WO2024098845A1 - 一种掩膜组件、蒸镀方法和蒸镀设备 - Google Patents

一种掩膜组件、蒸镀方法和蒸镀设备 Download PDF

Info

Publication number
WO2024098845A1
WO2024098845A1 PCT/CN2023/110462 CN2023110462W WO2024098845A1 WO 2024098845 A1 WO2024098845 A1 WO 2024098845A1 CN 2023110462 W CN2023110462 W CN 2023110462W WO 2024098845 A1 WO2024098845 A1 WO 2024098845A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
evaporation
sheets
row
rows
Prior art date
Application number
PCT/CN2023/110462
Other languages
English (en)
French (fr)
Inventor
杨一新
Original Assignee
季华实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 季华实验室 filed Critical 季华实验室
Publication of WO2024098845A1 publication Critical patent/WO2024098845A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a mask assembly, an evaporation method and an evaporation device.
  • OLED displays have many advantages over LCD displays, such as good low-temperature characteristics, short response time, richer colors that are closer to the display, and thinner thickness and lighter weight. Therefore, OLED displays are replacing LCD displays, which have already occupied a huge market, with their excellent performance.
  • the precision metal mask plate In the evaporation machine used for manufacturing OLED devices, a precision metal mask plate is required.
  • the precision metal mask plate generally includes multiple mask sheets. Since the mask sheets are easily deformed due to environmental influences such as temperature, the edges of the mask sheets are generally set wider. This setting results in a larger gap between the effective evaporation areas of adjacent mask sheets, which in turn leads to a low utilization rate of the substrate. In addition, this method can generally only be used to manufacture small-sized OLED devices.
  • the technical problem to be solved by the present disclosure is to solve the existing problem that, since the mask sheet is easily deformed by environmental influences such as temperature, it is necessary to set a wider edge of the mask sheet, which results in a larger gap between the effective evaporation areas of adjacent mask sheets, thereby causing a low utilization rate of the substrate.
  • a mask assembly, an evaporation method and an evaporation device are disclosed.
  • the present disclosure provides a mask assembly, comprising a plurality of rows of mask sheets and x mask frames; the plurality of rows of mask sheets correspond to evaporation patterns;
  • the mask sheets satisfying the i+nxth row are arranged on the i-th mask frame in sequence according to the row number to form the i-th mask plate;
  • a first shielding portion is provided between adjacent rows of mask sheets on the same mask frame
  • the distance between the edges of adjacent rows of mask sheets on the same mask frame is smaller than the sum of the widths of other rows of mask sheets between the row numbers of the adjacent rows of mask sheets;
  • i and x are both positive integers, and i is less than or equal to x; x is greater than 1; and n is a non-negative integer.
  • the gap is greater than or equal to the sum of the maximum expansion amounts of the mask sheet and the first shielding portion.
  • a second shielding portion is disposed on the gap.
  • the second shielding portion includes a magnetic material.
  • the mask sheet and the first shielding portion on an adjacent side are integrally formed.
  • the evaporation pattern includes a plurality of evaporation unit patterns arranged in an array; each row of mask sheets corresponds to a row of evaporation unit patterns of the evaporation pattern.
  • the evaporation pattern includes a plurality of evaporation unit patterns arranged in an array; except for the first and last rows of the mask sheets, each row of the mask sheets corresponds to part of the evaporation unit patterns in the previous row and part of the evaporation unit patterns in the next row of the evaporation pattern.
  • the evaporation pattern is an evaporation unit pattern.
  • the mask sheet has the same thickness as the first shielding portion.
  • the present disclosure also provides an evaporation method using a mask assembly, which is applied to any of the above-mentioned mask assemblies, and the method includes:
  • the target substrate is evaporated using the 1st to xth mask plates in sequence.
  • the method when the target substrate is evaporated using the i-th mask plate, the method includes:
  • the evaporation source and the i-th mask plate are controlled to move relative to each other, and the moving direction is parallel to the plane where the i-th mask plate is located and perpendicular to the length direction of the mask sheet.
  • the target substrate is evaporated using the first to xth mask plates in sequence, Also includes:
  • the first position refers to the position where the evaporation source is below the mask; the second position refers to the position where the evaporation source is not below the mask.
  • the embodiment of the present disclosure further provides an evaporation device, comprising an evaporation source and any one of the mask assemblies described above, wherein the mask assembly is disposed between the evaporation source and a target substrate.
  • the evaporation chamber comprises a plurality of evaporation zones; a plurality of mask plates of a mask assembly are used in the plurality of evaporation zones in a one-to-one correspondence to perform evaporation deposition on a target substrate.
  • the evaporation areas of the same evaporation chamber are interconnected and share the same evaporation source; the evaporation source is used to scan and evaporate the evaporation areas in sequence.
  • a mask plate buffer chamber is included; the mask plate buffer chamber is used to store at least one mask assembly.
  • a plurality of mask plate buffer chambers are included; different mask plate buffer chambers store different mask assemblies; and the same mask plate buffer chamber is used to store a plurality of mask plates of the same mask assembly.
  • At least one evaporation group is included; different evaporation groups correspond to different mask components;
  • Each of the evaporation groups includes multiple evaporation chambers and multiple mask cache chambers; the multiple mask cache chambers of the same evaporation group store multiple mask plates of the same mask assembly in a one-to-one correspondence; the multiple evaporation chambers of the same evaporation group use the multiple mask plates in each mask cache chamber of the same evaporation group to evaporate the target substrate in a one-to-one correspondence.
  • the present disclosure provides a mask assembly, including multiple rows of mask sheets and x mask frames; the multiple rows of mask sheets correspond to the evaporation patterns, and the present disclosure divides the multiple rows of mask sheets into x groups, and arranges the mask sheets satisfying the i+nxth row in sequence according to the row number on the i-th mask frame to form the i-th mask plate.
  • adjacent rows of mask sheets on the same mask frame are provided with Since the distance between the edges of adjacent rows of mask sheets on the same mask frame is less than the sum of the widths of other rows of mask sheets between the row numbers of the adjacent rows of mask sheets, after the target substrate is evaporated using the 1st to xth mask plates in sequence, the gap between the effective evaporation areas of adjacent mask sheets can be reduced, so the utilization rate of the target substrate can be improved.
  • FIG1 is a schematic structural diagram of a mask plate in the prior art
  • FIG2 is a schematic structural diagram of a mask assembly provided by an embodiment of the present disclosure.
  • FIG3 is a vapor deposition pattern formed by vapor deposition on a target substrate using the mask assembly shown in FIG2 ;
  • FIG4 is a schematic structural diagram of another mask assembly provided in an embodiment of the present disclosure.
  • FIG5 is a schematic structural diagram of another mask assembly provided in an embodiment of the present disclosure.
  • FIG6 is a schematic diagram of the cross-sectional structure along C1C2 in FIG5 ;
  • FIG7 is a schematic diagram of using a mask plate of a mask assembly according to an embodiment of the present disclosure to perform vapor deposition on a target substrate;
  • FIG8 is a schematic structural diagram of another mask assembly provided by an embodiment of the present disclosure.
  • FIG9 is a schematic structural diagram of another mask assembly provided by an embodiment of the present disclosure.
  • FIG10 is a vapor deposition pattern formed by vapor deposition using the first mask plate of the mask assembly shown in FIG9;
  • FIG11 is a vapor deposition pattern formed by vapor deposition using the second mask plate of the mask assembly shown in FIG9;
  • FIG12 is a schematic diagram of a vapor deposition pattern after the first vapor deposition using the mask assembly shown in FIG2 according to an embodiment of the present disclosure
  • FIG13 is a schematic diagram of a vapor deposition pattern after the second vapor deposition using the mask assembly shown in FIG2 according to an embodiment of the present disclosure
  • FIG14 is a schematic diagram of the structure of an evaporation device provided in an embodiment of the present disclosure.
  • FIG. 15 is a diagram of an evaporation process in an evaporation chamber of an evaporation device provided in an embodiment of the present disclosure. Schematic diagram;
  • FIG16 is a schematic diagram of the structure of another evaporation device provided in an embodiment of the present disclosure.
  • FIG17 is a schematic diagram of the structure of another evaporation device provided in an embodiment of the present disclosure.
  • FIG18 is a schematic diagram of the structure of another evaporation device provided in an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of the evaporation process in a certain evaporation group in the evaporation equipment provided in an embodiment of the present disclosure.
  • FIG. 1 is a structural schematic diagram of a mask plate in the prior art. As shown in Figure 1, it includes multiple mask sheets 11, and the multiple mask sheets 11 are used together for evaporation to form an evaporation pattern (the evaporation pattern includes multiple rectangular patterns on the right side of Figure 1).
  • the mask sheet 11 Since the mask sheet 11 is easily deformed by environmental influences such as temperature, it is necessary to set the edge of the mask sheet 11 to be wider, that is, set the edges on both sides of the effective evaporation area 111 in the mask sheet 11 to a wider width L. In addition, due to process reasons, there will inevitably be a gap 112 between adjacent mask sheets 11.
  • the above mask plate configuration results in a larger gap S between the effective evaporation areas 111 of adjacent mask plates, so the gap S between two adjacent rows of evaporation unit patterns 121 in the evaporation pattern formed on the substrate 12 by this mask plate is larger. Therefore, the utilization rate of the substrate using the existing mask plate is low.
  • the present disclosure provides a mask assembly, an evaporation method and an evaporation device, which can reduce the gap between the effective evaporation areas of adjacent mask sheets after sequentially using the first to xth mask sheets to evaporate the target substrate, thereby improving the utilization rate of the target substrate.
  • the method is introduced below in conjunction with a specific embodiment.
  • the mask assembly provided by the embodiment of the present disclosure includes multiple rows of mask sheets and x mask frames.
  • the multiple rows of mask sheets correspond to the evaporation patterns formed on the target substrate. That is, after the multiple rows of mask sheets are arranged in sequence, the effective evaporation areas of the multiple rows of mask sheets arranged in sequence correspond to the evaporation patterns.
