WO2024098765A1 - 连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法 - Google Patents

连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法 Download PDF

Info

Publication number
WO2024098765A1
WO2024098765A1 PCT/CN2023/101564 CN2023101564W WO2024098765A1 WO 2024098765 A1 WO2024098765 A1 WO 2024098765A1 CN 2023101564 W CN2023101564 W CN 2023101564W WO 2024098765 A1 WO2024098765 A1 WO 2024098765A1
Authority
WO
WIPO (PCT)
Prior art keywords
argon
blowing
continuous casting
ladle
soft
Prior art date
Application number
PCT/CN2023/101564
Other languages
English (en)
French (fr)
Inventor
武光君
张佩
赵燕
高山
石磊
宁伟
顾大庆
武文健
王金洪
Original Assignee
莱芜钢铁集团银山型钢有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 莱芜钢铁集团银山型钢有限公司 filed Critical 莱芜钢铁集团银山型钢有限公司
Publication of WO2024098765A1 publication Critical patent/WO2024098765A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/117Refining the metal by treating with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring

Definitions

  • the invention relates to the technical field of continuous casting process in iron and steel metallurgy, and in particular to a bottom blowing argon control device for a continuous casting ladle turret and a method for removing inclusions by soft blowing.
  • the prior art After the ladle is refined from the LF refining position, it is lifted to the pouring position of the continuous casting ladle turret and then transferred to the pouring position for casting.
  • the prior art has the following problems or deficiencies: (1) The LF refining time is long, which becomes a bottleneck problem restricting the improvement of steelmaking capacity; (2) The soft blowing time in the later stage of LF refining is insufficient, which affects the inclusion removal rate.
  • CN111644584B discloses a bottom blowing argon control device for a continuous casting ladle turret and a method for removing inclusions by soft blowing. Part or all of the soft blowing in the later stage of LF refining in the prior art is transferred from the LF refining treatment position to the continuous casting ladle turret, and manual air-permeable brick blowing and soft blowing are performed at the waiting pouring position of the continuous casting ladle turret. During the pouring process at the pouring position, automatic soft blowing mode and automatic blowing and blocking are selected. Different automatic soft blowing modes are selected according to different requirements for controlling inclusions in the steel.
  • the proportion of the molten steel casting amount in the total amount of molten steel in the ladle is different, and different types of air-permeable bricks are selected.
  • the problems or shortcomings of this scheme are as follows: the gas source outlet 1# and gas source outlet 2# described in this scheme are connected to the ladle bottom blowing air brick 1# and air brick 2# respectively through quick connectors, which is neither safe nor reliable, and its industrial promotion and application are limited.
  • the argon blowing time at the pouring position of the continuous casting ladle turntable is 2 to 4 minutes, which is too short, seriously affecting the inclusion removal rate in the molten steel in the early stage of pouring of the continuous casting ladle, thereby affecting the quality of the continuous casting billet.
  • CN108817337B discloses a ladle turret argon blowing method and a ladle turret in a continuous casting mode, and moves the ladle argon blowing process to the continuous casting turret for implementation, solving the contradiction between the argon blowing time of molten steel and the production rhythm.
  • the argon gas flow rate of this scheme at the steel pressing position is 38-42/h (converted to 0.63-0.7L/min)
  • the argon gas flow rate is too small
  • the argon blowing removal effect is poor
  • the ladle argon blowing turret has no argon blowing automatic docking device
  • the manual docking quality is not guaranteed, it is unsafe, and it is difficult to promote and apply.
  • CN101586177A discloses a method for reducing titanium inclusions in molten steel.
  • the method reduces titanium inclusions in a specific steel cord steel by further removing titanium inclusions after completing all refining processes.
  • the bottom argon blowing of the ladle and the bottom argon blowing of the ladle during the pouring process are not suitable for all steel grades and all inclusions, and its promotion and application are limited.
  • the purpose of the present invention is to provide an argon blowing control device for the bottom of a continuous casting ladle turret and a method for removing inclusions by soft blowing.
  • An argon blowing automatic docking mechanism and an argon blowing intelligent control switching device are provided, so as to realize the automatic docking of argon blowing at the bottom of the ladle of the continuous casting ladle turret and the automatic switching of argon blowing control of the swivel arm.
  • the existing ladle bottom blowing air bricks are utilized to perform small-flow static soft blowing at the waiting position of the continuous casting ladle turret and small-flow dynamic soft blowing during the pouring process at the pouring position, so as to completely replace the existing LF refining late-stage ladle soft blowing, overcome the bottleneck problem of long LF refining time and restriction on the improvement of steelmaking capacity, improve the inclusion removal rate of the ladle bottom blowing air bricks, and improve the quality of molten steel.
  • the present invention adopts the following technical solutions:
  • a bottom argon blowing control device for a continuous casting ladle turret comprises a gas circuit control unit, a continuous casting basic automation system, a molten steel weighing system in a ladle, an argon blowing intelligent control switching device, a PLC, a continuous casting ladle turret, an argon blowing automatic docking mechanism, and a ladle, wherein the PLC is respectively connected to the gas circuit control unit and the continuous casting basic automation system in communication, and the molten steel weighing system in the ladle is connected to the continuous casting basic automation system in communication;
  • the continuous casting ladle turret is provided with two swivel arms;
  • the ladle is provided with two ladle bottom blowing air-permeable bricks;
  • the argon blowing automatic docking mechanism comprises a lower component and an upper component, wherein the lower component is mounted on a rotating arm, the lower component comprises an air inlet pipe, the upper component is mounted on the bottom of the ladle trunnion box, the upper component comprises an air outlet pipe, the air outlet pipe is connected to the ladle bottom blowing air permeable brick, and when the ladle is seated on the rotating arm, the lower component docks with the upper component and connects the air inlet pipe with the air outlet pipe;
  • the gas circuit control unit comprises two argon control pipelines, each of which supplies argon to one of the air inlet pipes on the two rotating arms through an argon blowing intelligent control switching device;
  • the PLC obtains the pouring start signal of the continuous casting ladle turret in the continuous casting basic automation system to determine the swivel arm at the waiting position and the swivel arm at the pouring position; for the swivel arm at the waiting position, the PLC controls the gas circuit control unit to switch to the quantitative control mode, that is, to provide a constant argon gas flow rate; for The PLC controls the gas circuit control unit to switch to the adaptive control mode for the rotary arm at the pouring position, that is, according to the molten steel weighing signal of the molten steel weighing system in the ladle, the argon flow rate in the pouring process is linearly reduced as the weight of the molten steel in the ladle decreases.
  • the gas circuit control unit also includes a gas source main circuit and a gas bus;
  • An argon gas inlet is provided at the upstream end of the main gas source path, and the downstream end of the main gas source path is connected to a gas bus.
  • the main gas source path is provided with a first ball valve, a first pressure sensor, a pressure regulator, a first filter, a second filter, and a second pressure sensor from upstream to downstream.
  • the argon control pipeline includes an argon main line, an automatic branch, a manual bypass, and a release branch; the upstream end of the automatic branch is connected to the gas bus, and the automatic branch is provided with a first ball valve of the automatic branch, an automatic branch solenoid valve, a metallurgical quality controller, and a second ball valve of the automatic branch in sequence from upstream to downstream; the upstream end of the manual bypass is connected to the gas bus, and the manual bypass is provided with a first ball valve of the manual bypass, a manual regulating valve, and a second ball valve of the manual bypass in sequence from upstream to downstream; the downstream end of the automatic branch and the downstream end of the manual bypass are both connected to the upstream end of the argon main line, and the argon main line is provided with a pressure gauge, an argon main line pressure sensor, and an argon main line ball valve in sequence from upstream to downstream; the downstream end of the automatic branch and the downstream end of the manual bypass are both connected to the upstream end of the release branch, and
  • the first pressure sensor of the gas source main circuit, the second pressure sensor of the gas source main circuit, the automatic branch solenoid valve, the metallurgical quality controller, the argon gas main circuit pressure sensor, and the release branch solenoid valve are all connected to the PLC;
  • Each of the rotating arms is provided with two lower components, and the argon blowing intelligent control switching device is provided with four gas supply branches, on which a gas supply branch manual ball valve, a gas supply branch solenoid valve, and a gas supply branch filter are provided in sequence from upstream to downstream, and the gas supply branch solenoid valve is connected to the PLC; the four gas supply branches are respectively connected to four air inlet pipes, each of the argon control pipelines is connected to two gas supply branches, and the two gas supply branches connected to each of the argon control pipelines are respectively connected to the air inlet pipes on the two rotating arms.
  • the technical solution of the present invention also includes a control cabinet, the gas circuit control unit and the PLC are both arranged in the control cabinet, and a cooling control unit is arranged in the control cabinet, and the cooling control unit includes a cooling pipe A cooling pipe ball valve, a cooling pipe pressure sensor, a cooling pipe filter and a cooling pipe solenoid valve are arranged on the cooling pipe in sequence from the upstream end to the downstream end.
  • the cooling pipe pressure sensor and the cooling pipe solenoid valve are both connected to the PLC, and the outlet of the cooling pipe is arranged between the air path control unit and the PLC.
  • the technical solution of the present invention also includes an operation box, which is provided with a signal light, a touch screen, and a control button, and the signal light, the touch screen, and the control buttons are all connected to the PLC; the touch screen is used by the user to set the set value of the argon blowing time of the ladle at the waiting position of the continuous casting ladle turret and the set value of the argon blowing time at the pouring position, and to display the actual argon blowing time of the waiting position and the actual argon blowing time of the pouring position in real time.
  • it also includes a continuous casting ladle turret operating box, which is used for human-machine interaction of the continuous casting ladle turret.
  • the operating box and the continuous casting ladle turret operating box are both arranged in the large ladle operating room and are operated by the large ladle operator.
  • the technical solution of the present invention is that two saddle seats are symmetrically arranged on each of the rotating arms, and each of the saddle seats corresponds to an argon blowing automatic docking mechanism; a notch is arranged on the saddle seat;
  • the lower component also includes a gland, a lower butt joint, a disc spring group, a sealing ring, a disc-shaped bracket, and a soot blowing cover plate;
  • the gland is installed in the recess by screws, the lower butt joint can be movably arranged inside the gland, the disc spring group is arranged between the lower butt joint and the saddle seat, and the sealing ring is embedded in the groove at the top of the lower butt joint;
  • the air intake pipe passes through the saddle seat and is connected to the lower butt joint, and the air intake pipe is connected to the through hole arranged in the center of the lower butt joint;
  • the disc-shaped bracket is fixedly installed at the center of the upper end of the lower butt joint, and an air outlet hole is arranged in the center of the disc-shaped bracket, and the soot blowing cover plate can be movably installed in the air outlet hole and is used to open or close the air outlet hole;
  • the upper assembly further comprises a bottom plate, a heat insulating plate, and an upper butt joint, wherein the bottom plate, the heat insulating plate, and the upper butt joint are arranged in sequence from top to bottom, and the air outlet pipe passes through the bottom plate, the heat insulating plate, and the upper butt joint;
  • the top surface of the lower docking joint fits with the bottom surface of the upper docking joint.
  • the technical solution of the present invention is that the argon flow rate in the pouring process decreases linearly with the decrease of the weight of the molten steel in the ladle, which means that the initial argon flow rate setting value of the pouring position and the initial molten steel weight setting value are adjusted.
  • the adaptive mode argon blowing control curve created by the set value and stop argon flow set value and the stop molten steel weight set value adaptively controls the argon flow.
  • the present invention also provides a method for removing inclusions by soft blowing using the above-mentioned bottom blowing argon control device of the continuous casting ladle turret.
  • the ladle is soft-blown for 10 to 20 minutes.
  • the argon flow rate in the pouring process is linearly reduced as the weight of the molten steel in the ladle decreases.
  • T is the upper steel temperature of the continuous casting ladle turret, in °C
  • Tf is the upper steel temperature of the continuous casting ladle turret in the prior art, and the value range of Tf is 1564-1579 °C
  • Tw is the soft blowing time at the pouring position, in °C
  • k1 ranges from 0.4 to 0.5, in °C/min
  • Tp is the soft blowing time at the pouring position, in °C
  • k2 ranges from 0.3 to 0.4, in °C/min.
  • the soft blowing time during the pouring process at the pouring position is 10 minutes; for steel types with medium inclusion control requirements, the soft blowing time during the pouring process at the pouring position is 15 minutes; for steel types with high inclusion control requirements, the soft blowing time during the pouring process at the pouring position is 20 minutes.
  • the technical solution of the present invention is that the argon flow rate of soft blowing of the ladle at the pouring position is 30-40NL/min; during the pouring process of the ladle at the pouring position, the initial argon flow rate is 25-30NL/min, and as the amount of molten steel in the ladle decreases, the argon flow rate decreases linearly to 15-20NL/min.
  • the technical solution of the present invention is also that when the temperature of the molten steel in the continuous casting tundish is too high or too low, the soft blowing time or the argon flow rate of the pouring position of the continuous casting ladle turret is adjusted:
  • Td liquidus temperature of the steel grade + 15°C.
  • the technical solution of the present invention is also that when the air-permeable bricks at the bottom of the ladle are blocked, the blowing flow rate is set to 50-100NL/min for blowing and blocking.
  • the present invention has the following beneficial effects:
  • the present invention provides an argon blowing control device for a continuous casting ladle turret bottom, which is provided with an argon blowing automatic docking mechanism and an argon blowing intelligent control switching device, thereby realizing automatic docking of the ladle bottom of the continuous casting ladle turret with argon blowing and automatic switching of the turret arm intelligent control of argon blowing, breaking through the key technical bottlenecks of docking of the ladle bottom argon blowing pipeline of the continuous casting ladle turret and the argon blowing intelligent control switching of the turret arm, and solving the problem of unsafe and unreliable industrial application caused by the gas source outlet 1# and the gas source outlet 2# of the continuous casting ladle turret bottom argon blowing control device disclosed in CN111644584B being connected to the ladle bottom blowing air brick 1# and the air brick 2# air inlet pipe using quick connectors.
