WO2024098743A1 - 一种通过纯无机结构层实现不粘效果的炊具及其制造方法 - Google Patents

一种通过纯无机结构层实现不粘效果的炊具及其制造方法 Download PDF

Info

Publication number
WO2024098743A1
WO2024098743A1 PCT/CN2023/099824 CN2023099824W WO2024098743A1 WO 2024098743 A1 WO2024098743 A1 WO 2024098743A1 CN 2023099824 W CN2023099824 W CN 2023099824W WO 2024098743 A1 WO2024098743 A1 WO 2024098743A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
inorganic
particles
pure
inorganic particles
Prior art date
Application number
PCT/CN2023/099824
Other languages
English (en)
French (fr)
Inventor
方成
程强
Original Assignee
浙江三禾厨具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222978121.6U external-priority patent/CN220174901U/zh
Priority claimed from CN202211398575.4A external-priority patent/CN115474829A/zh
Application filed by 浙江三禾厨具有限公司 filed Critical 浙江三禾厨具有限公司
Priority to EP23866686.1A priority Critical patent/EP4393352A1/en
Publication of WO2024098743A1 publication Critical patent/WO2024098743A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • A47J27/002Construction of cooking-vessels; Methods or processes of manufacturing specially adapted for cooking-vessels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • A47J36/025Vessels with non-stick features, e.g. coatings
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • A47J36/04Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay the materials being non-metallic
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/10Frying pans, e.g. frying pans with integrated lids or basting devices

