安装槽1211的不同结构能够满足永磁体122不同分布结构的需求,以扩大产品的使用范围。因此,可根据不同的需求,设置不同形状的安装槽1211,安装槽1211的形状可以相同也可以不同。
如图7所示,安装槽1211的形状呈V字型,V字型分布的永磁体122有利于进一步增强电机100的抗退磁能力。
如图8所示,安装槽1211的形状呈W字型,W字型的安装槽1221由两组V字型安装槽1221组成,W字型分布的永磁体122对于电机100的抗退磁能力也较单组V字型更强。
如图9所示,安装槽1211由V字型和一字型组合而成,可综合V字型和一字型永磁体122分布的结构特点。
实施例2
如图1所示,本申请的一个实施例中,在上述实施例1的基础上,稀土元素包括镝、铽、镨、钕、铈中的至少一种,且稀土元素均匀或非均匀分布于永磁体122中。这些稀土元素渗透并扩散至永磁体122内,在高温处理的过程中,可与永磁体122内的过渡金属元素形成金属间化合物,过渡金属元素之间的强交换作用使得化合物具有较高的居里温度,过渡金属原子具有较大的磁矩保证化合物拥有较高的饱和磁化强度,而稀土元素局域的4f电子能够提供较强的各向异性,两类元素的综合效应,有利于提高永磁体122的矫顽力,从而增强永磁体122的抗退磁能力,进而提高电机100的抗退磁能力。
在一些实施例中,稀土元素包括镝、铽、钕中的至少一种。
稀土元素在永磁体122中的分布是指扩散区域中稀土元素的分布情况,扩散区域中稀土元素可以均匀分布也可以不均匀分布,主要取决于扩散工艺及永磁体122对于抗退磁性能的要求。当永磁体122对抗退磁性能的要求较高时,则需对永磁体122涂覆稀土元素含量较高的浆料,此时浆料的浓度高,渗透及扩散性不佳,易形成稀土元素的非均匀分布, 从而在部分区域形成相对抗退磁能力更强的扩散区,进而提升电机100的整体抗退磁能力;当永磁体122对抗退磁性能的要求不高时,则可对永磁体122涂覆稀土元素含量较低的浆料,此时浆料的浓度低,渗透及扩散性良好,易形成稀土元素的均匀分布,从而在扩散区形成均衡的抗退磁区域,亦可有效提升电机100的整体抗退磁能力。
实施例3
如图1所示,本申请的一个实施例中,在上述实施例1或2的基础上,第一扩散区1221中稀土元素的含量占永磁体122的质量百分比g1为0.98%-2.1%。
在该实施例中,通过控制第一扩散区1221中稀土元素的质量占比范围,以满足电机100的低成本需求。第一扩散区1221的稀土元素的重量百分比需大于0.98%,以保证第一扩散区1221具备可满足永磁体122矫顽力的最低需求,从而确保第一扩散区1221可以提升整个永磁体122的抗退磁能力;同时限定第一扩散区1221的稀土元素的重量百分比需小于2.1%,可以在保证第一扩散区1221具备较强抗退磁能力的基础上,减少永磁体122的成本,从而满足电机100的低成本需求。
第二扩散区1222中稀土元素的含量占永磁体122的质量百分比为g2为0.98%-2.1%。第二扩散区1222中的稀土元素的质量占与第一扩散区1221中的稀土元素的质量占比相同,可作为第一扩散区1221的补充或独立作为扩散区。同时,第二扩散区1222的稀土元素的重量百分比需大于0.98%,以保证第二扩散区1222具备可满足永磁体122矫顽力的最低需求,从而确保第二扩散区1222可以提升整个永磁体122的抗退磁能力;同时限定第二扩散区1222的稀土元素的重量百分比需小于2.1%,可以在保证第二扩散区1222具备较强抗退磁能力的基础上,减少永磁体122的成本,从而满足电机100的低成本需求。
永磁体122还包括非扩散区1224,非扩散区1224中稀土元素的含量占永磁体122的质量百分比为g3,且g3<g1,g3<g2。非扩散区1224是指永磁体122中含稀土元素的浆料未渗透或扩散至的区域,非扩散区1224中稀土元素的质量占比小于第一扩散区1221和第二扩散中的稀土元素的质量占比,即两个扩散区的矫顽力均大于非扩散区1224的矫顽力。因此,第一扩散区1221和第二扩散区1222所能抵御的矫顽磁场的强度大于非扩散区1224所能抵御的矫顽磁场的强度,从而在非扩散区1224面临退磁风险时,可保持自身的磁感应强度,进而阻止非扩散区1224发生不可逆退磁,以实现提升永磁体122抗退磁能力,在延长永磁体122使用寿命的同时,提高其可靠性。
