WO2024096726A1 - Integrated bamboo construction system - Google Patents

Integrated bamboo construction system Download PDF

Info

Publication number
WO2024096726A1
WO2024096726A1 PCT/MX2023/050075 MX2023050075W WO2024096726A1 WO 2024096726 A1 WO2024096726 A1 WO 2024096726A1 MX 2023050075 W MX2023050075 W MX 2023050075W WO 2024096726 A1 WO2024096726 A1 WO 2024096726A1
Authority
WO
WIPO (PCT)
Prior art keywords
bamboo
integral
construction
board
construction system
Prior art date
Application number
PCT/MX2023/050075
Other languages
Spanish (es)
French (fr)
Inventor
Demetrio Ramón CÓRDOVA GONZÁLEZ
Original Assignee
Cordova Gonzalez Demetrio Ramon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cordova Gonzalez Demetrio Ramon filed Critical Cordova Gonzalez Demetrio Ramon
Publication of WO2024096726A1 publication Critical patent/WO2024096726A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/04Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
    • E04B1/06Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material the elements being prestressed
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/14Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements being composed of two or more materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/16Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of fibres, chips, vegetable stems, or the like
    • E04C2/18Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of fibres, chips, vegetable stems, or the like with binding wires, reinforcing bars, or the like
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal

Definitions

  • the present invention is related to the field of structures, buildings and civil engineering.
  • the present invention refers to an integral system based on bamboo that can be used in the construction of buildings.
  • Background of the Invention The use of bamboo, particularly as a structural element, is widely known; It is known that, since there has been a need to protect itself from environmental conditions, as well as from attacks by animals and insects, or even as a tool or auxiliary set for a plurality of processes, different technologies have been developed based on said material.
  • Ferrocement is a material with a plurality of uses and applications, such as in ships, silos, swimming pools, canals, etc.; Ferrocement is a type of thin-walled reinforced concrete commonly constructed of hydraulic cement mortar reinforced with closely spaced layers of continuous, relatively small-sized wire mesh.
  • the mesh can be made of metal or other suitable materials,” and “hence the idea of using layers of mesh to provide rigidity to a structure.”
  • precompression was patented by Monier CFW Doehring, who clearly explained the idea of precompression. After failures due to poor quality materials, the idea of pre-compressed concrete was not taken up and/or used again until 1928, when the French engineer, Eugene Freyssinet, demonstrated that the use of high-strength materials was an option.
  • patent MX 2011003620 A which describes a system that uses sections of bamboo poles of diameters less than 3 cm., without alteration of the cylindrical section of said bamboo sticks which, as is known, the natural arrangement of the bamboo fibers, that is, parallel to its axis, gives it great capacity to withstand tensile loads. and compression;
  • a hexagonal mesh is used to which a series of knots are applied along the mesh in order to tension it.
  • This system works efficiently to build load-bearing “walls and columns”, normally subject to compression-traction;
  • it is less efficient, because among other things, when placing a section of bamboo horizontally, two reactions occur: firstly, derived from its cylindrical shape, a mechanical torsion effect is amplified. , that is, it will tend to rotate (2); and, on the other hand, it will tend to flex (4), which can cause and/or generate cracks in the concrete, which is an extremely relevant problem for a slab.
  • an object of the present invention is to provide an integral bamboo system for the construction of walls, slabs, chains, girders, reinforcements and any element that serves as a support structure in buildings with various applications. It is another object of the present invention to provide a construction system with low environmental impact and sustainable. It is another objective of the present invention to provide boards of prestressed bamboo microbeams that allow the construction of more efficient structures, where the steel rods are replaced by the use of assembled and prestressed bamboo strips as structural reinforcement, providing resistance, weight reduction, stability.
  • An additional objective of the present invention is that, to provide greater resistance to the bamboo microbeams, join at least two bamboo strips to form a reinforced bamboo microbeam.
  • Another objective of the present invention is to use the board of prestressed bamboo microbeams as a reinforcement structure in roofs of a construction system and to use said board of prestressed bamboo microbeams as a reinforcement structure in walls of a construction system.
  • An additional object of the present invention is to use the prestressed bamboo micro beam boards as a complement to a construction system, where hydraulic concrete is used and if the design allows it, it can be replaced with mortar, mud, earth. compacted, potentiating the application of the system, as well as reducing the environmental impact from the common materials used in construction.
  • An additional object of the present invention is to use prestressed bamboo microbeam boards as a complement to other sustainable construction systems, such as bamboo walls, wooden walls, stone walls, mud walls or compacted earth.
  • Another objective of the present invention is to use bamboo culms as reinforcing elements for enclosure chains, joists, and reinforcements.
  • An additional objective of the present invention is to use prestressed bamboo microbeam boards as a construction system, where their manufacture generates added value to bamboo cultivation.
  • An additional objective of the present invention is to use the prestressed bamboo microbeam panels as a construction system, where the manufacturing process can be carried out in the workshop, reducing freight costs and waste on site.
  • Figure 1 represents the way a bamboo culm supports a simple vertical load, the mechanical torsion effect of a horizontal bamboo culm, the point of contact between two horizontal bamboo culms , as well as the way a horizontal bamboo culm can flex when a simple load is applied and the mechanical torsion effect.
  • Figure 2 represents an enclosure chain, a joist and a truss made of bamboo.
  • Figure 3 represents a bamboo culm in section, the way it is divided into strips (rules), as well as the detail of a bamboo culm.
  • Figure 4 represents a longitudinal bamboo strip and a transverse bamboo strip, an enclosing chain, as well as the way its assembly cuts are located.
  • Figure 5 shows an assembled board, made up of a plurality of longitudinal and transverse rules.
  • Figure 6 shows two layers of hexagonal mesh.
  • Figure 7 represents two identical sections of hexagonal mesh and a board of bamboo microbeams prior to assembly.
  • Figure 8 illustrates a detail of how the bamboo rules are assembled.
  • Figure 9 represents the way to secure the hexagonal meshes on the perimeter of an assembled bamboo microbeam board.
  • Figure 10 shows the way the wire, tape or cable is interwoven in a zig zag between the mesh layers.
  • Figure 11 represents the detail, in section, of the passage of the wire, tape or zigzag cables, fastened from the starting header, passing the upper mesh across the board square, passing the lower mesh and rising again over the upper mesh, repeating the maneuver until reaching the other end of the board, it also shows how to apply the tension force before tying the wire on the finishing header, the tape or the cable to maintain the tension in said element.
  • Figure 12 represents a prestressed bamboo microbeam board.
  • Figure 13 shows the necessary components that make up a common comprehensive bamboo construction system.
  • Figure 14 illustrates two walls with their respective enclosure chains, on which a formwork is enabled that will serve as support to insert a board of prestressed bamboo microbeams.
  • Figure 15 represents the way to fasten a prestressed bamboo microbeam board to the supporting walls.
  • Figure 16 shows a finished concrete slab supported by masonry walls.
  • Figure 17 represents the integral bamboo construction system, using a bamboo framework to span large spans.
  • Figure 18 represents a finished concrete slab supported by masonry walls.
  • Figure 19 illustrates the elements required to install an integral bamboo construction system, supported by prestressed bamboo stems, using a bamboo truss.
  • Figure 20 shows the integral bamboo construction system, supported by prestressed bamboo poles, using a bamboo frame, assembled.
  • Figure 21 shows a construction element, made up of support walls, reinforcement and slab finished under the integral bamboo construction system.
  • each bamboo culm is made up of hollow cylindrical shaped canes that, at each certain distance, have small nodes or tympanums that join and close the gaps between sections, with diameters ranging from less than a centimeter to up to 20 cm. depending on the species of bamboo.
  • a bamboo strip is the result of longitudinally sectioning a bamboo culm (8'); These rules have an approximate width of 3 centimeters, a maximum length of 6 meters and a thickness of half a centimeter.
  • BII1304194C8-PCT1298 - 6 - Within a very wide range of applications of bamboo, this application seeks to use bamboo for construction, particularly, using bamboos with diameters greater than 5 cm, unlike what exists and is known within the prior art;
  • bamboo culms are assembled horizontally, with variations in their separation (5), use (6) and type of reinforcement (7) and on the other hand, the cylindrical section of the bamboo culms is divided into strips (8 ') or rulers; An expert will be able to glimpse, based on the teachings of the present invention, how properly grouped bamboo elements can become very structurally resistant, and can also be mechanically efficient and economical.
  • the proposal for the “comprehensive bamboo construction system” as described in this application is developed as a construction system that, through the use of assembled and reinforced bamboo elements, can build walls, chains, joists, reinforcements , slabs and mezzanines, with advantages in cost, speed, stability, structural safety over traditional systems but, mainly by replacing steel rods with bamboo elements, a renewable resource, our system stands out for being sustainable, taking a radical turn if We consider that, depending on the use of the space to be built, we can use concrete, mortar or even clay as mortar.
  • the “basic element” of the system of the present invention is defined as the boards made up of longitudinal (9) and transverse (10') bamboo strips.
  • the “maximum length” of the link between beams will be four to ten times its height, where the average height of “bamboo micro beams” is 2.0 to 5 cm, and at this point, reference will be made to the same as longitudinal and transverse “micro beams”, the longitudinal ones always being considered the longest ones (9), the transverse ones (10') these can go below the longitudinal ones or they can be interspersed above and below which, To facilitate its assembly, a plurality of equidistant assembly cuts (10') are made.
  • the assembly effect on the bamboo micro beams provides two improvements: firstly, the rigidity where its bending resistance is advantageously increased and, On the other hand, it ensures that they remain in place/location and, once assembled, transform into a “self-supporting assembled bamboo micro beam board” as can be seen in Figure 5.
  • bamboo reinforcements (7) that are mounted on the enclosure chains (6) are used as longitudinal support, as seen in Figure 19.
  • BII1304194C8-PCT1298 - 8 - a formwork (16) is enabled or, alternatively, it can be considered to replace the formwork with a bamboo mat, which would remain as an apparent finish for the ceiling.
  • the installation of pipes and ducts of the corresponding facilities must be considered, and then the specified mortar is poured onto the board according to the design, remaining drowned and once the setting time is over, the system will be finished.
  • the mortar can be any selected from the group that includes concrete, mortar, mud, compacted earth and once the setting of the mortar has been achieved, said mortar becomes an "integral bamboo system.” for construction” as described in the present invention and as illustrated in Figure 21, and that provides an advantageous solution, which also categorizes the system of the present invention in a novel and innovative application niche.
  • the construction procedure, as well as the elements that make up the present invention, are clearly shown and detailed in the present description and drawings, which are included to illustrate the invention in a general way and, therefore, should not be considered to limit the present invention.
  • the “comprehensive bamboo construction system” is proposed as a new structurally efficient, economical and sustainable construction system, with a simple construction process, where two innovative features: the short distance assembly of bamboo micro beams (see Figure 5) providing greater resistance, as well as the way of attaching the lower and upper layers of mesh in a zigzag to generate a pretension effect as illustrated in the Figure 10, and on the other hand, the use of enclosure chains, joists and reinforcements made of bamboo, configured to load, bind, and hold the elements to form a structure.
  • the construction process begins with the first innovation and is the result of the “assembly” of micro bamboo beams horizontally and vertically, generating assembled bamboo boards (see Figure 5) according to the required dimensions, observing in all cases the envelope of all faces of the board with sections of hexagonal mesh (see Figures 11 and 11') and to keep both sections of the mesh held in place, they are fixed using wire (E) and/or tape and/or plastic fastening belts (E ') around the entire perimeter of the assembled bamboo board (see Figure 9); Subsequently, “the second and most important innovation in the process” is carried out, where, as previously described, cable, wire and/or tape is used, where a knot is also made on the starting header.
  • Said cable is interwoven in a zigzag manner and in the longitudinal direction of the board (see Figure 10), ensuring that said cable passes over the filaments of the lower and upper layers of hexagonal mesh, at the end of passing the wire, tape or the cable for each of the frames, a force is applied to it and it is tensioned (12') subsequently and with BII1304194C8-PCT1298 - 9 - the purpose of maintaining the tension force is tied and a second knot is generated, as a stop on the finishing head, ensuring permanent tension.
  • the previously mentioned zigzag interweaving maneuver is carried out continuously without interruption on each vertical line of longitudinal squares of the board (see Figure 10), where said mechanical tension effect directly affects the filaments of the mesh layers, generating tension.
  • enclosure chains (6) made up of two parallel bamboo culms connected to each other, which can range from 30 to 90 centimeters by threaded and screwed rods that protrude at least 50 centimeters; These rods allow connecting downwards with the walls and upwards with the slabs, thus preventing their displacement.
  • a third innovation consists of the use of two parallel bamboo culms connected to each other, which can range from 30 to 90 centimeters by threaded rods screwed at their ends (5) whose function will be as support joists for the slabs.
  • a fourth innovation consists of the use of two bamboo culms and a plurality of threaded steel rods that, vertically in a zig zag manner, connect the upper culm to the lower culm, forming an armor that will allow large gaps to be bridged.
  • the tensile effect on the board makes it self-supporting, that is, it allows it to remain stable, and where the support structure, in the case of walls and/or slabs, must have with anchors or holding rods (14) that bend over prestressed bamboo microbeam boards (see Figure 15), thus avoiding horizontal displacement;
  • a containment formwork (16) is used to prevent the mortar from spilling, and subsequently, the mortar is poured onto the boards;
  • the process results in a “Prestressed bamboo Micro Beam Board Slab”.
  • the integral bamboo construction system of the present invention advantageously uses renewable, low-impact materials as a structural element, generating a “sustainable” construction system, being also capable of being used on any traditional construction system.
  • the integral bamboo construction system in its slab form, advantageously presents outstanding structural rigidity, which cushions the bending effect.
  • the integral bamboo system can be used to form a roof structure that, depending on the design conditions of each project, can be flat slabs or inclined slabs.
  • the prestressed bamboo micro beam boards prior to pouring the mortar, can be placed on the formwork.
  • BII1304194C8-PCT1298 - 10 - polystyrene sheets, mineral wool, pellets in order to cushion the temperature gradient and/or reduce the self-weight of the slab.
  • the present invention allows the application of a special release agent arranged on the surface of the formwork that will prevent it from adhering to the formwork, and if the design requires it, replace the concrete with a synthetic mortar of polyurethane foam, reinforced earth, resins, cellulose paste, in order to cushion the temperature gradient, isolate noise and reduce its own weight. of the structure.
  • the system of the present invention can be installed on any foundation system, with the condition that said foundation considers drown in their entire length, anchors or rods with an exposed length between 40 and 120 cm, and with a minimum separation between them between 30 and up to 90 cm.
  • the prestressed bamboo microbeam boards, particularly in their form of reinforced walls the mortar can be cast using formwork, or thrown manually or by mechanical means for its application, without any limitation.
  • the mortar to be used can be any selected from the group that includes concrete, mortar, calcrete, clay, reinforced earth, combinations thereof and/or similar.
  • the purpose of the diagonal compression tests of WALLS carried out is to obtain the design resistant shear stress (v*) and, on the other hand, the purpose of the compression test of PILES carried out is to obtain the compression resistance ( f*m);
  • compression tests were carried out on concrete cylinders used for the manufacture of piles and walls using the integral bamboo system according to the present invention to determine the compression resistance at 7, 14 and 28 days.
  • the maximum nominal size of the aggregate (mm) is 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