Definitions

  • the invention belongs to the technical field of kitchenware, and in particular relates to a cooker with a non-stick layer and a manufacturing method thereof.
  • Non-stick cookware is the mainstream product on the market. It is mainly achieved by forming a layer of non-stick material on the surface of the pan base material.
  • a commonly used non-stick material is mainly composed of fluorine organic compounds such as polytetrafluoroethylene, and the non-wetting properties of fluorine organic compounds are used to make the cookware non-stick.
  • fluorine organic compounds will decompose under high temperature conditions (such as polytetrafluoroethylene greater than 250°C), thereby damaging the fluorine organic coating and causing the cookware to lose its non-stick function; at the same time, the fluorine organic coating will produce toxic substances after decomposition, which is harmful to human health.
  • the main component of another non-stick material is silica sol resin. Similar to fluorine organic materials, they have excellent non-stick performance, but due to the characteristics of the material itself, they have great limitations in temperature resistance, hardness, durability, environmental safety, etc., and cannot fully meet the market and consumer requirements.
  • Ceramics and enamel have the characteristics of high appearance, high temperature resistance, high hardness, durability and environmental protection, the materials themselves do not have any non-stick properties, and the non-stick performance is weak under oil and oil-free conditions. Therefore, they are generally used in products such as soup pots and stew pots, and cannot be promoted on a large scale.
  • non-stick structure with many small grooves or pores formed on the inner surface of the cookware, which reduces the contact area between the food and the inner surface of the cookware during cooking.
  • the grooves and pores on the inner surface of the cookware can absorb grease.
  • the grease in the grooves and pores can expand and release from the grooves and pores, forming an oil film at the bottom of the cookware, thereby producing a "non-stick" effect; after stopping heating, the cooking oil cools and is stored in the grooves and pores on the inner surface of the cookware.
  • the cookware with the above structure can maintain a certain non-stick function for a long time, but the structure of such small grooves or pores has a great influence on the non-stick performance of the cookware, and a specific structure is required to achieve a good non-stick effect, so it has high requirements for manufacturing processes, etc.
  • the present invention proposes a cooker that achieves a non-stick effect through a pure inorganic structural layer and a manufacturing method thereof.
  • the cookware comprises a substrate layer and a pure inorganic structure layer, wherein the pure inorganic structure layer is formed by spraying inorganic particles on the inner surface of the substrate layer, wherein a interconnected pore structure is formed between the inorganic particles of the pure inorganic structure layer, and the inorganic particles sprayed on the inner surface of the substrate layer are pure inorganic particles without adding organic solvents.
  • the pure inorganic structure layer includes at least three sub-inorganic structure layers, and the at least three sub-inorganic structure layers are stacked in sequence on the inner surface of the substrate layer according to the size of the inorganic particles, wherein the inorganic particles of the sub-inorganic structure layer adjacent to the substrate layer have the largest size, and in the direction away from the substrate layer, the inorganic particles of the plurality of sub-inorganic structure layers decrease in size in sequence, so that the pores in the plurality of sub-inorganic structure layers decrease in the direction away from the substrate layer.
  • the inorganic particles have a particle size of 100 nanometers to 60 micrometers, and the inorganic particles are plasma sprayed, supersonic sprayed, cold sprayed, laser clad or air sprayed on the inner surface of the substrate layer; the thickness of the pure inorganic structure layer is between 61 and 130 micrometers.
  • the inorganic particulate material may be metal particles or ceramic particles or carbon powder, wherein the metal particles are one or more of titanium, titanium alloy, zirconium, zirconium alloy, stainless steel, low carbon steel, high carbon steel and zinc, the ceramic particles are one or more of zirconium oxide, zirconium nitride, titanium oxide, titanium nitride, titanium carbide, aluminum oxide, magnesium oxide, ferroferric oxide, ferric oxide, boron nitride, calcium oxide, silicon oxide and silicon nitride, and the carbon powder is one or more of natural graphite, polycrystalline graphite, pyrolytic graphite, highly oriented pyrolytic graphite and carbon quantum dots.
  • the metal particles are one or more of titanium, titanium alloy, zirconium, zirconium alloy, stainless steel, low carbon steel, high carbon steel and zinc
  • the ceramic particles are one or more of zirconium oxide, zirconium nitride, titanium oxide, titanium nitride, titanium carbide
  • the three sub-inorganic structure layers are an oil storage layer, a slow-release solidification layer and a diffusion surface layer, and the oil storage layer, the slow-release solidification layer and the diffusion surface layer are sequentially arranged in a direction away from the substrate layer.
  • the oil storage layer, the slow-release solidification layer and the diffusion surface layer are stacked in sequence.
  • the inorganic particle size of the oil reservoir layer is 15-60 microns, the layer thickness of the oil reservoir layer is 40-70 microns, and the porosity is between 15-25%; the inorganic particle size of the sustained-release solidification layer is 1-15 microns, the layer thickness of the sustained-release solidification layer is 20-40 microns, and the porosity is between 5-15%; the inorganic particle size of the diffuse surface layer is 100 nanometers-1 micron, and the layer thickness of the diffuse surface layer is 1-20 microns.
  • the weight ratio of the ceramic particles in the oil reservoir layer is not less than 70%; the weight ratio of the metal particles in the sustained-release solidification layer is not less than 60%; and the weight ratio of the carbon powder in the diffused surface layer is not less than 50%.
  • the method for manufacturing the cooker comprises the following steps:
  • the metal substrate is formed by stretching or die-casting, and then burrs are removed, and the surface is polished and cleaned to form a substrate layer with a thickness of not less than 1 mm;
  • the inorganic particles are sprayed onto the inner surface of the substrate layer by cold spraying, plasma spraying, supersonic spraying, laser cladding or air spraying to form a pure inorganic structural layer.
  • the cooker with a pure inorganic structure layer of the present invention comprises at least three sub-inorganic structure layers, and the at least three sub-inorganic structure layers are sequentially stacked on the inner surface of the substrate layer according to the size of the inorganic particles.
  • the inorganic particles of the plurality of sub-inorganic structure layers decrease in size, so that the pore structure in the plurality of sub-inorganic structure layers decreases in the direction away from the substrate layer, so that the pure inorganic structure layer has high bonding strength and toughness, high surface hardness, and is scratch-resistant and wear-resistant.
  • the surface has the functions of absorbing and storing oil and self-lubricating. After heating, the pores can perform microporous heating breathing, so as to achieve the effect of non-stick and easy cleaning.
