WO2024095777A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2024095777A1
WO2024095777A1 PCT/JP2023/037748 JP2023037748W WO2024095777A1 WO 2024095777 A1 WO2024095777 A1 WO 2024095777A1 JP 2023037748 W JP2023037748 W JP 2023037748W WO 2024095777 A1 WO2024095777 A1 WO 2024095777A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
polymer
radical
formula
Prior art date
Application number
PCT/JP2023/037748
Other languages
French (fr)
Japanese (ja)
Inventor
隆志 堤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2024095777A1 publication Critical patent/WO2024095777A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/40Imides, e.g. cyclic imides

Definitions

  • the present invention relates to a resin composition.
  • electronic components such as integrated circuit elements and organic EL elements are provided with a variety of resin films, such as protective films to prevent deterioration and damage to the components themselves, planarizing films to flatten the element surface and wiring, electrical insulating films to maintain electrical insulation, pixel separation films to separate light-emitting areas, and optical films to focus and diffuse light.
  • resin films such as protective films to prevent deterioration and damage to the components themselves, planarizing films to flatten the element surface and wiring, electrical insulating films to maintain electrical insulation, pixel separation films to separate light-emitting areas, and optical films to focus and diffuse light.
  • the resin films used in the various applications mentioned above are required to have excellent heat resistance and electrical properties such as dielectric tangent.
  • the present invention aims to provide a resin composition that can form a resin film that has excellent heat resistance and a low dielectric tangent.
  • the present inventors have conducted extensive research with the aim of solving the above problems. They have discovered that a resin film with excellent heat resistance and a low dielectric tangent can be formed by using a resin composition containing a polymer containing two specific structural units and a radical crosslinking agent, and have thus completed the present invention.
  • a resin composition comprising a polymer and a radical crosslinking agent, the polymer comprising a structural unit (I) represented by the following formula (I) and a structural unit (II) represented by the following formula (II):
  • R 1 to R 4 is a radical crosslinkable group
  • R 1 to R 4 that do not correspond to the radical crosslinkable group are each independently a hydrogen atom, an alkyl group or an aromatic ring group, and two of R 1 to R 4 that do not correspond to the radical crosslinkable group may join together to form a ring structure
  • m is an integer of 0 to 4.
  • X is a divalent organic group
  • Y is a tetravalent organic group
  • Z is a divalent organic group
  • n is an integer of 0 or more.
  • a resin composition according to (1) or (2) above, further comprising a radical initiator comprising a radical initiator.
  • a resin composition further containing a radical initiator in addition to the above-mentioned polymer and radical crosslinking agent can be suitably used as a negative-type photosensitive resin composition in which the solubility of the exposed area in a developer is reduced and the exposed area remains after development.
  • the present invention provides a resin composition that is capable of forming a resin film that has excellent heat resistance and a low dielectric tangent.
  • the resin composition of the present invention can be used, without any particular limitation, when forming a resin film that can be provided on electronic components such as integrated circuit elements, organic EL elements, and semiconductor packages.
  • the resin composition of the present invention can be suitably used when manufacturing insulating organic films such as organic EL, semiconductor packages, printed wiring boards, and solder resists.
  • the resin composition of the present invention can be suitably used as a negative-type photosensitive resin composition in which the solubility of the exposed area in a developer is reduced, and the exposed area remains after development.
  • the active energy rays used when exposing a resin film formed using the resin composition of the present invention include, without any particular limitation, single-wavelength light rays such as ultraviolet rays, g-rays, h-rays, and i-rays, light rays such as KrF excimer laser light and ArF excimer laser light, and particle rays such as electron beams.
  • the resin composition of the present invention must contain a polymer and a radical crosslinking agent, and may optionally contain at least one selected from the group consisting of a radical initiator, a solvent, and other additive components.
  • the resin composition of the present invention contains a polymer containing the specified structural units (I) and (II) and a radical crosslinking agent, so that by using the resin composition of the present invention, a resin film with excellent heat resistance and a low dielectric tangent can be formed.
  • a resin composition containing a polymer containing two specified structural units and a radical crosslinking agent is not clear, it is presumed to be as follows.
  • the polymer in the resin composition of the present invention contains a predetermined structural unit (I) and a structural unit (II), and the structural unit (I) has a radical crosslinkable group at a predetermined position (at least one of R 1 to R 4 in the above formula (I)).
  • the radical crosslinkable group in such a polymer has a carbon-carbon unsaturated bond (particularly an ethylenically unsaturated bond) and can undergo a radical reaction in the presence of a radical.
  • the resin composition of the present invention contains a radical crosslinking agent, and the radical crosslinking agent can react with the polymer having the above-mentioned radical crosslinkable group by a radical reaction.
  • the above-mentioned polymer and the radical crosslinking agent react with each other by a radical reaction, and a strong crosslinked structure can be formed in the resin film. And, it is considered that a resin film consisting of such a strong crosslinked structure has a high glass transition temperature and is excellent in heat resistance.
  • the polymer contained in the resin composition of the present invention contains a structural unit (I) having a cyclic olefin structure. Such a polymer having a cyclic olefin structure can be suitably used as a resin material for forming a resin film having a low dielectric tangent due to the low polarity of the cyclic olefin structure.
  • the radical crosslinking agent contained in the resin composition of the present invention has almost no effect on the dielectric tangent of the resin film, unlike a non-radical crosslinking agent (a crosslinking agent other than a radical crosslinking agent) that can increase the dielectric tangent of the resin film. Therefore, it is considered that the resin film formed from the resin composition of the present invention has a reduced dielectric tangent.
  • the polymer contained in the resin composition of the present invention contains a structural unit (II). The presence of the structural unit (II) can improve the heat resistance of the resin film formed from the resin composition while reducing the dielectric tangent. Therefore, by using the resin composition of the present invention, a resin film having excellent heat resistance and a low dielectric tangent can be formed.
  • the resin film formed using the resin composition of the present invention may be characterized by excellent heat resistance and a low dielectric tangent, as well as excellent strength (tensile strength) and a low linear expansion coefficient (i.e., the resin composition of the present invention may have the effect of being able to form a resin film that is excellent in strength and has a low linear expansion coefficient).
  • the polymer contained in the resin composition of the present invention contains a structural unit (I) represented by the following formula (I) and a structural unit (II) represented by the following formula (II).
  • R 1 to R 4 is a radical crosslinkable group
  • R 1 to R 4 that do not correspond to the radical crosslinkable group are each independently a hydrogen atom, an alkyl group or an aromatic ring group, and two of R 1 to R 4 that do not correspond to the radical crosslinkable group may join together to form a ring structure
  • m is an integer of 0 to 4.
  • X is a divalent organic group
  • Y is a tetravalent organic group
  • Z is a divalent organic group
  • n is an integer of 0 or more.
  • R 1 to R 4 is a radical crosslinking group. If none of R 1 to R 4 is a radical crosslinking group, the heat resistance of the resin film formed from the resin composition is reduced. In addition, the patterning characteristics of the resin film when a cyclic ketone is used as a developer are reduced.
  • R 1 to R 4 that do not correspond to the radical crosslinking group are each independently a hydrogen atom, an alkyl group, or an aromatic ring group, and two of R 1 to R 4 that do not correspond to the radical crosslinking group may be joined together to form a ring structure.
  • m is an integer of 0 to 4.
  • the polymer may contain only one type of structural unit (I), or may contain a plurality of types of structural units (I).
  • radical crosslinkable group that can constitute R 1 to R 4 is not particularly limited as long as it has a carbon-carbon unsaturated bond (particularly an ethylenically unsaturated bond) and a molecular skeleton capable of undergoing a radical reaction.
  • Preferred examples of the radical crosslinkable group include a radical crosslinkable group having a styryl skeleton and a radical crosslinkable group having an acrylate skeleton.
  • the radical crosslinkable group "having a styryl skeleton” means that the radical crosslinkable group contains a chemical structure represented by "CH 2 ⁇ CH-Ph- (Ph is a phenylene group, and some or all of the hydrogen atoms in the formula may be substituted with any substituent).
  • a group "having a styryl skeleton” does not fall under the category of an "aromatic ring group” but falls under the category of a "radical crosslinkable group”.
  • the radical crosslinkable group "having an acrylate skeleton” means that the radical crosslinkable group contains a chemical structure represented by "CH 2 ⁇ CH-C( ⁇ O)-O- (wherein some or all of the hydrogen atoms may be substituted with any substituent group)."
  • radical crosslinkable group having a styryl skeleton examples include groups represented by the following formula (V).
  • R 9 and R 11 each independently represent a single bond or an alkylene group having 1 to 10 carbon atoms;
  • R 10 represents an oxygen atom or a sulfur atom;
  • R 12 represents a substituent; and
  • y represents an integer of 0 to 4.
  • the alkylene group having 1 to 10 carbon atoms which may be R 9 and R 11 is not particularly limited, but is preferably a chain alkylene group having 1 to 6 carbon atoms such as a methylene group, an ethylene group, a propylene group, an n-butylene group, or an isobutylene group, more preferably a linear alkylene group having 1 to 6 carbon atoms such as a methylene group, an ethylene group, a propylene group, or an n-butylene group, still more preferably a linear alkylene group having 1 to 3 carbon atoms such as a methylene group, an ethylene group, or a propylene group, and particularly preferably a methylene group.
  • R 12 examples include, but are not limited to, alkyl groups such as methyl and ethyl groups, and halogeno groups such as fluoro and chloro groups.
  • y is preferably 0, that is, the phenylene group (--C 6 H 4 --) constituting the styryl skeleton preferably has no substituent.
  • the resin film formed from the resin composition can have a further reduced dielectric tangent and improved extensibility, and the patterning properties of the resin film can be improved when a cyclic ketone is used as a developer.
  • the radical crosslinkable group having an acrylate skeleton include a group represented by the following formula (VI).
  • R 13 is an alkylene group having 1 to 10 carbon atoms
  • R 14 is a hydrogen atom or an alkyl group.
  • a substituted or unsubstituted acryloyl group is bonded to a cyclic olefin structure via an alkylene group represented by R 13 , so that the mobility of the acryloyl group is enhanced. Due to this improved mobility, the crosslinking reactivity of the acryloyl group is improved. It is presumed that this is the reason why the polymer containing the structural unit (I) having the radical crosslinkable group represented by formula (VI) is used, and the extensibility of the resin film formed from the resin composition can be improved, and the patterning characteristics of the resin film can be improved when a cyclic ketone is used as a developer.
  • the alkylene group having 1 to 10 carbon atoms which can be R 13 is not particularly limited, but is preferably a chain alkylene group having 1 to 6 carbon atoms such as a methylene group, an ethylene group, a propylene group, an n-butylene group, or an isobutylene group, more preferably a linear alkylene group having 1 to 6 carbon atoms such as a methylene group, an ethylene group, a propylene group, or an n-butylene group, still more preferably a linear alkylene group having 1 to 3 carbon atoms such as a methylene group, an ethylene group, or a propylene group, and particularly preferably a methylene group.
  • the alkyl group which can be R 14 is not particularly limited, and examples thereof include alkyl groups having a carbon number of 1 to 5. Among these, the alkyl group which can constitute R 14 is preferably a methyl group or an ethyl group.
  • the alkyl group that can constitute R 1 to R 4 other than the radical crosslinkable group is not particularly limited, but examples thereof include alkyl groups having 1 to 10 carbon atoms.
  • the aromatic ring group that can constitute R 1 to R 4 other than the radical crosslinkable group is not particularly limited as long as it does not fall under the category of a radical crosslinkable group, and examples thereof include aromatic ring groups having 4 to 30 carbon atoms, such as a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a triphenylenyl group, and a pyrenyl group.
  • the ring structure formed by combining two of R 1 to R 4 other than the radical crosslinkable group is not particularly limited, and examples thereof include a carbon ring having a monocyclic or polycyclic structure.
  • m is an integer of 0 to 4, preferably 0, 1 or 2, and more preferably 0 or 1.
  • R 1 to R 4 in formula (I) is a radical crosslinkable group and the rest are hydrogen atoms, because if the structural unit (I) has such a structure, synthesis is relatively easy and the production efficiency of the resin composition is improved.
  • the content of the structural unit (I) in the polymer is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and preferably 35% by mass or less, more preferably 30% by mass or less, and even more preferably 25% by mass or less, when the total mass of the polymer is taken as 100% by mass. If the content of the structural unit (I) in the polymer is within the above-mentioned range, the heat resistance of the resin film formed from the resin composition containing the polymer can be further improved while the dielectric loss tangent can be further reduced.
  • the "content ratio" of each structural unit contained in the polymer can be measured by a nuclear magnetic resonance (NMR) method such as 1 H-NMR or 13 C-NMR.
  • X is a divalent organic group
  • Y is a tetravalent organic group
  • Z is a divalent organic group
  • n is an integer of 0 or more.
  • X is a divalent organic group.
  • the divalent organic group constituting X is, for example, a group represented by any one of the following formulae (Xa) to (Xc).
  • R 15 is an alkylene group
  • R 16 is an alkylene group or an aromatic ring group
  • p is an integer of 0 to 10.
  • the alkylene group that can constitute R 15 and R 16 is not particularly limited, but examples thereof include alkylene groups having 1 to 10 carbon atoms, preferably alkylene groups having 1 to 5 carbon atoms, and more preferably a methylene group or an ethylene group.
  • aromatic ring groups that can constitute R 16 include aromatic ring groups having 4 to 30 carbon atoms, such as a phenylene group, a naphthylene group, a fluorenylene group, an anthracenylene group, a triphenylenylene group, and a pyrenylene group.
  • p may be an integer of 0 or more and 10 or less, but is preferably an integer of 0 or more and 5 or less, more preferably an integer of 0 or more and 2 or less, and even more preferably 0 or 1.
  • Y is a tetravalent organic group.
  • the tetravalent organic group constituting Y is, for example, a group represented by any one of the following formulae (Ya) to (Yf).
  • R 17 , R 18 , R 25 and R 26 are each independently a halogen atom, an alkyl group or an aromatic ring group
  • R 19 and R 20 may be taken together to form a ring structure
  • R 19 and R 20 that do not form a ring structure are each independently a hydrogen atom, a halogen atom, an alkyl group or an aromatic ring group
  • R 22 and R 23 may be taken together to form a ring structure
  • R 22 and R 23 that do not form a ring structure are each independently a hydrogen atom, a halogen atom, an alkyl group or an aromatic ring group
  • the alkyl group and the aromatic ring group may have a halogen atom as a substituent
  • q and r are each independently an integer of 0
  • the ring structure formed by R 19 and R 20 together, and the ring structure formed by R 22 and R 23 together are not particularly limited, but for example, aromatic ring-containing structures containing aromatic hydrocarbon rings such as benzene rings, naphthalene rings, and fluorene rings are preferred, and aromatic ring-containing structures containing fluorene rings are more preferred.
  • the total number of carbon atoms in the ring structure such as the aromatic ring-containing structure is preferably 7 or more and 60 or less.
  • the ring structure such as the aromatic ring-containing structure is preferably composed of only carbon atoms.
  • the (unsubstituted) alkyl group that can constitute R 19 and R 20 that do not form a ring structure, and R 22 and R 23 is not particularly limited, but examples thereof include alkyl groups having 1 to 10 carbon atoms, preferably alkyl groups having 1 to 5 carbon atoms, and more preferably a methyl group or an ethyl group.
  • the (unsubstituted) aromatic ring group which may constitute R 19 and R 20 that do not form a ring structure, and R 22 and R 23 , is not particularly limited, and examples thereof include aromatic ring groups having 4 to 30 carbon atoms, such as a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a triphenylenyl group, and a pyrenyl group, and a fluorenyl group is preferred.
  • examples of the halogen atoms which may constitute R 17 to R 20 , R 22 to R 23 , and R 25 to R 26 , and the halogen atoms which may be contained as substituents in the alkyl group and aromatic ring group include a fluorine atom, a chlorine atom, and a bromine atom.
  • Specific examples of the group represented by formula (Ya) include a group represented by formula (Ya-1) below.
  • Specific examples of the group represented by formula (Yb) include a group represented by any of formulas (Yb-1) to (Yb-2) below.
  • Specific examples of the group represented by formula (Yc) include a group represented by any of formulas (Yc-1) to (Yc-2) below.
  • Specific examples of the group represented by formula (Yd) include a group represented by any of formulas (Yd-1) to (Yd-3) below.
  • Specific examples of the group represented by formula (Ye) include a group represented by any of formulas (Ye-1) to (Ye-2) below.
  • Specific examples of the group represented by formula (Yf) include a group represented by any of formulas (Yf-1) to (Yf-2) below.
  • the tetravalent organic group constituting Y is preferably a group represented by formula (Yb), (Ye) or (Yf), more preferably a group represented by formula (Ye-2), (Yf-1) or (Yb-2), and even more preferably a group represented by formula (Ye-2).
  • Z is a divalent organic group.
  • the divalent organic group constituting Z is, for example, a group represented by any one of the following formulae (Za) to (Zf).
  • R 27 , R 28 , R 34 and R 35 are each independently a halogen atom, an alkyl group, or an aromatic ring group
  • R 30 and R 31 may be taken together to form a ring structure
  • R 30 and R 31 that do not form a ring structure are each independently a hydrogen atom, a halogen atom, an alkyl group, or an aromatic ring group
  • R 32 and R 33 may be taken together to form a ring structure
  • R 32 and R 33 that do not form a ring structure are each independently a hydrogen atom, a halogen atom, an alkyl group, or an aromatic ring group
  • the alkyl group and the aromatic ring group may have a halogen atom as a substituent, and u, v, w,
  • the ring structure formed by R 30 and R 31 together and the ring structure formed by R 32 and R 33 together are not particularly limited, but for example, aromatic ring-containing structures containing aromatic hydrocarbon rings such as benzene rings, naphthalene rings, and fluorene rings are preferred, and aromatic ring-containing structures containing fluorene rings are more preferred.
  • the total number of carbon atoms in the ring structure such as the aromatic ring-containing structure is preferably 7 or more and 60 or less.
  • the ring structure such as the aromatic ring-containing structure is preferably composed of only carbon atoms.
  • the (unsubstituted) alkyl group which may constitute R 27 and R 28 , R 34 and R 35 , and R 30 to R 33 that do not form a ring structure is not particularly limited, but examples thereof include alkyl groups having 1 to 10 carbon atoms, preferably alkyl groups having 1 to 5 carbon atoms, and more preferably a methyl group or an ethyl group.
  • the (unsubstituted) aromatic ring groups which may constitute R 27 and R 28 , R 34 and R 35 , and R 30 to R 33 which do not form a ring structure, are not particularly limited and examples thereof include aromatic ring groups having 4 to 30 carbon atoms, such as a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a triphenylenyl group, and a pyrenyl group, with a fluorenyl group being preferred.
  • examples of the halogen atoms which may constitute R 27 to R 28 and R 30 to R 35 , and which may be contained as substituents on the alkyl group and aromatic ring group include a fluorine atom, a chlorine atom, and a bromine atom.
  • groups represented by formula (Za) include groups represented by formula (Za-1) below.
  • Specific examples of groups represented by formula (Zb) include groups represented by formula (Zb-1) below.
  • Specific examples of groups represented by formula (Zc) include groups represented by any of formulas (Zc-1) to (Zc-6) below.
  • Specific examples of groups represented by formula (Zd) include groups represented by formula (Zd-1) below.
  • Specific examples of groups represented by formula (Ze) include groups represented by formula (Ze-1) below.
  • Specific examples of groups represented by formula (Zf) include groups represented by any of formulas (Zf-1) to (Zf-3) below.
  • the divalent organic group constituting Z is preferably a group represented by formula (Zc) or (Zf), more preferably a group represented by formula (Zc-3), (Zc-4), (Zc-5), (Zc-6), (Zf-1), (Zf-2), or (Zf-3), even more preferably a group represented by formula (Zc-3), (Zc-4), (Zc-5), (Zc-6), (Zf-2) or (Zf-3), and particularly preferably a group represented by formula (Zc-3) or (Zf-2).
  • n may be an integer of 0 or more, but is usually 1 or more, preferably 3 or more, more preferably 5 or more, and even more preferably 8 or more, and is usually 100 or less, preferably 80 or less, more preferably 50 or less, and even more preferably 30 or less. If n in formula (II) is equal to or greater than the lower limit, the heat resistance of the resin film formed from the resin composition containing the polymer can be further improved. On the other hand, if n in formula (II) is equal to or less than the upper limit, the dielectric tangent of the resin film formed from the resin composition containing the polymer can be further reduced.
  • the content of the structural unit (II) in the polymer is preferably 20% by mass or more, more preferably 30% by mass or more, even more preferably 40% by mass or more, preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less, when the total mass of the polymer is taken as 100% by mass. If the content of the structural unit (II) in the polymer is within the above-mentioned range, the dielectric loss tangent of the resin film formed from the resin composition containing the polymer can be further reduced while the heat resistance can be further improved.
  • the polymer preferably further contains a structural unit (III) represented by the following formula (III) in addition to the above-mentioned structural units (I) and (II).
  • a structural unit (III) represented by the following formula (III) in addition to the above-mentioned structural units (I) and (II).
  • R 5 to R 8 is an aromatic ring group, or two of R 5 to R 8 together form an aromatic ring-containing structure, and R 5 to R 8 that are not aromatic ring groups and do not form an aromatic ring-containing structure are each independently a hydrogen atom or an alkyl group, and k is an integer of 0 to 4.
  • the polymer may contain only one type of structural unit (III) or may contain a plurality of types.
  • the aromatic ring group that can constitute R5 to R8 in formula (III) is not particularly limited, but examples thereof include aromatic ring groups having 4 to 30 carbon atoms.
  • the aromatic ring group having 4 to 30 carbon atoms include a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a triphenylenyl group, and a pyrenyl group.
  • examples of the aromatic ring in the aromatic ring-containing structure formed by two of R 5 to R 8 in formula (III) together include aromatic hydrocarbon rings such as a benzene ring and a naphthalene ring.
  • the aromatic ring-containing structure may contain only one aromatic ring, or may contain multiple aromatic rings. In addition, when the aromatic ring-containing structure has multiple aromatic rings, the multiple aromatic rings may be the same type of aromatic ring or different types of aromatic rings.
  • the aromatic ring-containing structure formed by two of R 5 to R 8 together is not particularly limited, but preferably has a total carbon number of 7 or more and 60 or less. In addition, the aromatic ring-containing structure is preferably composed of only carbon atoms.
  • the alkyl groups that can constitute R 5 to R 8 and that are not aromatic ring groups and do not form an aromatic ring-containing structure are not particularly limited, and examples thereof include the same alkyl groups as those that can constitute R 1 to R 4 in formula (I) described above.
  • k is an integer of 0 to 4, preferably 0, 1 or 2, and more preferably 0 or 1.
  • the structural unit (III) is preferably an embodiment in which one of R5 and R6 and one of R7 and R8 together form an aromatic ring-containing structure (for example, a structure containing a benzene ring) and the others are hydrogen atoms.
  • the content of the structural unit (III) in the polymer is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, preferably 60% by mass or less, more preferably 50% by mass or less, and even more preferably 40% by mass or less, when the total mass of the polymer is taken as 100% by mass. If the content of the structural unit (III) in the polymer is within the above-mentioned predetermined range, the heat resistance of the resin film formed from the resin composition containing the polymer can be further improved while the dielectric loss tangent can be further reduced.
  • the content of the structural unit (III) in the polymer is preferably 30 mol% or more, more preferably 40 mol% or more, even more preferably 50 mol% or more, even more preferably 60 mol% or more, preferably 95 mol% or less, more preferably 90 mol% or less, even more preferably 85 mol% or less, and even more preferably 80 mol% or less, when the total content of the structural unit (I) and the structural unit (III) in the polymer is 100 mol%.
  • the dielectric tangent of the resin film formed from the resin composition containing the polymer can be further reduced while improving the strength (tensile strength) of the resin film.
  • the total content of the structural unit (I) and the structural unit (III) in the polymer is 100 mol %
  • the content ratio of the structural unit (III) in the polymer is equal to or less than the above upper limit
  • the patterning characteristics of a resin film formed from a resin composition containing the polymer can be improved when a cyclic ketone is used as a developer.
  • the polymer may optionally contain structural units (other structural units) other than the above-mentioned structural units (I) to (III).
  • structural units for example, structural units derived from known monomers copolymerizable with the monomer capable of forming the structural unit (I) and the monomer capable of forming the structural unit (II) can be used.
  • the content of the other structural units in the polymer is preferably 20% by mass or less, more preferably 10% by mass or less, even more preferably 5% by mass or less, still more preferably 1% by mass or less, and particularly preferably 0% by mass (i.e., the polymer does not contain other structural units), when the total mass of the polymer is 100% by mass.
