WO2024098365A1 - 一种内镜控制装置和内镜机器人 - Google Patents

一种内镜控制装置和内镜机器人 Download PDF

Info

Publication number
WO2024098365A1
WO2024098365A1 PCT/CN2022/131306 CN2022131306W WO2024098365A1 WO 2024098365 A1 WO2024098365 A1 WO 2024098365A1 CN 2022131306 W CN2022131306 W CN 2022131306W WO 2024098365 A1 WO2024098365 A1 WO 2024098365A1
Authority
WO
WIPO (PCT)
Prior art keywords
endoscope
friction wheel
base
plate
worm
Prior art date
Application number
PCT/CN2022/131306
Other languages
English (en)
French (fr)
Inventor
熊璟
金文涛
夏泽洋
刘勇
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2022/131306 priority Critical patent/WO2024098365A1/zh
Publication of WO2024098365A1 publication Critical patent/WO2024098365A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/31Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the rectum, e.g. proctoscopes, sigmoidoscopes, colonoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the present application relates to the technical field of medical devices, and in particular to an endoscope control device and an endoscope robot.
  • digestive tract diseases The incidence of digestive tract diseases is increasing year by year. According to statistics, the number of patients with various digestive tract diseases in the world has reached 70%. Many malignant digestive tract diseases develop from early benign tumors. Early detection and treatment of benign tumors in the digestive tract can effectively prevent the occurrence of digestive tract cancer.
  • Digestive endoscopy can accurately locate and diagnose various digestive tract diseases, which is of great value for the protection of human health. At present, digestive endoscopy requires manual operation by doctors. Trained professional physicians insert the scope into the natural cavity of the human body and perform interventional observation and surgical operations. During the operation, the doctor holds the scope of the digestive endoscope with his right hand and inserts the scope with the corresponding operation of the left hand.
  • the left hand controls the bending knob and takes the corresponding right or left rotation action, so that the distal bending part of the insertion tube bends toward the cavity.
  • the scope body needs to be rotated axially to prevent excessive distortion of the scope body.
  • the main operating actions of digestive endoscopy include: insertion of the digestive endoscope body, up and down/left and right bending of the distal curved part of the digestive endoscope, and axial torsion of the endoscope body.
  • the above-mentioned purely manual surgical operation has the following disadvantages: (1) the risk of infectious disease transmission, such as the risk of viral infection; (2) the current colonoscopy is not ergonomic, the doctor's operation time is long and mechanical and repetitive, it is easy to cause operational errors due to fatigue, thus causing additional pain to the patient; (3) due to the lack of intuitiveness of the operation and the very tortuous anatomical structure of the human cavity, it takes a long time to provide doctors with special relevant operation training, the training cost is high, and there are few professional doctors for colonoscopy.
  • the Chinese patent application with application number CN202010337374.8 discloses a robot system that assists doctors in operating colonoscopes.
  • This system can replace traditional manual operations by doctors to achieve rotation, feeding and twisting of the mirror body.
  • the transmission structure at the knob of the robot system mostly adopts synchronous belt transmission. Since the synchronous belt is an elastomer, there is elastic sliding in the transmission, so the accurate transmission ratio cannot be guaranteed.
  • the endoscopic robot based on this design will affect the accuracy of subsequent robot control.
  • the clamping force of the robot system is fixed and cannot be adjusted, which is not flexible enough and has poor safety.
  • One purpose of the present application is to provide an endoscope control device and an endoscope robot, which can accurately control the bending, axial torsion and entry and exit of the endoscope, and at the same time, the force of clamping the endoscope body is adjustable, which can prevent the endoscope body from being damaged by excessive force and can provide a suitable maximum conveying friction to achieve slip protection.
  • the present application provides an endoscope control device, comprising:
  • An endoscope placement platform which is arranged on the base and is used to install the endoscope
  • a knob operating part which is connected to the endoscope placement platform, comprises a large sleeve, a small sleeve coaxially arranged in the large sleeve, and two worm gear assemblies respectively used to drive the large sleeve and the small sleeve to rotate independently, wherein the large sleeve is used to mesh with the large knob of the endoscope, and the small sleeve is used to mesh with the small knob of the endoscope, and the large sleeve and the small sleeve respectively drive the large knob and the small knob to rotate, thereby controlling the bending operation of the bending section of the endoscope; and
  • the scope conveying part includes an active friction wheel and a passive friction wheel for clamping the scope of the endoscope, a friction wheel driving motor connected to the active friction wheel, and an elastic adjustment component for adjusting the clamping force between the active friction wheel and the passive friction wheel, wherein the friction wheel driving motor is used to drive the active friction wheel to rotate, thereby applying a forward friction force to the scope to control the conveying operation of the scope.
  • each of the worm gear assemblies includes a worm drive motor, a worm connected to the worm drive motor, and a worm wheel meshing with the worm, wherein the worm wheels of the two worm gear assemblies are respectively connected to the corresponding small sleeve and the large sleeve.
  • the knob operating part also includes a support plate, a plurality of columns arranged on the support plate, a motor mounting seat for mounting the worm drive motor, and a bearing seat for supporting the worm, and the knob operating part is connected to the endoscope placement platform through the plurality of columns.
  • the mirror body conveying part also includes a base for installing the active friction wheel, the passive friction wheel, the friction wheel driving motor and the elastic adjustment component
  • the base includes a substrate and a vertical plate arranged on the substrate, the vertical plate is provided with a groove
  • the elastic adjustment component includes a cover plate installed on the vertical plate, a slider slidably arranged in the groove of the vertical plate and connected to the passive friction wheel, an adjustment bolt connected to the cover plate and the slider, and an elastic member arranged between the cover plate and the slider and sleeved on the adjustment bolt, wherein the elastic member arranged between the adjustment bolt and the slider is tightened or loosened by rotating to adjust the height of the adjustment bolt, thereby correspondingly adjusting the elastic force of the elastic member on the slider and the passive friction wheel, thereby adjusting the clamping force of the passive friction wheel and the active friction wheel on the mirror body.
  • the adjusting bolt is connected to the cover plate by threaded connection, and the friction wheel driving motor is installed on the vertical plate.
  • the endoscope control device also includes an axial torsion control component for controlling the axial torsion of the scope body
  • the axial torsion control component includes a synchronous pulley drive motor arranged on the base, a first synchronous pulley connected to the output shaft of the synchronous pulley drive motor, and a second synchronous pulley arranged on the endoscope placement platform, the first synchronous pulley and the second synchronous pulley are connected by a synchronous belt, wherein the synchronous pulley drive motor is used to drive the first synchronous pulley and the second synchronous pulley to rotate synchronously, so that the endoscope placement platform rotates relative to the base, thereby realizing the axial torsion operation control of the scope body of the endoscope installed on the endoscope placement platform.
  • the base includes a bottom plate and two side plates vertically arranged on both sides of the bottom plate
  • the axial torsion control assembly also includes a motor seat and a motor frame arranged on the bottom plate for installing and supporting the synchronous pulley drive motor.
  • the base also includes a first base bearing and a second base bearing respectively arranged on the two side plates
  • the endoscope placement platform includes a platform bottom plate for mounting the endoscope and a solid axis plate and a hollow axis plate respectively arranged on both sides of the platform bottom plate, and the solid axis plate and the hollow axis plate are respectively connected to the first base bearing and the second base bearing, thereby forming a state in which the endoscope placement platform and the base are rotatably connected.