  • FIG. 1 is a cross-sectional view of a container wall of a cooker having a pure inorganic structural layer according to an embodiment of the present invention.
  • the term “including” and its various variations may be understood as open-ended terms, which mean “including but not limited to”.
  • the term “based on” and similar expressions may be understood as “based on at least”.
  • the terms “first”, “second”, “third” and the like are only used to distinguish different features and have no substantial meaning.
  • the terms “left”, “right”, “middle” and the like are only used to indicate the positional relationship between relative objects.
  • One embodiment of the present invention proposes a cooker that achieves a non-stick effect through a pure inorganic structure layer, the cooker comprising a substrate layer 1 and a pure inorganic structure layer 2, the pure inorganic structure layer 2 is formed by spraying inorganic particles on the inner surface of the substrate layer 1, a connected pore structure is formed between the inorganic particles of the pure inorganic structure layer 2, the inorganic particles sprayed on the inner surface of the substrate layer are pure inorganic particles, and no organic solvent is added.
  • the pure inorganic structure layer 2 comprises at least three sub-inorganic structure layers, the at least three sub-inorganic structure layers are sequentially stacked on the inner surface of the substrate layer 1 according to the size of the inorganic particles, wherein the inorganic particles of the sub-inorganic structure layer adjacent to the substrate layer 1 have the largest particle size, and in the direction away from the substrate layer 1, the inorganic particles of the multiple sub-inorganic structure layers decrease in size in sequence, so that the pores in the multiple sub-inorganic structure layers decrease in sequence along the direction away from the substrate layer 1.
  • FIG. 1 a cross-sectional view of a container wall of a cooker is shown.
  • the cooker in Figure 1 is preferably a frying pan according to usage conditions and effects, and the cooker comprises a substrate layer 1 and a pure inorganic structure layer 2.
  • the substrate layer 1 is the base of the cooker, which is usually made of metal materials such as aluminum alloy, stainless steel or iron, and has a thickness of not less than 1 mm.
  • the pure inorganic structure layer 2 of the embodiment of the present invention is formed by spraying inorganic particulate material on the inner surface of the substrate layer 1.
  • the particle size of the inorganic particles is 100 nanometers-60 microns.
  • the spraying can be achieved by plasma spraying, supersonic spraying, cold spraying, laser cladding technology and air spraying.
  • the thickness of the pure inorganic structure layer 2 is between 61-130 microns.
  • the inorganic particle material can be metal particles or ceramic particles or carbon powder.
  • the metal particles can be one or more of titanium, titanium alloy, zirconium, zirconium alloy, stainless steel, low carbon steel, high carbon steel and zinc
  • the ceramic particles can be one or more of zirconium oxide, zirconium nitride, titanium oxide, titanium nitride, titanium carbide, aluminum oxide, magnesium oxide, ferroferric oxide, ferric oxide, boron nitride, calcium oxide, silicon oxide and silicon nitride
  • the carbon powder can be one or more of natural graphite, polycrystalline graphite, pyrolytic graphite, highly oriented pyrolytic graphite and carbon quantum dots. Due to the spraying process, the inorganic particles of the pure inorganic structure layer 2 will not fit closely together, and a pore structure will be formed between the inorganic particles.
  • the pure inorganic structure layer 2 includes at least three sub-inorganic structure layers stacked in sequence according to the size of the inorganic particles, wherein the inorganic particles of the sub-inorganic structure layer adjacent to the substrate layer 1 have the largest size, and in the direction away from the substrate layer 1, the inorganic particles of the multiple sub-inorganic structure layers decrease in size.
  • the three sub-inorganic structural layers are an oil reservoir 21, a slow-release solidified layer 22 and a diffuse surface layer 23 stacked in sequence.
  • the inorganic particle size of the oil reservoir 21 is 15-60 microns, and the inorganic particles can be one or more of the above-mentioned metal particles, ceramic particles or carbon powder.
  • the layer thickness of the oil reservoir 21 is 40-70 microns, and the porosity is between 15-25%.
  • the inorganic particle size of the slow-release solidified layer 22 is 1-15 microns, and the inorganic particles can be one or more of the above-mentioned metal particles, ceramic particles or carbon powder.
  • the layer thickness of the slow-release solidified layer 22 is 20-40 microns, and the porosity is between 5-15%.
  • the inorganic particle size of the diffuse surface layer 23 is 100 nanometers-1 micron, and the inorganic particles can be one or more of the above-mentioned metal particles, ceramic particles or carbon powder.
  • the layer thickness of the diffuse surface layer 23 is 1-20 microns.
  • the "dispersed" surface layer in the present invention means that the inorganic particles do not completely cover the sustained-release solidified layer 22.
  • the inorganic particles can be evenly formed in the form of independent particles to cover the sustained-release solidified layer 22, and/or, a plurality of surface layer sub-regions uniformly arranged in a cracked state are formed on the sustained-release solidified layer 22, so that the diffuse surface layer 23 will not completely seal the sustained-release solidified layer 22.
  • the surface of the diffuse surface layer 23 is in a concave and convex frosted state.
  • the inorganic particles in the oil reservoir layer 21 have the largest particle size
  • the inorganic particles in the sustained-release solidification layer 22 have the second largest particle size
  • the inorganic particles in the diffuse surface layer 23 have the smallest particle size, therefore, the pores formed between the inorganic particles in the oil reservoir layer 21 are also the largest, the pores formed between the inorganic particles in the oil reservoir layer 21 are the second largest, and the pores formed between the inorganic particles in the diffuse surface layer 23 are the smallest.
  • the inorganic particle size of the diffuse surface layer 23 is 100 nanometers to 1 micron, which is much smaller than the inorganic particle size of the oil reservoir 21 of 15-60 microns and the inorganic particle size of the sustained-release solidified layer 22 of 1-15 microns. Therefore, the pores in the oil reservoir 21 are relatively large and used to store oil; while the pores in the diffuse surface layer 23 are very small and relatively dense and uniform, which can improve the hardness of the diffuse surface layer 23 on the one hand, and facilitate the uniform infiltration or precipitation of oil on the other hand; in addition, between the oil reservoir 21 and the diffuse surface layer A slow-release solidified layer 22 with an inorganic particle size in the middle is arranged between the two layers 23.
  • This layer is a transition layer and has the function of a solidified coating. It can effectively bond the oil storage layer 21 and the diffuse surface layer 23, improve the bonding strength and toughness of the pure inorganic structure layer 2, and also play a role in assisting oil storage.
  • the degree of heating of the cooker can be estimated according to the amount of grease precipitated from the bottom of the cooker.