  • the weight average molecular weight (Mw) of the polymer is preferably 3,000 or more, more preferably 5,000 or more, even more preferably 10,000 or more, particularly preferably 14,100 or more, and preferably 500,000 or less, more preferably 300,000 or less, even more preferably 100,000 or less, and particularly preferably 38,300 or less. If the weight average molecular weight of the polymer is equal to or greater than the lower limit, the strength (tensile strength) of the resin film formed from the resin composition can be improved.
  • the weight average molecular weight of the polymer is equal to or less than the upper limit, the solubility of the resin film formed from the resin composition in a cyclic ketone as a developer can be increased. Therefore, the patterning characteristics of the resin film can be improved when a cyclic ketone is used as a developer.
  • the molecular weight distribution (Mw/Mn) of the polymer is preferably 4.0 or less, more preferably 3.0 or less, and even more preferably 2.4 or less. When the molecular weight distribution of the polymer is 4.0 or less, the patterning characteristics can be improved.
  • the term "molecular weight distribution (Mw/Mn)" refers to the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn).
  • the weight average molecular weight and number average molecular weight of a polymer are determined by gel permeation chromatography (GPC) in terms of standard polystyrene.
  • the synthesis method of the above-mentioned polymer is not particularly limited, and for example, the polymer can be efficiently synthesized by a method including a step of synthesizing a polyimide compound (II') represented by the following formula (II') (polyimide compound synthesis step), a step of performing a ring-opening polymerization reaction between a norbornene-based monomer (I') represented by the following formula (I') and the polyimide compound (II') obtained in the above-mentioned polyimide compound synthesis step to obtain a ring-opening polymer (hereinafter referred to as the "ring-opening polymerization step"), a step of performing a hydrogenation reaction on the obtained ring-opening polymer to obtain a ring-opening polymer hydrogenation product (hydrogenation step), and a step of performing a modification reaction on the obtained ring-opening polymer hydrogenation product to introduce
  • R 1 to R 4 may be combined together to form a ring structure, and R 1 to R 4 that do not form a ring structure are each independently a hydrogen atom, an alkyl group, or an aromatic ring group, the alkyl group and the aromatic ring group may have a hydroxyl group as a substituent, and m is an integer of 0 to 4.
  • X is a divalent organic group
  • Y is a tetravalent organic group
  • Z is a divalent organic group
  • n is an integer of 0 or greater.
  • polyimide compound synthesis process In the polyimide compound synthesis step, a polyimide compound (II') represented by the above formula (II') is obtained.
  • the method for synthesizing the polyimide compound (II') is not particularly limited, but for example, the polyimide compound (II') can be synthesized by a reaction using a tetracarboxylic dianhydride (Y') represented by the following formula (Y'), a diamine (Z') represented by the following formula (Z'), and an end-capping agent (X') represented by the following formula (X').
  • X is a divalent organic group
  • Y is a tetravalent organic group
  • Z is a divalent organic group.
  • the structures of X, Y and Z in the above formulae (X'), (Y') and (Z') can be the same as the structures of X, Y and Z in the structural unit (II) described above in the section "Polymer”.
  • the polyimide compound (II') can be synthesized by a two-stage method in which a polyamic acid (II') represented by formula (II'') is obtained by a ring-opening polyaddition reaction (first-stage reaction) between a tetracarboxylic dianhydride (Y'), a diamine (Z'), and an end-capping agent (X') as shown in the formula below, and then the obtained polyamic acid (II'') is subjected to a dehydration cyclization reaction (second-stage reaction).
  • first-stage reaction a ring-opening polyaddition reaction
  • Y' tetracarboxylic dianhydride
  • Z' diamine
  • X' end-capping agent
  • the ring-opening polyaddition reaction can be carried out in a reaction solvent according to a known method.
  • the ring-opening polyaddition reaction is carried out by mixing a tetracarboxylic dianhydride (Y'), a diamine (Z') and an end-capping agent (X') in an organic solvent such as tetrahydrofuran, gamma-butyrolactone, or N-methylpyrrolidone.
  • the reaction time of the ring-opening polyaddition reaction is not particularly limited, but is, for example, 2 hours to 48 hours.
  • the reaction temperature of the ring-opening polyaddition reaction is not particularly limited, but is, for example, 0° C. to 70° C.
  • the dehydration cyclization reaction can be carried out according to a known method.
  • the dehydration cyclization reaction may be carried out by a thermal imidization method in which the polyamic acid is heated, or by a chemical imidization method in which the polyamic acid is treated with a dehydration cyclization agent.
  • the dehydration and cyclization reaction by the chemical imidization method can be carried out by adding a dehydration and cyclization agent consisting of a combination of acetic anhydride and pyridine, acetic anhydride and triethylamine, or the like, to a polyamic acid in an organic solvent such as tetrahydrofuran, and mixing the mixture.
  • the reaction time of the dehydration cyclization reaction by the chemical imidization method is not particularly limited, but is, for example, from 2 hours to 48 hours.
  • the reaction temperature of the dehydration cyclization reaction by the chemical imidization method is not particularly limited, but is, for example, from 0° C. to 50° C.
  • Ring-opening polymerization process In the ring-opening polymerization step, a ring-opening polymerization reaction is carried out between the norbornene-based monomer (I') represented by the above formula (I') and the polyimide compound (II') represented by the above formula (II') to obtain a ring-opening polymer.
  • the norbornene-based monomer (III') capable of forming the structural unit (III) described above in the "polymer” section to the norbornene-based monomer (I') and the polyimide compound (II') to carry out the ring-opening polymerization reaction.
  • a monomer other than the norbornene-based monomer (I'), the polyimide compound (II') and the norbornene-based monomer (III') may be added to carry out the ring-opening polymerization reaction.
  • the norbornene monomer (I') represented by the above formula (I') is a monomer capable of forming the structural unit (I) described above in the section "Polymer".
  • two of R 1 to R 4 may be combined to form a ring structure, and R 1 to R 4 that do not form a ring structure are each independently a hydrogen atom, an alkyl group or an aromatic ring group, the alkyl group and the aromatic ring group may have a hydroxyl group as a substituent, and m is an integer of 0 to 4.
  • none of R 1 to R 4 in the above formula (I') is a radical crosslinkable group.
  • examples of the norbornene monomer (I') include 2-norbornene-5-methanol, 2-methyl-2-hydroxymethylbicyclo[2.2.1]hept-5-ene, 2,3-dihydroxymethylbicyclo[2.2.1]hept-5-ene, 3-hydroxytricyclo[5.2.1.0 2,6 ]deca-4,8-diene, 3-hydroxymethyltricyclo[5.2.1.0 2,6 ]deca-4,8-diene, 4-hydroxytetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodec-9-ene, 4-hydroxymethyltetracyclo[6.2.1.1 3,6 .
  • 0 2,7 ]dodec-9-ene (common name: "tetracyclododecenemethanol"), 4,5-dihydroxymethyltetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodec-9-ene. 0 2,7 ]dodec-9-ene, etc.
  • 2-norbornene-5-methanol is preferable.
  • the norbornene monomer (I') may be used alone or in combination of two or more kinds.
  • the polyimide compound (II') represented by the above formula (II') is a compound capable of forming the structural unit (II) described above in the section "Polymer".
  • the structures of X, Y, and Z in the above formula (II') and the preferred range of n can be the same as the structures of X, Y, and Z in the structural unit (II) described above in the same section and the preferred range of n.
  • the polyimide compound (II') may be used alone or in combination of two or more kinds.
  • the norbornene monomer (III') is a monomer capable of forming the structural unit (III) described above in the section "Polymer".
  • Examples of the norbornene monomer (III') include tetracyclo[4.4.0.1 2,5 . 1 7,10 ]dodec-3-ene (common name: tetracyclododecene), 8-ethylidene-tetracyclo[4.4.0.1 2,5 .
  • the derivative refers to one having a substituent in the ring structure.
  • substituents that may be present in the ring structure include an alkyl group, an alkylene group, a vinyl group, an alkoxycarbonyl group, and an alkylidene group.
  • the ring structure of the derivative may have one or more of these substituents.
  • the norbornene monomer (III') may be used alone or in combination of two or more kinds.
  • the ring-opening polymerization reaction can be carried out in a reaction solvent according to a known method.
  • the reaction solvent is not particularly limited, and for example, organic solvents such as tetrahydrofuran, tetrahydropyran, toluene, anisole, cyclopentanone, etc., can be used. Among them, it is preferable to use tetrahydrofuran or anisole.
  • ethylene ⁇ -olefins having 3 to 20 carbon atoms, such as propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosene; non-conjugated dienes, such as 1,4-hexadiene, 1,5-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, and 1,7
  • the ring-opening polymerization catalyst a metal catalyst containing a metal such as molybdenum, tungsten, or ruthenium can be used, and among these, it is preferable to use a metal catalyst containing ruthenium.
  • the ring-opening polymerization time is usually from 1 hour to 10 hours, and preferably from 2 hours to 5 hours
  • the ring-opening polymerization temperature is usually from 20° C. to 100° C., and preferably from 90° C. or less.
  • the ring-opening polymer obtained in the ring-opening polymerization step is subjected to a hydrogenation reaction to obtain a hydrogenated ring-opening polymer.
  • the hydrogenated ring-opening polymer obtained in the hydrogenation step is a polymer containing the structural unit (I) (wherein, in formula (I), R 1 to R 4 are other than radical crosslinkable groups) and structural unit (II) described above in the "Polymer” section, as well as any structural unit (III) and/or other structural units.
  • the hydrogenation reaction can be carried out according to a known method.
  • the reaction time, reaction temperature, and hydrogenation pressure in the hydrogenation reaction are not particularly limited, but the reaction time is usually 1 hour or more and 10 hours or less, and preferably 5 hours or less.
  • the reaction temperature is usually 100°C or more and 200°C or less, and preferably 180°C or less.
  • the hydrogenation pressure is usually preferably 1 MPa or more and 10 MPa or less.
  • Modification step In the modification step, the hydrogenated ring-opening polymer obtained in the hydrogenation step is subjected to a modification reaction with a modifying agent to obtain a polymer comprising structural unit (I) in which at least one of R 1 to R 4 in formula (I) described above in the section "Polymer” is a radical crosslinkable group, structural unit (II), and optionally further comprising structural unit (III) and/or other structural units.
  • the modifying agent used in the modification reaction can be appropriately selected according to the structure of the desired radical crosslinkable group that the structural unit (I) described above in the section "Polymer” may have.
  • the modifying agent can be used alone or in combination of two or more kinds.
  • a compound (styryl-based modifier) having a styryl skeleton and a functional group (halogen group, tosyl group, mesyl group, etc.) that can undergo a modification reaction with the functional group (hydroxyl group, etc.) of the ring-opening polymer hydrogenation product can be used as the modifier.
  • styryl-based modifiers include halogenated methylstyrenes such as 2-(fluoromethyl)styrene, 3-(fluoromethyl)styrene, 4-(fluoromethyl)styrene, 2-(chloromethyl)styrene, 3-(chloromethyl)styrene, 4-(chloromethyl)styrene, 2-(bromomethyl)styrene, 3-(bromomethyl)styrene, 4-(bromomethyl)styrene, 2-(iodomethyl)styrene, 3-(iodomethyl)styrene, and 4-(iodomethyl)styrene, 2-(tosylmethyl)styrene, 3-(tosylmethyl)styrene, 4-(tosylmethyl)styrene, 2-(mesylmethyl)styrene, 3-(mesylmethyl)styrene, and 4-(
  • a compound (acrylate-based modifier) having an acrylate skeleton and a functional group (halogen group, carboxylic anhydride group, etc.) capable of undergoing a modification reaction with the functional group (hydroxyl group, etc.) of the ring-opening polymer hydrogenation product can be used as the modifier.
  • acrylate-based modifiers include acrylic acid chloride, acrylic acid anhydride, methacrylic acid chloride, methacrylic acid anhydride, etc. These can be used alone or in combination of two or more types. Among these, it is preferable to use acrylic acid chloride or methacrylic acid chloride from the viewpoint of efficient modification reaction.
  • the procedure and conditions of the modification reaction are not particularly limited, and can be appropriately set depending on, for example, the type of the modifying agent used.
  • the reaction solvent in the modification reaction is not particularly limited, and can be, for example, the same reaction solvent as that used in the ring-opening polymerization reaction.
  • the modification reaction can be carried out, for example, by reacting the ring-opening polymer hydrogenated product with the styryl-based modifier in a reaction solvent in the presence of a base.
  • the base is not particularly limited, and examples of bases that can be used include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, metal alkoxides such as t-butoxylithium, t-butoxysodium, and t-butoxypotassium, triethylamine, pyridine, diazabicycloundecene, diazabicyclononene, and tetramethylguanidine.
  • alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide
  • alkaline earth metal hydroxides such as calcium hydroxide
  • metal alkoxides such as t-butoxylithium, t-butoxysodium, and t-butoxypotassium
  • triethylamine pyridine, diazabicycloundecene, diazabicyclononene, and tetramethylguanidine.
  • metal alkoxides such as t-butoxylithium, t-butoxysodium, and t-butoxypotassium.
  • metal alkoxides such as t-butoxylithium, t-butoxysodium, and t-butoxypotassium.
  • a styryl-based modifier it is preferable to use a compound capable of generating iodide ions, such as potassium iodide and tetrabutylammonium iodide, as a catalyst. By adding such a catalyst, the reaction in the modification step can be promoted.
  • the mixing ratio of the catalyst capable of generating iodide ions can be, for example, 1.0 parts by mass or more and 10.0 parts by mass or less per 100 parts by mass of the ring-opening polymer hydrogenation product.
  • the modification reaction temperature and the modification reaction time are not particularly limited, but the modification reaction temperature is usually ⁇ 10° C. or higher and 100° C. or lower, and the modification reaction time is usually 1 hour or higher and 15 hours or lower.
  • the modification reaction can be carried out by reacting the ring-opening polymer hydrogenated product with the acrylate modifier in a reaction solvent in the presence of a modification reaction catalyst.
  • the modification reaction catalyst is not particularly limited, and for example, triethylamine, pyridine, etc. can be used. Of these, it is preferable to use triethylamine.
  • the modification reaction temperature and modification reaction time are not particularly limited, but the modification reaction temperature is usually -10°C or higher and 30°C or lower, and the modification reaction time is usually 1 hour or higher and 15 hours or lower.
  • the resin composition of the present invention must contain a radical crosslinking agent in addition to the above-mentioned specific polymer. If the resin composition does not contain a radical crosslinking agent, the heat resistance of the resin film formed from the resin composition will decrease.
  • the radical crosslinking agent is a component that reacts with the above-mentioned polymer through a radical reaction when a resin film is obtained using the resin composition of the present invention, and can form a strong crosslinked structure in the resin film together with the polymer.
  • radical crosslinking agent examples include a radical crosslinking agent having an allyl group, a radical crosslinking agent having a maleimide group, a radical crosslinking agent having a (meth)acryloyl group, a radical crosslinking agent having a styryl group, and a radical crosslinking agent having a vinyl group.
  • (meth)acryloyl means acryloyl and/or methacryloyl.
  • radical crosslinking agents having an allyl group examples include diallyl ether, tetraallyloxyethane, pentaerythritol triallyl ether, 9,9-bis(4-allyloxyphenyl)fluorene, diallyl adipate, triallyl 1,3,5-benzenetricarboxylate, triallyl cyanurate, diallylpropyl isocyanurate, and triallyl isocyanurate.
  • radical crosslinking agent having a maleimide group examples include 2,2-bis[4-(4-maleimidophenoxy)phenyl]propane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, maleimide resins such as "MIZ-001” manufactured by Nippon Kayaku Co., Ltd., bisallylnadimides such as "BANI-M” and “BANI-X” manufactured by Maruzen Petrochemical Co., Ltd., and a radical crosslinking agent (IV) represented by the following formula (IV) (manufactured by Nippon Kayaku Co., Ltd., distributed as "MIR-3000-70MT”), and the like.
  • radical crosslinking agents having a (meth)acryloyl group examples include 1,6-hexanediol dimethacrylate, trimethylolpropane triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, tris(2-acryloyloxyethyl) isocyanurate, bisphenol A dimethacrylate, polybutadiene-terminated diacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., "BAC-45”), and polyphenylene ether having a methacryloyl group (manufactured by SABIC Corporation, "Noryl (registered trademark) SA9000").
  • radical crosslinking agent having a styryl group examples include 1,2-divinylbenzene, 1,3-divinylbenzene, 1,4-divinylbenzene, and a radical crosslinking agent represented by the following formula (VII) (manufactured by Mitsubishi Gas Chemical Company, Inc., sold under the names "OPE-2St 1200" and "OPE-2St 2200").
  • radical crosslinking agent having a vinyl group include 1,4-butanediol divinyl ether, cyclohexane dimethanol divinyl ether, cyclohexane dimethanol divinyl ether, and 2,4,6-trimethyl-2,4,6-trivinylcyclotrisiloxane.
  • the radical crosslinking agent may be used alone or in combination of two or more kinds.
  • a is an integer of 1 or more and 30 or less, preferably an integer of 1 or more and 20 or less, and more preferably an integer of 1 or more and 10 or less.
  • b and c each independently represent an integer of 0 to 300, except for the case where one of b and c is 0.
  • radical crosslinking agent from the viewpoint of further improving the heat resistance of the resin film formed from the resin composition, further reducing the dielectric tangent, and improving the extensibility of the resin film, a radical crosslinking agent having a maleimide group or a radical crosslinking agent having an allyl group is preferred, a radical crosslinking agent having a maleimide group is more preferred, and the radical crosslinking agent (IV) represented by the above formula (IV) is particularly preferred.
  • the content of the radical crosslinking agent in the resin composition of the present invention is preferably 1 part by mass or more, more preferably 5 parts by mass or more, even more preferably 10 parts by mass or more, even more preferably 15 parts by mass or more, and preferably 100 parts by mass or less, more preferably 80 parts by mass or less, and even more preferably 60 parts by mass or less, per 100 parts by mass of the polymer. If the content of the radical crosslinking agent in the resin composition is 1 part by mass or more per 100 parts by mass of the polymer, the dielectric tangent of the resin film formed from the resin composition can be further reduced while the heat resistance can be further improved. On the other hand, if the content of the radical crosslinking agent in the resin composition is 100 parts by mass or less per 100 parts by mass of the polymer, the extensibility of the resin film formed from the resin composition can be improved.
  • the content of the radical crosslinking agent (IV) in the resin composition of the present invention is preferably 1 part by mass or more, more preferably 5 parts by mass or more, even more preferably 10 parts by mass or more, and preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and even more preferably 30 parts by mass or less per 100 parts by mass of the polymer. If the content of the radical crosslinking agent (IV) in the resin composition is 1 part by mass or more per 100 parts by mass of the polymer, the dielectric tangent of the resin film formed from the resin composition can be further reduced while the heat resistance can be further improved. On the other hand, if the content of the radical crosslinking agent (IV) in the resin composition is 100 parts by mass or less per 100 parts by mass of the polymer, the extensibility of the resin film formed from the resin composition can be improved.
  • the resin composition of the present invention preferably further contains a radical initiator. If the resin composition further contains a radical initiator in addition to the above-mentioned polymer and radical crosslinking agent, the solubility of the exposed portion in the developer is reduced, and the exposed portion remains after development.
  • the resin composition can be suitably used as a negative photosensitive resin composition, and can exhibit excellent patterning properties, particularly when a cyclic ketone is used as the developer.
  • the radical initiator is a component that generates radicals by exposure to light or heating when a resin film is obtained using the resin composition, and reacts with radical crosslinkable groups to crosslink the polymer.
  • the radical initiator for example, a photoradical generator, a thermal radical generator, etc.
  • the radical initiator can be used alone or in combination of two or more types.
  • the radical initiator preferably contains at least one of a photoradical generator and a thermal radical generator, and more preferably contains both a photoradical generator and a thermal radical generator. If the radical initiator contains a photoradical generator, the patterning characteristics of the resin film formed from the resin composition can be improved when a cyclic ketone is used as the developer. If the radical initiator contains a thermal radical generator, the heat resistance of the resin film formed from the resin composition can be further improved.
  • the photoradical generator can be used alone or in combination of two or more kinds.
  • acylphosphine oxide photoradical generators examples include bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, and 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide.
  • oxime ester photoradical generators examples include 1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(o-benzoyloxime) (manufactured by BASF and distributed as "Irgacure (registered trademark) OXE01"); ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(O-acetyloxime) (manufactured by BASF and distributed as "Irgacure OXE02"); and a compound (chemical formula not disclosed) distributed as "Irgacure OXE03" by BASF.
  • aromatic ketone-based photoradical generators examples include benzophenone, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanone-1, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2-methyl-1[4-methylthio]phenyl]-2-morpholinopropan-1-one, o-benzoylbenzoic acid methyl, [4-(methylphenylthio)phenyl]phenylmethane, 1,4-dibenzoylbenzene, 2-benzoylnaphthalene, 4-benzoylbiphenyl, 4-benzoyldiphenyl ether, and benzyl.
  • an oxime ester-based photoradical generator as the photoradical generator, and it is more preferable to use 1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(o-benzoyloxime).
  • thermal radical generator an organic peroxide-based thermal radical generator, an azobis-based thermal radical generator, etc.
  • the thermal radical generator may be used alone or in combination of two or more kinds.
  • examples of the organic peroxide-based thermal radical generator that can be used include dicumyl peroxide, 1,1-bis(3,3-dimethylbutylperoxy)cyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, n-butyl-4,4'-di(t-butylperoxy)valerate, di(2-t-butylperoxyisopropyl)benzene, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 2,5-dimethyl-2,5-di-t-butylperoxy-3-hexyne, t-amylperoxy-2-ethylhexan
  • azobis-based thermal radical generator for example, 2,2'-azobis(2-methylpropionitrile), 2,2'-azobis(2-methylpropionate)dimethyl, etc. can be used.
  • an organic peroxide-based thermal radical generator as the thermal radical generator, and it is more preferable to use dicumyl peroxide.
  • the content of the radical initiator in the resin composition of the present invention is preferably 1 part by mass or more, more preferably 3 parts by mass or more, even more preferably 5 parts by mass or more, preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 15 parts by mass or less per 100 parts by mass of the polymer. If the content of the radical initiator in the resin composition is 1 part by mass or more per 100 parts by mass of the polymer, the residual film rate of the exposed part after development can be improved for the resin film formed from the resin composition. On the other hand, if the content of the radical initiator in the resin composition is 25 parts by mass or less per 100 parts by mass of the polymer, the dielectric loss tangent of the resin film formed from the resin composition can be further reduced.
  • the content of the photoradical generator in the resin composition of the present invention is preferably 1 part by mass or more, more preferably 3 parts by mass or more, even more preferably 5 parts by mass or more, preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 15 parts by mass or less, per 100 parts by mass of the polymer. If the content of the photoradical generator in the resin composition is 1 part by mass or more per 100 parts by mass of the polymer, the residual film rate of the exposed part after development can be improved for the resin film formed from the resin composition. On the other hand, if the content of the photoradical generator in the resin composition is 25 parts by mass or less per 100 parts by mass of the polymer, the dielectric tangent of the resin film formed from the resin composition can be further reduced.
  • the content of the thermal radical generator in the resin composition of the present invention is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, even more preferably 0.5 parts by mass or more, preferably 5 parts by mass or less, and more preferably 3 parts by mass or less per 100 parts by mass of the polymer. If the content of the thermal radical generator in the resin composition is 0.1 parts by mass or more per 100 parts by mass of the polymer, the heat resistance of the resin film formed from the resin composition can be further improved. On the other hand, if the content of the thermal radical generator in the resin composition is 5 parts by mass or less per 100 parts by mass of the polymer, the dielectric tangent of the resin film formed from the resin composition can be further reduced.
  • the solvent that may be optionally contained in the resin composition of the present invention is not particularly limited, and any known solvent may be used as long as it can dissolve the above-mentioned polymer. From the viewpoint of dissolving the above-mentioned polymer well and improving the coatability of the resin composition and the uniformity of the resin film formed, it is preferable to use, as the solvent, a ketone-based solvent such as methyl ethyl ketone, diisobutyl ketone, cyclopentanone, or cyclohexanone, or an ether-based solvent such as dibutyl ether, diisoamyl ether, tetrahydrofuran, tetrahydropyran, methyltetrahydropyran, cyclopentyl methyl ether, or anisole, more preferably cyclopentanone, cyclohexanone, tetrahydrofuran, tetrahydropyran, methyltetrahydro
  • the content of the solvent in the resin composition is preferably 10% by mass or more, more preferably 20% by mass or more, and preferably 60% by mass or less, more preferably 50% by mass or less, based on the total mass of the resin composition, in total, other than the solvent.