  • the endoscope placement platform also includes a positioning plate arranged on the platform bottom plate and used to fix the endoscope, and a sleeve used to fix the second synchronous pulley on the hollow shaft plate.
  • the present application also provides an endoscope robot, comprising the endoscope control device and an endoscope arranged on the endoscope control device.
  • the endoscope control device of the present application realizes motor control of the bending section of the endoscope by adopting a worm gear transmission. Since the worm gear transmission has the characteristics of a large transmission ratio and a compact structure, it can ensure the accuracy of the motor control, thereby accurately controlling the bending, axial torsion and entry and exit of the endoscope, thereby solving the technical problem that the existing synchronous belt transmission method has elastic sliding and cannot guarantee an accurate transmission ratio.
  • the present application adopts a worm gear transmission method, which has a high reduction ratio while greatly reducing the size of the endoscope robot.
  • the use of a worm gear transmission can make the axis of the motor perpendicular to the axis of the knob, avoiding collision between the motor and the endoscope and optimizing the robot structure.
  • the lens conveying part of the endoscope control device of the present application provides a clamping force through the elastic member so that the passive friction wheel and the active friction wheel can clamp the body of the endoscope, and the clamping force can be adjusted by adjusting the height of the adjusting bolt, thereby preventing the body from being damaged by excessive force.
  • the difference in clamping force can change the maximum conveying force provided by the friction wheel to the body, so the clamping force can be changed according to the safe force value of the human body cavity.
  • the lens conveying part can play a role of slip protection, thereby ensuring the safety of use of the endoscope control device.
  • FIG1 is a schematic diagram of the three-dimensional structure of the endoscopic robot according to a preferred embodiment of the present application.
  • FIG. 2 is a schematic diagram of the three-dimensional structure of the base of the endoscope robot shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of the three-dimensional structure of the knob operating part of the endoscopic robot shown in FIG. 1 .
  • FIG. 4 is a schematic three-dimensional structural diagram of a part of the structure of the knob operating portion shown in FIG. 3 .
  • FIG. 5 is a schematic diagram of the three-dimensional structure of the endoscope placement platform of the endoscope robot shown in FIG. 1 .
  • FIG. 6 is a schematic diagram of the three-dimensional structure of the endoscope of the endoscope robot shown in FIG. 1 .
  • FIG. 7 is a schematic diagram of the three-dimensional structure of the scope conveying portion of the endoscopic robot shown in FIG. 1 .
  • FIG8 is a schematic diagram of the three-dimensional structure of the mirror body conveying portion shown in FIG7 at another viewing angle.
  • one should be understood as “at least one” or “one or more”, that is, in one embodiment, the number of an element may be one, while in another embodiment, the number of the element may be multiple, and the term “one” should not be understood as a limitation on the quantity.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or mutual communication; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or mutual communication; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • Digestive tract diseases are characterized by high morbidity and a wide range of incidence.
  • the diagnosis and treatment of digestive tract diseases are mainly carried out through digestive endoscopy.
  • Digestive endoscopy requires experienced physicians to perform lengthy and mechanical operations.
  • this application proposes an endoscope control device and an endoscope robot, which use motors and transmission mechanisms to replace human hands to achieve the bending, axial torsion and entry and exit of the digestive endoscope.
  • the endoscope robot can assist doctors in operating the digestive endoscope, improve surgical efficiency, and reduce the doctor's operating burden and the patient's pain. Doctors can also perform remote surgery based on the endoscope robot to avoid infection risks.
  • This invention provides a hardware foundation for subsequent autonomous control, which is of great significance for promoting intelligent and autonomous surgery.
  • FIG. 1 to FIG. 8 the specific structures of an endoscope control device and an endoscope robot according to a preferred embodiment of the present application are specifically explained.
  • the endoscope robot of the present application includes an endoscope control device and an endoscope 4 installed on the endoscope control device.
  • the overall structure of the endoscope control device includes a base 1, a knob operating part 2, an endoscope placement platform 3 and a mirror body conveying part 5; wherein the endoscope placement platform 3 is installed on the base 1 through a solid shaft plate 32 and a hollow shaft plate 33 respectively cooperating with a first bearing 18 and a second bearing 19, and the endoscope 4 is installed on the endoscope placement platform 3 and clamped in place by a positioning plate 34.
  • the endoscope placement platform 3 can be axially rotated relative to the base 1 through a synchronous belt drive, so the endoscope 4 fixed on the endoscope placement platform 3 can realize axial torsion of the mirror body 43.
  • the knob operation part 2 is connected to the endoscope placement platform 3 through the column 29, and the large knob 41 and the small knob 42 of the endoscope 4 are respectively engaged with the large sleeve 281 and the small sleeve 282 of the knob operation part 2.
  • the knob operation part 2 can realize the independent rotation of the coaxial large sleeve 281 and the small sleeve 282 through the worm gear transmission, and the large sleeve 281 and the small sleeve 282 respectively drive the large knob 41 and the small knob 42 to rotate, thereby realizing the up-down/left-right bending of the bending section 44 of the endoscope 4.
  • the active friction wheel 53 and the passive friction wheel 52 of the mirror body conveying unit 5 clamp the mirror body 43 of the endoscope 4 through the elastic member 57 , and the friction wheel driving motor 54 drives the active friction wheel 53 to rotate, applying a forward friction force to the mirror body 43 to realize the conveyance of the mirror body 43 .
  • the base 1 structure includes a bottom plate 11, a first side plate 12 and a second side plate 13 respectively vertically arranged on both sides of the bottom plate 11, and a first base bearing 18 and a second base bearing 19 respectively installed on the first side plate 12 and the second side plate 13, wherein the first side plate 12 and the second side plate 13 are connected and fixed to the bottom plate 11 by screws, and the first base bearing 18 and the second base bearing 19 are respectively connected to the solid shaft plate 32 and the hollow shaft plate 33 of the endoscope placement platform 3, thereby forming a state in which the endoscope placement platform 3 is rotatably connected to the base 1.
  • the endoscope control device also includes an axial torsion control component 6 for controlling the axial torsion of the mirror body 43
  • the axial torsion control component 6 includes a synchronous pulley drive motor 14 arranged on the base 1, a first synchronous pulley 17 connected to the output shaft of the synchronous pulley drive motor 14, and a second synchronous pulley 35 arranged on the endoscope placement platform 3, the first synchronous pulley 17 is connected to the second synchronous pulley 17 by a synchronous belt, wherein the synchronous pulley drive motor 14 is used to drive the first synchronous pulley 17 and the second synchronous pulley 35 to rotate synchronously, so that the endoscope placement platform 3 rotates relative to the base 1, thereby realizing the axial torsion operation control of the mirror body 43 of the endoscope 4 installed on the endoscope placement platform 3.
  • the axial torsion control component 6 also includes a motor seat 15 and a motor frame 16 arranged on the base plate 11 for installing and supporting the synchronous belt pulley drive motor 14, wherein the motor seat 15 is fixed to the base plate 11 by screws, and the motor frame 16 connects the synchronous belt pulley drive motor 14 and the motor seat 15 by bolts, and the first synchronous belt pulley 17 is installed on the motor shaft of the synchronous belt pulley drive motor 14, and is transmitted through the synchronous belt and the second synchronous belt pulley 35.
