WO2024096400A1 - 폴리올레핀 및 이를 포함하는 필름 - Google Patents

폴리올레핀 및 이를 포함하는 필름 Download PDF

Info

Publication number
WO2024096400A1
WO2024096400A1 PCT/KR2023/016345 KR2023016345W WO2024096400A1 WO 2024096400 A1 WO2024096400 A1 WO 2024096400A1 KR 2023016345 W KR2023016345 W KR 2023016345W WO 2024096400 A1 WO2024096400 A1 WO 2024096400A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
group
temperature
film
elution
Prior art date
Application number
PCT/KR2023/016345
Other languages
English (en)
French (fr)
Inventor
홍석빈
김현태
최성호
전상진
강민영
이진영
권동현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230137792A external-priority patent/KR20240062957A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2024096400A1 publication Critical patent/WO2024096400A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a polyolefin that exhibits excellent haze properties along with high drop impact strength properties, and a film containing the same.
  • Linear low density polyethylene is manufactured by copolymerizing ethylene and alpha olefin at low pressure using a polymerization catalyst. It is a resin with a narrow molecular weight distribution, short chain branches of a certain length, and no long chain branches.
  • Linear low-density polyethylene film has the characteristics of general polyethylene, as well as high breaking strength and elongation, and has excellent tear strength and drop impact strength, so it is a stretch film and overlap film that is difficult to apply to existing low-density polyethylene (LDPE) or high-density polyethylene (HDPE). Its use in films, etc. is increasing.
  • Drop impact strength is a very important mechanical property that determines the resistance to various impacts of a resin.
  • linear low-density polyethylene has the disadvantage of poor blown film processability and poor transparency compared to its excellent mechanical properties.
  • Blown film is a film manufactured by blowing air into molten plastic to inflate it, and is also called inflation film.
  • Linear low-density polyethylene generally has the characteristics of improved transparency and increased drop impact strength as the density decreases.
  • problems such as an increase in the frequency of fouling in the slurry polymerization process, so many products with a density of 0.915 g/cm 3 or more are produced in the slurry polymerization process. I'm doing it.
  • polyolefin that has a density of 0.915 g/cm 3 or more and can achieve excellent transparency along with high impact strength characteristics.
  • the present invention seeks to provide a polyolefin that exhibits excellent transparency along with high impact strength properties through control of the crystal structure.
  • the present invention seeks to provide a film containing the above polyolefin, specifically a blown film.
  • Te L and Te H are, respectively, the elution temperature value of the lowest peak and the elution temperature value of the highest peak in the temperature rising elution fractionation (TREF) graph during cross fraction chromatography (CFC) analysis. ego,
  • W L and M L are the content ratio (weight) of low-crystalline polymer eluted in the region of elution temperature 75°C or lower, excluding the soluble fraction (SF) eluted in region of elution temperature lower than 35°C in the TREF graph, respectively. %) value and the weight average molecular weight (g/mol) value of the low crystalline polymer,
  • W H and M H are the content ratio (% by weight) of the highly crystalline polymer eluted in the region above the elution temperature of 75°C in the TREF graph and the weight average molecular weight (g/mol) of the highly crystalline polymer, respectively)
  • a H is the peak height of the highest peak in the TREF graph
  • a 1 is the peak height of the lowest peak when the lowest peak in the TREF graph exists at an elution temperature of 40 to 75 ° C
  • the lowest peak in the TREF graph If it does not exist at an elution temperature of 40 to 75°C or the TREF graph has a single peak and the lowest peak does not exist, it is the height at an elution temperature of 65°C
  • a film containing the polyolefin is provided.
  • the polyolefin according to the invention exhibits excellent transparency along with high impact strength properties. Accordingly, it is useful in the production of films requiring high impact strength properties and excellent transparency, especially blown films.
  • Figure 1a is a temperature rise elution fractionation (TREF) graph obtained through cross-fraction chromatography (CFC) analysis of the polyolefin of Example 1
  • Figure 1b is a graph showing the molecular weight in each elution region.
  • TREF temperature rise elution fractionation
  • Figure 2a is a TREF graph obtained through CFC analysis of the polyolefin of Example 2
  • Figure 2b is a graph showing the molecular weight in each elution region.
  • Figure 3a is a TREF graph obtained through CFC analysis of the polyolefin of Example 3, and Figure 3b is a graph showing the molecular weight in each elution region.
  • Figure 4a is a TREF graph obtained through CFC analysis of the polyolefin of Example 4, and Figure 4b is a graph showing the molecular weight in each elution region.
  • Figure 5a is a TREF graph obtained through CFC analysis of the polyolefin of Example 5, and Figure 5b is a graph showing the molecular weight in each elution region.
  • first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
  • room temperature means 20 ⁇ 5°C.
  • the polyolefin according to the present invention satisfies the following conditions (i) to (iii):
  • Te L and Te H are, respectively, the lowest peak in the temperature rise elution fractionation (TREF) graph (X-axis: elution temperature (°C), Y-axis: elution amount (dw/dt)) during cross-fraction chromatography (CFC) analysis. is the elution temperature value and the elution temperature value of the highest peak,
  • W L and ML are the content ratio (% by weight) of the low-crystalline polymer eluted in the region of elution temperature 75 °C or less, excluding the soluble fraction (SF) eluted in the region of 35 °C or less in the TREF graph, respectively.
  • SF soluble fraction
  • W H and M H are the content ratio (% by weight) of the highly crystalline polymer eluted in the region above the elution temperature of 75°C in the TREF graph and the weight average molecular weight (g/mol) of the highly crystalline polymer, respectively)
  • a H is the peak height of the highest peak in the TREF graph
  • a 1 is the peak height of the lowest peak when the lowest peak in the TREF graph exists at an elution temperature of 40 to 75 ° C
  • the lowest peak in the TREF graph If the elution temperature is not present at 40 to 75°C, that is, the lowest peak is present in a temperature range outside the elution temperature of 40 to 75°C, or the TREF graph has a single peak and the lowest peak is not present. is the height at an elution temperature of 65°C)
  • Blown film extrusion which is used in the production of packaging materials and various industrial films, generates air flow in the film eluted from the die through a screw to expand it, thereby expanding it to have a uniform thickness and surface.
  • MI melt index
  • This is a method of mass producing film. It is mainly used to produce films with a relatively low melt index (MI), approximately 0.5 to 2.0.
  • MI melt index
  • uniform orientation can be provided in the mechanical direction (MD) and the direction perpendicular to the stretching (transverse direction (TD)), thereby securing excellent mechanical properties. You can.
  • polyolefin was defined by the film haze parameter, but was optimized to a range where both mechanical properties and transparency were excellent.
  • the film haze parameter defines a structure that can secure excellent transparency in the BOCD structure.
  • the TREF crystal region is widely distributed to have two or more peaks. This means that there is a mixture of molecular chains that contain almost no SCB (short chain branches) and thus exhibit high crystallinity, and chains that contain a large amount of SCBs and form a macrostructure in which lamellar and tie molecules are mixed. indicates.
  • W L and ML are quantifications of the sections in which tie molecules are likely to be formed. Only when a molecular weight above an appropriate level is secured can excellent drop impact strength and impact resistance due to tie molecules be achieved. W H and M H have low crystallinity and are therefore vulnerable to impact, but must be included in the polymer at about 50 to 60% by weight to enhance strength and stiffness. In addition, a specific range of molecular weight, for example, 70,000 to 110,000 g/mol, must be secured to increase the relaxation time during the film cooling process to suppress excessive growth of the spherulite-shaped macromolecule structure and, as a result, to control transparency. You can. However, if W H and MH are excessively high, the physical properties may deteriorate, so it is preferable that W H is 60 or less and MH is 110,000 or less.
  • a new parameter that is, the film haze parameter, was introduced to compare the haze difference due to the polymer structure under the above conditions.
  • the molecular weight and content of the low-crystalline region must not be excessively high to control light scattering due to the lamella-tie molecular structure.
  • the molecular weight of the high-crystal region is high, spherulite growth can be suppressed by increasing relaxation time, but if the content is too high, transparency may be impaired due to high crystallinity.
  • the TREF graph even if the content of highly crystalline polymer eluted in the region with an elution temperature of 75°C or higher is sufficient, if the peak is not visible or the peak height is low in the low crystalline region with an elution temperature of 40 to 75°C, high crystallinity Nuclei that cause crystallization can be generated quickly. Additionally, if the molecular weight of the polymer in the high-crystal region is large or small, the speed at which the molecular chains move during the crystallization process may be affected.
  • the polymer in the high-crystal region has a relatively large molecular weight, the movement of the chain slows down and the crystal does not grow sufficiently at the nucleation site where the crystal occurs, and roughness and scattering are reduced due to the formation of small spherulites. As a result, haze characteristics can be improved. However, when the polymer in the high-crystalline region has a relatively small molecular weight, large spherulites are formed due to the growth of the crystal structure, which increases roughness and scattering, resulting in a decrease in haze characteristics.
  • Te L W L M L Te L and Te H are the elution temperature of the lowest and highest TREF peaks, respectively, and can be considered as values representing representative crystallinity in the temperature range classified as low crystallinity and high crystallinity.
  • the polyolefin according to the present invention has a film haze parameter (Hp) defined by Equation 1 of 12 or less, and more specifically, Hp is 12 or less, or 11.8 or less, or 11.6 or less, or 8 or more, or 8.3 or more, or It is 8.5 or higher. Accordingly, it can exhibit high transparency along with excellent impact strength characteristics.
  • Hp film haze parameter
  • the polyolefin according to the present invention has a peak height ratio A H / A 1 of 1.8 or more in the TREF graph during CFC analysis.
  • a H is the peak height of the highest peak in the temperature rise elution fractionation graph
  • a 1 is the peak height of the lowest peak in the temperature rise elution fractionation graph when the lowest peak exists at an elution temperature of 40 to 75 °C
  • Figure 1a is a diagram showing A 1 and A H in the TREF graph of the polyolefin of Example 1 below.
  • Figure 1A is only an example for explaining the present invention, and the present invention is not limited thereto.
  • a H of the polyolefin of Example 1 is the peak height of the highest peak appearing at an elution temperature of 89.4°C
  • a 1 is the peak height of the lowest peak at an elution temperature of 66.1°C.
  • the A H /A 1 defines the relative amount of highly crystalline polymer eluted in a high temperature region.
  • the polyolefin according to the present invention has a sufficient amount of highly crystalline polymer as it satisfies the above-mentioned conditions. Accordingly, nuclei in which crystallization occurs in the high elution temperature range are generated slowly or do not grow sufficiently, resulting in the formation of small spherulites, which can lead to improved haze characteristics by reducing roughness and scattering.
  • a H /A 1 of the polyolefin according to the present invention is 1.8 or more, or 1.81 or more, or 2 or more, or 2.4 or more, and 3 or less, or 2.8 or less, or 2.7 or less.
  • the polyolefin according to the present invention can exhibit superior physical properties by satisfying the conditions of Hp and A H /A 1 as well as the optimal range conditions of W L , ML , W H and MH .
  • the polyolefin is the content ratio (wt%) of the low-crystalline polymer eluted at the elution temperature of 35 to 75°C, i.e., the region below the elution temperature of 75°C excluding the soluble fraction (SF) in the TREF graph during CFC analysis.
  • W L which represents the value
  • ML which represents the weight average molecular weight (g/mol) value of the low-crystalline polymer, is 130,000 or more.
  • the soluble fraction (SF) refers to the fraction eluted in the region of the elution temperature below 35°C from the TREF graph.
  • the content ratio (% by weight) of the low-crystalline polymer is based on the total weight of all eluted fractions.
  • W L may be 33 or more, or 35 or more, or 37 or more, or 37.5 or more, 45 or less, or 42 or less, or 41.6 or less
  • M L may be 130,000 or more, or 132,000 or more, or 250,000 or less, Or it may be less than 210,000.
  • the content ratio (wt%) of the highly crystalline polymer eluted in the region of the elution temperature exceeding 75°C in the TREF graph and the weight average molecular weight (g/mol) of the highly crystalline polymer W H is 50 to 60, and M H is 70,000 to 110,000. More specifically, W H may be 50 or more, or 51 or more, 60 or less, or 56 or less, and M H may be 70,000 or more, or 70,500 or more, and 110,000 or less, or 109,000 or less.
  • the content ratio (% by weight) of the highly crystalline polymer is based on the total weight of all eluted fractions.
  • LCB Long chain branch
  • mLLDPE with LCB has crystallization characteristics that change unimodal, so M L and W L are significantly low.
  • the polyolefin in the present invention has ML of 130,000 or more and W L of 33 to 45
  • the mLLDPE with conventional LCB has ML of 20,000 to 60,000, or 27,000 to 28,000, and W L of 40 or less, Or it is at the level of 20 to 40.
  • the polyolefin according to the present invention has an elution temperature (°C) value of Te L , i.e., the lowest peak, in the TREF graph of 60 to 90, and Te H , i.e., an elution temperature value of the highest peak, is 80 to 100. More specifically, Te L may be 60 or more, or 64 or more, 90 or less, or 85 or less, and Te H may be 80 or more, or 85 or more, or 89 or more, and 100 or less, or 95 or less.
  • elution temperature (°C) value of Te L i.e., the lowest peak, in the TREF graph of 60 to 90
  • Te H i.e., an elution temperature value of the highest peak
  • Te L may be 60 or more, or 64 or more, 90 or less, or 85 or less
  • Te H may be 80 or more, or 85 or more, or 89 or more, and 100 or less, or 95 or less.
  • the polyolefin has a content ratio of soluble fraction (SF) eluted in the region below the elution temperature of 35°C in the TREF graph during CFC analysis, is 1% by weight or more, or 4% by weight or more based on the total weight of all eluted fractions. , may be 15% by weight or less, or 12% by weight or less.
  • SF soluble fraction
  • the polyolefin has an elution temperature of 35°C or higher, and the content ratio of the fraction or polymer eluted in the region below 55°C is 5% by weight or more, or 6% by weight or more, and 15% by weight or less, based on the total weight of all eluted fractions. Or it may be 10% by weight or less.
  • the polyolefin has an elution temperature of 55°C or higher, and the content ratio of the fraction or polymer eluted in the region of 75°C or lower is 20% by weight or more, or 25% by weight or more, and 40% by weight or less, based on the total weight of all eluted fractions. , or may be 35% by weight or less.
  • the content ratio of the fraction or highly crystalline polymer eluted in the region of the polyolefin with an elution temperature exceeding 75°C is 50% by weight or more, 51% by weight or more, and 60% by weight or less based on the total weight of all eluted fractions. , or may be 56% by weight or less.
  • the content ratio of the fraction or polymer eluted in a certain elution temperature range is the content ratio of the fraction or polymer eluted in the corresponding elution temperature range based on the total weight of all eluted fractions obtained through CFC analysis. Calculate as a percentage (weight% or wt%).
  • the crystal structure characteristics of polyolefin can be determined through CFC analysis.
  • the specific measurement method and measurement conditions are as described in the experimental examples below.
  • the polyolefin according to the present invention exhibits a molecular weight distribution of 2.5 to 4. More specifically, the polyolefin according to the present invention exhibits a molecular weight distribution of 2.5 or more, or 2.8 or more, or 2.85 or more, or 2.87 or more, and 4 or less, or 3.8 or less.
  • the molecular weight distribution of polyolefin is less than 2.5, there is a risk of deterioration in processability and mechanical properties, and if it exceeds 4, there is a risk of deterioration in haze characteristics.
  • the molecular weight distribution of polyolefin is measured by measuring Mw and Mn using gel permeation chromatography, and the ratio of Mw to Mn (Mw/Mn) is calculated from this to determine MWD.
  • Mw/Mn the ratio of Mw to Mn
  • the polyolefin according to the present invention is 0.915 to 0.925 g/cc, more specifically 0.915 g/cc or more, or 0.917 g/cc or more, and 0.925 g/cc or less, or 0.920 g/cc, when measured according to ASTM D1505. Indicates a density of cc or less.
  • the polyolefin according to the present invention has a melt index (MI 2.16 ) of 0.5 to 1.5 g/10min, more specifically, 0.5 g/10min or more, as measured under the ASTM D1238 standard at a temperature of 190 ° C. and a load of 2.16 kg. or greater than or equal to 0.9 g/10min, or greater than or equal to 0.95 g/10min, and less than or equal to 1.5 g/10min, or less than or equal to 1.2 g/10min, or less than or equal to 1.05 g/10min.
  • MI 2.16 melt index
  • the polyolefin has a melt index (MI 21.6 ) of 10 to 50 g/10min measured at a temperature of 190°C and a load of 21.6 kg according to the ASTM D1238 standard, and more specifically, 10 g/10min or more, or 20 g. /10min or more, or 25 g/10min or more, and 50 g/10min or less, or 40 g/10min or less, or 35 g/10min or less.
  • MI 21.6 melt index
  • the polyolefin has a melt index (MI 21.6 ) measured at a temperature of 190 °C and a load of 21.6 kg according to the ASTM D1238 standard divided by the melt index (MI 2.16 ) measured at a temperature of 190 °C and a load of 2.16 kg.
  • MFRR MI 21.6 /MI 2.16
  • the polyolefin according to the present invention has the above-mentioned crystal structure characteristics as well as density and melt index in the optimal range, and thus can exhibit significantly improved impact strength properties and transparency along with excellent processability.
  • the polyolefin according to the present invention is specifically a copolymer of ethylene and olefin monomers.
  • the olefinic monomer may be ethylene, alpha-olefin, cyclic olefin, diene olefin or triene olefin having two or more double bonds.
  • olefinic monomer examples include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-eicocene, norbornene, norbonadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene , 1,5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, etc., and two or more of these monomers may be mixed for copolymerization.
  • the polyolefin may be a copolymer of ethylene/C4-C10 alpha olefin, and more specifically, it may be an ethylene/1-hexene copolymer.
  • the polyolefin according to the present invention having the above characteristics is, for example, a first transition metal compound represented by the following formula (1) and a second transition metal compound represented by the following formula (2) at a molar ratio of 1:1 to 1:3. It can be prepared by a production method comprising the step of subjecting ethylene and olefin monomers to a slurry polymerization reaction while adding hydrogen in the presence of a catalyst composition comprising:
  • R 1 to R 8 , and R 1 ' to R 4 ' are the same as or different from each other, and are each independently hydrogen, halogen, C 1-20 alkyl group, C 2-20 alkenyl group, C 6-20 aryl group, C 7 -20 alkylaryl group, or C 7-20 arylalkyl group;
  • R 9 and R 10 are the same as or different from each other, and are each independently hydrogen, C 1-20 alkyl group, C 2-20 alkenyl group, C 6-20 aryl group, C 7-20 alkylaryl group, or C 7-20 It may be an arylalkyl group, or R 10 and R 11 may be connected to each other to form one or more aliphatic rings, aromatic rings, or hetero rings;
  • R 11 is hydrogen, halogen, C 1-20 alkyl group, C 2-20 alkenyl group, C 6-20 aryl group, C 7-20 alkylaryl group, or C 7-20 arylalkyl group;
  • L is a C 1-10 straight or branched alkylene group
  • D is -O-, -S-, -N(R)- or -Si(R)(R')-, where R and R' are the same or different from each other and are each independently hydrogen, halogen, C 1 -20 alkyl group, C 2-20 alkenyl group, or C 6-20 aryl group;
  • A is hydrogen, C 1-20 alkyl group, C 2-20 alkenyl group, C 6-20 aryl group, C 7-20 alkylaryl group, or C 7-20 arylalkyl group;
  • M 1 is a Group 4 transition metal
  • R 11 to R 21 are the same as or different from each other, and are each independently hydrogen, halogen, C 1-20 alkyl group, C 2-20 alkenyl group, C 6-20 aryl group, C 7-20 alkylaryl group, or C 7 -20 is an arylalkyl group;
  • R 31 to R 35 are each independently hydrogen, C 1-20 alkyl group, C 2-20 alkenyl group, C 6-20 aryl group, C 7-20 alkylaryl group, C 7-20 arylalkyl group, C 1- 20 alkoxy group, C 2-20 alkoxyalkyl group, or C 7-30 aryloxyalkyl, where at least one of R 31 to R 35 is a C 1-20 alkyl group, a C 1-20 alkoxy group, or a C 2-20 alkoxyalkyl group. , or C 7-30 aryloxyalkyl,
  • M 2 is a Group 4 transition metal
  • the C 1-20 alkyl group includes straight or branched alkyl groups, specifically methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, pentyl, hexyl, heptyl, An octyl group, etc. may be mentioned, but it is not limited thereto.
  • the C 2-20 alkenyl group includes straight-chain or branched-chain alkenyl groups, and specifically includes allyl group, ethenyl group, propenyl group, butenyl group, pentenyl group, etc., but is not limited thereto.
  • the C 6-20 aryl group includes a monocyclic or condensed ring aryl group, and specifically includes, but is not limited to, a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, and a fluorenyl group.
  • the C 7-20 alkylaryl group is one in which one or more hydrogens of aryl are replaced by alkyl, specifically, methylphenyl, ethylphenyl, n-propylphenyl, iso-propylphenyl, n-butylphenyl, iso-butylphenyl, tert. -It may be butylphenyl or cyclohexylphenyl.
  • the C 7-20 arylalkyl group is one in which one or more hydrogens of alkyl are replaced by aryl.
  • the C 7-40 arylalkyl group may be a benzyl group, phenylpropyl, or phenylhexyl.
  • the C 1-20 alkoxy group includes methoxy group, ethoxy group, phenyloxy group, cyclohexyloxy group, etc., but is not limited thereto.
  • the C 2-20 alkoxyalkyl group is one in which one or more hydrogens of the alkyl group described above are replaced with an alkoxy group, specifically a methoxymethyl group, methoxyethyl group, ethoxymethyl group, iso-propoxymethyl group, and iso-propoxyethyl group.
  • alkoxyalkyl groups such as iso-propoxyhexyl group, tert-butoxymethyl group, tert-butoxyethyl group, and tert-butoxyhexyl group;
  • an aryloxyalkyl group such as a phenoxyhexyl group, but is not limited thereto.
  • the C 6-20 aryloxy group specifically includes phenoxy, biphenoxyl, naphthoxy, etc., but is not limited thereto.
  • the C 5-20 heteroaryl group includes a monocyclic or condensed ring heteroaryl group, carbazolyl group, pyridyl group, quinoline group, isoquinoline group, thiophenyl group, furanyl group, imidazole group, oxazolyl group, thia
  • Examples include, but are not limited to, a zolyl group, a triazine group, a tetrahydropyranyl group, and a tetrahydrofuranyl group.
  • the halogen may be fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).