  • the flow rates of static argon blowing at the waiting position of the continuous casting ladle turret and dynamic argon blowing during the pouring process at the pouring position are reduced by 40% and 50% respectively compared with the prior art, and the total oxygen content of molten steel in the crystallizer is reduced by more than 12% year-on-year.
  • the present invention installs the lower component of the argon blowing automatic docking mechanism in the middle of the saddle seat of the existing turntable, which simplifies the installation process of the lower component of the argon blowing automatic docking mechanism and reduces material costs.
  • the present invention aims to solve the problem of too high or too low molten steel temperature in the continuous casting tundish by adjusting the soft blowing time or argon flow rate at the pouring position of the continuous casting ladle turntable, thereby avoiding the problem of reduced casting speed due to high molten steel temperature and the resulting quality defects of the castings, or the problem of molten steel returning to the furnace due to low molten steel temperature.
  • the present invention aims to solve the problem of blockage of ladle bottom blowing air bricks, and provides a method for blowing the ladle bottom blowing air bricks.
  • the blocking method solves the problem of ingot quality caused by small air permeability of the ladle bottom blowing air bricks in the early stage of argon blowing or the failure of bottom blowing, or the problem of molten steel returning to the furnace due to the nozzle sleeve.
  • the bottom blowing argon control device for the continuous casting ladle turret provided by the present invention is provided with a cooling control unit.
  • a cooling medium such as nitrogen
  • the inclusion removal rate is the highest when the argon flow rate of static soft blowing is maintained at 60% of the argon flow rate of slight fluctuation of the molten steel level; the inclusion removal rate is the highest when the argon flow rate of dynamic soft blowing during ladle pouring is maintained at 50% of the argon flow rate of slight fluctuation of the molten steel level.
  • the prior art has an argon flow rate of 50-65NL/min for static soft blowing to maintain slight fluctuations in the molten steel level
  • the present invention has an argon flow rate of 30-40NL/min for static soft blowing at the pouring position of the continuous casting ladle turret, and an initial argon flow rate of 25-30NL/min during the pouring process at the pouring position of the continuous casting ladle turret, and as the amount of molten steel in the ladle decreases, the argon flow rate linearly decreases to 15-20NL/min. This is obtained by the inventor through a large number of simulation studies and production tests.
  • CN111644584B discloses a bottom argon blowing control device for a continuous casting ladle turret and a method for removing inclusions by soft blowing.
  • the static argon flow rate at the waiting position of the continuous casting ladle turret and the initial flow rate value of the dynamic soft blowing at the pouring position are the argon flow rate values for measuring the slight fluctuation of the steel liquid level in the ladle.
  • CN108817337B discloses an argon blowing method for a ladle turret and a ladle turret in a continuous casting mode.
  • the argon flow rate at the steel pressing position is 38-42/h (converted to 0.63-0.7L/min).
  • CN101586177A discloses a method for reducing titanium inclusions in molten steel.
  • the argon flow rate of the ladle at the waiting position is controlled at 0.3 ⁇ 10-3 to 4 ⁇ 10-3 Nm3/ min.t (converted to 39-520Nm3 / min.t according to the present invention for a steel output of 130t).
  • the present invention reduces the flow rates of static argon blowing at the waiting position of the continuous casting ladle turret and dynamic argon blowing during the pouring process at the pouring position by 40% and 50% respectively compared with the prior art, which not only improves the soft blowing inclusion removal rate and reduces the argon consumption, but also reduces the temperature drop of molten steel, achieving an unexpected argon blowing effect.
  • FIG. 1 is a schematic structural diagram of a control device for bottom argon blowing of a continuous casting ladle turret in an embodiment of the present invention
  • FIG2 is a partial enlarged view of the A portion in FIG1;
  • FIG3 is a schematic diagram of the structure of a gas circuit control unit in an embodiment of the present invention.
  • FIG4 is a schematic diagram of the structure of a cooling control unit in an embodiment of the present invention.
  • FIG5 is a schematic diagram of the process layout of the argon blowing automatic docking mechanism according to an embodiment of the present invention.
  • FIG6 is a schematic structural diagram of a saddle seat according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the operation of the lower assembly of the argon blowing automatic docking mechanism in the soot blowing state according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of an argon blowing control curve in an adaptive mode according to an embodiment of the present invention.
  • 1-gas control unit 2-continuous casting basic automation system, 3-molten steel weighing system in ladle, 4-argon blowing intelligent control switching device, 5-PLC, 6-continuous casting ladle turret, 7-ladle, 8-rotating arm, 9-inlet pipe, 10-outlet pipe, 11-gas bus, 12-first ball valve of gas source main line, 13-first pressure sensor of gas source main line, 14-pressure regulator, 15-first filter of gas source main line, 16-second filter of gas source main line, 17-second pressure sensor of gas source main line, 18-first ball valve of automatic branch, 19-automatic branch solenoid valve, 20-metallurgical quality controller, 21-second ball valve of automatic branch, 22-first ball valve of manual bypass, 23-manual regulating valve, 24-second ball valve of manual bypass, 25-pressure gauge, 26-argon main line pressure Sensor, 27-argon main ball valve, 28-release branch solenoid valve, 29-exhaust throttle valve, 30-air supply branch manual ball valve, 31-air supply branch solenoi
  • the present embodiment provides a bottom argon blowing control device for a continuous casting ladle turret, comprising a gas circuit control unit 1, a continuous casting basic automation system 2, a molten steel weighing system in a ladle 3, an argon blowing intelligent control switching device 4, a PLC 5, a continuous casting ladle turret 6, an argon blowing automatic docking mechanism, a ladle 7, an operating box 39, an operating box for a continuous casting ladle turret, a cooling control unit 34, and a control cabinet 33.
  • the gas circuit control unit 1 , PLC 5 , and cooling control unit 34 are arranged in a control cabinet 33 from top to bottom, and the control cabinet 33 is placed near the argon gas source outside the rotation radius of the continuous casting ladle turret 6 .
  • the PLC5 (Programmable Logic Controller) includes a CPU, a digital processing module, an analog processing module and a communication module.
  • the PLC5 is respectively connected to the gas circuit control unit 1, the continuous casting basic automation system 2, the operation box 39 and the cooling control unit 34.
  • the communication module includes an Ethernet communication network and a network switch.
  • the molten steel weighing system 3 in the steel ladle is connected to the continuous casting basic automation system 2.
  • the continuous casting ladle turret 6 is provided with two swivel arms 8 , and the continuous casting ladle turret operation box is used for human-machine interaction of the continuous casting ladle turret 6 .
  • the ladle 7 is provided with two ladle bottom blowing air bricks 52 .
  • a notch 15 is machined in the center of the upper part of the saddle seat 41, and its width is 320 mm.
  • six "T"-shaped circular holes are evenly machined on the arc with a diameter of 180 mm, and the upper circle has a diameter of 38 mm and a height of 30 mm, and the lower circle has a diameter of 22 mm and a height of 50 mm, which are used to install the disc spring assembly 44.
  • the diameter of the recess 51 is 210 mm, which is used to fix the gland 42 and has a specification of M20-7H.
  • a through hole is processed in the center of the recess 51, and the through hole diameter is 80 mm, which is used to install the air intake pipe 9.
  • Each of the saddle seats 41 corresponds to an argon blowing automatic docking mechanism.
  • the lower assembly includes an air inlet pipe 9, a gland 42, a lower butt joint 43, a disc spring assembly 44, a sealing ring 45, a disc-shaped bracket 46, and a soot-blowing cover plate 47.
  • the gland 42 is installed in the recess 51 by screws, and the lower butt joint 43 is movably arranged inside the gland 42.
  • a cavity with a trapezoidal longitudinal section and a truncated cone cross section is provided in the middle of the top surface of the lower butt joint 43.
  • the disc spring assembly 44 is arranged between the lower butt joint 43 and the saddle seat 41 to provide elastic support for the lower butt joint 43 in the direction of gravity.
  • the sealing ring 45 is embedded in the groove at the top of the lower butt joint 43.
  • the air inlet pipe 9 passes through the saddle seat 41 and is connected to the lower butt joint 43.
  • the air inlet pipe 9 is connected to a through hole arranged in the center of the lower butt joint 43.
  • the disc-shaped bracket 46 is fixedly installed at the center of the upper end of the lower docking joint 43, and an air outlet is provided at the center of the disc-shaped bracket 46.
  • the soot blowing cover plate 47 is an umbrella-shaped structure with a cover portion and a rod portion. The soot blowing cover plate 47 can be movably installed in the air outlet hole up and down and is used to open or close the air outlet hole.
  • the upper component is installed at the bottom of the trunnion box of the ladle 7, as shown in FIG2 , and the upper component includes an air outlet pipe 10, a bottom plate 48, an insulation plate 49, and an upper butt joint 50, and the bottom plate 48, the insulation plate 49, and the upper butt joint 50 are arranged in sequence from top to bottom.
  • the air outlet pipe 10 passes through the bottom plate 48, the insulation plate 49, and the upper butt joint 50, and the two air outlet pipes 10 on each rotating arm 8 are respectively connected to the two ladle bottom blowing air permeable bricks 52 arranged in the groove at the bottom of the trunnion box of the ladle 7.
  • the insulation plate 49 is used to reduce the temperature influence of the heat transfer of the ladle 7 on the upper butt joint 50, and prevent the high temperature deformation of the upper butt joint 50, which causes air leakage on the butt joint surface.
  • the top surface of the lower butt joint 43 fits with the bottom surface of the upper butt joint 50, and the sealing ring 45 is used to seal the butt surface of the upper butt joint 50 and the lower butt joint 43, so that the air inlet pipe 9 is connected with the air outlet pipe 10.
  • a cooling trough 53 is provided between the top surface of the upper joint 50 and the bottom surface of the bottom plate 48. 53 is connected to the surroundings, and gas can flow through the gap between the upper butt joint 50 and the bottom plate 48 to achieve natural cooling and reduce the working temperature of the upper butt joint 50 and the sealing ring 45.
  • the upper joint 50 and the bottom plate 48 are respectively provided with a through pressure relief hole 54 at both ends to prevent the sealing ring 45 from being lifted up by the residual high-pressure argon gas in the cavity and being ejected from the working surface and damaged after the argon blowing is stopped.
  • the gas circuit control unit includes a gas source main circuit, an argon gas control pipeline, and a gas bus 11 .
  • An argon inlet is provided at the upstream end of the main gas source path, and the downstream end of the main gas source path is connected to a gas bus 11.
  • the main gas source path is provided with a first ball valve 12, a first pressure sensor 13, a pressure regulator 14, a first filter 15, a second filter 16, and a second pressure sensor 17 in the main gas source path from upstream to downstream.
  • argon control pipelines which include an argon main line, an automatic branch, a manual bypass, and a release branch.
  • the upstream end of the automatic branch is connected to the gas bus 11, and the automatic branch is provided with a first ball valve 18 of the automatic branch, an automatic branch solenoid valve 19, a metallurgical quality controller 20, and a second ball valve 21 of the automatic branch in sequence from upstream to downstream.
  • the upstream end of the manual bypass is connected to the gas bus 11, and the manual bypass is provided with a first ball valve 22 of the manual bypass, a manual regulating valve 23, and a second ball valve 24 of the manual bypass in sequence from upstream to downstream.
  • the downstream end of the automatic branch and the downstream end of the manual bypass are both connected to the upstream end of the argon main line, and the argon main line is provided with a pressure gauge 25, an argon main line pressure sensor 26, and an argon main line ball valve 27 in sequence from the upstream end to the downstream end.
  • the downstream end of the automatic branch and the downstream end of the manual bypass are connected to the upstream end of the release branch, and the release branch is provided with a release branch solenoid valve 28 and an exhaust throttle valve 29 in sequence from upstream to downstream.
  • the release branch is used for exhaust and pressure relief after the ladle bottom blowing air bricks 52 stop blowing argon. After the ladle 7 completes pouring, exhausts and releases pressure at the pouring position of the continuous casting ladle turntable 6, it is transferred to the waiting pouring position and the ladle 7 is hoisted away.
  • the first pressure sensor 13 of the main gas source, the second pressure sensor 17 of the main gas source, the automatic branch electromagnetic valve 19, the metallurgical quality controller 20, the argon main pressure sensor 26, and the release branch electromagnetic valve 28 are all connected to the PLC5.
  • the PLC5 obtains the pressure on the corresponding pipeline through each pressure sensor; the PLC5 obtains the argon flow on the automatic branch through the metallurgical quality controller 20, and The controller 20 adjusts the argon flow rate of the automatic branch.
  • the argon blowing intelligent control switching device is provided with four air supply branches, on which the air supply branch manual ball valve 30, the air supply branch solenoid valve 31, and the air supply branch filter 32 are provided in sequence from upstream to downstream, and the air supply branch solenoid valve 30 is connected to the PLC5.
  • the four air supply branches are respectively connected to four air inlet pipes 9, each of the argon control pipelines is connected to two air supply branches, and the two air supply branches connected to each of the argon control pipelines are respectively connected to the air inlet pipes 9 on the two rotating arms 8.
  • Each of the air supply branches passes through the sealing ring and the saddle seat 41 of the continuous casting ladle turret 6 in sequence and is connected to the corresponding air inlet pipe 9.
  • the types of the two air permeable bricks 52 provided on each ladle 7 may be different or the argon blowing flow requirements are different, and the argon blowing parameters of different types of ladle bottom blowing air permeable bricks are different, if an argon control pipeline is designed for each of the four ladle bottom blowing air permeable bricks 52 corresponding to the two rotating arms 8, the cost is relatively high.
  • each of the argon control pipelines supplies argon to one of the air inlet pipes 9 on the two rotating arms 8 through the argon blowing intelligent control switching device 4, that is, each of the argon control pipelines separately controls the blowing of argon to a type of ladle bottom blowing air bricks 52, which greatly reduces the cost.
  • one argon control pipeline supplies argon to the left ladle bottom blowing air bricks 11 of the left rotating arm 8 through the first air supply branch from the top
  • the other argon control pipeline supplies argon to the right ladle bottom blowing air bricks 11 of the left rotating arm 8 through the third air supply branch from the top
  • the second air supply branch from the top and the fourth air supply branch mentioned above are closed.
  • the working modes of the gas circuit control unit 1 include a quantitative control mode and an adaptive control mode.
  • the PLC5 obtains the pouring position start signal of the continuous casting ladle turret 6 in the continuous casting basic automation system 2 to determine the swivel arm at the waiting position and the swivel arm at the pouring position. For the swivel arm at the waiting position, the PLC5 controls the gas circuit control unit 1 to switch to the quantitative control mode. Specifically, the PLC5 sends a flow control instruction to the metallurgical quality controller 20 to make the argon flow rate of the automatic branch constant; for the swivel arm at the pouring position, the PLC5 controls the gas circuit control unit 1 to switch to the adaptive control mode.