  • additive components that may be optionally contained in the resin composition of the present invention are not particularly limited, and examples thereof include crosslinkers other than the above-mentioned radical crosslinkers (non-radical crosslinkers), surfactants, antioxidants, sensitizers, adhesion aids, etc. These additive components can be used alone or in combination of two or more types. Among them, it is preferable to include a surfactant as an additive component from the viewpoint of improving the coatability of the resin composition of the present invention and improving the uniformity of the film thickness of the obtained resin film.
  • the surfactant is not particularly limited, and known silicone surfactants, fluorine surfactants, etc. can be used.
  • the content of the surfactant in the resin composition is preferably 0.1 mass% or less, more preferably 0.05 mass% or less, based on the total mass of the resin composition.
  • the resin composition of the present invention can be prepared by mixing the above-mentioned essential components (polymer and radical crosslinking agent) and various optional components by a known method.
  • the resin composition of the present invention is used, for example, as a resin composition obtained by dissolving each component in a solvent and filtering it.
  • known mixers such as a stirrer, ball mill, sand mill, bead mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, and film mix can be used.
  • filtering a general filtering method using a filter medium such as a filter can be adopted.
  • Tetrahydrofuran was used as a developing solvent, and the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were determined in terms of standard polystyrene. Then, the molecular weight distribution (Mw/Mn) was calculated.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mw/Mn molecular weight distribution
  • the resin film was cured by heating at 230 ° C. for 1 hour in nitrogen to obtain a silicon wafer with a resin film of 10 ⁇ m thickness.
  • the obtained silicon wafer with a resin film was immersed in a 0.1 mol % hydrochloric acid aqueous solution for 12 hours to etch the aluminum, thereby peeling off the resin film from the wafer with the resin film, and then dried in an oven at 110 ° C. for 1 hour.
  • the dried resin film was cut into a rectangular shape with a width of 5 mm and a length of 40 mm to prepare a test piece, and the test piece was subjected to a thermomechanical analysis (Mettler Toledo, "TMA/SDTA841") to measure the glass transition temperature and evaluate it according to the following criteria.
  • a higher glass transition temperature means that the resin film has better heat resistance.
  • C Glass transition temperature is less than 170° C.
  • the obtained silicon wafer with a resin film was immersed in a 0.1 mol % hydrochloric acid aqueous solution for 12 hours to etch the aluminum, thereby peeling off the resin film from the wafer with the resin film, and then dried in an oven at 110 ° C. for 1 hour.
  • the dried resin film was cut into a strip of 5 mm width and 40 mm length to prepare a test piece, and a tensile test was performed on the test piece to measure the tensile elongation of the resin film.
  • a tensile tester (Shimadzu Corporation, "AGS-10kNX”) was used to perform a tensile test at 23°C, with a gripper interval of 20 mm and a tensile speed of 2 mm/min, and the tensile elongation at the break point was measured.
  • the test was performed on eight test pieces, and the average value of the top three points was taken as the tensile elongation of the resin film formed using the resin composition obtained in each Example and Comparative Example. Then, the evaluation was performed according to the following criteria. The higher the tensile elongation value, the higher the extensibility of the resin film.
  • the resin film was cured by heating at 180 ° C. for 1 hour in nitrogen to obtain a silicon wafer with a resin film of 10 ⁇ m thickness.
  • the obtained silicon wafer with a resin film was immersed in a 0.1 mol % hydrochloric acid aqueous solution for 12 hours to etch the aluminum, and the resin film was peeled off from the silicon wafer with the resin film, and then dried in a 110 ° C. oven for 1 hour.
  • the dried resin film was cut into a rectangular shape having a width of 2 mm and a length of 50 mm to prepare a test piece.
  • the dielectric tangent of this test piece was measured at 10 GHz by a cavity resonator method, and the dielectric tangent of the resin film was evaluated according to the following criteria.
  • Dielectric loss tangent is less than 0.005
  • Dielectric loss tangent is 0.005 or more and less than 0.007
  • Dielectric loss tangent is 0.007 or more ⁇ Patterning characteristics>
  • the resin compositions prepared in each of the Examples and Comparative Examples were spin-coated on a 4-inch silicon wafer, and then pre-baked at 90°C for 2 minutes using a hot plate to form a resin film made of the resin composition.
  • the wafer was exposed to light at an exposure dose of 700 mJ/ cm2 through a mask having a hole pattern with a diameter of 20 ⁇ m using a g-hi mixed line, and then developed by immersing the wafer in cyclopentanone for 90 seconds.
  • the developed resin film was examined using an optical microscope to confirm the presence or absence of openings in the hole pattern. Evaluation was then performed according to the following criteria. +: Opening of the hole pattern was confirmed. -: No hole pattern opening was observed.
  • polyimide compound (A-1) represented by the following formula (A-1).
  • the polyimide compound (A-1) had a weight average molecular weight of 19,800 and a molecular weight distribution of 1.4.
  • the weight average molecular weight of the polyimide compound (A-2) was 9900, and the molecular weight distribution was 1.8.
  • the formula (A-2) is merely one example of the structure of the polyimide compound (A-2) obtained in Synthesis Example 2 above.
  • the polyimide compound (A-2) may be a compound represented by the following formula (a): At least a part of the structure derived from a-BPDA represented by the following formula (a'): The structure may have a structure represented by the following formula:
  • a polymerization reaction liquid was obtained by charging 92.9 parts of polyimide compound (A-1), 100 parts of a monomer mixture consisting of 30 mol % of 2-norbornene-5-methanol (abbreviated as "NBMOH") as a norbornene-based monomer (I') and 70 mol % of methanotetrahydrofluorene (abbreviated as "MTF”) as a norbornene-based monomer (III'), 0.4 parts of benzylidene[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(tricyclohexylphosphine)ruthenium
  • the obtained polymerization reaction solution was placed in an autoclave and stirred at 130°C and a hydrogen pressure of 10 MPa for 5 hours to carry out a hydrogenation reaction, after which 900 parts of tetrahydrofuran was added as a solvent to the reaction solution. This was dropped into 8000 parts of methanol, and the resulting precipitate was collected by filtration and dried under reduced pressure at 50°C to obtain a ring-opening polymer hydrogenation product (B-1) (see the following formula).
  • the weight average molecular weight of the ring-opening polymer hydrogenation product (B-1) was 33,100, and the molecular weight distribution was 1.9.
  • the weight average molecular weight of polymer (C-1) measured by GPC was 22,600, and the molecular weight distribution was 1.5. It was confirmed by 1 H-NMR measurement that the methacryloyl modification rate was 100%, and the content ratio of structural units derived from methacryloyl-modified NBMOH (abbreviated as "NBMOH-MA") in polymer (C-1) was 30 mol % when the total content of structural units derived from MTF and structural units derived from NBMOH-MA was 100 mol %.
  • NBMOH-MA methacryloyl-modified NBMOH
  • ⁇ Preparation of Resin Composition 100 parts of the polymer (C-1) obtained as described above, 10 parts of "Irgacure OXE01" (manufactured by BASF) as a photoradical generator, 25 parts of "OPE-2St 1200” (manufactured by Mitsubishi Gas Chemical Co., Ltd., number average molecular weight: 1200) as a radical crosslinking agent, 25 parts of "MIR-3000-70MT” (manufactured by Nippon Kayaku Co., Ltd., radical crosslinking agent (IV)) and 10 parts of triallyl isocyanurate (manufactured by Shinryo Corporation), and an amount of anisole (solvent) added such that the total of components other than the solvent is 30% relative to the total mass of the resin composition was mixed and dissolved.
  • anisole solvent
  • the resin composition of Example 1 was prepared in the same manner as in Example 1, except that 1.6 parts of dicumyl peroxide (manufactured by Nacalai Tesque, Inc.) was added as a thermal radical generator.
  • the resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 1.
  • dicumyl peroxide was added as a thermal radical generator, and 25 parts of "OPE-2St 1200" as a radical crosslinking agent, 25 parts of "MIR-3000-70MT” as a radical crosslinking agent, 25 parts of "OPE-2St 2200” (manufactured by Mitsubishi Gas Chemical Company, number average molecular weight: 2200) and 10 parts of triallyl isocyanurate were used instead of 10 parts of triallyl isocyanurate.
  • the resin composition was prepared in the same manner as in Example 1.
  • the resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 1.
  • the polymer (C-2) prepared as described below was used instead of the polymer (C-1)
  • 1.35 parts of dicumyl peroxide was added as a thermal radical generator, and "MIR-3000-70MT” was not added as a radical crosslinking agent.
  • the resin composition was prepared in the same manner as in Example 1.
  • the resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 1.
  • 25 parts of "MIR-3000-70MT” was used instead of 25 parts of "OPE-2St 1200" as a radical crosslinking agent.
  • a resin composition was prepared in the same manner as in Example 4. The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 1.
  • the polymer (C-3) prepared as follows was used, and 1.25 parts of dicumyl peroxide was added as a thermal radical generator.
  • the resin composition was prepared in the same manner as in Example 1, except that 25 parts of “OPE-2St 1200” as a radical crosslinking agent, 25 parts of “MIR-3000-70MT” and 10 parts of triallyl isocyanurate were replaced with 15 parts of “MIR-3000-70MT” and 10 parts of triallyl isocyanurate.
  • the amount of dicumyl peroxide added as a thermal radical generator was changed to 1.35 parts, and 25 parts of "OPE-2St 1200" was used instead of 15 parts of "MIR-3000-70MT” as a radical crosslinking agent.
  • the resin composition was prepared in the same manner as in Example 6.
  • the resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 1.
  • the amount of dicumyl peroxide added as a thermal radical generator was changed to 1.1 parts, and 15 parts of "MIR-3000-70MT" as a radical crosslinking agent and 10 parts of tris(2-acryloyloxyethyl)isocyanurate were used instead of triallyl isocyanurate.
  • the resin composition was prepared in the same manner as in Example 6.
  • the resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 2.
  • the polymer (C-4) prepared as follows was used, 1.3 parts of dicumyl peroxide was added as a thermal radical generator, and 25 parts of "OPE-2St 1200" and 25 parts of "MIR-3000-70MT” were used as radical crosslinking agents. Except for this, the resin composition was prepared in the same manner as in Example 1. The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 2.
  • the polymer (C-5) prepared as follows was used instead of the polymer (C-1), and 1.35 parts of dicumyl peroxide was added as a thermal radical generator.
  • the resin composition was prepared in the same manner as in Example 1, except that 25 parts of "OPE-2St 1200" was not added as a radical crosslinking agent.
  • the resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 2.
  • the obtained polymerization reaction solution was placed in an autoclave and stirred at 150° C. and a hydrogen pressure of 4 MPa for 5 hours to carry out a hydrogenation reaction, after which 300 parts of tetrahydrofuran as a solvent was added to the reaction solution, which was then dropped into 8,000 parts of methanol, and the resulting precipitate was collected by filtration and dried under reduced pressure at 50° C. to obtain a hydrogenated ring-opened polymer (B-5).
  • NBMOH-MA indicates a methacryloyl-modified 2-norbornene-5-methanol unit
  • A-1 to “A-4" represent structural units derived from polyimide compounds (A-1) to (A-4), respectively.
  • MTF represents a methanotetrahydrofluorene unit
  • NBMOH indicates a non-methacryloyl-modified 2-norbornene-5-methanol unit
  • MIR3000 indicates MIR-3000-70MT (radical crosslinking agent (IV))
  • TEEIC refers to tris(2-acryloyloxyethyl) isocyanurate
  • TAIC refers to triallyl isocyanurate
  • MW100LM refers to Nikalac MW-100LM.
  • the present invention provides a resin composition that is capable of forming a resin film that has excellent heat resistance and a low dielectric tangent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The purpose of the present invention is to provide a resin composition from which it is possible to form a resin film having a low dielectric loss tangent and excellent heat resistance. A resin composition according to the present invention contains a polymer and a radical cross-linking agent. The polymer includes a structural unit (I) represented by formula (I) and a structural unit (II) represented by formula (II). In formula (I), at least one of R1-R4 represents a radical cross-linkable group, each of R1-R4 not being a radical cross-linkable group independently represents a hydrogen atom, an alkyl group, or an aromatic ring group, two of R1-R4 not being a radical cross-linkable group optionally form a ring structure together, and m represents an integer of 0-4. In formula (II), X represents a divalent organic group, Y represents a tetravalent organic group, Z represents a divalent organic group, and n represents an integer of 0 or more.

Description

樹脂組成物Resin composition
 本発明は、樹脂組成物に関するものである。 The present invention relates to a resin composition.
 従来、集積回路素子や有機EL素子等の電子部品には、部品自体の劣化や損傷を防止するための保護膜、素子表面や配線を平坦化するための平坦化膜、電気絶縁性を保つための電気絶縁膜、発光部を分離する画素分離膜、光を集光、拡散させる光学膜等として種々の樹脂膜が設けられている。 Traditionally, electronic components such as integrated circuit elements and organic EL elements are provided with a variety of resin films, such as protective films to prevent deterioration and damage to the components themselves, planarizing films to flatten the element surface and wiring, electrical insulating films to maintain electrical insulation, pixel separation films to separate light-emitting areas, and optical films to focus and diffuse light.
 従来、このような樹脂膜の形成には、ノルボルネン系単量体を開環重合して得られる重合体を含む樹脂組成物が用いられている(特許文献1~2参照)。  Conventionally, resin compositions containing polymers obtained by ring-opening polymerization of norbornene-based monomers have been used to form such resin films (see Patent Documents 1 and 2).
国際公開第2022/070871号International Publication No. 2022/070871 特開2006-286352号公報JP 2006-286352 A
 ここで、上述した各種の用途に用いられる樹脂膜には、耐熱性に優れ、且つ、誘電正接などの電気的特性に優れることが求められる。 Here, the resin films used in the various applications mentioned above are required to have excellent heat resistance and electrical properties such as dielectric tangent.
 そこで、本発明は、耐熱性に優れ、且つ、誘電正接が低い樹脂膜を形成し得る樹脂組成物の提供を目的とする。 The present invention aims to provide a resin composition that can form a resin film that has excellent heat resistance and a low dielectric tangent.
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、所定の二種の構造単位を含む重合体と、ラジカル架橋剤とを含む樹脂組成物を用いれば、耐熱性に優れ、且つ、誘電正接が低い樹脂膜を形成し得ることを見出し、本発明を完成させた。 The present inventors have conducted extensive research with the aim of solving the above problems. They have discovered that a resin film with excellent heat resistance and a low dielectric tangent can be formed by using a resin composition containing a polymer containing two specific structural units and a radical crosslinking agent, and have thus completed the present invention.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明によれば、下記(1)~(6)の樹脂組成物が提供される。
(1)重合体と、ラジカル架橋剤とを含む樹脂組成物であって、前記重合体は、下記式(I)で示される構造単位(I)と、下記式(II)で示される構造単位(II)とを含む、樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
 式(I)中、R~Rは少なくとも一つがラジカル架橋性基であり、ラジカル架橋性基に該当しないR~Rは、それぞれ独立して、水素原子、アルキル基または芳香環基であり、ラジカル架橋性基に該当しないR~Rのうち二つが一緒になって環構造を形成していてもよく、mは0以上4以下の整数である。
Figure JPOXMLDOC01-appb-C000006
 式(II)中、Xは2価の有機基であり、Yは4価の有機基であり、Zは2価の有機基であり、nは0以上の整数である。
 上記所定の二種の構造単位を含む重合体と、ラジカル架橋剤とを含む樹脂組成物を用いれば、耐熱性に優れ、且つ、誘電正接が低い樹脂膜を形成することができる。
 なお、式(II)中、nが2以上の整数の場合、複数あるYは互いに同一でも異なっていてもよく、複数あるZは互いに同一でも異なっていてもよい。
That is, an object of the present invention is to advantageously solve the above problems, and according to the present invention, there are provided the following resin compositions (1) to (6).
(1) A resin composition comprising a polymer and a radical crosslinking agent, the polymer comprising a structural unit (I) represented by the following formula (I) and a structural unit (II) represented by the following formula (II):
Figure JPOXMLDOC01-appb-C000005
In formula (I), at least one of R 1 to R 4 is a radical crosslinkable group, and R 1 to R 4 that do not correspond to the radical crosslinkable group are each independently a hydrogen atom, an alkyl group or an aromatic ring group, and two of R 1 to R 4 that do not correspond to the radical crosslinkable group may join together to form a ring structure, and m is an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000006
In formula (II), X is a divalent organic group, Y is a tetravalent organic group, Z is a divalent organic group, and n is an integer of 0 or more.
By using a resin composition containing a polymer containing the above-mentioned two types of specified structural units and a radical crosslinking agent, a resin film having excellent heat resistance and a low dielectric loss tangent can be formed.
In addition, in formula (II), when n is an integer of 2 or more, a plurality of Y's may be the same or different, and a plurality of Z's may be the same or different.
(2)前記重合体が、下記式(III)で示される構造単位(III)を更に含む、上記(1)に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
 式(III)中、R~Rの少なくとも一つが芳香環基であるか、またはR~Rのうち二つが一緒になって芳香環含有構造を形成しており、芳香環基に該当せず且つ芳香環含有構造も形成しないR~Rは、それぞれ独立して、水素原子またはアルキル基であり、kは0以上4以下の整数である。
 重合体が構造単位(I)および(II)に加えて構造単位(III)を更に含めば、樹脂組成物から形成される樹脂膜の耐熱性を更に向上させつつ誘電正接を一層低下させることができる。
(2) The resin composition according to the above (1), wherein the polymer further contains a structural unit (III) represented by the following formula (III):
Figure JPOXMLDOC01-appb-C000007
In formula (III), at least one of R 5 to R 8 is an aromatic ring group, or two of R 5 to R 8 together form an aromatic ring-containing structure, and R 5 to R 8 that are not aromatic ring groups and do not form an aromatic ring-containing structure are each independently a hydrogen atom or an alkyl group, and k is an integer of 0 to 4.
When the polymer further contains the structural unit (III) in addition to the structural units (I) and (II), the heat resistance of the resin film formed from the resin composition can be further improved while the dielectric tangent can be further reduced.
(3)ラジカル開始剤を更に含む、上記(1)または(2)に記載の樹脂組成物。
 上述した重合体およびラジカル架橋剤に加えて、ラジカル開始剤を更に含む樹脂組成物は、露光部位の現像液に対する溶解性が低下し、現像によって露光部位が残る、ネガ型の感光性樹脂組成物として好適に用いることができる。
(3) The resin composition according to (1) or (2) above, further comprising a radical initiator.
A resin composition further containing a radical initiator in addition to the above-mentioned polymer and radical crosslinking agent can be suitably used as a negative-type photosensitive resin composition in which the solubility of the exposed area in a developer is reduced and the exposed area remains after development.
(4)前記ラジカル開始剤が、光ラジカル発生剤と熱ラジカル発生剤の少なくとも一方を含む、上記(3)に記載の樹脂組成物。
 光ラジカル発生剤と熱ラジカル発生剤の少なくとも一方を含む樹脂組成物を用いれば、樹脂組成物から形成される樹脂膜の耐熱性を更に向上させつつ誘電正接を一層低下させることができる。
(4) The resin composition according to (3) above, wherein the radical initiator includes at least one of a photoradical generator and a thermal radical generator.
By using a resin composition containing at least one of a photoradical generator and a thermal radical generator, it is possible to further reduce the dielectric tangent while further improving the heat resistance of a resin film formed from the resin composition.
(5)前記ラジカル架橋剤が、アリル基とマレイミド基の少なくとも一方を有する、上記(1)~(4)の何れかに記載の樹脂組成物。
 アリル基とマレイミド基の少なくとも一方を有するラジカル架橋剤を含む樹脂組成物を用いれば、樹脂組成物から形成される樹脂膜の耐熱性を更に向上させつつ誘電正接を一層低下させることができる。また、当該樹脂膜の伸張性を向上させることができる。
(5) The resin composition according to any one of (1) to (4) above, wherein the radical crosslinking agent has at least one of an allyl group and a maleimide group.
By using a resin composition containing a radical crosslinking agent having at least one of an allyl group and a maleimide group, it is possible to further improve the heat resistance of a resin film formed from the resin composition while further reducing the dielectric tangent, and also to improve the extensibility of the resin film.
(6)前記ラジカル架橋剤が、下記式(IV)で示されるラジカル架橋剤(IV)を含む、上記(1)~(5)の何れかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000008
 式(IV)中、aは1以上30以下の整数である。
 ラジカル架橋剤(IV)を含む樹脂組成物を用いれば、樹脂組成物から形成される樹脂膜の耐熱性を更に向上させつつ誘電正接を一層低下させることができる。また、当該樹脂膜の伸張性を向上させることができる。
(6) The resin composition according to any one of (1) to (5), wherein the radical crosslinking agent comprises a radical crosslinking agent (IV) represented by the following formula (IV):
Figure JPOXMLDOC01-appb-C000008
In formula (IV), a is an integer of 1 or more and 30 or less.
By using a resin composition containing the radical crosslinking agent (IV), it is possible to further reduce the dielectric tangent while further improving the heat resistance of the resin film formed from the resin composition. Also, it is possible to improve the extensibility of the resin film.
 本発明によれば、耐熱性に優れ、且つ、誘電正接が低い樹脂膜を形成し得る樹脂組成物を提供することができる。 The present invention provides a resin composition that is capable of forming a resin film that has excellent heat resistance and a low dielectric tangent.
 ここで、本発明の樹脂組成物は、特に限定されることなく、集積回路素子や有機EL素子、半導体パッケージ等の電子部品等に備えられ得る樹脂膜を形成する際に用いることができる。特に、本発明の樹脂組成物は、有機EL、半導体パッケージ、プリント配線基板、ソルダーレジスト等の絶縁性有機膜を製造する際等に好適に用いられ得る。さらに、本発明の樹脂組成物は、露光部位の現像液に対する溶解性が低下し、現像によって露光部位が残る、ネガ型の感光性樹脂組成物として好適に用いることができる。また、本発明の樹脂組成物を用いて形成した樹脂膜を露光する場合に用いる活性エネルギー線としては、特に限定されることなく、紫外線、g線、h線、i線等の単一波長の光線、KrFエキシマレーザー光、ArFエキシマレーザー光等の光線、および電子線のような粒子線を挙げることができる。 Here, the resin composition of the present invention can be used, without any particular limitation, when forming a resin film that can be provided on electronic components such as integrated circuit elements, organic EL elements, and semiconductor packages. In particular, the resin composition of the present invention can be suitably used when manufacturing insulating organic films such as organic EL, semiconductor packages, printed wiring boards, and solder resists. Furthermore, the resin composition of the present invention can be suitably used as a negative-type photosensitive resin composition in which the solubility of the exposed area in a developer is reduced, and the exposed area remains after development. In addition, the active energy rays used when exposing a resin film formed using the resin composition of the present invention include, without any particular limitation, single-wavelength light rays such as ultraviolet rays, g-rays, h-rays, and i-rays, light rays such as KrF excimer laser light and ArF excimer laser light, and particle rays such as electron beams.
(樹脂組成物)
 本発明の樹脂組成物は、重合体およびラジカル架橋剤を含むことを必要とし、任意に、ラジカル開始剤、溶剤、およびその他の添加成分からなる群から選択される少なくとも1つを含み得る。
(Resin composition)
The resin composition of the present invention must contain a polymer and a radical crosslinking agent, and may optionally contain at least one selected from the group consisting of a radical initiator, a solvent, and other additive components.
 そして、本発明の樹脂組成物は、所定の構造単位(I)および(II)を含有する重合体と、ラジカル架橋剤とを含んでいるため、本発明の樹脂組成物を用いれば、耐熱性に優れ、且つ、誘電正接が低い樹脂膜を形成することができる。このように、所定の二種の構造単位を含有する重合体と、ラジカル架橋剤とを含む樹脂組成物を用いることで、上記の効果が得られる理由は定かではないが、以下の通りであると推察される。 The resin composition of the present invention contains a polymer containing the specified structural units (I) and (II) and a radical crosslinking agent, so that by using the resin composition of the present invention, a resin film with excellent heat resistance and a low dielectric tangent can be formed. Although the reason why the above effects are obtained by using a resin composition containing a polymer containing two specified structural units and a radical crosslinking agent is not clear, it is presumed to be as follows.