  • substituents are optionally hydroxy groups within the range of having the same or similar effect as the desired effect; halogen; Alkyl group or alkenyl group, aryl group, alkoxy group; an alkyl group or alkenyl group, an aryl group, or an alkoxy group containing one or more heteroatoms from groups 14 to 16; silyl group; Alkylsilyl group or alkoxysilyl group; Phosphine group; phosphide group; Sulfonate group; and may be substituted with one or more substituents selected from the group consisting of a sulfone group.
  • Group 4 transition metals include titanium (Ti), zirconium (Zr), and hafnium (Hf), but are not limited thereto.
  • the first transition metal compound of Formula 1 forms a structure in which a fluorene derivative is cross-linked by a bridge, and has a lone pair of electrons that can act as a Lewis base in the ligand structure, thereby maintaining the Lewis acid characteristic of the carrier. It is supported on a surface and exhibits high polymerization activity even when supported. In addition, as it contains an electronically rich fluorene group, it has high activity and can polymerize high molecular weight olefin polymers.
  • R 1 to R 4 and R 1 ' to R 4 ' in Formula 1 are each independently hydrogen; C 1-12 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, etc.; or C 6-12 aryl group such as phenyl group; C 7-13 alkylaryl groups such as 3,5-dimethylphenyl group, t-butylphenyl group, etc.; or a C 7-13 arylalkyl group such as a benzyl group. More specifically, R 1 to R 4 and R 1 ' to R 4 ' in Formula 1 may all be hydrogen.
  • R 5 to R 8 are each independently hydrogen; C 1-12 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, etc.; or C 6-12 aryl group such as phenyl group; C 7-13 alkylaryl groups such as 3,5-dimethylphenyl group, t-butylphenyl group, etc.; or a C 7-13 arylalkyl group such as a benzyl group.
  • C 1-12 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, etc.
  • C 6-12 aryl group such
  • R 5 to R 7 are all hydrogen, and R 8 is hydrogen; C 1-12 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, etc.; or C 6-12 aryl group such as phenyl group; C 7-13 alkylaryl groups such as 3,5-dimethylphenyl group, t-butylphenyl group, etc.; or a C 7-13 arylalkyl group such as a benzyl group.
  • C 1-12 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, etc.
  • R 9 and R 10 in Formula 1 are each independently hydrogen, C 1-12 alkyl group, C 2-12 alkenyl group, C 6-12 aryl group, C 7-13 alkylaryl group, or C 7- 13 It may be an arylalkyl group, or R 9 and R 10 may be connected to each other to form one or more aromatic rings. More specifically, in Formula 1, R 9 is hydrogen, and R 10 is a C 1-12 or C 1-6 alkyl group such as methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, etc. This is; Alternatively, R 9 and R 10 may be connected to each other to form a benzene ring.
  • R 5 to R 7 and R 9 are all hydrogen, and R 8 is hydrogen; C 6-12 aryl groups such as phenyl groups; or C 7-13 alkylaryl group such as 3,5-dimethylphenyl group, t-butylphenyl group, etc., and R 10 is C 1 such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, etc. -6 alkyl group;
  • R 5 to R 8 may all be hydrogen, and R 9 and R 10 may be connected to each other to form a benzene ring.
  • R 11 in Formula 1 may be, more specifically, a C 1-12 or C 1-6 alkyl group such as methyl, ethyl, propyl, isopropyl, n-butyl, or tert-butyl. More specifically, R 11 may be a methyl group or an ethyl group.
  • L in Formula 1 may specifically be a C 4-8 straight-chain or branched-chain alkylene group. More specifically, L may be butylene, pentylene, or hexylene.
  • D in Formula 1 may specifically be -O-.
  • A is specifically hydrogen; C 1-12 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, etc.; or C 6-12 aryl group such as phenyl group; C 7-13 alkylaryl groups such as 3,5-dimethylphenyl group, t-butylphenyl group, etc.; or a C 7-13 arylalkyl group such as a benzyl group; more specifically, A may be hydrogen, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, or a tert-butyl group.
  • C 1-12 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, n-but
  • M 1 in Formula 1 may be zirconium (Zr) or hafnium (Hf), and more specifically, may be zirconium (Zr).
  • X 1 and X 2 may each independently be halogen, and more specifically, may be chloro.
  • the first transition metal compound represented by Formula 1 may be any one selected from the group consisting of the following, but is not limited thereto:
  • the non-crosslinked second transition metal compound represented by Formula 2 has a tetrahydroindene structure in which indene is reduced along with a cyclopentadiene structure as a ligand, and thus can be used as a transition for producing low molecular weight polymers based on the conventional indene structure.
  • hydrogen reactivity is relatively relaxed, making it easy to reduce the weight average molecular weight and control PDI by adding hydrogen.
  • the tetrahydroindene structure tetrahydroindene structure and the cyclohexane structure are all unsubstituted, that is, R 14 to R 21 are all hydrogen.
  • the cyclopentadiene structure in the tetrahydro indene structure is unsubstituted, that is, R 11 , R 12 and R 13 are all hydrogen; Or at least one of the carbons at positions 1 to 3, that is, at least one of R 11 , R 12 and R 13 is C 1-12 alkyl group, C 2-12 alkenyl group, C 6-12 aryl group, C 7-13 It may be an alkylaryl group, or a C 7-13 arylalkyl group, and the remainder may be hydrogen.
  • all ligands of the tetrahydroindene structure may be unsubstituted, that is, all of R 11 to R 21 may be hydrogen.
  • the cyclopentadiene-structured ligand may be substituted with at least one of the substituents R 31 to R 35 .
  • at least one of R 31 to R 35 may be a C 1-12 alkyl group, a C 1-12 alkoxy group, a C 2-12 alkoxyalkyl group, or a C 7-18 aryloxyalkyl group, and the remainder may be hydrogen.
  • R 31 to R 35 is a C 1-12 alkyl group, a C 1-12 alkoxy group, or a C 2-12 alkoxyalkyl group, and the remainder are all hydrogen; Two of R 31 to R 35 are C 1-12 alkyl groups, and the remainder are all hydrogen; Alternatively, R 31 to R 35 may all be C 1-12 alkyl groups.
  • R 31 to R 35 is a C 1-6 alkyl group such as methyl, ethyl, propyl, or butyl; C 1-6 alkoxy groups such as methoxy, ethoxy, propoxy, and butoxy; Alternatively, it may be a C 2-12 alkoxyalkyl group such as t-butoxyhexyl, and all others may be hydrogen. Additionally, two of R 31 to R 35 may be C 1-6 alkyl groups such as methyl, ethyl, propyl, or butyl, and the remainder may all be hydrogen. Additionally, R 31 to R 35 may all be C 1-4 alkyl groups such as methyl or ethyl.
  • M 2 may be zirconium (Zr) or hafnium (Hf), and more specifically, may be zirconium (Zr).
  • X 3 and X 4 may each independently be halogen, and more specifically, may be chloro.
  • the second transition metal compound may be any one of the compounds represented by the following structural formula, but is not limited thereto:
  • first and second transition metal compounds can be synthesized by applying known reactions, and the examples can be referred to for more detailed synthesis methods.
  • the first transition metal compound may be a meso isomer, a racemic isomer, or a mixture thereof.
  • the second transition metal compound does not have meso isomers and racemic isomers.
  • racemic form or “racemic body” or “racemic isomer” means that the same substituent on two ligands is a transition metal represented by M 1 in Formula 1, such as zirconium ( It means a plane containing a transition metal such as Zr) or hafnium (Hf) and a form on the opposite side to the center of the ligand portion.
  • M 1 in Formula 1 such as zirconium ( It means a plane containing a transition metal such as Zr) or hafnium (Hf) and a form on the opposite side to the center of the ligand portion.
  • the term "meso isomer” or “meso isomer” refers to a stereoisomer of the above-mentioned racemic isomer, in which the same substituent on two ligands is a transition metal represented by M 1 in Formula 1 above. , for example, means a form that is on the same plane with respect to the center of the ligand portion and a plane containing a transition metal such as zirconium (Zr) or hafnium (Hf).
  • the first transition metal compound and the second transition metal compound are used in an amount of 1:1 to 1:1 based on the first transition metal compound, considering excellent catalytic activity and polymerizability. It is carried at a molar ratio of 3.
  • the above molar ratio When included in the above molar ratio, it exhibits high activity in olefin polymerization, making it possible to produce polyolefin with excellent processability and improved drop impact strength and haze characteristics. More specifically, it may be 1:1 to 1:2, or 1:1 to 1:1.5, or 1:1.1 to 1:1.2.
  • first and second transition metal compounds may be used as supported catalysts supported on a silica carrier.
  • the carrier may be a carrier containing a hydroxy group on the surface, preferably a carrier that has been dried to remove moisture from the surface and contains a highly reactive hydroxy group and a siloxane group on the surface.
  • a carrier containing a hydroxy group on the surface preferably a carrier that has been dried to remove moisture from the surface and contains a highly reactive hydroxy group and a siloxane group on the surface.
  • silica, silica-alumina, and silica-magnesia dried at high temperatures can be used, and they are usually oxides such as Na 2 O, K 2 CO 3 , BaSO 4 , and Mg(NO 3 ) 2 , carbonates, etc. May contain sulfate and nitrate components.
  • the particle shape and bulk density of the produced polymer are excellent, and can be suitably used in conventional slurry polymerization, bulk polymerization, and gas phase polymerization processes.
  • the functional groups of the transition metal compound are chemically bonded to the silica carrier, there is almost no catalyst released from the surface of the carrier during the polymerization process, and as a result, polyolefin cannot be produced through slurry or gas phase polymerization. Fouling that occurs on the reactor wall or between polymer particles can be minimized.
  • the first and second transition metal compounds are each contained in an amount of 0.01 to 100 mmol, more specifically, 0.01 mmol or more, or 0.1 mmol or more, or 1 mmol or more, or 10 mmol or more, or It may be supported in a content range of 20 mmol or more, 100 mmol or less, or 85 mmol or less, or 60 mmol or less. When supported in the above content range, it exhibits appropriate supported catalyst activity, which can be advantageous in terms of maintaining the activity of the catalyst and economic efficiency.
  • the catalyst may additionally include a cocatalyst to improve high activity and process stability.
  • the cocatalyst may include one or more selected from the compounds represented by the following formula (3):
  • R a are the same or different from each other, and are each independently halogen; Hydrocarbyl group of C 1-20 ; or a C 1-20 hydrocarbyl group substituted with halogen;
  • n is an integer of 2 or more.
  • Examples of the compound represented by Formula 3 include alkylaluminoxane-based compounds such as methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, or butylaluminoxane, and any one or a mixture of two or more of these may be used. .
  • the cocatalyst may be, more specifically, an alkylaluminoxane-based cocatalyst such as methylaluminoxane.
  • the alkylaluminoxane-based cocatalyst stabilizes the transition metal compound and acts as a Lewis acid to bind to the functional group introduced into the bridge group of the transition metal compound through Lewis acid-base interaction.
  • Catalytic activity can be further improved by including a metal element that can be formed.
  • the amount of the cocatalyst used can be appropriately adjusted depending on the physical properties or effects of the desired catalyst, polymer, and polyolefin containing the same.
  • the cocatalyst may be supported in an amount of 100 g or more, 500 g or more, or 700 g or more, and 1,000 g or less, or 900 g or less, or 800 g or less per weight of the carrier, for example, based on 1,000 g of silica.
  • the catalyst having the above-described structure can be prepared by a production method comprising the step of supporting a cocatalyst compound on a carrier, and the step of supporting the first and second transition metal compounds on the carrier, wherein the cocatalyst
  • the loading order of the first and second transition metal compounds may be changed as needed.
  • the order in which the first and second transition metal compounds are supported is also not particularly limited, and the second transition metal compound may be supported after the first transition metal compound, or may be supported in the opposite order. Alternatively, the first and second transition metal compounds may be supported simultaneously.
  • the polymerization reaction for producing polyolefin is carried out under conditions of inputting hydrogen gas.
  • the hydrogen gas may be added in an amount of 5 to 30 ppm, based on the total weight of olefin monomers. More specifically, based on the total weight of olefin monomers, it may be added in an amount of 5 ppm or more, 10 ppm or more, or 15 ppm or more, and 30 ppm or less, or 28 ppm or less.
  • the hydrogen gas activates the inactive site of the metallocene catalyst and causes a chain transfer reaction to control the molecular weight.
  • the transition metal compound used in the present invention has excellent hydrogen reactivity, and therefore, by controlling the amount of hydrogen gas used during the polymerization process, polyolefin having a desired level of molecular weight and melt index can be effectively obtained.
  • the polymerization process may be performed as a continuous polymerization process, and various polymerization processes known as polymerization reactions of olefin monomers, such as a continuous solution polymerization process, bulk polymerization process, suspension polymerization process, slurry polymerization process, or emulsion polymerization process, are employed. It can be. However, in the present invention, a slurry polymerization process is performed to realize the above-described physical properties of polyolefin.
  • the polymerization reaction may be performed at a temperature of 60°C or higher, 70°C or higher, or 80°C or higher, and 90°C or lower, or 85°C or lower. Additionally, the polymerization reaction may be performed under a pressure of 10 bar or more, or 20 bar or more, and 50 bar or less, or 40 bar or less. When polymerization proceeds under such temperature and pressure, the desired physical properties of polyolefin can be more easily realized.
  • the polyolefin produced by the above-described manufacturing method has a crystal structure that can ensure excellent transparency along with the BOCD structure, and can exhibit transparency along with excellent drop impact strength characteristics. Accordingly, the polyolefin can be useful in the production of films that require high mechanical properties along with excellent transparency, especially blown films.
  • the present invention provides a resin composition containing the above polyolefin, specifically a composition for forming a film.
  • the present invention provides a film manufactured using the polyolefin or the resin composition, specifically a blown film.
  • the film according to the present invention can be manufactured according to a conventional film manufacturing method except for using the polyolefin.
  • it can be prepared by mixing the polyolefin and optionally additives such as antioxidants and processing aids to prepare a composition for forming a film, and extruding it into a film using an extruder.
  • the film can exhibit excellent transparency and mechanical properties by containing the polyolefin.
  • the film was prepared according to Method A of ASTM D 1709 under the conditions of a BUR (Blown-Up Ratio) of 2.3 to 3, more specifically 2.5 to 3, even more specifically 2.5, and a film thickness of 50 to 65 ⁇ m.
  • the measured drop impact strength is 1600 gf or more, or 1800 gf or more, and the haze measured according to ISO 13468 standards is 15% or less, or 14% or less.
  • the film has a drop impact strength measured according to Method A of ASTM D 1709 under the conditions of BUR 2.3 to 3, more specifically 2.5 to 3, even more specifically 2.5, and film thickness of 20 to 30 ⁇ m, 1000. g or more, and the haze measured according to ISO 13468 standards is 10% or less.
  • the lower the haze, the better, so the lower limit is not particularly limited, but may be 1% or more, for example.
  • Fluorene (100 mmol) and MTBE (methyl tert-butyl ether, 0.3 M) were added to the reactor at -20°C, n-BuLi (1.05 eq, 2.5 M in Hexane) was slowly added, and the fluorine was stirred at room temperature for 6 hours. An orenyl lithium solution was prepared. After the stirring was terminated, the reactor temperature was cooled to -30°C, and tert-Bu-O-(CH 2 ) 6 SiMeCl 2 (0.505eq) was added to the prepared fluorenyl lithium solution at -30°C, It was washed with MTBE (50 mL) and added.
  • n-BuLi (2.05 eq, 2.5M in Hexane) in (tert-Bu-O-(CH 2 ) 6 )MeSi(9-C 13 H 10 ) 2 (100 mmol)/MTBE (0.4 M) solution at -20°C ) was slowly added and reacted for more than 8 hours while raising the temperature to room temperature to prepare a dilithium salts slurry solution.
  • the dilithium salt slurry solution prepared above was slowly added to the slurry solution of ZrCl 4 (THF) 2 (1 eq, 100 mmol)/hexane (1 M), and reacted at room temperature for an additional 8 hours.
  • the resulting reactant was vacuum dried to remove all solvent.
  • the dilithium salts slurry solution prepared above was slowly added to the slurry solution of ZrCl 4 (THF) 2 (1 eq, 100 mmol)/hexane (1 M) at -20°C, and reacted at room temperature for further 8 hours. I ordered it.
  • the resulting reactant was vacuum dried to remove all solvent.
  • DCM (0.43 M) was added to the resulting dried product, and then Hexane (0.32 M) was further added.
  • the resulting precipitate (LiCl) was filtered and the filtrate was dried under vacuum. Hexane (0.3 M) was added to the resulting dried product to create a slurry, which was filtered.
  • n-BuLi (1.05eq) was slowly added dropwise to a solution of n-Butyl-cyclopentadiene (1eq) dissolved in THF (0.3M) at -25°C, and stirred at room temperature for 3 hours.
  • Indene-ZrCl 3 (1eq) prepared above was added to the resulting reaction product at -25°C, and then stirred at room temperature overnight. After drying the resulting reaction product to remove all solvents, hexane was added, and the solid was filtered to produce n-BuCp-ZrCl 2 -Indene. An intermediate was obtained.
  • a transition metal compound (C-1) having the above structure was prepared in the same manner as in Comparative Synthesis Example 2 of Korean Patent Publication No. 10-2022-0067494.
  • a transition metal compound (C-2) having the following structure was prepared in the same manner as in Preparation Example 1 of Korean Patent Publication No. 10-2016-0067508.
  • a transition metal compound (D) having the following structure was prepared in the same manner as in Preparation Example 2 of Korean Patent Publication No. 10-2016-0029718.
  • the temperature of the reactor was lowered to 40°C and stirring was stopped. Then, the reaction product was allowed to stand for about 10 minutes and then decantated. 2.0 kg of toluene was added to the reaction product and stirred for about 10 minutes. After the stirring was stopped, the mixture was left to stand for about 30 minutes and decantation was performed.
  • a hybrid metallocene catalyst was prepared in the same manner as in Preparation Example 1, except that the types and mixing molar ratios of the first and second transition metal compounds were changed.
  • the isobutene slurry loop process is possible as a polymerization reactor, and a 140L continuous polymerization reactor operated at a reaction flow rate of approximately 7 m/s was prepared. Then, the reactants required for polyolefin polymerization were continuously added to the reactor as shown in Table 2 below.
  • the catalyst used in each polymerization reaction was the one prepared in the Preparation Example or Comparative Preparation Example shown in Table 1 above, and the catalyst was mixed with isobutene slurry and added. Additionally, the polymerization reaction was performed at a pressure of about 40 bar and a temperature of about 85°C, and the main conditions of the polymerization reaction are shown in Table 2 below.
  • BO1801EN manufactured by Daelim Sa was obtained commercially and used.
  • XP8318ML manufactured by Exxon Chemical was obtained commercially and used.
  • XP8656ML manufactured by Exxon Chemical was obtained commercially and used.
  • the 1-Hexene input amount (% by weight) is expressed as a percentage of the relative content based on the total weight of olefin monomers including ethylene and 1-hexene.
  • the hydrogen input amount (ppm) in 2 is based on the total weight of olefin monomers including ethylene and 1-hexene.
  • MI 2.16 Melt Index: Measured according to ASTM D1238 (Condition E, 190 °C, 2.16 kg load) standard.
  • MI 21.6 Melt Index
  • MI 21.6 /MI 2.16 This is the ratio of MI 21.6 (ASTM D1238, 190 °C, 21.6 kg load) divided by MI 2.16 (ASTM D1238, 190 °C, 2.16 kg load).
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) were measured using gel permeation chromatography (GPC: manufactured by Waters), and the molecular weight distribution (Mw/Mn) was calculated from the measured values.
  • the measurement sample was evaluated using a Waters PL-GPC220 instrument using a Polymer Laboratories PLgel MIX-B 300 mm long column.
  • the evaluation temperature was 160°C
  • 1,2,4-trichlorobenzene was used as a solvent
  • the flow rate was measured at 1 mL/min.
  • the sample was prepared at a concentration of 10 mg/10 mL and then supplied in an amount of 200 ⁇ L.
  • the values of Mw and Mn were measured using a calibration curve formed using polystyrene standards.
  • Nine types of molecular weights (g/mol) of polystyrene standards were used: 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
  • Cross-fraction chromatography (CFC) analysis was performed on the polyolefins prepared in the above examples and comparative examples in the following manner, and the film haze parameter (Hp) and the ratio of A H / A1 were calculated from the results.
  • the content ratio (>75°C) was calculated (wt%), respectively.
  • the content ratio of low crystalline polymer eluted in the region of elution temperature 75°C or lower, specifically, elution temperature 35 to 75°C, excluding SF (W L ) and the content ratio (W H ) of the highly crystalline polymer eluted in the region above the elution temperature of 75°C were calculated (wt%), respectively.
  • the weight average molecular weight (M L ) of the low crystalline polymer eluted in the region below 75°C excluding the soluble fraction (SF) in the TREF graph that is, the elution temperature range of 35 to 75°C, and the elution temperature
  • the weight average molecular weight (M H ) of the highly crystalline polymer eluted in the region above 75°C was calculated.
  • Te L and Te H are, respectively, the elution temperature value of the lowest peak and the elution temperature value of the highest peak in the TREF graph during CFC analysis
  • W L and ML are the content (wt) of low-crystalline polymer eluted in the region below the elution temperature of 75°C, excluding SF (soluble fraction eluted in the region below the elution temperature 35°C) in the TREF graph, respectively. %) and the weight average molecular weight (g/mol) value of the low crystalline polymer,
  • W H and M H are the content (wt%) of the highly crystalline polymer eluted in the region above 75°C in the TREF graph and the weight average molecular weight (g/mol) of the highly crystalline polymer, respectively.
  • the peak height of the highest peak is set to A H
  • the peak height of the lowest peak is set to If the peak exists in a temperature range outside the elution temperature of 40 to 75°C, or the temperature rise elution fractionation graph has a single peak, each value is calculated by setting the height at the elution temperature of 65°C as A 1 , and then A H /A 1 was calculated.
  • TREF graphs obtained through CFC analysis of the polyolefins of Examples 1 to 5 and graphs showing the molecular weight in each elution region are shown in FIGS. 1A to 5B, respectively.
  • a film was manufactured by extruding the film forming composition prepared above under the following film extrusion conditions.
  • the drop impact strength of the films of the Examples and Comparative Examples (thicknesses of 50 ⁇ m and 25 ⁇ m) prepared above was measured according to the ASTM D1709 [Method A] standard, and the average value was taken by measuring at least 20 times per film sample.
  • the haze of the films of the examples and comparative examples prepared above was measured according to ISO 13468 standards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 높은 낙하 충격 강도 특성과 함께 우수한 헤이즈 특성을 나타내는 폴리올레핀, 및 이를 포함하는 필름에 관한 것이다.