The present invention relates to an integrated bamboo construction system, the main structural reinforcement element of which is a renewable material, wherein sustainability is achieved by replacing steel rebar with bamboo canes, slats or strips, from which boards made of bamboo micro beams are produced and which are reinforced with hexagonal meshes to which a continuous and/or constant tensioning force is applied, thereby generating prestressed bamboo micro-beam boards. This allows the construction of walls, floors or structural elements that are improved with the application of concrete and/or natural or synthetic mortars that may replace concrete, advantageously increasing the mechanical properties thereof, especially capacity to withstand and/or resist bending, and both simple and axial load-bearing capacity with respect to existing masonry walls.

Description

BII1304194C8-PCT1298 - 1 - SISTEMA INTEGRAL DE BAMBÚ PARA CONSTRUCCIÓN Campo de la Invención La presente invención está relacionada con el campo de estructuras, edificaciones e ingeniería civil. En particular, la presente invención refiere a un sistema integral a base de bambú que puede emplearse en la construcción de edificaciones. Antecedentes de la Invención El uso del bambú, particularmente como elemento estructural es ampliamente conocido; se sabe que, desde que existe la necesidad de protegerse de las condiciones ambientales, así como de ataques de animales e insectos, o incluso, como herramienta o conjunto auxiliar para una pluralidad de procesos, se han desarrollado diferentes tecnologías con base en dicho material. Los Romanos, por ejemplo, utilizaron gran número de técnicas innovadoras para soportar el peso del concreto, reduciendo la carga que debían soportar estructuras de grandes dimensiones. Un antecedente adicional dentro del estado de la técnica, del año 1848, el inventor francés Joseph Luois Lambot construyó botes, maceteros, asientos con un material que llamó “Ferciment”, Patentado bajo el número V8523. A principios de los años cuarenta, el Ingeniero Italiano Pier Luigi Nervi retomó la idea original de Lambot, y observó que, al reforzar el concreto con capas de mallas de alambre, el material resultante presentaba características mecánicas de gran resistencia al impacto; esto dio pie y/o se considera como precursor del material hoy en día conocido como “ferrocemento.” El Ferrocemento es un material con una pluralidad de usos y aplicaciones, como por ejemplo, en barcos, silos, piscinas, canales, etc.; el ferrocemento es un tipo de hormigón armado de pared delgada comúnmente construido de mortero de cemento hidráulico reforzado con capas estrechamente separadas de tela metálica continua y de tamaño relativamente pequeña. La malla puede estar hecha de metal u otros materiales convenientes”, y “de aquí se desprende la idea de emplear capas de malla para brindar rigidez a una estructura”. Por otro lado, en el año 1888 fue patentado el “concreto presforzado” por Monier C.F.W. Doehring, quien expuso claramente, la idea de la precompresión. Después de los fracasos debido a la baja calidad de los materiales, la idea del concreto pre comprimido no fue retomado y/o empleado nuevamente sino hasta 1928, cuando el ingeniero francés, Eugene Freyssinet, demostró que el uso de materiales de alta resistencia era una BII1304194C8-PCT1298 - 2 - condición predominante y necesaria para el futuro de la construcción; adicionalmente, Freyssinet introdujo y demostró el comportamiento plástico del concreto, permitiendo, desde entonces, distinguir entre deformaciones por contracción y fluencia; desarrolló una armadura de acero de alta calidad, que era pretensada cercano a su límite crítico. Con base en lo anterior, es que se considera a Eugene Freyssinet, como el padre del concreto presforzado. Con ello, es claro que el concreto presforzado emplea el tensando/pretensado del acero de alta resistencia, a fin de inducir esfuerzos de compresión y distribuirlos en toda la sección de concreto. En 1902, August Perret diseñó y construyó un edificio de apartamentos en París, utilizando las aplicaciones qué él llamó "sistema trabeated para el concreto reforzado". Dicho sistema fue ampliamente adoptado, influyendo profundamente en el proceso de construcción basado en concreto, por varias décadas. Por su parte, las “losas aligeradas bidireccionales” son losas de hormigón armado, a las cuales se les ha retirado determinada cantidad de material, creando vacíos internos y consecuentemente disminuir el peso general de la losa. Posterior a la segunda guerra mundial, se desarrollaron e implementaron los primeros procesos de lo que hoy se conoce como “sistemas de vigueta y bovedilla”. una variante adicional, más reciente consiste en tipo de losa conocido como panel W. Por otro lado, es conocido, dentro del arte previo, por ejemplo, la patente MX 2011003620 A, la cual describe un sistema que emplea tramos de varas de bambú de diámetros menores a 3 cm., sin alteración de la sección cilíndrica de dichas varas de bambú que, como es sabido, el acomodo natural de las fibras del bambú, es decir, paralelas a su eje, le brindan gran capacidad para soportar cargas a tracción y compresión; en dicho armado de retículas, donde no se altera su forma cilíndrica, se emplea una malla hexagonal que se le aplica una serie de nudos a lo largo de la malla a fin de tensarla. Este sistema funciona eficientemente para construir “muros y columnas” de carga, normalmente sujetas a compresión-tracción; sin embargo, cuando desea emplearse para construir losas macizas, resulta menos eficiente, debido a que entre otras cosas, al colocar horizontalmente un tramo de bambú ocurren dos reacciones: en primer lugar, derivado a su forma cilíndrica, se amplía un efecto mecánico de torsión, esto es, tenderá a girar (2); y, por otro lado, tenderá a flexionarse (4), lo que puede provocar y/o generar fisuras en el concreto, lo cual es un problema sumamente relevante para una losa. En sentido estricto, una varilla cilíndrica erguida verticalmente (1) es altamente eficiente, siendo que puede soportar de 7 a 10 veces los efectos de cargas a compresión, no obstante, cuando se coloca “horizontalmente” es susceptible a efectos mecánicos de torsión (2); adicional a lo anterior, si sobreponemos perpendicularmente dos varillas cilíndricas (3), su punto de contacto es mínimo dificultando la fijación de una con respecto a la otra, por tanto, es claro que el sistema descrito en la patente MX 2011003620 A. no es eficiente y/o implica complicaciones relevantes para construir losas. BII1304194C8-PCT1298 - 3 - Sumario de la Invención Por tanto, un objeto de la presente invención es proporcionar un sistema integral de bambú para construcción de muros, losas, cadenas, trabes, armaduras y cualquier elemento que sirva como estructura de soporte en edificaciones con diversas aplicaciones. Es otro objeto de la presente invención proporcionar un sistema constructivo de bajo impacto ambiental y sustentable. Es otro objetivo de la presente invención proporcionar tableros de micro vigas de bambú pretensados que permitan edificar estructuras más eficientes, donde se sustituyen las varillas de acero por el empleo de reglillas de bambú ensambladas y pretensadas como refuerzo estructural aportando resistencia, reducción de peso, estabilidad, amortiguamiento al efecto de flexión y sustentabilidad colaborando para soportar las cargas generadas por efectos de carga viva, carga muerta, clima; viento, lluvia, granizo, nevadas, calor, etc. Un objetivo adicional de la presente invención es que, para aportar mayor resistencia a las micro vigas de bambú, unir al menos dos reglillas de bambú para conformar una micro viga de bambú reforzada. Otro objetivo de la presente invención emplear el tablero de micro vigas de bambú pretensada como estructura de refuerzo en techumbres de un sistema constructivo y emplear dicho tablero de micro vigas de bambú pretensada como estructura de refuerzo en muros de un sistema constructivo. Un objeto adicional de la presente invención es emplear los tableros de micro vigas de bambú pretensado como complemento de un sistema constructivo, en donde se emplea concreto hidráulico y en caso de que el diseño lo permita, éste se puede sustituir por mortero, barro, tierra compactada, potencializando la aplicación del sistema, así como reducir el impacto ambiental a partir de los materiales comunes empleados en la construcción. Un objeto adicional de la presente invención es emplear los tableros de micro vigas de bambú pretensados como un complemento de otros sistemas de construcción sustentables, como son los muros de bambú, muros de madera, muros piedra, muros de barro o tierra compactada. Otro objetivo de la presente invención es emplear culmos de bambú como elementos de refuerzo para cadenas de cerramiento, viguetas, y armaduras. Un objetivo adicional de la presente invención es emplear los tableros de micro vigas de bambú pretensados como un sistema de construcción, en donde su fabricación genera valor agregado al cultivo de bambú. Un objetivo adicional de la presente invención es emplear los paneles de micro vigas de bambú pretensados como un sistema de construcción, en donde el proceso de fabricación se puede realizar en taller, abatiendo costos de fletes y desperdicios en obra. BII1304194C8-PCT1298 - 4 - Breve Descripción de las Figuras La Figura 1 representa la forma como soporta una carga vertical simple un culmo de bambú, el efecto de torsión mecánica de un culmo de bambú horizontal, el punto de contacto entre dos culmos de bambú horizontales, así como la forma en que puede flexionarse un culmo de bambú horizontal cuando se le aplica una carga simple y el efecto torsión mecánica. La Figura 2 representa una cadena de cerramiento, una vigueta y una armadura fabricados con bambú. La Figura 3 representa un culmo de bambú en corte, la forma como se fracciona en tiras (reglillas), así como el detalle de una reglilla de bambú. La Figura 4 representa una reglilla de bambú longitudinal y una reglilla de bambú transversal, una cadena de cerramiento, así la forma como se ubican los cortes de ensamble de la misma. La Figura 5 muestra un tablero ensamblado, conformado por una pluralidad de reglillas longitudinales y transversales. La Figura 6 muestra dos capas de malla hexagonal La Figura 7 representa dos tramos de malla hexagonal idénticos y un tablero de micro vigas de bambú previo a su ensamble. La Figura 8 ilustra un detalle de forma como se ensamblan las reglillas de bambú. La Figura 9 representa la forma de sujetar perimetralmente las mallas hexagonales sobre el perímetro de un tablero de micro vigas de bambú ensamblado La Figura 10 muestra la forma como se entreteje en zig zag entre las capas de malla el alambre, cinta o cable La Figura 11 representa el detalle, en corte, del paso del alambre, cinta o cables en zigzag, sujetado desde la cabecera de arranque, pasando la malla superior cruzando el cuadro del tablero, pasando la malla inferior y volviendo a subir sobre la malla superior, repitiendo la maniobra hasta llegar al otro extremo del tablero, asimismo se muestra la forma de aplicar la fuerza de tensión antes de amarrar el alambre sobre la cabecera de remate, la cinta o el cable para mantener la tensión en dicho elemento. La Figura 12 representa un tablero de micro vigas de bambú pretensado. La Figura 13 muestra los componentes necesarios que conforman un sistema integral de bambú para construcción común. La Figura 14 ilustra dos muros con sus respectivas cadenas de cerramiento, sobre los que se habilita una cimbra que servirá de soporte para insertar un tablero de micro vigas de bambú pretensado. La Figura 15 representa la manera de sujetar un tablero de micro vigas de bambú pretensado a los muros de soporte. La Figura 16 muestra una losa de concreto terminada soportada por muros de mampostería. BII1304194C8-PCT1298 - 5 - La Figura 17 representa el sistema integral de bambú para construcción, empleando una armadura de bambú para salvar grandes claros. La Figura 18 representa una losa de concreto terminada soportada por muros de mampostería. La Figura 19 ilustra los elementos requeridos para instalar un sistema integral de bambú para construcción, soportado por taleros de bambú pretensados, empleando una armadura de bambú. La Figura 20 muestra el sistema integral de bambú para