  • the main function of the axial torsion control component 6 is to install the endoscope placement platform 3 and realize the torsion of the endoscope placement platform 3 relative to the base 1.
  • the connection method between the motor frame 16, the motor seat 15 and the synchronous pulley drive motor 14 enables the first synchronous pulley 17 to move up and down to realize the tensioning of the synchronous belt.
  • the knob operating part 2 includes a large sleeve 281, a small sleeve 282 coaxially arranged in the large sleeve 281, and two worm gear assemblies respectively used to drive the large sleeve 281 and the small sleeve 282 to rotate independently, the two worm gear assemblies include a first worm gear assembly 201 and a second worm gear assembly 202, wherein the large sleeve 281 is used to engage with the large knob 41 of the endoscope 4, and the small sleeve 282 is used to engage with the small knob 42 of the endoscope 4.
  • the large sleeve 281 and the small sleeve 282 respectively drive the large knob 41 and the small knob 42 to rotate independently, thereby controlling the bending operation of the bending section 44 of the endoscope 4.
  • the operating knob portion 2 also includes a support plate 21, two bearing seats and two motor mounting seats arranged on the support plate 21, and a plurality of columns 29 arranged on the support plate 21, the two bearing seats include a first bearing seat 22 and a second bearing seat 27, the two motor mounting seats include a first motor mounting seat 24 and a second motor mounting seat 26, wherein the first worm gear assembly 201 includes a first worm gear motor 251 mounted on the first motor mounting seat 24, a first worm 231 mounted on the first bearing seat 22 and connected to the first worm gear motor 251, and a first worm wheel 283 meshing with the first worm 231; the second worm gear assembly 202 includes a second worm gear motor 252 mounted on the second motor mounting seat 26, a second worm 232 mounted on the second bearing seat 27 and connected to the second worm gear motor 252, and a second worm wheel 284 meshing with the second worm 232; wherein the first worm drive motor 251 and the second worm drive motor 252 are respectively mounted on the first motor mounting seat 24 and
  • each of the worm gear assemblies is composed of a worm drive motor, a worm connected to the worm drive motor, and a worm wheel meshed with the worm.
  • the column 29 is installed on the support plate 21 through a threaded connection, and the knob operating part 2 is connected to the endoscope placement platform 3 through screws.
  • the knob engaging portion 28 of the knob operating portion 2 includes a large sleeve 281, a small sleeve 282, a first worm gear 283 and a second worm gear 284.
  • the large sleeve 281 is connected to the first worm gear 283 by screws
  • the small sleeve 282 is connected to the second worm gear 284 by screws
  • the small sleeve 282 is connected to the first worm gear 283 by a bearing
  • the second worm gear 284 is connected to the support plate 21 by a bearing
  • the first worm gear 283 and the second worm gear 284 are respectively engaged with the first worm 231 and the second worm 232.
  • the main function of the knob operating part 2 is to realize the motor control of the bending section 44 of the endoscope 4, and the realization principle is: the rotation of the worm drive motor 25 drives the worm 23 to rotate, and the rotation of the worm 23 drives the first worm gear 283 and the second worm gear 284 and the large sleeve 281 and the small sleeve 282 installed thereon to rotate.
  • the rotation of the large sleeve 281 and the small sleeve 282 drives the large knob 41 and the small knob 42 to rotate, thereby realizing the motor control of the bending section 44 of the endoscope 4.
  • the endoscope control device of the present application realizes motor control of the bending section of the endoscope by adopting a worm gear transmission. Since the worm gear transmission has the characteristics of a large transmission ratio and a compact structure, it can ensure the accuracy of the motor control, thereby being able to accurately control the bending, axial torsion and entry and exit of the endoscope, thereby solving the technical problem that the existing synchronous belt transmission method has elastic sliding and cannot guarantee an accurate transmission ratio.
  • the present application adopts a worm gear transmission, which greatly reduces the size of the digestive endoscopy robot while having a high reduction ratio.
  • the use of a worm gear transmission can make the axis of the motor perpendicular to the axis of the knob, avoiding collision between the motor and the endoscope and optimizing the robot structure.
  • the endoscope placement platform 3 includes a platform bottom plate 31, a solid shaft plate 32, a hollow shaft plate 33, a retaining plate 34, and a sleeve 36.
  • the solid shaft plate 32 and the hollow shaft plate 33 are arranged on both sides of the platform bottom plate 31, the solid shaft plate 32 is connected to the platform bottom plate 31 by screws, and the hollow shaft plate 33 is connected to the platform bottom plate 31 by screws.
  • the second synchronous pulley 35 is connected to the hollow shaft plate 33 by screws, and the retaining plate 34 is connected to the platform bottom plate 31 by screws.
  • the sleeve 36 is directly sleeved on the shaft of the hollow shaft plate 33 to play the role of installation limit, and is used to fix the second synchronous pulley 35 on the hollow shaft plate 33.
  • the endoscope 4 is horizontally placed on the platform bottom plate 31 and is clamped and fixed by the clamping plate 34.
  • the mirror body 43 of the endoscope 4 passes through the hollow shaft of the hollow shaft plate 33.
  • the main function of the endoscope placement platform 3 is to install and fix the endoscope 4, which is connected to the base 1 through the bearing and connected to the knob operating part 2 through the column 29.
  • FIG6 illustrates the specific structure of the endoscope 4.
  • the endoscope 4 is a digestive endoscope, and may also be other endoscopes, which is not limited in the present application.
  • the endoscope 4 mainly includes a large knob 41, a small knob 42, a mirror body 43, and a curved section 44 connected to the mirror body 43.
  • the mirror body 43 and the curved section 44 are used to be inserted into a natural cavity of human anatomy, the large knob 41 is used to control the curved section 44 to bend left and right, and the small knob 42 is used to control the curved section 44 to bend forward and backward.
  • the scope conveying unit 5 includes an active friction wheel 53 and a passive friction wheel 52 for clamping the scope 43 of the endoscope 4, a friction wheel driving motor 54 connected to the active friction wheel 53, and an elastic adjustment component for adjusting the clamping force between the active friction wheel 53 and the passive friction wheel 52, wherein the friction wheel driving motor 54 is used to drive the active friction wheel 53 to rotate, thereby applying a forward friction force to the scope 43 to control the conveying operation of the scope 43.
  • the mirror body conveying portion 5 also includes a base 55 for mounting an active friction wheel 53, a passive friction wheel 52, a friction wheel driving motor 54 and an elastic adjustment component
  • the base 55 includes a substrate 551 and a vertical plate 552 arranged on the substrate 551, wherein the vertical plate 552 is provided with a groove 553
  • the elastic adjustment component includes a cover plate 51 installed on the vertical plate 552, a slider slidably arranged in the groove 553 of the vertical plate 552 and connected to the passive friction wheel 52, an adjusting bolt 56 connected to the cover plate 51 and the slider 58, and an elastic member 57 arranged between the cover plate 51 and the slider 58 and sleeved on the adjusting bolt 56, wherein the elastic member 57 arranged between the adjusting bolt 56 and the slider 58 is compressed or loosened by rotating the height of the adjusting bolt 56, thereby correspondingly adjusting the elastic force of the elastic member 57 on the slider 58 and the passive friction wheel 52, thereby adjusting
  • the base 55 can be fixed at a specified position by screws
  • the cover plate 51 is fixed to the base 55 by screws
  • the adjusting bolt 56 is connected to the cover plate 51 by threads
  • its height can be adjusted by rotating the adjusting bolt 56
  • the slider 58 is embedded and installed in the base 55, and is coaxially connected to the adjusting bolt 56, and can slide up and down
  • the elastic member 57 is installed between the slider and the adjusting bolt 56
  • the elastic member 57 can be tightened or loosened by adjusting the height of the adjusting bolt 56.