Description

폴리올레핀 및 이를 포함하는 필름
관련 출원(들)과의 상호 인용
본 출원은 2022년 11월 2일자 한국 특허 출원 제10-2022-0144765호 및 2023년 10월 16일자 한국 특허 출원 제10-2023-0137792호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 높은 낙하 충격 강도 특성과 함께 우수한 헤이즈 특성을 나타내는 폴리올레핀, 및 이를 포함하는 필름에 관한 것이다.
선형 저밀도 폴리에틸렌(linear low density polyethylene; LLDPE)은 중합 촉매를 사용하여 저압에서 에틸렌과 알파 올레핀을 공중합하여 제조되는 것으로, 분자량 분포가 좁고, 일정한 길이의 단쇄 분지를 가지며, 장쇄 분지가 없는 수지이다. 선형 저밀도 폴리에틸렌 필름은 일반 폴리에틸렌의 특성과 더불어 파단강도와 신율이 높고, 인열강도, 낙하 충격 강도 등이 우수하여 기존의 저밀도 폴리에틸렌(LDPE)이나 고밀도 폴리에틸렌(HDPE)의 적용이 어려운 스트레치 필름, 오버랩 필름 등에의 사용이 증가하고 있다.
최근 탈탄소화와 함께 재활용성 향상을 위한 고기능성의 선형 저밀도 폴리에틸렌에 대한 수요가 증가하고 있으며, 이와 함께 가공성과 낙하충격강도가 우수한 선형 저밀도 폴리에틸렌에 대한 요구도 증가하고 있다.
낙하 충격 강도(Dart drop impact strength)는 수지의 다양한 충격 저항성을 확인하는 매우 중요한 기계적 특성이다. 그러나, 선형 저밀도 폴리에틸렌은 우수한 기계적 물성에 비하여 블로운 필름(blown film) 가공성이 좋지 않고, 투명도가 떨어지는 단점이 있다. 블로운 필름이란, 용융 플라스틱에 공기를 불어넣어 부풀리는 방식으로 제조한 필름으로서, 인플레이션 필름이라고도 불린다.
선형 저밀도 폴리에틸렌은 일반적으로 밀도가 낮을수록 투명성이 좋아지고 낙하 충격 강도가 증가하는 특성이 있다. 하지만 저밀도의 폴리에틸렌을 제조하기 위하여 알파 올레핀 공단량체를 많이 사용할 경우 슬러리 중합 공정에서 파울링(fouling) 발생 빈도가 높이지는 등의 문제가 있어 슬러리 중합 공정에서는 밀도 0.915 g/cm3 이상의 제품을 많이 생산하고 있다.
따라서 밀도 0.915 g/cm3 이상이면서 높은 충격 강도 특성과 함께 우수한 투명성을 구현할 수 있는 폴리올레핀의 개발의 필요성이 요구되고 있다.
상기 종래기술의 문제점을 해결하기 위해, 본 발명은 결정 구조의 제어를 통해 높은 충격 강도 특성과 함께 우수한 투명성을 나타내는 폴리올레핀을 제공하고자 한다.
또 본 발명은 상기 폴리올레핀을 포함하는 필름, 구체적으로는 블로운 필름을 제공하고자 한다.
본 발명에 따르면, 하기 (i) 내지 (iii)의 조건을 만족하는 폴리올레핀을 제공한다:
(i) 하기 수학식 1로 정의되는 필름 헤이즈 파라미터(Hp): 12 이하
[수학식 1]
Figure PCTKR2023016345-appb-img-000001
(상기 수학식 1에서,
TeL 및 TeH는 각각, 교차 분획 크로마토그래피(Cross Fraction Chromatography, CFC) 분석시 온도 상승 용리 분별(Temperature rising elution fractionation, TREF) 그래프에서 가장 낮은 피크의 용리 온도 값 및 가장 높은 피크의 용리 온도 값이고,
WL 및 ML은 각각, TREF 그래프에서 용리 온도 35℃ 미만의 영역에서 용출되는 가용성 분획(soluble fraction, SF)을 제외한 용리 온도 75℃ 이하의 영역에서 용출되는 저결정성 중합체의 함량 비율(중량%) 값 및 상기 저결정성 중합체의 중량평균 분자량(g/mol) 값이며,
WH 및 MH는 각각, TREF 그래프에서 용리 온도 75℃ 초과의 영역에서 용출되는 고결정성 중합체의 함량 비율(중량%) 및 상기 고결정성 중합체의 중량평균 분자량(g/mol) 값이다)
(ii) 교차 분획 크로마토그래피 분석 시 온도 상승 용리 분별 그래프에서 피크 높이비 AH/A1: 1.8 이상
(이때 AH는 TREF 그래프에서 가장 높은 피크의 피크 높이이고, A1은 TREF 그래프에서 가장 낮은 피크가 용리 온도 40 내지 75℃에 존재할 경우에는 가장 낮은 피크의 피크 높이이고, TREF 그래프에서 가장 낮은 피크가 용리 온도 40 내지 75℃에 존재하지 않거나 또는 TREF 그래프가 단일 피크를 가져 가장 낮은 피크가 존재하지 않는 경우에는 용리 온도 65℃에서의 높이이다)
(iii) 분자량 분포: 2.5 내지 4.
또, 본 발명에 따르면 상기 폴리올레핀을 포함하는 필름을 제공한다.
본 발명에 따른 폴리올레핀은 높은 충격 강도 특성과 함께 우수한 투명성을 나타낸다. 이에 따라 높은 충격 강도 특성과 우수한 투명성이 요구되는 필름, 특히 블로운 필름의 제조에 유용하다.
도 1a는 실시예 1의 폴리올레핀에 대한 교차 분획 크로마토그래피(CFC) 분석을 통해 수득한 온도 상승 용리 분별(TREF) 그래프이고, 도 1b는 각 용출 영역에서의 분자량을 나타낸 그래프이다.
도 2a는 실시예 2의 폴리올레핀에 대한 CFC 분석을 통해 수득한 TREF 그래프이고, 도 2b는 각 용출 영역에서의 분자량을 나타낸 그래프이다.
도 3a는 실시예 3의 폴리올레핀에 대한 CFC 분석을 통해 수득한 TREF 그래프이고, 도 3b는 각 용출 영역에서의 분자량을 나타낸 그래프이다.
도 4a는 실시예 4의 폴리올레핀에 대한 CFC 분석을 통해 수득한 TREF 그래프이고, 도 4b는 각 용출 영역에서의 분자량을 나타낸 그래프이다.
도 5a는 실시예 5의 폴리올레핀에 대한 CFC 분석을 통해 수득한 TREF 그래프이고, 도 5b는 각 용출 영역에서의 분자량을 나타낸 그래프이다.
본 발명에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명에 있어서 상온은 20±5℃를 의미한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명의 폴리올레핀 및 이를 포함하는 필름에 대해 상세히 설명한다.
본 발명에 따른 폴리올레핀은 하기 (i) 내지 (iii)의 조건을 만족한다:
(i) 하기 수학식 1로 정의되는 필름 헤이즈 파라미터(Hp): 12 이하
[수학식 1]
Figure PCTKR2023016345-appb-img-000002
(상기 수학식 1에서,
TeL 및 TeH는 각각, 교차 분획 크로마토그래피(CFC) 분석시 온도 상승 용리 분별(TREF) 그래프(X축: 용리온도(℃), Y축: 용출량(dw/dt))에서 가장 낮은 피크의 용리 온도 값 및 가장 높은 피크의 용리 온도 값이고,
WL 및 ML은 각각, TREF 그래프에서 용리 온도 35℃ 미만의 영역에서 용출되는 가용성 분획(SF)을 제외한 용리 온도 75℃ 이하의 영역에서 용출되는 저결정성 중합체의 함량 비율(중량%) 값 및 상기 저결정성 중합체의 중량평균 분자량(g/mol) 값이며,
WH 및 MH는 각각, TREF 그래프에서 용리 온도 75℃ 초과의 영역에서 용출되는 고결정성 중합체의 함량 비율(중량%) 및 상기 고결정성 중합체의 중량평균 분자량(g/mol) 값이다)
(ii) 교차 분획 크로마토그래피 분석 시 온도 상승 용리 분별 그래프에서 피크 높이비 AH/A1: 1.8 이상
(이때 AH는 TREF 그래프에서 가장 높은 피크의 피크 높이이고, A1은 TREF 그래프에서 가장 낮은 피크가 용리 온도 40 내지 75℃에 존재할 경우에는 가장 낮은 피크의 피크 높이이고, TREF 그래프에서 가장 낮은 피크가 용리 온도 40 내지 75℃에 존재하지 않는 경우, 즉 가장 낮은 피크가 용리 온도 40 내지 75℃를 벗어난 온도 범위에 존재하는 경우나, 또는 TREF 그래프가 단일 피크를 가져 가장 낮은 피크가 존재하지 않는 경우에는 용리 온도 65℃에서의 높이이다)
(iii) 분자량 분포: 2.5 내지 4.
포장재 및 각종 산업용 필름의 제조에 활용되는 플로운 필름 압출(blown film extrusion)은, 스크류(screw)를 통해 다이(Die)에서 용출된 필름에 air flow를 발생시켜 팽창시킴으로써 균일한 두께와 표면을 갖는 필름을 대량 생산하는 방법이다. 상대적으로 용융지수(MI)가 낮은, 대략 0.5 내지 2.0의 MI를 갖는 필름 생산에 주로 활용된다. 중합체 용융물(melt)을 air로 팽창시키는 과정에서 기계 연신 방향(Mechenical Direaction, MD)와 연신에 수직한 방향(Transverse Direaction, TD)에 고른 배향성을 부여할 수 있고, 이를 통해 우수한 기계적 물성을 확보할 수 있다.
그러나 air를 통한 bubble shape 발생 및 냉각 정도를 조절하는 방식으로 인해, 캐스트 필름 압출(cast film extrusion) 대비 투명도가 좋지 못하다. 따라서 LLDPE에 LDPE를 blending 하여 필름 표면을 개선하는 방법이 주로 활용되고 있지만, 이 경우 필름의 기계적 물성이 크게 감소하는 문제가 있다.
이에 따라 기본적으로 기계적 물성이 우수하면서도, LDPE를 blending 하지 않아도 Haze 특성이 우수한 폴리올레핀의 개발 및 해당 구조에 대한 정량화가 필요하다.
이에, 본 발명에서는 필름 헤이즈 파라미터로 폴리올레핀을 정의하되, 기계적 물성과 투명성이 동시에 우수한 범위로 최적화하였다.
상기 필름 헤이즈 파라미터는 BOCD 구조에서 우수한 투명성을 확보할 수 있는 구조를 정의한다.
구체적으로, 1,2,4-트리클로로벤젠을 용매로 사용한 CFC 분석을 통해, 용리 온도 75℃를 기준으로 저결정 영역과 고결정 영역으로 분리하고, WL 및 ML은 각각 75℃ 이하의 저결정 영역에서의 함량 비율(중량%)과 중량평균 분자량으로 정의하였다.
선형 저밀도 폴리에틸렌 필름은 BOCD 구조를 가지게 되면 TREF 결정 영역이 2개 이상의 피크를 가지도록 넓게 분포하게 된다. 이는 SCB(short chain branch)를 거의 포함하지 않아 높은 결정성을 나타내는 분자 사슬과, SCB를 다량 포함하여 라멜라(Lamellar)와 타이 분자(Tie molecule)이 혼재된 Macrostructure를 형성하는 사슬이 혼재되어 있음을 나타낸다.
WL 및 ML은 이들 중 타이 분자가 형성될 가능성이 높은 구간을 정량화한 것이다. 적정 수준 이상의 분자량이 확보되어야 타이 분자에 의한 우수한 낙하충격강도 및 내충격성이 발현될 수 있다. WH 및 MH는 결정성이 낮아 충격에 약한 구간이지만, 중합체 내 50 내지 60중량% 정도 포함되어야 강도 및 강성(stiffiness) 등을 보강할 수 있다. 또 특정 범위의 분자량, 예를 들면 70,000 내지 110,000g/mol이 확보되어야, 필름 냉각 과정에서의 완화 시간(relaxation time)을 증대시켜 구정 형태의 과도한 macromolecule 구조 성장을 억제하고, 결과로서 투명도를 제어할 수 있다. 다만, WH 및 MH가 과도하게 높으면 물성이 저하될 수 있으므로, WH는 60 이하, MH는 110,000 이하인 것이 바람직하다.
상기한 조건에서 고분자 구조에 의한 헤이즈 차이를 비교할 수 있는 신규 파라미터, 즉 필름 헤이즈 파라미터를 도입하였다.
저결정 영역 분자량 및 함량이 과도하게 높지 않아야 라멜라-타이 분자 구조에 의한 광산란을 제어할 수 있다. 또 고결정 영역의 분자량이 높으면 이완 시간 증가를 통해 구정 성장을 억제할 수 있지만, 함량이 지나치게 많을 경우 높은 결정성에 의해 투명도가 저해될 수 있다.
일례로, TREF 그래프에서, 용리 온도 75℃ 이상의 영역에서의 용출되는 고결정성 중합체의 함량이 충분하더라도, 용리 온도 40 내지 75℃의 저결정 영역에서 피크가 보이지 않거나 또는 피크 높이가 낮을 경우 고결정에 의해 결정화가 발생하는 핵들이 빠르게 생성될 수 있다. 또, 해당 고결정 영역에서의 중합체의 분자량이 크거나 또는 작을 경우, 결정화 과정에서 분자 사슬이 움직이는 속도가 영향을 받을 수 있다. 만약 고결정 영역에서의 중합체가 상대적으로 큰 분자량을 가질 경우에는 사슬의 움직임이 느려져 결정이 발생하는 핵(nucleation site)에서 결정이 충분히 성장하지 못하고, 작은 구정의 형성으로 roughness 및 산란이 감소하고, 결과로서 haze 특성이 개선될 수 있다. 그러나, 고결정 영역에서의 중합체가 상대적으로 작은 분자량을 가질 경우에는 결정 구조의 성장에 의해 큰 구정이 형성되고, 이로 인해 roughness 및 산란이 증가하여, 결과 haze 특성이 저하되게 된다.
본 발명자들은 이들 관계를 상기 수학식 1에서와 같이 선형 수식으로 나타내었다.
수학식 1에서, TeLWLML x 10-8은 저결정에 의한 광산란 관련 haze 요소, (TeHWH/MH) x 100은 고결정에 의한 haze 요소를 나타낸다. TeL 및 TeH는 각각 가장 낮은 TREF 피크의 용리 온도 및 가장 높은 TREF 피크의 용리 온도로, 저결정과 고결정으로 분류한 온도 영역에서의 대표적인 결정성(crystallinity)를 나타내는 값으로 고려할 수 있다.
본 발명에 따른 폴리올레핀은 상기 수학식 1로 정의되는 필름 헤이즈 파라미터(Hp)가 12 이하를 나타내며, 보다 구체적으로 Hp가 12 이하, 또는 11.8 이하, 또는 11.6 이하이고, 8 이상, 또는 8.3 이상, 또는 8.5 이상이다. 이에 따라 우수한 충격 강도 특성과 함께 높은 투명성을 나타낼 수 있다.
본 발명에 따른 폴리올레핀은 CFC 분석 시 TREF 그래프에서 피크 높이비 AH/A1 가 1.8 이상이다.
이때, AH는 온도 상승 용리 분별 그래프에서 가장 높은 피크의 피크 높이이고, A1은 온도 상승 용리 분별 그래프에서 가장 낮은 피크가 용리 온도 40 내지 75℃에 존재할 경우에는 가장 낮은 피크의 피크 높이이고, 온도 상승 용리 분별 그래프에서 가장 낮은 피크가 용리 온도 40 내지 75℃에 존재하지 않을 경우, 즉 가장 낮은 피크가 용리 온도 40 내지 75℃를 벗어난 온도 범위에 존재하는 경우나, 또는 온도 상승 용리 분별 그래프가 단일 피크를 가져 가장 낮은 피크가 존재하지 않는 경우에는 용리 온도 65℃에서의 높이이다.
도 1a는 이하 실시예 1의 폴리올레핀의 TREF 그래프에서, A1 및 AH를 나타낸 도면이다. 도 1a는 본 발명을 설명하기 위한 일 예일 뿐 본 발명이 이에 한정되는 것은 아니다.
도 1a를 참조하여 설명하면, 실시예 1의 폴리올레핀의 TREF 그래프에서 용리 온도 89.4℃에서 가장 높은 피크가 나타났고, 용리 온도 66.1℃에서 가장 낮은 피크가 나타났다. 이에 따라 실시예 1의 폴리올레핀의 AH는 용리 온도 89.4℃에서 나타난 가장 높은 피크의 피크 높이이고, A1은 용리 온도 66.1℃에서 가장 낮은 피크의 피크 높이이다.