如图10所示,永磁体122还包括若干个第三扩散区1223,每个第三扩散区1223中稀土元素的重量占永磁体122重量的百分比为gi,gi>g3。永磁体122除可包括第一扩散区1221 和/或第二扩散区1222外,还可包括若干个第三扩散区1223,可作为第一扩散区1221和第二扩散区1222的补充。同时,每个扩散区中稀土元素的质量占比均大于非扩散区1224,即第三扩散区1223的矫顽力大于非扩散区1224的矫顽力。通过设置质量占比不同的第三扩散区1223和非扩散区1224,可以在每个永磁体122上形成退磁能力不同的第三扩散区1223和非扩散区1224,以通过梯度抗退磁区域强化永磁体122的抗退磁性能,进而降低永磁体122出现不可逆退磁问题的发生。
如图11-14所示,第一扩散区1221、第二扩散区1222和第三扩散区1223可同时设置于永磁体122中,也可单独设置于永磁体122中,对于永磁电机来说,在永磁体122宽度和厚度所在平面上,永磁体122容易在宽度两端退磁,以及宽度中间位置退磁;此外,永磁体122还容易在长度方向两端退磁。因此,在永磁体122容易退磁的位置设置扩散区既可以提高抗退磁性,同时保证降低成本。
如图11所示,永磁体122包括第一扩散区1221、第二扩散区1222和第三扩散区1223,且第三扩散区1223设置于第一扩散区1221第二扩散区1222之间,第一扩散区1221、第二扩散区1222和第三扩散区1223围合成回字型。
如图12所示,永磁体122包括第一扩散区1221和第二扩散区1222,且第一扩散区1221和第二扩散区1222分别设置于永磁体122的四个角部。
如图13所示,永磁体122包括第一扩散区1221、第二扩散区1222和第三扩散区1223,且第一扩散区1221、第二扩散区1222和第三扩散区1223分别平行设置于永磁体122的两侧和中部,呈三条型。
如图14所示,永磁体122中仅包括第二扩散区1222。
实施例4
如图1所示,本申请的一个实施例中,在上述实施例1至3任意一个的基础上,各运算公式中参数的取值范围任意满足以下一个或多个:40≤N≤200;1≤a≤8;0.35mm≤δ≤1mm;1mm≤L1max≤20mm;1mm≤L2max≤20mm;1mm≤W1max≤4mm;1mm≤W2max≤4mm。
在一些实施例中,公式(1)和公式(2)中参数的取值范围任意满足以下一个或多个:88≤N≤134;1≤a≤2;0.4mm≤δ≤0.6mm;2.8mm≤L1max≤4.2mm;1.5mm≤W1max≤2.3mm。
在另外一些实施例中,公式(3)和公式(4)中参数的取值范围任意满足以下一个或多个:40≤N≤200;1≤a≤8、0.35mm≤δ≤1mm;1mm≤L2max≤20mm;1mm≤W2max≤4mm。
在另外一些实施例中,公式(3)和公式(4)中参数的取值范围任意满足以下一个或多个:88≤N≤134;1≤a≤2;0.4mm≤δ≤0.6mm;2.8mm≤L2max≤4.2mm;1.5mm≤W2max ≤2.3mm。
在该实施例中,通过限定公式中各参数线圈匝数N,绕组并联支路数a、定子铁芯111与转子铁芯121间的间隙δ、第一扩散区1221沿永磁体122宽度方向的最大长度L1max、第一扩散区1221沿永磁体122厚度方向的最大长度W1max、第二扩散区1222沿永磁体122宽度方向的最大长度L2max和第二扩散区1222沿永磁体122厚度方向的最大长度W2max的范围值,以使其满足各公式中0.2≤k1≤12.5,0.2≤k2≤12.5,0.2≤k3≤6,0.2≤k4≤6,从而实现在保证退磁可靠性及不增加永磁体122体积的前提下,提高永磁体122局部抗退磁的能力,进而提高电机100的抗退磁能力,降低电机100的生产成本。
实施例5
如图1所示,本申请的一个实施例中,在上述实施例1至4任意一个的基础上,第一扩散区1221和第二扩散区1222沿永磁体122轴向方向全区域分布或局部分布。
在该实施例中,第一扩散区1221和第二扩散区1222可沿永磁体122轴向方向全区域分布或局部分布是指:第一扩散区1221和第二扩散区1222沿永磁体122长度方向的分布情况,其沿长度方向分布可以全区域分布,也可以部分区域分布,主要取决于永磁体122对于抗退磁性能的要求,部分区域分布主要是为了减小扩散区,从而降低成本。
转子组件120包括多个永磁体122,永磁体122在宽度和厚度所在截面上的扩散区域相同或不同。通过在转子组件120上设置多个永磁体122,可以强化转子组件120的抗退磁能力,从而进一步降低组件出现不可逆退磁的可能性。同时,对于一片永磁体122,在不同的永磁体122长度上的宽度和厚度所在平面上,扩散区可以相同,也可以不相同,只需保证永磁体122的整体抗退磁能力即可。