construcción, soportada por taleros de bambú pretensados, empleando una armadura de bambú, ensamblado. La Figura 21 muestra un elemento constructivo, conformado por muros de soporte, armadura y losa terminados bajo el sistema integral de bambú para construcción. Descripción Detallada de la Invención Algunos aspectos de la presente invención se describirán ahora más detalladamente utilizando además referencia a los dibujos adjuntos en los que se muestran algunas modalidades y ventajas de la presente invención. Para un técnico en la materia será evidente que varias modalidades de la invención pueden expresarse de formas diferentes y no deben interpretarse como limitadas a las modalidades aquí descritas; más bien, estas modalidades ejemplares se proporcionan para que esta invención sea clara y completa, y transmita completamente el alcance de la invención a los expertos en la materia. Por ejemplo, a menos que se indique lo contrario, algo que se describe como primero, segundo o similar no debe interpretarse como un orden particular. Tal como se utiliza en la descripción y en las reivindicaciones adjuntas, las formas singulares "un, uno", "una", "el, la", incluyen referentes plurales a menos que el contexto indique claramente lo contrario. Los diferentes aspectos de la presente invención se refieren a un sistema integral de bambú, que ofrece ventajosamente un arreglo basado en material orgánico, esto es, bambú, para ofrecer un material/componente de construcción con rendimiento/características mecánicas mejoradas. Dentro de la presente solicitud y a fin de evitar cualquier confusión respecto a los términos utilizados en la misma, las varas del bambú se denominan culmos, y cada culmo de bambú está conformado por tamos huecos de forma cilíndrica que, a cada determinada distancia disponen de pequeños nodos o tímpanos que unen y cierran los hueco entre tramos, con diámetros que van desde menos de un centímetro y hasta 20 cm. dependiendo de la especie de bambú. En este mismo sentido, una reglilla de bambú es el resultado de seccionar longitudinalmente un culmo de bambú (8’); dichas reglillas tienen un ancho aproximado de 3 centímetros, una longitud máxima de 6 metros y un grosor de medio centímetro. BII1304194C8-PCT1298 - 6 - Dentro de una muy amplia gama de aplicaciones del bambú, dentro de la presente solicitud se busca utilizar al bambú para la construcción, particularmente, empleando bambúes con diámetros superiores a 5 cm a diferencia de lo existente y conocido dentro del arte previo; por un lado, se ensamblan culmos de bambú horizontalmente que, con variaciones en su separación (5), uso (6) y tipo de refuerzo (7) y por el otro se fracciona la sección cilíndrica de los culmos de bambú en tiras (8’) o reglillas; un experto podrá vislumbrar, con base en las enseñanzas de la presente invención cómo los elementos de bambú agrupados adecuadamente, pueden llegar a ser muy resistentes estructuralmente, y pueden además, ser eficientes mecánicamente y económicos. En el sistema descrito en la presente solicitud, a pesar de su esbeltez, su longitud predomina sobre las otras dos dimensiones, resultando de vital importancia la forma en que una micro viga (9) se ensambla perpendicularmente con otra (10’) del mismo sistema. Esta característica es fundamental para el funcionamiento de la presente invención, debido a que al ser ensambladas las reglillas operan como una micro viga, tal y como se observa en la Figura 8. Asimismo, en la presente solicitud se emplean culmos paralelos conectados entre sí, mediante varillas de acero roscadas (14), sujetadas mediante tuercas y dichos culmos, que operan a manera de cadenas (6), viguetas (5) o armaduras (7). Existen gran número de pruebas de resistencia con resultados favorecedores, que han llevado a algunos especialistas a denominarlo como acero vegetal; dentro de los estudios realizados y que se mostrarán más adelante, con mayor detalle, en la presente solicitud se menciona que “el valor del esfuerzo máximo a “compresión” en laminados de guadua es dependiente de la dirección de las fibras, cuando la compresión es en la misma dirección que la fibra del bambú (1) “resulta entre 7 y 10 veces mayor que el esfuerzo máximo a la compresión, cuando es perpendicular a la fibra”, de lo que puede desprenderse que algunos tramos de bambú no son tan eficientes si reciben cargas perpendiculares a su longitud. La propuesta del “sistema integral de bambú para construcción” tal y como se describe en la presente solicitud, se desarrolla como un sistema constructivo que, mediante el empleo de elementos de bambú ensamblados y reforzados, se pueden construir muros, cadenas, viguetas, armaduras, losas y entrepisos, con ventajas en costo, rapidez, estabilidad, seguridad estructural sobre los sistemas tradicionales pero, principalmente al sustituir varillas de acero por elementos de bambú, un recurso renovable, nuestro sistema se destaca por ser sustentable, dando un giro radical si consideramos que, dependiendo del uso del espacio a construir podemos emplear como argamasa el concreto, mortero o incluso el barro. En aras de mayor claridad, se define como “elemento básico” del sistema de la presente invención, los tableros conformados por reglillas de bambú longitudinales (9) y transversales (10’) cabe resaltar que en atención a las cargas que deba soportar, se pueden emplear varias reglillas de bambú armadas, especificando como “armadas” el resultado de “pegar” por toda su extensión, BII1304194C8-PCT1298 - 7 - longitudinalmente, “al menos dos reglillas de bambú”, donde los enlaces verticales y horizontales ensamblados, funcionarán como “vigas de pequeñas dimensiones” (véase Figura 8), y la relación de “esbeltez” se reduce drásticamente esto es, la “longitud máxima” del enlace entre vigas será de cuatro a diez veces más que su altura, donde la altura promedio de las “micro vigas de bambú” es de 2.0 a 5 cm, y en este punto, se hará referencia a las mismas como “micro vigas” longitudinales y transversales, considerado siempre las longitudinales a las de mayor longitud (9), que las transversales (10’) éstas pueden ir por debajo de las longitudinales o bien se pueden intercalar arriba y por debajo que, para facilitar su ensamble se elabora una pluralidad de cortes de ensamble equidistantes (10’), el efecto de ensamble sobre las micro vigas de bambú aporta dos mejoras: en primer lugar, la rigidez en donde se incrementa ventajosamente su resistencia a la flexión y, por otro lado, asegura que se mantengan en su sitio/ubicación que, una vez ensambladas, se transforman en un “tablero de micro vigas de bambú ensamblado auto portante” tal y como puede observarse en la Figura 5. El siguiente proceso inicia cuando se cubren ambas caras del tablero con dos tramos de malla hexagonal (12) y (12’), y que para sujetarlos entre si al tablero se amarran/sujetan con un alambre o cinta (E) y/o con cinturones sujetadores plásticos (E’), a lo largo del perímetro exterior del tablero, tal y como se ilustra en la Figura 9; acto seguido, se lleva a cabo “la segunda y más importante innovación dentro del proceso de la presente invención”, donde se emplea alambre, cinta y/o cable y se entreteje a manera de zigzag, particularmente en sentido longitudinal del tablero (véase Figura 12) cuidando que, durante este proceso, se pase por encima de los filamentos de las capas inferior y superior de malla hexagonal (11 y 11’); al finalizar el paso del alambre, la cinta y/o el cable por cada uno de los cuadros, se aplica una fuerza de tensión constante (12’), con la finalidad de mantener la fuerza de tensión en el alambre, cinta y/o cable, asegurando el efecto de tensión permanentemente. La maniobra de entretejido en zigzag previamente referida se realiza de manera continua, es decir, sin interrupción alguna sobre cada línea perpendicular a los cuadros longitudinales del tablero, tal y como se ilustra en la Figura 11 dando como resultado tableros de micro vigas de bambú pretensados (véase Figura 12), en donde el funcionamiento estructural ventajosamente aporta mejoras radicales para su empleo como tableros de micro vigas de bambú pretensados que, pueden funcionar como muros, tal y como se observa en la Figura 19. En el caso de losas, los tableros (13) se desplantan sobre cadenas de cerramiento (6) y se sujetan sobre los elementos estructurales de soporte, que pueden ser mamposterías, muros (15) columnas o bien tableros de bambú, con la intensión de salvar claros menores a 5 metros, se plantea instalar sobre las cadenas de cerramiento (6) y de manera perpendicular vigas (5) en ambos bordes del tablero de losa (13), tal y como se ilustra en la Figura 14. Cuando los claros a salvar son mayores a 5 metros, se emplean, como soporte longitudinal, armaduras de bambú (7) que se montan sobre las cadenas de cerramiento (6), tal y como se observa en la Figura 19. BII1304194C8-PCT1298 - 8 - posteriormente, se procede a habilitar una cimbra (16) o bien, puede considerarse sustituir la cimbra por esterilla de bambú, misma que quedaría como acabado aparente de plafón. Tanto en muros como en losas, debe considerarse la instalación de tubería y ductos de las instalaciones correspondientes, para posteriormente verter sobre el tablero el argamasa especificada conforme a diseño, quedando ahogadas y una vez que concluya el tiempo de fraguado, el sistema quedará terminado. Cabe destacar que en el contexto de la presente invención, el argamasa puede ser cualquiera seleccionado del grupo que comprende concreto, mortero, barro, tierra compactada y una vez logrado el fraguado de la argamasa, dicha argamasa se convierte en un “sistema integral de bambú para construcción” tal y como se describe en la presente invención y como se ilustra en la Figura 21, y que brinda una solución ventajosa, que además categoriza el sistema de la presente invención en un nicho de aplicación novedoso e innovador. El procedimiento constructivo, así como los elementos que conforman a la presente invención se muestran y detallan claramente en la presente descripción y dibujos, mismos que se incluyen para ilustrar a la invención de una manera general y, por tanto, no deben considerarse para limitar a la presente invención. Dentro de un amplio antecedente de arte previo con los Sistemas de constructivos tradicionales, es que se plantea el “sistema integral de bambú para construcción”, como un nuevo sistema constructivo estructuralmente eficiente, económico y sustentable, con un proceso constructivo simple, donde se aportan dos características innovadoras: el ensamble a corta distancia de micro vigas de bambú (véase la Figura 5) aportando mayor resistencia, así como la manera de sujetar en zigzag las capas inferior y superior de malla para generar un efecto de pretensión como se ilustra en la Figura 10, y por otro lado, el empleo de cadenas de cerramiento, viguetas y armaduras fabricadas con bambú, configuradas para cargar, ligar, sujetar los elementos para conformar estructura. El proceso de construcción inicia con la primer innovación y es la resultante del “ensamble” de micro vigas de bambú horizontal y verticalmente, generando tableros de bambú ensamblados (véase Figura 5) conforme a las dimensiones requeridas, observando en todos los casos la envoltura de todas las caras del tablero con tramos de malla hexagonal (véase Figuras 11 y 11’) y para mantener ambos tramos de la malla sujetos en su sitio, se fijan empleando alambre (E) y/o cinta y/o cinturones sujetadores plásticos (E’) en torno a todo el perímetro del tablero de bambú ensamblado (véase Figura 9); posteriormente, se lleva a cabo “la segunda y más importante innovación en el proceso”, en donde, tal y como se describió previamente, se emplea cable, alambre y/o cinta, en donde además se realiza un nudo sobre la cabecera de arranque; dicho cable se va entretejiendo a manera de zigzag y en sentido longitudinal del tablero (véase Figura 10) asegurándose que dicho cable pase por encima de los filamentos de las capas inferior y superior de malla hexagonal, al finalizar de pasar el alambre, la cinta o el cable por cada uno de los cuadros, se le aplica una fuerza y se tensa (12’) posteriormente y con BII1304194C8-PCT1298 - 9 - la finalidad de mantener la fuerza de tensión se amarra y se genera un segundo nudo, a manera de tope sobre en la cabecera de remate, asegurando una tensión permanentemente. La maniobra