상기 AH/A1는 고온 영역에서 용출되는 고결정성 중합체의 상대적인 양을 정의한 것이다. 본 발명에 따른 폴리올레핀은 상기한 조건을 만족함에 따라 고결정성 중합체의 양이 충분하다. 이에 따라 고온의 용리 온도 영역에서 결정화가 발생하는 결정화가 발생하는 핵들이 느리게 생성되거나, 충분히 성장하지 못해 작은 구정이 형성되게 되고, 이에 따라 roughness 및 산란이 감소함으로써 개선된 헤이즈 특성을 나타낼 수 있다.
보다 구체적으로, 본 발명에 따른 폴리올레핀의 AH/A1는 1.8 이상, 또는 1.81 이상, 또는 2 이상, 또는 2.4 이상이고, 3 이하, 또는 2.8 이하, 또는 2.7 이하이다.
또 본 발명에 따른 폴리올레핀은 상기 Hp 및 AH/A1의 조건과 더불어, WL, ML, WH 및 MH의 최적 범위 조건을 더욱 만족함으로써 보다 우수한 물성을 나타낼 수 있다.
구체적으로, 상기 폴리올레핀은 CFC 분석시 TREF 그래프에서 가용성 분획(soluble fraction, SF)을 제외한 용리 온도 75℃ 이하의 영역, 즉 용리 온도 35 내지 75℃에서 용출되는 저결정성 중합체의 함량 비율(wt%) 값을 나타내는 WL이 33 내지 45이고, 상기 저결정성 중합체의 중량평균 분자량(g/mol) 값을 나타내는 ML이 130,000 이상이다. 이때 상기 가용성 분획(SF)는 TREF 그래프로부터, 용리 온도 35℃ 미만의 영역에서 용출되는 분획을 의미한다. 또, 상기 저결정성 중합체의 함량 비율(중량%)은 전체 용출 분획의 총 중량을 기준으로 한다.
보다 구체적으로는 WL이 33 이상, 또는 35 이상, 또는 37 이상, 또는 37.5 이상이고, 45 이하, 또는 42 이하, 또는 41.6 이하일 수 있고, ML이 130,000 이상, 또는 132,000 이상이고, 250,000 이하, 또는 210,000 이하일 수 있다.
또, 상기 폴리올레핀은 TREF 그래프에서 용리 온도 75℃ 초과의 영역에서 용출되는 고결정성 중합체의 함량 비율(wt%) 값 및 상기 고결정성 중합체의 중량평균 분자량(g/mol) 값으로, WH는 50 내지 60이고, MH는 70,000 내지 110,000 이다. 보다 구체적으로는 WH가 50 이상, 또는 51 이상이고, 60 이하, 또는 56 이하이며, MH가 70,000 이상, 또는 70,500 이상이고, 110,000 이하, 또는 109,000 이하일 수 있다. 이때, 상기 고결정성 중합체의 함량 비율(중량%)은 전체 용출 분획의 총 중량을 기준으로 한다.
종래 투명성을 향상하고자 mLLDPE에 LCB(Long chain branch)를 도입하는 방법이 제안되었다. 그러나, 일반적으로 LCB를 가지는 mLLDPE는 결정화 특성이 Unimodal하게 변화하는 특성이 있기 때문에, ML 및 WL이 크게 낮다. 구체적으로, 본 발명에서의 폴리올레핀은 ML이 130,000 이상이고, WL은 33 내지 45인 반면, 종래 LCB를 갖는 mLLDPE는 ML이 20,000 내지 60000, 또는 27,000 내지 28000이고, WL이 40이하, 또는 20 내지 40 수준이다. 이에 따라 종래 LCB를 가지는 mLLDPE는 본 발명에서의 필름 헤이즈 파라미터의 조건을 만족하더라도, 낮은 ML 및 WL로 인해 타이 분자를 형성하는 영역이 줄어들어 충분한 낙하 충격 강도 특성을 나타내기 어렵다.
또, 본 발명에 따른 폴리올레핀은 TREF 그래프에서 TeL, 즉 가장 낮은 피크의 용리 온도(℃) 값이 60 내지 90이고, TeH, 즉 가장 높은 피크의 용리 온도 값이 80 내지 100이다. 보다 구체적으로는 TeL이 60 이상, 또는 64 이상이고, 90 이하, 또는 85 이하이고, TeH가 80 이상, 또는 85 이상, 또는 89 이상이고, 100 이하, 또는 95 이하일 수 있다. 이와 같은 피크 특성과 높은 AH/A1 값은 필름 제조 과정에서 결정성이 높은 분자들이 관여할 가능성이 높음을 나타내며, 상기한 용리 온도 범위에서 TeL 및 TeH 및 AH/A1 값이 나타남에 따라 Haze 면에서 보다 개선된 효과를 나타낼 수 있다.
보다 구체적으로, 상기 폴리올레핀은 CFC 분석시 TREF 그래프에서 용리 온도 35℃ 미만의 영역에서 용출되는 가용성 분획(SF)의 함량 비율이, 전체 용출 분획 총 중량 기준 1중량% 이상, 또는 4중량% 이상이고, 15중량% 이하, 또는 12 중량% 이하일 수 있다.
또 상기 폴리올레핀은 용리 온도 35℃ 이상이고, 55℃ 미만의 영역에서 용출되는 분획 또는 중합체의 함량 비율이, 전체 용출 분획 총 중량 기준 5중량% 이상, 또는 6중량% 이상이고, 15중량% 이하, 또는 10중량% 이하일 수 있다.
또, 상기 폴리올레핀은 용리 온도 55℃ 이상이고, 75℃ 이하의 영역에서 용출되는 분획 또는 중합체의 함량 비율이, 전체 용출 분획 총 중량 기준 20중량% 이상, 또는 25중량% 이상이고, 40중량% 이하, 또는 35중량% 이하일 수 있다.
또, 전술한 바와 같이 상기 폴리올레핀은 용리 온도 75℃ 초과의 영역에서 용출되는 분획 또는 고결정성 중합체의 함량 비율이, 전체 용출 분획 총 중량 기준 50중량% 이상, 51중량% 이상이고, 60중량% 이하, 또는 56중량% 이하일 수 있다.
한편, 본 발명에 있어서, 임의의 용리 온도 범위에서 용출되는 분획 또는 중합체의 함량 비율은, CFC 분석을 통해 얻어진 전체 용출 분획 총 중량을 기준으로, 해당 용리 온도 범위에서 용출되는 분획 또는 중합체의 함량 비율을 백분율(중량% 또는 wt%)로 계산한다.
또, 본 발명에 있어서 폴리올레핀의 결정 구조 특성은 CFC 분석을 통해 수행될 수 있다. 구체적인 측정 방법 및 측정 조건은 이하 실험예에서 설명한 바와 같다.
상기한 결정 구조 특성과 더불어, 본 발명에 따른 폴리올레핀은 2.5 내지 4의 분자량 분포를 나타낸다. 보다 구체적으로 본 발명에 따른 폴리올레핀은 2.5 이상, 또는 2.8 이상, 또는 2.85 이상, 또는 2.87 이상이고, 4 이하, 또는 3.8 이하의 분자량 분포를 나타낸다. 상기한 범위의 분자량 분포를 가짐에 따라 우수한 기계적 강도 특성을 나타낼 수 있다. 폴리올레핀의 분자량 분포가 2.5 미만이면 가공성 및 기계적 물성 저하의 우려가 있고, 4를 초과하면 haze 특성 저하의 우려가 있다.
한편, 본 발명에 있어서 폴리올레핀의 분자량 분포는 겔 투과 크로마토그래피를 이용하여 Mw 및 Mn을 각각 측정하고, 이로부터 Mn에 대한 Mw의 비(Mw/Mn)를 산출하여 MWD로 한다. 구체적인 측정방법 및 조건은 이하 실험예에서 설명한 바와 같다.
또, 본 발명에 따른 폴리올레핀은 ASTM D1505에 따라 측정시, 0.915 내지 0.925 g/cc, 보다 구체적으로는 0.915 g/cc 이상, 또는 0.917 g/cc 이상이고, 0.925 g/cc 이하, 또는 0.920 g/cc 이하의 밀도를 나타낸다.
상기한 범위의 밀도를 나타냄에 따라 우수한 기계적 특성을 나타낼 수 있다.
또, 본 발명에 따른 폴리올레핀은 ASTM D1238 규격에 따라 190 ℃의 온도 및 2.16 kg의 하중 하에서 측정된 용융 지수(MI2.16)가 0.5 내지 1.5g/10min이고, 보다 구체적으로는 0.5 g/10min 이상, 또는 0.9 g/10min 이상, 또는 0.95 g/10min 이상이고, 1.5 g/10min 이하, 또는 1.2 g/10min 이하, 또는 1.05 g/10min 이하 일 수 있다.
또, 상기 폴리올레핀은 ASTM D1238 규격에 따라 190 ℃의 온도 및 21.6 kg의 하중 하에서 측정한 용융지수(MI21.6)가 10 내지 50 g/10min이고, 보다 구체적으로는 10 g/10min 이상, 또는 20 g/10min 이상, 또는 25 g/10min 이상이고, 50 g/10min 이하, 또는 40 g/10min 이하, 또는 35 g/10min 이하 일 수 있다.
또, 상기 폴리올레핀은 ASTM D1238 규격에 따라 190 ℃의 온도 및 21.6 kg의 하중 하에서 측정한 용융지수(MI21.6)를 190 ℃의 온도 및 2.16 kg의 하중 하에서 측정한 용융지수 (MI2.16)로 나눈 비율인 MFRR (MI21.6/MI2.16)이 20 내지 30, 보다 구체적으로는 20 이상, 또는 25 이상, 또는 26 이상이고, 30 이하, 또는 29.5 이하일 수 있다.
본 발명에 따른 폴리올레핀은 상기와 같은 결정 구조 특성과 더불어 최적 범위의 밀도 및 용융지수를 가짐으로써, 우수한 가공성과 함께 현저히 개선된 충격 강도 특성과 투명성을 나타낼 수 있다.
본 발명에 따른 폴리올레핀은 구체적으로 에틸렌과 올레핀 단량체의 공중합체이다.
상기 올레핀계 단량체는 에틸렌, 알파-올레핀, 사이클릭 올레핀, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀 또는 트리엔 올레핀일 수 있다.
상기 올레핀계 단량체의 구체적인 예로서, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-에이코센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등을 들 수 있으며, 이들 단량체를 2종 이상 혼합하여 공중합할 수도 있다.
보다 구체적으로 상기 폴리올레핀은 에틸렌/C4-C10 알파올레핀의 공중합체이며, 보다 더 구체적으로는 에틸렌/1-헥센 공중합체일 수 있다.
상기와 같은 특징을 갖는 본 발명에 따른 폴리올레핀은, 일례로 하기 화학식 1로 표시되는 제1전이금속 화합물, 및 하기 화학식 2로 표시되는 제2전이금속 화합물을 1:1 내지 1:3의 몰비로 포함하는 촉매 조성물의 존재하에 수소를 투입하며 에틸렌 및 올레핀 단량체를 슬러리 중합 반응시키는 단계를 포함하는 제조방법에 의해 제조될 수 있다:
[화학식 1]
Figure PCTKR2023016345-appb-img-000003
상기 화학식 1에서,
R1 내지 R8, 및 R1' 내지 R4'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1-20 알킬기, C2-20 알케닐기, C6-20 아릴기, C7-20 알킬아릴기, 또는 C7-20 아릴알킬기이고;
R9 및 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1-20 알킬기, C2-20 알케닐기, C6-20 아릴기, C7-20 알킬아릴기, 또는 C7-20 아릴알킬기이거나, 또는 상기 R10 및 R11이 서로 연결되어 1개 이상의 지방족 고리, 방향족 고리, 또는 헤테로 고리를 형성할 수 있고;
R11은 수소, 할로겐, C1-20 알킬기, C2-20 알케닐기, C6-20 아릴기, C7-20 알킬아릴기, 또는 C7-20 아릴알킬기이고;
L은 C1-10 직쇄 또는 분지쇄 알킬렌기이며;
D는 -O-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1-20 알킬기, C2-20 알케닐기, 또는 C6-20 아릴기이며;
A은 수소, C1-20 알킬기, C2-20 알케닐기, C6-20 아릴기, C7-20 알킬아릴기, 또는 C7-20 아릴알킬기이고;
M1은 4족 전이금속이며;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1-20 알킬기, C2-20 알케닐기, C6-20 아릴기, 니트로기, 아미도기, C1-20 알킬실릴기, C1-20 알콕시기, 또는 C1-20 술폰네이트기이고;
[화학식 2]
Figure PCTKR2023016345-appb-img-000004
상기 화학식 2에서,
R11 내지 R21는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1-20 알킬기, C2-20 알케닐기, C6-20 아릴기, C7-20 알킬아릴기, 또는 C7-20 아릴알킬기이고;
R31 내지 R35는 각각 독립적으로, 수소, C1-20 알킬기, C2-20 알케닐기, C6-20 아릴기, C7-20 알킬아릴기, C7-20 아릴알킬기, C1-20 알콕시기, C2-20 알콕시알킬기, 또는 C7-30 아릴옥시알킬이되, R31 내지 R35 중 적어도 하나는 C1-20 알킬기, C1-20 알콕시기, C2-20 알콕시알킬기, 또는 C7-30 아릴옥시알킬이고,
M2는 4족 전이금속이며;
X3 및 X4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1-20 알킬기, C2-20 알케닐기, C6-20 아릴기, 니트로기, 아미도기, C1-20 알킬실릴기, C1-20 알콕시기, 또는 C1-20 술폰네이트기이다.
상기 화학식 1 및 2의 전이금속 화합물에 있어서 치환기들을 보다 구체적으로 설명하면 하기와 같다.
상기 C1-20 알킬기로는 직쇄 또는 분지쇄의 알킬기를 포함하고, 구체적으로 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C2-20 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C6-20 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 플루오레닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C7-20 알킬아릴기는 아릴의 1 이상의 수소가 알킬에 의하여 치환된 것으로, 구체적으로, 메틸페닐, 에틸페닐, n-프로필페닐, iso-프로필페닐, n-부틸페닐, iso-부틸페닐, tert-부틸페닐 또는 사이클로헥실페닐 등일 수 있다.
상기 C7-20 아릴알킬기는 알킬의 1 이상의 수소가 아릴에 의하여 치환된 것으로, 구체적으로, C7-40 아릴알킬은 벤질기, 페닐프로필 또는 페닐헥실 등일 수 있다.
상기 C1-20 알콕시기로는 메톡시기, 에톡시기, 페닐옥시기, 시클로헥실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C2-20 알콕시알킬기는 상술한 바와 같은 알킬기의 1개 이상의 수소가 알콕시기로 치환된 것으로, 구체적으로 메톡시메틸기, 메톡시에틸기, 에톡시메틸기, iso-프로폭시메틸기, iso-프로폭시에틸기, iso-프로폭시헥실기, tert-부톡시메틸기, tert-부톡시에틸기, tert-부톡시헥실기 등의 알콕시알킬기; 또는 페녹시헥실기 등의 아릴옥시알킬기를 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C6-20 아릴옥시기는 구체적으로 페녹시, 비페녹실, 나프톡시 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
또, 상기 C5-20 헤테로아릴기로는 단환 또는 축합환의 헤테로아릴기를 포함하고, 카바졸릴기, 피리딜기, 퀴놀린기, 이소퀴놀린기, 티오페닐기, 퓨라닐기, 이미다졸기, 옥사졸릴기, 티아졸릴기, 트리아진기, 테트라하이드로피라닐기, 테트라하이드로퓨라닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)일 수 있다.