  • the PLC5 sends a flow control instruction to the metallurgical quality controller 20 according to the molten steel weighing signal of the molten steel weighing system in the ladle 7, so that the argon flow rate of the automatic branch during the pouring process decreases linearly with the decrease of the weight of the molten steel in the ladle 7.
  • the argon flow rate in the pouring process decreases linearly as the weight of the molten steel in the ladle 7 decreases, which means that the argon flow rate is adaptively controlled according to the adaptive mode argon blowing control curve created according to the initial argon flow setting value and the initial molten steel weight setting value of the pouring position and the stop argon flow setting value and the stop molten steel weight setting value.
  • the cooling control unit 34 includes a cooling pipeline, on which a cooling pipeline ball valve 35, a cooling pipeline pressure sensor 36, a cooling pipeline filter 37, and a cooling pipeline solenoid valve 38 are sequentially arranged from the upstream end to the downstream end.
  • the cooling pipeline pressure sensor 36 and the cooling pipeline solenoid valve 38 are both connected to the PLC5, and the outlet of the cooling pipeline is arranged between the gas circuit control unit 1 and the PLC5.
  • the operation box 39 and the continuous casting ladle turret operation box are both arranged in the large ladle operation room and are operated by the large ladle operator.
  • the operation box 39 is provided with a signal light, a touch screen 40, and a switch button from top to bottom, and the signal light, the touch screen 40, and the control button are all connected to the PLC 5.
  • the signal lights include a power light 55 (white), an alarm light 56 (red) and a light test 57 (green), wherein the power light 55 indicator is on (white), indicating that the operation box 39 is powered normally; the alarm light 56 is on and flashes, indicating that the soft blowing system has a fault, and it is necessary to check the soft blowing system touch screen fault details and deal with the fault in time; press the light test 57 button, and all the lighted indicators in the operation box 39 will light up. If any of the lights are not on, it is necessary to promptly inspect and replace the button indicator lights and button switches.
  • the interface of the touch screen 40 includes a main page and a parameter setting page, which are used by the user to set the set value of the argon blowing time of the ladle 7 at the waiting position for pouring and the set value of the argon blowing time at the pouring position on the continuous casting ladle turret 6, and to display the actual argon blowing time of the waiting position and the actual argon blowing time of the pouring position in real time, making the setting, modification and viewing of the argon blowing time easier and more intuitive.
  • the parameter setting page of the touch screen 40 includes manual parameter setting and automatic parameter setting.
  • the manual parameter setting includes parameter values such as gas source alarm, gas leakage alarm, blockage alarm, manual argon blowing flow rate, etc.
  • the automatic Parameter settings include argon blowing flow upper limit, flow lower limit, pressure upper limit, pressure lower limit, blow-blocking argon blowing flow, fine-tuning step size, and initial argon blowing flow, initial molten steel weight, stop argon blowing flow, stop molten steel weight and other parameter values for the argon blowing control curve in dynamic adaptive mode of the casting process. Parameter output is displayed on the main page, showing the quantitative control mode or adaptive control mode and its parameter setting values and actual output values.
  • the touch screen 40 also includes a memory, which is used to store data sent by the PLC.
  • the switch buttons include a station control button 58 (green), a start button 59 (green), a stop button 60 (red), a slewing arm conversion switch 61, an emergency stop button 62, and argon blowing flow levels (1/2/3) 63, 64 for two ladle bottom blowing air bricks 52, fine-tuning plus buttons 65, 66, fine-tuning minus buttons 67, 68, automatic buttons 69, 70, and blow-blocking buttons 71, 72.
  • the specific description is as follows:
  • Workstation control button 58 Press this button, and the light will light up, which means the operation right of this operation box is selected.
  • the bottom blowing system can be controlled in the operation box.
  • the operation is invalid before the indicator light is on. Setting the workstation control button 58 avoids startup accidents caused by misoperation by operators other than those in this position.
  • Start button 59 Press this button to start the device (green indicator light is on); before starting the system, you must select the slewing arm and then start the soft blowing system;
  • Stop button 60 Press this button to stop the device (red indicator light is on);
  • Rotating arm conversion switch 61 The two sides of the conversion switch are used to select two rotating arms respectively. After switching the rotating arm selection, check whether the status indication on the upper right of the touch screen 40 is synchronized with the selected package arm;
  • Emergency stop button 62 There are two emergency stop positions for the ladle soft blowing system, one is installed on the panel of the workstation operation box, and the other is installed on the door panel of the valve station of the soft blowing system. In case of emergency, the emergency stop button 62 can be pressed nearby to stop the soft blowing system. After the fault is eliminated, the red button can be turned clockwise to release the emergency stop. The design of the emergency stop button 62 avoids further expansion of the accident and improves the safety and reliability of the operation and control of the bottom blowing argon control device of the continuous casting ladle turret.
  • Argon blowing flow rate gear (1/2/3) 63, 64 used in manual mode, the switch turns to 1, 2, 3, respectively selecting manual argon blowing flow rate setting value 1, manual argon blowing flow rate setting value 2, manual argon blowing flow rate setting value 3;
  • Fine-tuning plus button 65, 66 and fine-tuning minus button 67, 68 When you open the output parameter display interface of the touch screen 40 and find that the argon blowing flow output value does not match the set value, you can press the fine-tuning plus button 65, 66 or the fine-tuning minus button 67, 68. Buttons 67 and 68 are used to adjust the current flow/output value;
  • Automatic button 69, 70 When the light is on in the automatic mode or when the light is on after pressing this button, argon is blown in the automatic mode;
  • buttons 71 and 72 After pressing these buttons and their lights are lit, the ladle bottom air-blow-off bricks 11 are blown off and plugged according to the set blowing and plugging argon flow rate.
  • the components in the gas circuit control unit are all purchased from the market.
  • the model and specification of each ball valve can be DN20, 63bar304SSG1;
  • the model and specification of each solenoid valve can be DC24V, G1/2MS;
  • the model and specification of the air supply branch filter 32 and the cooling pipe filter 37 can be Y-type filters, 50 ⁇ m;
  • the model and specification of the first filter 15 of the main gas source and the second filter 16 of the main gas source can be 40 ⁇ m, and the model and specification of 5MPa can be AF60-F10;
  • the model and specification of each pressure sensor can be PT5403, 0-25barG1/4;
  • the model and specification of the pressure regulator 14 can be BK201-25;
  • the model and specification of the metallurgical quality controller 20 can be FLOX[on]62, IP65, and the flow rate is 200NL/min;
  • the model and specification of each pressure gauge can be YT40;
  • the model and specification of each manual regulating valve can be
  • the electrical control system components are all purchased from the market, wherein the model specification of the PLC5 is Siemens S7 series, PLCS7200-Smart, including AI, AO, DI, DO and other accessories, and the model specification of the touch screen 40 is Siemens 7-inch touch screen.
  • the disc spring group 44, sealing ring 45, screws, insulation plate 49, air inlet pipe 9 and air outlet pipe 10 in the lower and upper components of the argon blowing automatic docking mechanism are all purchased from the market.
  • the disc spring group 44 is of model CY06, the middle diameter of the sealing ring 45 is 180 ⁇ 18, the air inlet pipe 9 and air outlet pipe model 10 are DN15, and the other components are machined parts.
  • This embodiment also provides a method for removing inclusions by soft blowing using the above-mentioned bottom blowing argon control device for the continuous casting ladle turret, which is used for casting a 130t LF refining ladle to produce a large H-shaped steel near-final shape special-shaped billet steel grade Q235B, and the control requirements for inclusions in the steel are low.
  • the soft blowing time in the late stage of LF refining in the prior art is 8 minutes.
  • the selected manual parameter setting values and specific instructions are as follows:
  • Gas source alarm (bar): 2.0 (When the inlet gas source pressure is lower than this setting value, the "Gas source pressure” will be prompted. Low”, the warning light 56 lights up to warn);
  • Leakage alarm (bar) 0.1 (when the outlet pressure is less than this set value in manual mode, it will prompt "leakage fault” and the alarm light 56 will light up to alarm);
  • Manual flow setting value 1 (NL/min): 30, manual flow setting value 2 (NL/min): 35, manual flow setting value 3 (NL/min): 40 (corresponding to three different flow values in manual mode);
  • the automatic parameter setting values are specifically described, and there are a total of settings:
  • Weight of molten steel at the time of stopping argon blowing (t): 65 (when the weight of molten steel is less than or equal to the weight of molten steel at the time of stopping argon blowing, stop argon blowing);
  • Argon blowing flow rate for blockage (NL/min): 60 (the argon blowing flow rate value used for blockage when the bottom blowing air brick is blocked and the alarm is triggered);
  • the method for removing inclusions by soft blowing in the present invention is as follows:
  • the ladle is soft-blown for 10 minutes during the pouring process at the pouring position, and settings are made on the main page of the touch screen 40.
  • the argon flow rate during the pouring process is linearly reduced as the weight of the molten steel in the ladle decreases, that is , the argon flow rate is adaptively controlled according to the adaptive mode argon blowing control curve (see Figure 8) created by the initial argon flow setting value y1 and the initial molten steel weight setting value x1 of the pouring position and the stop argon flow setting value y2 and the stop molten steel weight setting value x2 .
  • the argon flow rate is the y-axis
  • the molten steel weight is the x-axis
  • ( x1 , y1 ) and ( x2 , y2 ) are two points on the adaptive mode argon blowing control curve.
  • T is the upper steel temperature of the continuous casting ladle turret, in °C
  • Tf is the upper steel temperature of the continuous casting ladle turret in the prior art, and the value range of Tf is 1564-1579 °C
  • Tw is the soft blowing time at the pouring position, in °C
  • k1 ranges from 0.4 to 0.5, in °C/min
  • Tp is the soft blowing time at the pouring position, in °C
  • k2 ranges from 0.3 to 0.4, in °C/min.
  • T ((1568-1575) + (8 ⁇ 0.4) + (10 ⁇ 0.3))°C.
  • blowing operation includes the following steps:
  • This embodiment provides a method for removing inclusions by soft blowing using the bottom blowing argon control device of the casting and continuous casting ladle turret described in Example 1, which is used for casting a 130t LF refining ladle to produce large H-shaped near-final shape special-shaped billet steel grade S275JR, with medium inclusion control requirements in the steel.
  • the prior art LF refining late soft blowing time is 10 minutes.
  • the method for removing inclusions by soft blowing in the present invention is as follows:
  • the existing LF refining late-stage ladle soft blowing time is transferred to the continuous casting ladle turret 6, and the settings are made on the main page of the touch screen 40.
  • the argon blowing flow rate switches (1/2/3) 9f1 and 9f2 are turned to 2, and the manual argon blowing flow rate setting value 2 is selected. Use this constant argon gas flow rate to soft blow the casting position ladle for 10 minutes.
  • the ladle is soft-blown for 15 minutes during the pouring process at the pouring position, and settings are made on the main page of the touch screen 40.
  • the argon flow rate during the pouring process is linearly reduced as the weight of the molten steel in the ladle decreases. That is, the argon flow rate is adaptively controlled according to the adaptive mode argon blowing control curve (see Figure 8) created according to the initial argon flow setting value and the initial molten steel weight setting value of the pouring position and the stop argon flow setting value and the stop molten steel weight setting value.
  • T ((1565-1572) + ⁇ (10 ⁇ 0.45) + (15 ⁇ 0.35)) °C.
  • the present embodiment provides a method for removing inclusions by soft blowing using the bottom blowing argon control device of the casting and continuous casting ladle turret described in Example 1, which is used for casting a 130tLF refining ladle to produce large H-shaped near-final shape special-shaped billet steel grade SM490YB-1, and the control requirements for inclusions in the steel are high.
  • the soft blowing time in the later stage of LF refining in the prior art is 12 minutes, and the continuous casting adopts stopper rod flow control and continuous casting protection casting.
  • the method for removing inclusions by soft blowing in the present invention is as follows:
  • the existing LF refining late-stage ladle soft blowing time is transferred to the continuous casting ladle turret 6, and the settings are made on the main page of the touch screen 40.
  • the argon blowing flow rate switches (1/2/3) 9f1 and 9f2 are turned to 3, and the manual argon blowing flow rate setting value 3 is selected. This constant argon gas flow rate is used to soft blow the pouring position ladle for 12 minutes.
  • the ladle is soft-blown for 20 minutes during the pouring process at the pouring position.
  • the setting is made on the main page of the touch screen 40.
  • the argon flow rate during the pouring process is linearly reduced as the weight of the molten steel in the ladle decreases, that is, according to the initial argon flow setting value of the pouring position and the initial
  • the adaptive mode argon blowing control curve (see FIG8 ) created by the molten steel weight setting value and the stop argon flow setting value and the stop molten steel weight setting value adaptively controls the argon flow rate.
  • T is the upper steel temperature of the continuous casting ladle turret, in °C
  • Tf is the upper steel temperature of the continuous casting ladle turret in the prior art, and the value range of Tf is 1564-1579 °C
  • Tw is the soft blowing time at the pouring position, in °C
  • k1 ranges from 0.4 to 0.5, in °C/min
  • Tp is the soft blowing time at the pouring position, in °C
  • k2 ranges from 0.3 to 0.4, in °C/min.
  • T ((1564-1579) + (12 ⁇ 0.5) + (20 ⁇ 0.4))°C.
  • blowing operation includes the following steps:
  • the bottom argon blowing control device for the continuous casting ladle turret and the method for removing inclusions by soft blowing disclosed in Example 1 of CN111644584B are adopted, and the steel grade therein is replaced with the steel grade Q235B with low inclusion control requirements for the production of large H-beam near-net-shape special-shaped billet continuous casting machine.
  • the bottom argon blowing control device for the continuous casting ladle turret and the method for removing inclusions by soft blowing disclosed in Example 1 of CN111644584B are adopted, and the steel grade therein is replaced with the steel grade S275JR with medium inclusion control requirements for the production of large H-beam near-net-shape special-shaped billet continuous casting machine.
  • the bottom argon blowing control device of the continuous casting ladle turret and the method for removing inclusions by soft blowing disclosed in Example 1 of CN111644584B are adopted, and the steel grade therein is replaced with the steel grade SM490YB-1 with high requirements for inclusion control for the production of near-net-shape special-shaped billet continuous casting machine for large H-beam.
  • the present invention relates to a bottom argon blowing control device for a continuous casting ladle turret and a method for removing inclusions by soft blowing, and the late soft blowing of the prior art LF refining ladle is completely transferred to the continuous casting ladle turret.
  • the late soft blowing time of the LF refining ladle is reduced by 3-9 minutes year-on-year
  • the total oxygen of the molten steel in the crystallizer is reduced by more than 12% year-on-year
  • the flow rates of static argon blowing at the waiting position of the continuous casting ladle turret and dynamic argon blowing during the pouring process at the pouring position are reduced by 40% and 50% year-on-year respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