de entretejido en zigzag previamente referida se realiza de manera continua sin interrupción sobre cada línea vertical de cuadros longitudinales del tablero (véase Figura 10), en donde dicho efecto mecánico de tensión afecta directamente a los filamentos de las capas de malla, generando tensión sobre ambas caras de la malla, dando como resultado tableros de micro vigas de bambú pretensados (véase Figura 12), lo cual aporta mejoras radicales, sustanciales y ventajosas para su empleo, particularmente, a fin de generar el enlace entre muros y losas, utilizando cadenas de cerramiento (6) conformadas por dos culmos de bambú paralelos conectados entre sí, que pueden ir desde los 30 hasta los 90 centímetros por varillas roscadas y atornilladas que sobresalen al menos 50 centímetros; dichas varillas permiten ligar de forma descendente con los muros y de forma ascendente con las losas, evitando así su desplazamiento. Por otro lado, una tercera innovación consiste en el empleo de dos culmos de bambú paralelos conectados entre sí, que pueden ir de los 30 hasta 90 centímetros por varillas roscadas y atornilladas en sus extremos (5) cuya función será como viguetas de soporte pata las losas. Una cuarta innovación consiste en el empleo de dos culmos de bambú y una pluralidad de varillas de acero roscadas que, de manera vertical en zig zag conectan el culmo superior al culmo inferior conformando una armadura que permitirá salvar grandes claros. tal y como se mencionó previamente en la presente solicitud, el efecto tensor sobre el tablero lo hace auto-portante, es decir, le permite mantenerse estable, y en donde la estructura de soporte, para el caso de muros y/o losas deberá contar con anclas o varillas de sujeción (14) mismas que se doblaran sobre tableros de micro vigas de bambú pretensados ( véase Figura 15) evitando así el desplazamiento horizontal; en cualquiera de los casos se emplea una cimbra de contención (16) misma que evita que la argamasa se derrame, y posteriormente, se procede a verter sobre los tableros el argamasa; cuando concluye el tiempo de fraguado, el proceso da como resultado una “Losa de tablero de micro vigas de bambú pretensada”. El sistema integral de bambú para construcción de la presente invención, ventajosamente emplea como elemento estructural materiales renovables, de bajo impacto, generando un sistema constructivo “sustentable”, siendo además capaz de utilizarse sobre cualquier sistema constructivo tradicional. El sistema integral de bambú para construcción, en su modalidad de losas, presenta ventajosamente una rigidez estructural sobresaliente, que amortigua el efecto de flexión. En una modalidad de la invención, puede emplearse el sistema integral de bambú para formar estructura para techumbres que, dependiendo de las condiciones de diseño de cada proyecto pueden ser losas planas, losas inclinadas. En otra modalidad de la invención, en donde los tableros de micro vigas de bambú pretensadas, previo a verter la argamasa pueden colocarse sobre la cimbra BII1304194C8-PCT1298 - 10 - láminas de poliestireno, lana mineral, pellets, a fin de amortiguar el gradiente de temperatura y/o disminuir el peso propio de la losa. En una modalidad adicional de la invención, en donde los tableros de micro vigas de bambú pretensados, particularmente en su modalidad de losas, la presente invención admite la aplicación de un desmoldante especial dispuesto sobre la superficie de la cimbra que evitará que se adhiera a la cimbra, y en caso de que el diseño lo requiera sustituir el concreto por una argamasa sintética de espuma de poliuretano, Tierra armada, Resinas, pasta de celulosa , con la finalidad de amortiguar el gradiente de temperatura, aislar el ruido y disminuir el peso propio de la estructura. En una modalidad adicional de la invención, en donde los tableros de micro vigas de bambú pretensados, particularmente en su modalidad de muros reforzados, el sistema de la presente invención puede instalarse sobre cualquier sistema de cimentación, con la condición de que, dicha cimentación considere ahogar en toda su extensión, anclas o varillas con una longitud expuesta entre los 40 y 120 cm, y a una separación mínima entre ellas entre 30 y hasta 90 cm. en una modalidad adicional de la invención, en donde los tableros de micro vigas de bambú pretensados, particularmente en su modalidad de muros reforzados, el argamasa puede colarse empleando cimbras, o lanzar manualmente o bien, por medios mecánicos para su aplicación, sin limitación alguna a los medios descritos o sugeridos en la presente solicitud, sino por el contrario, aquellos medios disponibles y/o utilizados en la actualidad; y por otro lado, en una modalidad de la presente invención, el argamasa a emplear puede ser cualquiera seleccionado del grupo que comprende concreto, mortero, calcreto, barro, tierra armada, combinaciones de los mismos y/o similares. Muchas modificaciones y otras modalidades de la invención le vendrán a la mente a un experto en la técnica a la que pertenece la invención, que tiene el beneficio de las enseñanzas presentadas en las descripciones anteriores y los dibujos asociados. Por lo tanto, debe entenderse que la invención no debe limitarse a las modalidades específicas y ejemplares descritas, sino que se pretende que las modificaciones y otras modalidades estén incluidas dentro del alcance de las reivindicaciones adjuntas. Aunque los términos específicos se emplean aquí, se usan solo en un sentido genérico y descriptivo y no con fines limitativos. Asimismo, debe entenderse que los materiales con los pueden fabricarse los distintos componentes que comprende la invención descrita en el presente documento, las geometrías, dimensiones, disposiciones y demás elementos pueden variar sin apartarse del alcance y espíritu de la invención y por lo tanto, las modalidades referidas no deben considerarse limitativas. EJEMPLOS En este sentido y a fin de validar la ventaja técnica presente en la invención sistema integral de bambú, se ha llevado a cabo una prueba preliminar experimental, auxiliándose del BII1304194C8-PCT1298 - 11 - laboratorio del Instituto Mexicano del Cemento del Concreto (IMCYC); la finalidad de las pruebas experimentales realizadas permiten caracterizar a la invención en sentido de su funcionamiento y rendimiento, permitiendo demostrar, de manera muy favorecedora, las claras ventajas de incorporar el sistema descrito a lo largo de la presente solicitud, y aplicarlo dentro del ámbito de la construcción. Dentro de dichas pruebas, se emplearon ocho reglillas longitudinales de 3 metros 18 reglillas perpendiculares de 1.20 metros, y en peralte de losa de 12 cm, además de emplear como soporte lateral semiviguetas de culmos de bambú en los extremos longitudinales. Asimismo, se llevaron a cabo pruebas conforme a la Normas Técnicas Complementarias del Reglamento de Construcciones para el Distrito Federal sobre 9 muretes y 9 pilas con nuestro sistema. En particular, los ensayos a compresión diagonal de MURETES llevados a cabo tienen como finalidad obtener el esfuerzo cortante resistente de diseño (v*) y, por otro lado el ensaye a compresión de PILAS llevados a cabo tienen como finalidad obtener la resistencia a compresión (f*m); asimismo, se llevaron a cabo ensaye a compresión de cilindros de concreto utilizados para la fabricación de pilas y muretes utilizando el sistema integral de bambú de acuerdo con la presente invención para determinar la resistencia a compresión a 7, 14 y 28 días. Ambas Pilas y Muretes fueron fabricadas con concreto y refuerzos de bambú, y si bien, no se establece un método normalizado para pilas y muretes de concreto reforzado con bambú tal y como se maneja y/o describe en la presente descripción, el método utilizado fue el especificado en las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Mampostería del Reglamento de Construcciones de la Ciudad de México y los Estándares NMX-C-464-ONNCCE-2010. Experimentación 1 Tipo de pieza Pilas A de 12 cm x 40 cm x 60 cm Muretes A de 12 cm x 40 cm x 40 cm Pilas B de 12 cm x 40 cm x 60 cm Preparación de Pilas y Muretes Los muretes y pilas se elaboraron en las instalaciones del laboratorio por personal del IMCYC, con la estructura de bambú diseñada por el solicitante y tomando como base el proceso, materiales y especificaciones tal y como se ha descrito a lo largo de la presente descripción. Para el concreto de las piezas se utilizó una mezcla f’c = 200 kg/cm2. El cálculo del esfuerzo cortante de diseño (v*) y la resistencia de diseño a compresión (f*m) como muretes y pilas, se BII1304194C8-PCT1298 - 12 - calcula de acuerdo con lo establecido en el Estándar NMX-C-464-ONNCCE-2010 y, bajo la siguiente fórmula: Resistencia de diseño a compresión: en donde: f*m = Resistencia de diseño a compresión fm = Promedio de la resistencia de las pilas ensayadas y corregidas por esbeltez Cm = coeficiente de variación de la resistencia de las pilas ensayadas Los ensayos para determinar la resistencia de diseño a compresión (f*m) en pilas y el ensayo para determinar el esfuerzo cortante de diseño (v*) en muretes, se realizaron de acuerdo con lo establecido en el Estándar NMX-C-464-ONNCCE-2010 y los resultados obtenidos se ilustran en las Tablas 1-5, mostradas a continuación. Tabla 1 – RESUMEN DE RESULTADOS DE ENSAYES Resumen de Conce to
Figure imgf000014_0001
BII1304194C8-PCT1298 - 13 - Tabla 2 – ENSAYE A COMPRESIÓN DE PILAS Factor Fm Lar o Es esor Altura Área Relación Car a F*m
Figure imgf000015_0001
f m = Resistencia de diseño a compresión de la mampostería fm = Es el promedio de la resistencia de las pilas ensayadas y corregidas por esbeltez Cm = 0.15 (es el coeficiente de variación de la resistencia de las pilas ensayadas) ^^ ^^ Fórmula: ^^ ∗ ^^ = 1+2.5 ^^ ^^ Tabla 3 – ENSAYE A COMPRESION DIAGONAL DE MURETES Largo Alto espesor Diagonal Área Carga v V* ID
Figure imgf000015_0002
BII1304194C8-PCT1298 - 14 - En donde: v* = Esfuerzo cortante resistente de diseño v = Es el promedio de los esfuerzos resistentes de los muretes ensayados Cv = (Coeficiente de variación de los esfuerzos resistentes de los muretes ensayados) Fórmula: ^^ ∗= ^^ 1+2.5 ^^ ^^ Tabla 4 – ENSAYE A COMPRESIÓN DE PILAS Factor Fm Lar o Es esor Altura Área Relación Car a F*m
Figure imgf000016_0001
En donde: f*m = Resistencia de diseño a compresión de la mampostería fm = Es el promedio de la resistencia de las pilas ensayadas y corregidas por esbeltez Cm = (es el coeficiente de variación de la resistencia de las pilas ensayadas) ^^ ^^ Fórmula: ^^ ∗ ^^ = 1+2.5 ^^ ^^ Tabla 5 – RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO Resistencia Resistencia Masa
Figure imgf000016_0002
BII1304194C8-PCT1298 - 15 - En donde La resistencia especificada (kg/cm2) es de 200; La resistencia especifica (MPa) es de 19.6 El tamaño máximo nominal del agregado (mm) es de 20. Experimentación 2 Tipo de pieza Pilas de 12 cm x 40 cm x 60 cm. Muretes de 12 cm x 40 cm x 40 cm Preparación de Pilas y Muretes Los muretes y pilas se elaboraron en las instalaciones del laboratorio por personal del IMCYC, con la estructura de bambú diseñada por el solicitante y tomando como base el proceso, materiales y especificaciones tal y como se ha descrito a lo largo de la presente descripción. Para el concreto de las piezas se utilizó una mezcla f’c = 200 kg/cm2. El cálculo del esfuerzo cortante de diseño (v*) y la resistencia de diseño a compresión (f*m) como muretes y pilas, se calcula de acuerdo con lo establecido en el Estándar NMX-C-464-ONNCCE-2010 y, bajo la siguiente fórmula: en donde: f*m = Resistencia de diseño a compresión fm = Promedio de la resistencia de las pilas ensayadas y corregidas por esbeltez Cm = coeficiente de variación de la resistencia de las pilas ensayadas Los ensayos para determinar la resistencia de diseño a compresión (f*m) en pilas y el ensayo para determinar el esfuerzo cortante de diseño (v*) en muretes, se realizaron de acuerdo con lo establecido en el Estándar NMX-C-464-ONNCCE-2010 y los resultados obtenidos se ilustran en las Tablas 6-9, mostradas a continuación. BII1304194C8-PCT1298 - 16 - Tabla 6 – RESUMEN DE RESULTADOS DE ENSAYES Resumen de Conce to
Figure imgf000018_0001
Tabla 7 – ENSAYE A COMPRESIÓN DE PILAS Factor Fm Lar o Es esor Altura Área Relación Car a F*m
Figure imgf000018_0002