상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시기; 할로겐; 알킬기 또는 알케닐기, 아릴기, 알콕시기; 14족 내지 16족의 헤테로 원자들 중 하나 이상의 헤테로 원자를 포함하는 알킬기 또는 알케닐기, 아릴기, 알콕시기; 실릴기; 알킬실릴기 또는 알콕시실릴기; 포스파인기; 포스파이드기; 술포네이트기; 및 술폰기로 이루어진 군에서 선택된 1 이상의 치환기로 치환될 수 있다.
또, 4족 전이금속으로는 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf) 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상세하게는, 상기 화학식 1의 제1 전이금속 화합물은 플루오렌(fluorene) 유도체가 브릿지에 의해 가교된 구조를 형성하여, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 플루오렌기를 포함함에 따라 활성이 높아 고분자량의 올레핀계 중합체를 중합할 수 있다.
구체적으로, 상기 제1 전이금속 화합물에 있어서, 상기 화학식 1의 R1 내지 R4, 및 R1' 내지 R4'는 각각 독립적으로 수소; 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기 등과 같은 C1-12 알킬기; 또는 페닐기 등과 같은 C6-12 아릴기; 3,5-디메틸페닐기, t-부틸페닐기 등과 같은 C7-13 알킬아릴기; 또는 벤질기 등과 같은 C7-13 아릴알킬기;일 수 있다. 보다 구체적으로는 상기 화학식 1의 R1 내지 R4, 및 R1' 내지 R4'는 모두 수소일 수 있다.
또, 상기 화학식 1에서의 R5 내지 R8은 각각 독립적으로 수소; 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기 등과 같은 C1-12 알킬기; 또는 페닐기 등과 같은 C6-12 아릴기; 3,5-디메틸페닐기, t-부틸페닐기 등과 같은 C7-13 알킬아릴기; 또는 벤질기 등과 같은 C7-13 아릴알킬기;일 수 있다. 보다 구체적으로는 R5 내지 R7는 모두 수소이고, R8은 수소; 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기 등과 같은 C1-12 알킬기; 또는 페닐기 등과 같은 C6-12 아릴기; 3,5-디메틸페닐기, t-부틸페닐기 등과 같은 C7-13 알킬아릴기; 또는 벤질기 등과 같은 C7-13 아릴알킬기;일 수 있다.
또, 상기 화학식 1에서의 R9 및 R10은 각각 독립적으로 수소, C1-12 알킬기, C2-12 알케닐기, C6-12 아릴기, C7-13 알킬아릴기, 또는 C7-13 아릴알킬기이거나, 또는 상기 R9 및 R10이 서로 연결되어 1개 이상의 방향족 고리를 형성할 수 있다. 보다 구체적으로는 상기 화학식 1에서의 R9은 수소이고, R10은 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기 등과 같은 C1-12 또는 C1-6 알킬기이거나; 또는 또는 상기 R9 및 R10이 서로 연결되어 벤젠 고리를 형성할 수 있다.
보다 더 구체적으로는, R5 내지 R7, 및 R9는 모두 수소이고, R8은 수소; 페닐기 등과 같은 C6-12 아릴기; 또는 3,5-디메틸페닐기, t-부틸페닐기 등과 같은 C7-13 알킬아릴기이고, R10은 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기 등과 같은 C1-6 알킬기이거나; 또는 R5 내지 R8은 모두 수소이고, 상기 R9 및 R10이 서로 연결되어 벤젠 고리를 형성할 수 있다.
또 상기 화학식 1에서의 R11은, 보다 구체적으로는 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기 등과 같은 C1-12 또는 C1-6 알킬기일 수 있다. 보다 더 구체적으로는 R11은 메틸기 또는 에틸기일 수 있다.
또, 상기 화학식 1에서의 L은 구체적으로, C4-8 직쇄 또는 분지쇄 알킬렌기일 수 있다. 보다 구체적으로는 L은 부틸렌, 펜틸렌, 또는 헥실렌일 수 있다.
또, 상기 화학식 1에서의 D는 구체적으로 -O-일 수 있다.
또, 상기 화학식 1에서의 A는 구체적으로, 수소; 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기 등과 같은 C1-12 알킬기; 또는 페닐기 등과 같은 C6-12 아릴기; 3,5-디메틸페닐기, t-부틸페닐기 등과 같은 C7-13 알킬아릴기; 또는 벤질기 등과 같은 C7-13 아릴알킬기;일 수 있으며, 보다 구체적으로는 A는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, 또는 tert-부틸기일 수 있다.
또, 상기 화학식 1에서의 M1은 구체적으로 지르코늄(Zr) 또는 하프늄(Hf)일 수 있으며, 보다 구체적으로는 지르코늄(Zr)일 수 있다.
그리고, 상기 화학식 1에서의 X1 및 X2는 각각 독립적으로 할로겐일 수 있으며, 보다 구체적으로는 클로로일 수 있다.
보다 구체적으로 상기 화학식 1로 표시되는 제1전이금속 화합물은 하기로 이루어진 군에서 선택되는 어느 하나 일 수 있으나, 이에 한정되는 것은 아니다:
Figure PCTKR2023016345-appb-img-000005
,
Figure PCTKR2023016345-appb-img-000006
.
한편, 상기 화학식 2로 표시되는 비가교형 제2전이금속 화합물은, 리간드로서 사이클로펜타디엔의 구조와 함께, 인덴이 환원된 테트라하이드로인덴 구조를 가짐으로써, 종래 인덴 구조 기반의 저분자량 중합체 제조용 전이금속 화합물과 비교하여 수소 반응성이 상대적으로 완화되어 수소 투입에 따른 중량평균 분자량 저감 및 PDI 조절이 용이하다.
또, 2개의 리간드 중 테트라하이드로인덴 구조의 리간드는, 테트라하이드로 인덴 구조에서의 사이클로헥산 구조는 모두 비치환, 즉 R14 내지 R21은 모두 수소이다. 또, 상기 테트라하이드로 인덴 구조에서의 사이클로펜타디엔 구조는 비치환, 즉 R11, R12 및 R13이 모두 수소이거나; 또는 1번 내지 3번 위치의 탄소 중 적어도 하나, 즉 R11, R12 및 R13 중 적어도 하나는 C1-12 알킬기, C2-12 알케닐기, C6-12 아릴기, C7-13 알킬아릴기, 또는 C7-13 아릴알킬기이고, 나머지는 수소일 수 있다. 치환기의 최적화에 따른 개선 효과의 우수함을 고려할 때, 테트라하이드로인덴 구조의 리간드는 모두 비치환된, 즉 R11 내지 R21은 모두 수소일 수 있다.
한편, 상기 화학식 2에서, 사이클로펜타디엔 구조의 리간드는, R31 내지 R35의 치환기 중 적어도 하나로 치환될 수 있다. 구체적으로, R31 내지 R35 중 적어도 하나는 C1-12 알킬기, C1-12 알콕시기, C2-12 알콕시알킬기, 또는 C7-18 아릴옥시알킬기이고, 나머지는 수소일 수 있다. 보다 구체적으로는 R31 내지 R35 중 하나는 C1-12 알킬기, C1-12 알콕시기 또는 C2-12 알콕시알킬기이고, 나머지는 모두 수소이거나; R31 내지 R35 중 두 개가 C1-12 알킬기이고, 나머지는 모두 수소이거나; 또는 R31 내지 R35가 모두 C1-12 알킬기일 수 있다.
보다 더 구체적으로는 R31 내지 R35 중 하나는 메틸, 에틸, 프로필, 또는 부틸과 같은 C1-6 알킬기; 메톡시, 에톡시, 프로폭시, 부톡시와 같은 C1-6 알콕시기; 또는 t-부톡시헥실과 같은 C2-12 알콕시알킬기이고, 나머지는 모두 수소일 수 있다. 또, R31 내지 R35 중 두개가 메틸, 에틸, 프로필, 또는 부틸과 같은 C1-6 알킬기이고, 나머지는 모두 수소일 수 있다. 또, R31 내지 R35가 모두 메틸, 에틸과 같은 C1-4 알킬기일 수 있다.
또, 상기 화학식 2에서, M2는 구체적으로 지르코늄(Zr) 또는 하프늄(Hf)일 수 있으며, 보다 구체적으로는 지르코늄(Zr)일 수 있다.
그리고, 상기 화학식 2에서, X3 및 X4는 각각 독립적으로 할로겐일 수 있으며, 보다 구체적으로는 클로로일 수 있다.
보다 구체적으로, 상기 제2전이금속 화합물은 하기 구조식으로 표시되는 화합물 중 어느 하나일 수 있으나, 이에 한정되는 것은 아니다:
Figure PCTKR2023016345-appb-img-000007
Figure PCTKR2023016345-appb-img-000008
Figure PCTKR2023016345-appb-img-000009
Figure PCTKR2023016345-appb-img-000010
.
상술한 제1 및 제2전이금속 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다.
한편, 본 발명에서 상기 제1 전이금속 화합물은 각각 메조 이성질체, 라세믹 이성질체, 또는 이들의 혼합된 형태일 수 있다. 한편, 상기 제2 전이금속 화합물은 메조 이성질체 및 라세믹 이성질체가 존재하지 않는다.
본 명세서에서, "라세믹 형태(racemic form)" 또는 "라세믹체" 또는 "라세믹 이성질체"는, 두 개의 리간드 상의 동일한 치환체가, 상기 화학식 1에서 M1으로 표시되는 전이금속, 예컨대, 지르코늄(Zr) 또는 하프늄(Hf) 등의 전이금속을 포함한 평면 및 상기 리간드 부분의 중앙에 대해 반대편 상에 있는 형태를 의미한다.
그리고, 본 명세서에서 용어 "메조 형태(meso isomer)" 또는 "메조 이성질체"는, 상술한 라세믹 이성질체의 입체 이성질체로서, 두 개의 리간드 상의 동일한 치환체가, 상기 화학식 1에서 M1으로 표시되는 전이금속, 예컨대, 지르코늄(Zr) 또는 하프늄(Hf) 등의 전이금속을 포함한 평면 및 상기 리간드 부분의 중앙에 대해 동일편 상에 있는 형태를 의미한다.
발명의 일 구현예에 따른 상기 혼성 담지 촉매에 있어서, 상기 제1전이금속 화합물과 상기 제2전이금속 화합물은 우수한 촉매 활성 및 중합성을 고려할 때, 제1전이금속 화합물 기준 1:1 내지 1:3의 몰비로 담지된다.
상기한 몰비로 포함될 경우 올레핀 중합에 높은 활성을 나타내어, 우수한 가공성과 함께 낙하충격 강도 및 헤이즈 특성이 개선된 폴리올레핀을 제조할 수 있다. 보다 구체적으로는 1:1 내지 1:2, 또는 1:1 내지 1:1.5, 또는 1:1.1 내지 1:1.2일 수 있다.
한편, 상기 제1 및 제2전이금속 화합물은 실리카 담체에 담지된 담지 촉매의 상태로 사용될 수 있다.
상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 표면에 반응성이 큰 하이드록시기와 실록산기를 함유하는 것일 수 있다. 예컨대, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.
담지 촉매 상태로 이용시, 제조되는 중합체의 입자 형태 및 벌크 밀도가 우수하며, 종래의 슬러리 중합 또는 벌크 중합, 기상 중합 공정에 적합하게 사용 가능하다. 또, 여러 담체 들 중에서도 실리카 담체는, 상기 전이금속 화합물의 작용기가 화학적으로 결합하여 담지되기 때문에, 중합 공정에서 담체 표면으로부터 유리되어 나오는 촉매가 거의 없으며, 그 결과 슬러리 또는 기상 중합으로 폴리올레핀을 제조할 때 반응기 벽면이나 중합체 입자끼리 엉겨 붙는 파울링을 최소화할 수 있다.
또 상기 담체에 담지시, 상기 제1 및 제2 전이금속 화합물은 각각 담체 1,000g을 기준으로 0.01 내지 100mmol, 보다 구체적으로는 0.01mmol 이상, 또는 0.1mmol 이상, 또는 1mmol 이상, 또는 10mmol 이상, 또는 20mmol 이상이고, 100mmol 이하, 또는 85mmol 이하, 또는 60mmmol 이하의 함량 범위로 담지될 수 있다. 상기 함량 범위로 담지될 때, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다.
또, 상기 촉매는 높은 활성과 공정 안정성을 향상시키는 측면에서 조촉매를 추가로 포함할 수 있다.
상기 조촉매는 하기 화학식 3으로 표시되는 화합물 중에서 선택되는 1종 이상을 포함할 수 있다:
[화학식 3]
-[Al(Ra)-O]m-
상기 화학식 3에서,
Ra은 서로 동일하거나 상이하며, 각각 독립적으로 할로겐; C1-20의 하이드로카빌기; 또는 할로겐으로 치환된 C1-20의 하이드로카빌기이고;
m은 2 이상의 정수이다.
상기 화학식 3으로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등의 알킬알루미녹산계 화합물을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기한 화합물들 중에서도 상기 조촉매는 보다 구체적으로는 메틸알루미녹산과 같은 알킬알루미녹산계 조촉매일 수 있다.
상기 알킬알루미녹산계 조촉매는, 상기 전이금속 화합물을 안정화시키고, 또 루이스 산으로 작용하여, 상기 전이금속 화합물의 브릿지 그룹(bridge group)에 도입된 작용기와 루이스 산-염기 상호 작용을 통한 결합을 형성할 수 있는 금속 원소를 포함함으로써 촉매 활성을 더욱 증진시킬 수 있다.
또, 상기 조촉매의 사용량은 목적하는 촉매와 중합체, 및 이를 포함하는 폴리올레핀의 물성 또는 효과에 따라 적절하게 조절될 수 있다. 상기 조촉매는 담체 중량당, 예컨대, 실리카 1,000g을 기준으로 100g 이상, 또는 500g 이상, 또는 700g 이상이고, 1,000g 이하, 또는 900g 이하, 또는 800g 이하의 함량으로 담지될 수 있다.
상기한 구성을 갖는 촉매는, 담체에 조촉매 화합물을 담지시키는 단계, 및 상기 담체에 상기 제1 및 제2 전이금속 화합물을 담지시키는 단계를 포함하는 제조방법에 의해 제조될 수 있으며, 이때 조촉매와 제1 및 제2 전이금속 화합물의 담지 순서는 필요에 따라 바뀔 수 있다.
담지 순서에 따라 결정된 구조의 담지 촉매의 효과를 고려할 때, 이중에서도 담체에 대한 조촉매 담지 후, 제1 및 제2 전이금속 화합물을 담지하는 것이, 제조된 담지 촉매가 중합체의 제조 공정에서 높은 촉매 활성과 함께 보다 우수한 공정 안정성을 구현할 수 있다. 또 제1 및 제2 전이금속 화합물의 담지 순서 또한 특별히 한정되지 않으며, 제1 전이금속 화합물의 담지 후 제2 전이금속 화합물이 담지될 수도 있고, 또는 반대의 순서로 담지될 수도 있다. 또는 제1 및 제2전이금속 화합물이 동시에 담지될 수도 있다.
한편, 상기 폴리올레핀 제조를 위한 중합 반응은 수소 기체의 투입 조건에서 수행된다.
구체적으로 상기 수소 기체는 올레핀 단량체의 총 중량 기준, 5 내지 30ppm의 양으로 투입될 수 있다. 보다 구체적으로는 올레핀 단량체의 총 중량 기준, 5ppm 이상, 또는 10ppm 이상, 또는 15ppm 이상이고, 30ppm 이하, 또는 28ppm 이하의 양으로 투입될 수 있다.