一种连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法,设置了吹氩自动对接机构、吹氩智能控制切换装置,实现了连铸钢包回转台钢包底吹氩的自动对接和回转臂吹氩智能控制模式的自动切换,利用现有的钢包底吹透气砖,在连铸钢包回转台的待浇位小流量静态软吹和浇注位浇注过程中小流量动态软吹,完全取代现有技术LF精炼后期钢包软吹,攻克了LF精炼时间长、制约炼钢产能提升的瓶颈问题,提高了钢包底吹透气砖软吹的夹杂物去除率,改善了钢水质量。

Description

连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法 技术领域
本发明涉及钢铁冶金中连铸工艺技术领域,具体涉及一种连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法。
背景技术
现有技术中,钢包从LF精炼位进行精炼后,吊运到连铸钢包回转台的待浇位,然后转到浇注位进行浇铸,现有技术存在以下问题或不足:(1)LF精炼时间长,成为制约炼钢产能提升的瓶颈问题;(2)LF精炼后期软吹时间不足,影响了夹杂物去除率。
CN111644584B公开一种连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法,将现有技术LF精炼后期的部分或全部软吹从LF精炼处理位转移到连铸钢包回转台,在连铸钢包回转台的待浇位静置进行手动透气砖吹通与软吹,在浇注位浇注过程中选用自动软吹模式和自动吹堵,并根据钢中夹杂物控制要求不同,选用不同的自动软吹模式,不同的自动软吹模式中钢水浇铸量在钢包内钢水总量的占比不同、选用的透气砖类型不同。该方案存在的问题或不足:该方案所述的气源出口1#、气源出口2#分别通过快速接头与钢包底吹透气砖1#、透气砖2#连通,既不安全,也不可靠,工业化推广应用受限,且在连铸钢包回转台待浇位的吹氩时间为2~4分钟,吹氩时间太短,严重影响连铸钢包浇注前期的钢水中夹杂物去除率,进而影响连铸坯质量。
CN108817337B公开了连铸模式下钢包回转台吹氩方法及钢包回转台,将钢包吹氩过程移至连铸回转台实施,解决了钢水吹氩时间与生产节奏的矛盾问题。该方案存在的问题或不足:该方案在压钢位吹氩氩气流量为38~42/h(换算为0.63~0.7L/min),氩气流量太小,吹氩去夹杂效果差,钢包吹氩回转台无吹氩自动对接装置,人工对接质量无保证、不安全,难以推广应用。
CN101586177A公开一种降低钢水钛夹杂物的方法,该方案降低特定钢种帘线钢中钛夹杂物,是在完成全部的精炼处理过程后,为了去除钛夹杂物,进一 步对钢包进行底吹氩和钢包浇注过程底吹氩,且不适合所有钢种和所有夹杂物,推广应用受限。
发明内容
本发明的目的在于提供一种连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法,设置了吹氩自动对接机构、吹氩智能控制切换装置,实现了连铸钢包回转台钢包底吹氩的自动对接以及回转臂吹氩控制的自动切换,利用现有的钢包底吹透气砖,在连铸钢包回转台的待浇位小流量静态软吹和浇注位浇注过程中小流量动态软吹,完全取代现有技术LF精炼后期钢包软吹,攻克了LF精炼时间长、制约炼钢产能提升的瓶颈问题,提高了钢包底吹透气砖软吹的夹杂物去除率,改善了钢水质量。
为实现上述目的,本发明采用了以下技术方案:
一种连铸钢包回转台底吹氩控制装置,包括气路控制单元、连铸基础自动化系统、钢包内钢水称重系统、吹氩智能控制切换装置、PLC、连铸钢包回转台、吹氩自动对接机构、钢包,所述PLC分别与气路控制单元、连铸基础自动化系统通讯连接,所述钢包内钢水称重系统与连铸基础自动化系统通讯连接;
所述连铸钢包回转台设有两个回转臂;
所述钢包上设有两个钢包底吹透气砖;
所述吹氩自动对接机构包括下部组件和上部组件,所述下部组件安装在回转臂上,所述下部组件包括进气管,所述上部组件安装在钢包耳轴箱底部,所述上部组件包括出气管,所述出气管与钢包底吹透气砖连接,当钢包在回转臂上座包后,所述下部组件与上部组件对接并使进气管与出气管连通;
所述气路控制单元包括两条氩气控制管路,每条所述氩气控制管路通过吹氩智能控制切换装置分别向两个回转臂上的其中一个进气管提供氩气;
所述PLC获取连铸基础自动化系统中的连铸钢包回转台的浇注位开浇信号,以判断处于待浇位的回转臂和浇注位的回转臂;对于处于待浇位的回转臂,所述PLC控制气路控制单元切换为定量控制模式,即提供恒定的氩气流量;对于 处于浇注位的回转臂,所述PLC控制气路控制单元切换为自适应控制模式,即根据钢包内钢水称重系统的钢水称重信号,使浇注过程中的氩气流量随着钢包内钢水重量的减小而线性减小。
本发明的技术方案还有,所述气路控制单元还包括气源主路、气体汇流排;
所述气源主路的上游端设有氩气入口,所述气源主路的下游端与气体汇流排连接,所述气源主路上由上游向下游依次设有气源主路第一球阀、气源主路第一压力传感器、调压器、气源主路第一过滤器、气源主路第二过滤器、气源主路第二压力传感器;
所述氩气控制管路包括氩气主路、自动支路、手动旁路、放散支路;所述自动支路的上游端与气体汇流排连接,所述自动支路上由上游向下游依次设有自动支路第一球阀、自动支路电磁阀、冶金质量控制器、自动支路第二球阀;所述手动旁路的上游端与气体汇流排连接,所述手动旁路上由上游向下游依次设有手动旁路第一球阀、手动调节阀、手动旁路第二球阀;所述自动支路的下游端、手动旁路的下游端均与氩气主路的上游端连接,所述氩气主路上由上游端向下游端依次设有压力表、氩气主路压力传感器、氩气主路球阀;所述自动支路的下游端、手动旁路的下游端均与放散支路的上游端连接,所述放散支路上由上游向下游依次设有放散支路电磁阀、排气节流阀;
所述气源主路第一压力传感器、气源主路第二压力传感器、自动支路电磁阀、冶金质量控制器、氩气主路压力传感器、放散支路电磁阀均与PLC连接;
每个所述回转臂上设有两个下部组件,所述吹氩智能控制切换装置设有四条供气支路,所述供气支路上由上游向下游依次设有供气支路手动球阀、供气支路电磁阀、供气支路过滤器,所述供气支路电磁阀与PLC连接;四条所述供气支路分别与四个进气管连接,每条所述氩气控制管路连接两条供气支路,每条所述氩气控制管路连接的两条供气支路分别连接两个回转臂上的进气管。
本发明的技术方案还有,还包括控制柜,所述气路控制单元、PLC均设置在控制柜内,所述控制柜内设有冷却控制单元,所述冷却控制单元包括冷却管 道,所述冷却管道上由上游端向下游端依次设有冷却管道球阀、冷却管道压力传感器、冷却管道过滤器、冷却管道电磁阀,所述冷却管道压力传感器、冷却管道电磁阀均与PLC连接,所述冷却管道的出口设置在气路控制单元与PLC之间。
本发明的技术方案还有,还包括操作箱,所述操作箱上设有信号灯、触摸屏、控制按钮,所述信号灯、触摸屏、控制按钮均与PLC连接;所述触摸屏用于用户设置钢包在连铸钢包回转台待浇位吹氩时间的设定值和浇注位吹氩时间的设定值,并实时显示待浇位的实际吹氩时间和浇注位的实际吹氩时间。
优选的,还包括连铸钢包回转台操作箱,所述连铸钢包回转台操作箱用于连铸钢包回转台的人机交互,所述操作箱与连铸钢包回转台操作箱均设置于大包操作室内,由大包操作工负责操作。
本发明的技术方案还有,每个所述回转臂上对称设有两个马鞍座,每个所述马鞍座对应一个吹氩自动对接机构;所述马鞍座上设有凹口;
所述下部组件还包括压盖、下对接头、碟簧组、密封圈、盘形支架、吹灰盖板;所述压盖通过螺钉安装在凹口内,所述下对接头可上下活动的设置在压盖内部,所述碟簧组设置在下对接头与马鞍座之间,所述密封圈嵌装于下对接头顶部的凹槽内;所述进气管贯穿马鞍座并与下对接头连接,所述进气管与设置在下对接头中心的通孔连通;所述盘形支架固定安装在下对接头的上端中心,所述盘形支架的中心设有出气孔,所述吹灰盖板可上下活动的安装在出气孔中并用于打开或关闭出气孔;
所述上部组件还包括底板、绝热板、上对接头,所述底板、绝热板、上对接头由上向下依次设置,所述出气管贯穿底板、绝热板、上对接头;
对接时,在所述碟簧组的作用下,所述下对接头的顶面与上对接头的底面贴合。
本发明的技术方案还有,所述浇注过程中的氩气流量随着钢包内钢水重量的减小而线性减小,是指按照浇注位的初始氩气流量设定值与初始钢液重量设 定值和停止氩气流量设定值与停止钢液重量设定值创建的自适应模式吹氩控制曲线自适应控制氩气流量。
本发明还提供了一种使用上述的铸连铸钢包回转台底吹氩控制装置软吹去除夹杂物的方法,
将LF精炼后期钢包软吹时间全部转移到连铸钢包回转台,采用恒定的氩气流量在待浇位钢包软吹8~15min;
钢包在浇注位的浇注过程中软吹10~20min,根据钢包内钢水称重系统的钢水称重信号,使浇注过程中的氩气流量随着钢包内钢水重量的减小而线性减小;
连铸钢包回转台的上钢温度为通过下式计算:
T=Tf+Tw×k1+Tp×k2
上式中,T为连铸钢包回转台的上钢温度,单位为℃;Tf为现有技术中的连铸钢包回转台的上钢温度,Tf的取值范围为1564~1579℃;Tw为待浇位软吹时间,单位为℃;k1的取值范围为0.4~0.5,单位为℃/min;Tp为浇注位软吹时间,单位为℃;k2的取值范围为0.3~0.4,单位为℃/min。
优选的,对于夹杂物控制要求低的钢种,在浇注位的浇注过程中的软吹时间为10min;对于夹杂物控制要求中等的钢种,在浇注位的浇注过程中的软吹时间为15min;对于夹杂物控制要求高的钢种,在浇注位的浇注过程中的软吹时间为20min。
本发明的技术方案还有,在待浇位钢包软吹的氩气流量为30~40NL/min;钢包在浇注位的浇注过程中,初始氩气流量为25~30NL/min,随着钢包内钢水量的减少,氩气流量线性减小到15~20NL/min。
本发明的技术方案还有,当连铸中间包钢水温度过高或钢水温度过低时,对连铸钢包回转台浇注位的软吹时间或氩气流量进行调整:
若连铸中间包温度超过上限预设值Tu3~5℃,则延长连铸钢包回转台浇注位软吹时间5~10min或增大氩气流量5~10NL/min,其中,Tu=钢种液相线温度+28℃;
若连铸中间包温度低于下限预设值Td3~5℃,则缩短连铸钢包回转台浇注位 软吹时间5~10min或减小氩气流量5~10NL/min,其中,Td=钢种液相线温度+15℃。
本发明的技术方案还有,当钢包底吹透气砖堵塞时,设定吹堵流量为50~100NL/min,进行吹堵。
相对于现有技术相比,本发明的有益效果为:
(1)本发明提供了一种连铸钢包回转台底吹氩控制装置,设置了吹氩自动对接机构、吹氩智能控制切换装置,实现了连铸钢包回转台钢包底吹氩自动对接以及回转臂吹氩智能控制的自动切换,突破了连铸钢包回转台钢包底吹氩管路对接和回转臂吹氩智能控制切换的关键技术瓶颈,解决了CN111644584B所公开的连铸钢包回转台底吹氩控制装置的气源出口1#、气源出口2#采用快速接头与钢包底吹透气砖1#、透气砖2#进气管连通引发的不安全、不可靠的工业化应用难题。
(2)将现有技术LF精炼后期钢包软吹完全转移到连铸钢包回转台,利用现有的钢包底吹透气砖,在连铸钢包回转台的待浇位小流量静态软吹和浇注位浇注过程中小流量动态软吹,突破了钢包底吹透气砖软吹夹杂物去除率低和钢水温降大的行业难题,攻克了LF精炼时间长、制约炼钢产能提升的卡脖子问题,相对于CN111644584B所公开的一种连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法,在连铸钢包回转台待浇位静态吹氩和浇注位浇注过程中动态吹氩的流量比现有技术分别同比减少40%、50%,结晶器中钢水全氧含量同比降低12%以上。
(3)本发明将吹氩自动对接机构的下部组件安装在现有回转台的马鞍座的中部,简化了吹氩自动对接机构下部组件的安装工艺,降低了材料费用。
(4)本发明针对连铸中间包钢水温度过高或钢水温度过低的问题,对连铸钢包回转台浇注位的软吹时间或氩气流量进行调整,由此避免了连铸机因浇注钢水温度高造成的降拉速及其引发的铸坯质量缺陷或连铸机因浇注钢水温度低造成的钢水回炉问题。
(5)本发明针对钢包底吹透气砖堵塞的问题,提供了钢包底吹透气砖的吹 堵方法,解决了钢包底吹透气砖吹氩前期透气量小或底吹不开引发的铸坯质量问题或水口套眼造成钢水回炉问题。
(6)本发明提供的连铸钢包回转台底吹氩控制装置,设置了冷却控制单元,当控制柜内环境温度大于40℃时,将冷却介质(如氮气)通入冷却管道,对控制柜内环境进行冷却,避免工作环境温度高引发的电控元件稳定性差、使用寿命降低等问题。
(7)在钢包静态软吹和浇注位浇注过程中动态软吹去除夹杂物的数学物理模拟实验中,本发明的发明人意外的发现,现有技术钢包静态软吹流量大小控制在钢液面微微波动的条件下的夹杂物去除率不是最高的。经过大量的模拟研究和生产试验摸索,当静态软吹的氩气流量保持在钢液面微微波动的氩气流量的60%时,夹杂物去除率最高;当钢包浇注过程中动态软吹的氩气流量保持在钢液面微微波动的氩气流量的50%时,夹杂物去除率最高。而现有技术保持钢液面微微波动的静态软吹的氩气流量为50~65NL/min,而本发明在连铸钢包回转台待浇位静态软吹的氩气流量为30~40NL/min,在连铸钢包回转台浇注位浇注过程中初始氩气流量为25~30NL/min,且随着钢包内钢水量的减少,氩气流量线性减小到15~20NL/min,这是发明人经过大量的模拟研究和生产试验摸索得到的。而CN111644584B所公开一种连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法,在连铸钢包回转台待浇位静态氩气流量和浇注位动态软吹的初始流量值就是测定钢包钢液面微微波动的氩气流量值;CN108817337B所公开了连铸模式下钢包回转台吹氩方法及钢包回转台,在压钢位吹氩氩气流量为38~42/h(换算为0.63~0.7L/min),氩气流量太小,吹氩去夹杂效果差,而CN101586177A所公开的一种降低钢水钛夹杂物的方法,钢包在等待位的氩气流量控制在0.3×10-3~4×10-3Nm3/min.t(按本发明出钢量130t换算为39~520Nm3/min),吹氩范围太大,在浇注过程中的氩气最大流量1.5×10-3Nm3/min.t,氩气流量变化根据钢包浇注重量按Y=(1.5×10-3~3×10-3.X)Nm3/min.t公式递减,均与本发明所述的氩气流量设定方法不同、设定值不同。 本发明在连铸钢包回转台待浇位静态吹氩和浇注位浇注过程中动态吹氩的流量比现有技术分别同比减少40%、50%,不仅提高了软吹夹杂物去除率、降低了氩气消耗,而且减少了钢水温降,取得了意想不到的吹氩效果。