  • the embodiment of the present disclosure divides the multiple rows of mask sheets into x groups, wherein the mask sheets satisfying the i+nxth row are arranged in sequence on the i-th mask frame according to the row number to form the i-th mask plate.
  • the mask sheets in the 1st row, the mask sheets in the 1+xth row, the mask sheets in the 1+2xth row, ..., the mask sheets in the 1+nxth row are arranged in sequence on the 1st mask frame according to the row number to form the 1st mask plate;
  • the mask sheets in the 2nd row, the mask sheets in the 2+xth row, the mask sheets in the 2+2xth row, ..., the mask sheets in the 2+nxth row are arranged in sequence on the 2nd mask frame according to the row number to form the 1st mask plate; ...;
  • the mask sheets in the xth row, the mask sheets in the x+xth row, the mask sheets in the x+2xth row, ..., the mask sheets in the x+nxth row are arranged in sequence on the xth mask frame according to the row number to form the xth mask plate.
  • i and x are both positive integers, and i is less than or equal to x; x is greater than 1; and n is a non-negative integer.
  • a first shielding portion is provided between adjacent rows of mask sheets on the same mask frame.
  • the first shielding portion is used to shield the gaps between adjacent rows of mask sheets when the mask plate is used for evaporation to avoid evaporation of film layer material.
  • the distance between the edges of adjacent rows of mask sheets on the same mask frame is less than the sum of the widths of other rows of mask sheets between the row numbers of the adjacent rows of mask sheets.
  • the disclosed embodiment includes x mask plates. When vapor deposition is performed on a target substrate, the 1st to xth mask plates are sequentially used to vapor deposit the target substrate. Since the distance between the edges of adjacent rows of mask sheets on the same mask frame is less than the sum of the widths of other rows of mask sheets between the row numbers of the adjacent rows of mask sheets, the mask plates used for two adjacent vapor depositions may have overlapping areas for mask sheets with adjacent row numbers.
  • the mask sheet of the 1st+2xth row of the first mask plate has an overlapping setting area with the mask sheet of the 2nd+2xth row of the second mask plate. Accordingly, by using the mask assembly disclosed in the present invention for vapor deposition, the gap between the effective vapor deposition areas of mask sheets with adjacent row numbers can be reduced, thereby improving the utilization rate of the target substrate.
  • FIG2 is a schematic diagram of the structure of a mask assembly provided in an embodiment of the present disclosure.
  • the mask assembly provided in an embodiment of the present disclosure includes a plurality of rows of mask sheets 21 (FIG2 shows an exemplary arrangement of 5 rows) and two mask frames.
  • the plurality of rows of mask sheets 21 correspond to The evaporation pattern formed on the target substrate, that is, the evaporation pattern formed on the target substrate corresponding to the mask sheets in the first row to the fifth row.
  • the left image in FIG2 from top to bottom, the mask sheets in the first row 211, the mask sheets in the third row 213, and the mask sheets in the fifth row 215 are shown.
  • the mask sheets in the second row 212 and the mask sheets in the fourth row 214 are shown.
  • the embodiment of the present disclosure divides the multiple rows of masks 21 into two groups.
  • the first row of masks, the third row of masks, and the fifth row of masks are sequentially arranged on the first mask frame 22 to form the first mask plate (such as the left mask plate in FIG2 ).
  • the second row of masks and the fourth row of masks are sequentially arranged on the second mask frame 23 to form the second mask plate (such as the right mask plate in FIG2 ). That is, the odd-numbered rows of masks are arranged on the first mask frame 22, and the even-numbered rows of masks are arranged on the second mask frame 23.
  • the disclosed embodiment also provides a first shielding portion 24 between adjacent rows of mask sheets on the same mask frame. Specifically, after the mask sheets are grouped, the mask sheets of the first group (odd-numbered rows of mask sheets in FIG. 2 ) and the second group (even-numbered rows of mask sheets in FIG. 2 ) are respectively located on different mask frames, so that there is no mask sheet placed at the position where the second group of mask sheets should have been placed on the first mask plate, and there is no mask sheet placed at the position where the first group of mask sheets should have been placed on the second mask plate. If the first shielding portion 24 is not provided to shield the blank portions where the mask sheets are missing, these blank portions will also be coated during evaporation, thereby affecting the correctness of the evaporation pattern. Therefore, it is necessary to provide the first shielding portion 24 to shield the positions where the mask sheets are missing to prevent the portions other than the evaporation unit pattern from being erroneously coated during evaporation.
  • the distance between the edges of adjacent rows of mask sheets on the same mask frame is smaller than the sum of the widths of other rows of mask sheets between the row numbers of the adjacent rows of mask sheets.
  • the mask sheets in the first to third rows are taken as an example for description.
  • the distance between the lower edge of the mask sheet in the first row and the upper edge of the mask sheet in the third row on the first mask frame is A1.
  • the mask sheet between the row numbers of the mask sheets in the first row and the mask sheets in the third row on the first mask frame is the mask sheet in the second row, and the mask sheet in the second row is located on the second mask frame.
  • the width of the mask sheet in the second row is A2.
  • the first mask plate and the second mask plate are used for evaporation in sequence. Therefore, when the first mask plate is used for evaporation, the setting positions of the first row of mask sheets and the third row of mask sheets are different from those when the second mask plate is used for evaporation.
  • the setting position of the second row of mask sheets during the evaporation of the mask plate can be partially overlapped.
  • the setting position of the lower edge of the first row of mask sheets when the first mask plate is used for evaporation and the upper edge of the second row of mask sheets when the second mask plate is used for evaporation can have an overlapping area X1
  • the upper edge of the third row of mask sheets when the first mask plate is used for evaporation and the setting position of the lower edge of the second row of mask sheets when the second mask plate is used for evaporation can have an overlapping area X2. Therefore, the lower edge of the pattern evaporated in the effective evaporation area 2111 of the first row of mask sheets and the upper edge of the pattern evaporated in the effective evaporation area 2121 of the second row of mask sheets can be seamlessly connected.
  • Figure 3 is a evaporation pattern formed by evaporation on the target substrate 25 using the mask assembly shown in Figure 2.
  • B1 indicates the setting position corresponding to the mask sheet of the first row when the first mask sheet is used for evaporation
  • B3 indicates the setting position corresponding to the mask sheet of the third row when the first mask sheet is used for evaporation
  • B2 indicates the setting position corresponding to the mask sheet of the second row when the second mask sheet is used for evaporation
  • C1 indicates the position of the pattern evaporated in the effective evaporation area 2111 of the mask sheet of the first row when the first mask sheet is used for evaporation
  • C3 indicates the position of the pattern evaporated in the effective evaporation area 2131 of the mask sheet of the third row when the first mask sheet is used for evaporation
  • C2 indicates the position of the pattern evaporated in the effective evaporation area 2121 of the mask sheet of the second row when the second mask sheet is used for evaporation.
  • the distance between the lower edge of the pattern evaporated in the effective evaporation area of the mask sheet of the first row and the upper edge of the pattern evaporated in the effective evaporation area of the mask sheet of the second row is reduced to 0.
  • the distance between the lower edge of the pattern deposited in the effective deposition area of the second row of mask sheets and the upper edge of the pattern deposited in the effective deposition area of the third row of mask sheets is reduced to 0, thereby improving the utilization rate of the target substrate. Comparing FIG3 with FIG1 (the right side of FIG1 ), it can be seen that for target substrates of the same area, the utilization rate of the target substrate is higher when the solution of the embodiment of the present disclosure is adopted.
  • the effective evaporation area of each row of mask sheets in FIG. 2 has a precision evaporation pattern, and the specific form of the precision evaporation pattern is not limited here.
  • the embodiment of the present disclosure groups the mask sheets, which can reduce the size of a single mask sheet compared to the prior art method of sequentially arranging each mask sheet on a mask frame. Therefore, the absolute expansion of a single mask sheet due to environmental influences such as temperature becomes smaller, making it easier to align the mask plate with the target substrate, thereby improving the success rate of alignment.
  • a plurality of evaporation sheets arranged in an array similar to that in FIG. 3 are formed.
  • Unit pattern (FIG. 3 shows 16 evaporation unit patterns in 4 rows and 4 columns as an example). Each evaporation unit pattern corresponds to an OLED display panel area.
  • a single OLED display panel is formed by subsequently cutting the large plate shown in FIG. 3. Since the size of a single mask sheet is reduced, the absolute expansion amount of a single mask sheet due to environmental influences such as temperature becomes smaller, so the size of the evaporation pattern of the unit pixel of the OLED display panel in the effective evaporation area of the mask sheet can be reduced, so the resolution of the prepared OLED display panel can also be improved.
  • the multiple rows of masks can also be divided into three, four or more groups, which is not specifically limited here.
  • the principle of dividing into three, four or more groups to improve the utilization rate of the target substrate is similar to the principle of dividing into two groups above, which is not repeated here.
  • the gap is greater than or equal to the sum of the maximum expansion amounts of the mask sheet and the first shielding portion.
  • FIG4 is a schematic diagram of the structure of another mask assembly provided in an embodiment of the present disclosure. As shown in FIG4, there is a gap 26 between the mask sheet 21 and the adjacent first shielding portion 24. Since the mask sheet and the first shielding portion will expand when affected by environmental factors such as temperature, when the two are in contact with each other and squeezed, wrinkles will be generated in the mask sheet and the first shielding portion, affecting the accuracy of the evaporation pattern.
  • a gap is set between the mask sheet and the adjacent first shielding portion, and the gap is set to be greater than or equal to the sum of the maximum expansion amounts of the mask sheet and the first shielding portion, so as to prevent the mask sheet and the first shielding portion from squeezing each other when expanding.
  • the gap 26 has a uniform width along the extension direction of the mask sheet.
  • FIG. 5 is a schematic diagram of the structure of another mask assembly provided in an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of the cross-sectional structure along C1C2 in FIG. 5 .