  • the friction wheel driving motor 54 is installed on the vertical plate 552 by screws and is connected to the active friction wheel 53
  • the passive friction wheel 52 is connected to the slider 58 through a bearing.
  • the elastic member 57 is specifically a spring.
  • the main function of the scope conveying part 5 is to convey the scope 43 of the endoscope 4 so that it moves forward or backward in the human body cavity.
  • the implementation principle is: the elastic member 57 provides a clamping force so that the active friction wheel 52 and the passive friction wheel 52 clamp the scope 43, and the clamping force is adjusted by adjusting the height of the adjusting bolt 56.
  • the difference in clamping force can change the maximum conveying force provided by the friction wheel to the scope 43, and the clamping force can be changed according to the safe force value of the human body cavity.
  • the device can play a role in slip protection to ensure the safety of the use of the endoscope control device.
  • the present application replaces the manual operation of the digestive endoscope with a motor drive, realizes the bending, axial torsion and entry and exit of the digestive endoscope, provides a hardware foundation for subsequent autonomous control, and promotes the automation of digestive endoscopy.
  • the knob operating part 2 of the present application is a coaxial and independently rotating device of a worm gear transmission, which is used to drive the knob of the digestive endoscope, realizes a large transmission ratio, and has the advantage of a compact structure.
  • the motor axis is perpendicular to the axis of the digestive endoscope knob, avoiding the collision between the motor and the digestive endoscope.
  • the mirror body conveying part 5 of the present application is a mirror body conveying device with adjustable clamping force.
  • the clamping force of the spring is adjustable, which can provide a suitable maximum conveying friction force, and realize slip protection when the conveying force is greater than the maximum friction force.
  • the present application provides a scope control device and an endoscope robot that can accurately control the bending, axial torsion and entry and exit of the endoscope, while preventing damage to the scope body due to excessive force and achieving slip protection. It provides a hardware foundation for subsequent autonomous control and is of great significance for promoting the intelligence and autonomy of surgery.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

提供一种内镜控制装置和内镜机器人,内镜控制装置包括底座(1)、设置在底座(1)上用于安装内镜(4)的内镜放置平台(3)、连接于内镜放置平台(3)并用于实现对内镜(4)的弯曲段(44)的弯曲操作控制的旋钮操作部(2)以及用于夹持和输送内镜(4)的镜体的镜体输送部(5),旋钮操作部(2)通过采用蜗轮蜗杆传动的方式实现了对内镜(4)的弯曲段(44)的电机控制,能够准确控制内镜(4)的弯曲、轴向扭转和进出镜,镜头输送部(5)通过弹性件(57)为被动摩擦轮(52)和主动摩擦轮(53)提供夹持力来夹紧内镜(4)的镜体(43),并通过调节调节螺栓(56)的高度来实现对弹性件(57)的压紧和放松,从而实现夹持力度可调,以此能够防止力度过大而损伤镜体(43)和实现打滑保护作用,确保内镜控制装置的使用安全性。

Description

一种内镜控制装置和内镜机器人 技术领域
本申请涉及医疗器械技术领域,特别是涉及一种内镜控制装置和内镜机器人。
背景技术
消化道疾病的发病率逐年增高,据统计全球各类消化道疾病的患者数量达到了70%。许多恶性消化道疾病都是由早期的良性肿瘤发展而来的,对于消化道内良性肿瘤的早期发现与治疗,可以有效预防消化道癌症的产生。消化内镜检查可以对各类消化道疾病进行准确的定位和诊断,对于人类健康的保障具有非常重要的价值。目前,消化内镜检查都需要医生进行人工操作,经过培训的专业医师把镜体插入人体自然腔道,并进行介入性观测与手术操作。在手术过程中,医生的右手握住消化内镜的镜体部分,配合左手的相应操作来进行内镜镜体的插入,右手在推动镜体前进时,根据人体自然腔道的弯曲方向,左手控制弯曲旋钮,采取相应的右旋或左旋动作,使得插入管远端弯曲部朝腔道方向弯曲,同时在插入过程中,还需通过轴向旋转镜体防止镜体扭曲过度。总结消化内镜检察的主要操作动作包括:消化内镜镜体的插入、消化内镜远端弯曲部分的上下/左右弯曲以及镜体的轴向扭转。
