WO2024096127A1 - α-Li3PS4相を有する固体電解質材料を製造する方法、固体電解質材料 - Google Patents

α-Li3PS4相を有する固体電解質材料を製造する方法、固体電解質材料 Download PDF

Info

Publication number
WO2024096127A1
WO2024096127A1 PCT/JP2023/039731 JP2023039731W WO2024096127A1 WO 2024096127 A1 WO2024096127 A1 WO 2024096127A1 JP 2023039731 W JP2023039731 W JP 2023039731W WO 2024096127 A1 WO2024096127 A1 WO 2024096127A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
solid electrolyte
temperature
heating
electrolyte material
Prior art date
Application number
PCT/JP2023/039731
Other languages
English (en)
French (fr)
Inventor
敦 作田
拓哉 木村
千絵 保手浜
昌弘 辰巳砂
晃敏 林
Original Assignee
公立大学法人大阪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪 filed Critical 公立大学法人大阪
Publication of WO2024096127A1 publication Critical patent/WO2024096127A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase, and the solid electrolyte material.
  • Patent Document 1 discloses an LPS-based sulfide-based solid electrolyte obtained by mechanical milling Li2S , P2S5 , and LiBr.
  • Patent Documents 2 and 3 also describe the crystal structure of the LPS-based sulfide-based solid electrolyte.
  • the ⁇ -Li 3 PS 4 phase known as the high-temperature phase, was known to have excellent electrical conductivity, but it was difficult to maintain the ⁇ -Li 3 PS 4 phase at room temperature. Therefore, a new method for producing LPS-based sulfide-based solid electrolytes that have the ⁇ -Li 3 PS 4 phase even at room temperature was desired.
  • the present invention provides a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase, comprising the steps of heating a Li-ion conductive sulfide material containing Li, P and S but not F or Cl and not having an ⁇ -Li 3 PS 4 phase to a temperature in the range of 230°C to 350°C, wherein the heating rate at 200°C is 100°C/min or more.
  • the present invention provides a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase, the method comprising the step of heating a Li-ion conductive sulfide material containing Li, P and S, and F and/or Cl, and not having the ⁇ -Li 3 PS 4 phase, to a temperature in the range of 200°C to 300°C.
  • a solid electrolyte material containing Li, P, S and F having a composition represented by Li3PS4.aLiF (wherein a satisfies 0 ⁇ a ⁇ 2.0), and having an ⁇ - Li3PS4 phase at room temperature.
  • a solid electrolyte material having an ⁇ -Li 3 PS 4 phase which is obtained by the above production method.
  • FIG. 1 shows the specific volume and Li 3 PS 4 phase transition during crystallization by rapid heating and rapid cooling of Li 3 PS 4 .
  • FIG. 2 is a diagram showing XRD patterns of the solid electrolyte materials of Examples 1 to 4 and Comparative Example 2.
  • FIG. 1 shows XRD patterns of the solid electrolyte materials of Examples 5 to 11 and Comparative Examples 3 and 4.
  • FIG. 1 shows XRD patterns of the solid electrolyte materials of Examples 12 to 18 and Comparative Example 5.
  • FIG. 1 shows XRD patterns of the solid electrolyte materials of Comparative Examples 1 and 6 to 9.
  • FIG. 1 shows XRD patterns of the solid electrolyte materials of Comparative Examples 1 and 6 to 9.
  • FIG. 2 is a diagram showing XRD patterns of the solid electrolyte materials of Examples 19 and 20 and Comparative Examples 10 and 11.
  • FIG. 1 shows XRD patterns of the solid electrolyte materials of Examples 19, 21 to 24 and Comparative Example 6.
  • FIG. 1 shows XRD patterns of the solid electrolyte materials of Examples 25 to 28 and Comparative Examples 12 and 13.
  • FIG. 1 shows XRD patterns of the solid electrolyte materials of Examples 29 to 32 and Comparative Examples 14 and 15.
  • FIG. 1 shows XRD patterns of the solid electrolyte materials of Examples 33 to 37 and Comparative Examples 16 and 17.
  • FIG. 1 shows XRD patterns of the solid electrolyte materials of Examples 38 to 42 and Comparative Examples 6 and 17.
  • FIG. 1 shows XPS spectra of F1S after mechanochemical treatment for each LPS-F composition.
  • FIG. 1 shows XPS spectra of F1S after heat treatment for each LPS-F composition.
  • FIG. 1 shows XPS spectra of FKL1 after mechanochemical treatment in each LPS-F system composition.
  • FIG. 1 shows XPS spectra of FKL1 after heat treatment in each LPS-F system composition.
  • FIG. 1 is a diagram showing Arrhenius plots of the solid electrolyte materials of Examples 19 and 23 and Comparative Examples 1, 6 to 8.
  • FIG. 1 is a diagram showing the results of TG-DTA measurement for the solid electrolyte materials of Comparative Examples 1, 6, 12, 14, and 16.
  • FIG. 1 shows Raman spectra (100-600 cm ⁇ 1 ) of the solid electrolyte materials of Examples 28, 32, 36 and 41.
  • FIG. 1 shows Raman spectra (100-600 cm ⁇ 1 ) of the solid electrolyte materials of Comparative Examples 6, 12, 14 and 16.
  • FIG. 1 is a diagram showing the composition and heat treatment temperature dependence of the precipitate phase in the Li 3 PS 4 system and the Li 3 PS 4 -LiF system.
  • FIG. 1 is a reference diagram showing the XRD pattern of the crystal polymorph of Li 3 PS 4 .
  • FIG. 13 shows XRD patterns of the solid electrolyte material of Example 40 immediately after production and the solid electrolyte material of Example 40 stored at 25° C. for 500 hours after production.
  • x ⁇ y (x and y are specific values) means greater than or equal to x and less than or equal to y (i.e., both ends are included) unless otherwise specified.
  • Method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase Provided is a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase, which includes a step of heating a Li-ion conductive sulfide material that contains Li, P and S but does not contain F or Cl and does not have an ⁇ -Li 3 PS 4 phase to a temperature within a range of 230°C to 350°C, in which the heating rate at 200°C is 100°C/min or more.
  • the present invention provides a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase, comprising the step of heating a Li-ion conducting sulfide material comprising Li, P and S, and F and/or Cl, and not having an ⁇ -Li 3 PS 4 phase , to a temperature in the range of 200°C to 300°C.
  • the present invention provides a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase, comprising the steps of heating a Li-ion conductive sulfide material containing Li, P and S but not containing F or Cl, and not having an ⁇ -Li 3 PS 4 phase, to a temperature in the range of 230°C to 350°C, wherein the heating rate at 200 °C is 150°C/min or more .
  • the present invention provides a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase, comprising the steps of heating a Li-ion conductive sulfide material that contains Li, P, and S but does not contain F or Cl and is in an amorphous state, to a temperature in the range of 230° C. to 350° C., wherein the heating rate at 200° C. is 100° C./min or more.
  • the present invention provides a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase, comprising the steps of heating a Li-ion conductive sulfide material containing Li, P and S but not containing F or Cl, and not having an ⁇ -Li 3 PS 4 phase or being in an amorphous state, to a temperature in the range of 230°C to 350°C, wherein the heating rate at 200°C is 100°C/ min or more.
  • the present invention provides a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase, comprising the steps of heating a Li-ion conductive sulfide material containing Li, P and S but not containing F or Cl, and not having an ⁇ -Li 3 PS 4 phase or being in an amorphous state, to a temperature in the range of 230°C to 350°C, wherein the heating rate at 200°C is 150°C/ min or more.
  • the present invention provides a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase, comprising the step of heating a Li-ion conducting sulfide material that contains Li, P and S, and F and/or Cl, and is in an amorphous state, to a temperature in the range of 200° C. to 300° C.
  • the present invention provides a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase, comprising the step of heating a Li-ion conductive sulfide material that contains Li, P and S, and F and/or Cl, and that does not have an ⁇ -Li 3 PS 4 phase or is in an amorphous state, to a temperature in the range of 200°C to 300°C.
  • the present invention provides a method for producing a solid electrolyte material having the ⁇ -Li 3 PS 4 phase at room temperature, comprising the steps of heating a Li-ion conductive sulfide material containing Li, P and S but not containing F or Cl, and not having the ⁇ -Li 3 PS 4 phase, to a temperature in the range of 230 ° C to 350° C , wherein the heating rate at 200°C is 100°C/min or more.
  • the present invention provides a method for producing a solid electrolyte material having the ⁇ -Li 3 PS 4 phase at room temperature, comprising the step of heating a Li-ion conducting sulfide material comprising Li, P and S, and F and/or Cl, and not having the ⁇ -Li 3 PS 4 phase, to a temperature in the range of 200°C to 300°C.
  • a Li-ion conducting sulfide material comprising Li, P and S, and F and/or Cl, and not having the ⁇ -Li 3 PS 4 phase
  • these manufacturing methods are also simply referred to as the present manufacturing methods.
  • Li-ion conductive sulfide material (Li-ion conductive sulfide material)
  • the Li-ion conductive sulfide material in this production method is not particularly limited as long as it is a material that has Li-ion conductivity, contains Li, P, and S but does not contain F or Cl, and does not have an ⁇ -Li 3 PS 4 phase, or a material that has Li-ion conductivity, contains Li, P, and S, and F and/or Cl, and does not have an ⁇ -Li 3 PS 4 phase.
  • Examples of materials having Li ion conductivity, containing Li, P, and S, and F and/or Cl, and not having an ⁇ -Li 3 PS 4 phase include Li 3 PS 4 ⁇ LiF, Li 3 PS 4 ⁇ 0.8LiF, Li 3 PS 4 ⁇ 0.5LiF, Li 3 PS 4 ⁇ 0.2LiF, Li 3 PS 4 ⁇ 0.1LiF, Li 3 PS 4 ⁇ LiCl, Li 3 PS 4 ⁇ 0.8LiCl, Li 3 PS 4 ⁇ 0.5LiCl, Li 3 PS 4 ⁇ 0.2LiCl, Li 3 PS 4 ⁇ 0.1LiCl, etc.
  • the fact that the sulfide material does not have an ⁇ -Li 3 PS 4 phase includes the fact that the sulfide material is substantially not having an ⁇ -Li 3 PS 4 phase.
  • XRD X-ray diffraction
  • the material having Li ion conductivity, containing Li, P, and S, and F and/or Cl, and not having an ⁇ -Li 3 PS 4 phase is, for example, represented by the following formula (I): Li 3 PS 4 ⁇ aLiX (I) (In the formula, X is F and/or Cl, and a satisfies 0 ⁇ a ⁇ 2.0.)
  • a represents the molar ratio of LiX to Li 3 PS 4.
  • the range of a is not particularly limited as long as it is within the above range, but it is preferable to satisfy 0 ⁇ a ⁇ 2.0, more preferably to satisfy 0.1 ⁇ a ⁇ 2.0, more preferably to satisfy 0.1 ⁇ a ⁇ 1.5, and more preferably to satisfy 0.1 ⁇ a ⁇ 1.0.
  • X may be F, Cl, or both, but it is preferable to contain F, and more preferably only F. By setting X to F, it is possible to provide a sulfide material that can further improve battery performance.
  • the sulfide material may or may not be in an amorphous state, but is preferably in an amorphous state.
  • the sulfide material being in an amorphous state may refer to, for example, when X-ray diffraction (XRD) (using CuK ⁇ radiation) is performed on the sulfide material, in the X-ray diffraction pattern, all peaks in the XRD 2 ⁇ have a half-width (full width at half maximum: unit is angle) of 2.0 or more, a half-width (full width at half maximum: unit is angle) of 1.5 or more, a half-width (full width at half maximum) of 1.0 or more, a half-width (full width at half maximum) of 0.5 or more, or no peaks are observed. It may also refer to a state in which no clear crystallites are observed using a transmission electron microscope.
  • the sulfide material may be obtained by mechanochemical treatment of the material.
  • XRD X-ray diffraction
  • the present manufacturing method may further include a step of manufacturing a sulfide material.
  • the manufacturing method of the sulfide material is not particularly limited as long as it can physically integrate the raw materials of the sulfide material. Examples of integration methods include using a V-type mixer, mechanochemical treatment, a sand mill, a mixer (homomixer, planetary mixer, etc.). Of these, mechanochemical treatment is preferable. Therefore, in one specific embodiment, the present manufacturing method may further include a step of manufacturing a sulfide material by mechanochemically treating the raw materials.
  • the processing equipment for mechanochemical treatment is not particularly limited as long as it can mix while applying mechanical energy, and examples that can be used include ball mills, bead mills, jet mills, vibration mills, disk mills, turbo mills, and mechanofusion.
  • Ball mills are preferred because they can provide large mechanical energy.
  • planetary ball mills are preferred because the pot rotates on its axis and the base revolves in the opposite direction to the axis of rotation, allowing high impact energy to be generated efficiently.
  • the processing conditions for mechanochemical treatment can be set appropriately depending on the processing equipment used.
  • the diameter of the balls is not particularly limited, but may be selected from the range of 3 to 10 mm, for example.
  • the rotation speed may be selected from the range of 10 to 600 revolutions per minute, for example.
  • the output is also not particularly limited, but may be selected from the conditions resulting in, for example, 1 to 100 kWh/kg of raw material.
  • the time of the integration treatment, for example the mechanochemical treatment is not particularly limited, but may be set in the range of, for example, 1 to 120 hours.
  • the raw material of the material having Li ion conductivity, containing Li, P, and S, and F and/or Cl, and not having an ⁇ -Li 3 PS 4 phase may be Li, P, or S alone, or any combination of compounds containing at least one of Li, P, S, F, or Cl.
  • Specific examples of such materials include Li 2 S, P 2 S 3 , P 2 S 5 , LiF, LiCl, PF 3 , PF 5 , PCl 3 , PCl 5 , Li, P, and S.
  • the sulfide material during heating may be in the form of a powder, particles, film, layer or pellets.
  • the pellets may be obtained by pressing a powder or particulate sulfide material.
  • the layer may be a layer that covers other electrode materials such as an electrode active material or raw materials thereof.
  • the pressing pressure may be selected from a range of 50 to 2000 MPa.
  • the coating method is not particularly limited, but for example, a gas phase method such as a PVD method or a CVD method, a liquid phase method or a solid phase method such as an electroplating method or a coating method by applying a shear force using a milling method such as a ball mill, or a coating by spraying can be used.
  • the PVD method include a vacuum deposition method and a sputtering method.
  • the electrode active material is not particularly limited, and for example, a positive electrode active material or a negative electrode active material described later can be used.
  • the heating method is not particularly limited.
  • a heating medium at a temperature in the range of 200°C to 350°C or higher can be used.
  • the heating medium for example, an electric furnace, hot plate, heater, hot press, muffle furnace, high-frequency induction heating device, vacuum heating device, rotary kiln, sand bath, salt bath, or other heating device may be used, or a gas that does not react with the sulfide material, such as argon gas, may be used.
  • the heating medium has a function of adjusting the temperature and time.
  • the heating temperature of the material having Li-ion conductivity, containing Li, P, and S but not containing F and Cl, and not having an ⁇ -Li 3 PS 4 phase is preferably in the range of 230°C to 2000°C. By setting the heating temperature in this range, it is possible to provide a sulfide material that can further improve battery performance.
  • the heating temperature is preferably in the range of 230°C to 1000°C, and more preferably in the range of 230°C to 700°C.
  • the heating temperature here refers to the temperature of the part where the heating medium comes into contact with the sulfide material.
  • the heating medium is a heating device, it is the surface temperature of the heating part that comes into contact with the sulfide material, and if the heating medium is a gas such as argon gas, it refers to the temperature of the gas that comes into contact with the sulfide material. Heating may be performed only once or multiple times, but it is preferable to perform it once. If it is performed multiple times, it is preferable that each heating temperature is in these temperature ranges.
  • the heating temperature of the material having Li-ion conductivity, containing Li, P and S, and F and/or Cl, and not having the ⁇ -Li 3 PS 4 phase is preferably in the range of 200°C to 2000°C. By setting the heating temperature in this range, it is possible to provide a sulfide material that can further improve battery performance.
  • the heating temperature is preferably in the range of 200°C to 1000°C, and more preferably in the range of 200°C to 500°C. Heating may be performed once or multiple times, but is preferably performed once. When heating is performed multiple times, it is preferable that the heating temperature for each time is within these temperature ranges.
  • a cooling step (the cooling step will be described later) may or may not be performed between the first and second heating.
  • the second heating may be performed at a higher temperature than the first heating, or at a lower temperature.
  • a cooling step if present, may be performed between the first and second heating, between the second and third heating, or only one of them.
  • a step of stirring and mixing the sulfide material before, during, between, and/or after heating may be included.
  • the mixing method is not particularly limited as long as it is usable in the relevant field, and examples thereof include the use of a V-type mixer, a sand mill, a mixer (homomixer, planetary mixer, etc.), etc.
  • the heating time can be set appropriately depending on the sulfide material.
  • the heating time is preferably in the range of 1 second to 1200 seconds. By setting the heating time within this range, it is possible to provide a sulfide material that can further improve battery performance.