 まず、本発明の樹脂組成物中の重合体は、所定の構造単位(I)および構造単位(II)を含み、当該構造単位(I)は、所定の箇所(上記式(I)中のR~Rの少なくとも1つ)にラジカル架橋性基を有する。このような重合体中のラジカル架橋性基は、炭素-炭素不飽和結合(特にはエチレン性不飽和結合)を有し、ラジカルの存在下でラジカル反応しうる。加えて、本発明の樹脂組成物はラジカル架橋剤を含み、当該ラジカル架橋剤は、ラジカル反応により、上述したラジカル架橋性基を有する重合体と反応しうる。そのため、本発明の樹脂組成物を用いて樹脂膜を得る際、ラジカル反応により、上述した重合体とラジカル架橋剤が反応し、樹脂膜中で強固な架橋構造を形成しうる。そして、このような強固な架橋構造からなる樹脂膜は、高いガラス転移温度を有し、耐熱性に優れると考えられる。
 また、本発明の樹脂組成物に含まれる重合体は、環状オレフィン構造を有する構造単位(I)を含む。このような環状オレフィン構造を有する重合体は、環状オレフィン構造の低極性に起因して、誘電正接が低い樹脂膜を形成するための樹脂材料として好適に使用され得る。加えて、本発明の樹脂組成物に含まれるラジカル架橋剤は、樹脂膜の誘電正接を上昇させ得る非ラジカル架橋剤(ラジカル架橋剤以外の架橋剤)と異なり、樹脂膜の誘電正接にほとんど影響を及ぼさない。そのため、本発明の樹脂組成物から形成される樹脂膜は、誘電正接が低下していると考えられる。
 更に、本発明の樹脂組成物に含まれる重合体は、構造単位(II)を含む。構造単位(II)の存在により、樹脂組成物から形成される樹脂膜の耐熱性を向上させつつ誘電正接を低下させることができる。
 したがって、本発明の樹脂組成物を使用すれば、耐熱性に優れ、且つ、誘電正接が低い樹脂膜を形成することができる。
First, the polymer in the resin composition of the present invention contains a predetermined structural unit (I) and a structural unit (II), and the structural unit (I) has a radical crosslinkable group at a predetermined position (at least one of R 1 to R 4 in the above formula (I)). The radical crosslinkable group in such a polymer has a carbon-carbon unsaturated bond (particularly an ethylenically unsaturated bond) and can undergo a radical reaction in the presence of a radical. In addition, the resin composition of the present invention contains a radical crosslinking agent, and the radical crosslinking agent can react with the polymer having the above-mentioned radical crosslinkable group by a radical reaction. Therefore, when a resin film is obtained using the resin composition of the present invention, the above-mentioned polymer and the radical crosslinking agent react with each other by a radical reaction, and a strong crosslinked structure can be formed in the resin film. And, it is considered that a resin film consisting of such a strong crosslinked structure has a high glass transition temperature and is excellent in heat resistance.
In addition, the polymer contained in the resin composition of the present invention contains a structural unit (I) having a cyclic olefin structure. Such a polymer having a cyclic olefin structure can be suitably used as a resin material for forming a resin film having a low dielectric tangent due to the low polarity of the cyclic olefin structure. In addition, the radical crosslinking agent contained in the resin composition of the present invention has almost no effect on the dielectric tangent of the resin film, unlike a non-radical crosslinking agent (a crosslinking agent other than a radical crosslinking agent) that can increase the dielectric tangent of the resin film. Therefore, it is considered that the resin film formed from the resin composition of the present invention has a reduced dielectric tangent.
Furthermore, the polymer contained in the resin composition of the present invention contains a structural unit (II). The presence of the structural unit (II) can improve the heat resistance of the resin film formed from the resin composition while reducing the dielectric tangent.
Therefore, by using the resin composition of the present invention, a resin film having excellent heat resistance and a low dielectric tangent can be formed.
 さらに、本発明の樹脂組成物を用いて形成された樹脂膜は、耐熱性に優れ、且つ、誘電正接が低いことに加え、強度(引張強度)に優れ、且つ、線膨張係数が低いという特徴も有する場合がある(即ち、本発明の樹脂組成物は、強度に優れ、且つ、線膨張係数が低い樹脂膜を形成可能であるという効果も奏する場合がある)。 Furthermore, the resin film formed using the resin composition of the present invention may be characterized by excellent heat resistance and a low dielectric tangent, as well as excellent strength (tensile strength) and a low linear expansion coefficient (i.e., the resin composition of the present invention may have the effect of being able to form a resin film that is excellent in strength and has a low linear expansion coefficient).
<重合体>
 本発明の樹脂組成物に含まれる重合体は、下記式(I)で示される構造単位(I)と、下記式(II)で示される構造単位(II)とを含む。
<Polymer>
The polymer contained in the resin composition of the present invention contains a structural unit (I) represented by the following formula (I) and a structural unit (II) represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000009
 式(I)中、R~Rは少なくとも一つがラジカル架橋性基であり、ラジカル架橋性基に該当しないR~Rは、それぞれ独立して、水素原子、アルキル基または芳香環基であり、ラジカル架橋性基に該当しないR~Rのうち二つが一緒になって環構造を形成していてもよく、mは0以上4以下の整数である。
Figure JPOXMLDOC01-appb-C000010
 式(II)中、Xは2価の有機基であり、Yは4価の有機基であり、Zは2価の有機基であり、nは0以上の整数である。
Figure JPOXMLDOC01-appb-C000009
In formula (I), at least one of R 1 to R 4 is a radical crosslinkable group, and R 1 to R 4 that do not correspond to the radical crosslinkable group are each independently a hydrogen atom, an alkyl group or an aromatic ring group, and two of R 1 to R 4 that do not correspond to the radical crosslinkable group may join together to form a ring structure, and m is an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000010
In formula (II), X is a divalent organic group, Y is a tetravalent organic group, Z is a divalent organic group, and n is an integer of 0 or more.
<<構造単位(I)>>
 上記式(I)で示される構造単位(I)において、R~Rは少なくとも一つがラジカル架橋性基である。R~Rがいずれもラジカル架橋性基でない場合、樹脂組成物から形成される樹脂膜の耐熱性が低下する。また、当該樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性が低下する。そして、上記式(I)で示される構造単位(I)において、ラジカル架橋性基に該当しないR~Rは、それぞれ独立して、水素原子、アルキル基または芳香環基であり、ラジカル架橋性基に該当しないR~Rのうち二つが一緒になって環構造を形成していてもよい。さらに、mは0以上4以下の整数である。
 なお、重合体は、構造単位(I)を一種のみ含有していてもよく、複数種含有していてもよい。
<<Structural unit (I)>>
In the structural unit (I) represented by the above formula (I), at least one of R 1 to R 4 is a radical crosslinking group. If none of R 1 to R 4 is a radical crosslinking group, the heat resistance of the resin film formed from the resin composition is reduced. In addition, the patterning characteristics of the resin film when a cyclic ketone is used as a developer are reduced. In the structural unit (I) represented by the above formula (I), R 1 to R 4 that do not correspond to the radical crosslinking group are each independently a hydrogen atom, an alkyl group, or an aromatic ring group, and two of R 1 to R 4 that do not correspond to the radical crosslinking group may be joined together to form a ring structure. Furthermore, m is an integer of 0 to 4.
The polymer may contain only one type of structural unit (I), or may contain a plurality of types of structural units (I).
[ラジカル架橋性基]
 ここで、R~Rを構成し得るラジカル架橋性基としては、炭素-炭素不飽和結合(特にはエチレン性不飽和結合)を有し、そしてラジカル反応しうる分子骨格を有する基であれば特に限定されない。ラジカル架橋性基としては、スチリル骨格を有するラジカル架橋性基、アクリレート骨格を有するラジカル架橋性基が好ましく挙げられる。
 なお、本発明において、ラジカル架橋性基が「スチリル骨格を有する」とは、ラジカル架橋性基が「CH=CH-Ph-(Phはフェニレン基であり、そして式中の水素原子の一部または全部が任意の置換基で置換されていてもよい。)」で示される化学構造を含むことをいう。そして、本発明において、「スチリル骨格を有する」基は、「芳香環基」には該当せず「ラジカル架橋性基」に該当するものとする。
 また、本発明において、ラジカル架橋性基が「アクリレート骨格を有する」とは、ラジカル架橋性基が「CH=CH-C(=O)-O-(式中の水素原子の一部または全部が任意の置換基で置換されていてもよい。)」で示される化学構造を含むことをいう。
[Radical crosslinking group]
Here, the radical crosslinkable group that can constitute R 1 to R 4 is not particularly limited as long as it has a carbon-carbon unsaturated bond (particularly an ethylenically unsaturated bond) and a molecular skeleton capable of undergoing a radical reaction. Preferred examples of the radical crosslinkable group include a radical crosslinkable group having a styryl skeleton and a radical crosslinkable group having an acrylate skeleton.
In the present invention, the radical crosslinkable group "having a styryl skeleton" means that the radical crosslinkable group contains a chemical structure represented by "CH 2 ═CH-Ph- (Ph is a phenylene group, and some or all of the hydrogen atoms in the formula may be substituted with any substituent). In the present invention, a group "having a styryl skeleton" does not fall under the category of an "aromatic ring group" but falls under the category of a "radical crosslinkable group".
In the present invention, the radical crosslinkable group "having an acrylate skeleton" means that the radical crosslinkable group contains a chemical structure represented by "CH 2 ═CH-C(═O)-O- (wherein some or all of the hydrogen atoms may be substituted with any substituent group)."
―スチリル骨格を有するラジカル架橋性基―
 重合体の構造単位(I)がスチリル骨格を有するラジカル架橋性基を備えていれば、構造単位(I)における極性原子の占める割合が低減されるためと推察されるが、樹脂膜の誘電正接を一層低下させることができる。また樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を高めることができる。
 ここで、スチリル骨格を有するラジカル架橋性基としては、例えば、下記式(V)で示される基が挙げられる。
- Radical crosslinking group with styryl skeleton -
If the structural unit (I) of the polymer has a radical crosslinkable group having a styryl skeleton, it is presumed that the proportion of polar atoms in the structural unit (I) is reduced, and this can further reduce the dielectric tangent of the resin film, and also improve the patterning properties of the resin film when a cyclic ketone is used as a developer.
Here, examples of the radical crosslinkable group having a styryl skeleton include groups represented by the following formula (V).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(V)において、RおよびR11はそれぞれ独立して単結合または炭素数1以上10以下のアルキレン基であり、R10は、酸素原子または硫黄原子であり、R12は、置換基であり、yは0以上4以下の整数である。 In formula (V), R 9 and R 11 each independently represent a single bond or an alkylene group having 1 to 10 carbon atoms; R 10 represents an oxygen atom or a sulfur atom; R 12 represents a substituent; and y represents an integer of 0 to 4.
 式(V)においてRおよびR11でありうる炭素数1以上10以下のアルキレン基としては、特に限定されないが、メチレン基、エチレン基、プロピレン基、n-ブチレン基、イソブチレン基などの炭素数1以上6以下の鎖状アルキレン基が好ましく、メチレン基、エチレン基、プロピレン基、n-ブチレン基などの炭素数1以上6以下の直鎖状アルキレン基がより好ましく、メチレン基、エチレン基、プロピレン基などの炭素数1以上3以下の直鎖状アルキレン基が更に好ましく、メチレン基が特に好ましい。 In formula (V), the alkylene group having 1 to 10 carbon atoms which may be R 9 and R 11 is not particularly limited, but is preferably a chain alkylene group having 1 to 6 carbon atoms such as a methylene group, an ethylene group, a propylene group, an n-butylene group, or an isobutylene group, more preferably a linear alkylene group having 1 to 6 carbon atoms such as a methylene group, an ethylene group, a propylene group, or an n-butylene group, still more preferably a linear alkylene group having 1 to 3 carbon atoms such as a methylene group, an ethylene group, or a propylene group, and particularly preferably a methylene group.
 式(V)においてR12でありうる置換基としては、特に限定されることなく、例えば、メチル基およびエチル基などのアルキル基、ならびに、フルオロ基およびクロロ基などのハロゲノ基などが挙げられる。 In formula (V), possible substituents for R 12 include, but are not limited to, alkyl groups such as methyl and ethyl groups, and halogeno groups such as fluoro and chloro groups.
 なお、式(V)において、yは0であることが好ましく、すなわち、スチリル骨格を構成するフェニレン基(-C-)が置換基を有さないことが好ましい。 In formula (V), y is preferably 0, that is, the phenylene group (--C 6 H 4 --) constituting the styryl skeleton preferably has no substituent.
―アクリレート骨格を有するラジカル架橋性基―
 重合体の構造単位(I)がアクリレート骨格を有するラジカル架橋性基を備えていれば、樹脂組成物から形成される樹脂膜の誘電正接を一層低下させつつ伸長性を向上させることができる。また、当該樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を高めることができる。
 ここで、アクリレート骨格を有するラジカル架橋性基としては、例えば、下記式(VI)で示される基が挙げられる。
-Radical crosslinking group with acrylate skeleton-
If the structural unit (I) of the polymer has a radical crosslinkable group having an acrylate skeleton, the resin film formed from the resin composition can have a further reduced dielectric tangent and improved extensibility, and the patterning properties of the resin film can be improved when a cyclic ketone is used as a developer.
Here, examples of the radical crosslinkable group having an acrylate skeleton include a group represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(VI)において、R13は炭素数1以上10以下のアルキレン基であり、R14は、水素原子またはアルキル基である。 In formula (VI), R 13 is an alkylene group having 1 to 10 carbon atoms, and R 14 is a hydrogen atom or an alkyl group.
 式(VI)で示されるラジカル架橋性基では、置換または非置換のアクリロイル基がR13で示されるアルキレン基を介して環状オレフィン構造に結合しているため、当該アクリロイル基の運動性が高められている。この運動性向上に起因して、当該アクリロイル基の架橋反応性が向上する。このためと推察されるが、式(VI)で示されるラジカル架橋性基を有する構造単位(I)を含む重合体を用いれば、樹脂組成物から形成される樹脂膜の伸張性を向上させ、また当該樹脂膜について現像液として環状ケトンを用いた場合のパターニング特性を高めることができる。 In the radical crosslinkable group represented by formula (VI), a substituted or unsubstituted acryloyl group is bonded to a cyclic olefin structure via an alkylene group represented by R 13 , so that the mobility of the acryloyl group is enhanced. Due to this improved mobility, the crosslinking reactivity of the acryloyl group is improved. It is presumed that this is the reason why the polymer containing the structural unit (I) having the radical crosslinkable group represented by formula (VI) is used, and the extensibility of the resin film formed from the resin composition can be improved, and the patterning characteristics of the resin film can be improved when a cyclic ketone is used as a developer.
 式(VI)においてR13でありうる炭素数1以上10以下のアルキレン基としては、特に限定されないが、メチレン基、エチレン基、プロピレン基、n-ブチレン基、イソブチレン基などの炭素数1以上6以下の鎖状アルキレン基が好ましく、メチレン基、エチレン基、プロピレン基、n-ブチレン基などの炭素数1以上6以下の直鎖状アルキレン基がより好ましく、メチレン基、エチレン基、プロピレン基などの炭素数1以上3以下の直鎖状アルキレン基が更に好ましく、メチレン基が特に好ましい。 In formula (VI), the alkylene group having 1 to 10 carbon atoms which can be R 13 is not particularly limited, but is preferably a chain alkylene group having 1 to 6 carbon atoms such as a methylene group, an ethylene group, a propylene group, an n-butylene group, or an isobutylene group, more preferably a linear alkylene group having 1 to 6 carbon atoms such as a methylene group, an ethylene group, a propylene group, or an n-butylene group, still more preferably a linear alkylene group having 1 to 3 carbon atoms such as a methylene group, an ethylene group, or a propylene group, and particularly preferably a methylene group.
 式(VI)においてR14でありうるアルキル基としては、特に限定されず、例えば、炭素数1以上5以下のアルキル基が挙げられる。中でも、R14を構成し得るアルキル基としては、メチル基またはエチル基が好ましい。 In formula (VI), the alkyl group which can be R 14 is not particularly limited, and examples thereof include alkyl groups having a carbon number of 1 to 5. Among these, the alkyl group which can constitute R 14 is preferably a methyl group or an ethyl group.
[ラジカル架橋性基以外の構造]
 式(I)において、ラジカル架橋性基以外のR~Rを構成し得るアルキル基としては、特に限定されないが、例えば、炭素数1以上10以下のアルキル基が挙げられる。
 式(I)において、ラジカル架橋性基以外のR~Rを構成し得る芳香環基としては、ラジカル架橋性基に該当しない限りにおいて特に限定されることなく、例えば、フェニル基、ナフチル基、フルオレニル基、アントラセニル基、トリフェニレニル基、ピレニル基などの炭素数4以上30以下の芳香環基が挙げられる。
 また、ラジカル架橋性基以外のR~Rのうちの二つが一緒になって形成する環構造としては、特に限定されず、例えば、単環構造または多環構造である炭素環が挙げられる。
[Structure other than radical crosslinkable group]
In formula (I), the alkyl group that can constitute R 1 to R 4 other than the radical crosslinkable group is not particularly limited, but examples thereof include alkyl groups having 1 to 10 carbon atoms.
In formula (I), the aromatic ring group that can constitute R 1 to R 4 other than the radical crosslinkable group is not particularly limited as long as it does not fall under the category of a radical crosslinkable group, and examples thereof include aromatic ring groups having 4 to 30 carbon atoms, such as a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a triphenylenyl group, and a pyrenyl group.
The ring structure formed by combining two of R 1 to R 4 other than the radical crosslinkable group is not particularly limited, and examples thereof include a carbon ring having a monocyclic or polycyclic structure.
 さらに、式(I)において、上述した通り、mは0以上4以下の整数であり、0、1または2であることが好ましく、0または1であることがより好ましい。 Furthermore, in formula (I), as described above, m is an integer of 0 to 4, preferably 0, 1 or 2, and more preferably 0 or 1.
―構造単位(I)の好適な構造―
 そして構造単位(I)は、式(I)において、R~Rのうちの一つがラジカル架橋性基であり、その他が水素原子であることが好ましい。構造単位(I)がそのような構造を有すれば、合成が比較的容易であり樹脂組成物の生産効率が高まるからである。
-Preferable structure of structural unit (I)-
In the structural unit (I), it is preferable that one of R 1 to R 4 in formula (I) is a radical crosslinkable group and the rest are hydrogen atoms, because if the structural unit (I) has such a structure, synthesis is relatively easy and the production efficiency of the resin composition is improved.
[構造単位(I)の含有割合]
 重合体中の構造単位(I)の含有割合は、重合体の全体の質量を100質量%とした場合に、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが更に好ましく、35質量%以下であることが好ましく、30質量%以下であることがより好ましく、25質量%以下であることが更に好ましい。重合体中の構造単位(I)の含有割合が上記所定の範囲内であれば、重合体を含む樹脂組成物から形成される樹脂膜の耐熱性を更に向上させつつ誘電正接を一層低下させることができる。
 なお、本発明において、重合体に含まれる各構造単位の「含有割合」は、H-NMRや13C-NMRなどの核磁気共鳴(NMR)法を用いて測定することができる。
[Content of structural unit (I)]
The content of the structural unit (I) in the polymer is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and preferably 35% by mass or less, more preferably 30% by mass or less, and even more preferably 25% by mass or less, when the total mass of the polymer is taken as 100% by mass. If the content of the structural unit (I) in the polymer is within the above-mentioned range, the heat resistance of the resin film formed from the resin composition containing the polymer can be further improved while the dielectric loss tangent can be further reduced.
In the present invention, the "content ratio" of each structural unit contained in the polymer can be measured by a nuclear magnetic resonance (NMR) method such as 1 H-NMR or 13 C-NMR.
<<構造単位(II)>>
 上記式(II)で示される構造単位(II)において、Xは2価の有機基であり、Yは4価の有機基であり、Zは2価の有機基であり、nは0以上の整数である。
 重合体が上記式(II)で示される構造単位(II)を含むことにより、当該重合体を含む本発明の樹脂組成物から形成される樹脂膜の耐熱性および強度を向上させるとともに、誘電正接を低下させることができる。
 なお、本発明の重合体は、構造単位(II)を一種のみ含有していてもよく、複数種含有していてもよい。
<<Structural unit (II)>>
In the structural unit (II) represented by the above formula (II), X is a divalent organic group, Y is a tetravalent organic group, Z is a divalent organic group, and n is an integer of 0 or more.
By including the structural unit (II) represented by the above formula (II) in the polymer, the heat resistance and strength of the resin film formed from the resin composition of the present invention containing the polymer can be improved, and the dielectric tangent can be reduced.
The polymer of the present invention may contain only one type of structural unit (II), or may contain a plurality of types.
[Xの構造]
 式(II)中、Xは2価の有機基である。ここで、Xを構成する2価の有機基は、例えば、下記式(Xa)~(Xc)の何れかで示される基である。
Figure JPOXMLDOC01-appb-C000013
[Structure of X]
In formula (II), X is a divalent organic group. Here, the divalent organic group constituting X is, for example, a group represented by any one of the following formulae (Xa) to (Xc).
Figure JPOXMLDOC01-appb-C000013
 上記式(Xa)~(Xc)中、R15はアルキレン基であり、R16はアルキレン基または芳香環基であり、pは0以上10以下の整数である。Zを構成する2価の有機基の構造については後述する。 In the above formulas (Xa) to (Xc), R 15 is an alkylene group, R 16 is an alkylene group or an aromatic ring group, and p is an integer of 0 to 10. The structure of the divalent organic group constituting Z will be described later.
 なお、R15およびR16を構成し得るアルキレン基としては、特に限定されないが、例えば、炭素数1以上10以下のアルキレン基が挙げられ、炭素数1以上5以下のアルキレン基が好ましく、メチレン基およびエチレン基がより好ましい。
 また、R16を構成し得る芳香環基としては、フェニレン基、ナフチレン基、フルオレニレン基、アントラセニレン基、トリフェニレニレン基、ピレニレン基などの炭素数4以上30以下の芳香環基が挙げられる。
 さらに、pは、0以上10以下の整数であればよいが、0以上5以下の整数であることが好ましく、0以上2以下の整数であることがより好ましく、0または1であることが更に好ましい。
The alkylene group that can constitute R 15 and R 16 is not particularly limited, but examples thereof include alkylene groups having 1 to 10 carbon atoms, preferably alkylene groups having 1 to 5 carbon atoms, and more preferably a methylene group or an ethylene group.
Examples of aromatic ring groups that can constitute R 16 include aromatic ring groups having 4 to 30 carbon atoms, such as a phenylene group, a naphthylene group, a fluorenylene group, an anthracenylene group, a triphenylenylene group, and a pyrenylene group.
Furthermore, p may be an integer of 0 or more and 10 or less, but is preferably an integer of 0 or more and 5 or less, more preferably an integer of 0 or more and 2 or less, and even more preferably 0 or 1.
[Yの構造]
 式(II)中、Yは4価の有機基である。ここで、Yを構成する4価の有機基は、例えば、下記式(Ya)~(Yf)の何れかで示される基である。
[Structure of Y]
In formula (II), Y is a tetravalent organic group. The tetravalent organic group constituting Y is, for example, a group represented by any one of the following formulae (Ya) to (Yf).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(Ya)~(Yf)中、R17、R18、R25およびR26は、それぞれ独立して、ハロゲン原子、アルキル基または芳香環基であり、R19およびR20は一緒になって環構造を形成していてもよく、環構造を形成しないR19およびR20は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基または芳香環基であり、R21およびR24は、それぞれ独立して、酸素原子(-O-)、硫黄原子(-S-)またはカルボニル基(-C(=O)-)であり、R22およびR23は一緒になって環構造を形成していてもよく、環構造を形成しないR22およびR23は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基または芳香環基であり、アルキル基および芳香環基は置換基としてのハロゲン原子を有していてもよく、qおよびrは、それぞれ独立して、0以上3以下の整数であり、sおよびtは、それぞれ独立して、0以上4以下の整数である。 In the above formulas (Ya) to (Yf), R 17 , R 18 , R 25 and R 26 are each independently a halogen atom, an alkyl group or an aromatic ring group, R 19 and R 20 may be taken together to form a ring structure, and R 19 and R 20 that do not form a ring structure are each independently a hydrogen atom, a halogen atom, an alkyl group or an aromatic ring group, R 21 and R 24 are each independently an oxygen atom (-O-), a sulfur atom (-S-) or a carbonyl group (-C(=O)-), R 22 and R 23 may be taken together to form a ring structure, and R 22 and R 23 that do not form a ring structure are each independently a hydrogen atom, a halogen atom, an alkyl group or an aromatic ring group, and the alkyl group and the aromatic ring group may have a halogen atom as a substituent, q and r are each independently an integer of 0 to 3, and s and t are each independently an integer of 0 to 4.