上述纯人工手术操作存在以下缺点:(1)传染病传播的风险,例如存在病毒感染的风险;(2)目前的结肠镜检查不符合人体工学,医生操作时间长且机械重复,容易因疲劳而带来操作失误,从而给患者带来额外的痛苦;(3) 由于操作缺乏直观性,人体腔道的解剖结构十分曲折,因此需要很长的时间周期来对医生进行专门的相关操作培训,培训成本高,结肠镜检查的专业医师少。
针对上述缺点,目前市面上也存在一些能够辅助医生操作的机器人系统,例如申请号为CN202010337374.8的中国专利申请公开了一种辅助医生操作结肠镜的机器人系统,该系统可以代替传统医生手动操作,实现镜体的旋转、进给以及扭转。但是该机器人系统的旋钮处的传动结构多采用同步带传动,由于同步带是弹性体,传动中存在弹性滑动,因此不能保证准确的传动比,基于此设计的内镜机器人会影响到后续机器人控制的准确性。而且,在镜体输送方面,该机器人系统夹持的力度固定不可调整,不够灵活,安全性较差。
发明内容
本申请的一目的是,提供一种内镜控制装置和内镜机器人,能够准确控制内镜的弯曲、轴向扭转和进出镜,同时夹持镜体的力度可调,能够防止力度过大而损伤镜体并能够提供合适的最大输送摩擦力以实现打滑保护。
本申请提供了一种内镜控制装置,包括:
底座;
内镜放置平台,其设置在所述底座上,用于安装内镜;
旋钮操作部,其连接于所述内镜放置平台,包括大套筒、同轴设置在大套筒内的小套筒以及分别用于驱动所述大套筒和所述小套筒独立旋转的两个蜗轮蜗杆组件,其中所述大套筒用于与内镜的大旋钮啮合,所述小套筒用于与内镜的小旋钮啮合,所述大套筒与所述小套筒分别带动所述大旋钮与所述小旋钮旋转,从而控制实现所述内镜的弯曲段的弯曲操作;以及
镜体输送部,其包括用于夹持所述内镜的镜体的主动摩擦轮和被动摩擦轮、连接于所述主动摩擦轮的摩擦轮驱动电机以及用于调节所述主动摩擦轮和所述被动摩擦轮之间的夹持力的弹性调节组件,其中所述摩擦轮驱动电机用于驱动所述主动摩擦轮转动,从而施加给镜体向前摩擦力以控制实现所述镜体的输送操作。
在本申请的一实施例中,每个所述蜗轮蜗杆组件包括蜗杆驱动电机、连接于所述蜗杆驱动电机的蜗杆以及啮合于所述蜗杆的蜗轮,其中两个所述蜗轮蜗杆组件的蜗轮分别连接于对应的所述小套筒和所述大套筒。
在本申请的一实施例中,所述旋钮操作部还包括支撑板、设置于所述支撑板的多个立柱、用于安装所述蜗杆驱动电机的电机安装座以及用于支承所述蜗杆的轴承座,所述旋钮操作部通过多个所述立柱连接于所述内镜放置平台。
在本申请的一实施例中,所述镜体输送部还包括用于安装所述主动摩擦轮、所述被动摩擦轮、摩擦轮驱动电机以及所述弹性调节组件的基座,所述基座包括基板和设置于所述基板的立板,所述立板设置有凹槽,所述弹性调节组件包括安装在所述立板上的盖板、可滑动地设置于所述立板的凹槽内并连接于所述被动摩擦轮的滑块、连接于所述盖板和所述滑块的调节螺栓、以及设置在所述盖板和所述滑块之间并套设在所述调节螺栓上的弹性件,其中通过旋转调节所述调节螺栓的高度的方式,来压紧或放松设置在所述调节螺栓和所述滑块之间的所述弹性件,从而对应调节所述弹性件对所述滑块和所述被动摩擦轮的弹性作用力,进而调节所述被动摩擦轮与所述主动摩擦轮对镜体的夹持力。
在本申请的一实施例中,所述调节螺栓采用螺纹连接的方式与所述盖板形成连接,所述摩擦轮驱动电机安装在所述立板上。
在本申请的一实施例中,所述内镜控制装置还包括用于控制镜体轴向扭转 的轴向扭转控制组件,所述轴向扭转控制组件包括设置在所述底座上的同步带轮驱动电机、连接于所述同步带轮驱动电机的输出轴的第一同步带轮以及设置在所述内镜放置平台上的第二同步带轮,所述第一同步带轮与所述第二同步带轮通过同步带连接,其中所述同步带轮驱动电机用于驱动所述第一同步带轮和所述第二同步带轮同步转动,从而使得所述内镜放置平台相对于所述底座转动,以此实现对安装在所述内镜放置平台上的所述内镜的镜体的轴向扭转操作控制。
在本申请的一实施例中,所述底座包括底板和垂直设置于所述底板的两侧的两个侧板,所述轴向扭转控制组件还包括设置在所述底板上的用于安装和支撑所述同步带轮驱动电机的电机座和电机架。
在本申请的一实施例中,所述底座还包括分别设置在两个所述侧板上的第一底座轴承和第二底座轴承,所述内镜放置平台包括用于安装内镜的平台底板和分别设置在所述平台底板两侧的实心轴板与空心轴板,所述实心轴板与所述空心轴板分别连接于所述第一底座轴承和所述第二底座轴承,从而形成所述内镜放置平台与所述底座可转动连接的状态。
在本申请的一实施例中,所述内镜放置平台还包括设置在所述平台底板上并用于固定所述内镜的卡位板和用于将所述第二同步带轮固定在所述空心轴板上的轴套。
本申请在另一方面还提供了一种内镜机器人,包括所述内镜控制装置和设置在所述内镜控制装置上的内镜。
本申请的所述内镜控制装置通过采用蜗轮蜗杆传动的方式实现了对内镜的弯曲段的电机控制,由于蜗轮蜗杆传动具有传动比大,构造紧凑的特点,因此能够确保电机控制的准确性,从而能够准确控制内镜的弯曲、轴向扭转和进 出镜,解决了现有同步带传动方式存在弹性滑动而不能保证准确的传动比的技术问题。
本申请采用蜗轮蜗杆传动的方式,在具有较高减速比的同时还大大的缩小了内镜机器人的体积,且使用蜗轮蜗杆传动可以使得电机的轴向与旋钮的轴向垂直,避免了电机与内镜的碰撞,优化了机器人结构。
本申请的所述内镜控制装置的所述镜头输送部通过所述弹性件提供夹持力使得所述被动摩擦轮和所述主动摩擦轮能够夹紧内镜的镜体,并通过调节所述调节螺栓的高度来实现夹持力度的调整,从而能够防止力度过大而损伤镜体,而且夹持力度的不同可以改变摩擦轮提供给镜体的最大输送力,因此可以根据人体腔道的安全受力值来改变加持力度,当镜体受到的力大于设定的最大输送力后,所述镜头输送部可以起到打滑保护的作用,确保所述内镜控制装置的使用安全性。
通过对随后的描述和附图的理解,本申请进一步的目的和优势将得以充分体现。
附图说明
图1为本申请的一优选实施例的所述内镜机器人的立体结构示意图。
图2为图1所示的所述内镜机器人的底座的立体结构示意图。
图3为图1所示的所述内镜机器人的旋钮操作部的立体结构示意图。
图4为图3所示的所述旋钮操作部的部分结构的立体结构示意图。
图5为图1所示的所述内镜机器人的内镜放置平台的立体结构示意图。
图6为图1所示的所述内镜机器人的内镜的立体结构示意图。
图7为图1所示的所述内镜机器人的镜体输送部的立体结构示意图。
图8为图7所示的所述镜体输送部在另一视角下的立体结构示意图。
附图标号说明:
底座1;旋钮操作部2;内镜放置平台3;内镜4;镜体输送部5;轴向扭转控制组件6;底板11;第一侧板12;第二侧板13;同步带轮驱动电机14;电机座15;电机架16;第一同步带轮17;第一底座轴承18;第二底座轴承19;第一蜗轮蜗杆组件201;第二蜗轮蜗杆组件202;支撑板21;第一轴承座22;第一蜗杆231;第二蜗杆232;第一电机安装座24;第一蜗杆驱动电机251;第二蜗杆驱动电机252;第二电机安装座26;第二轴承座27;旋钮啮合部28;大套筒281;小套筒282;第一蜗轮283;第二蜗轮284;立柱29;平台底板31;实心轴板32;空心轴板33;卡位板34;第二同步带轮35;轴套36;大旋钮41;小旋钮42;镜体43;弯曲段44;盖板51;被动摩擦轮52;主动摩擦轮53;摩擦轮驱动电机54;基座55;基板551;立板552;凹槽553;调节螺栓56;弹性件57;滑块58。
具体实施方式