附图说明
图1为本发明实施例中的连铸钢包回转台底吹氩的控制装置的结构示意图;
图2为本图1中A部的局部放大图;
图3为本发明实施例中气路控制单元的结构示意图;
图4为本发明实施例中冷却控制单元的结构示意图;
图5为本发明实施例中吹氩自动对接机构的工艺布置示意图;
图6为本发明实施例中马鞍座的结构示意图;
图7为本发明实施例中吹氩自动对接机构下部组件吹灰状态下的工作示意图;
图8为本发明实施例中自适应模式吹氩控制曲线示意图。
其中:1-气路控制单元,2-连铸基础自动化系统,3-钢包内钢水称重系统,4-吹氩智能控制切换装置,5-PLC,6-连铸钢包回转台,7-钢包,8-回转臂,9-进气管,10-出气管,11-气体汇流排,12-气源主路第一球阀,13-气源主路第一压力传感器,14-调压器,15-气源主路第一过滤器,16-气源主路第二过滤器,17-气源主路第二压力传感器,18-自动支路第一球阀,19-自动支路电磁阀,20-冶金质量控制器,21-自动支路第二球阀,22-手动旁路第一球阀,23-手动调节阀,24-手动旁路第二球阀,25-压力表,26-氩气主路压力传感器,27-氩气主路球阀,28-放散支路电磁阀,29-排气节流阀,30-供气支路手动球阀,31-供气支路电磁阀,32-供气支路过滤器,33-控制柜,34-冷却控制单元,35-冷却管道球阀,36-冷却管道压力传感器,37-冷却管道过滤器,38-冷却管道电磁阀,39-操作箱,40-触摸屏,41-马鞍座,42-压盖,43-下对接头,44-碟簧组,45-密封圈,46-盘形支架,47-吹灰盖板,48-底板,49-绝热板,50-上对接头,51-凹口,52-钢包底吹透气砖,53-冷却沉槽,54-泄压孔,55-电源灯,56-报警灯,57-灯测试, 58-工位控制权按钮,59-启动按钮,60-停止按钮,61-回转臂转换开关,62-急停按钮,63、64-吹氩流量档位,65、66-微调加按钮,67、68-微调减按钮,69、70-自动按钮,71、72-吹堵按钮。
具体实施方式
下面结合附图对本发明做进一步说明:
实施例1
图1~图8示出了本发明的实施例1。
本实施例提供了一种连铸钢包回转台底吹氩控制装置,包括气路控制单元1、连铸基础自动化系统2、钢包内钢水称重系统3、吹氩智能控制切换装置4、PLC5、连铸钢包回转台6、吹氩自动对接机构、钢包7、操作箱39、连铸钢包回转台操作箱、冷却控制单元34、控制柜33。
如图1所示,所述气路控制单元1、PLC5、冷却控制单元34自上而下设置于控制柜33内,所述控制柜33放置于连铸钢包回转台6回转半径外的近氩气气源位置。
所述PLC5(可编程逻辑控制器)包括CPU、数字处理模块、模拟量处理模块以及通讯模块,所述PLC5分别与气路控制单元1、连铸基础自动化系统2、操作箱39、冷却控制单元34通讯连接,所述通讯模块包括以太通讯网和网络交换机。所述钢包内钢水称重系统3与连铸基础自动化系统2通讯连接。
所述连铸钢包回转台6设有两个回转臂8,所述连铸钢包回转台操作箱用于连铸钢包回转台6的人机交互。
所述钢包7上设有两个钢包底吹透气砖52。
如图5所示,每个所述回转臂8上对称设有两个马鞍座41。如图6所示,所述马鞍座41上部的中心部机加工一个凹口15,其宽度为320mm。以凹口51中心为圆心,直径为180mm的圆弧上均布加工六个“T”形圆孔,其上部圆直径38mm,高度为30mm,下部圆直径为22mm,高度为50mm,用于安装碟簧组44。在凹口51的四个角部均布加工四个内螺丝孔,相邻两个内螺丝孔的间距 为210mm,用于固定压盖42,规格为M20-7H。在凹口51的中心部加工一个通孔,通孔直径为80mm,用于安装进气管9。
每个所述马鞍座41对应一个吹氩自动对接机构。
具体的,如图2所示,所述下部组件包括进气管9、压盖42、下对接头43、碟簧组44、密封圈45、盘形支架46、吹灰盖板47。所述压盖42通过螺钉安装在凹口51内,所述下对接头43可上下活动的设置在压盖42内部,所述下对接头43的顶面中部设有纵剖面为梯形、横剖面为圆台形的空腔,所述碟簧组44设置在下对接头43与马鞍座41之间,为下对接头43提供重力方向的弹性支撑。所述密封圈45嵌装于下对接头43顶部的凹槽内。所述进气管9贯穿马鞍座41并与下对接头43连接,所述进气管9与设置在下对接头43中心的通孔连通。所述盘形支架46固定安装在下对接头43的上端中心,所述盘形支架46的中心设有出气孔,所述吹灰盖板47为设有盖部与杆部的伞状结构,所述吹灰盖板47可上下活动的安装在出气孔中并用于打开或关闭出气孔。
如图7所示,当氩气进入进气管9时,进气管9内氩气推动吹灰盖板47杆部和盖部向上移动,氩气通过出气孔吹出,将下对接头上表面空腔内灰尘吹扫,解决了灰尘堵塞出气孔问题。所述上部组件安装在钢包7耳轴箱底部,如图2所示,所述上部组件包括出气管10、底板48、绝热板49、上对接头50,所述底板48、绝热板49、上对接头50由上向下依次设置。所述出气管10贯穿底板48、绝热板49、上对接头50,每个回转臂8上的两个出气管10分别与设在钢包7耳轴箱底部凹槽内的两个钢包底吹透气砖52连接。绝热板49用于降低钢包7热传递对上对接头50的温度影响,防止上对接头50的高温变形,引发对接面漏气。
当钢包7在回转臂8上座包后,在所述碟簧组44的作用下,所述下对接头43的顶面与上对接头50的底面贴合,密封圈45用于上对接头50与下对接头43的对接面密封,使进气管9与出气管10连通。
所述上对接头50的顶面与底板48的底面之间设有冷却沉槽53,冷却沉槽 53与四周连通,气体可从上对接头50与底板48之间的缝隙中流通,实现自然冷却降温,降低上对接头50及密封圈45的工作温度。
所述上对接头50与底板48的两端分别设有一个贯通的泄压孔54,用于防止停止吹氩后密封圈45被空腔内残余高压氩气顶起而弹出工作面受损。
如图2所示,所述气路控制单元包括气源主路、氩气控制管路、气体汇流排11。
所述气源主路的上游端设有氩气入口,所述气源主路的下游端与气体汇流排11连接,所述气源主路上由上游向下游依次设有气源主路第一球阀12、气源主路第一压力传感器13、调压器14、气源主路第一过滤器15、气源主路第二过滤器16、气源主路第二压力传感器17。
所述氩气控制管路设有两条,所述氩气控制管路包括氩气主路、自动支路、手动旁路、放散支路。所述自动支路的上游端与气体汇流排11连接,所述自动支路上由上游向下游依次设有自动支路第一球阀18、自动支路电磁阀19、冶金质量控制器20、自动支路第二球阀21。所述手动旁路的上游端与气体汇流排11连接,所述手动旁路上由上游向下游依次设有手动旁路第一球阀22、手动调节阀23、手动旁路第二球阀24。所述自动支路的下游端、手动旁路的下游端均与氩气主路的上游端连接,所述氩气主路上由上游端向下游端依次设有压力表25、氩气主路压力传感器26、氩气主路球阀27。所述自动支路的下游端、手动旁路的下游端均与放散支路的上游端连接,所述放散支路上由上游向下游依次设有放散支路电磁阀28、排气节流阀29。所述第放散支路用于钢包底吹透气砖52停止吹氩后的排气、泄压。钢包7在连铸钢包回转台6浇注位完成浇注、进行排气、泄压后,再转到待浇位,把钢包7吊走。
所述气源主路第一压力传感器13、气源主路第二压力传感器17、自动支路电磁阀19、冶金质量控制器20、氩气主路压力传感器26、放散支路电磁阀28均与PLC5连接。所述PLC5通过各压力传感器获取对应管路上的压力;所述PLC5通过冶金质量控制器20获取自动支路上的氩气流量,并通过冶金质量控 制器20调整自动支路的氩气流量。
所述吹氩智能控制切换装置设有四条供气支路,所述供气支路上由上游向下游依次设有供气支路手动球阀30、供气支路电磁阀31、供气支路过滤器32,所述供气支路电磁阀30与PLC5连接。四条所述供气支路分别与四个进气管9连接,每条所述氩气控制管路连接两条供气支路,每条所述氩气控制管路连接的两条供气支路分别连接两个回转臂8上的进气管9。每条所述供气支路依次穿过连铸钢包回转台6的密封环、马鞍座41之后与对应的进气管9连接。由于每个钢包7上设置的两个透气砖52的类型可能不同或吹氩流量要求不同,而不同类型的钢包底吹透气砖的吹氩参数不同,如果为两个回转臂8所对应的四个钢包底吹透气砖52各设计一条氩气控制管路,成本较高。本实施例通过吹氩智能控制切换装置,每条所述氩气控制管路通过吹氩智能控制切换装置4分别向两个回转臂8上的其中一个进气管9提供氩气,即每条所述氩气控制管路单独控制向一种类型的钢包底吹透气砖52吹氩,极大的降低了成本。比如,当图1中左侧回转臂8处于浇注位时,一条氩气控制管路通过上数第一条供气支路向左侧回转臂8的左侧钢包底吹透气砖11提供氩气,另一条氩气控制管路通过上数第三条供气支路向左侧回转臂8的右侧钢包底吹透气砖11提供氩气,上数第二条供气支路和上述第四条供气支路关闭。
所述气路控制单元1的工作模式包括定量控制模式和自适应控制模式。所述PLC5获取连铸基础自动化系统2中的连铸钢包回转台6的浇注位开浇信号,以判断处于待浇位的回转臂和浇注位的回转臂。对于处于待浇位的回转臂,所述PLC5控制气路控制单元1切换为定量控制模式,具体的,所述PLC5向冶金质量控制器20发出流量控制指令,使自动支路的氩气流量恒定;对于处于浇注位的回转臂,所述PLC5控制气路控制单元1切换为自适应控制模式,具体的,所述PLC5据钢包7内钢水称重系统的钢水称重信号向冶金质量控制器20发出流量控制指令,使自动支路在浇注过程中的氩气流量随着钢包7内钢水重量的减小而线性减小。
如图8所示,所述浇注过程中的氩气流量随着钢包7内钢水重量的减小而线性减小,是指按照浇注位的初始氩气流量设定值与初始钢液重量设定值和停止氩气流量设定值与停止钢液重量设定值创建的自适应模式吹氩控制曲线自适应控制氩气流量。
如图4所示,所述冷却控制单元34包括冷却管道,所述冷却管道上由上游端向下游端依次设有冷却管道球阀35、冷却管道压力传感器36、冷却管道过滤器37、冷却管道电磁阀38,所述冷却管道压力传感器36、冷却管道电磁阀38均与PLC5连接,所述冷却管道的出口设置在气路控制单元1与PLC5之间。当控制柜33内环境温度大于40℃时,将氮气通入冷却管道,对控制柜33内环境进行冷却,避免工作环境温度高引发的电控元件稳定性差、使用寿命降低等问题。
所述操作箱39与连铸钢包回转台操作箱均设置于大包操作室内,由大包操作工负责操作。
所述操作箱39自上而下设有信号灯、触摸屏40、开关按钮,所述信号灯、触摸屏40、控制按钮均与PLC5连接。
所述信号灯包括电源灯55(白色)、报警灯56(红色)和灯测试57(绿色),其中,电源灯55指示灯点亮(白色),表示操作箱39供电正常;报警灯56点亮闪烁,表示软吹系统有故障,需查看软吹系统触摸屏故障详细信息并及时处理故障;按下灯测试57按钮,操作箱39所有带灯指示全部点亮,如其中有灯未点亮则需及时检修并处理更换按钮指示灯及按钮开关。
所述触摸屏40的界面包括主页面、参数设定页面,用于用户设置钢包7在连铸钢包回转台6待浇位吹氩时间的设定值和浇注位吹氩时间的设定值,并实时显示待浇位的实际吹氩时间和浇注位的实际吹氩时间,使得吹氩时间的设定、修改和查看更简便、直观。
所述触摸屏40的参数设定页面,包括手动参数设定和自动参数设定,手动参数设定包括气源报警、漏气报警、堵塞报警、手动吹氩流量等参数值,自动 参数设定包括吹氩流量上限、流量下限、压力上限、压力下限、吹堵吹氩流量、微调步长和用于浇注过程动态自适应模式吹氩控制曲线的初始吹氩流量、初始钢液重量、停止吹氩流量、停止钢液重量等参数值,参数输出显示在主页面,显示定量控制模式或自适应控制模式及其参数设定值和实际输出值,所述触摸屏40还包括存储器,所述存储器用于存储PLC发送的数据。
所述开关按钮包括工位控制权按钮58(绿色)、启动按钮59(绿色)、停止按钮60(红色)、回转臂转换开关61、急停按钮62和分别用于两个钢包底吹透气砖52的吹氩流量档位(1/2/3)63、64、微调加按钮65、66、微调减按钮67、68、自动按钮69、70、吹堵按钮71、72。具体说明如下:
工位控制权按钮58:按下此按钮,灯点亮后即选中此操作箱的操作权,可在操作箱操作控制底吹系统,指示灯未点亮前操作无效;设置工位控制权按钮58避免了非本岗位操作人员误操作引发的开机事故;
启动按钮59:按下此按钮设备为启动状态(绿色指示灯点亮);启动系统前必须选择好回转臂后,再启动软吹系统;
停止按钮60:按下此按钮设备为停止状态(红色指示灯点亮);
回转臂转换开关61:转换开关两侧分别用于选择两个回转臂,切换回转臂选择后,查看触摸屏40右上方状态指示与选择包臂是否同步;