  • the heating time is preferably in the range of 1 second to 600 seconds, and more preferably in the range of 30 seconds to 360 seconds. When the heating step is performed multiple times, the heating time can be set appropriately for each step.
  • the temperature of the sulfide material refers to the temperature (actual measured value) of the surface of the sulfide material.
  • the surface temperature of the sulfide material can be measured by using, for example, a thermocouple or a radiation thermometer.
  • the rate of temperature rise of the sulfide material when it reaches, for example, 200°C can be determined by, for example, measuring the temperature of the sulfide material over time to obtain measured values, and taking the point at which it reaches 200°C as the reference (reference point) among the measured values, multiplying the difference between the measured values at a point x seconds before and after (x is a point higher than 0 and within 10 seconds while heating is maintained) (the measured value x seconds after the reference point - the measured value x seconds before the reference point) by 30/x to determine the rate of temperature rise of the sulfide material when it reaches 200°C.
  • the set temperature (for example, 100°C if the sulfide material is heated at a constant rate of 100°C/min) can be regarded as the rate of temperature rise of the sulfide material when it reaches 200°C.
  • the rate of temperature rise at 200°C can be regarded as being substantially 100°C/min or higher.
  • the heating rate during heating can be appropriately set depending on the sulfide material. For example, if the sulfide material has Li ion conductivity, contains Li, P, and S, and F and/or Cl, and does not have an ⁇ -Li 3 PS 4 phase, the heating rate at the time of reaching 200 ° C. is 100 ° C./min or more, and the sulfide material is heated to a temperature within the range of 200 ° C. to 350 ° C., thereby providing a sulfide material that has an ⁇ -Li 3 PS 4 phase and can improve battery performance.
  • the heating rate of a material that has Li ion conductivity, contains Li, P, and S, and F and/or Cl, and does not have an ⁇ -Li 3 PS 4 phase is preferably 100 ° C./min to 3000 ° C./min, preferably 100 ° C./min to 1500 ° C./min, more preferably 100 ° C./min to 1000 ° C./min, and more preferably 150 ° C./min to 1000 ° C./min.
  • the temperature increase rate may be a constant rate of 100° C./min or more from the start of heating, not just when the temperature reaches 200° C. In this case, the range of the temperature increase rate may be appropriately set within the above-mentioned temperature range.
  • the heating time can be adjusted appropriately in combination with the heating temperature to prevent the temperature of the sulfide material from becoming too high. For example, if the heating temperature is higher than 500°C, shortening the heating temperature (for example, within 60 seconds) can prevent the temperature of the sulfide material from becoming too high and forming a crystal phase other than the ⁇ -Li 3 PS 4 phase, such as the ⁇ -Li 3 PS 4 phase.
  • the combination of heating temperature and heating time is preferably set to a heating temperature in the range of 300° C. to 500° C. and a heating time in the range of 10 seconds to 360 seconds.
  • the temperature of the sulfide material is heated at least once to a temperature exceeding the glass transition temperature of the sulfide material.
  • a sulfide material that can further improve battery performance can be provided. Since the glass transition temperature differs depending on the composition of the sulfide material, the heating temperature is appropriately adjusted according to the composition of the sulfide material.
  • the temperature of the sulfide material may be, for example, heated to a temperature 5°C or more higher than the glass transition temperature of the sulfide material, heated to a temperature 10°C or more higher, heated to a temperature 20°C or more higher, heated to a temperature 30°C or more higher, or heated to a temperature 50°C or more higher.
  • the temperature of the sulfide material is preferably heated to a temperature exceeding the crystallization temperature of the sulfide material at least once.
  • a sulfide material that can further improve battery performance can be provided. Since the crystallization temperature differs depending on the composition of the sulfide material, the heating temperature is appropriately adjusted according to the composition of the sulfide material.
  • the temperature of the sulfide material may be, for example, heated to a temperature 5°C or higher, 30°C or higher, or 50°C or higher than the crystallization temperature of the sulfide material.
  • the glass transition temperature and crystallization temperature of the sulfide material can be measured, for example, by thermogravimetric differential thermal analysis (TG-DTA).
  • the sulfide material may be maintained at a temperature within the above range for a certain period of time after the above heat treatment, which is not particularly limited and may be, for example, in the range of 1 to 1000 seconds, 1 to 800 seconds, or 1 to 600 seconds.
  • a solid electrolyte material having the ⁇ -Li 3 PS 4 phase can be produced.
  • the manufacturing method may include a step of cooling the material after heating.
  • the cooling method is not particularly limited, and cooling may be performed by natural cooling or by using any cooling device, but cooling using a cooling device is preferable.
  • cooling devices that can be used include a liquid quenching and solidification device, a quenching flake manufacturing device, a submerged spinning device, a gas atomizing device, a water atomizing device, and a rotating disk device.
  • a cooling medium that does not react with the sulfide material, such as liquid nitrogen, may also be used.
  • the rate of temperature drop during cooling is not particularly limited and can be set appropriately.
  • the rate of temperature drop may be, for example, 10°C/min to 60,000°C/min, 50°C/min to 12,000°C/min, or 100°C/min to 6,000°C/min. Cooling may be performed at a rate of 50°C/min or less, or at a rate of 50°C/min or more, and is preferably performed at a rate of 100°C/min or more.
  • the present invention provides a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase, comprising the steps of heating a Li-ion conductive sulfide material containing Li, P and S but not containing F or Cl, and not having an ⁇ -Li 3 PS 4 phase, to a temperature in the range of 230°C to 350°C, wherein the heating rate at 200°C is 100°C/min or more, and cooling the heated Li-ion conductive sulfide material.
  • the present invention provides a method comprising heating a Li-ion conducting sulfide material that contains Li, P and S , and F and/or Cl, and does not have an ⁇ - Li3PS4 phase, to a temperature in the range of 200°C to 300°C, and cooling the heated Li-ion conducting sulfide material.
  • Each treatment step is preferably carried out in an inert atmosphere (e.g., an argon atmosphere) using a glove box or the like, in an environment with a moisture concentration of 10,000 ppm or less and an oxygen concentration of 10,000 ppm or less, and more preferably in an environment with a moisture concentration of 1,000 ppm or less and an oxygen concentration of 1,000 ppm or less.
  • Each processing step may be carried out under a pressure lower or higher than normal pressure. Normal pressure refers to a range of 200 hPa around 1013 hPa, for example. Pressure conditions may also be varied, such as gradually increasing pressure, gradually decreasing pressure, or normal pressure during heating but increasing pressure during cooling.
  • the produced solid electrolyte material has the ⁇ -Li 3 PS 4 phase can be confirmed, for example, by observing a combination of characteristic peaks that a person skilled in the art would determine to have the ⁇ -Li 3 PS 4 phase in an X-ray diffraction pattern using CuK ⁇ radiation (the X-ray diffraction pattern of the ⁇ -Li 3 PS 4 phase is described in, for example, JP 2017-033770 A (Patent Document 2)).
  • the X-ray diffraction pattern of the ⁇ -Li 3 PS 4 phase is described in, for example, JP 2017-033770 A (Patent Document 2)).
  • the bottom peak intensity is preferably 40% or more, and more preferably 90% or more, of the peak intensity of either of the two peaks.
  • the method for producing a solid electrolyte material of the present invention makes it possible to obtain a solid electrolyte material having an ⁇ -Li 3 PS 4 phase (at room temperature).
  • the inventors' thoughts on why a solid electrolyte material having an ⁇ -Li 3 PS 4 phase (at room temperature) can be obtained are described here.
  • the crystalline phases of Li 3 PS 4 include the ⁇ -Li 3 PS 4 phase (high temperature phase), the ⁇ -Li 3 PS 4 phase (medium temperature phase), and the ⁇ -Li 3 PS 4 phase (low temperature phase).
  • the ⁇ -Li 3 PS 4 phase usually appears when amorphous Li 3 PS 4 is heated to a high temperature of nearly 500°C, and when the heating is stopped and the temperature is lowered to room temperature, the ⁇ -Li 3 PS 4 phase undergoes a phase transition to the ⁇ -Li 3 PS 4 phase. Also, when Li 3 PS 4 is slowly heated to about 230°C and the temperature is maintained, the ⁇ -Li 3 PS 4 phase precipitates.
  • the ⁇ -Li 3 PS 4 phase when the temperature of the heated Li 3 PS 4 is lowered to room temperature, the ⁇ -Li 3 PS 4 phase remains as a crystalline phase. Thus, the ⁇ -Li 3 PS 4 phase does not usually exist as a crystalline phase at room temperature.
  • the inventors have found that by heating (amorphous) Li 3 PS 4 at a controlled heating rate of at least 100°C/min at 200°C, the ⁇ -Li 3 PS 4 phase appears even at temperatures of around 250°C, and that even when the temperature is returned to room temperature from this state, the ⁇ -Li 3 PS 4 phase is maintained and no transition to the ⁇ -Li 3 PS 4 phase occurs. This has not been known before.
  • Figure 2 shows the relationship between the heating rate and the reached temperature assumed by the inventors and the phase that is finally formed.
  • the horizontal axis of Figure 2 shows temperature, and the vertical axis shows the change in specific volume with respect to temperature.
  • (1) in Figure 2 shows a Li-ion conductive sulfide material heated to the glass transition point or higher.
  • (2) to (4) in Figure 2 show the crystalline phases that are formed from the heated Li-ion conductive sulfide material.
  • the arrows in Figure 2 indicate the occurrence of a phase transition.
  • the heating rate at 200°C is slower than 100°C/min, the intermediate temperature phase ⁇ - Li3PS4 phase precipitates upon heat treatment (Figure 2(A)).
  • the inventors believe that this is because, when the heating rate is slow, due to the difference in the temperature dependence of the crystal nucleation rate between the ⁇ - Li3PS4 phase and the ⁇ - Li3PS4 phase , the nucleation and growth of the ⁇ - Li3PS4 phase is faster than the formation of the ⁇ - Li3PS4 phase in the supercooled liquid, and the embryos (young nuclei) of the ⁇ - Li3PS4 phase formed in the supercooled liquid dissolve and eventually disappear.
  • the heating rate at 200°C is faster than 100°C/min, the crystal phase formed by the heated Li-ion conductive sulfide material changes depending on the temperature (arrival temperature) reached by heating.
  • the arrival temperature is low (230°C or lower), or a crystal phase is not formed (Fig. 2B), or the ⁇ -Li 3 PS 4 phase precipitates (Fig. 2C).
  • the arrival temperature is too low, so that no crystal nuclei are formed, or only the generation and growth of crystal nuclei of the ⁇ -Li 3 PS 4 phase occurs.
  • the arrival temperature is high (350°C or higher), the ⁇ -Li 3 PS 4 phase precipitates (Fig. 2C).
  • the Li-ion conductive sulfide material after heating passes through a temperature zone where a phase transition from the ⁇ -Li 3 PS 4 phase to the ⁇ -Li 3 PS 4 phase can occur when it returns to room temperature, and thus a phase transition from the ⁇ -Li 3 PS 4 phase to the ⁇ -Li 3 PS 4 phase occurs.
  • the reached temperature is in the range of 230°C to 350°C, the ⁇ -Li 3 PS 4 phase is formed ( Figure 2 (D)).
  • the solid electrolyte material having an ⁇ -Li 3 PS 4 phase at room temperature obtained by the method for producing a solid electrolyte material of the present invention does not lose the ⁇ -Li 3 PS 4 phase even after a period of time has passed since production , and is stably maintained. Therefore, a solid electrolyte material that can maintain excellent conductivity due to the ⁇ -Li 3 PS 4 phase for a long period of time can be obtained by the method for producing a solid electrolyte material of the present invention.
  • the present invention provides a solid electrolyte material containing Li, P, S and F, having a composition represented by Li 3 PS 4 ⁇ aLiF (wherein a satisfies the formula 0 ⁇ a ⁇ 2.0), and having an ⁇ -Li 3 PS 4 phase at room temperature.
  • the present invention also provides a solid electrolyte material containing Li, P, S and F, having a composition represented by Li 3 PS 4 ⁇ aLiF (wherein a satisfies 0 ⁇ a ⁇ 2.0), and having an ⁇ -Li 3 PS 4 phase.
  • the present invention relates to a solid electrolyte material that contains Li, P, S, and F, has a composition represented by Li 3 PS 4 ⁇ aLiF (wherein a satisfies 0 ⁇ a ⁇ 2.0), and has an ⁇ -Li 3 PS 4 phase at room temperature (provided that the following formula (II) Li 4-4 ⁇ - ⁇ - ⁇ P 1+ ⁇ S 4- ⁇ F ⁇ (II) [Wherein, 0.2 ⁇ 1.0, 0 ⁇ 0.075, and 0 ⁇ 0.2] (excluding compositions represented by the formula (I)) is also provided.
  • the range of a of the solid electrolyte material is not particularly limited, when a is in the range of 0 ⁇ a ⁇ 2.0, the battery performance can be improved, specifically, a sulfide material with excellent ion conductivity can be provided.
  • the range of a may be 0 ⁇ a ⁇ 1.5, 0 ⁇ a ⁇ 1.0, or 0.1 ⁇ a ⁇ 1.0.
  • Li3PS4.aLiF examples include Li3PS4.0.01LiF , Li3PS4.0.05LiF , Li3PS4.0.1LiF, Li3PS4.0.2LiF , Li3PS4.0.3LiF , Li3PS4.0.4LiF , Li3PS4.0.5LiF , Li3PS4.0.6LiF , Li3PS4.0.7LiF , Li3PS4.0.8LiF , Li3PS4.0.9LiF , Li3PS4.LiF , Li3PS4.1.5LiF , and Li3PS4.2.0LiF .
  • the reason for having the ⁇ -Li 3 PS 4 phase at room temperature is as described above.
  • the solid electrolyte material does not exhibit a peak derived from P 2 S 6 4- in the Raman spectrum at 370 to 400 cm -1 .
  • the Raman spectrum can be measured, for example, using a laser Raman spectrometer LabRAM HR-800 with a green laser (532 nm) as the oscillation line.
  • the method for producing the solid electrolyte material can be carried out by physically integrating raw materials such as Li2S , P2S5 , and LiF, and the integration method is preferably mechanochemical treatment.
  • the integration method and mechanochemical treatment are as described above.
  • a Li-ion conductive solid electrolyte material such as the above-mentioned Li 3 PS 4 ⁇ aLiF (wherein a satisfies 0 ⁇ a ⁇ 2.0)] obtained by a method including a step of heating a Li-ion conductive sulfide material that contains Li, P, and S, and F and/or Cl and does not have an ⁇ -Li 3 PS 4 phase to a temperature in the range of 200 ° C. to 300 ° C.
  • the inventors believe that F and Cl are present in the solid electrolyte material in the form of LiF and LiCl, respectively, but it is unclear what state LiF and LiCl are present in the solid electrolyte material.
  • the present invention provides a solid electrolyte composite comprising the solid electrolyte material of the present invention.
  • a solid electrolyte other than the solid electrolyte material of the present invention a binder, a conductive material, etc. may be mixed.
  • the proportion of the solid electrolyte material of the present invention in the solid electrolyte composite can be, for example, 50 mass % or more, 70 mass % or more, or 95 mass % or more.
  • the binder is not particularly limited, and any binder that can be commonly used in battery materials can be used.
  • the binder may be one type of binder or a combination of multiple binders.
  • the content of the binder in the solid electrolyte composite can be appropriately selected from the range of 0 to 40% by mass, preferably 30% by mass or less, more preferably 10% by mass or less, and more preferably no binder is contained.
  • the conductive material is not particularly limited, and any material that can be commonly used in battery materials can be used.
  • the conductive material may be one type of conductive material or a combination of multiple conductive materials.
  • the content of the conductive material in the solid electrolyte composite can be appropriately selected from the range of 0 to 40% by mass, preferably 30% by mass or less, and more preferably 20% by mass or less.
  • the solid electrolyte other than the solid electrolyte material of the present invention contained in the solid electrolyte composite is not particularly limited, and any solid electrolyte that can be generally used as a battery material can be used.
  • the solid electrolyte other than the solid electrolyte material of the present invention may be glass or glass ceramics. Glass ceramics are materials that have a glass phase and a crystalline phase dispersed (precipitated) in the glass phase. Glass ceramics can be formed, for example, by heating the glass phase to a temperature equal to or higher than its glass transition point to crystallize (at least a portion of) the material. The glass transition point can be measured, for example, by differential thermal analysis (DTA).
  • DTA differential thermal analysis
  • the solid electrolyte material is a glass ceramic can be confirmed, for example, by observing with a transmission electron microscope (TEM) that a plurality of crystal phases are contained in a glass phase.
  • TEM transmission electron microscope
  • the content of the solid electrolyte other than the solid electrolyte material of the present invention contained in the solid electrolyte composite can be appropriately selected from the range of 0 to 50 mass %, more preferably 40 mass % or less, and even more preferably 30 mass % or less.
  • the sum of the contents of the binder, conductive material, and solid electrolyte in the solid electrolyte composite is not particularly limited, but is preferably 60 mass% or less, more preferably 50 mass% or less, more preferably 40 mass% or less, and even more preferably 30 mass% or less.