永磁体122采用径向充磁或平行充磁。永磁体122的充磁方向可以为径向充磁,也可以为平行充磁,只需保证转子组件120上的每个永磁体122的充磁方向一致,且每个永磁体122中的第一扩散区1221、第二扩散区1222、第三扩散区1223和非扩散区1224的充磁方向一致即可。在非扩散区1224因外部磁场产生退磁现象时,抗退磁能力较强的第一扩散区1221、第二扩散区1222和第三扩散区1223可保证自身的磁性,从而通过第一扩散区1221、第二扩散区1222和第三扩散区1223对非扩散区1224进行充磁,以避免永磁体122出现不可逆退磁的情况发生。
永磁体122的极对数P≥2。通过限定永磁体122的极对数不小于2,有利于提高电机100的永磁体122的抗退磁能力,并满足压缩机的使用要求的可靠性,进而提高压缩机运行的可靠性。
在一些实施例中,永磁体122的极对数P=2-4.
转子铁芯121由多个硅钢片层叠而成。转子铁芯121由多个硅钢片层叠而成,采用层叠的方式加工转子铁芯121,有利于减小涡流损耗。转子铁芯121在工作时,处于变化的磁场中,其内部感生的电流将导致能量损耗,该能量损耗称为涡流损耗。转子铁芯121由硅钢片叠压而成,可有效减少铁耗,提高转子组件120的可靠性。
实施例6
如图1所示,根据本申请的第二个方面,实施例提出了一种压缩机,包括壳体以及上述第一方面任一技术方案的电机100,电机100设于壳体的内部,由于压缩机包括上述任一技术方案的电机100,因此具有该电机100所能实现的全部有益效果。
实施例7
如图1所示,根据本申请的第三个方面,实施例提出了一种制冷机,包括上述第一方面任一技术方案电机100或上述第二方面任一技术方案的压缩机,由于制冷机包括上述任一技术方案的电机100或压缩机,因此具有该电机100或压缩机所能实现的全部有益效果。
制冷机还包括管路,管路与压缩机相连通,冷媒经管路、压缩机构循环回路以实现换热制冷。具体地,制冷机为空调。
下面根据上述实施例1-5的电机,描述本申请一些实施例和对比例电机的具体应用。
应用例1
一种电机100,包括定子组件110和转子组件120,其中:定子组件110包括定子铁芯111和绕组112,定子铁芯110设置有用于固定绕组112的凸起部1111,绕组112由线圈环绕凸起部1111形成,绕组112的线圈匝数N是指线圈环绕凸起部1111的圈数;转子组件120包括转子铁芯121和永磁体122,转子铁芯121设置有安装槽1211,转子铁芯121由多个硅钢片层叠而成,永磁体122设置于安装槽1211内,永磁体122采用径向充磁且极对数P为2;定子铁芯111围设于转子铁芯121的外侧并形成间隙。
选用尺寸/牌号为1.9×13×40/42SH的永磁体,在其沿长度方向的两端涂覆含稀土元素钕的浆料并进行高温处理,形成第一扩散区1221和第二扩散区1222,且第一扩散区1221和第二扩散区1222沿永磁体122的轴向方向全区域均匀分布,得本应用例的永磁体122。且第一扩散区1221中稀土元素钕的重量占比为1.5%,第二扩散区1221中稀土元素钕的重量占比为1.5%,非扩散区中不含稀土元素钕。
将绕组112的线圈匝数N=112、绕组112并联支路数a=1、定子铁芯111与转子铁芯121间的间隙δ=0.5mm、第一扩散区1221沿永磁体122宽度方向的最大长度L1max=3.5mm、 第一扩散区1221沿永磁体122厚度方向的最大长度W1max=1.9mm、第二扩散区1222沿永磁体122宽度方向的最大长度L2max=3.5mm、第二扩散区1222沿永磁体122厚度方向的最大长度W2max=1.9mm和变量c=0代入公式(1)-(4)中计算得出:k1=k2=1.18mm、k3=k4=0.87mm。
对比例1
一种电机100,包括定子组件110和转子组件120,其中:定子组件110包括定子铁芯111和绕组112,定子铁芯110设置有用于固定绕组112的凸起部1111,绕组112由线圈环绕凸起部1111形成,绕组112的线圈匝数N是指线圈环绕凸起部1111的圈数;转子组件120包括转子铁芯121和永磁体122,转子铁芯121设置有安装槽1211,转子铁芯121由多个硅钢片层叠而成,永磁体122设置于安装槽1211内,永磁体122采用径向充磁且极对数P为2;定子铁芯111围设于转子铁芯121的外侧并形成间隙。
对比例1与应用例1的永磁体的区别在于,对比例1选用尺寸/牌号为1.9×13×40/42SH的永磁体,但该永磁体未涂覆任何含稀土元素的浆料,即不含扩散区,且电机参数也不满足本申请的公式(1)-(4)的运算关系。