急停按钮62:大包软吹系统紧急停止位有两处,一处安装在工位操作箱面板,另一处安装在软吹系统阀站门板,如发生紧急情况下,可就近按下急停按钮62,软吹系统停止工作,故障解除后顺时针旋转红色按钮解除紧急停止;设计急停按钮62,避免了出现事故后的进一步扩大,提高了连铸钢包回转台底吹氩控制装置操作控制的安全可靠性;
吹氩流量档位(1/2/3)63、64:用于手动状态下,开关转向1、2、3,分别选择手动吹氩流量设定值1、手动吹氩流量设定值2、手动吹氩流量设定值3;
微调加按钮65、66与微调减按钮67、68:点开触摸屏40的输出参数显示界面,发现吹氩流量输出值与设定值不符合时,可按下微调加65、66或微调减 按钮67、68来调节当下流量/的输出值;
自动按钮69、70:自动模式下其灯被点亮或按下此按钮其灯被点亮后,按照自动模式吹氩;
吹堵按钮71、72:按下此按钮其灯被点亮后,按照设定的吹堵吹氩流量对钢包底吹透气砖11进行吹堵。
所述气路控制单元中的元件,均为市场采购。其中,各个球阀的型号规格可以为DN20,63bar304SSG1;各个电磁阀的型号规格可以为DC24V,G1/2MS;供气支路过滤器32、冷却管道过滤器37的型号规格可以为Y型过滤器,50μm;气源主路第一过滤器15、气源主路第二过滤器16的型号规格可以为40μm,5MPa的型号规格可以为AF60-F10;各个压力传感器的型号规格可以为PT5403,0-25barG1/4;调压器14的型号规格可以为BK201-25;冶金质量控制器20的型号规格可以为FLOX[on]62,IP65,流量为200NL/min;各个压力表的型号规格可以为YT40;各个手动调节阀的型号规格可以为PN50;排气节流阀29的型号规格可以为3.0MPa G1/2。
所述电气控制系统元件,均为市场采购,其中所述PLC5的型号规格为西门子S7系列,PLCS7200-Smart,含AI、AO、DI、DO等配件,触摸屏40的型号规格为西门子7寸触摸屏。
所述吹氩自动对接机构的下部组件、上部组件中的碟簧组44、密封圈45、螺钉、绝热板49、进气管9、出气管10均为市场采购,其中碟簧组44型号为CY06,密封圈45的中径为180×18,进气管9、出气管型10号为DN15,其它部件为机加工件。
本实施例还提供了一种使用上述的铸连铸钢包回转台底吹氩控制装置软吹去除夹杂物的方法,用于130tLF精炼钢包浇注生产大H型钢近终型异形坯钢种Q235B,钢中夹杂物控制要求低,现有技术LF精炼后期软吹时间为8min,选择的手动参数设定值及具体说明:
气源报警(bar):2.0(当入口气源压力小于此设定值时会提示“气源压力 低”,报警灯56亮灯报警);
漏气报警(bar):0.1(当手动模式下出口压力小于此设定值时会提示“泄漏故障”,报警灯56亮灯报警);
堵塞报警(bar):6.5(当手动模式下出口压力大于此设定值时会提示“堵塞故障”,报警灯56亮灯报警);
手动流量设定值1(NL/min):30,手动流量设定值2(NL/min):35,手动流量设定值3(NL/min):40(对应手动模式下三个不同的流量值);
所述自动参数设定值具体说明,共有设置:
吹氩流量上限(NL/min):60(自动模式下流量输出的最大值);
流量下限(NL/min):10(自动模式下流量输出的最小值);
压力上限(bar):8(自动模式下出口压力的最大值);
压力下限(bar):2.5(自动模式下出口压力的最小值);
初始钢液重量(t):125(当钢水重量≥初始钢液重量时,按照初始吹氩流量设定值吹氩,当钢水重量<初始钢液重量时,按照自适应模式吹氩控制曲线自适应控制吹氩流量);
停止吹氩钢液重量(t):65(当钢液重量≤停止吹氩钢液重量时,停止吹氩);
起始吹氩流量(NL/min):25(自动模式下起始吹氩重量对应的起始吹氩流量值);
停止吹氩流量(NL/min):15(自动模式下停止吹氩钢液重量对应的停止吹氩流量值);
吹堵吹氩流量(NL/min):60(当底吹透气砖堵塞报警时,用于吹堵的吹氩流量值);
微调步长(mbar):1(自动模式下微调加、微调减按钮的步长值)。
本发明中软吹去除夹杂物的方法如下:
将现有LF精炼后期钢包软吹时间全部转移到连铸钢包回转台6,在触摸屏 40主页面上进行设定,吹氩流量档位开关(1/2/3)9f1、9f2转向1,选择手动吹氩流量设定值1,采用此恒定的氩气流量对待浇位钢包软吹8min。
钢包在浇注位的浇注过程中软吹10min,在触摸屏40主页面上进行设定,根据钢包7内钢水称重系统的钢水称重信号,使浇注过程中的氩气流量随着钢包内钢水重量的减小而线性减小,即按照浇注位的初始氩气流量设定值y1与初始钢液重量设定值x1和停止氩气流量设定值y2与停止钢液重量设定值x2创建的自适应模式吹氩控制曲线(参见图8)自适应控制氩气流量。如图8所述,在自适应模式吹氩控制曲线所处的平面直角坐标系中,氩气流量为y轴,钢液重量为x轴,(x1,y1)、(x2,y2)为自适应模式吹氩控制曲线上的两个点。
连铸钢包回转台6的上钢温度为通过下式计算:
T=Tf+Tw×k1+Tp×k2
上式中,T为连铸钢包回转台的上钢温度,单位为℃;Tf为现有技术中的连铸钢包回转台的上钢温度,Tf的取值范围为1564~1579℃;Tw为待浇位软吹时间,单位为℃;k1的取值范围为0.4~0.5,单位为℃/min;Tp为浇注位软吹时间,单位为℃;k2的取值范围为0.3~0.4,单位为℃/min。
本实施例中,T=((1568-1575)+(8×0.4)+(10×0.3))℃。
当连铸中间包钢水温度过高或钢水温度过低时,对连铸钢包回转台6浇注位的软吹时间或氩气流量进行调整:
若连铸中间包温度超过上限预设值Tu3℃,则延长连铸钢包回转台6浇注位软吹时间5min或增大氩气流量5NL/min,其中,Tu=钢种液相线温度+28℃;在触摸屏40主页面进行软吹时间修改或在参数设定液面上进行起始吹氩流量修改,由此避免连铸机因浇注钢水温度高造成的降拉速及其引发的铸坯质量缺陷;
若连铸中间包温度低于下限预设值Td3℃,则缩短连铸钢包回转台6浇注位软吹时间5min或减小氩气流量5NL/min,其中,Td=钢种液相线温度+15℃;在触摸屏40主页面进行软吹时间修改或在参数设定液面上进行起始吹氩流量修改,由此避免连铸机因浇注钢水温度低造成的钢水回炉问题。
当钢包底吹透气砖11堵塞时,进行吹堵操作,所述吹堵操作包括以下步骤:
(1)在触摸屏40参数设定液面上设定吹堵流量为50NL/min;
(2)当触摸屏40主页面显示钢包底吹透气砖11的出口压力值提示由“正常”变为“堵塞故障”时,判定钢包底吹透气砖11堵塞;
(3)打开触摸屏40上的吹堵开/关软按钮(底色变绿);
(4)打开操作箱9上的吹堵按钮71或72,开始按照吹堵流量设定值对钢包底吹透气砖11进行吹堵;
(5)当触摸屏40主页面显示钢包底吹透气砖11的出口压力值提示由“堵塞故障”变为“正常”时,关闭吹堵按钮71或72,完成吹堵。
实施例2
本实施例提供了一种使用实施例1中所述的铸连铸钢包回转台底吹氩控制装置软吹去除夹杂物的方法,用于130tLF精炼钢包浇注生产大H型钢近终型异形坯钢种S275JR,钢中夹杂物控制要求中等,现有技术LF精炼后期软吹时间为10min。
本发明中软吹去除夹杂物的方法如下:
将现有LF精炼后期钢包软吹时间全部转移到连铸钢包回转台6,在触摸屏40主页面上进行设定,吹氩流量档位开关(1/2/3)9f1、9f2转向2,选择手动吹氩流量设定值2,采用此恒定的氩气流量对待浇位钢包软吹10min。
钢包在浇注位的浇注过程中软吹15min,在触摸屏40主页面上进行设定,根据钢包7内钢水称重系统的钢水称重信号,使浇注过程中的氩气流量随着钢包内钢水重量的减小而线性减小,即按照浇注位的初始氩气流量设定值与初始钢液重量设定值和停止氩气流量设定值与停止钢液重量设定值创建的自适应模式吹氩控制曲线(参见图8)自适应控制氩气流量。
连铸钢包回转台6的上钢温度为通过下式计算:
T=Tf+Tw×k1+Tp×k2
上式中,T为连铸钢包回转台的上钢温度,单位为℃;Tf为现有技术中的连 铸钢包回转台的上钢温度,Tf的取值范围为1564~1579℃;Tw为待浇位软吹时间,单位为℃;k1的取值范围为0.4~0.5,单位为℃/min;Tp为浇注位软吹时间,单位为℃;k2的取值范围为0.3~0.4,单位为℃/min。
本实施例中,T=((1565-1572)+×(10×0.45)+(15×0.35))℃。
当连铸中间包钢水温度过高或钢水温度过低时,对连铸钢包回转台6浇注位的软吹时间或氩气流量进行调整:
若连铸中间包温度超过上限预设值Tu5℃,则延长连铸钢包回转台6浇注位软吹时间10min或增大氩气流量10NL/min,其中,Tu=钢种液相线温度+28℃;在触摸屏40主页面进行软吹时间修改或在参数设定液面上进行起始吹氩流量修改,由此避免连铸机因浇注钢水温度高造成的降拉速及其引发的铸坯质量缺陷;
若连铸中间包温度低于下限预设值Td5℃,则缩短连铸钢包回转台6浇注位软吹时间10min或减小氩气流量10NL/min,其中,Td=钢种液相线温度+15℃;在触摸屏40主页面进行软吹时间修改或在参数设定液面上进行起始吹氩流量修改,由此避免连铸机因浇注钢水温度低造成的钢水回炉问题。
实施例3
本实施例提供了一种使用实施例1中所述的铸连铸钢包回转台底吹氩控制装置软吹去除夹杂物的方法,用于130tLF精炼钢包浇注生产大H型钢近终型异形坯钢种SM490YB-1,钢中夹杂物控制要求高,现有技术LF精炼后期软吹时间为12min,连铸采用塞棒控流、连铸保护浇注。
本发明中软吹去除夹杂物的方法如下:
将现有LF精炼后期钢包软吹时间全部转移到连铸钢包回转台6,在触摸屏40主页面上进行设定,吹氩流量档位开关(1/2/3)9f1、9f2转向3,选择手动吹氩流量设定值3,采用此恒定的氩气流量对待浇位钢包软吹12min。
钢包在浇注位的浇注过程中软吹20min,在触摸屏40主页面上进行设定,根据钢包7内钢水称重系统的钢水称重信号,使浇注过程中的氩气流量随着钢包内钢水重量的减小而线性减小,即按照浇注位的初始氩气流量设定值与初始 钢液重量设定值和停止氩气流量设定值与停止钢液重量设定值创建的自适应模式吹氩控制曲线(参见图8)自适应控制氩气流量。
连铸钢包回转台6的上钢温度为通过下式计算:
T=Tf+Tw×k1+Tp×k2
上式中,T为连铸钢包回转台的上钢温度,单位为℃;Tf为现有技术中的连铸钢包回转台的上钢温度,Tf的取值范围为1564~1579℃;Tw为待浇位软吹时间,单位为℃;k1的取值范围为0.4~0.5,单位为℃/min;Tp为浇注位软吹时间,单位为℃;k2的取值范围为0.3~0.4,单位为℃/min。
本实施例中,T=((1564-1579)+(12×0.5)+(20×0.4))℃。
当钢包底吹透气砖11堵塞时,进行吹堵操作,所述吹堵操作包括以下步骤:
(1)在触摸屏40参数设定液面上设定吹堵流量为100NL/min;
(2)当触摸屏40主页面显示钢包底吹透气砖11的出口压力值提示由“正常”变为“堵塞故障”时,判定钢包底吹透气砖11堵塞;
(3)打开触摸屏40上的吹堵开/关软按钮(底色变绿);
(4)打开操作箱9上的吹堵按钮71或72,开始按照吹堵流量设定值对钢包底吹透气砖11进行吹堵;
(5)当触摸屏40主页面显示钢包底吹透气砖11的出口压力值提示由“堵塞故障”变为“正常”时,关闭吹堵按钮71或72,完成吹堵。
对比例1
采用CN111644584B实施例1中所公开的连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法,将其中的钢种替换为用于大H型钢近终型异形坯连铸机生产夹杂物控制要求低的钢种Q235B。
对比例2
采用CN111644584B实施例1中所公开的连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法,将其中的钢种替换为用于大H型钢近终型异形坯连铸机生产夹杂物控制要求中等的钢种S275JR。
对比例3
采用CN111644584B实施例1中所公开的连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法,将其中的钢种替换为用于大H型钢近终型异形坯连铸机生产夹杂物控制要求高的钢种SM490YB-1。
实验例
将实施例1-3与对比例1-3所涉及的技术方案在某炼钢厂大H型钢近终型异形坯连铸机生产夹杂物控制要求低的钢种Q235B、夹杂物控制要求中的钢种S275JR、夹杂物控制要求高的钢种SM490YB-1的应用情况进行对比,分别连铸浇注中期取结晶器中钢水气体样,采用氮氧分析仪检测钢水中全氧,对比结果见下表1。
表1
通过上表1的数据对比,应用本发明涉及的一种连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法,将现有技术LF精炼钢包后期软吹完全转移到连铸钢包回转台,比CN111644584B所公开的一种连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法,同比减少LF精炼钢包后期软吹时间3-9分钟,结晶器中钢水全氧同比降低12%以上,在连铸钢包回转台待浇位静态吹氩和浇注位浇注过程中动态吹氩的流量分别同比减少40%、50%。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发 明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