  • the solid electrolyte composite can be formed by mixing the solid electrolyte material of the present invention with a solid electrolyte other than the solid electrolyte material of the present invention, a binder, a conductive material, etc.
  • the mixing method is not particularly limited as long as it can be used in the relevant field.
  • the solid electrolyte composite or the solid electrolyte material of the present invention can be formed into a solid electrolyte layer, for example, by pressing it to a predetermined thickness.
  • the pressing pressure may be selected from the range of 50 to 2000 MPa.
  • Electrode One embodiment of the present invention provides an electrode containing the solid electrolyte material of the present invention.
  • the electrode may be a positive electrode or a negative electrode.
  • the amount of the solid electrolyte material of the present invention contained in the electrode is not particularly limited, but may be, for example, in the range of 1 to 50 mass %.
  • the electrodes may contain a positive electrode active material and a negative electrode active material that are generally used in the relevant field, as well as the above-mentioned binder and conductive material, and a solid electrolyte other than the solid electrolyte material of the present invention.
  • the electrode can be obtained in the form of a pellet or sheet by, for example, mixing an electrode active material and, optionally, a binder, a conductive material, an electrolyte, etc., and pressing the resulting mixture.
  • the present invention also provides an electrode composite in which the electrode of the present invention is combined with a current collector.
  • the current collector is not particularly limited in terms of material, shape, etc., as long as it can be combined with the electrode of the present invention and can function as a current collector.
  • the shape of the current collector may be a uniform alloy plate or a shape having holes. It may also be in the form of a foil, sheet, or film. Examples of materials for the current collector include Al, Ni, Ti, Mo, Ru, Pd, stainless steel, and steel.
  • the electrode composite of the present invention may be formed by combining the electrode and the current collector formed separately, or the electrode may be formed directly on the current collector. In the case of direct formation, the electrode active material may be applied to the surface of the current collector by a known method.
  • the present invention provides an all-solid-state secondary battery comprising the solid electrolyte composite of the present invention and/or the electrode of the present invention.
  • the all-solid-state secondary battery may combine a solid electrolyte layer comprising the solid electrolyte composite of the present invention with a positive electrode and a negative electrode that are generally used in the relevant field, may combine a solid electrolyte layer comprising the solid electrolyte composite of the present invention with an electrode of the present invention, or may combine a solid electrolyte layer generally used in the relevant field with an electrode of the present invention.
  • An all-solid-state secondary battery can be obtained, for example, by laminating a positive electrode, a solid electrolyte layer, a negative electrode, and a current collector, pressing them to obtain a cell, and fixing the cell in a container.
  • a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase comprising the steps of: A method comprising the steps of heating a Li-ion conducting sulfide material containing Li, P and S, but not containing F or Cl, and not having an ⁇ -Li 3 PS 4 phase, to a temperature in the range of 230°C to 350°C, the heating rate at 200°C being 100°C/min or more.
  • a method for producing a solid electrolyte material having an ⁇ -Li 3 PS 4 phase comprising the steps of: A method comprising the step of heating a Li-ion conducting sulfide material comprising Li, P and S, and F and/or Cl, and not having the ⁇ -Li 3 PS 4 phase, to a temperature in the range of 200° C. to 300° C.
  • the solid electrolyte material has the following formula (I): Li 3 PS 4 ⁇ aLiX (I) (In the formula, X is F and/or Cl, and a satisfies 0 ⁇ a ⁇ 2.0.) 5.
  • An impedance analyzer (SI-1260) manufactured by Solartron was used to measure ionic conductivity and electronic conductivity.
  • a hot plate (PC-420D) manufactured by Corning was used as the heating device, and a TG-DTA (Thermo plus EVO2 TG-DTA8121) and a DSC (Thermo plus EVO2 DSCvesta) manufactured by Rigaku were used as the thermal analyzer.
  • XPS X-ray photoelectron spectroscopy
  • a K-Alpha X-ray photoelectron spectroscopy system manufactured by Thermo Fisher Scientific was used, and measurements were performed using monochromated Al-K ⁇ (1486.6 eV) X-rays.
  • the measurement area was approximately 400 ⁇ m2
  • an Ar + neutralization gun was used for charge neutralization and Ar ion species were used for etching.
  • As a cooling means liquid nitrogen or an iron press using a stainless steel plate was used.
  • the AC impedance was measured using the impedance analyzer (SI-1260) described above, by preparing a polycass cell (polycarbonate cell) as follows. Die steel (SKD) was used for the current collector, and polycarbonate with an inner diameter of 10 mm was used for the insulator. 150 mg of each solid electrolyte material was weighed out and added to the rod, and pellets were produced by uniaxial pressing for 5 minutes at 360 MPa using a hydraulic press. The shaft and rod were fixed with screws, placed in a glass container, and sealed with a rubber stopper.
  • SI-1260 impedance analyzer
  • the measurement frequency was 0.1 Hz to 1 x 10 6 Hz, the AC amplitude was 10 mV, and the intersection of the semicircle of the obtained impedance plot and the real axis was taken as the resistance R of the sample, and the ionic conductivity ⁇ was calculated from the following formula.
  • (1/R) ⁇ (L/S) (1)
  • L Pellet thickness (cm)
  • S Electrode surface area (0.785 cm 2 )
  • the activation energy (E a ) was calculated from the slope of a graph showing the temperature dependence of ionic conductivity, which was obtained by plotting the ionic conductivity measured at each temperature against the reciprocal of absolute temperature, using the following formula, assuming that it follows the Arrhenius law.
  • A exp(-E a /RT) (2)
  • [ ⁇ ionic conductivity (S cm -1 ), A: pre-exponential factor (S cm -1 )
  • T measurement temperature (K)
  • E a activation energy (kJ mol -1 )
  • R gas constant (kJ mol -1 K -1 )]
  • DSC Differential scanning calorimetry
  • solid electrolyte materials (hereinafter also referred to as LPS -based solid electrolyte materials) obtained by processing a Li-ion conductive sulfide material that contains Li, P, and S but does not contain F or Cl and does not have the ⁇ -Li 3 PS 4 phase under various conditions
  • solid electrolyte materials (hereinafter also referred to as LPX-X-based solid electrolyte materials) obtained by processing a Li-ion conductive sulfide material that contains Li, P, and S, and F and/or Cl, and does not have the ⁇ -Li 3 PS 4 phase under various conditions, and their properties have been investigated.
  • This 75 Li 2 S ⁇ 25 P 2 S 5 amorphous is referred to as Li 3 PS 4 (milled).
  • the raw materials used and their composition (molar ratio) at the time of charging are shown in Table 1.
  • the conditions of the mechanochemical treatment were a rotation speed of 210 rpm for 70 hours, and a 225 ml pot made of ZrO2 and 450 g of balls with a diameter of 4 mm made of ZrO2 were used.
  • the 75 Li 2 S:25 P 2 S 5 amorphous material obtained by mechanochemical treatment, that is, Li 3 PS 4 (milled) is hereinafter referred to as a solid electrolyte sample of Comparative Example 1.
  • the environment in the glove box under the argon atmosphere is such that the moisture content is less than -70°C and the oxygen concentration is less than 10 ppm (all work carried out in the glove box hereafter will be under these conditions).
  • LPS-X solid electrolyte material LPS-F solid electrolyte with modified composition
  • Li 2 SP 2 S 5 -LiF system hereinafter sometimes referred to as the LPS-F system
  • each raw material was weighed out to obtain the molar ratios shown in Table 2, and mechanochemical processing was performed to obtain Li 3 PS 4 ⁇ 0.1LiF (milled) (Comparative Example 12), Li 3 PS 4 ⁇ 0.2LiF (milled) (Comparative Example 14), and Li 3 PS 4 ⁇ 0.5LiF (milled) (Comparative Example 16), respectively.
  • the mechanochemical treatment was carried out under the same conditions as in Comparative Example 6.
  • LPS-X solid electrolyte materials LPS-Cl, LPS-Br, and LPS-I
  • mechanochemical treatment was also performed on the Li 2 SP 2 S 5 -LiCl system (hereinafter sometimes referred to as the LPS-Cl system), Li 2 SP 2 S 5 -LiBr system (hereinafter sometimes referred to as the LPS-Br system), and Li 2 SP 2 S 5 -LiI system (hereinafter sometimes referred to as the LPS-I system) in which the halogen element was changed, to obtain each solid electrolyte sample (milled).
  • the solid electrolyte samples obtained by mechanochemical treatment are named Li 3 PS 4.LiCl (milled) (hereinafter, Comparative Example 7), Li 3 PS 4.LiBr (milled) (hereinafter, Comparative Example 8), and Li 3 PS 4.LiI (milled) (hereinafter, Comparative Example 9) (see Table 3 below).
  • Li 3 PS 4 (milled) was subjected to heat treatment at various temperatures to obtain an LPS-based solid electrolyte material.
  • Li 3 PS 4 (milled) powder was placed in a tablet molder with a diameter of 4 mm, and then pressure molded at 360 MPa using a hydraulic uniaxial press to produce pellets with a thickness of 1 mm or less.
  • Two stainless steel metal plates were placed on a hot plate and heated to a specified temperature. The pellets were heated by placing the prepared pellets on one metal plate and sandwiching and pressing the pellets with the other metal plate. The heating time was 1 minute.
  • the pellets were pressed with a stainless steel plate and quenched (quenched by iron press).
  • the sample obtained by heat treatment is referred to as "heated” (hereinafter, the same applies to LPS-X-based solid electrolyte materials).
  • the heat treatment temperature may be expressed as ht (short for heat treatment) and a number (three digits).
  • the heating rate was calculated to be about 750° C./min at 200° C., since it took 1.83 seconds to raise the temperature from 188° C. to 211° C. The following calculations of the heating rate were performed in the same manner, except for the cases where the heating rate was fixed.
  • Example 1 The heating temperature was adjusted so that the measured temperature was 338° C. (the heating rate at 200° C. was 750° C./min or more) and Li 3 PS 4 (milled) (Comparative Example 1) pellets were heat treated to obtain a sample of Example 1.
  • Comparative Example 2 The Li 3 PS 4 (milled) (Comparative Example 1) pellets were heat-treated by changing the measured temperature as shown in Table 4 (column for temperature rise rate of 750° C./min or more). The procedure was the same as in Example 1 except that the heat treatment temperature was changed.
  • Example 5 The heating temperature was adjusted so that the measured temperature became 336° C., and Li 3 PS 4 (milled) (Comparative Example 1) pellets were heat-treated to obtain a sample of Example 5. Specifically, Li 3 PS 4 (milled) (Comparative Example 1) was subjected to a heat treatment using a DSC apparatus. The heating rate of the DSC apparatus was set to 150° C./min, and heating was stopped when the measured temperature of Li 3 PS 4 (milled) reached 336° C., and the Li 3 PS 4 (milled) was quenched by exposure to liquid nitrogen.
  • Comparative Examples 3 and 4 Li 3 PS 4 (milled) (Comparative Example 1) was heat-treated while changing the measured temperature as shown in Table 4 (column for temperature rise rate of 150° C./min). The procedure was the same as in Example 5 except that the heat treatment temperature was changed.
  • Example 12 The heating temperature was adjusted so that the measured temperature became 330° C., and Li 3 PS 4 (milled) (Comparative Example 1) was heat-treated to obtain a sample of Example 12. Specifically, Li 3 PS 4 (milled) (Comparative Example 1) was subjected to a heat treatment using a TG-DTA apparatus. The heating rate of the TG-DTA apparatus was set to 100° C./min, and heating was stopped when the measured temperature of Li 3 PS 4 (milled) reached 330° C. After heating, the same TG-DTA apparatus was used to cool the material at a rate of 50° C./min.
  • Comparative Example 5 Li 3 PS 4 (milled) (Comparative Example 1) was heat-treated by changing the measured temperature as shown in Table 4 (column for temperature rise rate 100° C./min). Other than changing the heat treatment temperature, the same procedure was followed as in Example 12.
  • X-ray diffraction (XRD) measurements were performed on the solid electrolyte materials of the above-mentioned Examples 1 to 18 and Comparative Examples 2 to 5. The results are shown in Figures 3 to 5. From the diffraction patterns shown in Figures 3 to 5, it can be seen that a peak characteristic of the ⁇ -Li 3 PS 4 phase appears around 18°. Some of the diffraction lines (peaks) are split. This indicates that it is not a single ⁇ phase, but that there is indeed an ⁇ phase present in the diffraction lines. Since it can be said that crystals containing a mixture of ⁇ and ⁇ phases have precipitated, for convenience, we will refer to this as an ⁇ -like phase.
  • Comparative Examples 6 to 9 were heat-treated at 330°C.
  • the heat treatment conditions were the same as those of Example 1, except that the measured temperatures were different.
  • pellets of Li 3 PS 4.LiF (milled) (Comparative Example 6), Li 3 PS 4.LiCl (milled) (Comparative Example 7), Li 3 PS 4.LiBr (milled) (Comparative Example 8), and Li 3 PS 4.LiI (milled) (Comparative Example 9) were prepared. Each of these pellets was heat-treated by adjusting the heating temperature so that the measured temperature was 330°C (the heating rate at 200°C was 750°C/min or more).
  • Comparative Example 10 of the LPS-Br system containing Br (bromine) and Comparative Example 11 of the LPS-I system containing I (iodine) diffraction lines derived from ⁇ -Li 3 PS 4 were not observed.
  • Figures 9 to 12 also show the results of X-ray diffraction measurements on Li 3 PS 4 ⁇ 0.1LiF (milled) (Comparative Example 12), Li 3 PS 4 ⁇ 0.2LiF (milled) (Comparative Example 14), Li 3 PS 4 ⁇ 0.5LiF (milled) (Comparative Example 16), and Li 3 PS 4 ⁇ LiF (milled) (Comparative Example 6).
  • FIG. 13A to 13D show XPS spectra for each LPS-F system composition.
  • Fig. 13A and Fig. 13C show XPS spectra for F1S (Fig. 13A) and FKL1 (Fig. 13C) for each composition after mechanochemical treatment
  • Fig. 13B and Fig. 13D show XPS spectra for F1S (Fig. 13B) and FKL1 (Fig. 13D) for each composition after heat treatment.
  • the spectrum shown at the top of each figure is for LiF only, and is shown as a reference for spectral assignment.
  • 13A-D show that in both F1S (FIG. 13A or FIG. 13B) and FKL1 (FIG. 13C or FIG.
  • the spectrum of the heat-treated sample is different from the spectrum of the mechanochemically treated sample (i.e., not heat-treated). Focusing on the F1S spectrum, the peak originating from LiF at around 685 eV increases after heat treatment. This is thought to be due to the precipitation of LiF crystals from the amorphous (glass) state.
  • FIG. 13A it can be seen that the peak intensity originating from LiF increases as the amount of LiF charged increases from 0.1LiF to LiF. Since the state of existence of LiF is not clear, it is conveniently described as LiF, but it can also be said that there is an upper limit to the melting of LiF into glass. On the other hand, a peak at around 684 eV that is not derived from LiF is also observed, which suggests that non-crystalline LiF exists. However, as mentioned above, the state of existence of LiF cannot be clearly defined.
  • Figure 14 shows an Arrhenius plot based on the measured ionic conductivity.
  • Table 8 shows the measured ionic conductivity and activation energy at room temperature.
  • TG-DTA measurement> Thermogravimetric measurements (TG-DTA) were carried out on each of the materials of Comparative Examples 1, 6, 12, 14, and 16 to obtain DTA curves. The measurement results are shown in Figure 15.
  • Figure 15 shows that the exothermic peak shifts to the lower temperature side as the LiF content increases. With reference to Figures 9 to 12, it can be seen that this also corresponds to each heat treatment temperature (crystal precipitation temperature, crystallization temperature).
  • Table 9 shows that the solid electrolyte materials of Examples 32, 36 and 41 having the ⁇ -Li 3 PS 4 phase (or a phase similar to the ⁇ -Li 3 PS 4 phase) all have high ionic conductivity of 1.0 ⁇ 10 -3 S cm -1 or more. This shows that, regardless of the LiF content (composition), high ionic conductivity believed to be due to the ⁇ -Li 3 PS 4 phase (or a phase similar to the ⁇ -Li 3 PS 4 phase) is exhibited by performing heat treatment.
  • Figures 16 and 17 show that the P2S64- peak is confirmed in the sample before heating, but the P2S64- peak is not present in the sample after heating.
  • the peak near 420 cm -1 is assigned to the PS43- unit . This shows that Li3PS4 crystals are present in the solid electrolyte material after heat treatment, that is, in each sample of the examples.
  • indicates a glass ceramic having the ⁇ -Li 3 PS 4 phase or a phase similar to the ⁇ -Li 3 PS 4 phase (here, for convenience, it may be referred to as the ⁇ phase), ⁇ indicates a glass ceramic having the ⁇ -Li 3 PS 4 phase or a phase close to the ⁇ -Li 3 PS 4 phase, and ⁇ indicates amorphous (glass).
  • FIG. 20 shows the results of XRD measurement of the solid electrolyte material of Example 40 immediately after production for comparison. From FIG. 20, no difference was observed in the X-ray diffraction pattern between the sample immediately after production and the sample after 500 hours of storage. This shows that the solid electrolyte material obtained by the production method of the present invention can maintain the ⁇ -Li 3 PS 4 phase for a long period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