  • a second shielding portion 27 for shielding the gap is provided at the position of the gap. As shown in FIG. 5 and FIG. 6 , since a gap is provided between the mask sheet and the first shielding portion, during evaporation, the position where the gap is located will be evaporated with film layer material during evaporation, affecting the evaporation pattern. Therefore, in an embodiment of the present disclosure, a second shielding portion 27 for shielding the gap is provided at the position of the gap. As shown in FIG.
  • a second shielding portion 27 is provided above the gap 26 between the mask sheet 21 and the first shielding portion 24.
  • the second shielding portion 27 is specifically used to prevent the gap portion from being evaporated with film layer material on a portion other than the evaporation pattern during evaporation.
  • the second shielding portion includes a magnetic material.
  • FIG. 7 is a diagram of a method for using a first mask plate to align a target object according to an embodiment of the present disclosure.
  • a magnetic plate 29 is generally provided on the back of the target substrate 20.
  • the second shielding portion 27 is provided to include a magnetic material.
  • the mask plate is placed on the target substrate 20. Since the second shielding portion 27 includes a magnetic material and the magnetic plate 29 is provided on the back of the target substrate 20, the magnetic plate on the back of the target substrate and the second shielding portion attract each other, and the mask sheet of the mask plate and the first shielding portion can be stably adsorbed on the target substrate.
  • a pressing plate 30 may be provided between the target substrate 20 and the magnetic plate 29 .
  • the provision of the pressing plate may prevent the target substrate and the mask from being misaligned when the magnetic plate 29 is attached.
  • FIG. 7 is only an exemplary display of the structure, and the size, thickness and size of each part can be adjusted according to actual needs and are not specifically limited here.
  • the mask sheet and the first shielding portion adjacent to a certain side are integrally formed.
  • the mask sheet and the first shielding portion of an adjacent side can be integrally formed.
  • the mask sheet and the first shielding portion of an adjacent side are integrally formed so that there is no gap between the mask sheet and the first shielding portion of an adjacent side. This prevents the mask sheet and the first shielding portion of an adjacent side from contacting and squeezing each other when they expand due to environmental factors such as temperature, resulting in wrinkles on the mask sheet and the first shielding portion, and also prevents the film layer material from being evaporated on the portion other than the evaporation unit pattern during evaporation due to the need to set a gap between the two.
  • the evaporation pattern includes a plurality of evaporation unit patterns arranged in an array; each row of mask sheets corresponds to a row of evaporation unit patterns of the evaporation pattern.
  • Fig. 8 is a schematic diagram of the structure of another mask assembly provided by an embodiment of the present disclosure, as shown in Fig. 8, each row of mask sheets 21 corresponds to a row of evaporation unit patterns 28 of the evaporation pattern. That is, the effective evaporation area of each row of mask sheets corresponds to a row of evaporation unit patterns of the evaporation pattern.
  • the first to xth mask plates are sequentially used to vapor deposit the target substrate. Since the distance between the edges of adjacent rows of mask sheets on the same mask frame is less than the sum of the widths of other rows of mask sheets between the row numbers of the adjacent rows of mask sheets, the mask plates used for two adjacent vapor depositions can have overlapping areas with adjacent row numbers. This arrangement can reduce the gap between the effective vapor deposition areas of the mask sheets with adjacent row numbers, thereby improving the utilization rate of the target substrate.
  • the evaporation pattern includes a plurality of evaporation unit patterns arranged in an array; Except for the first and last rows of mask sheets, each row of mask sheets corresponds to a portion of the evaporation unit patterns of the previous row and a portion of the evaporation unit patterns of the next row.
  • the first row of masks on the left mask plate in FIG2 is the first row of masks
  • the fifth row of masks is the last row of masks.
  • the first row of masks only corresponds to part of one row of evaporation unit graphics of the evaporation pattern
  • the fifth row of masks only corresponds to part of one row of evaporation unit graphics of the evaporation pattern.
  • the third row of masks on the left mask plate in FIG2 and the second and fourth rows of masks on the right mask plate in FIG2 all correspond to part of the evaporation unit graphics of the previous row of the evaporation pattern and part of the evaporation unit graphics of the next row.
  • each row of masks corresponds to part of the evaporation unit graphics of the previous row of the evaporation pattern and part of the evaporation unit graphics of the next row.
  • This setting can make the distance between the edges of the graphics evaporated by the masks of adjacent row numbers 0, further improving the utilization rate of the target substrate.
  • the evaporation pattern is an evaporation unit pattern.
  • FIG9 is a schematic diagram of the structure of another mask assembly provided in an embodiment of the present disclosure
  • FIG10 is a vapor-deposition pattern formed after vapor deposition using the first mask plate of the mask assembly shown in FIG9
  • FIG11 is a vapor-deposition pattern formed after vapor deposition using the second mask plate of the mask assembly shown in FIG9
  • the left side of FIG9 is a schematic diagram of the structure of the first mask plate
  • the right side of FIG9 is a schematic diagram of the structure of the second mask plate.
  • the thickness of the mask sheet is the same as that of the first shielding portion.
  • the mask sheet and the first shielding portion are mounted on the same mask frame, and during evaporation, the mask plate will be attached to the target substrate. If the thickness of the mask sheet is different from the thickness of the first shielding portion, it will affect the flatness of the mask plate and the target substrate, thereby affecting the evaporation pattern on the target substrate.
  • the embodiment of the present disclosure further provides an evaporation method using a mask assembly, which may use the mask assembly described in any of the above embodiments, and includes:
  • the target substrate is evaporated using the first to xth mask plates in sequence.
  • the target substrate is evaporated using the mask plate on the left side in Figure 2 (referred to as the first mask plate) and the mask plate on the right side in Figure 2 (referred to as the second mask plate). Since the patterns of the first mask plate and the second mask plate are complementary, the target evaporation pattern can be evaporated by performing evaporation successively.
  • FIG12 is a schematic diagram of a pattern deposited after the first deposition using the mask assembly shown in FIG2 according to an embodiment of the present disclosure
  • FIG13 is a schematic diagram of a pattern deposited after the second deposition using the mask assembly shown in FIG2 according to an embodiment of the present disclosure.
  • the lower edge of the mask sheet of the 1st row when the 1st mask plate is used for deposition and the upper edge of the mask sheet of the 2nd row when the 2nd mask plate is used for deposition may have an overlapping area X1
  • the upper edge of the mask sheet of the 3rd row when the 1st mask plate is used for deposition and the lower edge of the mask sheet of the 2nd row when the 2nd mask plate is used for deposition may have an overlapping area X2.
  • the distance between the lower edge of the pattern deposited in the effective evaporation area 2111 of the first row of mask sheets and the upper edge of the pattern deposited in the effective evaporation area 2121 of the second row of mask sheets is significantly reduced, for example, seamless connection can be achieved.
  • the distance between the lower edge of the pattern deposited in the effective evaporation area 2121 of the second row of mask sheets and the upper edge of the pattern deposited in the effective evaporation area 2131 of the third row of mask sheets is significantly reduced, for example, seamless connection can also be achieved, and is not limited by the edge distance outside the effective evaporation area of each mask sheet.
  • the distance between the lower edge of the pattern deposited in the effective evaporation area of the first row of mask sheets and the upper edge of the pattern deposited in the effective evaporation area of the second row of mask sheets is reduced to 0.
  • the distance between the lower edge of the pattern deposited in the effective evaporation area of the second row of mask sheets and the upper edge of the pattern deposited in the effective evaporation area of the third row of mask sheets is reduced to 0, thereby improving the utilization rate of the target substrate.
  • the target substrate when the target substrate is evaporated using the i-th mask plate, include:
  • the evaporation source and the i-th mask plate are controlled to move relative to each other, and the moving direction is parallel to the plane where the i-th mask plate is located and perpendicular to the length direction of the mask sheet.
  • the relative movement between the evaporation source 200 and the first mask plate can be controlled by fixing the first mask plate and controlling the evaporation source 200 to move in a length direction parallel to the plane where the first mask plate is located and perpendicular to the mask sheet 21.
  • the relative movement between the evaporation source 200 and the first mask plate can also be controlled by fixing the evaporation source 200 and controlling the first mask plate to move in a length direction parallel to the plane where the first mask plate is located and perpendicular to the mask sheet 21.
  • the method when the target substrate is evaporated using the first to xth mask plates in sequence, the method further includes:
  • the first position refers to the position where the evaporation source is below the mask sheet; the second position refers to the position where the evaporation source is not below the mask sheet.
  • the evaporation unit pattern on the mask sheet needs to be evaporated, and no evaporation is required at the position where no mask sheet is provided in the mask assembly (such as the first shielding portion).
  • the evaporation source will perform evaporation when passing through the first shielding portion. Therefore, it is necessary to increase the moving speed of the evaporation source when passing through the position where evaporation is not required, and to use the normal moving speed when passing through the mask sheet where evaporation is required.
  • the position where the evaporation source is below the mask is called the first position
  • the position where the evaporation source is not below the mask is called the second position.
  • the relative movement speed between the evaporation source and the mask should be smaller at the first position than at the second position. This arrangement can avoid wasting evaporation materials at the second position, and because the relative movement speed increases at the second position, the overall movement time is reduced, saving evaporation time and avoiding waste of evaporation materials.
  • the present disclosure also provides an evaporation device, the method comprising an evaporation source and a mask assembly as described in any of the above embodiments, wherein the mask assembly is disposed between the evaporation source and a target substrate.