 なお、R19およびR20が一緒になって形成する環構造、ならびにR22およびR23が一緒になって形成する環構造としては、特に限定されないが、例えば、ベンゼン環、ナフタレン環、フルオレン環などの芳香族炭化水素環を含有する芳香環含有構造が好ましく、フルオレン環を含有する芳香環含有構造がより好ましい。そして、芳香環含有構造などの環構造は、炭素数の合計が7以上60以下であることが好ましい。なお、芳香環含有構造などの環構造は、炭素原子のみで構成されることが好ましい。
 また、環構造を形成しないR19およびR20、ならびにR22およびR23を構成し得る(未置換の)アルキル基としては、特に限定されないが、例えば、炭素数1以上10以下のアルキル基が挙げられ、炭素数1以上5以下のアルキル基が好ましく、メチル基およびエチル基がより好ましい。
 さらに、環構造を形成しないR19およびR20、ならびにR22およびR23を構成し得る(未置換の)芳香環基としては、特に限定されることなく、例えば、フェニル基、ナフチル基、フルオレニル基、アントラセニル基、トリフェニレニル基、ピレニル基などの炭素数4以上30以下の芳香環基が挙げられ、フルオレニル基が好ましい。
 また、R17~R20、R22~R23、およびR25~R26を構成し得るハロゲン原子、ならびに、アルキル基および芳香環基が置換基として有し得るハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられる。
In addition, the ring structure formed by R 19 and R 20 together, and the ring structure formed by R 22 and R 23 together are not particularly limited, but for example, aromatic ring-containing structures containing aromatic hydrocarbon rings such as benzene rings, naphthalene rings, and fluorene rings are preferred, and aromatic ring-containing structures containing fluorene rings are more preferred. The total number of carbon atoms in the ring structure such as the aromatic ring-containing structure is preferably 7 or more and 60 or less. In addition, the ring structure such as the aromatic ring-containing structure is preferably composed of only carbon atoms.
In addition, the (unsubstituted) alkyl group that can constitute R 19 and R 20 that do not form a ring structure, and R 22 and R 23 is not particularly limited, but examples thereof include alkyl groups having 1 to 10 carbon atoms, preferably alkyl groups having 1 to 5 carbon atoms, and more preferably a methyl group or an ethyl group.
Furthermore, the (unsubstituted) aromatic ring group which may constitute R 19 and R 20 that do not form a ring structure, and R 22 and R 23 , is not particularly limited, and examples thereof include aromatic ring groups having 4 to 30 carbon atoms, such as a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a triphenylenyl group, and a pyrenyl group, and a fluorenyl group is preferred.
Furthermore, examples of the halogen atoms which may constitute R 17 to R 20 , R 22 to R 23 , and R 25 to R 26 , and the halogen atoms which may be contained as substituents in the alkyl group and aromatic ring group include a fluorine atom, a chlorine atom, and a bromine atom.
 式(Ya)で示される基の具体例としては、下記式(Ya-1)で示される基が挙げられる。また、式(Yb)で示される基の具体例としては、下記式(Yb-1)~(Yb-2)の何れかで示される基が挙げられる。さらに、式(Yc)で示される基の具体例としては、下記式(Yc-1)~(Yc-2)の何れかで示される基が挙げられる。また、式(Yd)で示される基の具体例としては、下記式(Yd-1)~(Yd-3)の何れかで示される基が挙げられる。さらに、式(Ye)で示される基の具体例としては、下記式(Ye-1)~(Ye-2)の何れかで示される基が挙げられる。また、式(Yf)で示される基の具体例としては、下記式(Yf-1)~(Yf-2)の何れかで示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000015
Specific examples of the group represented by formula (Ya) include a group represented by formula (Ya-1) below. Specific examples of the group represented by formula (Yb) include a group represented by any of formulas (Yb-1) to (Yb-2) below. Specific examples of the group represented by formula (Yc) include a group represented by any of formulas (Yc-1) to (Yc-2) below. Specific examples of the group represented by formula (Yd) include a group represented by any of formulas (Yd-1) to (Yd-3) below. Specific examples of the group represented by formula (Ye) include a group represented by any of formulas (Ye-1) to (Ye-2) below. Specific examples of the group represented by formula (Yf) include a group represented by any of formulas (Yf-1) to (Yf-2) below.
Figure JPOXMLDOC01-appb-C000015
 そして、重合体を含む樹脂組成物から形成される樹脂膜の誘電正接を一層低下させる観点から、Yを構成する4価の有機基としては、式(Yb)、(Ye)または(Yf)で示される基が好ましく、式(Ye-2)、(Yf-1)、または(Yb-2)で示される基がより好ましく、式(Ye-2)で示される基が更に好ましい。 In order to further reduce the dielectric tangent of the resin film formed from the resin composition containing the polymer, the tetravalent organic group constituting Y is preferably a group represented by formula (Yb), (Ye) or (Yf), more preferably a group represented by formula (Ye-2), (Yf-1) or (Yb-2), and even more preferably a group represented by formula (Ye-2).
[Zの構造]
 式(II)中、Zは2価の有機基である。ここで、Zを構成する2価の有機基は、例えば、下記式(Za)~(Zf)の何れかで示される基である。
[Structure of Z]
In formula (II), Z is a divalent organic group. Here, the divalent organic group constituting Z is, for example, a group represented by any one of the following formulae (Za) to (Zf).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式(Za)~(Zf)中、R27、R28、R34およびR35は、それぞれ独立して、ハロゲン原子、アルキル基、または芳香環基であり、R29およびR36は、それぞれ独立して、酸素原子(-O-)、硫黄原子(-S-)またはカルボニル基(-C(=O)-)であり、R30およびR31は一緒になって環構造を形成していてもよく、環構造を形成しないR30およびR31は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基または芳香環基であり、R32およびR33は一緒になって環構造を形成していてもよく、環構造を形成しないR32およびR33は、それぞれ独立して、水素原子、ハロゲン原子、アルキル基または芳香環基であり、アルキル基および芳香環基は置換基としてのハロゲン原子を有していてもよく、u、v、w、およびxは、それぞれ独立して、0以上4以下の整数である。 In the above formulas (Za) to (Zf), R 27 , R 28 , R 34 and R 35 are each independently a halogen atom, an alkyl group, or an aromatic ring group, R 29 and R 36 are each independently an oxygen atom (-O-), a sulfur atom (-S-) or a carbonyl group (-C(=O)-), R 30 and R 31 may be taken together to form a ring structure, and R 30 and R 31 that do not form a ring structure are each independently a hydrogen atom, a halogen atom, an alkyl group, or an aromatic ring group, R 32 and R 33 may be taken together to form a ring structure, and R 32 and R 33 that do not form a ring structure are each independently a hydrogen atom, a halogen atom, an alkyl group, or an aromatic ring group, and the alkyl group and the aromatic ring group may have a halogen atom as a substituent, and u, v, w, and x are each independently an integer of 0 to 4.
 なお、R30およびR31が一緒になって形成する環構造、ならびにR32およびR33が一緒になって形成する環構造としては、特に限定されないが、例えば、ベンゼン環、ナフタレン環、フルオレン環などの芳香族炭化水素環を含有する芳香環含有構造が好ましく、フルオレン環を含有する芳香環含有構造がより好ましい。そして、芳香環含有構造などの環構造は、炭素数の合計が7以上60以下であることが好ましい。なお、芳香環含有構造などの環構造は、炭素原子のみで構成されることが好ましい。
 また、R27およびR28、R34およびR35、ならびに、環構造を形成しないR30~R33を構成し得る(未置換の)アルキル基としては、特に限定されないが、例えば、炭素数1以上10以下のアルキル基が挙げられ、炭素数1以上5以下のアルキル基が好ましく、メチル基およびエチル基がより好ましい。
 さらに、R27およびR28、R34およびR35、ならびに、環構造を形成しないR30~R33を構成し得る(未置換の)芳香環基としては、特に限定されることなく、例えば、フェニル基、ナフチル基、フルオレニル基、アントラセニル基、トリフェニレニル基、ピレニル基などの炭素数4以上30以下の芳香環基が挙げられ、フルオレニル基が好ましい。
 また、R27~R28、およびR30~R35を構成し得るハロゲン原子、ならびにアルキル基および芳香環基が置換基として有し得るハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられる。
The ring structure formed by R 30 and R 31 together and the ring structure formed by R 32 and R 33 together are not particularly limited, but for example, aromatic ring-containing structures containing aromatic hydrocarbon rings such as benzene rings, naphthalene rings, and fluorene rings are preferred, and aromatic ring-containing structures containing fluorene rings are more preferred. The total number of carbon atoms in the ring structure such as the aromatic ring-containing structure is preferably 7 or more and 60 or less. The ring structure such as the aromatic ring-containing structure is preferably composed of only carbon atoms.
In addition, the (unsubstituted) alkyl group which may constitute R 27 and R 28 , R 34 and R 35 , and R 30 to R 33 that do not form a ring structure is not particularly limited, but examples thereof include alkyl groups having 1 to 10 carbon atoms, preferably alkyl groups having 1 to 5 carbon atoms, and more preferably a methyl group or an ethyl group.
Furthermore, the (unsubstituted) aromatic ring groups which may constitute R 27 and R 28 , R 34 and R 35 , and R 30 to R 33 which do not form a ring structure, are not particularly limited and examples thereof include aromatic ring groups having 4 to 30 carbon atoms, such as a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a triphenylenyl group, and a pyrenyl group, with a fluorenyl group being preferred.
Furthermore, examples of the halogen atoms which may constitute R 27 to R 28 and R 30 to R 35 , and which may be contained as substituents on the alkyl group and aromatic ring group include a fluorine atom, a chlorine atom, and a bromine atom.
 式(Za)で示される基の具体例としては、下記式(Za-1)で示される基が挙げられる。また、式(Zb)で示される基の具体例としては、下記式(Zb-1)で示される基が挙げられる。さらに、式(Zc)で示される基の具体例としては、下記式(Zc-1)~(Zc-6)の何れかで示される基が挙げられる。また、式(Zd)で示される基の具体例としては、下記式(Zd-1)で示される基が挙げられる。さらに、式(Ze)で示される基の具体例としては、下記式(Ze-1)で示される基が挙げられる。また、式(Zf)で示される基の具体例としては、下記式(Zf-1)~(Zf-3)の何れかで示される基が挙げられる。 Specific examples of groups represented by formula (Za) include groups represented by formula (Za-1) below. Specific examples of groups represented by formula (Zb) include groups represented by formula (Zb-1) below. Specific examples of groups represented by formula (Zc) include groups represented by any of formulas (Zc-1) to (Zc-6) below. Specific examples of groups represented by formula (Zd) include groups represented by formula (Zd-1) below. Specific examples of groups represented by formula (Ze) include groups represented by formula (Ze-1) below. Specific examples of groups represented by formula (Zf) include groups represented by any of formulas (Zf-1) to (Zf-3) below.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 そして、重合体を含む樹脂組成物から形成される樹脂膜の強度(引張強度)を向上させる観点から、Zを構成する2価の有機基としては、式(Zc)または(Zf)で示される基が好ましく、式(Zc-3)、(Zc-4)、(Zc-5)、(Zc-6)、(Zf-1)、(Zf-2)、または(Zf-3)で示される基がより好ましく、式(Zc-3)、(Zc-4)、(Zc-5)、(Zc-6)、(Zf-2)または(Zf-3)で示される基が更に好ましく、式(Zc-3)または(Zf-2)で示される基が特に好ましい。 In order to improve the strength (tensile strength) of the resin film formed from the resin composition containing the polymer, the divalent organic group constituting Z is preferably a group represented by formula (Zc) or (Zf), more preferably a group represented by formula (Zc-3), (Zc-4), (Zc-5), (Zc-6), (Zf-1), (Zf-2), or (Zf-3), even more preferably a group represented by formula (Zc-3), (Zc-4), (Zc-5), (Zc-6), (Zf-2) or (Zf-3), and particularly preferably a group represented by formula (Zc-3) or (Zf-2).
 なお、式(II)中、nは0以上の整数であればよいが、通常1以上であり、3以上であることが好ましく、5以上であることがより好ましく、8以上であることが更に好ましく、通常100以下であり、80以下であることが好ましく、50以下であることがより好ましく、30以下であることが更に好ましい。式(II)中のnが上記下限以上であれば、重合体を含む樹脂組成物から形成される樹脂膜の耐熱性を更に向上させることができる。一方、式(II)中のnが上記上限以下であれば、重合体を含む樹脂組成物から形成される樹脂膜の誘電正接を一層低下させることができる。 In formula (II), n may be an integer of 0 or more, but is usually 1 or more, preferably 3 or more, more preferably 5 or more, and even more preferably 8 or more, and is usually 100 or less, preferably 80 or less, more preferably 50 or less, and even more preferably 30 or less. If n in formula (II) is equal to or greater than the lower limit, the heat resistance of the resin film formed from the resin composition containing the polymer can be further improved. On the other hand, if n in formula (II) is equal to or less than the upper limit, the dielectric tangent of the resin film formed from the resin composition containing the polymer can be further reduced.
[構造単位(II)の含有割合]
 重合体中の構造単位(II)の含有割合は、重合体の全体の質量を100質量%とした場合に、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更に好ましく、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることが更に好ましい。重合体中の構造単位(II)の含有割合が上記所定の範囲内であれば、重合体を含む樹脂組成物から形成される樹脂膜の誘電正接を一層低下させつつ耐熱性を更に向上させることができる。
[Content of structural unit (II)]
The content of the structural unit (II) in the polymer is preferably 20% by mass or more, more preferably 30% by mass or more, even more preferably 40% by mass or more, preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less, when the total mass of the polymer is taken as 100% by mass. If the content of the structural unit (II) in the polymer is within the above-mentioned range, the dielectric loss tangent of the resin film formed from the resin composition containing the polymer can be further reduced while the heat resistance can be further improved.
<<構造単位(III)>>
 重合体は、樹脂組成物から形成される樹脂膜の耐熱性を更に向上させつつ誘電正接を一層低下させる観点から、上述した構造単位(I)および(II)に加えて、下記式(III)で示される構造単位(III)を更に含むことが好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(III)中、R~Rの少なくとも一つが芳香環基であるか、またはR~Rのうち二つが一緒になって芳香環含有構造を形成しており、芳香環基に該当せず且つ芳香環含有構造も形成しないR~Rは、それぞれ独立して、水素原子またはアルキル基であり、kは0以上4以下の整数である。
 なお、重合体は、構造単位(III)を一種のみ含有していてもよく、複数種含有していてもよい。
<<Structural unit (III)>>
From the viewpoint of further improving the heat resistance of a resin film formed from the resin composition while further reducing the dielectric tangent, the polymer preferably further contains a structural unit (III) represented by the following formula (III) in addition to the above-mentioned structural units (I) and (II).
Figure JPOXMLDOC01-appb-C000018
In formula (III), at least one of R 5 to R 8 is an aromatic ring group, or two of R 5 to R 8 together form an aromatic ring-containing structure, and R 5 to R 8 that are not aromatic ring groups and do not form an aromatic ring-containing structure are each independently a hydrogen atom or an alkyl group, and k is an integer of 0 to 4.
The polymer may contain only one type of structural unit (III) or may contain a plurality of types.
 ここで、式(III)のR~Rを構成し得る芳香環基としては、特に限定されないが、炭素数4以上30以下の芳香環基が挙げられる。炭素数4以上30以下の芳香環基としては、例えば、フェニル基、ナフチル基、フルオレニル基、アントラセニル基、トリフェニレニル基、ピレニル基が挙げられる。
 また、式(III)のR~Rのうち二つが一緒になって形成される芳香環含有構造中の芳香環としては、例えば、ベンゼン環、ナフタレン環などの芳香族炭素水素環が挙げられる。芳香環含有構造は、一つの芳香環のみを含んでいてもよく、複数の芳香環を含んでいてもよい。また芳香環含有構造が複数の芳香環を有する場合、当該複数の芳香環は同じ種類の芳香環であってよく、異なる種類の芳香環であってもよい。そして、R~Rのうち二つが一緒になって形成される芳香環含有構造は、特に限定されないが、炭素数の合計が7以上60以下であることが好ましい。また芳香環含有構造は、炭素原子のみで構成されることが好ましい。
Here, the aromatic ring group that can constitute R5 to R8 in formula (III) is not particularly limited, but examples thereof include aromatic ring groups having 4 to 30 carbon atoms. Examples of the aromatic ring group having 4 to 30 carbon atoms include a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a triphenylenyl group, and a pyrenyl group.
In addition, examples of the aromatic ring in the aromatic ring-containing structure formed by two of R 5 to R 8 in formula (III) together include aromatic hydrocarbon rings such as a benzene ring and a naphthalene ring. The aromatic ring-containing structure may contain only one aromatic ring, or may contain multiple aromatic rings. In addition, when the aromatic ring-containing structure has multiple aromatic rings, the multiple aromatic rings may be the same type of aromatic ring or different types of aromatic rings. The aromatic ring-containing structure formed by two of R 5 to R 8 together is not particularly limited, but preferably has a total carbon number of 7 or more and 60 or less. In addition, the aromatic ring-containing structure is preferably composed of only carbon atoms.
 式(III)において、芳香環基でなく且つ芳香環含有構造も形成しないR~Rを構成し得るアルキル基としては、特に限定されることなく、例えば、上述した式(I)中のR~Rを構成し得るアルキル基と同様のものが挙げられる。 In formula (III), the alkyl groups that can constitute R 5 to R 8 and that are not aromatic ring groups and do not form an aromatic ring-containing structure are not particularly limited, and examples thereof include the same alkyl groups as those that can constitute R 1 to R 4 in formula (I) described above.
 さらに、式(III)において、上述した通りkは0以上4以下の整数であり、0、1または2であることが好ましく、0または1であることがより好ましい。 Furthermore, in formula (III), as described above, k is an integer of 0 to 4, preferably 0, 1 or 2, and more preferably 0 or 1.
[構造単位(III)の好適な構造]
 そして構造単位(III)は、樹脂組成物から形成される樹脂膜の誘電正接を一層低下させつつ伸張性を向上させ、また当該樹脂膜について現像液として環状ケトンを用いた場合のパターニング特性を高める観点から、RおよびRの一方と、RおよびRの一方とが一緒になって芳香環含有構造(例えば、ベンゼン環を含有する構造)を形成し且つその他が水素原子である態様が好ましい。
[Preferable Structure of Structural Unit (III)]
In terms of further reducing the dielectric tangent of a resin film formed from the resin composition while improving extensibility, and also improving the patterning characteristics of the resin film when a cyclic ketone is used as a developer, the structural unit (III) is preferably an embodiment in which one of R5 and R6 and one of R7 and R8 together form an aromatic ring-containing structure (for example, a structure containing a benzene ring) and the others are hydrogen atoms.
[構造単位(III)の含有割合]
 ここで、重合体が構造単位(III)を含む場合、重合体中の構造単位(III)の含有割合は、重合体の全体の質量を100質量%とした場合に、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。重合体中の構造単位(III)の含有割合が上記所定の範囲内であれば、重合体を含む樹脂組成物から形成される樹脂膜の耐熱性を更に向上させつつ誘電正接を一層低下させることができる。
[Content of structural unit (III)]
Here, when the polymer contains the structural unit (III), the content of the structural unit (III) in the polymer is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, preferably 60% by mass or less, more preferably 50% by mass or less, and even more preferably 40% by mass or less, when the total mass of the polymer is taken as 100% by mass. If the content of the structural unit (III) in the polymer is within the above-mentioned predetermined range, the heat resistance of the resin film formed from the resin composition containing the polymer can be further improved while the dielectric loss tangent can be further reduced.
 また、重合体が構造単位(III)を含む場合、重合体中の構造単位(III)の含有割合は、重合体中の構造単位(I)および構造単位(III)の合計含有量を100モル%とした場合に、30モル%以上であることが好ましく、40モル%以上であることがより好ましく、50モル%以上であることが更に好ましく、60モル%以上であることが一層好ましく、95モル%以下であることが好ましく、90モル%以下であることがより好ましく、85モル%以下であることが更に好ましく、80モル%以下であることが一層好ましい。重合体中の構造単位(I)および構造単位(III)の合計含有量を100モル%とした場合の、重合体中の構造単位(III)の含有割合が上記下限以上であれば、重合体を含む樹脂組成物から形成される樹脂膜の誘電正接を一層低下させつつ、当該樹脂膜の強度(引張強度)を向上させることができる。一方、重合体中の構造単位(I)および構造単位(III)の合計含有量を100モル%とした場合の、重合体中の構造単位(III)の含有割合が上記上限以下であれば、重合体を含む樹脂組成物から形成される樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を高めることができる。 In addition, when the polymer contains the structural unit (III), the content of the structural unit (III) in the polymer is preferably 30 mol% or more, more preferably 40 mol% or more, even more preferably 50 mol% or more, even more preferably 60 mol% or more, preferably 95 mol% or less, more preferably 90 mol% or less, even more preferably 85 mol% or less, and even more preferably 80 mol% or less, when the total content of the structural unit (I) and the structural unit (III) in the polymer is 100 mol%. If the content of the structural unit (III) in the polymer is equal to or greater than the above lower limit, the dielectric tangent of the resin film formed from the resin composition containing the polymer can be further reduced while improving the strength (tensile strength) of the resin film. On the other hand, when the total content of the structural unit (I) and the structural unit (III) in the polymer is 100 mol %, if the content ratio of the structural unit (III) in the polymer is equal to or less than the above upper limit, the patterning characteristics of a resin film formed from a resin composition containing the polymer can be improved when a cyclic ketone is used as a developer.
<<その他の構造単位>>
 なお、重合体は、任意に、上述した構造単位(I)~(III)以外の構造単位(その他の構造単位)を含むことができる。その他の構造単位としては、例えば、構造単位(I)を形成しうる単量体および構造単位(II)を形成しうる単量体と共重合可能な既知の単量体に由来する構造単位を用いることができる。
 ここで、樹脂組成物から形成される樹脂膜の耐熱性を更に向上させつつ誘電正接を一層低下させる観点から、重合体中のその他の構造単位の含有割合は、重合体の全体の質量を100質量%とした場合に、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが更に好ましく、1質量%以下であることが一層好ましく、0質量%である(すなわち、重合体がその他の構造単位を含まない)ことが特に好ましい。
<<Other structural units>>
The polymer may optionally contain structural units (other structural units) other than the above-mentioned structural units (I) to (III). As the other structural units, for example, structural units derived from known monomers copolymerizable with the monomer capable of forming the structural unit (I) and the monomer capable of forming the structural unit (II) can be used.
Here, from the viewpoint of further improving the heat resistance of the resin film formed from the resin composition while further reducing the dielectric tangent, the content of the other structural units in the polymer is preferably 20% by mass or less, more preferably 10% by mass or less, even more preferably 5% by mass or less, still more preferably 1% by mass or less, and particularly preferably 0% by mass (i.e., the polymer does not contain other structural units), when the total mass of the polymer is 100% by mass.
<<重合体の性状>>
[重量平均分子量]
 重合体の重量平均分子量(Mw)は、3,000以上であることが好ましく、5,000以上であることがより好ましく、10,000以上であることが更に好ましく、14,100以上であることが特に好ましく、500,000以下であることが好ましく、300,000以下であることがより好ましく、100,000以下であることが更に好ましく、38,300以下であることが特に好ましい。重合体の重量平均分子量が上記下限以上であれば、樹脂組成物から形成される樹脂膜の強度(引張強度)を向上させることができる。一方、重合体の重量平均分子量が上記上限以下であれば、樹脂組成物から形成される樹脂膜の、現像液としての環状ケトンに対する溶解性を高めることができる。そのため、当該樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を向上させることができる。
<<Properties of Polymer>>
[Weight average molecular weight]
The weight average molecular weight (Mw) of the polymer is preferably 3,000 or more, more preferably 5,000 or more, even more preferably 10,000 or more, particularly preferably 14,100 or more, and preferably 500,000 or less, more preferably 300,000 or less, even more preferably 100,000 or less, and particularly preferably 38,300 or less. If the weight average molecular weight of the polymer is equal to or greater than the lower limit, the strength (tensile strength) of the resin film formed from the resin composition can be improved. On the other hand, if the weight average molecular weight of the polymer is equal to or less than the upper limit, the solubility of the resin film formed from the resin composition in a cyclic ketone as a developer can be increased. Therefore, the patterning characteristics of the resin film can be improved when a cyclic ketone is used as a developer.