En donde: f*m = Resistencia de diseño a compresión de la mampostería fm = Es el promedio de la resistencia de las pilas ensayadas y corregidas por esbeltez Cm = 0.15 (es el coeficiente de variación de la resistencia de las pilas ensayadas) Fórmula: ^^ ∗ ^^ = ^^ ^^ 1+2.5 ^^ ^^ BII1304194C8-PCT1298 - 17 - Tabla 8 – ENSAYE A COMPRESION DIAGONAL DE MURETES v Lar o Alto es esor Dia onal Área Car a V*
Figure imgf000019_0001
En donde: v* = Esfuerzo cortante resistente de diseño v = Es el promedio de los esfuerzos resistentes de los muretes ensayados Cv = 0.20 (Coeficiente de variación de los esfuerzos resistentes de los muretes ensayados) ^^ Fórmula: ^^ ∗= 1+2.5 ^^ ^^
BII1304194C8-PCT1298 - 1 - INTEGRAL BAMBOO SYSTEM FOR CONSTRUCTION Field of the Invention The present invention is related to the field of structures, buildings and civil engineering. In particular, the present invention refers to an integral system based on bamboo that can be used in the construction of buildings. Background of the Invention The use of bamboo, particularly as a structural element, is widely known; It is known that, since there has been a need to protect itself from environmental conditions, as well as from attacks by animals and insects, or even as a tool or auxiliary set for a plurality of processes, different technologies have been developed based on said material. The Romans, for example, used a large number of innovative techniques to support the weight of concrete, reducing the load that large structures had to support. An additional precedent within the state of the art, from the year 1848, the French inventor Joseph Luois Lambot built boats, flower pots, and seats with a material he called “Ferciment”, Patented under the number V8523. At the beginning of the forties, the Italian Engineer Pier Luigi Nervi returned to Lambot's original idea, and observed that, by reinforcing the concrete with layers of wire mesh, the resulting material presented mechanical characteristics of great resistance to impact; This gave rise to and/or is considered a precursor to the material today known as “ferrocement.” Ferrocement is a material with a plurality of uses and applications, such as in ships, silos, swimming pools, canals, etc.; Ferrocement is a type of thin-walled reinforced concrete commonly constructed of hydraulic cement mortar reinforced with closely spaced layers of continuous, relatively small-sized wire mesh. The mesh can be made of metal or other suitable materials,” and “hence the idea of using layers of mesh to provide rigidity to a structure.” On the other hand, in 1888 “prestressed concrete” was patented by Monier CFW Doehring, who clearly explained the idea of precompression. After failures due to poor quality materials, the idea of pre-compressed concrete was not taken up and/or used again until 1928, when the French engineer, Eugene Freyssinet, demonstrated that the use of high-strength materials was an option. BII1304194C8-PCT1298 - 2 - predominant and necessary condition for the future of construction; Additionally, Freyssinet introduced and demonstrated the plastic behavior of concrete, allowing, since then, to distinguish between deformations due to contraction and creep; developed a high-quality steel reinforcement, which was prestressed close to its critical limit. Based on the above, Eugene Freyssinet is considered the father of prestressed concrete. With this, it is clear that prestressed concrete uses the tensioning/prestressing of high-strength steel, in order to induce compression forces and distribute them throughout the concrete section. In 1902, August Perret designed and built an apartment building in Paris, using uses of what he called a "trabeated system for reinforced concrete". This system was widely adopted, profoundly influencing the concrete-based construction process, for several decades. For their part, “bidirectional lightened slabs” are reinforced concrete slabs, from which a certain amount of material has been removed, creating internal voids and consequently reducing the general weight of the slab. After the Second World War, the first processes of what are today known as “joist and vault systems” were developed and implemented. An additional, more recent variant consists of a type of slab known as a W panel. On the other hand, it is known, within the prior art, for example, patent MX 2011003620 A, which describes a system that uses sections of bamboo poles of diameters less than 3 cm., without alteration of the cylindrical section of said bamboo sticks which, as is known, the natural arrangement of the bamboo fibers, that is, parallel to its axis, gives it great capacity to withstand tensile loads. and compression; In said assembly of reticles, where its cylindrical shape is not altered, a hexagonal mesh is used to which a series of knots are applied along the mesh in order to tension it. This system works efficiently to build load-bearing “walls and columns”, normally subject to compression-traction; However, when it is intended to be used to build solid slabs, it is less efficient, because among other things, when placing a section of bamboo horizontally, two reactions occur: firstly, derived from its cylindrical shape, a mechanical torsion effect is amplified. , that is, it will tend to rotate (2); and, on the other hand, it will tend to flex (4), which can cause and/or generate cracks in the concrete, which is an extremely relevant problem for a slab. Strictly speaking, a cylindrical rod erected vertically (1) is highly efficient, being that it can withstand 7 to 10 times the effects of compression loads, however, when placed “horizontally” it is susceptible to mechanical torsion effects (2 ); In addition to the above, if we overlap two cylindrical rods (3) perpendicularly, their point of contact is minimal, making it difficult to fix one with respect to the other. Therefore, it is clear that the system described in patent MX 2011003620 A. is not efficient and/or involves relevant complications to construct slabs. BII1304194C8-PCT1298 - 3 - Summary of the Invention Therefore, an object of the present invention is to provide an integral bamboo system for the construction of walls, slabs, chains, girders, reinforcements and any element that serves as a support structure in buildings with various applications. It is another object of the present invention to provide a construction system with low environmental impact and sustainable. It is another objective of the present invention to provide boards of prestressed bamboo microbeams that allow the construction of more efficient structures, where the steel rods are replaced by the use of assembled and prestressed bamboo strips as structural reinforcement, providing resistance, weight reduction, stability. , damping to the effect of flexion and sustainability collaborating to support the loads generated by effects of live load, dead load, climate; wind, rain, hail, snowfall, heat, etc. An additional objective of the present invention is that, to provide greater resistance to the bamboo microbeams, join at least two bamboo strips to form a reinforced bamboo microbeam. Another objective of the present invention is to use the board of prestressed bamboo microbeams as a reinforcement structure in roofs of a construction system and to use said board of prestressed bamboo microbeams as a reinforcement structure in walls of a construction system. An additional object of the present invention is to use the prestressed bamboo micro beam boards as a complement to a construction system, where hydraulic concrete is used and if the design allows it, it can be replaced with mortar, mud, earth. compacted, potentiating the application of the system, as well as reducing the environmental impact from the common materials used in construction. An additional object of the present invention is to use prestressed bamboo microbeam boards as a complement to other sustainable construction systems, such as bamboo walls, wooden walls, stone walls, mud walls or compacted earth. Another objective of the present invention is to use bamboo culms as reinforcing elements for enclosure chains, joists, and reinforcements. An additional objective of the present invention is to use prestressed bamboo microbeam boards as a construction system, where their manufacture generates added value to bamboo cultivation. An additional objective of the present invention is to use the prestressed bamboo microbeam panels as a construction system, where the manufacturing process can be carried out in the workshop, reducing freight costs and waste on site. BII1304194C8-PCT1298 - 4 - Brief Description of the Figures Figure 1 represents the way a bamboo culm supports a simple vertical load, the mechanical torsion effect of a horizontal bamboo culm, the point of contact between two horizontal bamboo culms , as well as the way a horizontal bamboo culm can flex when a simple load is applied and the mechanical torsion effect. Figure 2 represents an enclosure chain, a joist and a truss made of bamboo. Figure 3 represents a bamboo culm in section, the way it is divided into strips (rules), as well as the detail of a bamboo culm. Figure 4 represents a longitudinal bamboo strip and a transverse bamboo strip, an enclosing chain, as well as the way its assembly cuts are located. Figure 5 shows an assembled board, made up of a plurality of longitudinal and transverse rules. Figure 6 shows two layers of hexagonal mesh. Figure 7 represents two identical sections of hexagonal mesh and a board of bamboo microbeams prior to assembly. Figure 8 illustrates a detail of how the bamboo rules are assembled. Figure 9 represents the way to secure the hexagonal meshes on the perimeter of an assembled bamboo microbeam board. Figure 10 shows the way the wire, tape or cable is interwoven in a zig zag between the mesh layers. Figure 11 represents the detail, in section, of the passage of the wire, tape or zigzag cables, fastened from the starting header, passing the upper mesh across the board square, passing the lower mesh and rising again over the upper mesh, repeating the maneuver until reaching the other end of the board, it also shows how to apply the tension force before tying the wire on the finishing header, the tape or the cable to maintain the tension in said element. Figure 12 represents a prestressed bamboo microbeam board. Figure 13 shows the necessary components that make up a common comprehensive bamboo construction system. Figure 14 illustrates two walls with their respective enclosure chains, on which a formwork is enabled that will serve as support to insert a board of prestressed bamboo microbeams. Figure 15 represents the way to fasten a prestressed bamboo microbeam board to the supporting walls. Figure 16 shows a finished concrete slab supported by masonry walls. BII1304194C8-PCT1298 - 5 - Figure 17 represents the integral bamboo construction system, using a bamboo framework to span large spans. Figure 18 represents a finished concrete slab supported by masonry walls. Figure 19 illustrates the elements required to install an integral bamboo construction system, supported by prestressed bamboo stems, using a bamboo truss. Figure 20 shows the integral bamboo construction system, supported by prestressed bamboo poles, using a bamboo frame, assembled. Figure 21 shows a construction element, made up of support walls, reinforcement and slab finished under the integral bamboo construction system. Detailed Description of the Invention Some aspects of the present invention will now be described in more detail using further reference to the accompanying drawings in which some embodiments and advantages of the present invention are shown. It will be apparent to one skilled in the art that various embodiments of the invention may be expressed in different ways and should not be construed as limited to the embodiments described herein; rather, these exemplary embodiments are provided to make this invention clear and complete, and to fully convey the scope of the invention to those skilled in the art. For example, unless otherwise noted, something described as first, second, or similar should not be interpreted as a particular order. As used in the description and the accompanying claims, the singular forms "a", "one", "an", "the", include plural referents unless the context clearly indicates otherwise. The different aspects of the present invention relate to an