  1. 一种连铸钢包回转台底吹氩控制装置,其特征在于,
    包括气路控制单元(1)、连铸基础自动化系统(2)、钢包内钢水称重系统(3)、吹氩智能控制切换装置(4)、PLC(5)、连铸钢包回转台(6)、吹氩自动对接机构、钢包(7),所述PLC(5)分别与气路控制单元(1)、连铸基础自动化系统(2)通讯连接,所述钢包内钢水称重系统(3)与连铸基础自动化系统(2)通讯连接;
    所述连铸钢包回转台(6)设有两个回转臂(8);
    所述钢包上设有两个钢包底吹透气砖(52);
    所述吹氩自动对接机构包括下部组件和上部组件,所述下部组件安装在回转臂(8)上,所述下部组件包括进气管(9);所述上部组件安装在钢包(7)耳轴箱底部,所述上部组件包括出气管(10),所述出气管(10)与钢包底吹透气砖(52)连接,当钢包(7)在回转臂(8)上座包后,所述下部组件与上部组件对接并使进气管(9)与出气管(10)连通;
    所述气路控制单元(1)包括两条氩气控制管路,每条所述氩气控制管路通过吹氩智能控制切换装置(4)分别向两个回转臂(8)上的其中一个进气管(9)提供氩气;
    所述PLC(5)获取连铸基础自动化系统(2)中的连铸钢包回转台(6)的浇注位开浇信号,以判断处于待浇位的回转臂和浇注位的回转臂;对于处于待浇位的回转臂,所述PLC(5)控制气路控制单元(1)切换为定量控制模式,即提供恒定的氩气流量;对于处于浇注位的回转臂,所述PLC(5)控制气路控制单元(1)切换为自适应控制模式,即根据钢包(7)内钢水称重系统的钢水称重信号,使浇注过程中的氩气流量随着钢包(7)内钢水重量的减小而线性减小。
  2. 如权利要求1所述的连铸钢包回转台底吹氩控制装置,其特征在于,
    所述气路控制单元还包括气源主路、气体汇流排(11);
    所述气源主路的上游端设有氩气入口,所述气源主路的下游端与气体汇流 排(11)连接,所述气源主路上由上游向下游依次设有气源主路第一球阀(12)、气源主路第一压力传感器(13)、调压器(14)、气源主路第一过滤器(15)、气源主路第二过滤器(16)、气源主路第二压力传感器(17);
    所述氩气控制管路包括氩气主路、自动支路、手动旁路、放散支路;所述自动支路的上游端与气体汇流排(11)连接,所述自动支路上由上游向下游依次设有自动支路第一球阀(18)、自动支路电磁阀(19)、冶金质量控制器(20)、自动支路第二球阀(21);所述手动旁路的上游端与气体汇流排(11)连接,所述手动旁路上由上游向下游依次设有手动旁路第一球阀(22)、手动调节阀(23)、手动旁路第二球阀(24);所述自动支路的下游端、手动旁路的下游端均与氩气主路的上游端连接,所述氩气主路上由上游端向下游端依次设有压力表(25)、氩气主路压力传感器(26)、氩气主路球阀(27);所述自动支路的下游端、手动旁路的下游端均与放散支路的上游端连接,所述放散支路上由上游向下游依次设有放散支路电磁阀(28)、排气节流阀(29);
    所述气源主路第一压力传感器(13)、气源主路第二压力传感器(17)、自动支路电磁阀(19)、冶金质量控制器(20)、氩气主路压力传感器(26)、放散支路电磁阀(28)均与PLC(5)连接;
    每个所述回转臂(8)上设有两个下部组件,所述吹氩智能控制切换装置设有四条供气支路,所述供气支路上由上游向下游依次设有供气支路手动球阀(30)、供气支路电磁阀(31)、供气支路过滤器(32),所述供气支路电磁阀(30)与PLC(5)连接;四条所述供气支路分别与四个进气管(9)连接,每条所述氩气控制管路连接两条供气支路,每条所述氩气控制管路连接的两条供气支路分别连接两个回转臂(8)上的进气管(9)。
  3. 如权利要求1所述的连铸钢包回转台底吹氩控制装置,其特征在于,还包括控制柜(33),所述气路控制单元(1)、PLC(5)均设置在控制柜(33)内,所述控制柜(33)内设有冷却控制单元(34),所述冷却控制单元(34)包括冷却管道,所述冷却管道上由上游端向下游端依次设有冷却管道球阀(35)、 冷却管道压力传感器(36)、冷却管道过滤器(37)、冷却管道电磁阀(38),所述冷却管道压力传感器(36)、冷却管道电磁阀(38)均与PLC(5)连接,所述冷却管道的出口设置在气路控制单元(1)与PLC(5)之间。
  4. 如权利要求1所述的连铸钢包回转台底吹氩控制装置,其特征在于,还包括操作箱(39),所述操作箱(39)上设有信号灯、触摸屏(40)、控制按钮,所述信号灯、触摸屏(40)、控制按钮均与PLC(5)连接;所述触摸屏(40)用于用户设置钢包(7)在连铸钢包回转台(6)待浇位吹氩时间的设定值和浇注位吹氩时间的设定值,并实时显示待浇位的实际吹氩时间和浇注位的实际吹氩时间。
    优选的,还包括连铸钢包回转台操作箱,所述连铸钢包回转台操作箱用于连铸钢包回转台(6)的人机交互,所述操作箱(39)与连铸钢包回转台操作箱均设置于大包操作室内,由大包操作工负责操作。
  5. 如权利要求1所述的连铸钢包回转台底吹氩控制装置,其特征在于,每个所述回转臂(8)上对称设有两个马鞍座(41),每个所述马鞍座(41)对应一个吹氩自动对接机构;所述马鞍座(41)上设有凹口51;
    所述下部组件还包括压盖(42)、下对接头(43)、碟簧组(44)、密封圈(45)、盘形支架(46)、吹灰盖板(47);所述压盖(42)通过螺钉安装在凹口51内,所述下对接头(43)可上下活动的设置在压盖(42)内部,所述碟簧组(44)设置在下对接头(43)与马鞍座(41)之间,所述密封圈(45)嵌装于下对接头(43)顶部的凹槽内;所述进气管(9)贯穿马鞍座(41)并与下对接头(43)连接,所述进气管(9)与设置在下对接头(43)中心的通孔连通;所述盘形支架(46)固定安装在下对接头(43)的上端中心,所述盘形支架(46)的中心设有出气孔,所述吹灰盖板(47)可上下活动的安装在出气孔中并用于打开或关闭出气孔;
    所述上部组件还包括底板(48)、绝热板(49)、上对接头(50),所述底板(48)、绝热板(49)、上对接头(50)由上向下依次设置,所述出气管 (10)贯穿底板(48)、绝热板(49)、上对接头(50);
    对接时,在所述碟簧组(44)的作用下,所述下对接头(43)的顶面与上对接头(50)的底面贴合。
  6. 如权利要求1所述的连铸钢包回转台底吹氩控制装置,其特征在于,所述浇注过程中的氩气流量随着钢包(7)内钢水重量的减小而线性减小,是指按照浇注位的初始氩气流量设定值与初始钢液重量设定值和停止氩气流量设定值与停止钢液重量设定值创建的自适应模式吹氩控制曲线自适应控制氩气流量。
  7. 一种使用如权利要求1~6任一所述的铸连铸钢包回转台底吹氩控制装置软吹去除夹杂物的方法,其特征在于,
    将LF精炼后期钢包软吹时间全部转移到连铸钢包回转台(6),采用恒定的氩气流量在待浇位钢包软吹8~15min;
    钢包在浇注位的浇注过程中软吹10~20min,根据钢包(7)内钢水称重系统的钢水称重信号,使浇注过程中的氩气流量随着钢包内钢水重量的减小而线性减小;
    连铸钢包回转台(6)的上钢温度为通过下式计算:
    T=Tf+Tw×k1+Tp×k2
    上式中,T为连铸钢包回转台的上钢温度,单位为℃;Tf为现有技术中的连铸钢包回转台的上钢温度,Tf的取值范围为1564~1579℃;Tw为待浇位软吹时间,单位为℃;k1的取值范围为0.4~0.5,单位为℃/min;Tp为浇注位软吹时间,单位为℃;k2的取值范围为0.3~0.4,单位为℃/min。
    优选的,对于夹杂物控制要求低的钢种,在浇注位的浇注过程中的软吹时间为10min;对于夹杂物控制要求中等的钢种,在浇注位的浇注过程中的软吹时间为15min;对于夹杂物控制要求高的钢种,在浇注位的浇注过程中的软吹时间为20min。
  8. 根据权利要求7所述软吹去除夹杂物的方法,其特征在于,在待浇位钢包(7)软吹的氩气流量为30~40NL/min;钢包(7)在浇注位的浇注过程中, 初始氩气流量为25~30NL/min,随着钢包(7)内钢水量的减少,氩气流量线性减小到15~20NL/min。
  9. 根据权利要求8所述软吹去除夹杂物的方法,其特征在于,当连铸中间包钢水温度过高或钢水温度过低时,对连铸钢包回转台(6)浇注位的软吹时间或氩气流量进行调整:
    若连铸中间包温度超过上限预设值Tu3~5℃,则延长连铸钢包回转台(6)浇注位软吹时间5~10min或增大氩气流量5~10NL/min,其中,Tu=钢种液相线温度+28℃;
    若连铸中间包温度低于下限预设值Td3~5℃,则缩短连铸钢包回转台(6)浇注位软吹时间5~10min或减小氩气流量5~10NL/min,其中,Td=钢种液相线温度+15℃。
  10. 根据权利要求8~9任一所述软吹去除夹杂物的方法,其特征在于,当钢包底吹透气砖(11)堵塞时,设定吹堵流量为50~100NL/min,进行吹堵。
PCT/CN2023/101564 2022-11-08 2023-06-21 连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法 WO2024098765A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211394423.7A CN115780753A (zh) 2022-11-08 2022-11-08 连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法
CN202211394423.7 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024098765A1 true WO2024098765A1 (zh) 2024-05-16