  • the evaporation device includes at least one evaporation chamber; the evaporation chamber includes a plurality of evaporation zones; and a plurality of mask plates of a mask assembly are used in a one-to-one correspondence in the plurality of evaporation zones to perform evaporation on the target substrate.
  • FIG14 is a schematic diagram of the structure of an evaporation device provided in an embodiment of the present disclosure.
  • the evaporation device includes three evaporation chambers. As shown in FIG14 , the three evaporation chambers are evaporation chamber R, evaporation chamber G, and evaporation chamber B. Different evaporation chambers use corresponding mask assemblies for evaporation.
  • the evaporation device for the evaporation of an OLED display panel, can form a light-emitting layer pattern corresponding to a red pixel by evaporation in evaporation chamber R, form a light-emitting layer pattern corresponding to a green pixel by evaporation in evaporation chamber G, and form a light-emitting layer pattern corresponding to a blue pixel by evaporation in evaporation chamber B.
  • each evaporation chamber is provided with two evaporation zones, namely the first evaporation zone 201 and the second evaporation zone 202.
  • evaporation is performed in the first evaporation zone 201 and the second evaporation zone 202 in sequence.
  • the first evaporation zone 201 in the evaporation chamber R uses the first mask plate of the mask assembly corresponding to the evaporation chamber R for evaporation
  • the second evaporation zone 202 in the evaporation chamber R uses the second mask plate of the mask assembly corresponding to the evaporation chamber R for evaporation.
  • the first evaporation zone 201 in the evaporation chamber G uses the first mask plate of the mask assembly corresponding to the evaporation chamber G for evaporation
  • the second evaporation zone 202 in the evaporation chamber G uses the second mask plate of the mask assembly corresponding to the evaporation chamber G for evaporation
  • the first evaporation zone 201 in the evaporation chamber B uses the first mask plate of the mask assembly corresponding to the evaporation chamber B for evaporation
  • the second evaporation zone 202 in the evaporation chamber B uses the second mask plate of the mask assembly corresponding to the evaporation chamber B for evaporation.
  • a plurality of evaporation zones are arranged in the evaporation chamber, and a plurality of mask plates of the mask assembly are used in the plurality of evaporation zones in a one-to-one correspondence to evaporate the target substrate.
  • various evaporation zones in the same evaporation chamber may be connected to each other and share the same evaporation source; the evaporation source is used to sequentially scan and evaporate each evaporation zone.
  • a certain evaporation chamber includes two evaporation zones, such as the first evaporation zone 201 and the second evaporation zone 202 in FIG. 15 .
  • the two evaporation zones (the first evaporation zone 201 and the second evaporation zone 202) of the same evaporation chamber are connected.
  • the two evaporation zones share the same evaporation source 200.
  • the evaporation source 200 is used to perform scanning evaporation on the first evaporation zone 201 and the second evaporation zone 202 in sequence. In this way, the difference in the evaporated film layer formed by the two evaporation depositions can be reduced, and the number of evaporation sources and vacuum components can be reduced, saving costs.
  • FIG. 15 is only used as an example to introduce a certain evaporation chamber in the evaporation device including two evaporation zones.
  • the evaporation device may include multiple evaporation chambers, and different evaporation chambers may include evaporation zones.
  • the number of evaporation zones may be the same or different, and the present disclosure does not limit the number of evaporation zones included in the evaporation chamber.
  • the relative movement speed of the evaporation source 200 and the mask plate can be controlled to be smaller at the first position 301 than at the second position 302.
  • the first position 301 refers to the position where the evaporation source is below the mask; the second position 302 refers to the position where the evaporation source is not below the mask.
  • the evaporation equipment may further include a mask buffer chamber; the mask buffer chamber is used to store at least one mask assembly.
  • the evaporation patterns required for different evaporation chambers may be different, so when evaporation is performed in different evaporation chambers, the mask assemblies used may also be different.
  • the first mask assembly is used in evaporation chamber R to evaporate and form a light-emitting layer pattern corresponding to a red pixel, and the first mask assembly includes x1 mask plates;
  • the second mask assembly is used in evaporation chamber G to evaporate and form a light-emitting layer pattern corresponding to a green pixel, and the second mask assembly includes x2 mask plates;
  • the third mask assembly is used in evaporation chamber B to evaporate and form a light-emitting layer pattern corresponding to a blue pixel, and the third mask assembly includes x3 mask plates.
  • the evaporation equipment includes a mask plate cache chamber 204, and the mask plate cache chamber 204 is used to store x1 mask plates required for evaporation chamber R, x2 mask plates required for evaporation chamber G, and x3 mask plates required for evaporation chamber B.
  • each mask plate is sent from the mask plate buffer chamber 204 to the corresponding evaporation chamber for coating by the robot 203 .
  • the evaporation equipment includes multiple mask cache chambers; different mask assemblies are stored in different mask cache chambers; and the same mask cache chamber is used to store multiple mask plates of the same mask assembly.
  • FIG17 is a schematic diagram of the structure of another evaporation device provided by an embodiment of the present disclosure.
  • the evaporation device includes three mask plate buffer chambers, namely, mask plate buffer chamber 2041, mask plate buffer chamber 2042, and mask plate buffer chamber 2043.
  • Mask plate buffer chamber 2041 is used to store mask components used for evaporation of red pixels.
  • Mask plate buffer chamber 2042 is used to store mask components used for evaporation of green pixels.
  • Mask plate buffer chamber 2043 is used to store mask components used for evaporation of blue pixels.
  • the mask plate buffer chamber 2041 is used to store mask components used for evaporation of green pixels.
  • the robot 203 in the delivery chamber 205 sequentially moves the mask plates in the mask plate buffer chamber into the evaporation chamber 206 for coating.
  • Different mask assemblies correspond to different evaporation patterns, and the number of mask plates included in the mask assembly can be set according to actual conditions.
  • the evaporation device includes at least one evaporation group; different evaporation groups correspond to different mask assemblies;
  • Each of the evaporation groups includes multiple evaporation chambers and multiple mask cache chambers; the multiple mask cache chambers of the same evaporation group store multiple mask plates of the same mask assembly in a one-to-one correspondence; the multiple evaporation chambers of the same evaporation group use the multiple mask plates of each mask cache chamber of the same evaporation group to evaporate the target substrate in a one-to-one correspondence.
  • Figure 18 is a schematic diagram of the structure of another evaporation equipment provided in an embodiment of the present disclosure.
  • the evaporation equipment includes three evaporation groups, namely evaporation group 2071, evaporation group 2072 and evaporation group 2073.
  • Evaporation group 2071 is used for evaporation to form a light-emitting layer pattern corresponding to red pixels
  • evaporation group 2072 is used for evaporation to form a light-emitting layer pattern corresponding to green pixels
  • evaporation group 2073 is used for evaporation to form a light-emitting layer pattern corresponding to blue pixels.
  • the evaporation group 2071 includes the evaporation chamber 2061 and the evaporation chamber 2062 as well as the mask plate buffer chamber 2041 and the mask plate buffer chamber 2042.
  • the evaporation chamber 2061 can use the first mask plate stored in the mask plate buffer chamber 2041 during evaporation, and the evaporation chamber 2062 can use the second mask plate stored in the mask plate buffer chamber 2042 during evaporation.
  • the robot 203 in the conveying chamber 205 puts the first mask plate in the mask plate buffer chamber 2041 into the evaporation chamber 2061 for coating, and puts the second mask plate in the mask plate buffer chamber 2042 into the evaporation chamber 2062 for coating.
  • the robot 203 in the conveying chamber 205 puts the first mask plate in the mask plate buffer chamber 2041 into the evaporation chamber 2061 for coating, and puts the second mask plate in the mask plate buffer chamber 2042 into the evaporation chamber 2062 for coating.
  • the evaporation work in the evaporation group 2071 is completed, it is sent to the evaporation group 2072 for the next evaporation, and after the evaporation work in the evaporation group 2072 is completed, it is sent to the evaporation group 2073 for the next evaporation. Since each evaporation group is only responsible for evaporating the light-emitting layer of one color pixel, contamination of the evaporation materials of the light-emitting layers of different colors pixels
  • FIG19 is a schematic diagram of the evaporation process in a certain evaporation group in the evaporation device provided by the embodiment of the present disclosure.
  • the evaporation chamber 2061 can use the first mask plate stored in the mask plate buffer chamber 2041 during evaporation.
  • the relative moving speed of the evaporation source 200 and the first mask plate is controlled to be smaller at the first position 301 than at the second position 302.
  • the first position 301 refers to the evaporation source
  • the first position 301 refers to the position where the evaporation source is below the mask sheet
  • the second position 302 refers to the position where the evaporation source is not below the mask sheet.
  • the evaporation chamber 2062 can use the second mask plate stored in the mask plate buffer chamber 2042 during evaporation.
  • the relative movement speed of the evaporation source 200 and the second mask plate is controlled to be smaller at the first position 301 than at the second position 302.
  • the first position 301 refers to the position where the evaporation source is below the mask sheet
  • the second position 302 refers to the position where the evaporation source is not below the mask sheet.
  • the mask assembly disclosed in the present disclosure has a smaller distance between the edges of adjacent rows of mask sheets on the same mask frame than the sum of the widths of other rows of mask sheets between the row numbers of the adjacent rows of mask sheets. Therefore, after the target substrate is evaporated using the first to xth mask plates in sequence, the gap between the effective evaporation areas of adjacent mask sheets can be reduced, thereby improving the utilization rate of the target substrate. Therefore, it has significant application value in the evaporation production process of display screens and has strong industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种掩膜组件、蒸镀方法和蒸镀设备,其中,掩膜组件包括:多行掩膜片(21)以及x个掩膜框架;多行掩膜片(21)对应蒸镀图案;多行掩膜片(21)划分为x组;满足第i+nx行的掩膜片(21),按照行序号依次排布设置在第i掩膜框架上,形成第i掩膜板;同一掩膜框架上的相邻行掩膜片(21)之间设置有第一遮挡部(24);同一掩膜框架上的相邻行掩膜片(21)的边缘之间的距离小于该相邻行掩膜片(21)行序号之间的其它行掩膜片(21)的宽度之和;其中,i以及x均为正整数,且i小于等于x;x大于1;n为非负整数。上述掩膜组件减小相邻掩膜片(21)的有效蒸镀区域之间的间隙,提高了目标基板(20)的利用率。