α-Li3PS4相を有する固体電解質材料の製造方法を提供することを課題とする。α-Li3PS4相を有する固体電解質材料を製造する方法であって、LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さないLiイオン伝導性硫化物材料を、230℃~350℃の範囲内の温度まで加熱する工程であって、200℃での昇温速度が100℃/分以上である工程を含む方法により、課題を解決する。

Description

α-Li3PS4相を有する固体電解質材料を製造する方法、固体電解質材料
 本発明は、α-Li3PS4相を有する固体電解質材料を製造する方法、固体電解質材料に関する。
 近年、電気自動車、ハイブリッド自動車等の自動車、太陽電池、風力発電等の発電装置において、電力を貯蔵するためのリチウムイオン二次電池の需要が増大している。また、安全性の確保の観点から、電解質層に液体を使用せず、固体電解質を使用した全固体電池が盛んに研究されている。これらのリチウムイオン二次電池や全固体電池は、更なる高性能化が求められている。
 全固体リチウム電池の固体電解質として、L-P-S系の硫化物系固体電解質がその高い導電率から着目され、様々な研究が進められている。例えば、特許文献1には、Li2Sと、P2S5と、LiBrとをメカニカルミリング処理して得られるL-P-S系の硫化物系固体電解質が開示されている。また、特許文献2及び3には、L-P-S系の硫化物系固体電解質の結晶構造について記載されている。
特開2017-095351号公報 特開2017-033770号公報 特開2018-174130号公報
 L-P-S系の硫化物系固体電解質の結晶構造の内、高温相として知られるα-Li3PS4相は優れた導電性を有していることが知られていたが、α-Li3PS4相を室温で保持することは困難であった。そのため、室温でもα-Li3PS4相を有するL-P-S系の硫化物系固体電解質を製造するための新たな方法が望まれていた。
 本発明者らは、Liイオン伝導性硫化物材料の組成に応じて処理条件を検討することにより、室温でα-Li3PS4相を有する固体電解質材料を提供できることを見いだし、本発明に到った。
 かくして、第1の観点において、本発明によれば、α-Li3PS4相を有する固体電解質材料を製造する方法であって、LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さないLiイオン伝導性硫化物材料を、230℃~350℃の範囲内の温度まで加熱する工程であって、200℃での昇温速度が100℃/分以上である工程を含む方法が提供される。
 また、本発明者らは、Liイオン伝導性硫化物材料の組成を検討することにより、昇温速度の制御なしに室温でα-Li3PS4相を有する固体電解質材料を提供できることを見いだし、本発明に到った。
 かくして、第2の観点において、本発明によれば、α-Li3PS4相を有する固体電解質材料を製造する方法であって、Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さないLiイオン伝導性硫化物材料を、200℃~300℃の範囲内の温度まで加熱する工程を含む方法が提供される。
 本発明によれば、LiとPとSとFとを含み、組成がLi3PS4・aLiF (式中、aは0<a≦2.0を満たす)で表され、室温でα-Li3PS4相を有する、固体電解質材料が提供される。
 本発明によれば、上記製造方法によって得られる、α-Li3PS4相を有する固体電解質材料が提供される。
 本発明によれば、α-Li3PS4相を有する固体電解質材料の製造方法が提供される。
XRDパターンにおけるα-Li3PS4相が含まれるピークの参考図である。 Li3PS4の急速加熱及び急速冷却による結晶化における比体積及びLi3PS4相転移を示す図である。 実施例1~4及び比較例2の固体電解質材料のXRDパターンを示す図である。 実施例5~11及び比較例3、4の固体電解質材料のXRDパターンを示す図である。 実施例12~18及び比較例5の固体電解質材料のXRDパターンを示す図である。 比較例1、6~9の固体電解質材料のXRDパターンを示す図である。 実施例19、20及び比較例10、11の固体電解質材料のXRDパターンを示す図である。 実施例19、21~24及び比較例6の固体電解質材料のXRDパターンを示す図である。 実施例25~28及び比較例12、13の固体電解質材料のXRDパターンを示す図である。 実施例29~32及び比較例14、15の固体電解質材料のXRDパターンを示す図である。 実施例33~37及び比較例16、17の固体電解質材料のXRDパターンを示す図である。 実施例38~42及び比較例6、17の固体電解質材料のXRDパターンを示す図である。 LPS-F系の各組成におけるメカノケミカル処理後のF1SのXPSスペクトルを示す図である。 LPS-F系の各組成における熱処理後のF1SのXPSスペクトルを示す図である。 LPS-F系の各組成におけるメカノケミカル処理後のFKL1のXPSスペクトルを示す図である。 LPS-F系の各組成における熱処理後のFKL1のXPSスペクトルを示す図である。 実施例19、23及び比較例1、6~8の固体電解質材料のアレニウスプロットを示す図である。 比較例1、6、12、14及び16の固体電解質材料に対するTG-DTA測定の結果を示す図である。 実施例28、32、36及び41の固体電解質材料のラマンスペクトル(100~600 cm-1)を示す図である。 比較例6、12、14及び16の固体電解質材料のラマンスペクトル(100~600 cm-1)を示す図である。 Li3PS4系及びLi3PS4‐LiF系における析出相の組成及び熱処理温度依存性を示す図である。 Li3PS4の結晶多形のXRDパターンを示す参考図である。 製造直後の実施例40の固体電解質材料及び製造後25℃、500時間保存した実施例40の固体電解質材料のXRDパターンを示す図である。
 本明細書において、「x~y」(x, yは具体的値)は、特に断らない限りx以上y以下(即ち、両端の値を含む)を意味する。
 (α-Li3PS4相を有する固体電解質材料を製造する方法)
 LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さないLiイオン伝導性硫化物材料を、230℃~350℃の範囲内の温度まで加熱する工程であって、200℃での昇温速度が100℃/分以上である工程を含む、α-Li3PS4相を有する固体電解質材料を製造する方法を提供する。
 1つの具体的な実施形態において、本発明は、Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さないLiイオン伝導性硫化物材料を、200℃~300℃の範囲内の温度まで加熱する工程を含む、α-Li3PS4相を有する固体電解質材料を製造する方法を提供する。
 1つの具体的な実施形態において、本発明は、LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さないLiイオン伝導性硫化物材料を、230℃~350℃の範囲内の温度まで加熱する工程であって、200℃での昇温速度が150℃/分以上である工程を含む、α-Li3PS4相を有する固体電解質材料を製造する方法を提供する。
 1つの具体的な実施形態において、本発明は、LiとPとSとを含むがF、Clを含まず、かつアモルファスの状態であるLiイオン伝導性硫化物材料を、230℃~350℃の範囲内の温度まで加熱する工程であって、200℃での昇温速度が100℃/分以上である工程を含む、α-Li3PS4相を有する固体電解質材料を製造する方法を提供する。
 1つの具体的な実施形態において、本発明は、LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さないか、又はアモルファスの状態であるLiイオン伝導性硫化物材料を、230℃~350℃の範囲内の温度まで加熱する工程であって、200℃での昇温速度が100℃/分以上である工程を含む、α-Li3PS4相を有する固体電解質材料を製造する方法を提供する。
 1つの具体的な実施形態において、本発明は、LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さないか、又はアモルファスの状態であるLiイオン伝導性硫化物材料を、230℃~350℃の範囲内の温度まで加熱する工程であって、200℃での昇温速度が150℃/分以上である工程を含む、α-Li3PS4相を有する固体電解質材料を製造する方法を提供する。
 1つの具体的な実施形態において、本発明は、Li、P及びSと、F及び/又はClとを含み、かつアモルファスの状態であるLiイオン伝導性硫化物材料を、200℃~300℃の範囲内の温度まで加熱する工程を含む、α-Li3PS4相を有する固体電解質材料を製造する方法を提供する。
 1つの具体的な実施形態において、本発明は、Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さないか、又はアモルファスの状態であるLiイオン伝導性硫化物材料を、200℃~300℃の範囲内の温度まで加熱する工程を含む、α-Li3PS4相を有する固体電解質材料を製造する方法を提供する。
 1つの具体的な実施形態において、本発明は、LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さないLiイオン伝導性硫化物材料を、230℃~350℃の範囲内の温度まで加熱する工程であって、200℃での昇温速度が100℃/分以上である工程を含む、室温でα-Li3PS4相を有する固体電解質材料を製造する方法を提供する。
 1つの具体的な実施形態において、本発明は、Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さないLiイオン伝導性硫化物材料を、200℃~300℃の範囲内の温度まで加熱する工程を含む、室温でα-Li3PS4相を有する固体電解質材料を製造する方法を提供する。
 以下、これらの製造方法を単に本製造方法とも言う。
 (Liイオン伝導性硫化物材料)
 本製造方法におけるLiイオン伝導性硫化物材料(以下単に硫化物材料ともいう)は、Liイオン伝導性を有し、LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さない材料、又はLiイオン伝導性を有し、Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さない材料であれば特に限定されない。Liイオン伝導性を有し、LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さない材料としては、例えば(α-Li3PS4相を有さない)Li3PS4、Li4P2S6、Li7PS6、Li7P3S11、Li13P3S12等が挙げられる。Liイオン伝導性を有し、Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さない材料としては、例えばLi3PS4・LiF、Li3PS4・0.8LiF、Li3PS4・0.5LiF、Li3PS4・0.2LiF、Li3PS4・0.1LiF、Li3PS4・LiCl、Li3PS4・0.8LiCl、Li3PS4・0.5LiCl、Li3PS4・0.2LiCl、Li3PS4・0.1LiCl等が挙げられる。硫化物材料がα-Li3PS4相を有さないことは、硫化物材料が実質的にα-Li3PS4相を有さないことを包含する。実質的にα-Li3PS4相を有さないことは、例えば室温(本明細書において、室温は20~30℃の温度を指す)の硫化物材料について(CuKα線を用いた)X線回折(XRD)を行ったときに、X線回折パターンにおいて、2θ=17.5°~18.5°の間にピークが確認されないことによって確認できる。
 Liイオン伝導性を有し、Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さない材料は、例えば下記式(I)
 