性能测试
测试应用例1和对比例1的电机100的退磁率以及永磁体的内禀矫顽力,其中退磁率的具体的测试过程如下:
首先将充磁饱和的转子组件120放置室温,测量转子组件120磁通量φ0;接着测试完初始磁通量的转子组件120放到恒温箱内放置4个小时以上,恒温箱温度按规定温度(130℃)设定;然后将试验用DC电机与直流电源连接,按预先设定的退磁电流值设定退磁电流(43A、50A等),准备就绪后从恒温箱内取出转子组件120,安装退磁测试工装,在直流退磁电流下,转子组件旋转一周;完成后,将转子组件120放置在常温下4小时以上,然后测定转子组件120的温度和退磁后的磁通量φ1
计算退磁率,计算公式如下:(计算时φi需采用到与φ0相同的温度):
退磁率=(φi0)/φ0×100%
其中:φ0为退磁试验初始时的转子组件120的磁通量;φi为第i个退磁电流值下退磁试验后转子组件120的磁通量。测试结果如表1所示:
表1:应用例1和对比例1的性能对比表
由表1可知,本申请提供的具体扩散区的永磁体,相对无扩散的永磁体,其内禀矫顽力提高了150KA/m;同时本申请提供的电机在50A/130℃下的退磁率可达2.68%,相较普通电机,退磁率下降29.66%,大大降低了电机的生产成本。
此外,经大量实验发现,当电机的参数线圈匝数N、绕组112并联支路数a、定子铁芯111与转子铁芯121间的间隙δ、第一扩散区1121沿永磁体122宽度方向的最大长度L1max、第一扩散区1121沿永磁体122厚度方向的最大长度W1max、第二扩散区1122沿永磁体122宽度方向的最大长度L2max、第二扩散1122区沿永磁体122厚度方向的最大长度W2max和变量c间不满足上述公式(1)-(4)的运算关系时,均不利于电机成本的降低。具本地,当k1小于0.2mm,k2小于0.2mm,k3小于0.2mm,k4小于0.2mm,电机的退磁效果均不佳;当k1大于12.5mm,k2大于12.5mm,k3大于6mm,k4大于6mm,电机的退磁效果与实施例1相近,但成本却远远高于实施例1,因此电机的性价比不高,成本反而升高。
综上所述,本申请的上述技术方案相对于现有技术,至少具有如下技术效果或优点:
(1)本申请依据定子铁芯与转子铁芯间的间隙与电机的抗退磁性能正相关,等效绕组匝数与电机的抗退磁性能负相关,推导并验证了通过合理设置绕组的线圈匝数N,绕组并联支路数a、定子铁芯与所述转子铁芯间的间隙δ、第一扩散区沿永磁体宽度方向的最大长度L1max、第一扩散区沿永磁体厚度方向的最大长度W1max和变量c间的关系,并使之满足上述公式(1)和公式(2),可实现在保证退磁可靠性及不增加永磁体体积的前提下,提高永磁体局部抗退磁能力,进而提高电机的抗退磁能力,降低电机的生产成本。
(2)本申请提供的电机,其永磁体在50A/130℃下的退磁率可达2.68%。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下还可以做出若干简单推演或替换,而不必经过创造性的劳动。因此,本领域技术人员根据本申请的揭示,对本申请做出的简单改进都应该在本申请的保护范围之内。上述实施例为本申请 的优选实施例,凡与本申请类似的结构及所作的等效变化,均应属于本申请的保护范畴。

Claims (15)

  1. 一种电机,包括:
    定子组件(110),包括定子铁芯(111)和绕组(112),所述定子铁芯(111)设置有凸起部(1111),线圈环绕所述凸起部(1111)形成所述绕组(112);以及
    转子组件(120),包括转子铁芯(121)和永磁体(122),所述转子铁芯(121)设置有安装槽(1211),所述永磁体(122)设置于所述安装槽(1211)内,所述定子铁芯(111)围设于所述转子铁芯(121)的外侧,且所述定子铁芯(111)与转子铁芯(121)之间具有间隙,所述永磁体(122)的宽度和厚度所在的平面上设置有扩散区,所述扩散区包括:
    第一扩散区(1221),设置于所述永磁体(122)宽度中心线的一侧;和/或
    第二扩散区(1222),设置于所述永磁体(122)宽度中心线的另一侧;
    所述第一扩散区(1221)和所述第二扩散区(1222)中均含有稀土元素;
    其中:所述绕组(112)的线圈匝数N、所述绕组(112)的并联支路数a、所述定子铁芯(111)与所述转子铁芯(121)间的间隙δ、所述第一扩散区(1221)沿所述永磁体(122)宽度方向的最大长度L1max、所述第一扩散区(1221)沿所述永磁体(122)厚度方向的最大长度W1max和变量c满足以下公式(1)和公式(2):