Description

一种掩膜组件、蒸镀方法和蒸镀设备
本公开要求于2022年11月09日提交中国专利局、申请号为202211397946.7、发明名称为“一种掩膜组件、蒸镀方法和蒸镀设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种掩膜组件、蒸镀方法和蒸镀设备。
背景技术
OLED显示器相较于LCD显示器具有很多优势,例如低温特性好、响应时间短、色彩丰富更贴近显示,且厚度可以做到更薄、重量更轻,因此OLED显示器以其优异的性能正在取代已打下巨大市场的LCD显示器。
在OLED器件制造用的蒸镀机中,需要使用到精密金属掩膜板。精密金属掩膜板一般包括多个掩膜片,由于掩膜片受温度等环境影响容易发生变形,因此一般设置较宽的掩膜片的边缘,而这样设置导致相邻掩膜片的有效蒸镀区域之间的间隙较大,进而导致基板的利用率较低,并且该方法一般只能进行小尺寸OLED器件的制作。
发明内容
(一)要解决的技术问题
本公开要解决的技术问题是解决现有的,由于掩膜片容易受温度等环境影响发生变形,因此需要设置较宽的掩膜片的边缘,而这样设置导致相邻掩膜片的有效蒸镀区域之间的间隙较大,进而导致基板的利用率较低的问题。
(二)技术方案
为了解决上述技术问题或者至少部分地解决上述技术问题,本公 开提供了一种掩膜组件及其蒸镀方法和蒸镀设备。
本公开提供了一种掩膜组件,包括多行掩膜片以及x个掩膜框架;多行掩膜片对应蒸镀图案;
多行掩膜片划分为x组;
满足第i+nx行的掩膜片,按照行序号依次排布设置在第i掩膜框架上,形成第i掩膜板;
同一掩膜框架上的相邻行掩膜片之间设置有第一遮挡部;
同一掩膜框架上的相邻行掩膜片的边缘之间的距离小于该相邻行掩膜片行序号之间的其它行掩膜片的宽度之和;
其中,i以及x均为正整数,且i小于等于x;x大于1;n为非负整数。
可选的,所述掩膜片与相邻所述第一遮挡部之间具有间隙;所述间隙大于等于所述掩膜片以及所述第一遮挡部的最大膨胀量之和。
可选的,所述间隙上放设置有第二遮挡部。
可选的,所述第二遮挡部包括磁性材料。
可选的,所述掩膜片与相邻某一边的所述第一遮挡部一体成型。
可选的,所述蒸镀图案包括阵列排布的多个蒸镀单元图形;每行掩膜片对应蒸镀图案的一行蒸镀单元图形。
可选的,所述蒸镀图案包括阵列排布的多个蒸镀单元图形;除第一行和最后一行所述掩膜片外,每行所述掩膜片对应蒸镀图案的前一行的部分蒸镀单元图形以及后一行的部分蒸镀单元图形。
可选的,所述蒸镀图案为一个蒸镀单元图形。
可选的,所述掩膜片与所述第一遮挡部的厚度相同。
本公开实施例还提供了一种采用掩膜组件的蒸镀方法,应用于上述中任一项所述的掩膜组件,所述方法包括:
依次采用第1至第x掩膜板对目标基板进行蒸镀。
可选的,在采用第i掩膜板对目标基板进行蒸镀时,包括:
控制蒸发源与所述第i掩膜板之间相对移动,且移动方向平行于所述第i掩膜板所在平面且垂直于所述掩膜片的长度方向。
可选的,在依次采用第1至第x掩膜板对目标基板进行蒸镀时, 还包括:
控制蒸发源与掩膜板的相对移动速度在第一位置处小于第二位置处;
其中,所述第一位置处是指蒸发源在所述掩膜片下方的位置;所述第二位置处是指所述蒸发源未在所述掩膜片下方的位置。
本公开实施例还提供了一种蒸镀设备,包括蒸发源以及上述中任一项所述的掩膜组件,所述掩膜组件设置在所述蒸发源与目标基板之间。
可选的,包括至少一个蒸发室;
所述蒸发室包括多个蒸发区;在多个蒸发区中一一对应采用掩膜组件的多个掩膜板对目标基板进行蒸镀。
可选的,同一蒸发室的各个所述蒸发区之间联通,且共用同一所述蒸发源;采用所述蒸发源依次对各所述蒸发区扫描蒸镀。
可选的,包括掩模板缓存室;所述掩模板缓存室用于存放至少一个掩膜组件。
可选的,包括多个掩模板缓存室;不同掩模板缓存室中存放不同掩模组件;同一掩模板缓存室中用于存放同一掩模组件的多个掩膜板。
可选的,包括至少一个蒸发组;不同所述蒸发组对应不同掩膜组件;
每个所述蒸发组包括多个蒸发室以及多个掩模板缓存室;同一蒸发组的多个掩模板缓存室一一对应存储同一掩膜组件的多个掩模板;同一蒸发组的多个蒸发室一一对应采用同一蒸发组的各掩模板缓存室的多掩模板对目标基板进行蒸镀。
(三)有益效果
本公开实施例提供的上述技术方案与现有技术相比具有如下优点:
本公开提供了一种掩膜组件,包括多行掩膜片以及x个掩膜框架;多行掩膜片对应蒸镀图案,本公开将多行掩膜片划分为x组,并且将满足第i+nx行的掩膜片,按照行序号依次排布设置在第i掩膜框架上,形成第i掩膜板。并且设置同一掩膜框架上的相邻行掩膜片之间设置 有第一遮挡部。由于同一掩膜框架上的相邻行掩膜片的边缘之间的距离小于该相邻行掩膜片行序号之间的其它行掩膜片的宽度之和,因此在依次采用第1至第x掩膜板对目标基板进行蒸镀后,可以减小相邻掩膜片的有效蒸镀区域之间的间隙,所以可以提高目标基板的利用率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的一种掩膜板的结构示意图;
图2为本公开实施例提供的一种掩膜组件的结构示意图;
图3为采用图2所示掩膜组件在目标基板上蒸镀形成的蒸镀图案;
图4为本公开实施例提供的又一种掩膜组件的结构示意图;
图5为本公开实施例提供的又一种掩膜组件的结构示意图;
图6为沿图5中C1C2的截面结构示意图;
图7为本公开实施例提供的采用掩膜组件的某一掩膜板对目标基板进行蒸镀示意图;
图8为本公开实施例提供的又一种掩膜组件的结构示意图;
图9为本公开实施例提供的又一种掩膜组件的结构示意图;
图10为采用9所示掩膜组件的第1掩模板蒸镀后形成的蒸镀图案;
图11为采用图9所示掩膜组件的第2掩模板蒸镀后形成的蒸镀图案;
图12为本公开实施例提供的采用图2所示掩膜组件在第一次蒸镀后蒸镀图案示意图;
图13为本公开实施例提供的采用图2所示掩膜组件在第二次蒸镀后蒸镀图案示意图;
图14为本公开实施例提供的一种蒸镀设备结构示意图;
图15为本公开实施例提供的在蒸镀设备中某一蒸发室中蒸镀过程 示意图;
图16为本公开实施例提供的又一种蒸镀设备结构示意图;
图17为本公开实施例提供的又一种蒸镀设备结构示意图;
图18为本公开实施例提供的又一种蒸镀设备结构示意图;
图19为本公开实施例提供的在蒸镀设备中某一蒸发组中蒸镀过程示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
在OLED器件制造用的蒸镀机中,需要使用到精密金属掩膜板。精密金属掩膜板一般包括多个掩膜片,由于掩膜片受温度等环境影响容易发生变形,因此一般设置较宽的掩膜片的边缘,而这样设置导致相邻掩膜片的有效蒸镀区域之间的间隙较大,进而导致基板的利用率较低,并且该方法一般只能进行小尺寸OLED器件的制作。图1为现有技术中的一种掩膜板的结构示意图,如图1所述,包括多个掩膜片11,多个掩膜片11共同用于蒸镀形成蒸镀图案(蒸镀图案包括图1中右侧的多个矩形图案)。由于掩膜片11容易受温度等环境影响容易发生变形,因此需要将掩膜片11的边缘设置的较宽,即,将掩膜片11中的有效蒸镀区域111两侧的边缘设置较宽的宽度L。此外,相邻掩膜片11之间由于工艺原因不可避免的会有间隙112的存在。上述掩模板的设置导致相邻掩膜片的有效蒸镀区域111的间隙S较大,因此通过该种掩模板在基板12上形成的蒸镀图案中相邻两行蒸镀单元图形121之间的间隙S较大。因此采用现有的掩膜板对基板的利用率较低。
针对上述技术问题,本公开提供了一种掩膜组件、蒸镀方法和蒸镀设备,在依次采用第1至第x掩膜板对目标基板进行蒸镀后,可以减小相邻掩膜片的有效蒸镀区域之间的间隙,所以可以提高目标基板的利用率。下面结合具体的实施例对该方法进行介绍。
本公开实施例提供的掩膜组件多行掩膜片以及x个掩膜框架。多行掩膜片对应在目标基板上形成的蒸镀图案。即,将多行掩膜片顺序排列后,顺序排列的多行掩膜片的有效蒸镀区域对应蒸镀图案。本公开实施例将多行掩膜片划分为x组,其中,满足第i+nx行的掩膜片,按照行序号依次排布设置在第i掩膜框架上,形成第i掩膜板。
例如,第1行的掩膜片、第1+x行的掩膜片、第1+2x行的掩膜片、…、第1+nx行的掩膜片按照行序号依次排布设置在第1掩膜框架上,形成第1掩膜板;第2行的掩膜片、第2+x行的掩膜片、第2+2x行的掩膜片、…、第2+nx行的掩膜片按照行序号依次排布设置在第2掩膜框架上,形成第1掩膜板;…;第x行的掩膜片、第x+x行的掩膜片、第x+2x行的掩膜片、…、第x+nx行的掩膜片按照行序号依次排布设置在第x掩膜框架上,形成第x掩膜板。
其中,i以及x均为正整数,且i小于等于x;x大于1;n为非负整数。
本公开实施例中同一掩膜框架上的相邻行掩膜片之间设置有第一遮挡部,第一遮挡部用于在使用该掩模板进行蒸镀时,将相邻行掩膜片之间的间隙进行遮挡,避免蒸镀上膜层材料。
同一掩膜框架上的相邻行掩膜片的边缘之间的距离小于该相邻行掩膜片行序号之间的其它行掩膜片的宽度之和。本公开实施例包括x个掩模板,在目标基板上进行蒸镀时,依次采用第1至第x掩膜板对目标基板进行蒸镀,由于同一掩膜框架上的相邻行掩膜片的边缘之间的距离小于该相邻行掩膜片行序号之间的其它行掩膜片的宽度之和,因此相邻两次蒸镀采用的掩模板,相邻行序号的掩膜片可以具有重叠区。例如第1掩膜板的第1+2x行的掩膜片,与第2掩膜板的第2+2x行的掩膜片具有重叠设置区域。据此,采用本公开的掩膜组件蒸镀,可以减小相邻行序号掩膜片的有效蒸镀区域之间的间隙,提高目标基板的利用率。
下面以x等于2为例进行介绍。图2为本公开实施例提供的一种掩膜组件的结构示意图。本公开实施例提供掩膜组件包括多行掩膜片21(图2示例性的设置5行)以及2个掩膜框架。多行掩膜片21对应 在目标基板上形成的蒸镀图案,即第1行至第5行掩膜片对应在目标基板上形成的蒸镀图案。图2中左侧图中从上至下依次为第1行掩膜片211、第3行掩膜片213、第5行掩膜片215。图2中右侧图中从上至下依次为第2行掩膜片212、第4行掩膜片214。
本公开实施例将多行掩膜片21划分为2组。将第1行掩膜片、第3行掩膜片、第5行掩膜片依次排布设置在第1掩膜框架22上,形成第1掩膜板(如图2中的左侧掩模板)。将第2行掩膜片、第4行掩膜片依次排布设置在第2掩膜框架23上,形成第2掩膜板(如图2中的右侧掩模板)。即,将奇数行掩膜片设置在第1掩膜框架22上,将偶数行掩膜片设置在第2掩膜框架23上。