[分子量分布]
 重合体の分子量分布(Mw/Mn)は4.0以下であることが好ましく、3.0以下であることがより好ましく、2.4以下であることが更に好ましい。重合体の分子量分布が4.0以下であれば、パターニング特性を向上させることができる。
 なお、本発明において、「分子量分布(Mw/Mn)」とは、数平均分子量(Mn)に対する重量平均分子量(Mw)の比を指す。そして、重合体の重量平均分子量および数平均分子量は、ゲル浸透クロマトグラフィー(GPC)により、標準ポリスチレン換算値として求められる。
[Molecular weight distribution]
The molecular weight distribution (Mw/Mn) of the polymer is preferably 4.0 or less, more preferably 3.0 or less, and even more preferably 2.4 or less. When the molecular weight distribution of the polymer is 4.0 or less, the patterning characteristics can be improved.
In the present invention, the term "molecular weight distribution (Mw/Mn)" refers to the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn). The weight average molecular weight and number average molecular weight of a polymer are determined by gel permeation chromatography (GPC) in terms of standard polystyrene.
<<重合体の合成方法>>
 上述した重合体の合成方法は、特に限定されず、例えば、下記式(II´)で示されるポリイミド化合物(II´)を合成する工程(ポリイミド化合物合成工程)と、下記式(I´)で示されるノルボルネン系単量体(I´)と、上記ポリイミド化合物合成工程で得られたポリイミド化合物(II´)との開環重合反応を行うことで、開環重合体を得る工程(以下、「開環重合工程」)と、得られた開環重合体に水素添加反応を行うことで開環重合体水素添加物を得る工程(水素添加工程)と、得られた開環重合体水素添加物に対して変性反応を行うことで、開環重合体水素添加物にラジカル架橋性基を導入する工程(以下、「変性工程」と称する。)とを含む方法により、効率的に合成することができる。以下、各工程について詳細に説明する。
<<Method of synthesizing polymer>>
The synthesis method of the above-mentioned polymer is not particularly limited, and for example, the polymer can be efficiently synthesized by a method including a step of synthesizing a polyimide compound (II') represented by the following formula (II') (polyimide compound synthesis step), a step of performing a ring-opening polymerization reaction between a norbornene-based monomer (I') represented by the following formula (I') and the polyimide compound (II') obtained in the above-mentioned polyimide compound synthesis step to obtain a ring-opening polymer (hereinafter referred to as the "ring-opening polymerization step"), a step of performing a hydrogenation reaction on the obtained ring-opening polymer to obtain a ring-opening polymer hydrogenation product (hydrogenation step), and a step of performing a modification reaction on the obtained ring-opening polymer hydrogenation product to introduce a radical crosslinkable group into the ring-opening polymer hydrogenation product (hereinafter referred to as the "modification step"). Each step will be described in detail below.
Figure JPOXMLDOC01-appb-C000019
 式(I´)中、R~Rのうち二つが一緒になって環構造を形成していてもよく、環構造を形成しないR~Rは、それぞれ独立して、水素原子、アルキル基または芳香環基であり、アルキル基および芳香環基は置換基としての水酸基を有していてもよく、mは0以上4以下の整数である。
Figure JPOXMLDOC01-appb-C000019
In formula (I'), two of R 1 to R 4 may be combined together to form a ring structure, and R 1 to R 4 that do not form a ring structure are each independently a hydrogen atom, an alkyl group, or an aromatic ring group, the alkyl group and the aromatic ring group may have a hydroxyl group as a substituent, and m is an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000020
 式(II´)中、Xは2価の有機基であり、Yは4価の有機基であり、Zは2価の有機基であり、nは0以上の整数である。
Figure JPOXMLDOC01-appb-C000020
In formula (II'), X is a divalent organic group, Y is a tetravalent organic group, Z is a divalent organic group, and n is an integer of 0 or greater.
[ポリイミド化合物合成工程]
 ポリイミド化合物合成工程では、上記式(II´)で示されるポリイミド化合物(II´)を得る。ポリイミド化合物(II´)の合成方法としては、特に限定されないが、例えば、下記式(Y´)で示されるテトラカルボン酸二無水物(Y´)と、下記式(Z´)で示されるジアミン(Z´)と、下記式(X´)で示される末端封止剤(X´)とを用いた反応により合成することができる。
[Polyimide compound synthesis process]
In the polyimide compound synthesis step, a polyimide compound (II') represented by the above formula (II') is obtained. The method for synthesizing the polyimide compound (II') is not particularly limited, but for example, the polyimide compound (II') can be synthesized by a reaction using a tetracarboxylic dianhydride (Y') represented by the following formula (Y'), a diamine (Z') represented by the following formula (Z'), and an end-capping agent (X') represented by the following formula (X').
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式(X´)中、Xは2価の有機基であり、上記式(Y´)中、Yは4価の有機基であり、上記式(Z´)中、Zは2価の有機基である。
 なお、上記式(X´)、(Y´)および(Z´)中のX、YおよびZの構造は、「重合体」の項で上述した構造単位(II)中のX、YおよびZの構造と同様とすることができる。
In the above formula (X'), X is a divalent organic group, in the above formula (Y'), Y is a tetravalent organic group, and in the above formula (Z'), Z is a divalent organic group.
The structures of X, Y and Z in the above formulae (X'), (Y') and (Z') can be the same as the structures of X, Y and Z in the structural unit (II) described above in the section "Polymer".
 具体的には、ポリイミド化合物(II´)は、下記式に示す通り、テトラカルボン酸二無水物(Y´)と、ジアミン(Z´)と、末端封止剤(X´)との開環重付加反応(一段目の反応)により式(II´´)で示されるポリアミド酸(II´´)を得た後、得られたポリアミド酸(II´´)に対して脱水環化反応(二段目の反応)を行う、二段法により合成することができる。 Specifically, the polyimide compound (II') can be synthesized by a two-stage method in which a polyamic acid (II') represented by formula (II'') is obtained by a ring-opening polyaddition reaction (first-stage reaction) between a tetracarboxylic dianhydride (Y'), a diamine (Z'), and an end-capping agent (X') as shown in the formula below, and then the obtained polyamic acid (II'') is subjected to a dehydration cyclization reaction (second-stage reaction).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 開環重付加反応は、反応溶媒中、公知の方法に従って行うことができる。
 開環重付加反応は、例えば、テトラヒドロフラン、ガンマブチロラクトン、N-メチルピロリドン等の有機溶媒中で、テトラカルボン酸二無水物(Y´)と、ジアミン(Z´)と、末端封止剤(X´)とを混合することに行う。
 開環重付加反応の反応時間は、特に限定されないが、例えば、2時間以上48時間以下である。また、開環重付加反応の反応温度は、特に限定されないが、例えば、0℃以上70℃以下である。
The ring-opening polyaddition reaction can be carried out in a reaction solvent according to a known method.
The ring-opening polyaddition reaction is carried out by mixing a tetracarboxylic dianhydride (Y'), a diamine (Z') and an end-capping agent (X') in an organic solvent such as tetrahydrofuran, gamma-butyrolactone, or N-methylpyrrolidone.
The reaction time of the ring-opening polyaddition reaction is not particularly limited, but is, for example, 2 hours to 48 hours. The reaction temperature of the ring-opening polyaddition reaction is not particularly limited, but is, for example, 0° C. to 70° C.
 脱水環化反応は、公知の方法に従って行うことができる。例えば、ポリアミド酸を加熱する加熱イミド化法により脱水環化反応を行ってもよいし、ポリアミド酸を脱水環化剤で処理する化学的イミド化法により脱水環化反応を行ってもよいが、化学的イミド化法により脱水環化反応を行うことが好ましい。 The dehydration cyclization reaction can be carried out according to a known method. For example, the dehydration cyclization reaction may be carried out by a thermal imidization method in which the polyamic acid is heated, or by a chemical imidization method in which the polyamic acid is treated with a dehydration cyclization agent. However, it is preferable to carry out the dehydration cyclization reaction by a chemical imidization method.
 化学的イミド化法による脱水環化反応は、テトラヒドロフラン等の有機溶媒中で、ポリアミド酸に対して、無水酢酸およびピリジン、無水酢酸およびトリエチルアミン等の組み合わせからなる脱水環化剤を添加して混合することにより行うことができる。
 化学的イミド化法による脱水環化反応の反応時間は、特に限定されないが、例えば、2時間以上48時間以下である。また、化学的イミド化法による脱水環化反応の反応温度は、特に限定されないが、例えば、0℃以上50℃以下である。
The dehydration and cyclization reaction by the chemical imidization method can be carried out by adding a dehydration and cyclization agent consisting of a combination of acetic anhydride and pyridine, acetic anhydride and triethylamine, or the like, to a polyamic acid in an organic solvent such as tetrahydrofuran, and mixing the mixture.
The reaction time of the dehydration cyclization reaction by the chemical imidization method is not particularly limited, but is, for example, from 2 hours to 48 hours. The reaction temperature of the dehydration cyclization reaction by the chemical imidization method is not particularly limited, but is, for example, from 0° C. to 50° C.
[開環重合工程]
 開環重合工程では、上記式(I´)で示されるノルボルネン系単量体(I´)と、上記式(II´)で示されるポリイミド化合物(II´)との開環重合反応を行い、開環重合体を得る。そして、樹脂組成物から形成される樹脂膜の耐熱性を更に向上させつつ誘電正接を一層低下させる観点から、ノルボルネン系単量体(I´)およびポリイミド化合物(II´)に、「重合体」の項で上述した構造単位(III)を形成し得るノルボルネン系単量体(III´)を更に加えて、開環重合反応を行うことが好ましい。また、必要に応じて、ノルボルネン系単量体(I´)、ポリイミド化合物(II´)およびノルボルネン系単量体(III´)以外の単量体を加えて、開環重合反応を行ってもよい。
[Ring-opening polymerization process]
In the ring-opening polymerization step, a ring-opening polymerization reaction is carried out between the norbornene-based monomer (I') represented by the above formula (I') and the polyimide compound (II') represented by the above formula (II') to obtain a ring-opening polymer. From the viewpoint of further improving the heat resistance of the resin film formed from the resin composition while further reducing the dielectric tangent, it is preferable to further add the norbornene-based monomer (III') capable of forming the structural unit (III) described above in the "polymer" section to the norbornene-based monomer (I') and the polyimide compound (II') to carry out the ring-opening polymerization reaction. In addition, if necessary, a monomer other than the norbornene-based monomer (I'), the polyimide compound (II') and the norbornene-based monomer (III') may be added to carry out the ring-opening polymerization reaction.
―ノルボルネン系単量体(I´)―
 上記式(I´)で示されるノルボルネン系単量体(I´)は、「重合体」の項で上述した構造単位(I)を形成し得る単量体である。ここで、上記式(I´)中、R~Rのうち二つが一緒になって環構造を形成していてもよく、環構造を形成しないR~Rは、それぞれ独立して、水素原子、アルキル基または芳香環基であり、アルキル基および芳香環基は置換基としての水酸基を有していてもよく、mは0以上4以下の整数である。また、ノルボルネン系単量体(I´)における上記式(I´)中のR~Rはいずれもラジカル架橋性基ではないものとする。
--Norbornene-based monomer (I')--
The norbornene monomer (I') represented by the above formula (I') is a monomer capable of forming the structural unit (I) described above in the section "Polymer". In the above formula (I'), two of R 1 to R 4 may be combined to form a ring structure, and R 1 to R 4 that do not form a ring structure are each independently a hydrogen atom, an alkyl group or an aromatic ring group, the alkyl group and the aromatic ring group may have a hydroxyl group as a substituent, and m is an integer of 0 to 4. In the norbornene monomer (I'), none of R 1 to R 4 in the above formula (I') is a radical crosslinkable group.
 ここで、ノルボルネン系単量体(I´)としては、例えば、2-ノルボルネン-5-メタノール、2-メチル-2-ヒドロキシメチルビシクロ[2.2.1]ヘプト-5-エン、2,3-ジヒドロキシメチルビシクロ[2.2.1]ヘプト-5-エン、3-ヒドロキシトリシクロ[5.2.1.02,6]デカ-4,8-ジエン、3-ヒドロキシメチルトリシクロ[5.2.1.02,6]デカ-4,8-ジエン、4-ヒドロキシテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-ヒドロキシメチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン(慣用名:「テトラシクロドデセンメタノール」)、4,5-ジヒドロキシメチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エンなどが挙げられる。中でも、2-ノルボルネン-5-メタノールが好ましい。ノルボルネン系単量体(I´)は、一種を単独で、または、複数種を組み合わせて用いることができる。 Here, examples of the norbornene monomer (I') include 2-norbornene-5-methanol, 2-methyl-2-hydroxymethylbicyclo[2.2.1]hept-5-ene, 2,3-dihydroxymethylbicyclo[2.2.1]hept-5-ene, 3-hydroxytricyclo[5.2.1.0 2,6 ]deca-4,8-diene, 3-hydroxymethyltricyclo[5.2.1.0 2,6 ]deca-4,8-diene, 4-hydroxytetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodec-9-ene, 4-hydroxymethyltetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodec-9-ene (common name: "tetracyclododecenemethanol"), 4,5-dihydroxymethyltetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodec-9-ene. 0 2,7 ]dodec-9-ene, etc. Among them, 2-norbornene-5-methanol is preferable. The norbornene monomer (I') may be used alone or in combination of two or more kinds.
―ポリイミド化合物(II´)―
 上記式(II´)で示されるポリイミド化合物(II´)は、「重合体」の項で上述した構造単位(II)を形成し得る化合物である。そして、上記式(II´)中のX、YおよびZの構造、ならびにnの好ましい範囲は、同項で上述した構造単位(II)中のX、YおよびZの構造、ならびにnの好ましい範囲と同様とすることができる。
 なお、ポリイミド化合物(II´)は、一種を単独で、または、複数種を組み合わせて用いることができる。
--Polyimide compound (II')--
The polyimide compound (II') represented by the above formula (II') is a compound capable of forming the structural unit (II) described above in the section "Polymer". The structures of X, Y, and Z in the above formula (II') and the preferred range of n can be the same as the structures of X, Y, and Z in the structural unit (II) described above in the same section and the preferred range of n.
The polyimide compound (II') may be used alone or in combination of two or more kinds.
―ノルボルネン系単量体(III´)―
 ノルボルネン系単量体(III´)は、「重合体」の項で上述した構造単位(III)を形成し得る単量体である。そして、ノルボルネン系単量体(III´)としては、例えば、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、8-エチリデン-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:エチリデンテトラシクロドデセン)、トリシクロ[5.2.1.02,6]デカ-3,8-ジエン(慣用名:ジシクロペンタジエン)、1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン(慣用名:メタノテトラヒドロフルオレン)、5-エチリデンビシクロ[2.2.1]ヘプト-2-エン(慣用名:エチリデンノボルネン)、ビシクロ[2.2.1]ヘプト-2-エン(「ノルボルネン」ともいう。)、5-エチル-ビシクロ[2.2.1]ヘプト-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプト-2-エン、5-メチリデン-ビシクロ[2.2.1]ヘプト-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプト-2-エン、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン、9-メチル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチリデン-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチリデン-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-ビニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-プロペニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、ペンタシクロ[9.2.1.13,9.02,10.04,8]ペンタデカ-5,12-ジエン、9-フェニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン、ペンタシクロ[9.2.1.13,9.02,10.04,8]ペンタデカ-12-エン、5-フェニルビシクロ[2.2.1]ヘプト-2-エン(慣用名:フェニルノルボルネン)およびこれらの誘導体などが挙げられる。中でも、メタノテトラヒドロフルオレンが好ましい。なお、誘導体とは、環構造中に置換基を有するものを指す。そして、環構造中に有し得る置換基としては、例えば、アルキル基、アルキレン基、ビニル基、アルコキシカルボニル基、アルキリデン基が挙げられる。そして、誘導体の環構造は、これら置換基を一種有していてもよく、複数種有していてもよい。
 そして、ノルボルネン系単量体(III´)は、一種を単独で、または、複数種を組み合わせて用いることができる。
--Norbornene-based monomer (III')--
The norbornene monomer (III') is a monomer capable of forming the structural unit (III) described above in the section "Polymer". Examples of the norbornene monomer (III') include tetracyclo[4.4.0.1 2,5 . 1 7,10 ]dodec-3-ene (common name: tetracyclododecene), 8-ethylidene-tetracyclo[4.4.0.1 2,5 . 1 7,10 ]dodec-3-ene (common name: ethylidenetetracyclododecene), tricyclo[5.2.1.0 2,6 ]deca-3,8-diene (trivial name: dicyclopentadiene), 1,4-methano-1,4,4a,9a-tetrahydrofluorene (trivial name: methanotetrahydrofluorene), 5-ethylidenebicyclo[2.2.1]hept-2-ene (trivial name: ethylidene nobornene), bicyclo[2.2.1]hept-2-ene (also called "norbornene"). 5-ethyl-bicyclo[2.2.1]hept-2-ene, 5-butyl-bicyclo[2.2.1]hept-2-ene, 5-methylidene-bicyclo[2.2.1]hept-2-ene, 5-vinyl-bicyclo[2.2.1]hept-2-ene, tetracyclo[10.2.1.0 2,11 . 0 4,9 ] pentadeca-4,6,8,13-tetraene, 9-methyl-tetracyclo[6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-ethyl-tetracyclo[6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-methylidene-tetracyclo[6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-ethylidene-tetracyclo[6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-vinyl-tetracyclo[6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-propenyl-tetracyclo[6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, pentacyclo[9.2.1.1 3,9 . 0 2,10 . 0 4,8 ] pentadeca-5,12-diene, 9-phenyl-tetracyclo[6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, tetracyclo[9.2.1.0 2,10 . 0 3,8 ] tetradeca-3,5,7,12-tetraene, pentacyclo[9.2.1.1 3,9 . 0 2,10 . 0 4,8 ] pentadec-12-ene, 5-phenylbicyclo[2.2.1] hept-2-ene (common name: phenylnorbornene) and derivatives thereof. Among them, methanotetrahydrofluorene is preferred. The derivative refers to one having a substituent in the ring structure. Examples of the substituent that may be present in the ring structure include an alkyl group, an alkylene group, a vinyl group, an alkoxycarbonyl group, and an alkylidene group. The ring structure of the derivative may have one or more of these substituents.
The norbornene monomer (III') may be used alone or in combination of two or more kinds.
 開環重合反応は、反応溶媒中、公知の方法に従って行うことができる。
 その際、反応溶媒としては、特に限定されず、例えばテトラヒドロフラン、テトラヒドロピラン、トルエン、アニソール、シクロペンタノン等の有機溶媒を用いることができる。中でも、テトラヒドロフランまたはアニソールを用いることが好ましい。
 また、分子量調整剤として、エチレン;プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数3以上20以下のα-オレフィン;1,4-ヘキサジエン、1,5-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等の非共役ジエン、およびこれらの誘導体;等を用いてもよい。
 また、開環重合触媒としては、モリブデン、タングステン、ルテニウム等の金属を含む金属触媒を用いることができ、中でも、ルテニウムを含む金属触媒を用いることが好ましい。
 さらに、開環重合時間は、通常は、1時間以上10時間以下であり、2時間以上5時間以下であることが好ましい。そして、開環重合温度は、通常は、20℃以上100℃以下であり、90℃以下であることが好ましい。
The ring-opening polymerization reaction can be carried out in a reaction solvent according to a known method.
In this case, the reaction solvent is not particularly limited, and for example, organic solvents such as tetrahydrofuran, tetrahydropyran, toluene, anisole, cyclopentanone, etc., can be used. Among them, it is preferable to use tetrahydrofuran or anisole.
Further, as the molecular weight regulator, ethylene; α-olefins having 3 to 20 carbon atoms, such as propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosene; non-conjugated dienes, such as 1,4-hexadiene, 1,5-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, and 1,7-octadiene, and derivatives thereof, may be used.
As the ring-opening polymerization catalyst, a metal catalyst containing a metal such as molybdenum, tungsten, or ruthenium can be used, and among these, it is preferable to use a metal catalyst containing ruthenium.
Furthermore, the ring-opening polymerization time is usually from 1 hour to 10 hours, and preferably from 2 hours to 5 hours, and the ring-opening polymerization temperature is usually from 20° C. to 100° C., and preferably from 90° C. or less.
[水素添加工程]
 水素添加工程では、上記開環重合工程で得られた開環重合体に対して水素添加反応を行うことで、開環重合体水素添加物を得る。水素添加工程で得られる開環重合体水素添加物は、「重合体」の項で上述した構造単位(I)(但し、式(I)中、R~Rはラジカル架橋性基以外である。)および構造単位(II)、ならびに任意の構造単位(III)および/またはその他の構造単位を含む重合体である。
[Hydrogenation step]
In the hydrogenation step, the ring-opening polymer obtained in the ring-opening polymerization step is subjected to a hydrogenation reaction to obtain a hydrogenated ring-opening polymer. The hydrogenated ring-opening polymer obtained in the hydrogenation step is a polymer containing the structural unit (I) (wherein, in formula (I), R 1 to R 4 are other than radical crosslinkable groups) and structural unit (II) described above in the "Polymer" section, as well as any structural unit (III) and/or other structural units.
 水素添加反応は、公知の方法に従って行うことができる。また、水素添化反応における反応時間、反応温度および水素化圧力は、特に限定されないが、反応時間は、通常、1時間以上10時間であり、5時間以下であることが好ましい。また、反応温度は、通常、100℃以上200℃以下であり、180℃以下であることが好ましい。そして、水素化圧力は、通常、1MPa以上10MPa以下であることが好ましい。 The hydrogenation reaction can be carried out according to a known method. The reaction time, reaction temperature, and hydrogenation pressure in the hydrogenation reaction are not particularly limited, but the reaction time is usually 1 hour or more and 10 hours or less, and preferably 5 hours or less. The reaction temperature is usually 100°C or more and 200°C or less, and preferably 180°C or less. The hydrogenation pressure is usually preferably 1 MPa or more and 10 MPa or less.
[変性工程]
 変性工程では、水素添加工程で得られた開環重合体水素添加物に対して、変性剤による変性反応を行うことで、「重合体」の項で上述した式(I)中のR~Rの少なくとも一つがラジカル架橋性基である構造単位(I)と、構造単位(II)とを含み、任意で、構造単位(III)および/またはその他の構造単位を更に含む重合体を得る。
[Modification step]
In the modification step, the hydrogenated ring-opening polymer obtained in the hydrogenation step is subjected to a modification reaction with a modifying agent to obtain a polymer comprising structural unit (I) in which at least one of R 1 to R 4 in formula (I) described above in the section "Polymer" is a radical crosslinkable group, structural unit (II), and optionally further comprising structural unit (III) and/or other structural units.
―変性剤―
 変性反応に用いる変性剤は、「重合体」の項で上述した構造単位(I)が有し得る所望のラジカル架橋性基の構造に応じて適宜選択することができる。なお変性剤は、一種を単独で、または、複数種を組み合わせて用いることができる。
- Denaturing agent -
The modifying agent used in the modification reaction can be appropriately selected according to the structure of the desired radical crosslinkable group that the structural unit (I) described above in the section "Polymer" may have. The modifying agent can be used alone or in combination of two or more kinds.
 スチリル骨格を有するラジカル架橋性基を導入する場合、変性剤としては、開環重合体水素添加物が有する官能基(水酸基など)と変性反応しうる官能基(ハロゲン基、トシル基、メシル基など)と、スチリル骨格とを有する化合物(スチリル系変性剤)を用いることができる。スチリル系変性剤としては、例えば、2-(フルオロメチル)スチレン、3-(フルオロメチル)スチレン、4-(フルオロメチル)スチレン、2-(クロロメチル)スチレン、3-(クロロメチル)スチレン、4-(クロロメチル)スチレン、2-(ブロモメチル)スチレン、3-(ブロモメチル)スチレン、4-(ブロモメチル)スチレン、2-(ヨードメチル)スチレン、3-(ヨードメチル)スチレン、4-(ヨードメチル)スチレン等のハロゲン化メチルスチレン、2-(トシルメチル)スチレン、3-(トシルメチル)スチレン、4-(トシルメチル)スチレン、2-(メシルメチル)スチレン、3-(メシルメチル)スチレン、4-(メシルメチル)スチレン等が挙げられる。これらは一種を単独で、または、複数種を組み合わせて用いることができる。そしてこれらの中でも、変性反応を効率的に行う観点からは、4-(クロロメチル)スチレン、4-(ブロモメチル)スチレンを用いることが好ましい。 When introducing a radical crosslinkable group having a styryl skeleton, a compound (styryl-based modifier) having a styryl skeleton and a functional group (halogen group, tosyl group, mesyl group, etc.) that can undergo a modification reaction with the functional group (hydroxyl group, etc.) of the ring-opening polymer hydrogenation product can be used as the modifier. Examples of styryl-based modifiers include halogenated methylstyrenes such as 2-(fluoromethyl)styrene, 3-(fluoromethyl)styrene, 4-(fluoromethyl)styrene, 2-(chloromethyl)styrene, 3-(chloromethyl)styrene, 4-(chloromethyl)styrene, 2-(bromomethyl)styrene, 3-(bromomethyl)styrene, 4-(bromomethyl)styrene, 2-(iodomethyl)styrene, 3-(iodomethyl)styrene, and 4-(iodomethyl)styrene, 2-(tosylmethyl)styrene, 3-(tosylmethyl)styrene, 4-(tosylmethyl)styrene, 2-(mesylmethyl)styrene, 3-(mesylmethyl)styrene, and 4-(mesylmethyl)styrene. These can be used alone or in combination. Among these, from the viewpoint of efficiently carrying out the modification reaction, it is preferable to use 4-(chloromethyl)styrene and 4-(bromomethyl)styrene.