Family

ID=85436199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101564 WO2024098765A1 (zh) 2022-11-08 2023-06-21 连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法

Country Status (2)

Country Link
CN (1) CN115780753A (zh)
WO (1) WO2024098765A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118543821A (zh) * 2024-07-29 2024-08-27 宁波钢铁有限公司 一种钢包清理装置及钢包清理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115780753A (zh) * 2022-11-08 2023-03-14 莱芜钢铁集团银山型钢有限公司 连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112253A (ja) * 1993-10-14 1995-05-02 Nippon Steel Corp 連続鋳造装置における不活性ガス流量制御装置
CN101586177A (zh) * 2008-05-22 2009-11-25 鞍钢股份有限公司 一种降低钢水钛夹杂物的方法
CN204545363U (zh) * 2015-02-02 2015-08-12 西安宝科流体技术有限公司 连铸智能吹氩控制系统
CN109304459A (zh) * 2018-12-13 2019-02-05 山东钢铁股份有限公司 一种吹氩对接机构及钢包台车
CN110387454A (zh) * 2018-04-20 2019-10-29 沈阳人和机械制造有限公司 钢包底吹氩的控制系统及方法
CN111644584A (zh) * 2020-07-25 2020-09-11 莱芜钢铁集团银山型钢有限公司 一种用于连铸钢包回转台底吹氩的软吹方法及控制装置
CN113523211A (zh) * 2021-07-12 2021-10-22 莱芜钢铁集团银山型钢有限公司 钢包透气上水口座砖吹氩进气管路的漏气检测及吹氩流量修正方法
CN115780753A (zh) * 2022-11-08 2023-03-14 莱芜钢铁集团银山型钢有限公司 连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112253A (ja) * 1993-10-14 1995-05-02 Nippon Steel Corp 連続鋳造装置における不活性ガス流量制御装置
CN101586177A (zh) * 2008-05-22 2009-11-25 鞍钢股份有限公司 一种降低钢水钛夹杂物的方法
CN204545363U (zh) * 2015-02-02 2015-08-12 西安宝科流体技术有限公司 连铸智能吹氩控制系统
CN110387454A (zh) * 2018-04-20 2019-10-29 沈阳人和机械制造有限公司 钢包底吹氩的控制系统及方法
CN109304459A (zh) * 2018-12-13 2019-02-05 山东钢铁股份有限公司 一种吹氩对接机构及钢包台车
CN111644584A (zh) * 2020-07-25 2020-09-11 莱芜钢铁集团银山型钢有限公司 一种用于连铸钢包回转台底吹氩的软吹方法及控制装置
CN113523211A (zh) * 2021-07-12 2021-10-22 莱芜钢铁集团银山型钢有限公司 钢包透气上水口座砖吹氩进气管路的漏气检测及吹氩流量修正方法
CN115780753A (zh) * 2022-11-08 2023-03-14 莱芜钢铁集团银山型钢有限公司 连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118543821A (zh) * 2024-07-29 2024-08-27 宁波钢铁有限公司 一种钢包清理装置及钢包清理方法

Also Published As

Publication number Publication date
CN115780753A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2024098765A1 (zh) 连铸钢包回转台底吹氩控制装置及软吹去除夹杂物的方法
CN113523211B (zh) 钢包透气上水口座砖吹氩进气管路的漏气检测及吹氩流量修正方法
CN111644584B (zh) 一种用于连铸钢包回转台底吹氩的软吹方法及控制装置
CN204958970U (zh) 精炼炉钢包底吹氩控制装置
CN111822665B (zh) 一种用于连铸中间包透气上水口座砖的吹氩控制方法及氩气控制装置
CN208055392U (zh) 钢包底吹氩的控制系统
CN112725557A (zh) 一种转炉底吹智能控制方法
CN104073624A (zh) 一种立式连续退火炉炉膛压力控制方法
CN111346531A (zh) 一种双回路双工位镁合金低压铸造混气工艺及其装置
CN105154615A (zh) 一种转炉二文喉口自动调节装置及调节方法
CN211771413U (zh) 一种防止转炉底吹回氮控制装置
CN221184638U (zh) 一种板坯连铸机在线软吹调控监测装置
CN110976787B (zh) 一种超低碳钢的中包保护浇铸方法
CN204227930U (zh) 熔铸保温炉的温度串级控制系统
CN110989406A (zh) 一种lf炉钢包底吹氩软搅拌自动控制系统及控制方法
CN1434262A (zh) 一种用于镁合金熔炼保护的在线混合供气设备
CN107812899A (zh) 在线检测模铸氩气保护效果的装置及检测方法
CN117463962A (zh) 一种板坯连铸机在线软吹调控监测装置及方法
CN216786184U (zh) 简易钢包吹氩控制装置
CN211648620U (zh) 一种移钢小车液压自动控制切换装置
CN111136248B (zh) 一种镁熔体浇管保护气体智能控制方法及智能供应系统
CN115475933B (zh) 一种板坯连铸机水口吹氩密封的保护方法
KR20010055098A (ko) 전로 자동 비상 복귀장치
CN216027974U (zh) 一种连铸中包液面控制系统
CN213024043U (zh) 一种钢包底吹气体的控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887462

Country of ref document: EP

Kind code of ref document: A1