本公开实施例还在同一掩膜框架上的相邻行掩膜片之间设置有第一遮挡部24。具体的,由于掩膜片分组后,第一组(图2中奇数行掩膜片)和第二组(图2中偶数行掩膜片)的掩膜片分别位于不同的掩膜框架上,这样第1掩膜板上原本应该放有第二组掩膜片的位置没有掩膜片放置,第2掩膜板上原本应该放有第一组掩膜片的位置也没有掩膜片放置,如果不设置第一遮挡部24对缺少掩膜片的空白部分进行遮挡,蒸镀时这些空白部分也会被镀膜,从而影响蒸镀图案的正确。因此需要设置第一遮挡部24,用于对缺少掩膜片的位置进行遮挡,防止蒸镀时错误的将蒸镀单元图形以外的部分镀膜。
同一掩膜框架上的相邻行掩膜片的边缘之间的距离小于该相邻行掩膜片行序号之间的其它行掩膜片的宽度之和。
示例性的,如图2所示,以第1行至第3行掩膜片为例进行介绍。第1掩膜框架上的第1行掩膜片的下边缘和第3行掩膜片的上边缘之间的距离为A1。第1掩膜框架上的第1行掩膜片和第3行掩膜片行序号之间的掩膜片为第2行掩膜片,该第2行掩膜片位于第2掩膜框架上。第2行掩膜片的宽度为A2。
由于同一掩膜框架上的相邻行掩膜片的边缘之间的距离小于该相邻行掩膜片行序号之间的其它行掩膜片的宽度之和,在采用掩膜组件进行蒸镀时,依次采用第1掩膜板和第2掩膜板蒸镀,因此采用第1掩膜板蒸镀时第1行掩膜片和第3行掩膜片的设置位置,与采用第2 掩膜板蒸镀时的第2行掩膜片的设置位置可以部分交叠。如图2,采用第1掩膜板蒸镀时第1行掩膜片的下边缘与采用第2掩膜板蒸镀时的第2行掩膜片上边缘设置位置可以具有交叠区域X1,采用第1掩膜板蒸镀时第3行掩膜片的上边缘与采用第2掩膜板蒸镀时的第2行掩膜片下边缘设置位置可以具有交叠区域X2。因此,第1行掩膜片的有效蒸镀区2111蒸镀的图形下边缘与第2行掩膜片的有效蒸镀区2121蒸镀的图形上边缘之间可以无缝衔接。第2行掩膜片的有效蒸镀区2121蒸镀的图形下边缘与第3行掩膜片的有效蒸镀区2131蒸镀的图形上边缘之间也可以无缝衔接,不受各掩膜片有效蒸镀区域外的边缘距离的限制。图3为采用图2所示掩膜组件在目标基板25上蒸镀形成的蒸镀图案。图3中,B1表示采用第1掩模板蒸镀时,第1行掩膜片对应的设置位置,B3表示采用第1掩模板蒸镀时,第3行掩膜片对应的设置位置,B2表示采用第2掩模板蒸镀时,第2行掩膜片对应的设置位置,C1表示采用第1掩模板蒸镀时,第1行掩膜片的有效蒸镀区2111蒸镀的图形位置,C3表示采用第1掩模板蒸镀时,第3行掩膜片的有效蒸镀区2131蒸镀的图形位置,C2表示采用第2掩模板蒸镀时,第2行掩膜片的有效蒸镀区2121蒸镀的图形位置。如图3所示,第1行掩膜片的有效蒸镀区蒸镀的图形下边缘与第2行掩膜片的有效蒸镀区蒸镀的图形上边缘之间的距离减小为0。第2行掩膜片的有效蒸镀区蒸镀的图形下边缘与第3行掩膜片的有效蒸镀区蒸镀的图形上边缘之间的距离减小为0,因此提高了目标基板的利用率。比较图3和图1(图1中的右侧图)可知,相同面积的目标基板,采用本公开实施例的方案,目标基板的利用率更高。
需要说明的是,图2中各行掩膜片有效蒸镀区域具有精密蒸镀图案,在此不对精密蒸镀图案的具体形式进行限定。
此外,本公开实施例将掩膜片分组,相比于现有技术在一个掩膜框架上依次设置各掩膜片的方式,可以减小单个掩膜片的尺寸,因此单个掩膜片受温度等环境影响发生绝对膨胀量变小,使掩膜板与目标基板的对位变得容易,可以提高对位成功率。例如采用上述掩膜组件蒸镀制备OLED显示面板时,形成的类似图3中的阵列排布的多个蒸镀 单元图形(图3示例性的展示4行4列共16个蒸镀单元图形)。每个蒸镀单元图形对应一个OLED显示面板区域。通后续切割图3所示大版形成单个OLED显示面板。由于单个掩膜片的尺寸减小,单个掩膜片受温度等环境影响发生绝对膨胀量变小,因此可以减小掩膜片有效蒸镀区域中OLED显示面板单位像素蒸镀图案的尺寸,所以还可以提高制备的OLED显示面板的分辨率。
需要说明的是,多行掩膜片还可以划分为三组、四组或者更多组,在此不作具体限定。划分为三组、四组或者更多组,从而实现提高目标基板的利用率的原理与上述分为两组的原理类似,在此不做赘述。
在一些实施例中,掩膜片与相邻第一遮挡部之间具有间隙;间隙大于等于掩膜片以及第一遮挡部的最大膨胀量之和。
示例性的,图4为本公开实施例提供的又一种掩膜组件的结构示意图,如图4所示,掩膜片21与相邻第一遮挡部24之间具有间隙26。由于掩膜片与第一遮挡部在受到温度等环境因素影响时会发生膨胀,当二者相互接触并发生挤压时会导致掩膜片以及第一遮挡部产生褶皱,影响蒸镀图案的准确性。因此本公开实施例在掩膜片与相邻第一遮挡部之间设置间隙,并且设置间隙大于等于掩膜片以及第一遮挡部的最大膨胀量之和,以防止掩膜片与第一遮挡部在膨胀时互相挤压。
可选的,间隙26沿掩膜片的延伸方向上宽度一致。
在一些实施例中,间隙上放设置有第二遮挡部27。图5为本公开实施例提供的又一种掩膜组件的结构示意图。图6为沿图5中C1C2的截面结构示意图。具体的,如图5以及图6所示,由于掩膜片与第一遮挡部之间设置有间隙,因此在蒸镀时,该间隙所在位置在进行蒸镀时会被蒸镀上膜层材料,影响蒸镀图案。因此本公开实施例在间隙位置设置有用于遮挡间隙的第二遮挡部27。如图5所示,在掩膜片21和第一遮挡部24之间的间隙26上方设置第二遮挡部27。第二遮挡部27具体用于防止间隙部分在蒸镀时,将蒸镀图案以外的部分蒸镀上膜层材料。
在一些实施例中,第二遮挡部包括磁性材料。
示例性的,图7为本公开实施例提供的采用一种第1掩膜板对目 标基板进行蒸镀示意图,如图7所示(掩膜框架未画出),在对目标基板20进行蒸镀时,目标基板20的背面一般设置有磁性板29。本公开实施例将设置第二遮挡部27包括磁性材料,在蒸镀时,将掩模板置于目标基板20上,由于第二遮挡部27包括磁性材料,目标基板20的背面设置有磁性板29,因此目标基板背面的磁性板与第二遮挡部相互吸引,可以将掩膜板的掩膜片以及第一遮挡部稳定吸附在目标基板上。
示例性的,继续参见图7,还可以在目标基板20和磁性板29之间设置有压板30,压板的设置可以使磁性板29贴合时不易造成目标基板与掩膜片之间贴合的错位。
需要说明的是,图7只是示例性的做出结构的展示,各部分尺寸、厚度、大小可以根据实际需求进行调整,在此不做具体限定。
在一些实施例中,掩膜片与相邻某一边的第一遮挡部一体成型。
示例性的,掩膜片与相邻某一边的第一遮挡部可以一体成型。掩膜片与相邻某一边的第一遮挡部一体成型,可以使掩膜片与相邻某一边的第一遮挡部之间没有间隙。既防止掩膜片与相邻某一边的第一遮挡部在由于温度等环境因素影响发生膨胀时,二者接触并发生挤压,导致掩膜片以及第一遮挡部产生褶皱,也防止因为需要在二者之间设置间隙导致的在蒸镀时将蒸镀单元图形以外的部分蒸镀上膜层材料。
在一些实施例中,蒸镀图案包括阵列排布的多个蒸镀单元图形;每行掩膜片对应蒸镀图案的一行蒸镀单元图形。
图8为本公开实施例提供的又一种掩膜组件的结构示意图,如图8所示,每行掩膜片21对应蒸镀图案的一行蒸镀单元图形28。即,每行掩膜片的有效蒸镀区对应蒸镀图案的一行蒸镀单元图形。
在目标基板上进行蒸镀时,依次采用第1至第x掩膜板对目标基板进行蒸镀,由于同一掩膜框架上的相邻行掩膜片的边缘之间的距离小于该相邻行掩膜片行序号之间的其它行掩膜片的宽度之和,因此相邻两次蒸镀采用的掩模板,相邻行序号的掩膜片可以具有重叠区。这样设置可以减小相邻行序号掩膜片的有效蒸镀区域之间的间隙,提高目标基板的利用率。
在一些实施例中,蒸镀图案包括阵列排布的多个蒸镀单元图形; 除第一行和最后一行掩膜片外,每行掩膜片对应蒸镀图案的前一行的部分蒸镀单元图形以及后一行的部分蒸镀单元图形。
示例性的,如图2所示,图2中左侧掩膜板的第1行掩膜片为首行掩膜片,第5行掩膜片为最后一行掩膜片。第1行掩膜片仅对应蒸镀图案的一行蒸镀单元图形的部分,第5行掩膜片仅对应蒸镀图案一行蒸镀单元图形的部分。而图2中左侧掩膜板的第3行掩膜片以及图2中右侧掩膜板的第2行掩膜片和第4行掩膜片,均对应蒸镀图案的前一行的部分蒸镀单元图形以及后一行的部分蒸镀单元图形。因此,除第一行和最后一行掩膜片外,每行掩膜片对应蒸镀图案的前一行的部分蒸镀单元图形以及后一行的部分蒸镀单元图形。这样设置可以使相邻行序号的掩膜片蒸镀的图形边缘距离为0,进一步提高目标基板的利用率。
在一些实施例中,蒸镀图案为一个蒸镀单元图形。
示例性的,图9为本公开实施例提供的又一种掩膜组件的结构示意图;图10为采用图9所示掩膜组件的第1掩模板蒸镀后形成的蒸镀图案。图11为采用图9所示掩膜组件的第2掩模板蒸镀后形成的蒸镀图案。图9的左侧图为第1掩模板的结构示意图,图9右侧图为第2掩模板的结构示意图。采用图9所示掩膜组件依次经过第1掩模板和第2掩模板进行蒸镀后,可以形成一个完成的蒸镀单元图形,因此采用本公开实施例提供的掩膜组件进行蒸镀,可以实现大尺寸器件的制作,例如大尺寸OLED显示面板的蒸镀。
在一些实施例中,掩膜片与第一遮挡部的厚度相同。
示例性的,掩膜片与第一遮挡部安装于同一掩膜框架上,蒸镀时,掩膜板会与目标基板贴合。若掩膜片的厚度与第一遮挡部的厚度不同,会影响掩膜板与目标基板的贴合平整性,进而影响在目标基板上的蒸镀图案。
本公开实施例还提供了一种采用掩膜组件的蒸镀方法,该方法可以采用上述任意实施例所述的掩膜组件,该方法包括:
依次采用第一至第x掩膜板对目标基板进行蒸镀。
示例性的,下面以x等于2为例进行介绍,如图2所示,依次采 用图2中左侧掩膜板(记为第1掩膜板)和图2中右侧掩膜板(记为第2掩膜板)对目标基板进行蒸镀,由于第1掩膜板与第2掩膜板图案互补,因此先后进行蒸镀可以完成对目标蒸镀图案的蒸镀。