 アクリレート骨格を有するラジカル架橋性基を導入する場合、変性剤としては、開環重合体水素添加物が有する官能基(水酸基など)と変性反応しうる官能基(ハロゲン基、カルボン酸無水物基など)と、アクリレート骨格とを有する化合物(アクリレート系変性剤)を用いることができる。アクリレート系変性剤としては、アクリル酸クロライド、アクリル酸無水物、メタクリル酸クロライド、メタクリル酸無水物等が挙げられる。これらは一種を単独で、または、複数種を組み合わせて用いることができる。そしてこれらの中でも、変性反応を効率的に行う観点からは、アクリル酸クロライド、メタクリル酸クロライドを用いることが好ましい。 When introducing a radical crosslinkable group having an acrylate skeleton, a compound (acrylate-based modifier) having an acrylate skeleton and a functional group (halogen group, carboxylic anhydride group, etc.) capable of undergoing a modification reaction with the functional group (hydroxyl group, etc.) of the ring-opening polymer hydrogenation product can be used as the modifier. Examples of acrylate-based modifiers include acrylic acid chloride, acrylic acid anhydride, methacrylic acid chloride, methacrylic acid anhydride, etc. These can be used alone or in combination of two or more types. Among these, it is preferable to use acrylic acid chloride or methacrylic acid chloride from the viewpoint of efficient modification reaction.
―変性反応の手順および条件―
 変性反応の手順および条件は特に限定されず、例えば用いる変性剤の種類に応じて適宜設定することができる。なお変性反応における反応溶媒としては、特に限定されず、例えば、開環重合反応で用いた反応溶媒と同様のものを用いることができる。
- Modification reaction procedure and conditions -
The procedure and conditions of the modification reaction are not particularly limited, and can be appropriately set depending on, for example, the type of the modifying agent used. The reaction solvent in the modification reaction is not particularly limited, and can be, for example, the same reaction solvent as that used in the ring-opening polymerization reaction.
 例えば変性剤としてスチリル系変性剤を用いる場合、変性反応は、例えば、塩基存在下、開環重合体水素添加物と、スチリル系変性剤とを反応溶媒中で反応させて行うことができる。その際、塩基としては、特に限定されず、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物、水酸化カルシウムなどのアルカリ土類金属の水酸化物、t-ブトキシリチウム、t-ブトキシナトリウム、t-ブトキシカリウムなの金属アルコキシド、トリエチルアミン、ピリジン、ジアザビシクロウンデセン、ジアザビシクロノネン、テトラメチルグアニジン、などの有機塩基を使用することができる。これらの中でも、変性反応を効率的に行う観点からは、t-ブトキシリチウム、t-ブトキシナトリウム、およびt-ブトキシカリウムなどの金属アルコキシドを用いることが好ましい。
 変性剤としてスチリル系変性剤を用いる場合、ヨウ化カリウムおよびテトラブチルアンモニウムヨージドなどのヨウ化物イオンの発生源となりうる化合物を触媒として用いることが好ましい。かかる触媒を配合することで変性工程における反応を促進することができる。ヨウ化物イオンを発生しうる触媒の配合割合は、例えば、開環重合体水素添加物100質量部あたり、1.0質量部以上10.0質量部以下でありうる。
 変性剤としてスチリル系変性剤を用いる場合、変性反応温度および変性反応時間は、特に限定されないが、変性反応温度は、通常、-10℃以上100℃以下であり、変性反応時間は、通常、1時間以上15時間以下である。
For example, when a styryl-based modifier is used as the modifier, the modification reaction can be carried out, for example, by reacting the ring-opening polymer hydrogenated product with the styryl-based modifier in a reaction solvent in the presence of a base. In this case, the base is not particularly limited, and examples of bases that can be used include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, metal alkoxides such as t-butoxylithium, t-butoxysodium, and t-butoxypotassium, triethylamine, pyridine, diazabicycloundecene, diazabicyclononene, and tetramethylguanidine. Among these, from the viewpoint of efficiently carrying out the modification reaction, it is preferable to use metal alkoxides such as t-butoxylithium, t-butoxysodium, and t-butoxypotassium.
When a styryl-based modifier is used as the modifier, it is preferable to use a compound capable of generating iodide ions, such as potassium iodide and tetrabutylammonium iodide, as a catalyst. By adding such a catalyst, the reaction in the modification step can be promoted. The mixing ratio of the catalyst capable of generating iodide ions can be, for example, 1.0 parts by mass or more and 10.0 parts by mass or less per 100 parts by mass of the ring-opening polymer hydrogenation product.
When a styryl-based modifying agent is used as the modifying agent, the modification reaction temperature and the modification reaction time are not particularly limited, but the modification reaction temperature is usually −10° C. or higher and 100° C. or lower, and the modification reaction time is usually 1 hour or higher and 15 hours or lower.
 また、例えば変性剤としてアクリレート系変性剤を用いる場合、変性反応は、変性反応触媒の存在下、開環重合体水素添加物と、アクリレート変性剤とを反応溶媒中で反応させて行うことができる。その際、変性反応触媒としては、特に限定されず、例えば、トリエチルアミン、ピリジン等を使用することができる。中でも、トリエチルアミンを用いることが好ましい。また、変性剤としてアクリレート系変性剤を用いる場合、変性反応温度および変性反応時間は、特に限定されないが、変性反応温度は、通常、-10℃以上30℃以下であり、変性反応時間は、通常、1時間以上15時間以下である。 In addition, for example, when an acrylate-based modifier is used as the modifier, the modification reaction can be carried out by reacting the ring-opening polymer hydrogenated product with the acrylate modifier in a reaction solvent in the presence of a modification reaction catalyst. In this case, the modification reaction catalyst is not particularly limited, and for example, triethylamine, pyridine, etc. can be used. Of these, it is preferable to use triethylamine. In addition, when an acrylate-based modifier is used as the modifier, the modification reaction temperature and modification reaction time are not particularly limited, but the modification reaction temperature is usually -10°C or higher and 30°C or lower, and the modification reaction time is usually 1 hour or higher and 15 hours or lower.
<ラジカル架橋剤>
 本発明の樹脂組成物は、上述した所定の重合体に加えて、ラジカル架橋剤を含むことが必要である。樹脂組成物がラジカル架橋剤を含まないと、樹脂組成物から形成される樹脂膜の耐熱性が低下する。
 ここでラジカル架橋剤は、本発明の樹脂組成物を用いて樹脂膜を得る際、ラジカル反応により上述した重合体と反応し、重合体と共同して樹脂膜中で強固な架橋構造を形成しうる成分である。
<Radical Crosslinking Agent>
The resin composition of the present invention must contain a radical crosslinking agent in addition to the above-mentioned specific polymer. If the resin composition does not contain a radical crosslinking agent, the heat resistance of the resin film formed from the resin composition will decrease.
The radical crosslinking agent is a component that reacts with the above-mentioned polymer through a radical reaction when a resin film is obtained using the resin composition of the present invention, and can form a strong crosslinked structure in the resin film together with the polymer.
 ここでラジカル架橋剤としては、例えば、アリル基を有するラジカル架橋剤、マレイミド基を有するラジカル架橋剤、(メタ)アクリロイル基を有するラジカル架橋剤、スチリル基を有するラジカル架橋剤、ビニル基を有するラジカル架橋剤が挙げられる。
 なお、本明細書において、「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
 アリル基を有するラジカル架橋剤としては、ジアリルエーテル、テトラアリルオキシエタン、ペンタエリスリトールトリアリルエーテル、9,9-ビス(4-アリルオキシフェニル)フルオレン、アジピン酸ジアリル、1,3,5-ベンゼントリカルボン酸トリアリル、シアヌル酸トリアリル、イソシアヌル酸ジアリルプロピル、トリアリルイソシアヌレート等が挙げられる。
 マレイミド基を有するラジカル架橋剤としては、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、日本化薬社製「MIZ-001」等のマレイミド樹脂、丸善石油化学社製「BANI-M」、「BANI-X」等のビスアリルナジイミド類、下記式(IV)で示されるラジカル架橋剤(IV)(日本化薬社製、「MIR-3000-70MT」として流通)等が挙げられる。
 (メタ)アクリロイル基を有するラジカル架橋剤としては、1,6-ヘキサンジオールジメタクリレート、トリメチロールプロハントリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、イソシアヌル酸トリス(2-アクリロイルオキシエチル)、ビスフェノールAジメタクリレート、ポリブタジエン末端ジアクリレート(大阪有機化学工業社製、「BAC-45」)、メタクリロイル基を有するポリフェニレンエーテル(SABIC社製、「ノリル(登録商標)SA9000」)等が挙げられる。
 スチリル基を有するラジカル架橋剤としては、1,2-ジビニルベンゼン、1,3-ジビニルベンゼン、1,4-ジビニルベンゼン、ならびに、下記式(VII)で示されるラジカル架橋剤(三菱ガス化学社製、「OPE-2St 1200」および「OPE-2St 2200」として流通)等が挙げられる。
 ビニル基を有するラジカル架橋剤としては、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、2,4,6-トリメチル-2,4,6-トリビニルシクロトリシロキサン等が挙げられる。
 なお、ラジカル架橋剤は、一種を単独で、または、複数種を組み合わせて用いることができる。
Examples of the radical crosslinking agent include a radical crosslinking agent having an allyl group, a radical crosslinking agent having a maleimide group, a radical crosslinking agent having a (meth)acryloyl group, a radical crosslinking agent having a styryl group, and a radical crosslinking agent having a vinyl group.
In this specification, "(meth)acryloyl" means acryloyl and/or methacryloyl.
Examples of radical crosslinking agents having an allyl group include diallyl ether, tetraallyloxyethane, pentaerythritol triallyl ether, 9,9-bis(4-allyloxyphenyl)fluorene, diallyl adipate, triallyl 1,3,5-benzenetricarboxylate, triallyl cyanurate, diallylpropyl isocyanurate, and triallyl isocyanurate.
Examples of the radical crosslinking agent having a maleimide group include 2,2-bis[4-(4-maleimidophenoxy)phenyl]propane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, maleimide resins such as "MIZ-001" manufactured by Nippon Kayaku Co., Ltd., bisallylnadimides such as "BANI-M" and "BANI-X" manufactured by Maruzen Petrochemical Co., Ltd., and a radical crosslinking agent (IV) represented by the following formula (IV) (manufactured by Nippon Kayaku Co., Ltd., distributed as "MIR-3000-70MT"), and the like.
Examples of radical crosslinking agents having a (meth)acryloyl group include 1,6-hexanediol dimethacrylate, trimethylolpropane triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, tris(2-acryloyloxyethyl) isocyanurate, bisphenol A dimethacrylate, polybutadiene-terminated diacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., "BAC-45"), and polyphenylene ether having a methacryloyl group (manufactured by SABIC Corporation, "Noryl (registered trademark) SA9000").
Examples of the radical crosslinking agent having a styryl group include 1,2-divinylbenzene, 1,3-divinylbenzene, 1,4-divinylbenzene, and a radical crosslinking agent represented by the following formula (VII) (manufactured by Mitsubishi Gas Chemical Company, Inc., sold under the names "OPE-2St 1200" and "OPE-2St 2200").
Examples of the radical crosslinking agent having a vinyl group include 1,4-butanediol divinyl ether, cyclohexane dimethanol divinyl ether, cyclohexane dimethanol divinyl ether, and 2,4,6-trimethyl-2,4,6-trivinylcyclotrisiloxane.
The radical crosslinking agent may be used alone or in combination of two or more kinds.
Figure JPOXMLDOC01-appb-C000023
 式(IV)中、aは1以上30以下の整数であり、1以上20以下の整数であることが好ましく、1以上10以下の整数であることがより好ましい。
Figure JPOXMLDOC01-appb-C000023
In formula (IV), a is an integer of 1 or more and 30 or less, preferably an integer of 1 or more and 20 or less, and more preferably an integer of 1 or more and 10 or less.
Figure JPOXMLDOC01-appb-C000024
 式(VII)中、b、cはそれぞれ独立して0以上300以下の整数である。但しbおよびcの一方が0である場合を除く。
Figure JPOXMLDOC01-appb-C000024
In formula (VII), b and c each independently represent an integer of 0 to 300, except for the case where one of b and c is 0.
 そして、ラジカル架橋剤としては、樹脂組成物から形成される樹脂膜の耐熱性を更に向上させつつ誘電正接を一層低下させるとともに、樹脂膜の伸張性を向上させる観点から、マレイミド基を有するラジカル架橋剤、アリル基を有するラジカル架橋剤が好ましく、マレイミド基を有するラジカル架橋剤がより好ましく、上記式(IV)で示されるラジカル架橋剤(IV)が特に好ましい。 As the radical crosslinking agent, from the viewpoint of further improving the heat resistance of the resin film formed from the resin composition, further reducing the dielectric tangent, and improving the extensibility of the resin film, a radical crosslinking agent having a maleimide group or a radical crosslinking agent having an allyl group is preferred, a radical crosslinking agent having a maleimide group is more preferred, and the radical crosslinking agent (IV) represented by the above formula (IV) is particularly preferred.
<<ラジカル架橋剤の含有量>>
 そして、本発明の樹脂組成物におけるラジカル架橋剤の含有量は、重合体100質量部当たり、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、10質量部以上であることが更に好ましく、15質量部以上であることが一層好ましく、100質量部以下であることが好ましく、80質量部以下であることがより好ましく、60質量部以下であることが更に好ましい。樹脂組成物中のラジカル架橋剤の含有量が重合体100質量部当たり1質量部以上であれば、樹脂組成物から形成される樹脂膜の誘電正接を一層低下させつつ耐熱性を更に向上させることができる。一方、樹脂組成物中のラジカル架橋剤の含有量が重合体100質量部当たり100質量部以下であれば、樹脂組成物から形成される樹脂膜の伸張性を向上させることができる。
<<Radical crosslinking agent content>>
The content of the radical crosslinking agent in the resin composition of the present invention is preferably 1 part by mass or more, more preferably 5 parts by mass or more, even more preferably 10 parts by mass or more, even more preferably 15 parts by mass or more, and preferably 100 parts by mass or less, more preferably 80 parts by mass or less, and even more preferably 60 parts by mass or less, per 100 parts by mass of the polymer. If the content of the radical crosslinking agent in the resin composition is 1 part by mass or more per 100 parts by mass of the polymer, the dielectric tangent of the resin film formed from the resin composition can be further reduced while the heat resistance can be further improved. On the other hand, if the content of the radical crosslinking agent in the resin composition is 100 parts by mass or less per 100 parts by mass of the polymer, the extensibility of the resin film formed from the resin composition can be improved.
 また、ラジカル架橋剤が上記式(IV)で示されるラジカル架橋剤(IV)を含む場合、本発明の樹脂組成物におけるラジカル架橋剤(IV)の含有量は、重合体100質量部当たり、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、10質量部以上であることが更に好ましく、100質量部以下であることが好ましく、50質量部以下であることがより好ましく、30質量部以下であることが更に好ましい。樹脂組成物中のラジカル架橋剤(IV)の含有量が重合体100質量部当たり1質量部以上であれば、樹脂組成物から形成される樹脂膜の誘電正接を一層低下させつつ耐熱性を更に向上させることができる。一方、樹脂組成物中のラジカル架橋剤(IV)の含有量が重合体100質量部当たり100質量部以下であれば、樹脂組成物から形成される樹脂膜の伸張性を向上させることができる。 In addition, when the radical crosslinking agent contains the radical crosslinking agent (IV) represented by the above formula (IV), the content of the radical crosslinking agent (IV) in the resin composition of the present invention is preferably 1 part by mass or more, more preferably 5 parts by mass or more, even more preferably 10 parts by mass or more, and preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and even more preferably 30 parts by mass or less per 100 parts by mass of the polymer. If the content of the radical crosslinking agent (IV) in the resin composition is 1 part by mass or more per 100 parts by mass of the polymer, the dielectric tangent of the resin film formed from the resin composition can be further reduced while the heat resistance can be further improved. On the other hand, if the content of the radical crosslinking agent (IV) in the resin composition is 100 parts by mass or less per 100 parts by mass of the polymer, the extensibility of the resin film formed from the resin composition can be improved.
<ラジカル開始剤>
 本発明の樹脂組成物はラジカル開始剤を更に含むことが好ましい。上述した重合体およびラジカル架橋剤に加えてラジカル開始剤を更に含む樹脂組成物であれば、露光部位の現像液に対する溶解性が低下し、現像によって露光部位が残る、ネガ型の感光性樹脂組成物として好適に用いることができ、特に、現像液として環状ケトンを用いた場合に優れたパターニング特性を発揮することができる。
 ここで、ラジカル開始剤は、樹脂組成物を用いて樹脂膜を得る際、露光や加熱によりラジカルを発生してラジカル架橋性基を反応させ、重合体を架橋させうる成分である。
 そして、ラジカル開始剤としては、例えば、光ラジカル発生剤、熱ラジカル発生剤等を用いることができる。なお、ラジカル開始剤は、一種を単独で、または、複数種を組み合わせて用いることができる。そしてラジカル開始剤は、光ラジカル発生剤と熱ラジカル発生剤の少なくとも一方を含むことが好ましく、光ラジカル発生剤と熱ラジカル発生剤の双方を含むことがより好ましい。ラジカル開始剤が光ラジカル発生剤を含んでいれば、樹脂組成物から形成される樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を向上させることができる。また、ラジカル開始剤が熱ラジカル発生剤を含んでいれば、樹脂組成物から形成される樹脂膜の耐熱性を更に向上させることができる。
<Radical initiator>
The resin composition of the present invention preferably further contains a radical initiator. If the resin composition further contains a radical initiator in addition to the above-mentioned polymer and radical crosslinking agent, the solubility of the exposed portion in the developer is reduced, and the exposed portion remains after development. The resin composition can be suitably used as a negative photosensitive resin composition, and can exhibit excellent patterning properties, particularly when a cyclic ketone is used as the developer.
The radical initiator is a component that generates radicals by exposure to light or heating when a resin film is obtained using the resin composition, and reacts with radical crosslinkable groups to crosslink the polymer.
As the radical initiator, for example, a photoradical generator, a thermal radical generator, etc. can be used. The radical initiator can be used alone or in combination of two or more types. The radical initiator preferably contains at least one of a photoradical generator and a thermal radical generator, and more preferably contains both a photoradical generator and a thermal radical generator. If the radical initiator contains a photoradical generator, the patterning characteristics of the resin film formed from the resin composition can be improved when a cyclic ketone is used as the developer. If the radical initiator contains a thermal radical generator, the heat resistance of the resin film formed from the resin composition can be further improved.
<<光ラジカル発生剤>>
 光ラジカル発生剤としては、アシルフォスフィンオキサイド系、オキシムエステル系、または芳香族ケトン系光ラジカル発生剤等を用いることができる。光ラジカル発生剤は、一種を単独で、または、複数種を組み合わせて用いることができる。
<<Photoradical generator>>
As the photoradical generator, an acylphosphine oxide-based, oxime ester-based, or aromatic ketone-based photoradical generator can be used. The photoradical generator can be used alone or in combination of two or more kinds.
 アシルフォスフィンオキサイド系光ラジカル発生剤としては、例えば、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシド、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、2,4,6-トリメチルベンゾイルフェニルエトキシホスフィンオキサイド等を用いることができる。 Examples of acylphosphine oxide photoradical generators that can be used include bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, and 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide.
 オキシムエステル系光ラジカル発生剤としては、例えば、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(o-ベンゾイルオキシム)(BASF社製、「Irgacure(登録商標) OXE01」として流通);エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(BASF社製、「Irgacure OXE02」として流通);および、BASF社製「Irgacure OXE03」として流通する化合物(化学式非公表)等を用いることができる。 Examples of oxime ester photoradical generators that can be used include 1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(o-benzoyloxime) (manufactured by BASF and distributed as "Irgacure (registered trademark) OXE01"); ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(O-acetyloxime) (manufactured by BASF and distributed as "Irgacure OXE02"); and a compound (chemical formula not disclosed) distributed as "Irgacure OXE03" by BASF.
 また、芳香族ケトン系光ラジカル発生剤としては、ベンゾフェノン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1[4-メチルチオ]フェニル]-2-モルフォリノプロパン-1-オン、o-ベンゾイル安息香酸メチル、[4-(メチルフェニルチオ)フェニル]フェニルメタン、1,4ジベンゾイルベンゼン、2-ベンゾイルナフタレン、4-ベンゾイルビフェニル、4-ベンゾイルジフェニルエーテル、ベンジル等を用いることができる。 In addition, examples of aromatic ketone-based photoradical generators that can be used include benzophenone, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanone-1, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2-methyl-1[4-methylthio]phenyl]-2-morpholinopropan-1-one, o-benzoylbenzoic acid methyl, [4-(methylphenylthio)phenyl]phenylmethane, 1,4-dibenzoylbenzene, 2-benzoylnaphthalene, 4-benzoylbiphenyl, 4-benzoyldiphenyl ether, and benzyl.
 上述した中でも、露光感度をより向上させるとともに、現像後の残膜率を向上できる観点から、光ラジカル発生剤として、オキシムエステル系光ラジカル発生剤を用いることが好ましく、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(o-ベンゾイルオキシム)を用いることがより好ましい。 Among the above, from the viewpoint of further improving the exposure sensitivity and improving the residual film rate after development, it is preferable to use an oxime ester-based photoradical generator as the photoradical generator, and it is more preferable to use 1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(o-benzoyloxime).
<<熱ラジカル発生剤>>
 熱ラジカル発生剤としては、有機過酸化物系熱ラジカル発生剤、アゾビス系熱ラジカル発生剤等を用いることができる。熱ラジカル発生剤は、一種を単独で、または、複数種を組み合わせて用いることができる。
 有機過酸化物系熱ラジカル発生剤としては、例えば、ジクミルパーオキサイド、1,1-ビス(3,3-ジメチルブチルペルオキシ)シクロヘキサン、1,1-ビス(t-ブチルペルオキシ)シクロヘキサン、n-ブチル-4,4’-ジ(t-ブチルパーオキシ)バレレート、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、t-ブチルクミルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシ-3-ヘキシン、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン等を用いることができる。
 アゾビス系熱ラジカル発生剤としては、例えば、2,2'-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルプロピオン酸)ジメチル等を用いることができる。
 上述した中でも、熱ラジカル発生剤として、有機過酸化物系熱ラジカル発生剤を用いることが好ましく、ジクミルパーオキサイドを用いることがより好ましい。
<<Thermal Radical Generator>>
As the thermal radical generator, an organic peroxide-based thermal radical generator, an azobis-based thermal radical generator, etc. The thermal radical generator may be used alone or in combination of two or more kinds.
Examples of the organic peroxide-based thermal radical generator that can be used include dicumyl peroxide, 1,1-bis(3,3-dimethylbutylperoxy)cyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, n-butyl-4,4'-di(t-butylperoxy)valerate, di(2-t-butylperoxyisopropyl)benzene, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 2,5-dimethyl-2,5-di-t-butylperoxy-3-hexyne, t-amylperoxy-2-ethylhexanoate, t-butylcumyl peroxide, benzoyl peroxide, and 2,5-dimethyl-2,5-di(benzoylperoxy)hexane.
As the azobis-based thermal radical generator, for example, 2,2'-azobis(2-methylpropionitrile), 2,2'-azobis(2-methylpropionate)dimethyl, etc. can be used.