integral bamboo system, which advantageously offers an arrangement based on organic material, that is, bamboo, to offer a construction material/component with improved mechanical performance/characteristics. Within the present application and in order to avoid any confusion regarding the terms used therein, the bamboo poles are called culms, and each bamboo culm is made up of hollow cylindrical shaped canes that, at each certain distance, have small nodes or tympanums that join and close the gaps between sections, with diameters ranging from less than a centimeter to up to 20 cm. depending on the species of bamboo. In this same sense, a bamboo strip is the result of longitudinally sectioning a bamboo culm (8'); These rules have an approximate width of 3 centimeters, a maximum length of 6 meters and a thickness of half a centimeter. BII1304194C8-PCT1298 - 6 - Within a very wide range of applications of bamboo, this application seeks to use bamboo for construction, particularly, using bamboos with diameters greater than 5 cm, unlike what exists and is known within the prior art; On the one hand, bamboo culms are assembled horizontally, with variations in their separation (5), use (6) and type of reinforcement (7) and on the other hand, the cylindrical section of the bamboo culms is divided into strips (8 ') or rulers; An expert will be able to glimpse, based on the teachings of the present invention, how properly grouped bamboo elements can become very structurally resistant, and can also be mechanically efficient and economical. In the system described in this application, despite its slenderness, its length predominates over the other two dimensions, resulting in the way in which a micro beam (9) is assembled perpendicularly with another (10') of the same system is of vital importance. . This characteristic is fundamental for the operation of the present invention, because when the rules are assembled they operate as a micro beam, as seen in Figure 8. Likewise, in the present application parallel culms connected to each other are used, through threaded steel rods (14), held by nuts and said culms, which operate as chains (6), joists (5) or reinforcements (7). There are a large number of resistance tests with favorable results, which have led some specialists to call it vegetable steel; Within the studies carried out and which will be shown later, in greater detail, in this application it is mentioned that “the value of the maximum “compression” stress in guadua laminates is dependent on the direction of the fibers, when the compression is in the same direction as the bamboo fiber (1) “is between 7 and 10 times greater than the maximum compressive stress, when it is perpendicular to the fiber”, from which it can be deduced that some sections of bamboo are not as efficient if they receive loads perpendicular to their length. The proposal for the “comprehensive bamboo construction system” as described in this application, is developed as a construction system that, through the use of assembled and reinforced bamboo elements, can build walls, chains, joists, reinforcements , slabs and mezzanines, with advantages in cost, speed, stability, structural safety over traditional systems but, mainly by replacing steel rods with bamboo elements, a renewable resource, our system stands out for being sustainable, taking a radical turn if We consider that, depending on the use of the space to be built, we can use concrete, mortar or even clay as mortar. For the sake of clarity, the “basic element” of the system of the present invention is defined as the boards made up of longitudinal (9) and transverse (10') bamboo strips. It should be noted that in view of the loads that must be supported, they are They can use several armed bamboo strips, specifying as “armed” the result of “gluing” along their entire length, BII1304194C8-PCT1298 - 7 - longitudinally, “at least two bamboo strips”, where the assembled vertical and horizontal links will function as “small beams” (see Figure 8), and the “slenderness” ratio is drastically reduced. That is, the “maximum length” of the link between beams will be four to ten times its height, where the average height of “bamboo micro beams” is 2.0 to 5 cm, and at this point, reference will be made to the same as longitudinal and transverse “micro beams”, the longitudinal ones always being considered the longest ones (9), the transverse ones (10') these can go below the longitudinal ones or they can be interspersed above and below which, To facilitate its assembly, a plurality of equidistant assembly cuts (10') are made. The assembly effect on the bamboo micro beams provides two improvements: firstly, the rigidity where its bending resistance is advantageously increased and, On the other hand, it ensures that they remain in place/location and, once assembled, transform into a “self-supporting assembled bamboo micro beam board” as can be seen in Figure 5. The following process begins when They cover both sides of the board with two sections of hexagonal mesh (12) and (12'), and to hold them together to the board they are tied/fastened with a wire or tape (E) and/or with plastic fastening belts (E' ), along the outer perimeter of the board, as illustrated in Figure 9; Immediately afterwards, “the second and most important innovation is carried out within the process of the present invention”, where wire, tape and/or cable is used and interwoven in a zigzag manner, particularly in the longitudinal direction of the board (see Figure 12) taking care that, during this process, the filaments of the lower and upper layers of hexagonal mesh (11 and 11') are passed over; At the end of the passage of the wire, tape and/or cable through each of the frames, a constant tension force (12') is applied, in order to maintain the tension force in the wire, tape and/or cable, ensuring the tension effect permanently. The previously mentioned zigzag interweaving maneuver is carried out continuously, that is, without any interruption on each line perpendicular to the longitudinal squares of the board, as illustrated in Figure 11, resulting in prestressed bamboo microbeam boards. (see Figure 12), where the structural performance advantageously provides radical improvements for its use as prestressed bamboo microbeam boards that can function as walls, as seen in Figure 19. In the case of slabs, the boards (13) are moved on enclosure chains (6) and are fastened to the supporting structural elements, which can be masonry, walls (15), columns or bamboo boards, with the intention of bridging gaps of less than 5 meters, It is proposed to install on the enclosure chains (6) and perpendicularly beams (5) on both edges of the slab board (13), as illustrated in Figure 14. When the spans to be saved are greater than 5 meters , bamboo reinforcements (7) that are mounted on the enclosure chains (6) are used as longitudinal support, as seen in Figure 19. BII1304194C8-PCT1298 - 8 - Subsequently, a formwork (16) is enabled or, alternatively, it can be considered to replace the formwork with a bamboo mat, which would remain as an apparent finish for the ceiling. In both walls and slabs, the installation of pipes and ducts of the corresponding facilities must be considered, and then the specified mortar is poured onto the board according to the design, remaining drowned and once the setting time is over, the system will be finished. It should be noted that in the context of the present invention, the mortar can be any selected from the group that includes concrete, mortar, mud, compacted earth and once the setting of the mortar has been achieved, said mortar becomes an "integral bamboo system." for construction” as described in the present invention and as illustrated in Figure 21, and that provides an advantageous solution, which also categorizes the system of the present invention in a novel and innovative application niche. The construction procedure, as well as the elements that make up the present invention, are clearly shown and detailed in the present description and drawings, which are included to illustrate the invention in a general way and, therefore, should not be considered to limit the present invention. Within a broad background of previous art with traditional construction systems, the “comprehensive bamboo construction system” is proposed as a new structurally efficient, economical and sustainable construction system, with a simple construction process, where two innovative features: the short distance assembly of bamboo micro beams (see Figure 5) providing greater resistance, as well as the way of attaching the lower and upper layers of mesh in a zigzag to generate a pretension effect as illustrated in the Figure 10, and on the other hand, the use of enclosure chains, joists and reinforcements made of bamboo, configured to load, bind, and hold the elements to form a structure. The construction process begins with the first innovation and is the result of the “assembly” of micro bamboo beams horizontally and vertically, generating assembled bamboo boards (see Figure 5) according to the required dimensions, observing in all cases the envelope of all faces of the board with sections of hexagonal mesh (see Figures 11 and 11') and to keep both sections of the mesh held in place, they are fixed using wire (E) and/or tape and/or plastic fastening belts (E ') around the entire perimeter of the assembled bamboo board (see Figure 9); Subsequently, “the second and most important innovation in the process” is carried out, where, as previously described, cable, wire and/or tape is used, where a knot is also made on the starting header. ; Said cable is interwoven in a zigzag manner and in the longitudinal direction of the board (see Figure 10), ensuring that said cable passes over the filaments of the lower and upper layers of hexagonal mesh, at the end of passing the wire, tape or the cable for each of the frames, a force is applied to it and it is tensioned (12') subsequently and with BII1304194C8-PCT1298 - 9 - the purpose of maintaining the tension force is tied and a second knot is generated, as a stop on the finishing head, ensuring permanent tension. The previously mentioned zigzag interweaving maneuver is carried out continuously without interruption on each vertical line of longitudinal squares of the board (see Figure 10), where said mechanical tension effect directly affects the filaments of the mesh layers, generating tension. on both sides of the mesh, resulting in boards of prestressed bamboo microbeams (see Figure 12), which provides radical, substantial and advantageous improvements for its use, particularly, in order to generate the link between walls and slabs, using enclosure chains (6) made up of two parallel bamboo culms connected to each other, which can range from 30 to 90 centimeters by threaded and screwed rods that protrude at least 50 centimeters; These rods allow connecting downwards with the walls and upwards with the slabs, thus preventing their displacement. On the other hand, a third innovation consists of the use of two parallel bamboo culms connected to each other, which can range from 30 to 90 centimeters by threaded rods screwed at their ends (5) whose function will be as support joists for the slabs. A fourth innovation consists of the use of two bamboo culms and a plurality of threaded steel rods that, vertically in a zig zag manner, connect the upper culm to the lower culm, forming an armor that will allow large gaps to be bridged. As previously mentioned in this application, the tensile effect on the board makes it self-supporting, that is, it allows it to remain stable, and where the support structure, in the case of walls and/or slabs, must have with anchors or holding rods (14) that bend over prestressed bamboo microbeam boards (see Figure 15), thus avoiding horizontal displacement; In either case, a containment formwork (16) is used to prevent the mortar from spilling, and subsequently, the mortar is poured onto the boards; When the setting time concludes, the process results in a “Prestressed Bamboo Micro Beam Board Slab”. The integral bamboo construction system of the present invention advantageously uses renewable, low-impact materials as a structural element, generating a “sustainable” construction system, being also capable of being used on