可选的,图12为本公开实施例提供的采用图2所示掩膜组件在第一次蒸镀后蒸镀图案示意图,图13为本公开实施例提供的采用图2所示掩膜组件在第二次蒸镀后蒸镀图案示意图。以第1行至第3行掩膜片为例进行介绍。采用第1掩膜板蒸镀时第1行掩膜片和第3行掩膜片的设置位置,与采用第2掩膜板蒸镀时的第2行掩膜片的设置位置可以部分交叠。如图2,采用第1掩膜板蒸镀时第1行掩膜片的下边缘与采用第2掩膜板蒸镀时的第2行掩膜片上边缘设置位置可以具有交叠区域X1,采用第1掩膜板蒸镀时第3行掩膜片的上边缘与采用第2掩膜板蒸镀时的第2行掩膜片下边缘设置位置可以具有交叠区域X2。因此,第1行掩膜片的有效蒸镀区2111蒸镀的图形下边缘与第2行掩膜片的有效蒸镀区2121蒸镀的图形上边缘之间的距离显著减小,例如可以实现无缝衔接。第2行掩膜片的有效蒸镀区2121蒸镀的图形下边缘与第3行掩膜片的有效蒸镀区2131蒸镀的图形上边缘之间的距离显著减小,例如也可以无缝衔接,不受各掩膜片有效蒸镀区域外的边缘距离的限制。如图13所示第1行掩膜片的有效蒸镀区蒸镀的图形下边缘与第2行掩膜片的有效蒸镀区蒸镀的图形上边缘之间的距离减小为0。第2行掩膜片的有效蒸镀区蒸镀的图形下边缘与第3行掩膜片的有效蒸镀区蒸镀的图形上边缘之间的距离减小为0,因此提高了目标基板的利用率。
基于此,继续参见图1和图13,如图1所示,右侧为现有技术的蒸镀图案,除所需的蒸镀图案以外还有由于间隙112的存在而蒸镀上的膜层材料,因此在对蒸镀图案进行切割时需要在横向上切割两次,这样才能将不同行的蒸镀单元图形分离。如图13所示,本实施例经过两次蒸镀后的蒸镀图案中,由于横向上每个蒸镀单元图形之间在掩膜片上没有间隙或间隙很小,因此只需切割一次即可。基于上述设置在分割工艺切割时入刀数少,提高了生产效率。
在一些实施例中,在采用第i掩膜板对目标基板进行蒸镀时,包 括:
控制蒸发源与第i掩膜板之间相对移动,且移动方向平行于第i掩膜板所在平面且垂直于掩膜片的长度方向。
示例性的,如图7所示,控制蒸发源200与第1掩膜板之间的相对运动可以是,第1掩膜板固定,控制蒸发源200沿平行于第1掩膜板所在平面且垂直于掩膜片21的长度方向上移动。控制蒸发源200与第1掩膜板之间的相对运动还可以是,蒸发源200固定,控制第1掩膜板沿平行于第1掩膜板所在平面且垂直于掩膜片21的长度方向上移动。
在一些实施例中,在依次采用第1至第x掩膜板对目标基板进行蒸镀时,还包括:
控制蒸发源与掩膜板的相对移动速度在第一位置处小于第二位置处;
其中,第一位置处是指蒸发源在掩膜片下方的位置;第二位置处是指蒸发源未在所述掩膜片下方的位置。
具体的,蒸镀时只需要对掩膜片上的蒸镀单元图形进行蒸镀,不需要对掩膜组件中未设置有掩膜片的位置(例如第一遮挡部)进行蒸镀,但无法避免蒸发源在经过第一遮挡部时会进行蒸镀。因此需要在蒸发源经过不需要蒸镀的位置时加快移动速度,经过需要蒸镀的掩膜片时为正常移动速度。
基于此,将蒸发源在掩膜片下方的位置称为第一位置,蒸发源未在掩膜片下方的位置称为第二位置,蒸发源与掩膜板的相对移动速度在第一位置处应当小于第二位置处。这样设置可以避免在第二位置的蒸镀浪费蒸镀材料,且由于在第二位置时相对移动速度增加,因此整体移动时间减少,节约了蒸镀的时间以及避免了蒸镀材料的浪费。
本公开还提供了一种蒸镀设备,该方法包括蒸镀源以及上述任意实施例所述的掩膜组件,掩膜组件设置在蒸发源与目标基板之间。
在一些实施例中,蒸镀设备包括至少一个蒸发室;蒸发室包括多个蒸发区;在多个蒸发区中一一对应采用掩膜组件的多个掩膜板对目标基板进行蒸镀。
图14为本公开实施例提供的一种蒸镀设备结构示意图,示例性的,以蒸镀设备包括三个蒸发室为例进行介绍。如图14所示,三个蒸发室分别为蒸发室R、蒸发室G以及蒸发室B。不同蒸发室采用相对应的掩膜组件进行蒸镀。对于OLED显示面板的蒸镀,本公开实施例提供的蒸镀设备,可以在蒸发室R中蒸镀形成红色像素对应的发光层图案,在蒸发室G中蒸镀形成绿色像素对应的发光层图案,在蒸发室B中蒸镀形成蓝色像素对应的发光层图案。
示例性的,设置每个蒸发室中均包括两个蒸发区,分别为第1蒸发区201和第2蒸发区202。在每个蒸发室,依次在第1蒸发区201和第2蒸发区202进行蒸镀。其中,在蒸发室R中的第1蒸发区201采用蒸发室R所对应掩膜组件的第1掩模板进行蒸镀,在蒸发室R中的第2蒸发区202采用蒸发室R所对应掩膜组件的第2掩模板进行蒸镀。类似的,在蒸发室G中的第1蒸发区201采用蒸发室G所对应掩膜组件的第1掩模板进行蒸镀,在蒸发室G中的第2蒸发区202采用蒸发室G所对应掩膜组件的第2掩模板进行蒸镀。在蒸发室B中的第1蒸发区201采用蒸发室B所对应掩膜组件的第1掩模板进行蒸镀,在蒸发室B中的第2蒸发区202采用蒸发室B所对应掩膜组件的第2掩模板进行蒸镀。本公开实施例在蒸发室设置多个蒸发区,在多个蒸发区中一一对应采用掩膜组件的多个掩膜板对目标基板进行蒸镀,这样设置可以节省蒸发室的数量,降低设备成本。
在一些实施例中,可以设置同一蒸发室的各个蒸发区之间联通,且共用同一蒸发源;采用蒸发源依次对各蒸发区扫描蒸镀。
例如参见图15,以某一蒸发室包括2个蒸发区为例,如图15中的第1蒸发区201和第2蒸发区202,同一蒸发室的2个蒸发区(第1蒸发区201和第2蒸发区202)之间联通。2个蒸发区共用同一蒸发源200。在蒸发室,采用蒸发源200依次对第1蒸发区201和第2蒸发区202进行扫描蒸镀。这样可以减小两次蒸镀形成的蒸镀膜层的差异,还可以减少蒸发源和真空元器件的数量,节省成本。
需要说明的是,图15仅以蒸镀设备中某一蒸发室包括2个蒸发区为例进行介绍。蒸镀设备可以包括多个蒸发室,不同蒸发室包括的蒸 发区的数量可以相同也可以不同,本公开对蒸发室包含的蒸发区的数量也不做限定。
可选的,参见图15,在同一蒸发室采用蒸发源200依次对第1蒸发区201和第2蒸发区202进行扫描蒸镀过程中,可以控制蒸发源200与掩膜板的相对移动速度在第一位置301处小于第二位置302处。其中,第一位置301处是指蒸发源在掩膜片下方的位置;第二位置302处是指蒸发源未在所述掩膜片下方的位置。
在一些实施例中,蒸镀设备还可以包括掩模板缓存室;掩模板缓存室用于存放至少一个掩膜组件。
示例性的,在蒸镀过程中,不同蒸发室所需的蒸镀图案可能不同,因此在不同蒸发室进行蒸镀时,采用的掩膜组件也可能不同。例如在OLED显示面板制作过程中,在蒸发室R采用第1掩膜组件蒸镀形成红色像素对应的发光层图案,第1掩膜组件包括x1个掩膜板;在蒸发室G采用第2掩膜组件用于蒸镀形成绿色像素对应的发光层图案,第2掩膜组件包括x2个掩膜板;在蒸发室B采用第3掩膜组件用于蒸镀形成蓝色像素对应的发光层图案,第3掩膜组件包括x3个掩膜板。x1、x2、x3可以相等也可以不相等。如图16所示,蒸镀设备中包括一个掩膜板缓存室204,掩膜板缓存室204用于存放蒸发室R所需的x1个掩膜板,蒸发室G所需的x2个掩膜板,蒸发室B所需的x3个掩膜板。在使用时通过机械手203从掩膜板缓存室204将各掩膜板送至对应的蒸发室中镀膜。
在一些实施例中,蒸镀设备包括多个掩模板缓存室;不同掩模板缓存室中存放不同掩模组件;同一掩模板缓存室中用于存放同一掩模组件的多个掩膜板。
示例性的,图17为本公开实施例提供的又一种蒸镀设备结构示意图,如图17所示,蒸镀设备中包括有三个掩膜板缓存室,分别为掩膜板缓存室2041、掩膜板缓存室2042以及掩膜板缓存室2043。掩膜板缓存室2041用于存储蒸镀红色像素使用的掩膜组件。掩膜板缓存室2042用于存储蒸镀绿色像素使用的掩膜组件。掩膜板缓存室2043用于存储蒸镀蓝色像素使用的掩膜组件。在需要使用掩膜板蒸镀时,由搬 送室205中的机械手203依次将掩膜板缓存室中的掩膜板搬入的蒸发室206镀膜。不同掩膜组件对应的蒸镀图案不同,可以根据实际情况设置掩膜组件包括的掩膜板的数量。
在一些实施例中,蒸镀设备包括至少一个蒸发组;不同所述蒸发组对应不同掩膜组件;
每个所述蒸发组包括多个蒸发室以及多个掩模板缓存室;同一蒸发组的多个掩模板缓存室一一对应存储同一掩膜组件的多个掩模板;同一蒸发组的多个蒸发室一一对应采用同一蒸发组的各掩模板缓存室的多个掩模板对目标基板进行蒸镀。
示例性的,图18为本公开实施例提供的又一种蒸镀设备结构示意图,如图18所示,蒸镀设备中包括三个蒸发组,分别为蒸发组2071、蒸发组2072以及蒸发组2073,蒸发组2071用于蒸镀形成红色像素对应的发光层图案,蒸发组2072用于蒸镀形成绿色像素对应的发光层图案,蒸发组2073用于蒸镀形成蓝色像素对应的发光层图案。
基于此,以蒸发组2071为例,蒸发组2071中包括蒸发室2061和蒸发室2062以及掩膜板缓存室2041和掩膜板缓存室2042。其中蒸发室2061在蒸镀时可以采用掩膜板缓存室2041中存储的第1掩膜板,蒸发室2062在蒸镀时可以采用掩膜板缓存室2042中存储的第2掩膜板。在需要使用掩膜板蒸镀时由搬送室205中的机械手203将掩膜板缓存室2041中的第1掩膜板放入蒸发室2061中镀膜,将掩膜板缓存室2042中的第2掩膜板放入蒸发室2062中镀膜。完成蒸发组2071中的蒸镀工作后送至蒸发组2072中进行下一步蒸镀,完成蒸发组2072中的蒸镀工作后送至蒸发组2073中进行下一步蒸镀。由于每个蒸发组只负责对一种颜色像素发光层的蒸镀,因此可以避免在蒸镀过程中不同颜色像素发光层蒸镀材料的污染。
图19为本公开实施例提供的在蒸镀设备中某一蒸发组中蒸镀过程示意图,参见图19,以图18中在蒸发组2071中蒸镀为例,蒸发室2061在蒸镀时可以采用掩膜板缓存室2041中存储的第1掩膜板,在蒸发室2061中蒸镀时,控制蒸发源200与第1掩膜板的相对移动速度在第一位置301处小于第二位置302处。其中,第一位置301处是指蒸发源 在掩膜片下方的位置;第二位置302处是指蒸发源未在所述掩膜片下方的位置。蒸发室2062在蒸镀时可以采用掩膜板缓存室2042中存储的第2掩膜板,在蒸发室2062中蒸镀时,控制蒸发源200与第2掩膜板的相对移动速度在第一位置301处小于第二位置302处。其中,第一位置301处是指蒸发源在掩膜片下方的位置;第二位置302处是指蒸发源未在所述掩膜片下方的位置。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
工业实用性
本公开公开的掩膜组件,由于同一掩膜框架上的相邻行掩膜片的边缘之间的距离小于该相邻行掩膜片行序号之间的其它行掩膜片的宽度之和,因此在依次采用第1至第x掩膜板对目标基板进行蒸镀后,可以减小相邻掩膜片的有效蒸镀区域之间的间隙,所以可以提高目标基板的利用率。因此在对显示屏的蒸镀制作过程中表现出显著的应用价值,具有很强的工业实用性。