以下描述用于揭露本申请以使本领域技术人员能够实现本申请。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本申请的基本原理可以应用于其他实施方案、形变方案、改进方案、等同方案以及没有背离本申请的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本申请的揭露中,术语“竖向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图 所示的方位或位置关系,其仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本申请的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
消化道疾病具有发病率高和发病范围广的特点,目前消化道疾病的诊断和治疗主要通过消化内镜检查来进行。消化内镜检查需要有经验的医师进行冗长且机械的操作,针对目前消化内镜检查存在的一系列问题,本申请提出了一种内镜控制装置和内镜机器人,通过电机与传动机构替代人手实现消化内镜的弯曲、轴向扭转和进出镜,该内镜机器人可以辅助医生操作消化内镜,提高手术效率,降低医生的操作负担和患者的痛苦。医生还可以基于该内镜机器人进行远程手术,避免感染风险。此发明为后续的自主控制提供了硬件基础,对于推动手术智能化和自主化具有重要意义。
如图1至图8所示,根据本申请的一优选实施例的一种内镜控制装置和内镜机器人的具体结构被具体阐明。
如图1所示,本申请的内镜机器人包括内镜控制装置和安装在内镜控制装 置上的内镜4,内镜控制装置的整体结构包括底座1,旋钮操作部2,内镜放置平台3以及镜体输送部5;其中内镜放置平台3通过实心轴板32和空心轴板33分别与第一轴承18和第二轴承19相配合安装于底座1上,内镜4安装在内镜放置平台3上,通过卡位板34夹紧定位,内镜放置平台3通过同步带传动可以相对于底座1轴向转动,因此固定在内镜放置平台3上的内镜4可以实现镜体43的轴向扭转。
旋钮操作部2通过立柱29连接于内镜放置平台3,内镜4的大旋钮41与小旋钮42分别与旋钮操作部2的大套筒281和小套筒282啮合。旋钮操作部2通过蜗轮蜗杆传动可以实现同轴大套筒281与小套筒282的独立旋转,大套筒281与小套筒282分别带动大旋钮41与小旋钮42旋转,从而实现内镜4的弯曲段44的上下/左右弯曲。
镜体输送部5的主动摩擦轮53与被动摩擦轮52通过弹性件57夹紧内镜4的镜体43,摩擦轮驱动电机54驱动主动摩擦轮53转动,施加给镜体43向前的摩擦力从而实现镜体43的输送。
具体地,如图2所示,底座1结构包括底板11、分别垂直设置在底板11的两侧的第一侧板12和第二侧板13、以及分别安装在第一侧板12和第二侧板13上的第一底座轴承18和第二底座轴承19,其中第一侧板12和第二侧板13通过螺钉与底板11连接固定,第一底座轴承18和第二底座轴承19分别与内镜放置平台3的实心轴板32和空心轴板33连接,从而形成内镜放置平台3与底座1可转动连接的状态。
进一步地,继续如图2所示,内镜控制装置还包括用于控制镜体43轴向扭转的轴向扭转控制组件6,轴向扭转控制组件6包括设置在底座1上的同步带轮驱动电机14、连接于同步带轮驱动电机14的输出轴的第一同步带轮17 以及设置在内镜放置平台3上的第二同步带轮35,第一同步带轮17与第二同步带轮17通过同步带连接,其中同步带轮驱动电机14用于驱动第一同步带轮17和第二同步带轮35同步转动,从而使得内镜放置平台3相对于底座1转动,以此实现对安装在内镜放置平台3上的内镜4的镜体43的轴向扭转操作控制。
值得一提的是,轴向扭转控制组件6还包括设置在底板11上的用于安装和支撑同步带轮驱动电机14的电机座15和电机架16,其中电机座15通过螺钉固定在底板11上,电机架16通过螺栓连接同步带轮驱动电机14与电机座15,第一同步带轮17安装在同步带轮驱动电机14的电机轴上,通过同步带与第二同步带轮35配合传动。
轴向扭转控制组件6的主要功能是用于安装内镜放置平台3,并实现内镜放置平台3相对于底座1的扭转,同时电机架16与电机座15以及同步带轮驱动电机14的连接方式使得第一同步带轮17可以上下移动,实现同步带的张紧。
进一步如图3和图4所示,旋钮操作部2包括大套筒281、同轴设置在大套筒281内的小套筒282以及分别用于驱动大套筒281和小套筒282独立旋转的两个蜗轮蜗杆组件,两个蜗轮蜗杆组件包括第一蜗轮蜗杆组件201和第二蜗轮蜗杆组件202,其中大套筒281用于与内镜4的大旋钮41啮合,小套筒282用于与内镜4的小旋钮42啮合,在第一蜗轮蜗杆组件201和第二蜗轮蜗杆组件202的驱动下,大套筒281与小套筒282分别带动大旋钮41与小旋钮42独立旋转,从而控制实现内镜4的弯曲段44的弯曲操作。
进一步地,操作旋钮部2还包括支撑板21、设置于支撑板21的两个轴承座和两个电机安装座以及设置于支撑板21的多个立柱29,两个轴承座包括第一轴承座22和第二轴承座27,两个电机安装座包括第一电机安装座24和第二电机安装座26,其中第一蜗轮蜗杆组件201包括安装在第一电机安装座24上 的第一蜗轮电机251、安装在第一轴承座22上并连接于第一蜗轮电机251的第一蜗杆231以及啮合第一蜗杆231的第一蜗轮283;第二蜗轮蜗杆组件202包括安装在第二电机安装座26上的第二蜗轮电机252、安装在第二轴承座27上并连接于第二蜗轮电机252的第二蜗杆232以及啮合第二蜗杆232的第二蜗轮284;其中第一蜗杆驱动电机251和第二蜗杆驱动电机252通过螺钉分别安装在第一电机安装座24与第二电机安装座26上。
也就是说,每个所述蜗轮蜗杆组件均由蜗杆驱动电机、连接于蜗杆驱动电机的蜗杆以及啮合于蜗杆的蜗轮组成。
值得一提的是,立柱29通过螺纹连接安装在支撑板21上,并通过螺钉将旋钮操作部2与内镜放置平台3连接起来。
进一步如图4所示,旋钮操作部2的旋钮啮合部28包括大套筒281、小套筒282、第一蜗轮283以及第二蜗轮284,大套筒281通过螺钉与第一蜗轮283连接,小套筒282通过螺钉与第二蜗轮284连接,小套筒282与第一蜗轮283之间通过轴承连接,第二蜗轮284与支撑板21之间通过轴承连接,第一蜗轮283和第二蜗轮284分别与第一蜗杆231和第二蜗杆232啮合。
可以理解的是,旋钮操作部2的主要功能是实现内镜4的弯曲段44的电机控制,实现原理为:蜗杆驱动电机25转动带动蜗杆23转动,蜗杆23转动带动第一蜗轮283与第二蜗轮284以及安装在其上的大套筒281与小套筒282转动,由于大套筒281和小套筒282分别与内镜4的大旋钮41与小旋钮42啮合,因此大套筒281和小套筒282的转动带动了大旋钮41与小旋钮42转动,从而实现了内镜4的弯曲段44的电机控制。
本申请的内镜控制装置通过采用蜗轮蜗杆传动的方式实现了对内镜的弯曲段的电机控制,由于蜗轮蜗杆传动具有传动比大,构造紧凑的特点,因此能 够确保电机控制的准确性,从而能够准确控制内镜的弯曲、轴向扭转和进出镜,解决了现有同步带传动方式存在弹性滑动而不能保证准确的传动比的技术问题。
另外,本申请采用蜗轮蜗杆传动的方式,在具有较高减速比的同时还大大的缩小了消化内镜机器人的体积,且使用蜗轮蜗杆传动可以使得电机的轴向与旋钮的轴向垂直,避免了电机与内镜的碰撞,优化了机器人结构。
如图5所示,内镜放置平台3包括平台底板31、实心轴板32、空心轴板33、卡位板34以及轴套36。实心轴板32和空心轴板33设置在平台底板31两侧,实心轴板32通过螺钉与平台底板31连接,空心轴板33通过螺钉与平台底板31连接。第二同步带轮35通过螺钉与空心轴板33连接,卡位板34通过螺钉与平台底板31连接,轴套36直接套在空心轴板33的轴上起到安装限位的作用,用于将第二同步带轮35固定在空心轴板33上。