상기 수소 기체는 메탈로센 촉매의 비활성 사이트를 활성화시키고 체인 이동 반응(chain transfer reaction)을 일으켜 분자량을 조절하는 역할을 한다. 본 발명에서 사용되는 전이금속 화합물은 수소 반응성이 우수하며, 따라서, 중합 공정시 상기 수소 기체 사용량의 조절에 의해, 원하는 수준의 분자량과 용융 지수를 갖는 폴리올레핀이 효과적으로 얻어질 수 있다.
상기 중합 공정은 연속식 중합 공정으로 수행될 수 있으며, 예컨대, 연속식 용액 중합 공정, 벌크 중합 공정, 현탁 중합 공정, 슬러리 중합 공정 또는 유화 중합 공정 등 올레핀 단량체의 중합 반응으로 알려진 다양한 중합 공정이 채용될 수 있다. 그러나 본 발명에서는 상술한 폴리올레핀의 물성 구현을 위하여 슬러리 중합 공정으로 수행한다.
또, 상기 중합 반응은 60℃ 이상, 또는 70℃ 이상, 또는 80℃이상이고, 90℃ 이하, 또는 85℃ 이하의 온도에서 수행될 수 있다. 또 상기 중합 반응은 10bar 이상, 또는 20bar 이상이고, 50bar 이하, 또는 40bar 이하의 압력 하에서 수행될 수 있다. 이러한 온도 및 압력 하에 중합이 진행될 경우 목적하는 폴리올레핀의 물성을 보다 용이하게 구현할 수 있다.
상기한 제조방법으로 제조된 폴리올레핀은 전술한 바와 같이 BOCD 구조와 함께 우수한 투명성을 확보할 수 있는 결정 구조를 가져, 우수한 낙하 충격 강도 특성과 함께 투명성을 나타낼 수 있다. 이에 따라, 상기 폴리올레핀은 우수한 투명성과 함께 높은 기계적 특성이 요구되는 필름(film), 특히 블로운 필름의 제조에 유용할 수 있다.
이에 본 발명은 상기 폴리올레핀을 포함하는 수지 조성물, 구체적으로는 필름 형성용 조성물을 제공한다.
또, 본 발명은 상기 폴리올레핀 또는 상기 수지 조성물을 이용하여 제조한 필름, 구체적으로는 블로운 필름을 제공한다.
본 발명에 따른 필름은 상기 폴리올레핀을 이용하는 것을 제외하고는 통상의 필름 제조방법에 따라 제조될 수 있다. 일례로, 상기 폴리올레핀 및 선택적으로 산화방지제, 가공 조제 등의 첨가제를 혼합하여 필름 형성용 조성물을 제조하고, 이를 압출기를 이용하여 필름상으로 압출함으로써 제조될 수 있다.
또 상기 필름은 상기 폴리올레핀을 포함함에 따라 우수한 투명성과 기계적 특성을 나타낼 수 있다.
구체적으로, 상기 필름은 BUR(Blown-Up Ratio) 2.3 내지 3, 보다 구체적으로는 2.5 내지 3, 보다 더 구체적으로는 2.5, 및 필름 두께 50 내지 65㎛의 조건에서 ASTM D 1709의 Method A에 따라 측정한 낙하 충격 강도가 1600 gf 이상, 또는 1800gf 이상이고, ISO 13468 기준에 따라 측정한 헤이즈가 15% 이하, 또는 14% 이하이다.
또, 상기 필름은 BUR 2.3 내지 3, 보다 구체적으로는 2.5 내지 3, 보다 더 구체적으로는 2.5, 및 필름 두께 20 내지 30㎛의 조건에서 ASTM D 1709의 Method A에 따라 측정한 낙하 충격 강도가 1000 g 이상이고, ISO 13468 기준에 따라 측정한 헤이즈가 10% 이하이다. 낙하 충격 강도는 높을수록 우수하기에 상한이 특별히 한정되지는 않으나, 일례로 3000 gf 이하 일 수 있다. 또 헤이즈는 낮을수록 우수하기에 하한이 특별히 한정되지는 않으나, 일례로 1% 이상일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
합성예 1
Figure PCTKR2023016345-appb-img-000011
(A-1)
리간드 화합물의 제조
100 mL의 트리클로로메틸실란 용액(약 0.21 mol, 헥산)에 100 mL의 t-부톡시헥실 마그네슘 클로라이드 용액(약 0.14 mol, 에테르)을 -100 ℃ 하에서 3 시간에 걸쳐 천천히 적가한 후, 상온에서 3 시간 동안 교반하였다. 상기 혼합 용액에서 투명한 유기층을 분리한 후, 분리된 투명 유기층을 진공 건조하여 과량의 트리클로로메틸실란을 제거하였다. 이로써, 투명한 액상의 (6-t-부톡시헥실)디클로로메틸실란을 얻었다(수율 84 %).
1H NMR(500 MHz, CDCl3, 7.24 ppm): 0.76(3H, s), 1.11(2H, t), 1.18(9H,s), 1.32~1.55(8H, m), 3.33(2H, t)
-20℃에서 반응기에 플루오렌 (100 mmol)과 MTBE (methyl tert-butyl ether, 0.3 M)를 넣고, n-BuLi (1.05 eq, 2.5 M in Hexane)을 천천히 가하고, 상온에서 6시간 교반시켜 플루오레닐 리튬 용액을 제조하였다. 교반이 종결된 후, 반응기 온도를 -30℃로 냉각시키고, -30℃에서 tert-Bu-O-(CH2)6SiMeCl2 (0.505eq)을 상기 제조된 플루오레닐 리튬 용액에 첨가하고, MTBE(50 mL)를 이용하여 세척하며 투입하였다. 상온에서 8 시간 이상 교반한 후, 물을 첨가하여 추출하고, 건조(evaporation)하여 (tert-Bu-O-(CH2)6)MeSi(9-C13H10)2 화합물을 얻었다. 리간드의 구조는 1H-NMR을 통해 확인하였다.
1H NMR (500MHz, CDCl3): -0.35 (3H, s), 0.25 (2H, m), 0.59 (2H, m), 0.95 (4H, m), 1.17 (9H, s), 1.31 (2H, m), 3.23 (2H, t), 4.11 (2H, s), 7.25 (4H, m), 7.37 (4H, m), 7.42 (4H, m), 7.86 (4H, d).
전이금속 화합물의 제조
-20℃에서 (tert-Bu-O-(CH2)6)MeSi(9-C13H10)2 (100 mmol)/MTBE (0.4 M) 용액에 n-BuLi (2.05 eq, 2.5M in Hexane)을 천천히 가하고 상온으로 올리면서 8시간 이상 반응시켜 디리튬염 (dilithium salts) 슬러리 용액을 제조하였다. -20℃에서, 상기 제조한 디리튬염 슬러리 용액을 ZrCl4(THF)2 (1 eq, 100 mmol)/헥산 (1 M)의 슬러리 용액에 천천히 가하고, 상온에서 8시간 동안 더 반응시켰다. 결과의 반응물을 진공 건조하여 용매를 모두 제거하였다. 결과로 수득한 건조물에 DCM (0.43 M) 투입한 후, Hexane (0.32 M)을 더 투입하였다. 결과로 생성된 침전물(LiCl)을 여과하고, 여액을 진공 건조하였다. 결과의 건조물에 대해 Hexane (0.3 M)을 투입하여 slurry를 제조한 후 여과하고, 결과의 여과물을 헥산으로 복수 회 세척하여 붉은색 고체 형태의 (tert-Bu-O-(CH2)6)MeSi(9-C13H9)2ZrCl2 화합물(A-1)을 얻었다(52.1g, 수율 75.4%).
1H NMR(500MHz, C6D6) : 1.16(9H, s), 1.27 (3H, s), 1.59 (2H, m), 1.68 (4H, m), 1.93(4H, m), 3.33(2H, t), 6.90 (4H, m), 7.15 (4H, m), 7.60 (4H, dd), 7.65(2H, d), 7.78(2H, d)
합성예 2
Figure PCTKR2023016345-appb-img-000012
(A-2)
리간드 화합물의 제조
-20℃에서 반응기에 플루오렌 (100 mmol)과 MTBE (methyl tert-butyl ether, 0.3 M)를 넣고, n-BuLi (1.05 eq, 2.5 M in Hexane)을 천천히 가한 후, 상온에서 6시간 교반시켜 플루오레닐 리튬 용액을 제조하였다. 교반이 종결된 후, 반응기 온도를 -30℃로 냉각시키고, -30℃에서 tert-Bu-O-(CH2)6SiMeCl2 (1.0 eq)을 상기 제조된 플루오레닐 리튬 용액에 첨가하고 MTBE(50 mL)를 이용하여 세척하며 재투입하였다. 결과로 tert-Bu-O-(CH2)6SiMeCl(9-C13H10)를 제조하였다.
별도의 반응기에 -20℃에서 2-Methyl-4-phenyl-indene (1.0 eq, 100 mmol)과 MTBE (0.3 M)를 넣고, n-BuLi (1.05 eq, 2.5 M in Hexane)을 천천히 가한 후 상온에서 6시간 교반하여 Lithiated 2-Methyl-4-phenyl-indene을 제조하였다.
상기에서 제조한 tert-Bu-O-(CH2)6SiMeCl(9-C13H10) 포함 반응기를 -30℃로 냉각시킨 후, 상기 Lithiated 2-Methyl-4-phenyl-indene을 투입하고 상온에서 8 시간 이상 교반하며 반응시켰다. 결과의 반응물에 물을 첨가하여 추출하고, 건조(evaporation)하여 (tert-Bu-O-(CH2)6)MeSi(9-C13H10)(2-Me-4-Ph-Indene)의 리간드 화합물을 얻었다. 리간드의 구조는 1H-NMR을 통해 확인하였다.
1H NMR(500MHz, CDCl3) : -0.10 (3H, s), 0.58 (2H, m), 1.08 (2H, m), 1.23 (9H, s), 1.38 (4H, m), 1.62 (2H, m), 2.26 (3H, s), 3.28 (2H, t), 3.81 (1H, s), 4.11 (1H, s), 6.87(1H, s), 7.24 (3H, m), 7.36 (3H, m), 7.44 (4H, m), 7.53 (2H, t), 7.61 (2H, d), 7.86 (2H, d).
전이금속 화합물의 제조
-20℃에서 (tert-Bu-O-(CH2)6)MeSi(9-C13H10)(2-Me-4-Ph-Indene) (100 mmol)/MTBE (0.4 M) 용액에 n-BuLi (2.05 eq, 2.5M in Hexane)을 천천히 가하고 상온으로 온도를 올리면서 8시간 이상 반응시켜 디리튬염 (dilithium salts) 슬러리 용액을 제조하였다.
상기 제조한 디리튬염 (dilithium salts) 슬러리 용액을 -20℃에서 ZrCl4(THF)2 (1 eq, 100 mmol)/헥산 (1 M)의 슬러리 용액에 천천히 가하고, 상온에서 8시간 동안 더 반응시켰다. 결과의 반응물을 진공 건조하여 용매를 모두 제거하였다. 결과로 수득한 건조물에 DCM (0.43 M)을 투입한 후 Hexane (0.32 M)을 더 투입하였다. 결과로 생성된 침전물(LiCl)을 여과하고 여액을 진공 건조하였다. 결과로 수득한 건조물에 대해 Hexane (0.3 M) 투입하여 slurry를 만들고 이를 여과한 후, 여과물을 헥산으로 복수회 세척하여 붉은색 고체 형태의 (tert-Bu-O-(CH2)6)MeSi(9-C13H9)(2-Me-4-Ph-Indene)ZrCl2 화합물(A-2)을 얻었다(37.8g, 수율 64.0%).
1H NMR(500MHz, C6D6) : 1.17(9H, s), 1.30 (3H, s), 1.57 (2H, m), 1.66 (4H, m), 1.86(4H, m), 2.26 (3H, s), 3.32(2H, t), 6.90 (2H, m), 6.95 (1H, s), 7.14 (3H, m), 7.36 (1H, d), 7.45 (3H, t), 7.61 (4H, m), 7.65(1H, d), 7.78(1H, d)
합성예 3
Figure PCTKR2023016345-appb-img-000013
(B-1)
Indene (1eq)을 THF (0.3M)에 용해시킨 용액에 대해, -25℃에서 n-BuLi (1.05eq)을 천천히 적가하고, 상온에서 3시간 동안 교반하였다. 결과의 반응물에 대해 -25℃에서 TMSCl ((CH3)3SiCl) (1.05eq)을 투입한 후, 상온에서 밤새 교반하였다. 결과로 수득한 반응물을 건조하여 용매를 모두 제거하고, ZrCl4 (1eq)를 넣고, 톨루엔 (0.5M)을 투입한 후 reflux로 밤새 교반 하였다. 결과의 반응물을 상온으로 냉각시킨 후, Hexane (0.5M)을 투입하고, 여과하여 Indene-ZrCl3를 고체로 수득하였다.
별도의 반응기에서 n-Butyl-cyclopentadiene (1eq)를 THF (0.3M)에 용해시킨 용액에 대해 -25℃에서 n-BuLi (1.05eq)을 천천히 적가하고, 상온에서 3시간 동안 교반하였다. 결과의 반응물에 상기에서 제조한 Indene-ZrCl3(1eq)를 -25℃에서 투입한 후, 상온에서 밤새 교반하였다. 결과로 수득한 반응물을 건조하여 용매를 모두 제거한 후, Hexane을 투입하고, 고체를 여과하여 n-BuCp-ZrCl2-Indene 중간체를 수득하였다.
수득한 중간체와 Pd/C (C 총 중량 기준 Pd 함량=10wt%, 중간체 1몰 기준 0.1몰에 해당)를 DCM (0.3M)을 이용하여 parr 반응기 (600ml)에 투입한 후, 수소 기체 15bar 넣고 40℃에서 밤새 교반하며 반응시켰다. 반응 완료 후, 반응기내 잔류하는 수소 기체는 밴트하고, 케뉼라를 이용하여 parr 반응기 내 최종 생성물과 Pd/C를 여과하여 빼내고, DCM으로 세척하였다. 여액을 진공 건조한 후, Hexane을 넣고 여과하여, 상기 구조의 화합물(B-1)을 고체상으로 수득하였다.
1H NMR(500MHz, CDCl3) : 1.11(3H, t), 1.50 (2H, m), 1.62 (2H, m), 1.70 (2H, m), 1.90 (2H, m), 2.53(2H, m), 2.78 (2H, t), 2.90(2H, m), 5.48 (2H, s), 5.93 (1H, s), 6.22 (2H, d), 6.35 (2H, d)
합성예 4
Figure PCTKR2023016345-appb-img-000014
(B-2)
n-Butyl-cyclopentadiene 대신에 t-butoxyhexyl-cyclopentadiene을 사용하는 것을 제외하고는 상기 합성예 3에서와 동일한 방법으로 수행하여 상기 구조의 화합물(B-2)을 고체상으로 수득하였다.
1H NMR(500MHz, CDCl3) : 1.23(9H, s), 1.40 (4H, m), 1.64 (6H, m), 1.88 (2H, m), 2.52(2H, m), 2.68 (2H, t), 2.91 (2H, m), 3.34(2H, t), 5.49 (2H, s), 5.94 (1H, s), 6.18 (2H, d), 6.28 (2H, d)
합성예 5
Figure PCTKR2023016345-appb-img-000015
(B-3)
n-Butyl-cyclopentadiene 대신에 1-methyl-3-propyl-1,3-cyclopentadiene을 사용하는 것을 제외하고는 상기 합성예 3에서와 동일한 방법으로 수행하여 상기 구조의 화합물(B-3)을 고체상으로 수득하였다.
1H NMR(500MHz, CDCl3) : 0.93(3H, t), 1.350 (2H, m), 1.49 (2H, m), 1.63 (2H, m), 1.89 (2H, m), 2.22 (3H, s), 2.47 (1H, m), 2.55 (3H, m), 2.90 (2H, m), 5.48 (2H, s), 5.93 (2H, m), 5.98 (1H, m), 6.09 (1H, m)