any traditional construction system. The integral bamboo construction system, in its slab form, advantageously presents outstanding structural rigidity, which cushions the bending effect. In one embodiment of the invention, the integral bamboo system can be used to form a roof structure that, depending on the design conditions of each project, can be flat slabs or inclined slabs. In another embodiment of the invention, where the prestressed bamboo micro beam boards, prior to pouring the mortar, can be placed on the formwork. BII1304194C8-PCT1298 - 10 - polystyrene sheets, mineral wool, pellets, in order to cushion the temperature gradient and/or reduce the self-weight of the slab. In an additional embodiment of the invention, where the prestressed bamboo microbeam boards, particularly in their slab form, the present invention allows the application of a special release agent arranged on the surface of the formwork that will prevent it from adhering to the formwork, and if the design requires it, replace the concrete with a synthetic mortar of polyurethane foam, reinforced earth, resins, cellulose paste, in order to cushion the temperature gradient, isolate noise and reduce its own weight. of the structure. In an additional embodiment of the invention, where the prestressed bamboo microbeam boards, particularly in their reinforced wall mode, the system of the present invention can be installed on any foundation system, with the condition that said foundation considers drown in their entire length, anchors or rods with an exposed length between 40 and 120 cm, and with a minimum separation between them between 30 and up to 90 cm. In an additional embodiment of the invention, where the prestressed bamboo microbeam boards, particularly in their form of reinforced walls, the mortar can be cast using formwork, or thrown manually or by mechanical means for its application, without any limitation. to the means described or suggested in this application, but on the contrary, those means currently available and/or used; and on the other hand, in one embodiment of the present invention, the mortar to be used can be any selected from the group that includes concrete, mortar, calcrete, clay, reinforced earth, combinations thereof and/or similar. Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which the invention pertains, who has the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it should be understood that the invention is not to be limited to the specific and exemplary embodiments described, but rather that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are used herein, they are used only in a generic and descriptive sense and not for limiting purposes. Likewise, it must be understood that the materials with which the different components comprising the invention described in this document can be manufactured, the geometries, dimensions, arrangements and other elements may vary without departing from the scope and spirit of the invention and therefore, the The aforementioned modalities should not be considered limiting. EXAMPLES In this sense and in order to validate the technical advantage present in the integral bamboo system invention, a preliminary experimental test has been carried out, aided by the BII1304194C8-PCT1298 - 11 - laboratory of the Mexican Institute of Concrete Cement (IMCYC); The purpose of the experimental tests carried out allows the invention to be characterized in the sense of its operation and performance, allowing the demonstration, in a very favorable manner, of the clear advantages of incorporating the system described throughout this application, and applying it within the scope of the construction. Within these tests, eight longitudinal screeds of 3 meters were used, 18 perpendicular screeds of 1.20 meters were used, and a 12 cm slab cant, in addition to using semi-joists of bamboo culms as lateral support at the longitudinal ends. Likewise, tests were carried out in accordance with the Complementary Technical Standards of the Construction Regulations for the Federal District on 9 walls and 9 piles with our system. In particular, the purpose of the diagonal compression tests of WALLS carried out is to obtain the design resistant shear stress (v*) and, on the other hand, the purpose of the compression test of PILES carried out is to obtain the compression resistance ( f*m); Likewise, compression tests were carried out on concrete cylinders used for the manufacture of piles and walls using the integral bamboo system according to the present invention to determine the compression resistance at 7, 14 and 28 days. Both Piles and Walls were manufactured with concrete and bamboo reinforcements, and although a standardized method is not established for bamboo-reinforced concrete piles and walls as handled and/or described in this description, the method used was that specified in the Complementary Technical Standards for Design and Construction of Masonry Structures of the Construction Regulations of Mexico City and the Standards NMX-C-464-ONNCCE-2010. Experimentation 1 Type of piece Piles A of 12 cm x 40 cm x 60 cm Walls A of 12 cm x 40 cm x 40 cm Piles B of 12 cm x 40 cm the laboratory facilities by IMCYC personnel, with the bamboo structure designed by the applicant and based on the process, materials and specifications as described throughout this description. For the concrete of the pieces, a mixture f'c = 200 kg/cm2 was used. The calculation of the design shear stress (v*) and the design compressive strength (f*m) as walls and piers, is BII1304194C8-PCT1298 - 12 - calculated in accordance with the provisions of Standard NMX-C-464-ONNCCE-2010 and, under the following formula: Design compression resistance: where: f*m = Design compression resistance fm = Average resistance of the piles tested and corrected for slenderness Cm = coefficient of variation of the resistance of the piles tested The tests to determine the design resistance to compression (f*m) in piles and the test to determine the shear stress of design (v*) on walls, were carried out in accordance with the provisions of Standard NMX-C-464-ONNCCE-2010 and the results obtained are illustrated in Tables 1-5, shown below. Table 1 – SUMMARY OF TEST RESULTS Summary of Concept
Figure imgf000014_0001
BII1304194C8-PCT1298 - 13 - Table 2 – COMPRESSION TEST OF PILES Factor Fm Length or Essence Height Area Ratio Car to F*m
Figure imgf000015_0001
fm = Design compressive strength of the masonry fm = It is the average resistance of the piles tested and corrected for slenderness Cm = 0.15 (it is the coefficient of variation of the resistance of the piles tested) ^^ ^^ Formula: ^ ^ ∗ ^^ = 1+2.5 ^^ ^^ Table 3 – DIAGONAL COMPRESSION TEST OF WALLS Length Height thickness Diagonal Area Load v V* ID
Figure imgf000015_0002
BII1304194C8-PCT1298 - 14 - Where: v* = Design resistant shear stress v = It is the average of the resistant forces of the tested walls Cv = (Coefficient of variation of the resistant forces of the tested walls) Formula: ^^ ∗ = ^^ 1+2.5 ^^ ^^ Table 4 – COMPRESSION TEST OF PILES Factor Fm Length or Essor Height Area Ratio Car to F*m
Figure imgf000016_0001
Where: f*m = Design compressive strength of the masonry fm = It is the average resistance of the piles tested and corrected for slenderness Cm = (it is the coefficient of variation of the resistance of the piles tested) ^^ ^ ^ Formula: ^^ ∗ ^^ = 1+2.5 ^^ ^^ Table 5 – COMPRESSION STRENGTH OF CONCRETE CYLINDERS Strength Strength Mass
Figure imgf000016_0002
BII1304194C8-PCT1298 - 15 - Where The specified resistance (kg/cm2) is 200; The specific resistance (MPa) is 19.6. The maximum nominal size of the aggregate (mm) is 20. Experimentation 2 Type of piece Piles of 12 cm x 40 cm x 60 cm. Walls measuring 12 cm x 40 cm as described throughout this description. For the concrete of the pieces, a mixture f'c = 200 kg/cm2 was used. The calculation of the design shear stress (v*) and the design compression resistance (f*m) for walls and piers is calculated in accordance with the provisions of Standard NMX-C-464-ONNCCE-2010 and, under the following formula: where: f*m = Design resistance to compression fm = Average resistance of the piles tested and corrected for slenderness Cm = coefficient of variation of the resistance of the piles tested The tests to determine the design resistance compression (f*m) in piles and the test to determine the design shear stress (v*) in walls, were carried out in accordance with the provisions of Standard NMX-C-464-ONNCCE-2010 and the results obtained were illustrated in Tables 6-9, shown below. BII1304194C8-PCT1298 - 16 - Table 6 – SUMMARY OF TEST RESULTS Summary of Concept
Figure imgf000018_0001
Table 7 – COMPRESSION TEST OF PILES Factor Fm Lar or Essor Height Area Ratio Car to F*m
Figure imgf000018_0002
Where: f*m = Design compressive strength of the masonry fm = It is the average resistance of the piles tested and corrected for slenderness Cm = 0.15 (it is the coefficient of variation of the resistance of the piles tested) Formula: ^^ ∗ ^^ = ^^ ^^ 1+2.5 ^^ ^^ BII1304194C8-PCT1298 - 17 - Table 8 – DIAGONAL COMPRESSION TEST OF WALLS v Length or Height Dia onal Area Face to V*
Figure imgf000019_0001
Where: v* = Design resistant shear stress v = It is the average of the resistant forces of the tested walls Cv = 0.20 (Coefficient of variation of the resistant forces of the tested walls) ^^ Formula: ^^ ∗= 1+ 2.5 ^^ ^^
BII1304194C8-PCT1298 - 18 - Tabla 9 – RESISTENCIA A LA COMPRESIÓN DE CILINDROS DE CONCRETO Resistencia Resistencia Masa
Figure imgf000020_0001
En donde La resistencia especificada (kg/cm2) es de 200; La resistencia especifica (MPa) es de 19.6 El tamaño máximo nominal del agregado (mm) es de 20. Tal y como puede desprenderse de los resultados experimentales previamente ilustrado, es claro que la incorporación de las reglillas longitudinales, así como las semiviguetas de culmos de bambú en los extremos longitudinales en una construcción, ventajosamente si consideramos Normas Técnicas Complementarias del Reglamento de Construcciones para el Distrito Federal, donde se indica que para elementos de mampostería (muros de block o de tabique) muestra un aumento en la resistencia mecánica global, siendo incluso capaz de mostrar resultados que van del 50 al 56% al mayor capacidad de carga a compresión y más de 12 y hasta 15 veces la resistencia en la prueba de carga axial comparado con un elemento de construcción que no utiliza el sistema de bambú, tal y como se ha descrito a lo largo de la presente solicitud. Resultados que dejan ver el gran potencial de un material renovable que, sustituye el empleo de varilla de acero, incidiendo considerablemente cuando de sustentabilidad se trata. Y que, en caso extremo, cuando se emplean argamasas naturales como barro, tierra armada o celulosa, no existe ningún sistema constructivo en el mundo, estructuralmente eficiente y tan sustentable como el de nuestra propuesta.
BII1304194C8-PCT1298 - 18 - Table 9 – COMPRESSION STRENGTH OF CONCRETE CYLINDERS Strength Strength Mass
Figure imgf000020_0001
Where The specified resistance (kg/cm2) is 200; The specific resistance (MPa) is 19.6. The maximum nominal size of the aggregate (mm) is 20. As can be deduced from the experimental results previously illustrated, it is clear that the incorporation of the longitudinal rules, as well as the semi-joists of culms of bamboo at the longitudinal ends in a construction, advantageously if we consider Complementary Technical Standards of the Construction Regulations for the Federal District, which indicate that for masonry elements (block or partition walls) it shows an increase in overall mechanical resistance, being even capable of showing results ranging from 50 to 56% to the highest compression load capacity and more than 12 and up to 15 times the resistance in the axial load test compared to a construction element that does not use the bamboo system, as has been described throughout this application. Results that reveal the great potential of a renewable material that replaces the use of steel rod, having a considerable impact when it comes to sustainability. And that, in extreme cases, when natural mortars such as clay, reinforced earth or cellulose are used, there is no construction system in the world that is structurally efficient and as sustainable as the one in our proposal.