Li3PS4・aLiX    (I)
(式中、XはF及び/又はClであり、aは0≦a≦2.0を満たす)
で表すことができる。ここで、aは、Li3PS4に対するLiXのモル比を表す。aがこの範囲であることで、電池性能を向上できる、具体的にはイオン伝導度に優れた硫化物材料を提供できる。aの範囲は上記範囲内であれば特に限定されないが、0<a≦2.0を満たすことが好ましく、0.1≦a≦2.0を満たすことがより好ましく、0.1≦a≦1.5を満たすことがより好ましく、0.1≦a≦1.0を満たすことがより好ましい。XはFであっても、Clであっても、その両方が含まれていてもよいが、Fが含まれていることが好ましく、Fのみであることがより好ましい。XがFであることで、より電池
性能を向上できる硫化物材料を提供できる。
 硫化物材料中に含まれるLiとPとの含有比は特に限定されないが、例えばLiとPとのモル比がLi/P=1.0~10.0の範囲(モル比)を満たしていることが好ましい。LiとPとのモル比がこの範囲であることで、より電池性能を向上できる硫化物材料を提供できる。Li/P=2.0~5.0の範囲(モル比)を満たしていることがより好ましくLi/P=2.9~3.1の範囲(モル比)を満たしていることがより好ましい。
 硫化物材料は、アモルファスの状態であってもなくてもよいが、アモルファスの状態であることが好ましい。硫化物材料がアモルファスの状態であることは、例えば、硫化物材料について(CuKα線を用いた)X線回折(XRD)を行ったときに、X線回折パターンにおいて、XRDの2θの全てのピークが、2.0以上の半値幅(半値全幅:単位は角度)となる状態を指してもよいし、1.5以上の半値幅(半値全幅:単位は角度)となる状態を指してもよいし、1.0以上の半値幅(半値全幅)となる状態を指してもよいし、0.5以上の半値幅(半値全幅)となる状態を指してもよいし、あるいはピークが確認されない状態を指してもよい。また、透過型電子顕微鏡を用いて明確な結晶子が確認されない状態を指してもよい。硫化物材料は、その材料をメカノケミカル処理して得られたものであってもよい。
 硫化物材料は、βLi3PS4相もγLi3PS4相も有さないことが好ましい。硫化物材料がβLi3PS4相、又はγLi3PS4相を有しているかどうかは、室温の硫化物材料について(CuKα線を用いた)X線回折(XRD)を行った時に、X線回折パターンにおいて、2θ=17.5°~18.5°の間に独立した(すなわち、ピークが重なっていない)2つ以上のピークを有していることによって確認できる。
 本製造方法は、硫化物材料を製造する工程をさらに含んでいてもよい。硫化物材料の製造方法は、硫化物材料の原料を物理的に一体化できれば特に限定されない。一体化方法としては、例えばV型混合機、メカノケミカル処理、サンドミル、ミキサー(ホモミキサー、プラネタリーミキサー等)等を用いることが挙げられる。これらのうち、メカノケミカル処理に供されることが好ましい。よって、1つの具体的な実施形態において、本製造方法は、原料をメカノケミカル処理することにより硫化物材料を製造する工程をさらに含んでいてもよい。
 メカノケミカル処理の処理装置としては、機械的エネルギーを付与しつつ混合できるものであれば特に限定されず、例えばボールミル、ビーズミル、ジェットミル、振動ミル、ディスクミル、ターボミル、メカノフュージョンなどが使用できる。ボールミルは、大きな機械的エネルギーが得られるため好ましい。ボールミルの中でも、遊星型ボールミルは、ポットが自転回転すると共に、台盤が自転の向きと逆方向に公転回転するため、高い衝撃エネルギーを効率よく発生できるので、好ましい。メカノケミカル処理についての処理条件は、使用する処理装置に応じて適宜設定できる。
 メカノケミカル処理として遊星型ボールミルを使用する場合、ボールの直径は特に限定されないが、例えば3~10mmの範囲から選択されてもよい。回転速度は、例えば10~600回転/分の速度から選択されてもよい。出力としても特に限定されないが、例えば1~100 kWh/原料1kgになる条件から選択されてもよい。一体化処理、例えばメカノケミカル処理の時間は、特に限定されないが、例えば1~120時間の範囲で設定してもよい。
 Liイオン伝導性を有し、LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さない材料の原料としては、Li、P、Sの単体又はLi、P又はSのいずれか1以上を含みかつF、Clを含まない化合物の任意の組み合わせが挙げられる。そのような材料の具体例としては例えばLi2S、P2S3、P2S5、Li、P、Sが挙げられる。このうち、Li2S又はP2S5を少なくとも含むことが好ましく、Li2S及びP2S5を少なくとも含むことがより好ましく、Li2SとP2S5とが、モル比でLi2S:P2S5=3:1の比になるように含まれていることがより好ましい。
 Liイオン伝導性を有し、Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さない材料の原料としては、Li、P、Sの単体又はLi、P、S、F又はClのいずれか1以上を含む化合物の任意の組み合わせが挙げられる。そのような材料の具体例としては、例えばLi2S、P2S3、P2S5、LiF、LiCl、PF3、PF5、PCl3、PCl5、Li、P、Sが挙げられる。このうち、Li2S又はP2S5を少なくとも含むことが好ましく、Li2S及びP2S5を少なくとも含むことが好ましく、Li2SとP2S5とが、モル比でLi2S:P2S5=3:1の比になるように含まれていることがより好ましい。
 加熱時の硫化物材料は、粉末、粒子、膜、層又はペレットの状態であり得る。ペレットは粉末又は粒子状の硫化物材料をプレスすることにより得られてもよい。層は、電極活物質等の他の電極材料又はその原料を被覆する層であってもよい。プレスの圧力は、50~2000MPaの範囲の圧力から選択されてもよい。被覆方法としては特に限定されないが、例えば、PVD法やCVD法などの気相法、電気メッキや塗布法などの液相法又は固相法、ボールミルなどのミリング法を用いる剪断力付与による被覆、あるいはスプレー噴霧による被覆などを用いることができる。PVD法としては真空蒸着法、スパッタリング法などが挙げられる。電極活物質としては、特に限定されず、例えば後述する正極活物質や負極活物質を用いることができる。
 加熱方法は、特に限定されない。例えば、200℃~350℃の範囲内の温度以上の温度の加熱用媒体を用いることが挙げられる。そのような温度に維持された加熱用媒体を硫化物材料に接触させることで、硫化物材料を所望の温度まで加熱することができる。加熱用媒体としては、例えば電気炉、ホットプレート、ヒーター、ホットプレス、マッフル炉、高周波誘導加熱装置、真空加熱装置、ロータリーキルン、サンドバス、ソルトバス等の加熱装置を用いてもよいし、例えばアルゴンガスなどの硫化物材料と反応しない気体などを用いてもよい。加熱用媒体は、温度や時間を調節できる機能を有していることが好ましい。
 Liイオン伝導性を有し、LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さない材料の加熱温度は、230℃~2000℃の範囲であることが好ましい。加熱温度がこの範囲であることで、より電池性能を向上できる硫化物材料を提供できる。加熱温度は、230℃~1000℃の範囲であることが好ましく、230℃~700℃の範囲であることがより好ましい。ここでの加熱温度は、加熱用媒体が硫化物材料と接触する部分の温度を指す。例えば、加熱用媒体が加熱装置であれば硫化物材料と接触する加熱部分の表面温度であり、アルゴンガス等のガスであれば硫化物材料と接触させるガスの温度を指す。加熱は、一度のみ行っても複数回行ってもよいが、一度であることが好ましい。複数回行う場合は、それぞれの加熱温度がこれらの温度範囲であることが好ましい。
 Liイオン伝導性を有し、Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さない材料の加熱温度は、200℃~2000℃の範囲であることが好ましい。加熱温度がこの範囲であることで、より電池性能を向上できる硫化物材料を提供できる。加熱温度は、200℃~1000℃の範囲であることが好ましく、200℃~500℃の範囲であることがより好ましい。加熱は、一度のみ行っても複数回行ってもよいが、一度であることが好ましい。複数回行う場合は、それぞれの加熱温度がこれらの温度範囲であることが好ましい。
 加熱を複数回行う場合、例えば、加熱を2回行う場合であれば、一度目の加熱と二度目の加熱との間には冷却工程(冷却工程については後述)があってもなくてもよい。二回目の加熱は一回目の加熱より高い温度で行ってもよいし、低い温度で行ってもよい。例えば加熱を3回行う場合、冷却工程は、存在する場合、一度目の加熱と二度目の加熱との間、二度目の加熱と三度目の加熱との間の両方で行ってもよいし、いずれか片方のみ行ってもよい。一度に多量の硫化物材料を処理する場合などは、加熱前、加熱中、各加熱間及び/又は加熱後に硫化物材料を攪拌・混合する工程が含まれていてもよい。混合方法としては、当該分野において使用できるものであれば特に限定されず、例えば、V型混合機、サンドミル、ミキサー(ホモミキサー、プラネタリーミキサー等)等を用いることが挙げられる。
 加熱時間は、硫化物材料に応じて適宜設定し得る。加熱時間は、1秒~1200秒の範囲であることが好ましい。加熱時間がこの範囲であることで、より電池性能を向上できる硫化物材料を提供できる。加熱時間は、1秒~600秒の範囲であることが好ましく、30秒~360秒の範囲であることがより好ましい。加熱工程を複数回行う場合は、それぞれに対して適宜加熱時間を設定することができる。
 なお、本明細書における硫化物材料の温度とは、硫化物材料の表面の温度(実測値)を指す。硫化物材料の表面の温度は、例えば熱電対を用いる、放射温度計を用いることによって測定できる。
 硫化物材料が例えば200℃になった時点での硫化物材料の昇温速度については、例えば硫化物材料の温度を経時的に測定して測定値を取得し、測定値のうち200℃になった時点を基準(基準点)として、前後x(xは加熱が維持されている0より高く10秒以内の点)秒の時点の測定値の差(基準点からx秒後の測定値-基準点からx秒前の測定値)を30/x倍した値を200℃になった時点での硫化物材料の昇温速度とすることができる。あるいは、一定の熱量を加える事ができる加熱装置によって硫化物材料を加熱して200℃以上まで加熱した場合は、その設定温度(例えば硫化物材料を100℃/分の一定速度で加熱した場合であれば100℃)を200℃になった時点での硫化物材料の昇温速度とみなすことができる。また、230℃以上の加熱用媒体を用い、かつ昇温速度が低下する理由がない場合は、200℃における昇温速度は実質的に100℃/分以上であるとみなすことができる。
 加熱時の昇温速度は、硫化物材料に応じて適宜設定し得る。例えば、硫化物材料がLiイオン伝導性を有し、Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さない材料であれば、200℃になった時点での昇温速度が100℃/分以上であり、かつ硫化物材料が200℃~350℃の範囲内の温度まで加熱されることによって、α-Li3PS4相を有し、電池性能を向上できる硫化物材料を提供することができる。Liイオン伝導性を有し、Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さない材料の昇温速度は、100℃/分~3000℃/分であることが好ましく、100℃/分~1500℃/分であることが好ましく、100℃/分~1000℃/分であることがより好ましく、150℃/分~1000℃/分であることがより好ましい。昇温速度は、200℃になった時点だけでなく、加熱開始時から一定の昇温速度でかつ100℃/分以上の昇温速度であってもよい。この際の昇温速度の範囲は、上述した温度範囲で適宜設定し得る。
 加熱時間は、硫化物材料の温度が過度に高くなりすぎることを防ぐために、加熱温度と組み合わせて適宜調整することが出来る。例えば、加熱温度が500℃より高い場合は、加熱温度を短く(例えば60秒以内)することで硫化物材料の温度が高くなりすぎ、β-Li3PS4相などのα-Li3PS4相ではない結晶相が形成されることを防ぐことができる。α-Li3PS4相ではない結晶相が形成されたことは、CuKα線を用いたX線回折におけるX線回折パターンにおいて、2θ=17.5°~18.5°の間に、独立した2つ以上のピークが出現することで確認できる。
 加熱温度と加熱時間の組み合わせとしては、加熱温度300℃~500℃の範囲で10秒~360秒の範囲の加熱時間とすることが好ましい。この加熱温度と加熱時間の組み合わせにすることで、より電池性能を向上できる硫化物材料を提供できる。
 硫化物材料がアモルファスの状態である場合、硫化物材料の温度は、少なくとも1回以上は硫化物材料のガラス転移温度を超える温度まで加熱されることが好ましい。硫化物材料がガラス転移温度を超える温度まで加熱されることで、より電池性能を向上できる硫化物材料を提供できる。ガラス転移温度は、硫化物材料の組成によって異なるので、加熱温度は硫化物材料の組成に応じて適宜調整する。硫化物材料の温度は、例えば硫化物材料のガラス転移温度より5℃以上高い温度まで加熱されてもよいし、10℃以上高い温度まで加熱されてもよいし、20℃以上高い温度まで加熱されてもよいし、30℃以上高い温度まで加熱されてもよいし、50℃以上高い温度まで加熱されてもよい。
 硫化物材料の温度は、少なくとも1回以上は硫化物材料の結晶化温度を超える温度まで加熱されることが好ましい。硫化物材料が結晶化温度を超える温度まで加熱されること、より電池性能を向上できる硫化物材料を提供できる。結晶化温度は、硫化物材料の組成によって異なるので、加熱温度は硫化物材料の組成に応じて適宜調整する。硫化物材料の温度は、例えば硫化物材料の結晶化温度より5℃以上高い温度まで加熱されてもよいし、30℃以上高い温度まで加熱されてもよいし、50℃以上高い温度まで加熱されてもよい。
 硫化物材料のガラス転移温度や結晶化温度は、例えば熱重量示差熱分析(TG-DTA)等により測定することができる。
 硫化物材料は、上述した加熱処理の後、上述した範囲内の温度で一定時間維持されていてもよい。維持される時間としては特に限定されないが、例えば1秒~1000秒、1秒~800秒、1~600秒の範囲とすることができる。
 加熱温度、加熱時間、昇温時間、温度の維持時間を適宜調整することで、α-Li3PS4相を有する固体電解質材料を製造することができる。
 本製造方法では、加熱後の材料を冷却する工程を含んでいてもよい。冷却方法は特に限定されず、自然冷却によって冷却してもよいし、任意の冷却装置を用いて冷却してもよいが、冷却装置を用いて冷却することが好ましい。冷却装置としては、例えば液体急冷凝固装置、急冷薄片製造装置、液中紡糸装置、ガスアトマイズ装置、水アトマイズ装置、回転ディスク装置等を用いることができる。また、液体窒素などの硫化物材料と反応しない冷却用媒体を用いてもよい。
 冷却時の降温速度は特に限定されず、適宜設定することができる。降温速度としては、例えば10℃/分~60000℃/分としてもよいし、50℃/分~12000℃/分としてもよいし、100℃/分~6000℃/分としてもよい。冷却は、50℃/分以下の降温速度で冷却されてもよく、50℃/分以上の降温速度で冷却されてもよく、100℃/分以上の速度で冷却することが好ましい。
 1つの具体的な実施形態において、本発明は、α-Li3PS4相を有する固体電解質材料を製造する方法であって、LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さないLiイオン伝導性硫化物材料を、230℃~350℃の範囲内の温度まで加熱する工程であって、200℃での昇温速度が100℃/分以上である工程と、加熱後のLiイオン伝導性硫化物材料を冷却する工程とを含む、方法を提供する。
 1つの具体的な実施形態において、本発明は、Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さないLiイオン伝導性硫化物材料を、200℃~300℃の範囲内の温度まで加熱する工程と、加熱後のLiイオン伝導性硫化物材料を冷却する工程とを含む、方法を提供する。
 各処理工程は、グローブボックスなどを用いて不活性雰囲気下(例えばアルゴン雰囲気下)で水分濃度が10000ppm以下、酸素濃度が10000ppm以下の環境下で処理が行われることが好ましく、水分濃度が1000ppm以下、酸素濃度が1000ppm以下の環境下で処理が行われることがより好ましい。
 各処理工程は、常圧より低い圧力又は高い圧力下で行ってもよい。常圧とは、例えば1013hPaの前後200hPaの範囲を指す。また、徐々に加圧する、徐々に減圧する、加熱時は常圧だが冷却時は加圧するなど、圧力の条件を変動させてもよい。
 製造した固体電解質材料がα-Li3PS4相を有しているかどうかは、例えば、CuKα線を用いるX線回折パターンにおいて、当業者がα-Li3PS4相を有していると判断する特有のピークの組み合わせ(α-Li3PS4相のX線回折パターンについては、例えば、特開2017-033770号公報(特許文献2)に記載されている)を観測することによって確認することができる。または、CuKα線を用いるX線回折パターンにおいて、2θ=17.5°~18.5°の間に、1つの単峰ピークだけがピークとして出現することによって確認することができる。あるいは、平滑化処理及びバックグラウンド処理を行ったCuKα線を用いるX線回折パターンにおいて、2θ=17.5°~18.5°の間に、部分的に重なり合った2つのピークを有し、2つのピークの間の最もピーク強度の低い点の(ベースラインを基準とした)ピーク強度(ボトムピーク強度)が、該2つのいずれかのピークの(ベースラインを基準とした)ピーク強度の10%以上であるときにも、製造した固体電解質材料がα-Li3PS4相を含んでいると判断することができる(図1を参照)。ボトムピーク強度は、該2つのいずれかのピークのピーク強度の40%以上であることが好ましく90%以上であることがより好ましい。X線回折パターンの平滑化、バックグラウンド処理及びベースラインの算出は、市販の解析ソフト(例えば株式会社リガク社製、SmartLab Studio II)を用いて行うことができる。
 製造した固体電解質材料は、室温にて、CuKα線を用いて測定した固体電解質材料のX線回折パターンを、直方晶、空間群をPbcnとして、結晶構造解析ソフトウェアによってフィッティングして算出した格子定数として、a軸=8.707Å、b軸=8.766Å及びc軸=8.310Å(α=β=γ=90°)を有していてもよい。
 本発明の固体電解質材料の製造方法によって、(室温で)α-Li3PS4相を有している固体電解質材料を得ることができる。(室温で)α-Li3PS4相を有している固体電解質材料を得ることができる理由について、発明者らの考えをここに記載する。
 Li3PS4の結晶相には、α-Li3PS4相(高温相)、β-Li3PS4相(中温相)及びγ-Li3PS4相(低温相)が存在する。α-Li3PS4相は、通常、アモルファスのLi3PS4を500℃近い高温まで加熱処理することで出現し、その後加熱を終了して温度を室温まで下げるとα-Li3PS4相はγ-Li3PS4相へと相転移を起こす。また、Li3PS4を230℃程度までゆるやかに加熱し、温度を維持するとβ-Li3PS4相が析出する。ここで、加熱したLi3PS4の温度を室温まで下げるとβ-Li3PS4相のまま結晶相が維持される。このように、通常、室温では結晶相としてα-Li3PS4相は存在していない。ここで、本発明者らは、(アモルファス)のLi3PS4を、少なくとも200℃での昇温速度が100℃/分以上であるように昇温速度を制御して加熱することで、250℃程度の温度でもα-Li3PS4相が現れること、また、この状態から室温へと戻してもα-Li3PS4相が維持され、γ-Li3PS4相への転移を起こさないことを見いだしている。このようなことはこれまで知られていない。
 図2に、発明者らが想定している昇温速度及び到達温度と最終的に形成される相との関係性を示す。図2の横軸は温度を示し、縦軸は温度に対する比体積の変化を示している。図2の(1)は、ガラス転移点、あるいはそれ以上の温度まで加熱したLiイオン伝導性硫化物材料を示す。図2の(2)~(4)は、加熱したLiイオン伝導性硫化物材料から形成される結晶相をそれぞれ示す。図2の矢印は相転移が起こっていることを示す。
 200℃での昇温速度が100℃/分よりも遅い場合、熱処理によって中温相のβ-Li3PS4相が析出する(図2の(A))。これは、昇温速度が遅いと、α-Li3PS4相とβ-Li3PS4相の間の結晶核形成速度の温度依存性の差により、過冷却液体中におけるα-Li3PS4相の形成よりも、β-Li3PS4相の核形成・成長の方が早く、過冷却液体中で形成されたα-Li3PS4相のエンブリオ(幼核)が溶解して最終的になくなるためだと発明者らは考えている。
 200℃での昇温速度が100℃/分よりも速い場合、加熱したLiイオン伝導性硫化物材料が加熱によって達する温度(到達温度)によって形成される結晶相が変化する。例えば、到達温度が低い(230℃以下)又は、結晶相が形成されない(図2の(B))又はβ-Li3PS4相が析出(図2の(C))する。これは、到達温度が低すぎて結晶核が形成されないか、β-Li3PS4相の結晶核の生成と成長のみが起きるためであると発明者らは考えている。到達温度が高い(350℃以上)の場合も、β-Li3PS4相が析出(図2の(C))する。これは、加熱を終了したLiイオン伝導性硫化物材料が、室温へと戻る際にα-Li3PS4相からβ-Li3PS4相への相転移が起こりうる温度帯を通過するため、α-Li3PS4相からβ-Li3PS4相への相転移が起こっているためだと発明者らは考えている。到達温度が230℃~350℃の範囲である時は、α-Li3PS4相が形成される(図2の(D))。これは、過冷却液体中におけるβ-Li3PS4相の核形成よりもα-Li3PS4相の形成・成長の方が早いためα-Li3PS4相が析出することと、加熱を終了したLiイオン伝導性硫化物材料が、室温へと戻る際にα-Li3PS4相からβ-Li3PS4相への相転移が起こりうる温度帯を通過しないためであると発明者らは考えている。
 Li3PS4にFやClが更に含まれている固体電解質材料であれば、200℃~300℃の範囲内の温度にまで加熱することで、昇温速度の制御なしにα-Li3PS4相が現れ、室温においてもα-Li3PS4相が維持されることも見いだしている。このことについてもこれまで知られていない。
 このように、本発明の固体電解質材料の製造方法によって、室温でα-Li3PS4相を有している固体電解質材料を得ることができる。なお、本発明の固体電解質材料の製造方法によって得られた室温でα-Li3PS4相を有している固体電解質材料は、製造後時間が経過してもα-Li3PS4相が失われることなく安定して保持される。そのため、本発明の固体電解質材料の製造方法によってα-Li3PS4相を有することによる優れた導電性を長期に渡って保持し得る固体電解質材料を得ることができる。
 (固体電解質材料)
 本発明は、LiとPとSとFとを含み、組成がLi3PS4・aLiF (式中、aは0<a≦2.0を満たす)で表され、室温でα-Li3PS4相を有する固体電解質材料を提供する。
 また、本発明は、LiとPとSとFとを含み、組成がLi3PS4・aLiF (式中、aは0<a≦2.0を満たす)で表され、α-Li3PS4相を有する固体電解質材料を提供する。
 1つの具体的な実施形態において、本発明は、LiとPとSとFとを含み、組成がLi3PS4・aLiF (式中、aは0<a≦2.0を満たす)で表され、室温でα-Li3PS4相を有する固体電解質材料(但し、以下の式(II)
 