    上述公式中:0.2≤k1≤12.5,0.2≤k3≤6;绕组角接时c=0,绕组星接时c=1。
  2. 根据权利要求1所述的电机,其中,所述第二扩散区(1222)沿所述永磁体(122)宽度方向的最大长度L2max、所述第二扩散区(1222)沿所述永磁体(122)厚度方向的最大长度W2max满足以下公式(3)和公式(4):
    上述公式中:0.2≤k2≤12.5,0.2≤k4≤6;绕组角接时c=0,绕组星接时c=1。
  3. 根据权利要求1或2所述的电机,其中,所述稀土元素包括镝、铽、镨、钕、铈中 的至少一种。
  4. 根据权利要求1至3任一项所述的电机,其中,所述稀土元素均匀或非均匀分布于所述扩散区中。
  5. 根据权利要求1至4任一项所述的电机,其中,所述第一扩散区(1221)中稀土元素的含量占所述永磁体(122)的质量百分比g1为0.98%-2.1%。
  6. 根据权利要求5所述的电机,其中,所述第二扩散区(1222)中稀土元素的含量占所述永磁体(122)的质量百分比g2为0.98%-2.1%。
  7. 根据权利要求6所述的电机,其中,所述永磁体(122)还包括非扩散区(1224),所述非扩散区(1224)中稀土元素的含量占所述永磁体(122)的质量百分比为g3,且g3<g1,g3<g2
  8. 根据权利要求7所述的电机,其中,所述永磁体(122)还包括若干个第三扩散区(1223),所述第三扩散区设置于所述第一扩散区(1221)和所述第二扩散区(1222)之间,每个所述第三扩散区(1223)中稀土元素的含量占所述永磁体(122)的质量百分比为gi,gi>g3
  9. 根据权利要求1至8任一项所述的电机,其中,所述第一扩散区(1221)和所述第二扩散区(1222)沿所述永磁体(122)轴向方向全区域分布或局部分布。
  10. 根据权利要求1至9任一项所述的电机,其中,所述转子组件(120)包括多个永磁体(122),在所述永磁体(122)不同宽度和厚度所在截面上的所述扩散区相同或不同。
  11. 根据权利要求1至10任一项所述的电机,其中,所述永磁体(122)采用径向充磁或平行充磁。
  12. 根据权利要求1至11任一项所述的电机,其中,所述永磁体(122)的极对数P≥2。
  13. 根据权利要求1至12任一项所述的电机,其中,所述转子铁芯(121)由多个硅钢片层叠而成。
  14. 一种压缩机,包括壳体以及如权利要求1至13任意一项所述的电机,其中所述电机设于所述壳体的内部。
  15. 一种制冷机,包括如权利要求1至13任意一项所述的电机,或如权利要求14所述的压缩机。
PCT/CN2023/115788 2022-11-10 2023-08-30 一种可以提高抗退磁性的电机、压缩机和制冷机 WO2024098900A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211403606.0A CN118054593A (zh) 2022-11-10 2022-11-10 一种可以提高抗退磁性的电机、压缩机和制冷机
CN202211403606.0 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024098900A1 true WO2024098900A1 (zh) 2024-05-16

Family

ID=91031881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115788 WO2024098900A1 (zh) 2022-11-10 2023-08-30 一种可以提高抗退磁性的电机、压缩机和制冷机

Country Status (2)

Country Link
CN (1) CN118054593A (zh)
WO (1) WO2024098900A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112476A (ja) * 2000-09-28 2002-04-12 Hitachi Ltd 永久磁石式回転電機
CN102355108A (zh) * 2011-09-26 2012-02-15 佛山市南海晶惠普电子科技有限公司 高品质三相交流永磁伺服同步电动机