  • the main component of the oil reservoir 21 is ceramic particles, and the weight ratio of ceramic particles is not less than 70%; the main component of the slow-release solidified layer 22 is metal particles, and the weight ratio of metal particles is not less than 60%; the main component of the diffused surface layer 23 is carbon powder, and the weight ratio of carbon powder is not less than 50%.
  • the bottom layer is a ceramic layer composed mainly of ceramic particles, which is a porous layer with stable structure, high strength and high hardness;
  • the second layer is a composite metal layer composed mainly of metal particles, which can improve the toughness of the bottom ceramic layer and optimize the pore structure, increase the pore density and reduce the pore size, improve the stability of oil storage, and make the surface have a strong metallic texture;
  • the third layer is a surface layer mainly composed of carbon powder, so as to obtain a self-lubricating functional layer with a self-lubricating effect, so that the surface friction coefficient of the diffused surface layer 23 is low, and the dynamic friction coefficient is even lower in the presence of oil, so that the surface of the pure inorganic structure layer 2 is easy to clean and physically non-sticky.
  • the pure inorganic structure layer 2 has a three-dimensional structure with voids that can store oil, and a concave-convex structure is formed on the surface of the pure inorganic structure layer 2.
  • the concave-convex structure can partially suspend the food, and in the pores between the food and the surface, the heated oil will boil slightly and generate a large amount of hot steam, which further supports the food, realizes the separation of the food from the surface, and achieves a certain physical non-stick effect.
  • the non-stick pan is heated, and the pores/micropores in the pure inorganic structure layer 2 will expand due to the heat, thus having a strong adsorption capacity for grease.
  • the oil After putting oil in the non-stick pan, the oil fully wets and fills the micropores; continue to heat, the grease in the pores will slightly boil and generate hot air, so that during the cooking process, the slightly boiling grease and hot air are located between the food and the pure inorganic structure layer 2, forming a support for the food, and separating the food from the pure inorganic structure layer 2.
  • the working principle of the non-stick pan of this embodiment is that the non-stick pan is continuously heated, and the grease in the pores of the pure inorganic structure layer 2 is continuously kept in a boiling state, and a large amount of hot steam is generated, which can semi-suspend the cooked food at the bottom of the non-stick pan, thereby achieving the "non-stick" technical effect. It should be noted that for the non-stick pan of this embodiment, if it is washed with boiling hot water after cooking, the grease remaining in the micropores can be replaced, and the non-stick pan can be thoroughly cleaned.
  • Another embodiment of the present invention provides a method for manufacturing the cooker as described above, comprising the following steps:
  • a metal substrate such as aluminum alloy, stainless steel or iron is formed by stretching or die-casting, and then burrs are removed, and the surface is polished and cleaned to form a substrate layer 1 with a thickness of not less than 1 mm.
  • Inorganic particles are coated on the inner surface of the substrate layer 1 by cold spraying, plasma spraying, supersonic spraying, laser cladding or air spraying to form a pure inorganic structure layer 2.
  • the laser cladding mentioned here is a type of thermal spraying.
  • the substrate is preheated to 80-120 degrees, and the inorganic particles whose main component is ceramic particles (not less than 70% by weight) are sprayed onto the inner surface of the substrate layer 1 by plasma spraying or supersonic spraying to form an oil reservoir 21.
  • plasma spraying is used as an example, under the conditions of 55-65V voltage and 500-600A current, the powder feeding amount of the inorganic particles is adjusted to 4-8mg/s, and the inorganic particles are sprayed on the inner surface of the substrate layer 1 by hydrogen with a flow rate of 4-8L/m, and the spraying distance is 10-15mm, forming an oil reservoir 21 with a coating thickness of 40-70 microns and a porosity of 15-25%. For a 30cm frying pan, it takes 50-90s to spray.
  • This layer as a basic coating ensures the hardness and strength of the pure inorganic structure layer 2, and builds a basic void layer with a thickness of 40-70 microns.
  • the inorganic particles whose main component is metal particles are sprayed onto the outer surface of the oil reservoir 21 by cold spraying and supersonic spraying to form a slow-release solidified layer 22.
  • cold spraying nitrogen with a temperature between 200-400 degrees is used as the spray gas
  • the spray pressure is controlled at 2.0-3.5MPa
  • the gas flow rate is controlled at 500-900m/s
  • the metal particle powder is sent into the gas along the axial direction of the spray gas to form a gas-solid two-phase flow
  • the spraying is performed at a distance of 10-25mm from the outer surface of the oil reservoir 21 to form a slow-release solidified layer 22 with a spraying thickness between 2-40 microns and a porosity between 5-15%.
  • the oil reservoir 21 can be properly filled with holes, secondary stacked and surface improved, forming a finer micro-nano morphology, and the gaps become more numerous and finer.
  • the inorganic particles whose main component is carbon powder are sprayed onto the outer surface of the sustained-release solidified layer 22 by laser cladding or spraying process to form a diffused surface layer 23.
  • a diffused surface layer 23 with a self-lubricating function having a thickness of 1-20 microns is formed on the surface of the sustained-release solidified layer 22, and the surface of the diffused surface layer 23 is in a concave-convex frosted state.
  • a non-stick pan according to an embodiment of the present invention is manufactured by the manufacturing method described above.
  • the material of the substrate layer is stainless steel, and the thickness of the substrate layer is 1.2 mm.
  • the pure inorganic structure layer is composed of three sub-inorganic structure layers: an oil reservoir layer 21, a slow-release solidification layer 22, and a diffuse surface layer 23, wherein the oil reservoir layer 21 includes 72% by weight of ceramic particles, the inorganic particles have a particle size of 35 microns, a layer thickness of 60 microns, and a porosity of 20%; the slow-release solidification layer 22 includes 64% by weight of metal particles, the inorganic particles have a particle size of 10 microns, a layer thickness of 30 microns, and a porosity of 15%; the diffuse surface layer 23 includes 50% by weight of carbon powder, the inorganic particles have a particle size of 300 nanometers, and a layer thickness of 5 microns.
  • Hardness The hardness of the pencil reaches 9H or above. It will not be scratched by a steak knife, and it will not be scratched by a shovel or steel wool.
  • Hot and cold shock heat the workpiece to 400 degrees and then put it into 20-degree water. Shock it 50 times in a row and observe whether there is any cracking, discoloration or other changes on the surface.
  • Hot pan and cold oil Heat the pan to 200 degrees and add oil. After adding oil, immediately put in the marinated shredded pork and stir-fry until it is non-stick.
  • Heat the pan and oil Heat the pan to 200 degrees and add oil. When the oil is heated until it smokes slightly, add the marinated shredded pork and stir-fry until it is non-stick.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Cookers (AREA)