합성예 6
Figure PCTKR2023016345-appb-img-000016
(B-4)
n-Butyl-cyclopentadiene 대신에 1,2,3,4-tetramethyl-1,3-cyclopentadiene을 사용하는 것을 제외하고는 상기 합성예 3에서와 동일한 방법으로 수행하여 하기 구조의 화합물(B-4)을 고체상으로 수득하였다.
1H NMR(500MHz, CDCl3) : 1.64 (2H, m), 1.87 (2H, m), 2.05 (12H, s), 2.54 (2H, m), 2.89 (2H, m), 5.62 (2H, d), 5.95 (1H, s), 6.18 (1H, t)
비교 합성예 1
Figure PCTKR2023016345-appb-img-000017
(C-1)
한국 공개 특허 제10-2022-0067494호의 비교 합성예 2에서와 동일한 방법으로 수행하여 상기 구조의 전이금속 화합물(C-1)을 제조하였다.
비교합성예 2
Figure PCTKR2023016345-appb-img-000018
(C-2)
한국 공개 특허 제10-2016-0067508호의 제조예 1에서와 동일한 방법으로 수행하여 하기 구조의 전이금속 화합물(C-2)을 제조하였다.
비교합성예 3
Figure PCTKR2023016345-appb-img-000019
(D)
한국 공개 특허 제10-2016-0029718호의 제조예 2에서와 동일한 방법으로 수행하여 하기 구조의 전이금속 화합물(D)을 제조하였다.
제조예 1
20L SUS 고압 반응기에 톨루엔 2.0 kg 및 실리카 (SYLOPOL 952X, Grace Davision 사제) 700 g을 투입하고, 반응기의 온도를 40 ℃로 올리면서 교반하였다. 상기 반응기에 메틸알루미녹산 용액(10wt% in toluene, Albemarle사제) 5.4 kg을 투입하고, 온도를 70 ℃ 로 올린 후, 약 200rpm으로 약 12시간 교반하였다.
이후 반응기의 온도를 40 ℃로 낮추고, 교반을 중지시켰다. 그리고, 반응 생성물을 약 10분동안 정치시킨 후, decantation 하였다. 상기 반응 생성물에 톨루엔 2.0 kg 투입하고 약 10분간 교반하고, 교반 중지 후 약 30분 동안 정치시키고 decantation 하였다.
상기 반응기에 톨루엔 2.0 kg 투입하고, 이어서 제1전이금속 화합물로서 상기 합성예 1에서 제조한 화합물(A-1)(20 mmol)과 제2전이금속 화합물로서 상기 합성예 3에서 제조한 화합물(B-1) (40 mmol), 그리고 톨루엔 1000 mL를 투입하였다. 반응기의 온도를 85 ℃로 올리고, 약 90분간 교반하였다. 이후, 반응기의 온도를 상온으로 낮추고, 교반을 중지하여 반응 생성물을 약 30분간 정치시킨 후, 반응 생성물을 decantation 하였다. 이어서, 상기 반응기에 헥산 3kg을 투입하고, 헥산 슬러리 용액을 20L filter dryer 로 이송하여 용액을 여과하고, 50 ℃에서 약 4시간 동안 감압 건조하여 1.05 kg의 혼성 메탈로센 촉매를 얻었다.
제조예 2 내지 5, 및 비교제조예 1 내지 3
하기 표 1에 기재된 바와 같이, 제1 및 제2전이금속 화합물의 종류 및 혼합 몰비를 변경하는 것을 제외하고는 상기 제조예 1에서와 동일한 방법으로 수행하여 혼성 메탈로센 촉매를 제조하였다.
촉매 제1전이금속 화합물 제2전이금속 화합물 제1/제2전이금속 화합물의 투입량(mmmol)
제조예 1 A-1 B-1 20/40
제조예 2 A-1 B-2 20/40
제조예 3 A-1 B-3 20/40
제조예 4 A-1 B-4 20/40
제조예 5 A-2 B-1 35/40
비교제조예 1 A-1 C-1 20/40
비교제조예 2 A-1 C-2 20/40
비교제조예 3 D B-1 60/40
<폴리올레핀의 제조>
실시예 1 내지 5, 및 비교예 1 내지 3
중합 반응기로 isobutene slurry loop process가 가능하며, 약 7m/s의 반응 유속으로 운전되는 140L 연속 중합기를 준비하였다. 그리고, 반응기에 하기 표 2에 기재된 바와 같이 폴리올레핀 중합에 필요한 반응물들을 연속적으로 투입하였다. 각 중합 반응에서 사용된 촉매는 상기 표 1에 기재된 제조예 또는 비교제조예에서 제조한 것을 사용하였으며, 촉매는 isobutene slurry에 혼합하여 투입하였다. 또 상기 중합 반응은 약 40 bar의 압력 및 약 85℃의 온도에서 수행하였으며, 이외 중합 반응의 주요 조건을 하기 표 2에 나타내었다.
비교예 4
BO1801EN (대림사제)을 상업적으로 입수하여 사용하였다.
비교예 5
XP8318ML(Exxon chemical 사제)을 상업적으로 입수하여 사용하였다.
비교예 6
XP8656ML(Exxon chemical 사제)을 상업적으로 입수하여 사용하였다.
Figure PCTKR2023016345-appb-img-000020
상기 표 2에서,
1의 1-Hexene 투입량(중량%)은 에틸렌과 1-hexene을 포함하는 올레핀 단량체 총 중량을 기준으로 한 상대적인 함량을 백분율로 나타낸 것이고,
2의 수소 투입량(ppm)은 에틸렌과 1-hexene을 포함하는 올레핀 단량체 총 중량을 기준으로 한다.
실험예 1
실시예 및 비교예에서 제조된 폴리올레핀에 대해 하기와 같이 물성을 측정하고, 그 결과를 하기 표 3 및 표 4에 나타내었다.
(1) Melt Index (MI2.16): ASTM D1238 (조건 E, 190 ℃, 2.16kg 하중) 규격에 따라 측정하였다.
(2) Melt Index (MI21.6): ASTM D1238 (조건 E, 190 ℃, 21.6kg 하중) 규격에 따라 측정하였다.
(3) MFRR(MI21.6/MI2.16): MI21.6 (ASTM D1238, 190 ℃, 21.6kg 하중)를 MI2.16 (ASTM D1238, 190 ℃, 2.16kg 하중)으로 나눈 비율이다.
(4) 밀도(density): ASTM D1505 규격에 따라 측정하였다
(5) 분자량 분포
겔 투과 크로마토그래피(GPC: gel permeation chromatography, Waters사 제조)를 이용하여 중량평균 분자량(Mw) 및 수평균 분자량(Mn)을 각각 측정하고, 측정값으로부터 분자량 분포(Mw/Mn)를 산출하였다.
구체적으로, 측정 시료를 Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여 평가하였다. 평가 온도는 160℃이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며 유속은 1mL/min의 속도로 측정하였다. 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL의 양으로 공급하였다. 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn 의 값을 측정하였다. 폴리스티렌 표준품의 분자량(g/mol)은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용하였다.
(6) CFC 분석
상기 실시예 및 비교예에서 제조한 폴리올레핀에 대하여 하기와 같은 방법으로 교차 분획 크로마토그래피(CFC) 분석을 수행하고, 그 결과로부터 필름 헤이즈 파라미터(Hp) 및 AH/A1의 비를 산출하였다.
[교차 분획 크로마토그래피 분석 조건 (TREF 및 GPC 분석 포함)]
- 분석장비: Polymer Char CFC - 7890B (G3440D)
(Detector: Intergrated Detector IR5 MCT)
- 샘플 준비 및 투입: 상기 실시예 또는 비교예에서 제조한 폴리올레핀 32 mg을 10 mL vial에 넣어 autosampler에 배치하고, 1,2,4-트리클로로벤젠 (1,2,4-trichlorobenzene, TCB) 8 mL 투입 후 160℃에서 90분 동안 용해하고, 140℃에서 20분간 안정화(stabilization) 시켰다. Nitrogen purge 후 추출하여 온도 상승 용리 분별 컬럼(TREF column: Temperature rising elution fractionation column)에 loading 하였다.
- 결정화(crystallization): 앞서 TREF column에 loading 된 샘플 온도를 140℃로 맞춘 후, 140 ℃에서 35 ℃ 까지 0.5 ℃/min 속도로 냉각하고, 15분간 유지하였다.
상기 안정화 및 결정화시의 상세 조건은 하기와 같다:
Figure PCTKR2023016345-appb-img-000021
- 온도 상승 용리 분별 (TREF, temperature rising elution temperature) 분석: 앞서 Crystallization 된 샘플을 35 ℃ 부터 120 ℃까지 1 ℃/min의 속도로 하기 fraction temperature까지 승온한 후 고정하고, 해당 온도에서 5분 동안 용출되는 분획들의 농도를 측정하였다. 이러한 농도 측정 결과를 통해 TREF 그래프를 도출하였다.
TREF 그래프로부터, 전체 용출 분획 총 중량을 기준으로, 용리 온도 35℃ 미만의 영역에서 용출되는 가용성 분획(soluble fraction; SF)의 함량 비율(<35℃), 용리 온도 35℃ 이상이고 55℃ 미만의 영역에서 용출되는 분획의 함량 비율(35~55℃), 용리 온도 55℃ 이상이고 75℃ 이하의 영역에서 용출되는 분획의 함량 비율(55~75℃), 그리고 75℃ 초과의 영역에서 용출되는 분획의 함량 비율(>75℃)을 각각 산출하였다(wt%).
또, 상기 TREF 그래프에서, 전체 용출 분획 총 중량을 기준으로, SF를 제외한 용리 온도 75℃ 이하의 영역, 구체적으로는 용리 온도 35 내지 75℃의 영역에서 용출되는 저결정성 중합체의 함량 비율(WL)과, 용리 온도 75℃ 초과의 영역에서 용출되는 고결정성 중합체의 함량 비율(WH)을 각각 산출하였다(wt%).
또, TREF 그래프에서 가장 낮은 피크의 용리 온도 값(TeL)과, 가장 높은 피크의 용리 온도 값(TeH)를 확인하였다.
< fraction temperature>
35℃/40℃/43℃/46℃/49℃/52℃/55℃/58℃/61℃/64℃/67℃/70℃/73℃/76℃/79℃/82℃/85℃/88℃/91℃/94℃/97℃/100℃/105℃/120℃
<측정 조건>
Figure PCTKR2023016345-appb-img-000022
- GPC 분석: 앞서 TREF 분석에서 각 온도별 용출된 분획들을 CFC 장치 내 구비된 GPC 장치의 GPC Column으로 이동시킨 후, 하기 측정 조건에 따라 용출된 분자들의 분자량을 측정하였다.
또 측정 결과로부터, 상기 TREF 그래프에서 가용성 분획(SF)을 제외한 75℃ 이하의 영역, 즉 용리 온도 35 내지 75℃의 영역에서 용출되는 저결정성 중합체의 중량평균 분자량(ML)과, 용리 온도 75℃ 초과의 영역에서 용출된 고결정성 중합체의 중량평균 분자량(MH)를 각각 산출하였다.
<측정 조건>
Figure PCTKR2023016345-appb-img-000023
상기한 분석 결과를 토대로, 하기 수학식 1에 따라 필름 헤이즈 파라미터(Hp)를 산출하였다:
[수학식 1]
Figure PCTKR2023016345-appb-img-000024
상기 수학식 1에서,
TeL 및 TeH는 각각, CFC 분석시 TREF 그래프에서 가장 낮은 피크의 용리 온도 값 및 가장 높은 피크의 용리 온도 값이고,
WL 및 ML은 각각, TREF 그래프에서 SF(용리 온도 35℃ 미만의 영역에서 용출되는 가용성 분획(soluble fraction))을 제외한 용리 온도 75℃ 이하의 영역에서 용출되는 저결정성 중합체의 함량(wt%) 및 상기 저결정성 중합체의 중량평균 분자량(g/mol)값이고,
WH 및 MH는 각각, TREF 그래프에서 75℃ 초과의 영역에서 용출된 고결정성 중합체의 함량(wt%) 및 상기 고결정성 중합체의 중량평균 분자량(g/mol) 값이다.
또, 상기 TREF 그래프에서, 가장 높은 피크의 피크 높이를 AH로 하고, 온도 상승 용리 분별 그래프에서 가장 낮은 피크가 용리 온도 40 내지 75℃에 존재할 경우 가장 낮은 피크의 피크 높이를, 그러나 만약 가장 낮은 피크가 용리 온도 40 내지 75℃를 벗어난 온도 범위에 존재하거나, 또는 온도 상승 용리 분별 그래프가 단일 피크를 갖는 경우에는 용리 온도 65℃에서의 높이를 A1로 하여 각각의 값을 구한 후, AH/A1를 계산하였다.
또 실시예 1 내지 5의 폴리올레핀에 대한 CFC 분석을 통해 수득한 TREF 그래프 및 각 용출 영역에서의 분자량을 나타낸 그래프를 도 1a 내지 도 5b에 각각 나타내었다.
Figure PCTKR2023016345-appb-img-000025
Figure PCTKR2023016345-appb-img-000026
실험예 2
상기 실시예 및 비교예에서 제조한 폴리올레핀을 이용하여 필름을 제조한 후, 낙하 충격 강도 및 Haze 특성을 평가하였다. 그 결과를 하기 표 5 및 표 6에 나타내었다.
(1) 필름 제조
상기 실시예 또는 비교예에서 제조한 폴리올레핀 총 중량 기준 산화방지제(Songnox 1076 (Songwon):Songnox 1680(Songwon)=1:2중량비) 1500ppm 및 3M Dynamar Polymer Processing Additive FX5929 300ppm을 투입하여 혼합하고, 이축압출기(Twin screw extruder; TEK 30 MHS, SMPLATECH CO.사제, 직경 32 파이 , L/D=40)를 이용하여 190℃ 압출 온도에서 35kg/hr의 압출량으로 압출하여, 약 18mg의 펠렛상 필름 형성용 조성물을 제조하였다.
상기에서 제조한 필름 형성용 조성물을 하기 조건와 같은 필름 압출 조건으로 압출하여 필름을 제조하였다.
<필름 압출 조건>
단축압출기(Single Screw Extruder; 유진엔지니어링사제, Blown Film M/C, 50 파이)
용융온도(또는 압출온도): 170℃
Die Gap 2.0mm
Die diameter: 120mm
팽창비(Blown-Up Ratio): 2.5
Frost Line Height 250-260mm 유지
샘플 압출량: 300-500g/min
필름 두께: 50㎛ 및 25㎛
(2) 낙하 충격 강도(Dart drop impact strength)
상기에서 제조한 실시예 및 비교예의 필름(두께 50㎛ 및 25㎛)에 대해 ASTM D1709 [Method A] 규격에 따라 낙하 충격 강도를 측정하였으며, 필름 시료당 20회 이상 측정하여 그 평균값을 취하였다.
(3) 헤이즈(HAZE)
상기에서 제조한 실시예 및 비교예의 필름(두께 50㎛ 및 25㎛)에 ISO 13468 기준에 따라 필름의 헤이즈를 측정하였다.
Figure PCTKR2023016345-appb-img-000027
Figure PCTKR2023016345-appb-img-000028