Li4-4β-α-γP1+βS4-γFγ  (II)
[式中、0.2≦α<1.0、0≦β≦0.075、0<γ≦0.2である]
で表される組成を除く)も提供する。
 固体電解質材料のaの範囲は特に限定されないが、aが0<a≦2.0の範囲であることで、電池性能を向上できる、具体的にはイオン伝導度に優れた硫化物材料を提供できる。aの範囲は、0<a≦1.5であってもよいし、0<a≦1.0であってもよいし、0.1≦a≦1.0であってもよい。
 Li3PS4・aLiFとしては、例えばLi3PS4・0.01LiF、Li3PS4・0.05LiF、Li3PS4・0.1LiF、Li3PS4・0.2LiF、Li3PS4・0.3LiF、Li3PS4・0.4LiF、Li3PS4・0.5LiF、Li3PS4・0.6LiF、Li3PS4・0.7LiF、Li3PS4・0.8LiF、Li3PS4・0.9LiF、Li3PS4・LiF、Li3PS4・1.5LiF、Li3PS4・2.0LiFが挙げられる。
 室温でα-Li3PS4相を有している理由については上述した通りである。
 固体電解質材料は、ラマンスペクトルにおいて、370~400cm-1にP2S6 4-由来のピークが観察されないことが好ましい。ラマンスペクトルは、例えばレーザーラマン分光装置LabRAM HR-800を使用し、発振線としてグリーンレーザー(532 nm)を用いて測定することができる。
 固体電解質材料の製造方法は、例えばLi2Sと、P2S5と、LiF等の原料を物理的に一体化することで行うことができ、一体化方法としてはメカノケミカル処理が好ましい。一体化方法、メカノケミカル処理については上述したとおりである。
 Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さないLiイオン伝導性硫化物材料を、200℃~300℃の範囲内の温度まで加熱する工程を含む方法によって得られるLiイオン伝導性固体電解質材料[例えば上述したLi3PS4・aLiF (式中、aは0<a≦2.0を満たす)など]で表される固体電解質材料において、FやClはそれぞれLiFやLiClの形で固体電解質材料中に存在していると発明者らは考えているが、このLiFやLiClが固体電解質材料においてどのような状態で存在しているのかは不明である。つまり、昇温速度に限定されずに(室温で)α-Li3PS4相を有するLiイオン伝導性固体電解質材料を製造することは、F及び/又はClを有するLiイオン伝導性硫化物材料を用いて加熱することによって達成できるが、このFやClがどのような状態であるか不明であり、具体的にその状態を特定することは困難であると発明者らは考えている。
 (固体電解質複合体)
 本発明は、本発明の固体電解質材料を含む固体電解質複合体を提供する。
 固体電解質複合体には、本発明の固体電解質材料以外に、本発明の固体電解質材料以外の固体電解質、結着材、導電材等と混合されていてもよい。
 固体電解質複合体に占める本発明の固体電解質材料の割合は、例えば50質量%以上とすること、70質量%以上とすること、95質量%以上とすることが可能である。
 結着材としては、特に限定されるものではなく、電池材料に通常使用できるものを使用し得る。結着材は、1種類の結着材であってもよいし、複数の結着材の組み合わせであってもよい。
 固体電解質複合体中の結着材の含有量の範囲は、0~40質量%の範囲で適宜選択できる。このうち、30質量%以下であることが好ましく、10質量%以下であることがより好ましく、結着剤が含まれないことがより好ましい。
 導電材としては、特に限定されるものではなく、電池材料に通常使用できるものを使用し得る。導電材は、1種類の導電材であってもよいし、複数の導電材の組み合わせであってもよい。
 固体電解質複合体中の導電材の含有量の範囲は、0~40質量%の範囲で適宜選択できる。このうち、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。
 固体電解質複合体に含まれる本発明の固体電解質材料以外の固体電解質としては、特に限定される物ではなく、電池材料に通常使用できるものを使用し得る。本発明の固体電解質材料以外の固体電解質は、ガラスであっても、ガラスセラミックスであってもよい。
 ガラスセラミックスとは、ガラス相と該ガラス相中に分散した(析出)結晶相を有する材料をいう。ガラスセラミックスは、例えば、ガラス相を、そのガラス転移点以上の温度で加熱してその材料(の少なくとも一部)を結晶化させることによって形成することができる。ガラス転移点は、例えば、示差熱分析(DTA)により測定することができる。
 固体電解質材料がガラスセラミックスであることは、例えば、透過型電子顕微鏡(TEM)を用いて、ガラス相中に複数の結晶相が含まれていることを観察することによって確認できる。
 固体電解質複合体に含まれる本発明の固体電解質材料以外の固体電解質の含有量の範囲は、0~50質量%の範囲で適宜選択できる。このうち、40質量%以下であることがより好ましく、30質量%以下であることがより好ましい。
 固体電解質複合体中の結着材、導電材及び固体電解質の含有量の和は、特に限定されないが、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることがより好ましく、30質量%以下であることがより好ましい。
 固体電解質複合体は、本発明の固体電解質材料と、本発明の固体電解質材料以外の固体電解質、結着材、導電材等を混合して形成することができる。混合方法は、当該分野において使用できるものであれば特に限定されない。
 固体電解質複合体や本発明の固体電解質材料は、例えば、所定の厚さになるようにプレスすることにより固体電解質層とすることができる。プレスの圧力は、50~2000 MPaの範囲の圧力から選択されてもよい。
(電極)
 本発明の一実施形態は、本発明の固体電解質材料を含む電極を提供する。電極は正極であっても、負極であってもよい。電極に含まれる本発明の固体電解質材料の量は特に限定されないが、例えば1~50質量%の範囲とすることができる。
 電極には、当該分野において一般的に使用される正極活物質、負極活物質や、上述した結着材、導電材、本発明の固体電解質材料以外の固体電解質が含まれていてもよい。
 電極は、例えば、電極活物質及び、任意に結着材、導電材又は電解質等を混合し、得られた混合物をプレスすることで、ペレット状やシート状の形態として得ることができる。
 (電極複合体)
 本発明は、本発明の電極と集電体とが組み合わされた電極複合体も提供する。
 集電体としては、本発明の電極と組み合わせることができ、集電体としての機能が果たせるものであれば材質、形状等は特に限定されない。集電体の形状としては、均一な合金板の様なものであっても、孔を有した形状であってもよい。また、箔、シート状、フィルム状の形態であってもよい。
 集電体の素材としては、例えば、Al、Ni、Ti、Mo、Ru、Pd、ステンレス鋼又は鋼等が挙げられる。
 本発明の電極複合体は、それぞれ電極、集電体として形成したものを合わせて電極複合体としてもよいし、集電体上に直接電極を形成してもよい。直接形成する場合は、公知の方法を用いて、集電体の表面に電極活物質を塗布してもよい。
(全固体二次電池)
 本発明は、本発明の固体電解質複合体及び/又は本発明の電極を含む全固体二次電池を提供する。全固体二次電池は、本発明の固体電解質複合体を含む固体電解質層と、当該分野において一般的に使用される正極及び負極とを組み合わせてもよいし、本発明の固体電解質複合体を含む固体電解質層と、本発明の電極とを組み合わせてもよいし、当該分野において一般的に使用される固体電解質層と、本発明の電極とを組み合わせてもよい。
 全固体二次電池は、例えば、正極と、固体電解質層と、負極と集電体とを積層し、プレスすることによりセルを得、これを容器に固定して得ることができる。
[実施形態1]
 α-Li3PS4相を有する固体電解質材料を製造する方法であって、
 LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さないLiイオン伝導性硫化物材料を、230℃~350℃の範囲内の温度まで加熱する工程であって、200℃での昇温速度が100℃/分以上である工程を含む、方法。
[実施形態2]
 前記加熱工程の200℃での昇温速度が150℃/分以上である、実施形態1に記載の方法。
[実施形態3]
 前記Liイオン伝導性硫化物材料を、その原料をメカノケミカル処理することにより得る工程を更に含む、実施形態1又は2に記載の方法。
[実施形態4]
 α-Li3PS4相を有する固体電解質材料を製造する方法であって、
 Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さないLiイオン伝導性硫化物材料を、200℃~300℃の範囲内の温度まで加熱する工程を含む、方法。
[実施形態5]
 前記固体電解質材料が下記式(I):
 