Abstract

一种通过纯无机结构层(2)实现不粘效果的炊具及制造方法,炊具包括基材层(1)和纯无机结构层(2),通过在基材层(1)的内表面上喷涂无机颗粒形成纯无机结构层(2),纯无机结构层(2)的无机颗粒之间形成连通的孔隙结构,纯无机结构层(2)包括至少三个子无机结构层,至少三个子无机结构层按照无机颗粒粒径大小依次叠置在基材层(1)的内表面上,其中邻接基材层(1)的子无机结构层的无机颗粒粒径最大,在远离基材层(1)的方向上,多个子无机结构层的无机颗粒粒径依次减小,从而多个子无机结构层中的孔隙沿远离基材层(1)的方向依次减小。炊具的纯无机结构层(2)的结合强度和韧性高、表面硬度高,耐刮耐磨,表面具有吸油、藏油以及自润滑的功能,加热后孔隙能够进行微孔加热呼吸,从而达到不粘、易洁的效果。

Description

一种通过纯无机结构层实现不粘效果的炊具及其制造方法 技术领域
本发明属于厨房用品技术领域,具体涉及一种具有不粘层的炊具及其制造方法。
背景技术
不粘炊具,尤其是不粘锅,是目前市面炊具的主流产品,其主要是通过在锅体基材表面形成一层不粘材料来实现。
现有技术中,一种常用的不粘材料的主要成分为例如聚四氟乙烯的氟有机物,利用氟有机物的不润湿性能使炊具具有不粘的功能。但是,氟有机物在高温条件(例如聚四氟乙烯大于 250℃)下会分解,从而损坏氟有机物涂层,使炊具丧失不粘功能;同时,氟有机物涂层分解后会产生有毒物质,损害人体健康。
另一种不粘材料的主要成分为硅溶胶树脂,与氟有机物材料相似,它们的不粘性表现卓越,但因材料本身特性,在耐温、硬度、持久性以及环保安全等方面存在极大的局限性,不能完全满足市场和消费者要求。
还有使用陶瓷和搪陶(搪瓷)做为不粘材料制造不粘炊具的方案,虽然陶瓷和搪瓷具有颜值高、耐温高、硬度高、耐用以及环保等特性,但是材料本身并不具有任何不粘特性,在有油和无油条件下不粘表现都较弱。所以一般应用在汤锅、炖锅等产品上,并不能大量推广。
目前,出现了在炊具内表面形成众多细小沟槽或毛细孔的不粘结构,在烹调时减少了食物与炊具内表面的接触面积,同时炊具内表面的沟槽和毛细孔中能够吸附油脂,在加热烹调时,沟槽和毛细孔中的油脂能够膨胀并从沟槽和毛细孔中释出,在炊具底部形成一层油膜,从而产生“不粘”的效果;停止加热后,食用油冷却并存储于炊具内表面的沟槽和毛细孔中。因此,上述结构的炊具能够长久保持不粘一定功能,但是,这种小沟槽或毛细孔的结构对炊具的不粘性能有较大影响,需要特定的结构才能实现良好的不粘效果,因此对制造工艺等要求较高。
技术问题
为了解决上述的技术问题,本发明提出了一种通过纯无机结构层实现不粘效果的炊具及其制造方法。
技术解决方案
根据本发明的一个方面,所述炊具包括基材层和纯无机结构层,通过在所述基材层的内表面上喷涂无机颗粒形成所述纯无机结构层,所述纯无机结构层的无机颗粒之间形成连通的孔隙结构,所述基材层的内表面上喷涂的无机颗粒为纯无机颗粒,不添加有机溶剂,
所述纯无机结构层包括至少三个子无机结构层,所述至少三个子无机结构层按照无机颗粒粒径大小依次叠置在所述基材层的内表面上,其中邻接所述基材层的子无机结构层的无机颗粒粒径最大,在远离所述基材层的方向上,多个子无机结构层的无机颗粒粒径依次减小,从而所述多个子无机结构层中的孔隙沿远离所述基材层的方向依次减小。
在一个实施例中,所述无机颗粒的粒径为100纳米-60微米,在所述基材层的内表面上等离子喷涂、超音速喷涂、冷喷涂、激光熔覆或空气喷涂无机颗粒;所述纯无机结构层的厚度在61-130微米之间。
在一个实施例中,无机颗粒材料可为金属颗粒或陶瓷颗粒或碳粉,其中,金属颗粒为钛、钛合金、锆、锆合金、不锈钢、低碳钢、高碳钢和锌中的一种或多种,陶瓷颗粒为氧化锆、氮化锆、氧化钛、氮化钛、碳化钛、氧化铝、氧化镁、四氧化三铁、三氧化二铁、氮化硼、氧化钙、氧化硅和氮化硅中的一种或多种,碳粉为天然石墨、多晶石墨、热解石墨、高定向热解石墨和碳量子点中的一种或多种。
在一个实施例中,所述三个子无机结构层为储油层、缓释固化层和弥散面层,所述储油层、缓释固化层和弥散面层在远离所述基材层的方向上依次设置。
在一个实施例中,所述储油层、缓释固化层和弥散面层依次层叠。
在一个实施例中,所述储油层的无机颗粒粒径为15-60微米,所述储油层的层厚度为40-70微米,孔隙率在15-25%之间;所述缓释固化层的无机颗粒粒径为1-15微米,所述缓释固化层的层厚度为20-40微米,孔隙率在5-15%之间;所述弥散面层的无机颗粒粒径为100纳米-1微米,所述弥散面层的层厚度为1-20微米。
在一个实施例中,所述储油层中的陶瓷颗粒的重量比不低于70%;所述缓释固化层中的金属颗粒的重量比不低于60%;所述弥散面层中的碳粉的重量比不低于50%。
根据本发明的另一个方面,所述炊具的制造方法包括如下步骤:
将金属基材通过拉伸或压铸方法成型,然后清理毛刺,并进行表面打磨和清洗处理,形成厚度不小于1毫米的基材层;
通过冷喷涂、等离子喷涂、超音速喷涂、激光熔覆或空气喷涂方式将无机颗粒喷涂到基材层的内表面上,形成纯无机结构层。
有益效果
本发明的具有纯无机结构层的炊具,纯无机结构层包括至少三个子无机结构层,所述至少三个子无机结构层按照无机颗粒粒径大小依次叠置在所述基材层的内表面上,在远离所述基材层的方向上,多个子无机结构层的无机颗粒粒径依次减小,从而所述多个子无机结构层中的孔隙结构沿远离所述基材层的方向依次减小,使得纯无机结构层结合强度和韧性高、表面硬度高,耐刮耐磨,在开锅有油情况表面具有吸油、藏油以及自润滑的功能,加热后孔隙能够进行微孔加热呼吸,从而达到不粘、易洁的效果。
附图说明
图1是本发明实施例提出的具有纯无机结构层的炊具的容器壁截面图。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。但本领域技术人员知晓,本发明并不局限于附图和以下实施例。
如本文中所述,术语“包括”及其各种变体可以被理解为开放式术语,其意味着“包括但不限于”。术语“基于”及其类似表述可以被理解为“至少基于”。术语“第一”、“第二”、“第三”等表述仅用于区分不同的特征,并无实质含义。术语“左”、“右”、“中间”及其类似表述仅用于表示相对物体之间的位置关系。
本发明一个实施例提出了一种通过纯无机结构层实现不粘效果的炊具,所述炊具包括基材层1和纯无机结构层2,通过在所述基材层1的内表面上喷涂无机颗粒形成所述纯无机结构层2,所述纯无机结构层2的无机颗粒之间形成连通的孔隙结构,所述基材层的内表面上喷涂的无机颗粒为纯无机颗粒,不添加有机溶剂。所述纯无机结构层2包括至少三个子无机结构层,所述至少三个子无机结构层按照无机颗粒粒径大小依次叠置在所述基材层1的内表面上,其中邻接所述基材层1的子无机结构层的无机颗粒粒径最大,在远离所述基材层1的方向上,多个子无机结构层的无机颗粒粒径依次减小,从而所述多个子无机结构层中的孔隙沿远离所述基材层1的方向依次减小。