内镜4水平放置在平台底板31上,通过卡位板34夹紧固定,内镜4的镜体43穿过空心轴板33的空心轴。内镜放置平台3的主要功能是用于安装固定内镜4,通过轴承与底座1连接,通过立柱29与旋钮操作部2连接。
图6示意了内镜4的具体结构,在本申请的这一实施例中,内镜4为消化内镜,也可以为其他内窥镜,本申请对此不作限制。内镜4主要包括大旋钮41、小旋钮42、镜体43和连接于镜体43的44弯曲段。镜体43与弯曲段44用于插入人体解剖学自然腔道,大旋钮41用于控制弯曲段44左右弯曲,小旋钮42用于控制弯曲段44前后弯曲。
如图7所示,镜体输送部5包括用于夹持内镜4的镜体43的主动摩擦轮53和被动摩擦轮52、连接于主动摩擦轮53的摩擦轮驱动电机54以及用于调节主动摩擦轮53和被动摩擦轮52之间的夹持力的弹性调节组件,其中摩擦轮 驱动电机54用于驱动主动摩擦轮53转动,从而施加给镜体43向前摩擦力以控制实现镜体43的输送操作。
进一步地,如图8所示,镜体输送部5还包括用于安装主动摩擦轮53、被动摩擦轮52、摩擦轮驱动电机54以及弹性调节组件的基座55,基座55包括基板551和设置于基板551的立板552,立板552设置有凹槽553,弹性调节组件包括安装在立板552上的盖板51、可滑动地设置于立板552的凹槽553内并连接于被动摩擦轮52的滑块、连接于盖板51和滑块58的调节螺栓56、以及设置在盖板51和滑块58之间并套设在调节螺栓56上的弹性件57,其中通过旋转调节调节螺栓56的高度的方式,来压紧或放松设置在调节螺栓56和滑块58之间的弹性件57,从而对应调节弹性件57对滑块58和被动摩擦轮52的弹性作用力,进而调节被动摩擦轮52与主动摩擦轮53对镜体43的夹持力。
具体地,在调节螺栓56往下移动时,会压紧弹性件57,弹性件57对滑块58施加的作用力增大,从而使得设置在滑块58上的被动摩擦轮52和主动摩擦轮53之间的夹紧力变大;当调节螺栓56往上移动时,使得弹性件57被放松,弹性件57对于滑块58施加的作用力减小,从而使得设置在滑块58上的被动摩擦轮52和主动摩擦轮53之间的夹紧力变小;以此实现对镜体43的夹持力的调节。
值得一提的是,基座55可以通过螺钉固定在指定位置,盖板51通过螺钉固定在基座55上,调节螺栓56通过螺纹与盖板51连接,通过旋转调节螺栓56可以调节其高度,滑块58嵌入安装到基座55中,并与调节螺栓56同轴连接,可以上下滑动,弹性件57安装在滑块与调节螺栓56之间,可以通过调节调节螺栓56的高度来压紧或放松弹性件57。摩擦轮驱动电机54通过螺钉安装到立板552上,并与主动摩擦轮53连接,被动摩擦轮52通过轴承与滑块58 连接。
还值得一提的是,弹性件57具体为弹簧。
镜体输送部5的主要功能是输送内镜4的镜体43使其在人体腔道内前进或后退,实现原理为:弹性件57提供夹持力使得主动摩擦轮52与被动摩擦轮52夹紧镜体43,并通过调节调节螺栓56的高度来实现夹持力度的调整,夹持力度的不同可以改变摩擦轮提供给镜体43的最大输送力,可以根据人体腔道的安全受力值来改变加持力度,当镜体43受到的力大于设定的最大输送力后,装置可以起到打滑保护的作用,确保所述内镜控制装置的使用安全性。
本申请将消化内镜的手动操作替换为电机驱动,实现了消化内镜的弯曲、轴向扭转和进出镜,为后续的自主控制提供了硬件基础,推动了消化内镜检查的自动化。本申请的旋钮操作部2作为一种蜗轮蜗杆传动的同轴独立旋转的装置,用于驱动消化内镜的旋钮,实现了较大的传动比,并具有结构紧凑的优点,同时使得电机轴向与消化内镜旋钮轴向垂直,避免了电机与消化内镜的碰撞。本申请的镜体输送部5作为一种夹持力度可调的镜体输送装置,可以通过弹簧提供合适的夹持力,防止损伤镜体,同时弹簧的夹持力度可调,可以提供合适的最大输送摩擦力,当出现输送力度大于最大摩擦力时实现打滑保护。
总的来讲,本申请提供了一种能够准确控制内镜的弯曲、轴向扭转和进出镜,同时能够防止力度过大而损伤镜体实现打滑保护的镜控制装置和内镜机器人,为后续的自主控制提供了硬件基础,对于推动手术智能化和自主化具有重要意义。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的优选的实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种内镜控制装置,其特征在于,包括:
    底座;
    内镜放置平台,其设置在所述底座上,用于安装内镜;
    旋钮操作部,其连接于所述内镜放置平台,包括大套筒、同轴设置在大套筒内的小套筒以及分别用于驱动所述大套筒和所述小套筒独立旋转的两个蜗轮蜗杆组件,其中所述大套筒用于与内镜的大旋钮啮合,所述小套筒用于与内镜的小旋钮啮合,所述大套筒与所述小套筒分别带动所述大旋钮与所述小旋钮旋转,从而控制实现所述内镜的弯曲段的弯曲操作;以及
    镜体输送部,其包括用于夹持所述内镜的镜体的主动摩擦轮和被动摩擦轮、连接于所述主动摩擦轮的摩擦轮驱动电机以及用于调节所述主动摩擦轮和所述被动摩擦轮之间的夹持力的弹性调节组件,其中所述摩擦轮驱动电机用于驱动所述主动摩擦轮转动,从而施加给镜体向前摩擦力以控制实现所述镜体的输送操作。
  2. 根据权利要求1所述的内镜控制装置,其特征在于,每个所述蜗轮蜗杆组件包括蜗杆驱动电机、连接于所述蜗杆驱动电机的蜗杆以及啮合于所述蜗杆的蜗轮,其中两个所述蜗轮蜗杆组件的蜗轮分别连接于对应的所述小套筒和所述大套筒。
  3. 根据权利要求2所述的内镜控制装置,其特征在于,所述旋钮操作部还包括支撑板、设置于所述支撑板的多个立柱、用于安装所述蜗杆驱动电机的电机安装座以及用于支承所述蜗杆的轴承座,所述旋钮操作部通过多个所述立柱连接于所述内镜放置平台。
  4. 根据权利要求1至3中任一项所述的内镜控制装置,其特征在于,所 述镜体输送部还包括用于安装所述主动摩擦轮、所述被动摩擦轮、摩擦轮驱动电机以及所述弹性调节组件的基座,所述基座包括基板和设置于所述基板的立板,所述立板设置有凹槽,所述弹性调节组件包括安装在所述立板上的盖板、可滑动地设置于所述立板的凹槽内并连接于所述被动摩擦轮的滑块、连接于所述盖板和所述滑块的调节螺栓、以及设置在所述盖板和所述滑块之间并套设在所述调节螺栓上的弹性件,其中通过旋转调节所述调节螺栓的高度的方式,来压紧或放松设置在所述调节螺栓和所述滑块之间的所述弹性件,从而对应调节所述弹性件对所述滑块和所述被动摩擦轮的弹性作用力,进而调节所述被动摩擦轮与所述主动摩擦轮对镜体的夹持力。
  5. 根据权利要求4所述的内镜控制装置,其特征在于,所述调节螺栓采用螺纹连接的方式与所述盖板形成连接,所述摩擦轮驱动电机安装在所述立板上。
  6. 根据权利要求4所述的内镜控制装置,其特征在于,还包括用于控制镜体轴向扭转的轴向扭转控制组件,所述轴向扭转控制组件包括设置在所述底座上的同步带轮驱动电机、连接于所述同步带轮驱动电机的输出轴的第一同步带轮以及设置在所述内镜放置平台上的第二同步带轮,所述第一同步带轮与所述第二同步带轮通过同步带连接,其中所述同步带轮驱动电机用于驱动所述第一同步带轮和所述第二同步带轮同步转动,从而使得所述内镜放置平台相对于所述底座转动,以此实现对安装在所述内镜放置平台上的所述内镜的镜体的轴向扭转操作控制。
  7. 根据权利要求6所述的内镜控制装置,其特征在于,所述底座包括底板和垂直设置于所述底板的两侧的两个侧板,所述轴向扭转控制组件还包括设置在所述底板上的用于安装和支撑所述同步带轮驱动电机的电机座和电机架。