Claims

BII1304194C8-PCT1298 - 19 - REIVINDICACIONES 1. Un sistema integral de bambú para construcción, el sistema comprendiendo: - elementos de laminillas de bambú; - al menos una reglilla de bambú que se define como una micro viga de bambú (8); - una pluralidad de micro vigas de bambú; - una pluralidad micro vigas de bambú horizontales; - una pluralidad de micro vigas de bambú verticales (9) y horizontales (10’) para conformar un tablero de micro vigas de bambú ensambladas; en donde al menos una capa de malla hexagonal cubra ambas caras del tablero (11, 11’); al menos un alambre (E), grapa, o cinturón (E’) sujetador plástico fije las capas de las mallas superior e inferior a lo largo del perímetro del panel; 2. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde los traslapes de unión entre retículas de micro vigas de bambú pretensadas se realizan mediante dos tramos de malla (11 y 11’) que van desde 40 y hasta 90 cm de ancho por ambas caras del tablero y que se teje en torno a su perímetro empleando alambre, cinta (E) y/o cinturón sujetador plástico (E’). 3. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde el sistema puede utilizarse sobre cualquier tipo de muro de mampostería (15) seleccionado del grupo que comprende acero, madera, piedra, bambú, barro, tierra armada, combinaciones de los mismos y/o similares, desplantado sobre la cadena de cerramiento (6) vigas de acero, vigas de prefabricadas, vigas de madera o vigas de bambú. 4. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1 en donde las losas son planas o inclinadas. 5. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde el sistema integral permite la instalación de mangueras, ductos y/o registros previo a la aplicación del concreto. 6. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde el sistema integral permite el empleo de cualquier argamasa en sustitución del concreto. BII1304194C8-PCT1298 - 20 - 7. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde el sistema integral puede construirse/formarse en obra o ser prefabricados en taller. 8. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde el sistema integral puede emplearse como muros. 9. El sistema integral de bambú para construcción de acuerdo con la reivindicación 6, en donde el sistema integral puede recibir espuma de poliuretano, lana mineral, pellets en sustitución de la argamasa. 10. El sistema integral de bambú para construcción de acuerdo con las reivindicaciones 6 y 7, en donde puede aplicarse argamasa, así como aditivos para mejorar el rendimiento mecánico del sistema. 11. El sistema integral de bambú para construcción de acuerdo con las reivindicaciones 6 a 8, en donde el sistema integral puede emplear impermeabilizantes integrales, líquidos y/o prefabricados. 12. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde el sistema integral puede convertirse en una edificación que admite el empleo de una pluralidad de tipos de argamasa, como pueden ser, Concreto, mortero, cal, concreto, barro, tierra armada, estuco, Calhidra, resinas, lodos bentoniticos, concretos mejorados, puzolanas. 13. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde el sistema integral integra culmos y reglillas de bambú, en sustitución de varillas de acero convencionales, convirtiendo al sistema integral en un sistema sustentable. 14. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde el argamasa puede ser de barro o tierra compactada, implicando un menor impacto ambiental. 15. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde cuando el sistema integral es incorporado en estructuras de muros, aportan mayor capacidad de carga simple y mayor capacidad de carga axial, respecto a los muros de mampostería existentes. BII1304194C8-PCT1298 - 21 - 16. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde el sistema integral emplea cadenas, vigas, viguetas y/o armaduras de bambú, que se ensamblan mediante el empleo de varillas de acero roscado. 17. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde el alambre, cinta o cable a emplear, se coloca un nudo, sobre la micro viga de arranque para mantenerlo en su sitio. 18. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde el alambre, cinta o cable se entreteje longitudinalmente a manera de zigzag envolviendo filamentos de las capas inferior (11) y superior (11’) de la malla hexagonal a través del tablero hasta llegar al extremo opuesto del tablero sobre la cabecera de amarre. 19. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde se aplica sobre el alambre, cinta o cable una fuerza de tensión en sentido longitudinal (12’) acción que transmite tensión a cada uno de los filamentos sobre las capas inferior (11) y superior (11’) de la malla hexagonal a través del tablero hasta lograr la tensión deseada. 20. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde la fuerza de tensión aplicada al alambre, cinta o cable se mantendrá, hasta que éste se afiance sobre la micro viga de cabecera final colocando un nudo, que mantendrá la tensión permanentemente. 21. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde antes de desplantar el tablero de micro vigas de bambú pretensado, en su modalidad de losa, sobre los elementos de estructura de soporte se instala una cadena de cerramiento (6) que permite ligar el sistema de muros con el sistema de losas. 22. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde unas viguetas de soporte (5) son instaladas sobre las cadenas de cerramiento de forma longitudinal para los tableros que funciona como losas. 23. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde unas armaduras de bambú (7) son instaladas, en caso de claros grandes, y además, dichas armaduras (7) se forran con malla hexagonal para generar estructura. 24. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde las varillas de sujeción (14) se doblan hacia el centro del tablero, una vez BII1304194C8-PCT1298 - 22 - desplantado el tablero de micro vigas de bambú pretensado sobre los elementos de estructura de soporte. 25. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde se vierte concreto o argamasa hasta cubrir completamente el tablero hasta el nivel requerido, una vez desplantado y fijado el tablero de micro vigas de bambú pretensado sobre los elementos de estructura de soporte. 26. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde el sistema integral de bambú se transforma a su forma final una vez fraguado el concreto o argamasa dispuesto sobre el tablero de micro vigas de bambú pretensado. 27. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde los elementos de laminillas de bambú pueden además ser de cualquier otra especie maderable, y están ensambladas definiendo un tablero. 28. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde la pluralidad de micro vigas de bambú son verticales, paralelas, equidistantes (9), con la misma dimensión. 29. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde la pluralidad micro vigas de bambú horizontales cuentan con una serie de cortes de ensamble perpendicular a su longitud (10’) con una misma dimensión. 30. El sistema integral de bambú para construcción de acuerdo con la reivindicación 1, en donde la pluralidad de micro vigas de bambú horizontales pueden ensamblarse intercalándose por arriba y por debajo de las micro vigas verticales, o bien sobre un solo paño de las micro vigas verticales. BII1304194C8-PCT1298 - 19 - CLAIMS 1. An integral bamboo system for construction, the system comprising: - bamboo slat elements; - at least one bamboo strip that is defined as a micro bamboo beam (8); - a plurality of bamboo micro beams; - a plurality of horizontal micro bamboo beams; - a plurality of vertical (9) and horizontal (10') bamboo microbeams to form a board of assembled bamboo microbeams; where at least one layer of hexagonal mesh covers both sides of the board (11, 11'); at least one wire (E), staple, or belt (E') plastic fastener secure the upper and lower mesh layers along the perimeter of the panel; 2. The integral bamboo system for construction according to claim 1, wherein the joint overlaps between grids of prestressed bamboo microbeams are made by means of two sections of mesh (11 and 11') ranging from 40 to 90 cm wide on both sides of the board and woven around its perimeter using wire, tape (E) and/or plastic fastening belt (E'). 3. The integral bamboo construction system according to claim 1, wherein the system can be used on any type of masonry wall (15) selected from the group comprising steel, wood, stone, bamboo, mud, reinforced earth, combinations of the same and/or similar, placed on the enclosure chain (6) steel beams, prefabricated beams, wooden beams or bamboo beams. 4. The integral bamboo construction system according to claim 1 wherein the slabs are flat or inclined. 5. The integral bamboo construction system according to claim 1, wherein the integral system allows the installation of hoses, ducts and/or registers prior to the application of concrete. 6. The integral bamboo construction system according to claim 1, wherein the integral system allows the use of any mortar to replace concrete. BII1304194C8-PCT1298 - 20 - 7. The integral bamboo construction system according to claim 1, wherein the integral system can be built/formed on site or prefabricated in a workshop. 8. The integral bamboo construction system according to claim 1, wherein the integral system can be used as walls. 9. The integral bamboo construction system according to claim 6, wherein the integral system can receive polyurethane foam, mineral wool, pellets to replace the mortar. 10. The integral bamboo construction system according to claims 6 and 7, wherein mortar can be applied, as well as additives to improve the mechanical performance of the system. 11. The integral bamboo construction system according to claims 6 to 8, wherein the integral system can use integral, liquid and/or prefabricated waterproofing agents. 12. The integral bamboo construction system according to claim 1, wherein the integral system can be converted into a building that admits the use of a plurality of types of mortar, such as concrete, mortar, lime, concrete, mud, reinforced earth, stucco, Calhidra, resins, bentonite sludge, improved concrete, pozzolans. 13. The integral bamboo system for construction according to claim 1, wherein the integral system integrates bamboo culms and rulers, replacing conventional steel rods, converting the integral system into a sustainable system. 14. The integral bamboo construction system according to claim 1, wherein the mortar can be made of mud or compacted earth, implying a lower environmental impact. 15. The integral bamboo system for construction according to claim 1, wherein when the integral system is incorporated into wall structures, they provide greater simple load capacity and greater axial load capacity, with respect to existing masonry walls. BII1304194C8-PCT1298 - 21 - 16. The integral bamboo system for construction according to claim 1, wherein the integral system uses chains, beams, joists and/or bamboo trusses, which are assembled by using steel rods. threaded. 17. The integral bamboo construction system according to claim 1, wherein the wire, tape or cable to be used is placed in a knot on the starter micro beam to keep it in place. 18. The integral bamboo construction system according to claim 1, wherein the wire, tape or cable is longitudinally interwoven in a zigzag manner wrapping filaments of the lower (11) and upper (11') layers of the hexagonal mesh across the board until you reach the opposite end of the board above the mooring head. 19. The integral bamboo construction system according to claim 1, wherein a tension force is applied to the wire, tape or cable in a longitudinal direction (12'), an action that transmits tension to each of the filaments on the bottom (11) and top (11') layers of hexagonal mesh across the board until the desired tension is achieved. 20. The integral bamboo construction system according to claim 1, wherein the tension force applied to the wire, tape or cable will be maintained until it is secured on the final header microbeam by placing a knot, which will maintain the tension permanently. 21. The integral bamboo system for construction according to claim 1, wherein before deploying the board of prestressed bamboo microbeams, in its slab mode, an enclosing chain is installed on the support structure elements ( 6) that allows the wall system to be linked to the slab system. 22. The integral bamboo construction system according to claim 1, wherein support joists (5) are installed on the enclosure chains longitudinally for the boards that function as slabs. 23. The integral bamboo construction system according to claim 1, wherein bamboo reinforcements (7) are installed, in case of large spans, and in addition, said reinforcements (7) are lined with hexagonal mesh to generate structure. . 24. The integral bamboo construction system according to claim 1, wherein the fastening rods (14) are bent towards the center of the board, once BII1304194C8-PCT1298 - 22 - the prestressed bamboo microbeam board was displaced on the supporting structure elements. 25. The integral bamboo construction system according to claim 1, wherein concrete or mortar is poured to completely cover the board up to the required level, once the board of prestressed bamboo microbeams has been deployed and fixed on the supporting elements. support structure. 26. The integral bamboo system for construction according to claim 1, wherein the integral bamboo system is transformed into its final form once the concrete or mortar arranged on the prestressed bamboo microbeam board has set. 27. The integral bamboo construction system according to claim 1, wherein the bamboo slat elements can also be of any other wood species, and are assembled defining a board. 28. The integral bamboo construction system according to claim 1, wherein the plurality of bamboo micro beams are vertical, parallel, equidistant (9), with the same dimension. 29. The integral bamboo construction system according to claim 1, wherein the plurality of horizontal bamboo microbeams have a series of assembly cuts perpendicular to their length (10') with the same dimension. 30. The integral bamboo construction system according to claim 1, wherein the plurality of horizontal bamboo microbeams can be assembled by inserting them above and below the vertical microbeams, or on a single section of the microbeams. vertical.
PCT/MX2023/050075 2022-10-31 2024-01-03 Integrated bamboo construction system WO2024096726A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2022/013699 2022-10-31
MX2022013699 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024096726A1 true WO2024096726A1 (en) 2024-05-10

Family

ID=90931130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2023/050075 WO2024096726A1 (en) 2022-10-31 2024-01-03 Integrated bamboo construction system

Country Status (1)

Country Link
WO (1) WO2024096726A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110151172A1 (en) * 2008-08-22 2011-06-23 Wansi Fu Prestress structural material formed by reorganization with polygonal original bamboo and the manufacturing method
MX2011003620A (en) * 2011-04-05 2012-10-25 Gabriela Gonzalez Avila Natural coating system.
CN111236486A (en) * 2020-01-17 2020-06-05 宝业集团股份有限公司 Construction method of assembled bamboo energy-saving composite outer wall
CN212926687U (en) * 2019-12-31 2021-04-09 中清大科技股份有限公司 Bamboo wood and concrete combined wallboard

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110151172A1 (en) * 2008-08-22 2011-06-23 Wansi Fu Prestress structural material formed by reorganization with polygonal original bamboo and the manufacturing method
MX2011003620A (en) * 2011-04-05 2012-10-25 Gabriela Gonzalez Avila Natural coating system.
CN212926687U (en) * 2019-12-31 2021-04-09 中清大科技股份有限公司 Bamboo wood and concrete combined wallboard
CN111236486A (en) * 2020-01-17 2020-06-05 宝业集团股份有限公司 Construction method of assembled bamboo energy-saving composite outer wall

Similar Documents

Publication Publication Date Title
KR100423757B1 (en) Prestressed composite truss girder and construction method of the same
ES2315154B1 (en) STRUCTURAL PANELS CONNECTED FOR BUILDINGS.
Aguilar et al. Influence of horizontal reinforcement on the behavior of confined masonry walls
US20180148923A1 (en) Structural wall with a structure exogenous to the longitudinal axis thereof for enabling the inside of the wall to be filled on site
LV15383B (en) Semi-precast elevated concrete element system
Marsh et al. Reinforced concrete
EA018421B1 (en) Light-weight load-bearing structures reinforced by core elements made of segments and a method of casting such structures
RU2638597C2 (en) System and method for two-axle assembly light-weight concrete slab
WO2024096726A1 (en) Integrated bamboo construction system
US9062449B2 (en) Wall construction system and method
Taylor et al. Concrete, Plain and Reinforced...
Ransome et al. Reinforced concrete buildings: a treatise on the history, patents, design and erection of the principal parts entering into a modern reinforced concrete building
WO2003102317A1 (en) Ferrocement permanent formwork
AU2009200214A1 (en) Composite Beam
HRP970336A2 (en) Self-bearing lightweight concrete masonry ceiling
WO2007039887A2 (en) A method of constructing a roof or floor slab
Singh et al. Bamboo as construction material and bamboo reinforcement
Al-Abasei et al. Experimental study of flat plate construction with special embedded shearhead
Anil et al. Review on U Boot technology in construction
Paramasivam et al. Ferrocement structures and structural elements
RU96124441A (en) METHOD FOR CONSTRUCTION, RESTORATION OR RECONSTRUCTION OF BUILDINGS, STRUCTURES AND METHOD FOR PRODUCING CONSTRUCTION PRODUCTS AND CONSTRUCTIONS FROM COMPOSITE MATERIALS, PREFERREDLY, CONCRETE FOR CONSTRUCTION, REMEDIATION
RU2196868C2 (en) Process of reinforcement of stone structures of building
ES2311309B1 (en) SEMI-BEAM JACENA DE HORMIGON FOR SUPPORT OF MIXED FORGINGS.
CN219081173U (en) Pre-tensioning method and post-tensioning method combined prefabricated prestressed frame structure
RU166521U1 (en) MONOLITHIC COVERING PLATE FOR LARGE SPAN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23886418

Country of ref document: EP

Kind code of ref document: A1