Li3PS4・aLiX      (I)
 
(式中、XはF及び/又はClであり、aは0≦a≦2.0を満たす)
で表される組成を有する、実施形態4に記載の方法。
[実施形態6]
 前記Liイオン伝導性硫化物材料を、その原料をメカノケミカル処理することにより得る工程を更に含む、実施形態4又は5に記載の方法。
[実施形態7]
 LiとPとSとFとを含み、組成がLi3PS4・aLiF (式中、aは0<a≦2.0を満たす)で表され、室温でα-Li3PS4相を有する、固体電解質材料。
[実施形態8] 
 実施形態4~6のいずれか1項に記載の方法によって得られる、α-Li3PS4相を有する固体電解質材料。
 以下、実施例及び比較例によって本発明を更に具体的に説明するが、本発明はこれらによりなんら制限されるものではない。
 以下の実施例及び比較例において、Li2Sは三津和化学社(純度>99.9%)、LiI、LiBr、LiCl、及びP2S5はSigma Aldrich社、LiFはステラケミファ社のものをそれぞれ用いた。
 また、以下の実施例及び比較例において、遊星型ボールミルにはFritsch社製Pulverisette P-7を用いた。X線回折装置としては、リガク社製全自動多目的X線回折装置SmartLabを用いた。イオン伝導度及び電子伝導度の測定には、ソーラトロン社製のインピーダンスアナライザー(SI-1260)を用いた。ラマンスペクトル測定には、堀場製作所製のレーザーラマン分光装置 LabRAM HR-800を用いた。加熱装置として、Cornig社製のホットプレート(PC-420D)、熱分析装置としてはリガク社製TG-DTA(Thermo plus EVO2 TG-DTA8121)及びリガク社製DSC(Thermo plus EVO2 DSCvesta)を用いた。X線光電子分光(XPS)測定には、Thermo Fisher Scientific 社のK-Alpha X線光電子分光システムを用い、単色化Al-Kα(1486.6 eV)のX線を用いて測定した。測定面積は約400μm2で、帯電中和にはAr+中和銃を用いて、エッチングにはArイオン種を用いた。
 冷却手段としては、液体窒素又はステンレススチール製の板を用いたアイロンプレスを用いた。
 実施例及び比較例の各試料についての評価に使用した装置の測定条件等を以下に示す。
 <X線回折測定>
 X線回折装置としては、上記SmartLabを用い、CuKα線(=1.54056×10-10 m)にて、管電圧 45 kV、管電流200 mA、走査角度2θ=10°~60°、サンプリング間隔0.02°、及び走査速度10°min -1で構造解析を行った(以下XRDの条件は全てこの条件で行っている)。
 <イオン伝導度及び活性化エネルギーの算出>
 交流インピーダンスは、上記インピーダンスアナライザー(SI-1260)を用い、以下のようにポリカセル(ポリカーボネートセル)を作製して測定した。
 集電体にはダイス鋼(SKD)を、絶縁材には内径10mmのポリカーボネートをそれぞれ用いた。各固体電解質材料150mgを秤量してロッド内に加え、油圧式プレス機を用いて360MPaで5分間一軸プレスによって成形を行うことでペレットを作製した。軸およびロッドごとネジでしめることで固定し、ガラス容器に入れ、ゴム栓で封入した。測定周波数は0.1Hz~1×106Hz、交流振幅は10mV、得られたインピーダンスプロットの半円と実軸の交点を試料の抵抗Rとし、以下の式からイオン伝導度σを求めた。
 
σ=(1/R)・(L/S) (1)
 
L : ペレットの厚さ(cm)   S : 電極表面積(0.785cm2)
 活性化エネルギー(Ea)は、各温度において測定したイオン伝導度と絶対温度の逆数をプロットしたイオン伝導度の温度依存性のグラフの傾きから、アレニウス則に従うと仮定して、以下の式から算出した。
 
σ= A exp(-Ea/RT) (2)
 
[σ= イオン伝導度(S cm-1)、A : 前指数因子(S cm-1)、T : 測定温度(K)、Ea: 活性化エネルギー (kJ mol-1)、R : 気体定数(kJ mol-1K-1)]
<熱分析:TG-DTA>
 熱重量示差熱測定(TG-DTA)には、上記リガク社製TG-DTA(Thermo plus EVO2 TG-DTA8121)を使用した。アルミニウム密閉パンに約10mgの粉末試料を入れ、窒素気流下(流量100 ml/min)で昇温速度10℃/minの速度で室温から550℃まで加熱して測定した。
 また、後述するメカノケミカル処理後の試料の熱処理にも同じ装置を使用した。熱処理を行った際の昇温速度は100℃/分である。
<熱分析:DSC>
 示差走査熱量測定(DSC)には、上記したリガク社製DSC(Thermo plus EVO2 DSCvesta) を使用し、窒素気流下で測定した。
 また、後述するメカノケミカル処理後の試料の熱処理にも同じ装置を使用した。熱処理を行った際の昇温速度は150℃/分である。
<ラマンスペクトルの測定>
 ラマンスペクトル測定には、上記レーザーラマン分光装置LabRAM HR-800を使用した。
粉末試料をアルゴンガス中でAlパンに詰めて固定し、気密試料台(LIBCell-P11D5, nano photon)を用いて測定を行った。発振線としてグリーンレーザー(532 nm)を用いて測定を行った。
 以下に、LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さないLiイオン伝導性硫化物材料を様々な条件で処理した固体電解質材料(以下、LPS系固体電解質材料とも呼ぶ)及びLi、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さないLiイオン伝導性硫化物材料を様々な条件で処理した固体電解質材料(以下、LPX-X系固体電解質材料とも呼ぶ)を製造し、その性質を調べた。
 まず、合成した各組成の試料について説明する。ハロゲンを含まない系(Li2S-P2S5系)の合成について説明し、次いでハロゲンを含むLi2S-P2S5-LiX系(Xはハロゲン)について説明する。
 [LPS系固体電解質材料について]
 アルゴン雰囲気下のグローブボックス内で原料となるLi2Sと、P2S5とをモル比でLi2S:P2S5=75:25となるように計5g秤量した。秤量した原料を混合し、遊星型ボールミルに供してメカノケミカル処理を行い、75 Li2S・25 P2S5アモルファスを得た。以下、ハロゲンを含まないLi2S-P2S5系をLPS系ともいう。
 ここで、メカノケミカル処理を行って得た試料をmilledと表記する(以下、LPS-X系固体電解質材料において同じ)。この75 Li2S・25 P2S5アモルファスをLi3PS4(milled)と表記する。使用した原料と、仕込み時の組成(モル比)を表1に示す。
 メカノケミカル処理の条件は、回転数210rpmで70時間である。また、ZrO2製の225mlのポット及びZrO2製直径4mmのボール450gを使用した。
 メカノケミカル処理を行って得た75 Li2S:25 P2S5アモルファス、即ちLi3PS4(milled)を、以下比較例1の固体電解質試料とする。
 尚、アルゴン雰囲気下のグローブボックス内の環境は、水分値-70℃未満、酸素濃度が10ppm以下である(以下グローブボックス内で行う作業は全てこの条件である)。
 [LPS-X系固体電解質材料:LPS-F系について]
 アルゴン雰囲気下のグローブボックス内で原料となるLi2Sと、P2S5と、LiFとをモル比でLi2S:P2S5:LiF=75:25:50となるように計3g秤量した。秤量した原料を混合し、遊星型ボールミルに供してメカノケミカル処理を行い、Li3PS4・LiF(milled)を得た。
 メカノケミカル処理の条件は、回転数210rpmで20時間である。また、ZrO2製の225mlのポット及びZrO2製直径4mmのボール450gを使用した。
 メカノケミカル処理を行って得たLi3PS4・LiF(milled)を、以下比較例6の固体電解質試料とする。
 [LPS-X系固体電解質材料:組成を変更したLPS-F系固体電解質について]
 上記したLi2S-P2S5-LiF系(以下、LPS-F系と示す場合がある)において、表2に示す各モル比となるように各原料を秤量し、メカノケミカル処理を行い、それぞれLi3PS4・0.1LiF(milled)(比較例12)、Li3PS4・0.2LiF(milled)(比較例14)、Li3PS4・0.5LiF(milled)(比較例16)を得た。
 メカノケミカル処理の条件は、上記比較例6と同様に行った。
[LPS-X系固体電解質材料:LPS-Cl系,LPS-Br系,LPS-I系について]
 上記したLPS-F系の他に、ハロゲン元素を変えたLi2S-P2S5-LiCl系(以下、LPS-Cl系と示す場合がある)、Li2S-P2S5-LiBr系(以下、LPS-Br系と示す場合がある)、Li2S-P2S5-LiI系(以下、LPS-I系と示す場合がある)においても同様にメカノケミカル処理を行い、各固体電解質試料(milled)を得た。
 アルゴン雰囲気下のグローブボックス内で原料となるLi2Sと、P2S5と、LiXとをモル比でLi2S:P2S5:LiX=75:25:50となるように計1g秤量した。秤量した原料を混合し、遊星型ボールミルに供してメカノケミカル処理を行い、Li3PS4・LiX(milled)を得た。
 メカノケミカル処理の条件は、回転数510rpmで20時間である。また、ZrO2製の45mlのポット及びZrO2製直径4mmのボール90gを使用した。
 メカノケミカル処理を行って得たそれぞれの固体電解質試料を、Li3PS4・LiCl(milled)(以下、比較例7)、Li3PS4・LiBr(milled)(以下、比較例8)、Li3PS4・LiI(milled)(以下、比較例9)とする(下記表3参照)。
 [LPS系固体電解質材料]
 上記Li3PS4(milled)に対し、各温度で熱処理を行い、LPS系固体電解質材料を得た。
 熱処理を行うに際し、まず、Li3PS4(milled)の粉末を直径4mmの錠剤成型器に入れ、油圧式一軸プレス機を用いて360MPaで加圧成型して、厚さ1mm以下のペレットを作製した。
 ホットプレートにステンレススチール製の金属板を2枚置き、所定の温度まで加熱した。ペレットの加熱は、1枚の金属板の上に作製したペレットを載置し、もう1枚の金属板でペレットを挟みプレスすることにより行った。加熱時間は1分間とした。1分間の加熱後、ステンレススチール製の板でペレットをプレスして急冷した(いわゆるアイロンプレスにより急冷を行った)。
 ここで、熱処理を施して得た試料をheatedと表記する(以下、LPS-X系固体電解質材料において同じ)。また熱処理温度は、ht(heat treatmentの略である)と数字(3桁)で表す場合がある。
 昇温速度は、188℃から211℃へ昇温するのに1.83秒要したことから、200℃においては約750℃/分と算出した。以下の昇温速度の計算についても、昇温速度が固定されている場合を除き同様に行った。
<実施例1>
 実測温度が338℃になるように加熱温度を調整(200℃における昇温速度は750℃/分以上)してLi3PS4(milled)(比較例1)ペレットを熱処理し、実施例1の試料を得た。
<実施例2~4、比較例2>
 実測温度を表4(昇温速度750℃/分以上の欄)に示すとおり変更してLi3PS4(milled)(比較例1)ペレットを熱処理した。熱処理温度を変更した以外は、実施例1と同様とした。
<実施例5>
 実測温度が336℃になるように加熱温度を調整してLi3PS4(milled)(比較例1)ペレットを熱処理し、実施例5の試料を得た。
 具体的には、Li3PS4(milled)(比較例1)に対してDSC装置を用いて加熱処理を行った。DSC装置の昇温速度が150℃/分になるように設定し、Li3PS4(milled)の実測温度が336℃になった時点で加熱を終了し、液体窒素に供して急冷した。
 <実施例6~11、比較例3及び比較例4>
 実測温度を表4(昇温速度150℃/分の欄)に示すとおり変更してLi3PS4(milled)(比較例1)を熱処理した。熱処理温度を変更した以外は、実施例5と同様とした。
 <実施例12>
 実測温度が330℃になるように加熱温度を調整してLi3PS4(milled)(比較例1)を熱処理し、実施例12の試料を得た。
 具体的には、Li3PS4(milled)(比較例1)に対してTG-DTA装置を用いて加熱処理を行った。TG-DTA装置の昇温速度が100℃/分になるように設定し、Li3PS4(milled)の実測温度が330℃になった時点で加熱を終了した。加熱後に同じTG-DTA装置を利用して降温速度50℃/分までの速度で冷却した。
 <実施例13~18、比較例5>
 実測温度を表4(昇温速度100℃/分の欄)に示すとおり変更してLi3PS4(milled)(比較例1)を熱処理した。熱処理温度を変更した以外は、実施例12と同様とした。
 上記した実施例1~18及び比較例2~5の固体電解質材料に対してX線回折(XRD)測定を行った。その結果を図3~5に示す。
 図3~5に示す回折パターンより、18°付近にα-Li3PS4相に特徴的なピークが現れていることが分かる。回折線(ピーク)がスプリットしているものも見られる。これはβ相単相ではなく、回折線に現れるほどのα相が確かに存在すると解することができる。α相、β相が混在する結晶が析出しているともいえることから、ここでは便宜的にα類似相と称することとする。
 これらの結果より、昇温速度を750℃/分、150℃/分、100℃/分と設定し、350℃までの温度で急速に加熱して熱処理を行うことにより、室温では安定的に存在しないα相を有するLi3PS4が得られることが分かった。また、急速加熱とともに、液体窒素等を用い、急速冷却(急冷)を行うことにより、α相を有するLi3PS4(α-Li3PS4類似相)が得られることが分かった。
[LPS系及びLPS-X系(Xはハロゲン)固体電解質材料]
 表3に示す、LPS系及びLPS-X系(Xはハロゲン)において、メカノケミカル処理のみを行った試料(milled)についてのX線回折測定の結果を図6に示す。図6のように、一部原料が残存するものの、アモルファスであることを示すハローパターンが観測された。
 これらの比較例6~9の試料に対して、330℃で熱処理を行った。熱処理条件は、実測温度が異なる以外は実施例1と同様に行った。具体的には、Li3PS4・LiF(milled)(比較例6)、Li3PS4・LiCl(milled)(比較例7)、Li3PS4・LiBr(milled)(比較例8)、Li3PS4・LiI(milled)(比較例9)の各ペレットを作製した。これらの各ペレットを、実測温度が330℃になるように加熱温度を調整(200℃における昇温速度は750℃/分以上)して、熱処理した。これにより、Li3PS4・LiF(ht330)(実施例19)、Li3PS4・LiCl(ht330)(実施例20)、Li3PS4・LiBr(ht330)(比較例10)、Li3PS4・LiI(ht330)(比較例11)の試料を得た。
 熱処理を施した実施例19及び実施例20、比較例10及び比較例11についてのX線回折測定の結果を図7に示す。図7のように、ハロゲンとしてF(フッ素)を含むLPS-F系の実施例19及びCl(塩素)を含むLPS-Cl系の実施例20では、α相に由来する回折線が観察された。一方、Br(臭素)を含むLPS-Br系の比較例10及びI(ヨウ素)を含むLPS-I系の比較例11においては、α-Li3PS4に由来する回折線は観察されなかった。特に、比較例10(LPS-Br系)では、β相に由来する回折線が観察された。
 このことから、ハロゲンの中でも、LPS-F系及びLPS-Cl系ではLi3PS4結晶のα相若しくはα類似相が析出することが分かった。一方、同じハロゲン元素でも、Br又はIを含む系ではα相(若しくはα類似相)は析出しないことが分かる。LPS-F系及びLPS-Cl系では、α相の形成、言い換えると、本来高温相であるα相が室温においても保持されることにFやClによる何らかの寄与があると言える。
[LPS-F系固体電解質材料]
 下記表5に示す組成においてメカノケミカル処理で得たLi3PS4・LiF(milled)(比較例6)に対して、種々の温度で熱処理を行い、実施例19及び実施例21~24の試料を得た。熱処理条件(冷却条件も含む)は、実測温度が異なる以外は実施例1と同様とした。実施例19及び実施例21~24の熱処理温度は下記表6に示すとおりである。
 熱処理を施した実施例19、21~24及び比較例6についてのX線回折測定の結果を図8に示す。
 図8に示されているように、実施例19及び実施例21~24のいずれにおいても18°付近にα相に特徴的な回折線が観察された(図中の星印)。回折線のピーク強度から、LPS-F系は上記したLPS-Cl系よりもα相の析出(生成、室温での安定化)に大きく寄与していると言える(図7参照)。
[LPS-X系固体電解質材料:LPS-F系各組成について]
 上記表2に示す各モル比でメカノケミカル処理を行い、得られたLi3PS4・0.1LiF(milled)(比較例12)、Li3PS4・0.2LiF(milled)(比較例14)、Li3PS4・0.5LiF(milled)(比較例16)、Li3PS4・LiF(milled)(比較例6)に対して種々の温度で熱処理を行った。
 熱処理の実測温度は表7に示すとおりである。熱処理条件(冷却条件も含む)は、実測温度が異なる以外は実施例1と同様にした。
 実施例25~28及び比較例13のLi3PS4・0.1LiFの試料に対してX線回折測定を行った結果を図9に、実施例29~32及び比較例14、15のLi3PS4・0.2LiFの試料に対してX線回折測定を行った結果を図10に、実施例33~37及び比較例16、17のLi3PS4・0.5LiFの試料に対してX線回折測定を行った結果を図11に、実施例38~42及び比較例6、17の試料に対してX線回折測定を行った結果を図12にそれぞれ示す。図9~12には、Li3PS4・0.1LiF(milled)(比較例12)、Li3PS4・0.2LiF(milled)(比較例14)、Li3PS4・0.5LiF(milled)(比較例16)、Li3PS4・LiF(milled)(比較例6)に対してX線回折測定を行った結果についても示している。
 図9~12のように、実施例25~42の各試料において、18°付近のα相に特徴的な回折線が観察されることが分かる。このことから、組成(モル比)としてLiF量の多いLi3PS4・LiFや、LiF量の少ないLi3PS4・0.1LiFにおいても、α相が析出し、室温においてもその結晶相が保持されていることが分かった。対して、比較例13、15、17のように、200℃未満の温度であると、α相と明確に分かる結晶は析出しないこともわかった。
 図13A~13Dには、LPS-F系の各組成におけるXPSスペクトルを示す。具体的には、図13A及び図13Cは、メカノケミカル処理後の各組成におけるF1S(図13A)及びFKL1(図13C)のXPSスペクトルであり、図13B及び図13Dは、熱処理後の各組成におけるF1S(図13B)及びFKL1(図13D)のXPSスペクトルである。
 なお、それぞれの図の最上部に示すスペクトルはLiFのみを測定対象としたものであり、スペクトル帰属の参照として表したものである。
 図13A~Dより、F1S(図13A又は図13B)及びFKL1(図13C又は図13D)のいずれにおいても、熱処理後の試料のスペクトルは、メカノケミカル処理後の試料(つまり熱処理を行っていない)のスペクトルとは異なることがわかる。
 F1Sのスペクトルに着目すると、熱処理後には685eV付近のLiFに由来するピークが増加する。これはアモルファス(ガラス)状態からLiF結晶が析出したことに起因すると考えられる。ここで、図13Aを参照すると、0.1LiFからLiFへと仕込みのLiF量が多い試料ほど、LiF由来のピーク強度が増していることが分かる。LiFの存在状態が明確ではないため、LiFと便宜的に記載するが、LiFのガラスへの溶け込みの上限があるとも言える。
 一方で、LiF由来ではない684eV付近のピークも観測されるところ、結晶ではない状態のLiFが存在すると言える。しかし、上記したように、LiFの存在状態を明確に定義づけることはできない。
 <イオン伝導度及び活性化エネルギーの算出>
 実施例19及び実施例23、比較例1及び比較例6~8の固体電解質試料のイオン伝導度(σ)を測定し、活性化エネルギー(Ea)を算出した。
 図14に、測定したイオン伝導度をもとにしたアレニウスプロットを示す。以下の表8に測定した室温でのイオン伝導度と活性化エネルギーを示す。
 図14及び表8より、α-Li3PS4相(若しくはα-Li3PS4相に類似する相)を有する実施例19及び23の固体電解質材料料は、α-Li3PS4相を有さない比較例の固体電解質材料料に比べて高いイオン伝導度を有していることが分かる。言い換えると、高いイオン伝導度を示すことから、α相が主相として存在することが明らかとなった。
 <TG-DTA測定>
 比較例1、6、12、14、16の各材料に対して熱重量測定(TG-DTA)を行い、DTA曲線を得た。
 測定結果を図15に示す。図15より、LiFの含量が増えるに伴って、発熱ピークが低温側にシフトすることが示された。図9~12も参照すると、それぞれの熱処理温度(結晶の析出温度、結晶化の温度)にも対応していることが分かる。
 <イオン伝導度及び活性化エネルギーの算出>
 実施例32、36及び41の固体電解質材料と、比較例6、14及び16の固体電解質材料について、イオン伝導度(σ)の測定を行い、活性化エネルギー(Ea)を算出した。測定方法等は上述したとおりである。結果を以下の表9に示す。
 表9より、α-Li3PS4相(若しくはα-Li3PS4相に類似する相)を有する実施例32、36及び41の固体電解質材料は、いずれも1.0×10-3 S cm-1以上の高いイオン伝導度を有していることが示された。これにより、LiFの含有量(組成)によらず、熱処理を行うことによってα-Li3PS4相(若しくはα-Li3PS4相に類似する相)に起因すると考えられる高いイオン伝導度を示すことが分かった。
 これらのことから、上記のような製造方法によってα-Li3PS4相(若しくはα-Li3PS4相に類似する相)を有する固体電解質材料を製造することにより、本来であるならば高温でしか存在しないα相を室温においても保持することができ、イオン伝導性に優れた固体電解質を得られることが示された。
 (ラマンスペクトルの測定)
 実施例28、32、36、41の固体電解質材料、及び比較例6、12、14、16の固体電解質材料について、ラマンスペクトルを測定した。
 測定した結果を図16及び図17に示す。図16及び図17より、加熱前の試料にはP2S6 4-のピークが確認されるのに対し、加熱後の試料にはP2S6 4-のピークがないことが分かる。420cm-1付近のピークはPS4 3-のユニットに帰属される。このことから、熱処理後の固体電解質材料、つまり実施例の各試料にはLi3PS4結晶が存在することが分かる。
<Li3PS4系及びLi3PS4‐LiF系における析出相の組成及び熱処理温度依存性>
 Li3PS4系及びLi3PS4‐LiF系における各材料のX線回折測定の結果に基づいて、α-Li3PS4相(若しくはα-Li3PS4相に類似する相)の有無の、組成と熱処理温度依存性について評価した。そのプロットを図18に示す。図中の●はα-Li3PS4相若しくはα-Li3PS4相に類似する相を有する(ここでは便宜的にα相と記載する場合がある)ガラスセラミックスであることを示しており、▲はβ-Li3PS4相若しくはβ-Li3PS4相に近い相を有するガラスセラミックスであることを示しており、■はアモルファス(ガラス)であることを示している。
 図18及び図3~12に示された各材料のX線回折の結果から、LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さないLiイオン伝導性硫化物材料を、200℃での昇温速度が100℃/分以上になるようにしつつ230℃~350℃の範囲の温度にまで加熱して製造したLPS系固体電解質材料がα-Li3PS4相を有していることと、Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さないLiイオン伝導性硫化物材料を、200℃~300℃の範囲内の温度まで加熱して製造したLPS-X系固体電解質材料がα-Li3PS4相を有していることがわかる。このことから、LiとPとSと(任意にF及び/又はClと)を含むLiイオン伝導性硫化物材料に対して適切な熱処理条件を設定することで、高いイオン伝導度を有する本来は高温相であるα-Li3PS4相を、室温においても維持することのできる固体電解質材料を得られることが示された。
 また、上述したようにFを含む系(LPS-F系)は、Fを含まない系(即ち、LPS系)と比べて、300℃未満という低い温度での熱処理でも確実にα相を析出させることができて且つ室温においてもα相を保持することができることが示された。そして、Fを含む系(LPS-F系)においては、その構造としては不明であり、また同定もできないが、LiFが系内に存在することにより、LPS系のように急速加熱等の熱処理条件によらずα相を析出させることができると示された。
 (固体電解質材料の保存試験)
 実施例40の固体電解質材料について、α-Li3PS4相の保存性について検証した。実験は、実施例40の固体電解質材料を、窒素を充填した容器に入れて25℃の条件下で500時間保存後、XRD測定することで行った。その結果を図20に示す。図20には、比較として製造直後の実施例40の固体電解質材料に対してXRD測定を行った結果も示している。図20より、製造直後の試料と500時間保存後の試料との間にX線回折パターンに違いは見られなかった。このことから、本発明の製造方法で得られた固体電解質材料は、α-Li3PS4相を長期に渡って保持し得ることが示された。
 (参考:Li3PS4の結晶多型のXRDパターン)
 参考に、Li3PS4の結晶多型のXRDパターン(CuKα線を使用)を図19に示す。図19のように、α-Li3PS4は、CuKα線を用いるX線回折パターンにおいて、2θ=18°付近に単峰ピークが1つのみ出現する。対して、β-Li3PS4や、γ-Li3PS4は、2θ=18°付近に2つのピークを有する。この性質から、Li3PS4を含む固体電解質材料がα-Li3PS4相を有しているかを、CuKα線を用いるX線回折パターンにおいて、2θ=18°付近のピークを観察することによって判別することができる。