Claims (14)

  1. 하기 (i) 내지 (iii)의 조건을 만족하는 폴리올레핀:
    (i) 하기 수학식 1로 정의되는 필름 헤이즈 파라미터(Hp): 12 이하
    [수학식 1]
    Figure PCTKR2023016345-appb-img-000029
    (상기 수학식 1에서,
    TeL 및 TeH는 각각, 교차 분획 크로마토그래피 분석시 온도 상승 용리 분별(TREF) 그래프에서 가장 낮은 피크의 용리 온도 값 및 가장 높은 피크의 용리 온도 값이고,
    WL 및 ML은 각각, 온도 상승 용리 분별 그래프에서 용리 온도 35℃ 미만의 영역에서 용출되는 가용성 분획을 제외한 용리 온도 75℃ 이하의 영역에서 용출되는 저결정성 중합체의 함량 비율(중량%) 값 및 상기 저결정성 중합체의 중량평균 분자량(g/mol) 값이며,
    WH 및 MH는 각각, 온도 상승 용리 분별 그래프에서 용리 온도 75℃ 초과의 영역에서 용출되는 고결정성 중합체의 함량 비율(중량%) 및 상기 고결정성 중합체의 중량평균 분자량(g/mol) 값이다)
    (ii) 교차 분획 크로마토그래피 분석시 온도 상승 용리 분별 그래프에서 피크 높이비 AH/A1: 1.8 이상
    (이때 AH는 온도 상승 용리 분별 그래프에서 가장 높은 피크의 피크 높이이고, A1은 온도 상승 용리 분별 그래프에서 가장 낮은 피크가 용리 온도 40 내지 75℃에 존재할 경우에는 가장 낮은 피크의 피크 높이이고, 온도 상승 용리 분별 그래프에서 가장 낮은 피크가 용리 온도 40 내지 75℃에 존재하지 않거나 또는 온도 상승 용리 분별 그래프가 단일 피크를 가져 가장 낮은 피크가 존재하지 않는 경우에는 용리 온도 65℃에서의 높이이다)
    (iii) 분자량 분포: 2.5 내지 4.
  2. 제1항에 있어서,
    상기 필름 헤이즈 파라미터, Hp가 8 내지 12인,
    폴리올레핀.
  3. 제1항에 있어서,
    상기 AH/A1가 1.8 내지 3인,
    폴리올레핀.
  4. 제1항에 있어서,
    상기 WL이 33 내지 45이고, ML이 130,000 이상인,
    폴리올레핀.
  5. 제1항에 있어서,
    상기 WH가 50 내지 60이고, MH가 70,000 내지 110,000인,
    폴리올레핀.
  6. 제1항에 있어서,
    TeL이 60 내지 90이고, TeH이 80 내지 100인,
    폴리올레핀.
  7. 제1항에 있어서,
    상기 폴리올레핀은 ASTM D1505에 따라 측정한 밀도가 0.915 내지 0.925 g/cc인,
    폴리올레핀.
  8. 제1항에 있어서,
    상기 폴리올레핀은 ASTM D 1238에 따라 190 ℃의 온도 및 2.16 kg의 하중 하에서 측정한 용융지수, MI2.16가 0.5 내지 1.5g/10min이고, 190 ℃의 온도 및 21.6 kg의 하중 하에서 측정한 용융지수, MI21.6가 10 내지 50g/10min인,
    폴리올레핀.
  9. 제1항에 있어서,
    상기 폴리올레핀은 ASTM D1238 규격에 따라 190 ℃의 온도 및 21.6 kg의 하중 하에서 측정한 용융지수, MI21.6를 190 ℃의 온도 및 2.16 kg의 하중 하에서 측정한 용융지수, MI2.16로 나눈 비율인 MFRR이 20 내지 30인,
    폴리올레핀.
  10. 제1항에 있어서,
    상기 폴리올레핀은 에틸렌/1-헥센 공중합체인,
    폴리올레핀.
  11. 제1항에 따른 폴리올레핀을 포함하는 필름.
  12. 제11항에 있어서,
    상기 필름은 BUR 2.3 내지 3, 및 필름 두께 50 내지 65㎛의 조건에서 ASTM D 1709의 Method A에 따라 측정한 낙하 충격 강도가 1600 gf 이상이고, ISO 13468 기준에 따라 측정한 헤이즈가 15% 이하인,
    필름.
  13. 제11항에 있어서,
    상기 필름은, BUR 2.3 내지 3, 및 필름 두께 20 내지 30㎛의 조건에서 ASTM D 1709의 Method A에 따라 측정한 낙하 충격 강도가 1000 gf 이상이고, ISO 13468 기준에 따라 측정한 헤이즈가 10% 이하인,
    필름.
  14. 제11항에 있어서,
    상기 필름은 블로운 필름인,
    필름.
PCT/KR2023/016345 2022-11-02 2023-10-20 폴리올레핀 및 이를 포함하는 필름 WO2024096400A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0144765 2022-11-02
KR20220144765 2022-11-02
KR1020230137792A KR20240062957A (ko) 2022-11-02 2023-10-16 폴리올레핀 및 이를 포함하는 필름
KR10-2023-0137792 2023-10-16

Publications (1)

Publication Number Publication Date
WO2024096400A1 true WO2024096400A1 (ko) 2024-05-10

Family

ID=90931002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016345 WO2024096400A1 (ko) 2022-11-02 2023-10-20 폴리올레핀 및 이를 포함하는 필름

Country Status (1)

Country Link
WO (1) WO2024096400A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008067539A1 (en) * 2006-11-30 2008-06-05 Dow Global Technologies Inc. Olefin block compositions for heavy weight stretch fabrics
KR101725004B1 (ko) * 2016-04-27 2017-04-18 한화케미칼 주식회사 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
KR20210153555A (ko) * 2020-06-10 2021-12-17 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
KR102355323B1 (ko) * 2014-04-17 2022-01-25 보레알리스 아게 고온 용액 중합 공정으로 폴리에틸렌 코폴리머를 제조하기 위한 개선된 촉매 시스템
KR20220086857A (ko) * 2020-12-17 2022-06-24 한화솔루션 주식회사 올레핀계 중합체 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008067539A1 (en) * 2006-11-30 2008-06-05 Dow Global Technologies Inc. Olefin block compositions for heavy weight stretch fabrics
KR102355323B1 (ko) * 2014-04-17 2022-01-25 보레알리스 아게 고온 용액 중합 공정으로 폴리에틸렌 코폴리머를 제조하기 위한 개선된 촉매 시스템
KR101725004B1 (ko) * 2016-04-27 2017-04-18 한화케미칼 주식회사 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
KR20210153555A (ko) * 2020-06-10 2021-12-17 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
KR20220086857A (ko) * 2020-12-17 2022-06-24 한화솔루션 주식회사 올레핀계 중합체 및 그 제조방법

Similar Documents

Publication Publication Date Title
WO2015046932A1 (ko) 올레핀계 중합체
WO2019125050A1 (ko) 올레핀계 중합체
WO2016072783A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2017099491A1 (ko) 올레핀계 중합체
WO2020171631A1 (ko) 올레핀계 중합체
WO2018088820A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2019132471A1 (ko) 올레핀계 중합체
WO2020130718A1 (ko) 폴리올레핀
WO2019234637A1 (en) Ethylene polymer mixture, method of preparing the same, and molded article using the same
WO2024096400A1 (ko) 폴리올레핀 및 이를 포함하는 필름
WO2024096399A1 (ko) 폴리올레핀 및 이를 포함하는 필름
WO2022071744A1 (ko) 시공성 및 가공성이 우수한 에틸렌/1-헥센 공중합체
WO2024128572A1 (ko) 혼성 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법
WO2024128573A1 (ko) 혼성 메탈로센 촉매 및 이를 이용한 폴리에틸렌의 제조방법
WO2022075669A1 (ko) 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
WO2021060907A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2019132477A1 (ko) 올레핀계 중합체
WO2024128846A1 (ko) 폴리에틸렌 및 이를 포함하는 필름
WO2022108167A1 (ko) 폴리올레핀
WO2023075115A1 (ko) 폴리에틸렌 수지 조성물 및 이를 포함하는 필름
WO2024063415A1 (ko) 폴리에틸렌 조성물 및 이를 포함하는 이축 연신 필름
WO2022203461A1 (ko) 폴리프로필렌 수지 조성물 및 그의 제조방법
WO2022035132A1 (ko) 메탈로센 담지 촉매의 제조 방법, 메탈로센 담지 촉매 및 이를 이용한 폴리올레핀의 제조 방법
WO2019212302A1 (ko) 올레핀계 공중합체 및 이의 제조방법
WO2020122562A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23886096

Country of ref document: EP

Kind code of ref document: A1