Claims (18)

  1. 一种掩膜组件,其特征在于,包括多行掩膜片以及x个掩膜框架;多行掩膜片对应蒸镀图案;
    多行掩膜片划分为x组;
    满足第i+nx行的掩膜片,按照行序号依次排布设置在第i掩膜框架上,形成第i掩膜板;
    同一掩膜框架上的相邻行掩膜片之间设置有第一遮挡部;
    同一掩膜框架上的相邻行掩膜片的边缘之间的距离小于该相邻行掩膜片行序号之间的其它行掩膜片的宽度之和;
    其中,i以及x均为正整数,且i小于等于x;x大于1;n为非负整数。
  2. 根据权利要求1所述的掩膜组件,其特征在于,所述掩膜片与相邻所述第一遮挡部之间具有间隙;所述间隙大于等于所述掩膜片以及所述第一遮挡部的最大膨胀量之和。
  3. 根据权利要求2所述的掩膜组件,其特征在于,所述间隙上放设置有第二遮挡部。
  4. 根据权利要求3所述的掩膜组件,其特征在于,所述第二遮挡部包括磁性材料。
  5. 根据权利要求1所述的掩膜组件,其特征在于,所述掩膜片与相邻某一边的所述第一遮挡部一体成型。
  6. 根据权利要求1所述的掩膜组件,其特征在于,所述蒸镀图案包括阵列排布的多个蒸镀单元图形;每行掩膜片对应蒸镀图案的一行蒸镀单元图形。
  7. 根据权利要求1所述的掩膜组件,其特征在于,所述蒸镀图案包括阵列排布的多个蒸镀单元图形;除第一行和最后一行所述掩膜片外,每行所述掩膜片对应蒸镀图案的前一行的部分蒸镀单元图形以及后一行的部分蒸镀单元图形。
  8. 根据权利要求1所述的掩膜组件,其特征在于,所述蒸镀图案为一个蒸镀单元图形。
  9. 根据权利要求1所述的掩膜组件,其特征在于,所述掩膜片与所述第一遮挡部的厚度相同。
  10. 一种采用掩膜组件的蒸镀方法,其特征在于,应用权利要求1-9中任一项所述的掩膜组件,所述方法包括:
    依次采用第1至第x掩膜板对目标基板进行蒸镀。
  11. 根据权利要求10所述的蒸镀方法,其特征在于,在采用第i掩膜板对目标基板进行蒸镀时,包括:
    控制蒸发源与所述第i掩膜板之间相对移动,且移动方向平行于所述第i掩膜板所在平面且垂直于所述掩膜片的长度方向。
  12. 根据权利要求11所述的蒸镀方法,其特征在于,在依次采用第1至第x掩膜板对目标基板进行蒸镀时,还包括:
    控制蒸发源与掩膜板的相对移动速度在第一位置处小于第二位置处;
    其中,所述第一位置处是指蒸发源在所述掩膜片下方的位置;所述第二位置处是指所述蒸发源未在所述掩膜片下方的位置。
  13. 一种蒸镀设备,其特征在于,包括蒸发源以及权利要求1-9中任一项所述的掩膜组件,所述掩膜组件设置在所述蒸发源与目标基板之间。
  14. 根据权利要求13所述的蒸镀设备,其特征在于,包括至少一个蒸发室;
    所述蒸发室包括多个蒸发区;在多个蒸发区中一一对应采用掩膜组件的多个掩膜板对目标基板进行蒸镀。
  15. 根据权利要求14所述的蒸镀设备,其特征在于,同一蒸发室的各个所述蒸发区之间联通,且共用同一所述蒸发源;采用所述蒸发源依次对各所述蒸发区扫描蒸镀。
  16. 根据权利要求13所述的蒸镀设备,其特征在于,包括掩模板缓存室;所述掩模板缓存室用于存放至少一个掩膜组件。
  17. 根据权利要求13所述的蒸镀设备,其特征在于,包括多个掩模板缓存室;不同掩模板缓存室中存放不同掩模组件;同一掩模板缓存室中用于存放同一掩模组件的多个掩膜板。
  18. 根据权利要求13所述的蒸镀设备,其特征在于,包括至少一个蒸发组;不同所述蒸发组对应不同掩膜组件;
    每个所述蒸发组包括多个蒸发室以及多个掩模板缓存室;同一蒸发组的多个掩模板缓存室一一对应存储同一掩膜组件的多个掩模板;同一蒸发组的多个蒸发室一一对应采用同一蒸发组的各掩模板缓存室的多个掩模板对目标基板进行蒸镀。
PCT/CN2023/110462 2022-11-09 2023-08-01 一种掩膜组件、蒸镀方法和蒸镀设备 WO2024098845A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211397946.7 2022-11-09
CN202211397946.7A CN115786846B (zh) 2022-11-09 2022-11-09 一种掩膜组件、蒸镀方法和蒸镀设备

Publications (1)

Publication Number Publication Date
WO2024098845A1 true WO2024098845A1 (zh) 2024-05-16

Family

ID=85436301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110462 WO2024098845A1 (zh) 2022-11-09 2023-08-01 一种掩膜组件、蒸镀方法和蒸镀设备

Country Status (2)

Country Link
CN (1) CN115786846B (zh)
WO (1) WO2024098845A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786846B (zh) * 2022-11-09 2024-06-14 季华实验室 一种掩膜组件、蒸镀方法和蒸镀设备
CN116288148A (zh) * 2023-03-30 2023-06-23 季华实验室 一种掩膜组件、蒸镀设备和蒸镀方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126990A (ja) * 2010-12-14 2012-07-05 Samsung Mobile Display Co Ltd 薄膜蒸着用マスクフレーム組立体及びその製造方法
CN104157550A (zh) * 2014-07-28 2014-11-19 京东方科技集团股份有限公司 薄膜图形化方法及掩膜板
CN104617129A (zh) * 2015-02-05 2015-05-13 京东方科技集团股份有限公司 一种显示面板、掩模板和显示装置
CN108588639A (zh) * 2018-04-25 2018-09-28 京东方科技集团股份有限公司 掩膜组件和掩膜系统
CN109913809A (zh) * 2019-04-30 2019-06-21 京东方科技集团股份有限公司 一种掩膜装置及一种蒸镀方法
CN111020477A (zh) * 2019-11-29 2020-04-17 上海天马有机发光显示技术有限公司 一种掩膜装置、蒸镀方法及显示面板
CN115786846A (zh) * 2022-11-09 2023-03-14 季华实验室 一种掩膜组件、蒸镀方法和蒸镀设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107254673B (zh) * 2017-06-12 2019-07-19 京东方科技集团股份有限公司 蒸镀系统和蒸镀系统的蒸镀方法
CN109554665B (zh) * 2019-01-22 2021-01-15 京东方科技集团股份有限公司 一种蒸镀方法、蒸镀掩膜模组、显示面板及显示装置
CN111733380B (zh) * 2020-06-28 2022-10-04 武汉华星光电半导体显示技术有限公司 一种掩膜版组件、张网方法及蒸镀装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126990A (ja) * 2010-12-14 2012-07-05 Samsung Mobile Display Co Ltd 薄膜蒸着用マスクフレーム組立体及びその製造方法
CN104157550A (zh) * 2014-07-28 2014-11-19 京东方科技集团股份有限公司 薄膜图形化方法及掩膜板
CN104617129A (zh) * 2015-02-05 2015-05-13 京东方科技集团股份有限公司 一种显示面板、掩模板和显示装置
CN108588639A (zh) * 2018-04-25 2018-09-28 京东方科技集团股份有限公司 掩膜组件和掩膜系统
CN109913809A (zh) * 2019-04-30 2019-06-21 京东方科技集团股份有限公司 一种掩膜装置及一种蒸镀方法
CN111020477A (zh) * 2019-11-29 2020-04-17 上海天马有机发光显示技术有限公司 一种掩膜装置、蒸镀方法及显示面板
CN115786846A (zh) * 2022-11-09 2023-03-14 季华实验室 一种掩膜组件、蒸镀方法和蒸镀设备

Also Published As

Publication number Publication date
CN115786846A (zh) 2023-03-14
CN115786846B (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
WO2024098845A1 (zh) 一种掩膜组件、蒸镀方法和蒸镀设备
US11668001B2 (en) Full-size mask assembly and manufacturing method thereof
US8330352B2 (en) Organic light emitting diode display and method for manufacturing the same
US20210336147A1 (en) Mask
KR101174875B1 (ko) 박막 증착 장치, 이를 이용한 유기 발광 디스플레이 장치의 제조방법 및 이에 따라 제조된 유기 발광 디스플레이 장치
KR101090590B1 (ko) 유기 el 디바이스 제조 장치 및 성막 장치
TWI664724B (zh) 有機層沉積裝置
US9238276B2 (en) Method of manufacturing mask assembly for thin film deposition
JP6348691B2 (ja) 平板表示装置
WO2020221122A1 (zh) 掩膜装置及蒸镀方法
WO2020118949A1 (zh) 掩膜版及采用该掩膜版的掩膜装置
JP2004014513A (ja) 有機電子発光素子の薄膜蒸着用マスクフレーム組立体
KR101193192B1 (ko) 박막 증착 장치
US20070134567A1 (en) Mask and method of manufacturing display device using the same
WO2019019427A1 (zh) 金属网板及蒸镀掩膜装置
CN113015821B (zh) 掩膜装置及其制造方法、蒸镀方法、显示装置
US7253533B2 (en) Divided shadow mask for fabricating organic light emitting diode displays
WO2022134818A1 (zh) 一种掩膜板和掩膜板制作方法
JP2013112854A (ja) 成膜装置及び成膜方法
TWI628299B (zh) Vapor deposition shadow mask system for any size bottom plate and display screen and method of use thereof
CN114761605B (zh) 掩膜板及其制备方法、显示面板及其制备方法、显示装置
WO2019051932A1 (zh) 一种像素排列结构及其制备方法
CN113584429B (zh) 一种掩膜板及其制作方法
CN113823670B (zh) 像素排布结构、掩膜板组件及显示面板
US20220399531A1 (en) Mask and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887541

Country of ref document: EP

Kind code of ref document: A1