具体的,如图1所示,其中示出了炊具的容器壁的截面图。图1中的炊具根据使用条件和效果,优选的是炒锅,所述炊具包括基材层1和纯无机结构层2。
其中,所述基材层1为炊具的基体,通常由铝合金、不锈钢或铁等金属材料制成,厚度通常不小于1mm。
本发明实施例的纯无机结构层2通过在基材层1的内表面上喷涂无机颗粒材料而形成,无机颗粒的粒径为 100纳米-60微米,所述喷涂可以采用等离子喷涂、超音速喷涂、冷喷涂、激光熔覆技术以及空气喷涂方式等方式实现,所述纯无机结构层2的厚度在61-130微米之间。
无机颗粒材料可为金属颗粒或陶瓷颗粒或碳粉。金属颗粒可以为钛、钛合金、锆、锆合金、不锈钢、低碳钢、高碳钢和锌中的一种或多种,陶瓷颗粒可以为氧化锆、氮化锆、氧化钛、氮化钛、碳化钛、氧化铝、氧化镁、四氧化三铁、三氧化二铁、氮化硼、氧化钙、氧化硅和氮化硅中的一种或多种,碳粉可以为天然石墨、多晶石墨、热解石墨、高定向热解石墨和碳量子点中的一种或多种。由于采用喷涂工艺,因此纯无机结构层2的无机颗粒之间不会紧密贴合,无机颗粒之间会形成孔隙结构。
所述纯无机结构层2包括按照无机颗粒粒径大小依次叠置的至少三个子无机结构层,其中邻接所述基材层1的子无机结构层的无机颗粒粒径最大,在远离所述基材层1的方向上,多个子无机结构层的无机颗粒粒径依次减小。
在本实施例中,所述三个子无机结构层为依次层叠的储油层21、缓释固化层22和弥散面层23。所述储油层21的无机颗粒粒径为15-60微米,无机颗粒可为上述金属颗粒、陶瓷颗粒或碳粉中的一种或多种。所述储油层21的层厚度为40-70微米,孔隙率在15-25%之间。所述缓释固化层22的无机颗粒粒径为1-15微米,无机颗粒可为上述金属颗粒、陶瓷颗粒或碳粉中的一种或多种。所述缓释固化层22的层厚度为20-40微米,孔隙率在5-15%之间。所述弥散面层23的无机颗粒粒径为100纳米-1微米,无机颗粒可为上述金属颗粒、陶瓷颗粒或碳粉中的一种或多种。所述弥散面层23的层厚度为1-20微米。本发明中的“弥散”面层是指无机颗粒不全部覆盖缓释固化层22,例如无机颗粒能够以独立颗粒的方式均匀形成覆盖缓释固化层22上,和/或,在缓释固化层22上形成有呈皲裂状均匀排布的多个面层子区域,从而弥散面层23不会完全封闭缓释固化层22,同时,弥散面层23的表面呈凹凸的磨砂状态。
由于上述三个子无机结构层——储油层21、缓释固化层22和弥散面层23中,储油层21中的无机颗粒粒径最大,缓释固化层22的无机颗粒粒径次之,而所述弥散面层23的无机颗粒粒径最小,因此,储油层21中的无机颗粒之间形成的孔隙也最大,储油层21中的无机颗粒之间形成的孔隙次之,而所述弥散面层23的无机颗粒之间形成的孔隙最小。
并且,本实施例中,所述弥散面层23的无机颗粒粒径为100纳米-1微米,远小于储油层21的无机颗粒粒径15-60微米和缓释固化层22的无机颗粒粒径1-15微米,因此,储油层21中的孔隙相对较大,用于存储油脂;而弥散面层23中的孔隙很小且相对密集、均匀,一方面能够提高弥散面层23的硬度,另一方面,能够便于油脂的均匀渗入或析出;此外,在储油层21与弥散面层23之间设置无机颗粒粒径居中的缓释固化层22,该层为过渡层,具有固化涂层的作用,可以有效粘结储油层21和弥散面层23,提高纯无机结构层2的结合强度和韧性,还能起到了辅助储油的作用,同时,在对炊具开始加热时,随着炊具温度的升高,油脂与气体混合后的油气需要先充满缓释固化层22后才会从弥散面层23析出,从而根据炊具底部析出的油脂多少,可以估计炊具的加热程度。
优选的,所述储油层21的主要成分为陶瓷颗粒,陶瓷颗粒的重量比不低于70%;所述缓释固化层22的主要成分是金属颗粒,金属颗粒的重量比不低于60%;所述弥散面层23的主要成分为碳粉,碳粉的重量比不低于50%。由此,获得底层是储油层是主要有陶瓷颗粒组成的陶瓷层,该层主要获得结构稳定,强度高,硬度高的多孔隙层;第二层是缓释层主要是有金属颗粒成的复合金属层,该层可以改善底层陶瓷层的韧性和优化孔隙结构,提高孔隙密度降低孔径,提高藏油的稳定性,且让表面有较强的金属质感;第三层是面层主要是碳粉类物质组成,从而获得一层自润滑功能层,具有自润滑效果,使得弥散面层23的表面摩擦系数较低,在有油情况动摩擦系数更低,使得纯无机结构层2的表面易清洁和物理不粘性。
通过材料堆积,纯无机结构层2具有了能够储油的自带空隙的立体结构,并且纯无机结构层2的表面还会形成凹凸结构,凹凸结构可将食物部分架空起来,而在食物和表面的孔隙里,受热后的油脂会微沸腾并产生大量热汽,进一步托举食物,实现食物与表面的分离,达到一定的物理不粘效果。
以下,以不粘锅为例,对本发明进行说明。
在烹饪过程中,对不粘锅进行加热,纯无机结构层2中的孔隙/微孔会受热扩展,从而具有很强的对油脂的吸附力。在不粘锅中放油后,油对微孔进行充分润湿和填充;继续加热,孔隙中的油脂会微沸腾并产生热气,从而在烹调过程中,微沸腾的油脂和热气位于在食物与纯无机结构层2之间,对食物形成托举,实现食物与纯无机结构层2的分离。烹调完成后,随着食物带走油脂和不粘锅锅体温度降低,纯无机结构层2的孔隙中的油脂温度随之降低,体积收缩,存在油脂残留,即便是对不粘锅进行了表面清洗,粘涂层2的孔隙中,尤其是储油层21的孔隙中也会保持有一定量的油脂,再次加热,会从孔隙中析出,保持锅底的油润状态。因此,本实施例的不粘锅的工作原理在于,对不粘锅的持续加热,纯无机结构层2的孔隙中的油脂持续保持沸腾状态,并产生大量热汽,能够将被烹调的食物半悬浮的托举在不粘锅底部,从而实现了“不粘”的技术效果。需要说明的是,对于本实施例的不粘锅,如果在烹调后用热水煮沸清洗,能够将残留在微孔的油脂置换出来,将不粘锅彻底清洗干净。
本实施例中仅是示出了三个依次层叠的子无机结构层,本领域技术人员可以理解,在储油层21和弥散面层23之间可以还包括一个或多个具有不同无机颗粒粒径的缓释固化层,以进一步提高纯无机结构层2的结合强度和韧性,其也在本发明的保护范围之内。
本实用新型另一实施例提供一种如上所述的炊具的制造方法,包括如下步骤:
S1:基材层成型。
将铝合金、不锈钢或铁等金属基材通过拉伸或压铸方法成型,然后清理毛刺,并进行表面打磨和清洗处理,形成厚度不小于1mm的基材层1。
S2: 在所述基材层1上进行喷涂,形成纯无机结构层2。
通过冷喷涂、等离子喷涂、超音速喷涂、激光熔覆或空气喷涂方式将无机颗粒涂覆到基材层1的内侧表面上,形成纯无机结构层2。需要说明是,这里所提到的激光熔覆属于热喷涂的一种。
在本发明的优选实施例中,将基材预热到80-120度,采用等离子喷涂或超音速喷涂将上述主要成分为陶瓷颗粒(不低于70%重量)的无机颗粒喷涂到基材层1的内侧表面上,以形成储油层21。优选的,以等离子喷涂为列,在55-65V电压、500-600A电流条件下,调节无机颗粒的送粉量为4-8mg/s,利用流量为4-8L/m的氢气在基材层1的内侧表面上喷涂无机颗粒,喷涂距离为10-15mm,形成涂层厚度在40-70微米之间、孔隙率在15-25%之间的储油层21,对于30cm炒锅,需要喷涂50-90s。该层做为基础涂层保证了纯无机结构层2的硬度和强度,搭建了厚度在40-70微米的基础空隙层。