  8. 根据权利要求7所述的内镜控制装置,其特征在于,所述底座还包括 分别设置在两个所述侧板上的第一底座轴承和第二底座轴承,所述内镜放置平台包括用于安装内镜的平台底板和分别设置在所述平台底板两侧的实心轴板与空心轴板,所述实心轴板与所述空心轴板分别连接于所述第一底座轴承和所述第二底座轴承,从而形成所述内镜放置平台与所述底座可转动连接的状态。
  9. 根据权利要求8所述的内镜控制装置,其特征在于,所述内镜放置平台还包括设置在所述平台底板上并用于固定所述内镜的卡位板和用于将所述第二同步带轮固定在所述空心轴板上的轴套。
  10. 一种内镜机器人,其特征在于,包括根据权利要求1至9中任一项所述的内镜控制装置和设置在所述内镜控制装置上的内镜。
PCT/CN2022/131306 2022-11-11 2022-11-11 一种内镜控制装置和内镜机器人 WO2024098365A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/131306 WO2024098365A1 (zh) 2022-11-11 2022-11-11 一种内镜控制装置和内镜机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/131306 WO2024098365A1 (zh) 2022-11-11 2022-11-11 一种内镜控制装置和内镜机器人

Publications (1)

Publication Number Publication Date
WO2024098365A1 true WO2024098365A1 (zh) 2024-05-16

Family

ID=91031697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131306 WO2024098365A1 (zh) 2022-11-11 2022-11-11 一种内镜控制装置和内镜机器人

Country Status (1)

Country Link
WO (1) WO2024098365A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191979A (ja) * 2011-03-15 2012-10-11 Fujifilm Corp 内視鏡挿入補助具
US20120271107A1 (en) * 2011-04-25 2012-10-25 Fujifilm Corporation Self-propelled device for endoscope
CN103599585A (zh) * 2013-11-20 2014-02-26 中国科学院深圳先进技术研究院 血管介入手术导丝导管操作装置及其操作模块
US20150297060A1 (en) * 2014-04-22 2015-10-22 EDWARD Via COLLEGE OF OSTEOPATHIC MEDICINE Endoscope propulsion
CN105286773A (zh) * 2015-10-09 2016-02-03 华东理工大学 一种结肠镜单手操作手柄
CN111494012A (zh) * 2020-04-25 2020-08-07 哈尔滨理工大学 一种辅助医生操作结肠镜的机器人系统
CN112353496A (zh) * 2020-11-30 2021-02-12 中国科学院沈阳自动化研究所 一种软式内窥镜操控机器人
CN114532942A (zh) * 2022-02-28 2022-05-27 四川大学 一种内窥镜辅助操作装置及其控制方法
CN217162063U (zh) * 2022-02-28 2022-08-12 四川大学 一种内窥镜转轮驱动机构及内窥镜辅助操作装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191979A (ja) * 2011-03-15 2012-10-11 Fujifilm Corp 内視鏡挿入補助具
US20120271107A1 (en) * 2011-04-25 2012-10-25 Fujifilm Corporation Self-propelled device for endoscope
CN103599585A (zh) * 2013-11-20 2014-02-26 中国科学院深圳先进技术研究院 血管介入手术导丝导管操作装置及其操作模块
US20150297060A1 (en) * 2014-04-22 2015-10-22 EDWARD Via COLLEGE OF OSTEOPATHIC MEDICINE Endoscope propulsion
CN105286773A (zh) * 2015-10-09 2016-02-03 华东理工大学 一种结肠镜单手操作手柄
CN111494012A (zh) * 2020-04-25 2020-08-07 哈尔滨理工大学 一种辅助医生操作结肠镜的机器人系统
CN112353496A (zh) * 2020-11-30 2021-02-12 中国科学院沈阳自动化研究所 一种软式内窥镜操控机器人
CN114532942A (zh) * 2022-02-28 2022-05-27 四川大学 一种内窥镜辅助操作装置及其控制方法
CN217162063U (zh) * 2022-02-28 2022-08-12 四川大学 一种内窥镜转轮驱动机构及内窥镜辅助操作装置

Similar Documents

Publication Publication Date Title
WO2022110312A1 (zh) 一种软式内窥镜操控机器人
JP4624572B2 (ja) 内視鏡
CN211324911U (zh) 一种消化内镜支架
WO2019137380A1 (zh) 多用途的柔性手术工具系统
CN109044533A (zh) 泌尿外科微创介入手术机器人
CN101380249B (zh) 一种操作医疗设备的装置
US20090082621A1 (en) Electric Bending Endoscope Apparatus
US20120053417A1 (en) Endoscope and hardness adjuster
CN214073576U (zh) 软式内窥镜操控机器人
WO2024098365A1 (zh) 一种内镜控制装置和内镜机器人
CN117357263B (zh) 一种柔性器械输送装置及其执行部件、驱动部件
CN220293655U (zh) 一种柔性器械输送装置及其执行部件、驱动部件
JP2012081012A (ja) 内視鏡及び硬度調整装置
WO2020087821A1 (zh) 电子内窥镜的插入部件及电子内窥镜
KR20130121585A (ko) 굴곡이 있는 수동식 수술도구
WO2018041205A1 (zh) 一种可消毒的柔性手术工具系统
CN115644771B (zh) 一种内镜控制装置和内镜机器人
CN113729959B (zh) 一种介入手术机器人从端导丝导管操作装置
CN112155504B (zh) 一种用于十二指肠的子母一体式肠镜
CN211583069U (zh) 一种消化内科医用胃镜装置
CN113384349A (zh) 一种消化内镜用辅助机械手及使用方法
CN213821336U (zh) 一种安全性能高的视频喉镜
CN217792988U (zh) 一种角度可调的消化内镜支架
CN214965342U (zh) 一种新型可调节消化内镜支架
CN216907991U (zh) 一种医疗检查辅助装置