Claims (8)

  1.  α-Li3PS4相を有する固体電解質材料を製造する方法であって、
     LiとPとSとを含むがF、Clを含まず、かつα-Li3PS4相を有さないLiイオン伝導性硫化物材料を、230℃~350℃の範囲内の温度まで加熱する工程であって、200℃での昇温速度が100℃/分以上である工程を含む、方法。
  2.  前記加熱工程の200℃での昇温速度が150℃/分以上である、請求項1に記載の方法。
  3.  前記Liイオン伝導性硫化物材料を、その原料をメカノケミカル処理することにより得る工程を更に含む、請求項1又は2に記載の方法。
  4.  α-Li3PS4相を有する固体電解質材料を製造する方法であって、
     Li、P及びSと、F及び/又はClとを含み、α-Li3PS4相を有さないLiイオン伝導性硫化物材料を、200℃~300℃の範囲内の温度まで加熱する工程を含む、方法。
  5.  前記固体電解質材料が下記式(I):
     
    Li3PS4・aLiX      (I)
     
    (式中、XはF及び/又はClであり、aは0≦a≦2.0を満たす)
    で表される組成を有する、請求項4に記載の方法。
  6.  前記Liイオン伝導性硫化物材料を、その原料をメカノケミカル処理することにより得る工程を更に含む、請求項4又は5に記載の方法。
  7.  LiとPとSとFとを含み、組成がLi3PS4・aLiF (式中、aは0<a≦2.0を満たす)で表され、室温でα-Li3PS4相を有する、固体電解質材料。
  8.  請求項4又は5に記載の方法によって得られる、α-Li3PS4相を有する固体電解質材料。
PCT/JP2023/039731 2022-11-04 2023-11-02 α-Li3PS4相を有する固体電解質材料を製造する方法、固体電解質材料 WO2024096127A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-177713 2022-11-04
JP2022177713 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024096127A1 true WO2024096127A1 (ja) 2024-05-10

Family

ID=90930814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039731 WO2024096127A1 (ja) 2022-11-04 2023-11-02 α-Li3PS4相を有する固体電解質材料を製造する方法、固体電解質材料

Country Status (1)

Country Link
WO (1) WO2024096127A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087525A (ja) * 2018-11-16 2020-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体型二次電池および固体電解質材料
WO2021065230A1 (ja) * 2019-10-02 2021-04-08 古河機械金属株式会社 硫化物系無機固体電解質材料の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020087525A (ja) * 2018-11-16 2020-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体型二次電池および固体電解質材料
WO2021065230A1 (ja) * 2019-10-02 2021-04-08 古河機械金属株式会社 硫化物系無機固体電解質材料の製造方法

Similar Documents

Publication Publication Date Title
Zhang et al. Synthesis of cubic Na3SbS4 solid electrolyte with enhanced ion transport for all-solid-state sodium-ion batteries
Tanibata et al. Preparation and characterization of highly sodium ion conducting Na 3 PS 4–Na 4 SiS 4 solid electrolytes
Xu et al. Lithium ion‐conducting glass–ceramics of Li1. 5Al0. 5Ge1. 5 (PO4) 3–xLi2O (x= 0.0–0.20) with good electrical and electrochemical properties
Wu et al. Superior lithium-stable Li7P2S8I solid electrolyte for all-solid-state lithium batteries
JP5527673B2 (ja) 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP7308147B2 (ja) Lgps系固体電解質の製造方法
JP7294334B2 (ja) Lgps系固体電解質および製造方法
Pershina et al. Promising high-conductivity Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 solid electrolytes: The effect of crystallization temperature on the microstructure and transport properties
CN109641805B (zh) 硫化物固体电解质
CN110492171B (zh) 固体电解质的制造方法
Moustafa et al. NASICON-type lithium iron germanium phosphate glass ceramic nanocomposites as anode materials for lithium ion batteries
JP2017021965A (ja) リチウム固体電解質
Tsuji et al. Preparation and characterization of sodium-ion conductive Na 3 BS 3 glass and glass–ceramic electrolytes
JP6121525B2 (ja) ガラスセラミック電解質系
Siyal et al. In situ curing technology for dual ceramic composed by organic–inorganic functional polymer gel electrolyte for dendritic‐free and robust lithium–metal batteries
Song et al. Increasing ionic conductivity in Li0. 33La0. 56TiO3 thin-films via optimization of processing atmosphere and temperature
CN113937347A (zh) 氧化物、其制备方法、包括氧化物的固体电解质和包括氧化物的电化学装置
WO2019207956A1 (ja) 硫化物固体電解質および全固体電池
Osterheld Liquidus diagram for the system lithium orthophosphate-lithium metaphosphate
WO2024096127A1 (ja) α-Li3PS4相を有する固体電解質材料を製造する方法、固体電解質材料
JP7270991B2 (ja) 全固体ナトリウム電池用の固体電解質とその製造方法及び全固体ナトリウム電池
CN113597698A (zh) 固体电解质及固体电解质的制造方法
KR102512357B1 (ko) 황화물계 고체 전해질, 이의 제조방법 및 이로부터 제조된 전고체 전지
Shrestha et al. Effect of Polyacrylonitrile Surface Coating on Electrochemical Performance of LiNi0. 8Mn0. 1Co0. 1O2 in All Solid-State Batteries
Il’ina et al. Composite Electrolytes Based on Tetragonal Li 7 La 3 Zr 2 O 12 for Lithium Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885881

Country of ref document: EP

Kind code of ref document: A1