CN106797146A (zh) * 2014-08-25 2017-05-31 三菱电机株式会社 电动机、压缩机以及制冷循环装置
CN108539943A (zh) * 2018-06-19 2018-09-14 安徽美芝精密制造有限公司 永磁同步电机及压缩机
CN114709952A (zh) * 2022-04-28 2022-07-05 安徽美芝精密制造有限公司 转子组件、永磁电机和压缩机
CN114731075A (zh) * 2020-07-23 2022-07-08 华为数字能源技术有限公司 电机转子和电机
CN114759703A (zh) * 2022-04-28 2022-07-15 安徽美芝精密制造有限公司 转子组件、永磁电机和压缩机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112476A (ja) * 2000-09-28 2002-04-12 Hitachi Ltd 永久磁石式回転電機
CN102355108A (zh) * 2011-09-26 2012-02-15 佛山市南海晶惠普电子科技有限公司 高品质三相交流永磁伺服同步电动机
CN106797146A (zh) * 2014-08-25 2017-05-31 三菱电机株式会社 电动机、压缩机以及制冷循环装置
CN108539943A (zh) * 2018-06-19 2018-09-14 安徽美芝精密制造有限公司 永磁同步电机及压缩机
CN114731075A (zh) * 2020-07-23 2022-07-08 华为数字能源技术有限公司 电机转子和电机
CN114709952A (zh) * 2022-04-28 2022-07-05 安徽美芝精密制造有限公司 转子组件、永磁电机和压缩机
CN114759703A (zh) * 2022-04-28 2022-07-15 安徽美芝精密制造有限公司 转子组件、永磁电机和压缩机

Also Published As

Publication number Publication date
CN118054593A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
CN111555478B (zh) 电机、压缩机和制冷设备
KR102051823B1 (ko) 전동기, 로터, 압축기 및 냉동 공조 장치
CN109274240A (zh) 复合型非晶合金轴向磁通电机
EP3965265A1 (en) Electric motor, compressor, and refrigerating apparatus
US20230163647A1 (en) Motor rotor and motor
WO2024098900A1 (zh) 一种可以提高抗退磁性的电机、压缩机和制冷机
WO2024098891A1 (zh) 一种能提升抗退磁性的转子组件、电机、压缩机和制冷机
WO2024098921A1 (zh) 一种能够加强抗退磁性的转子、电机和压缩机和制冷机
WO2024098922A1 (zh) 一种可以加强抗退磁性的转子、电机、压缩机和制冷机
WO2011030409A1 (ja) 永久磁石式回転機用回転子
WO2024099043A1 (zh) 一种转子结构、永磁电机和应用
WO2019113882A1 (zh) 直流无刷低速电机、风扇及磁铁与磁轭带组合的制作工艺
WO2021237890A1 (zh) 电机、压缩机和制冷设备
CN112134385B (zh) 电机、压缩机和制冷设备
CN209709789U (zh) 转子、电机、压缩机及空调器、车辆
WO2024099057A1 (zh) 电机、压缩机及家用电器
CN220692892U (zh) 电机、压缩机以及制冷设备
WO2024083155A1 (zh) 电机、压缩机与制冷设备
JP2001268873A (ja) 圧縮機用モータ及びその応用機器
WO2024083156A1 (zh) 一种转子及其应用
CN220797896U (zh) 电机、压缩机以及制冷设备
WO2024083076A1 (zh) 永磁电机、压缩机和制冷设备
CN220822725U (zh) 一种电机、压缩机和温度调节设备
WO2024082799A1 (zh) 电机、压缩机和制冷设备
CN220628977U (zh) 电机、压缩机与制冷设备