随后,采用冷喷涂工艺和超音速喷涂工艺将上述主要成分为金属颗粒(不低于60%重量)的无机颗粒喷涂到储油层21的外表面,以形成缓释固化层22。优选的,以冷喷涂为例,利用温度在200-400度之间的氮气做为喷射气体,喷射压力控制在2.0-3.5MPa,气体流速控制在500-900m/s,将金属颗粒粉末沿喷射气体轴向送入气体中,形成气-固双相流,距离储油层21的外表面10-25mm进行喷涂,形成喷涂厚度在2-40微米之间、孔隙率在5-15%之间的缓释固化层22,对于30cm炒锅,需要喷涂30-60s。在喷涂过程中,能够对储油层21进行适当填孔、二次堆积和表面改良,形成了更细密的微纳形态,空隙变得更多更细。
最后,采用激光熔覆或喷涂工艺将上述主要成分为碳粉(不低于50%重量)的无机颗粒喷涂到缓释固化层22的外表面,以形成弥散面层23。优选的,以喷涂工艺为例,通过在0.4-0.6MPa的压力下,距离缓释固化层22的外表面10-25mm,喷涂碳粉树脂,随后在330℃温度下进行8-12分钟的烧结固化,在缓释固化层22表面形成厚度在1-20微米之间的具有自润滑功能的弥散面层23,弥散面层23的表面呈凹凸的磨砂状态。
根据本发明实施例的一种不粘锅,采用如上所述的制造方法制造。其中,基材层的材质为不锈钢,基材层厚度为1.2mm。纯无机结构层由三个子无机结构层——储油层21、缓释固化层22和弥散面层23构成,其中,储油层21包括72%重量的陶瓷颗粒,无机颗粒粒径为35微米,层厚度为60微米,孔隙率为20%;缓释固化层22包括64%重量的金属颗粒,无机颗粒粒径为10微米,层厚度为30微米,孔隙率为15%;弥散面层23包括50%重量的碳粉,无机颗粒粒径为300纳米,层厚度为5微米。
物理指标检测:
一、硬度,铅笔硬度达到9H以上,用牛排刀划无划伤,铁铲和钢丝球也不会造成划伤。
二、耐高温,放入500度烤炉中,连续加热1小时,表面无开裂变色,无重量失重等现象。
三、冷热冲击,将工件加热到400度然后放入20度水中,连续冲击50次,观察表面无开裂、变色等变化。
四、不粘性测试方法:
1、煎鸡蛋。
按标准方法开锅后清洗干净,将锅加热到150度,用喷油壶喷油三次,大约5g油量,然后加热到160度然后打入鸡蛋,即可发现不粘,不再放油,连续煎蛋,本产品可以在后续无油情况下并持续升温条件下,可连续煎蛋6只而不粘。
2、炒肉丝(两种方法)
热锅凉油:将锅加热到200度放油,放油后立即放入腌制的肉丝,翻炒发现不粘锅;
热锅热油:将锅加热到200度放油,并等油加热到微微起烟后放入腌制的肉丝,翻炒发现不粘锅。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种通过纯无机结构层实现不粘效果的炊具,所述炊具包括基材层(1)和纯无机结构层(2),通过在所述基材层(1)的内表面上喷涂无机颗粒形成所述纯无机结构层(2),所述纯无机结构层(2)的无机颗粒之间形成连通的孔隙结构,其特征在于,
    所述纯无机结构层(2)包括至少三个子无机结构层,所述至少三个子无机结构层按照无机颗粒粒径大小依次叠置在所述基材层(1)的内表面上,其中邻接所述基材层(1)的子无机结构层的无机颗粒粒径最大,在远离所述基材层(1)的方向上,多个子无机结构层的无机颗粒粒径依次减小,从而所述多个子无机结构层中的孔隙沿远离所述基材层(1)的方向依次减小。
  2. 如权利要求1所述的炊具,其特征在于,所述无机颗粒的粒径为100纳米-60微米,在所述基材层(1)的内表面上等离子喷涂、超音速喷涂、冷喷涂、激光熔覆或空气喷涂无机颗粒;所述纯无机结构层(2)的厚度在61-130微米之间。
  3. 如权利要求1所述的炊具,其特征在于,无机颗粒材料可为金属颗粒或陶瓷颗粒或碳粉,其中,金属颗粒为钛、钛合金、锆、锆合金、不锈钢、低碳钢、高碳钢和锌中的一种或多种,陶瓷颗粒为氧化锆、氮化锆、氧化钛、氮化钛、碳化钛、氧化铝、氧化镁、四氧化三铁、三氧化二铁、氮化硼、氧化钙、氧化硅和氮化硅中的一种或多种,碳粉为天然石墨、多晶石墨、热解石墨、高定向热解石墨和碳量子点中的一种或多种。
  4. 如权利要求1所述的炊具,其特征在于,所述三个子无机结构层为储油层(21)、缓释固化层(22)和弥散面层(23),所述储油层(21)、缓释固化层(22)和弥散面层(23)在远离所述基材层(1)的方向上依次设置。
  5. 如权利要求4所述的炊具,其特征在于,所述储油层(21)、缓释固化层(22)和弥散面层(23)依次层叠。
  6. 如权利要求5所述的炊具,其特征在于,所述储油层(21)的无机颗粒粒径为15-60微米,所述储油层(21)的层厚度为40-70微米,孔隙率在15-25%之间;所述缓释固化层(22)的无机颗粒粒径为1-15微米,所述缓释固化层(22)的层厚度为20-40微米,孔隙率在5-15%之间;所述弥散面层(23)的无机颗粒粒径为100纳米-1微米,所述弥散面层(23)的层厚度为1-20微米。
  7. 如权利要求5所述的炊具,其特征在于,所述储油层(21)中的陶瓷颗粒的重量比不低于70%;所述缓释固化层(22)中的金属颗粒的重量比不低于60%;所述弥散面层(23)中的碳粉的重量比不低于50%。
  8. 一种如权利要求1-7之一所述的炊具的制造方法,其特征在于,所述制造方法包括如下步骤:
    将金属基材通过拉伸或压铸方法成型,然后清理毛刺,并进行表面打磨和清洗处理,形成厚度不小于1毫米的基材层(1);
    通过冷喷涂、等离子喷涂、超音速喷涂、激光熔覆或空气喷涂方式将无机颗粒喷涂到基材层(1)的内表面上,形成纯无机结构层(2)。
PCT/CN2023/099824 2022-11-09 2023-06-13 一种通过纯无机结构层实现不粘效果的炊具及其制造方法 WO2024098743A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23866686.1A EP4393352A1 (en) 2022-11-09 2023-06-13 Cookware that achieves non-stick effect by means of pure inorganic structural layer, and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202222978121.6 2022-11-09
CN202211398575.4 2022-11-09
CN202222978121.6U CN220174901U (zh) 2022-11-09 2022-11-09 一种具有纯无机不粘结构层的炊具
CN202211398575.4A CN115474829A (zh) 2022-11-09 2022-11-09 一种具有纯无机不粘涂层的炊具及其制造方法

Publications (1)

Publication Number Publication Date
WO2024098743A1 true WO2024098743A1 (zh) 2024-05-16

Family

ID=90719134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099824 WO2024098743A1 (zh) 2022-11-09 2023-06-13 一种通过纯无机结构层实现不粘效果的炊具及其制造方法

Country Status (2)

Country Link
EP (1) EP4393352A1 (zh)
WO (1) WO2024098743A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625494A1 (fr) * 1987-12-30 1989-07-07 Seb Sa Revetement d'email charge de billes de verre pour fond d'ustensiles de cuisson et ustensiles ainsi revetus
CN102641078A (zh) * 2012-04-16 2012-08-22 美的集团有限公司 一种不粘炊具及其制作方法
CN110123146A (zh) * 2018-02-09 2019-08-16 佛山市顺德区美的电热电器制造有限公司 一种加热器具及其制备方法
CN110757915A (zh) * 2018-07-27 2020-02-07 佛山市顺德区美的电热电器制造有限公司 复合材料及其制备方法、烹饪设备和家用电器
CN112137425A (zh) * 2019-06-28 2020-12-29 武汉苏泊尔炊具有限公司 容器体和烹饪器具
CN113999555A (zh) * 2021-12-17 2022-02-01 武汉苏泊尔炊具有限公司 复合材料及其制备方法和不粘锅具
CN115137215A (zh) * 2021-06-22 2022-10-04 浙江福腾宝家居用品有限公司 炊具及其制造方法
CN115474829A (zh) * 2022-11-09 2022-12-16 浙江三禾厨具有限公司 一种具有纯无机不粘涂层的炊具及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625494A1 (fr) * 1987-12-30 1989-07-07 Seb Sa Revetement d'email charge de billes de verre pour fond d'ustensiles de cuisson et ustensiles ainsi revetus
CN102641078A (zh) * 2012-04-16 2012-08-22 美的集团有限公司 一种不粘炊具及其制作方法
CN110123146A (zh) * 2018-02-09 2019-08-16 佛山市顺德区美的电热电器制造有限公司 一种加热器具及其制备方法
CN110757915A (zh) * 2018-07-27 2020-02-07 佛山市顺德区美的电热电器制造有限公司 复合材料及其制备方法、烹饪设备和家用电器
CN112137425A (zh) * 2019-06-28 2020-12-29 武汉苏泊尔炊具有限公司 容器体和烹饪器具
CN115137215A (zh) * 2021-06-22 2022-10-04 浙江福腾宝家居用品有限公司 炊具及其制造方法
CN113999555A (zh) * 2021-12-17 2022-02-01 武汉苏泊尔炊具有限公司 复合材料及其制备方法和不粘锅具
CN115474829A (zh) * 2022-11-09 2022-12-16 浙江三禾厨具有限公司 一种具有纯无机不粘涂层的炊具及其制造方法

Also Published As

Publication number Publication date
EP4393352A1 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
CN112137422B (zh) 不粘母粒、不粘母粒的制造方法、不粘材料及烹饪器具
TWI537345B (zh) 陶瓷塗料與保護塗層
CN213551277U (zh) 烹饪器具
US7488515B2 (en) Method of making non-stick cookware
CN103396709B (zh) 氟树脂涂膜
JP6641411B2 (ja) 鍋具の製造方法及び調理器具の製造方法
AU2001244291B2 (en) Non-stick ceramo-metallic coating for cooking utensils
CN114642363A (zh) 锅具和煮食设备
CN207561731U (zh) 锅具和煮食设备
CN115474829A (zh) 一种具有纯无机不粘涂层的炊具及其制造方法
WO2024098743A1 (zh) 一种通过纯无机结构层实现不粘效果的炊具及其制造方法
JPH06510692A (ja) 準結晶質を用いた表面コーティングとその形成方法
JP2006015115A (ja) 調理機器
CN114574011A (zh) 用于不粘炊具的复合材料及其制造方法以及不粘炊具
WO2006047154A1 (en) Stick resistant cooking utensils and methods for their production
CN220174901U (zh) 一种具有纯无机不粘结构层的炊具
CN112137418A (zh) 不粘器皿
CN115044898B (zh) 炊具的制造方法和炊具
CN208925940U (zh) 一种耐铁铲的不粘炊具
CN112137423B (zh) 涂料与烹饪器具
CN114645176B (zh) 不粘材料及其制备方法、包含不粘材料的烹饪器具及其制备方法
CN209694931U (zh) 锅具和烹饪器具
CN116250729A (zh) 一种无机不粘炊具及其制造方法
CN209629411U (zh) 一种感温变色锅
KR101648947B1 (ko) 비점착성 조리기구 및 그 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023866686

Country of ref document: EP

Effective date: 20240328