Among the above, it is preferable to use an organic peroxide-based thermal radical generator as the thermal radical generator, and it is more preferable to use dicumyl peroxide.
<<ラジカル開始剤の含有量>>
 そして、本発明の樹脂組成物におけるラジカル開始剤の含有量は、重合体100質量部当たり、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることが更に好ましく、25質量部以下であることが好ましく、20質量部以下であることがより好ましく、15質量部以下であることが更に好ましい。樹脂組成物中のラジカル開始剤の含有量が重合体100質量部当たり1質量部以上であれば、樹脂組成物から形成される樹脂膜について、現像後の露光部の残膜率を向上させることができる。一方、樹脂組成物中のラジカル開始剤の含有量が重合体100質量部当たり25質量部以下であれば、樹脂組成物から形成される樹脂膜の誘電正接を一層低下させることができる。
<<Radical initiator content>>
The content of the radical initiator in the resin composition of the present invention is preferably 1 part by mass or more, more preferably 3 parts by mass or more, even more preferably 5 parts by mass or more, preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 15 parts by mass or less per 100 parts by mass of the polymer. If the content of the radical initiator in the resin composition is 1 part by mass or more per 100 parts by mass of the polymer, the residual film rate of the exposed part after development can be improved for the resin film formed from the resin composition. On the other hand, if the content of the radical initiator in the resin composition is 25 parts by mass or less per 100 parts by mass of the polymer, the dielectric loss tangent of the resin film formed from the resin composition can be further reduced.
 また、ラジカル開始剤が光ラジカル発生剤を含む場合、本発明の樹脂組成物における光ラジカル発生剤の含有量は、重合体100質量部当たり、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることが更に好ましく、25質量部以下であることが好ましく、20質量部以下であることがより好ましく、15質量部以下であることが更に好ましい。樹脂組成物中の光ラジカル発生剤の含有量が重合体100質量部当たり1質量部以上であれば、樹脂組成物から形成される樹脂膜について、現像後の露光部の残膜率を向上させることができる。一方、樹脂組成物中の光ラジカル発生剤の含有量が重合体100質量部当たり25質量部以下であれば、樹脂組成物から形成される樹脂膜の誘電正接を一層低下させることができる。 In addition, when the radical initiator contains a photoradical generator, the content of the photoradical generator in the resin composition of the present invention is preferably 1 part by mass or more, more preferably 3 parts by mass or more, even more preferably 5 parts by mass or more, preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 15 parts by mass or less, per 100 parts by mass of the polymer. If the content of the photoradical generator in the resin composition is 1 part by mass or more per 100 parts by mass of the polymer, the residual film rate of the exposed part after development can be improved for the resin film formed from the resin composition. On the other hand, if the content of the photoradical generator in the resin composition is 25 parts by mass or less per 100 parts by mass of the polymer, the dielectric tangent of the resin film formed from the resin composition can be further reduced.
 さらに、ラジカル開始剤が熱ラジカル発生剤を含む場合、本発明の樹脂組成物における熱ラジカル発生剤の含有量は、重合体100質量部当たり、0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましく、0.5質量部以上であることが更に好ましく、5質量部以下であることが好ましく、3質量部以下であることがより好ましい。樹脂組成物中の熱ラジカル発生剤の含有量が重合体100質量部当たり0.1質量部以上であれば、樹脂組成物から形成される樹脂膜の耐熱性を更に向上させることができる。一方、樹脂組成物中の熱ラジカル発生剤の含有量が重合体100質量部当たり5質量部以下であれば、樹脂組成物から形成される樹脂膜の誘電正接を一層低下させることができる。 Furthermore, when the radical initiator contains a thermal radical generator, the content of the thermal radical generator in the resin composition of the present invention is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, even more preferably 0.5 parts by mass or more, preferably 5 parts by mass or less, and more preferably 3 parts by mass or less per 100 parts by mass of the polymer. If the content of the thermal radical generator in the resin composition is 0.1 parts by mass or more per 100 parts by mass of the polymer, the heat resistance of the resin film formed from the resin composition can be further improved. On the other hand, if the content of the thermal radical generator in the resin composition is 5 parts by mass or less per 100 parts by mass of the polymer, the dielectric tangent of the resin film formed from the resin composition can be further reduced.
<溶剤>
 本発明の樹脂組成物が任意に含み得る溶剤としては、上述した重合体を溶解し得るものであれば、特に限定されることなく、既知の溶剤を用いることができる。
 そして、上述した重合体を良好に溶解して、樹脂組成物の塗工性および形成される樹脂膜の均一性を向上させる観点から、溶剤としては、メチルエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノンなどのケトン系溶剤、ジブチルエーテル、ジイソアミルエーテル、テトラヒドロフラン、テトラヒドロピラン、メチルテトラヒドロピラン、シクロペンチルメチルエーテル、アニソールなどのエーテル系溶剤を用いることが好ましく、シクロペンタノン、シクロヘキサノン、テトラヒドロフラン、テトラヒドロピラン、メチルテトラヒドロピラン、アニソールを用いることがより好ましく、アニソールを用いることが更に好ましい。
 これらの溶剤は、一種を単独で、または、複数種を組み合わせて用いることができる。
<Solvent>
The solvent that may be optionally contained in the resin composition of the present invention is not particularly limited, and any known solvent may be used as long as it can dissolve the above-mentioned polymer.
From the viewpoint of dissolving the above-mentioned polymer well and improving the coatability of the resin composition and the uniformity of the resin film formed, it is preferable to use, as the solvent, a ketone-based solvent such as methyl ethyl ketone, diisobutyl ketone, cyclopentanone, or cyclohexanone, or an ether-based solvent such as dibutyl ether, diisoamyl ether, tetrahydrofuran, tetrahydropyran, methyltetrahydropyran, cyclopentyl methyl ether, or anisole, more preferably cyclopentanone, cyclohexanone, tetrahydrofuran, tetrahydropyran, methyltetrahydropyran, or anisole, and even more preferably anisole.
These solvents may be used alone or in combination of two or more.
 そして、樹脂組成物中の溶剤の含有量は、樹脂組成物の全質量に対して溶剤以外の合計が、好ましくは10質量%以上、より好ましくは20質量%以上であり、好ましくは60質量%以下、より好ましくは50質量%以下となる量とすることが好ましい。 The content of the solvent in the resin composition is preferably 10% by mass or more, more preferably 20% by mass or more, and preferably 60% by mass or less, more preferably 50% by mass or less, based on the total mass of the resin composition, in total, other than the solvent.
<添加成分>
 また、本発明の樹脂組成物が任意に含み得る添加成分としては、特に限定されることなく、例えば、上述したラジカル架橋剤以外の架橋剤(非ラジカル架橋剤)、界面活性剤、酸化防止剤、増感剤、密着助剤等が挙げられる。これらの添加成分は、一種を単独で、または、複数種を組み合わせて用いることができる。中でも、本発明の樹脂組成物の塗工性を向上させて、得られる樹脂膜の膜厚の均一性を向上させる観点から、添加成分として、界面活性剤を含むことが好ましい。
<Additive ingredients>
In addition, additive components that may be optionally contained in the resin composition of the present invention are not particularly limited, and examples thereof include crosslinkers other than the above-mentioned radical crosslinkers (non-radical crosslinkers), surfactants, antioxidants, sensitizers, adhesion aids, etc. These additive components can be used alone or in combination of two or more types. Among them, it is preferable to include a surfactant as an additive component from the viewpoint of improving the coatability of the resin composition of the present invention and improving the uniformity of the film thickness of the obtained resin film.
 界面活性剤としては、特に限定されることなく、公知のシリコーン系界面活性剤、フッ素系界面活性剤などを用いることができる。そして、樹脂組成物中の界面活性剤の含有割合は、樹脂組成物の全質量に対して0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましい。 The surfactant is not particularly limited, and known silicone surfactants, fluorine surfactants, etc. can be used. The content of the surfactant in the resin composition is preferably 0.1 mass% or less, more preferably 0.05 mass% or less, based on the total mass of the resin composition.
<樹脂組成物の調製方法>
 本発明の樹脂組成物は、上述した必須の各成分(重合体およびラジカル架橋剤)、ならびに各種の任意成分を既知の方法により混合することで、調製することができる。ここで、本発明の樹脂組成物は、例えば、各成分を溶剤に対して溶解し、ろ過して得られる樹脂組成物として使用に供される。溶剤への溶解に際して、スターラー、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの既知の混合機を用いることができる。また、ろ過に際して、フィルター等のろ材を用いた一般的なろ過方法を採用することができる。
<Method for preparing resin composition>
The resin composition of the present invention can be prepared by mixing the above-mentioned essential components (polymer and radical crosslinking agent) and various optional components by a known method. Here, the resin composition of the present invention is used, for example, as a resin composition obtained by dissolving each component in a solvent and filtering it. When dissolving in a solvent, known mixers such as a stirrer, ball mill, sand mill, bead mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, and film mix can be used. In addition, when filtering, a general filtering method using a filter medium such as a filter can be adopted.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準(固形換算)である。
 そして、実施例および比較例において、ポリイミド化合物および重合体の重量平均分子量および分子量分布、ならびに、樹脂膜の耐熱性、伸張性、誘電正接およびパターニング特性は、以下の方法で評価した。
The present invention will be specifically described below based on examples, but the present invention is not limited to these examples. In the following description, "%" and "parts" expressing amounts are based on mass (solid equivalent) unless otherwise specified.
In the examples and comparative examples, the weight average molecular weight and molecular weight distribution of the polyimide compound and polymer, as well as the heat resistance, extensibility, dielectric tangent and patterning characteristics of the resin film were evaluated by the following methods.
<重量平均分子量および分子量分布>
 合成例で得られたポリイミド化合物、ならびに、実施例および比較例で得られた重合体について、ゲル浸透クロマトグラフィーを用いて重量平均分子量(Mw)および数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を算出した。
 具体的には、ゲル浸透クロマトグラフ(東ソー社製、「HLC-8220」)を使用し、カラムとして東ソー社製、「TSKgel(登録商標) G4000HXL」、「TSKgel G2000HXL」、「TSKgel G1000HXL」を連結したものを用い、展開溶媒としてテトラヒドロフランを用いて、重合体の重量平均分子量(Mw)および数平均分子量(Mn)を標準ポリスチレン換算値として求めた。そして、分子量分布(Mw/Mn)を算出した。
<耐熱性(ガラス転移温度)>
 スパッタリング装置(芝浦エレテック社製、「i-Miller CFS-4EP-LL」)を用いて、50nm膜厚のアルミ膜を形成した4インチシリコンウエハ上に、各実施例および各比較例において調製した樹脂組成物をスピンコートした後、ホットプレートを用いて90℃で2分間プリベークして、樹脂組成物よりなる樹脂膜を形成した。マスクアライナーを用いて1000mJ/cmの照射量で露光を行った後、窒素中において230℃で1時間加熱することにより樹脂膜を硬化して、10μm厚の樹脂膜付きシリコンウエハを得た。得られた樹脂膜付きシリコンウエハを0.1モル%の塩酸水溶液に12時間浸漬してアルミのエッチングを行うことで、樹脂膜付きウエハから樹脂膜を剥離させた後、110℃のオーブンで1時間乾燥させた。乾燥後の樹脂膜を幅5mm、長さ40mmの短冊状に切り出して試験片とし、この試験片について熱機械分析(メトラー・トレド社製、「TMA/SDTA841」)を行うことで、ガラス転移温度を測定し、下記の基準に従って評価した。ガラス転移温度が高いほど、樹脂膜は耐熱性に優れることを意味する。
 A:ガラス転移温度が180℃以上
 B:ガラス転移温度が170℃以上180℃未満
 C:ガラス転移温度が170℃未満
<伸張性(引張伸び率)>
 スパッタリング装置(芝浦エレテック社製、「i-Miller CFS-4EP-LL」)を用いて、50nm膜厚のアルミ膜を形成した4インチシリコンウエハ上に、各実施例および各比較例において調製した樹脂組成物をスピンコートした後、ホットプレートを用いて90℃で2分間プリベークして、樹脂組成物よりなる樹脂膜を形成した。マスクアライナーを用いて1000mJ/cmの照射量で露光を行った後、窒素中において230℃で1時間加熱することにより樹脂膜を硬化して、10μm厚の樹脂膜付きシリコンウエハを得た。得られた樹脂膜付きシリコンウエハを0.1モル%の塩酸水溶液に12時間浸漬してアルミのエッチングを行うことで、樹脂膜付きウエハから樹脂膜を剥離させた後、110℃のオーブンで1時間乾燥させた。
 乾燥後の樹脂膜を幅5mm、長さ40mmの短冊状に切り出して試験片とし、この試験片について引張試験を行うことで、樹脂膜の引張伸び率を測定した。具体的には、引張試験機(島津製作所社製、「AGS-10kNX」)を用いて、23℃において、つかみ具間隔20mm、引張速度2mm/分で引張試験を行い、破断点における引張伸び率を測定した。8本の試験片について試験を行い、上位3点の平均値を各実施例および各比較例で得られた樹脂組成物を用いて形成した樹脂膜の引張伸び率とした。そして、下記の基準で評価した。引張伸び率の値が大きいほど、樹脂膜の伸張性が高いことを意味する。そして、樹脂膜の伸張性が高いほど、温度サイクル試験や落下衝撃試験の際にクラックや剥離を生じ難いため、好ましい。
 A:引張伸び率が10%以上
 B:引張伸び率が5%以上10%未満
 C:引張伸び率が5%未満
<誘電正接>
 スパッタリング装置(芝浦エレテック社製、「i-Miller CFS-4EP-LL」)を用いて、50nm膜厚のアルミ膜を形成した4インチシリコンウエハ上に、各実施例および各比較例において調製した樹脂組成物をスピンコートした後、ホットプレートを用いて90℃で2分間プリベークして、樹脂組成物よりなる樹脂膜を形成した。次いでマスクアライナー(キャノン社製、「PLA501F」)でg-h-i混合線を用いて1000mJ/cmの照射量で露光後、窒素中において180℃で1時間加熱することにより樹脂膜を硬化して、10μm厚の樹脂膜付きシリコンウエハを得た。得られた樹脂膜付きシリコンウエハを0.1モル%の塩酸水溶液に12時間浸漬してアルミのエッチングを行うことで、樹脂膜付きシリコンウエハから樹脂膜を剥離させた後、110℃のオーブンで1時間乾燥させた。乾燥後の樹脂膜を幅2mm、長さ50mmの短冊状に切り出して試験片とし、この試験片について空洞共振器法により10GHzにおける誘電正接の測定を行い、下記の基準に従って、樹脂膜の誘電正接を評価した。
 A:誘電正接が0.005未満
 B:誘電正接が0.005以上0.007未満
 C:誘電正接が0.007以上
<パターニング特性>
 4インチシリコンウエハ上に、各実施例および各比較例において調製した樹脂組成物をスピンコートした後、ホットプレートを用いて90℃で2分間プリベークして、樹脂組成物よりなる樹脂膜を形成した。次いでマスクアライナー(キャノン社製、「PLA501F」)でg-h-i混合線を用いて、20μm径のホールパターンを持つマスクを介して700mJ/cmの照射量で露光後、シクロペンタノンに90秒間浸漬して現像を行った。現像後の樹脂膜について、光学顕微鏡を用いてホールパターンの開口の有無を確認した。そして、下記の基準に従って評価した。
 +:ホールパターンの開口が確認できた。
 -:ホールパターンの開口が確認できなかった。
<Weight average molecular weight and molecular weight distribution>
For the polyimide compounds obtained in the Synthesis Examples and the polymers obtained in the Examples and Comparative Examples, the weight average molecular weight (Mw) and number average molecular weight (Mn) were measured by gel permeation chromatography, and the molecular weight distribution (Mw/Mn) was calculated.
Specifically, a gel permeation chromatograph (manufactured by Tosoh Corporation, "HLC-8220") was used, and columns made up of Tosoh Corporation's "TSKgel (registered trademark) G4000HXL", "TSKgel G2000HXL", and "TSKgel G1000HXL" were connected as columns. Tetrahydrofuran was used as a developing solvent, and the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were determined in terms of standard polystyrene. Then, the molecular weight distribution (Mw/Mn) was calculated.
<Heat resistance (glass transition temperature)>
Using a sputtering device (Shibaura Eletec Corporation, "i-Miller CFS-4EP-LL"), the resin composition prepared in each Example and Comparative Example was spin-coated on a 4-inch silicon wafer on which an aluminum film of 50 nm thickness had been formed, and then pre-baked at 90 ° C. for 2 minutes using a hot plate to form a resin film made of the resin composition. After exposure to light at an irradiation dose of 1000 mJ / cm 2 using a mask aligner, the resin film was cured by heating at 230 ° C. for 1 hour in nitrogen to obtain a silicon wafer with a resin film of 10 μm thickness. The obtained silicon wafer with a resin film was immersed in a 0.1 mol % hydrochloric acid aqueous solution for 12 hours to etch the aluminum, thereby peeling off the resin film from the wafer with the resin film, and then dried in an oven at 110 ° C. for 1 hour. The dried resin film was cut into a rectangular shape with a width of 5 mm and a length of 40 mm to prepare a test piece, and the test piece was subjected to a thermomechanical analysis (Mettler Toledo, "TMA/SDTA841") to measure the glass transition temperature and evaluate it according to the following criteria. A higher glass transition temperature means that the resin film has better heat resistance.
A: Glass transition temperature is 180° C. or higher. B: Glass transition temperature is 170° C. or higher but less than 180° C. C: Glass transition temperature is less than 170° C. <Extensibility (tensile elongation)>
Using a sputtering device (Shibaura Eletec Corporation, "i-Miller CFS-4EP-LL"), the resin composition prepared in each Example and Comparative Example was spin-coated on a 4-inch silicon wafer on which an aluminum film of 50 nm thickness had been formed, and then pre-baked at 90 ° C. for 2 minutes using a hot plate to form a resin film made of the resin composition. After exposure to light at an irradiation dose of 1000 mJ / cm 2 using a mask aligner, the resin film was cured by heating at 230 ° C. for 1 hour in nitrogen to obtain a silicon wafer with a resin film of 10 μm thickness. The obtained silicon wafer with a resin film was immersed in a 0.1 mol % hydrochloric acid aqueous solution for 12 hours to etch the aluminum, thereby peeling off the resin film from the wafer with the resin film, and then dried in an oven at 110 ° C. for 1 hour.
The dried resin film was cut into a strip of 5 mm width and 40 mm length to prepare a test piece, and a tensile test was performed on the test piece to measure the tensile elongation of the resin film. Specifically, a tensile tester (Shimadzu Corporation, "AGS-10kNX") was used to perform a tensile test at 23°C, with a gripper interval of 20 mm and a tensile speed of 2 mm/min, and the tensile elongation at the break point was measured. The test was performed on eight test pieces, and the average value of the top three points was taken as the tensile elongation of the resin film formed using the resin composition obtained in each Example and Comparative Example. Then, the evaluation was performed according to the following criteria. The higher the tensile elongation value, the higher the extensibility of the resin film. And, the higher the extensibility of the resin film, the less likely it is to crack or peel during a temperature cycle test or a drop impact test, so this is preferable.
A: Tensile elongation rate is 10% or more B: Tensile elongation rate is 5% or more and less than 10% C: Tensile elongation rate is less than 5% <Dielectric tangent>
Using a sputtering device (Shibaura Eletec Corporation, "i-Miller CFS-4EP-LL"), the resin composition prepared in each Example and Comparative Example was spin-coated on a 4-inch silicon wafer on which an aluminum film of 50 nm thickness had been formed, and then pre-baked at 90 ° C. for 2 minutes using a hot plate to form a resin film made of the resin composition. Next, after exposure to 1000 mJ / cm 2 using a g-hi mixed line with a mask aligner (Canon Corporation, "PLA501F"), the resin film was cured by heating at 180 ° C. for 1 hour in nitrogen to obtain a silicon wafer with a resin film of 10 μm thickness. The obtained silicon wafer with a resin film was immersed in a 0.1 mol % hydrochloric acid aqueous solution for 12 hours to etch the aluminum, and the resin film was peeled off from the silicon wafer with the resin film, and then dried in a 110 ° C. oven for 1 hour. The dried resin film was cut into a rectangular shape having a width of 2 mm and a length of 50 mm to prepare a test piece. The dielectric tangent of this test piece was measured at 10 GHz by a cavity resonator method, and the dielectric tangent of the resin film was evaluated according to the following criteria.
A: Dielectric loss tangent is less than 0.005 B: Dielectric loss tangent is 0.005 or more and less than 0.007 C: Dielectric loss tangent is 0.007 or more <Patterning characteristics>
The resin compositions prepared in each of the Examples and Comparative Examples were spin-coated on a 4-inch silicon wafer, and then pre-baked at 90°C for 2 minutes using a hot plate to form a resin film made of the resin composition. Next, using a mask aligner (Canon, "PLA501F"), the wafer was exposed to light at an exposure dose of 700 mJ/ cm2 through a mask having a hole pattern with a diameter of 20 μm using a g-hi mixed line, and then developed by immersing the wafer in cyclopentanone for 90 seconds. The developed resin film was examined using an optical microscope to confirm the presence or absence of openings in the hole pattern. Evaluation was then performed according to the following criteria.
+: Opening of the hole pattern was confirmed.
-: No hole pattern opening was observed.
(合成例1)
<ポリイミド化合物(A-1)の合成>(組成:BPADA/HFBAPP/4ASt)
 窒素気流下、1Lの三口フラスコに脱水テトラヒドロフラン400gを入れた後、テトラカルボン酸二無水物としての4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(「BPADA」と略記する。)51.5gを加えて溶解させた。さらにジアミンとしての2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン(「HFBAPP」と略記する。)46.2g、および、末端封止剤としての4-アミノスチレン(「4ASt」と略記する。)2.4gを加えて室温で12時間反応させた。次いでピリジン31.3g、無水酢酸47.5gを加え、更に12時間撹拌した後、反応溶液に溶媒としてのテトラヒドロフラン300gを加えて希釈した。これをメタノール8Lに滴下し、生成した沈殿物をろ過により回収して70℃で10時間減圧乾燥することで、下記式(A-1)で示されるポリイミド化合物(A-1)を得た。ポリイミド化合物(A-1)の重量平均分子量は19800、分子量分布は1.4であった。
Figure JPOXMLDOC01-appb-C000025
(Synthesis Example 1)
<Synthesis of polyimide compound (A-1)> (Composition: BPADA/HFBAPP/4ASt)
Under a nitrogen stream, 400 g of dehydrated tetrahydrofuran was placed in a 1 L three-neck flask, and 51.5 g of 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic anhydride (abbreviated as "BPADA") as a tetracarboxylic dianhydride was added and dissolved. Furthermore, 46.2 g of 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane (abbreviated as "HFBAPP") as a diamine and 2.4 g of 4-aminostyrene (abbreviated as "4ASt") as an end-capping agent were added and reacted at room temperature for 12 hours. Next, 31.3 g of pyridine and 47.5 g of acetic anhydride were added, and the mixture was stirred for another 12 hours, after which the reaction solution was diluted with 300 g of tetrahydrofuran as a solvent. This was dropped into 8 L of methanol, and the resulting precipitate was collected by filtration and dried under reduced pressure at 70 ° C. for 10 hours to obtain a polyimide compound (A-1) represented by the following formula (A-1). The polyimide compound (A-1) had a weight average molecular weight of 19,800 and a molecular weight distribution of 1.4.
Figure JPOXMLDOC01-appb-C000025
(合成例2)
<ポリイミド化合物(A-2)の合成>(組成:a-BPDA/HFBAPP/4ASt)
 合成例1において、BPADA51.5gに代えて、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(「a-BPDA」と略記する。)37.4gを添加し、HFBAPPの添加量を59.5gに変更し、4AStの添加量を3.0gに変更し、ピリジンの添加量を34.6gに変更し、無水酢酸の添加量を53.0gに変更したこと以外は、合成例1と同様にして、下記式(A-2)で示されるポリイミド化合物(A-2)を得た。ポリイミド化合物(A-2)の重量平均分子量は9900、分子量分布は1.8であった。
Figure JPOXMLDOC01-appb-C000026
 なお、式(A-2)は、上記合成例2により得られたポリイミド化合物(A-2)の構造のあくまで一例であり、例えば、ポリイミド化合物(A-2)は、式(A-2)中、下記式(a):
Figure JPOXMLDOC01-appb-C000027
で示されるa-BPDAに由来する構造の少なくとも一部が、左右反転した構造、即ち、下記式(a’):
Figure JPOXMLDOC01-appb-C000028
で示される構造に置換された構造を有していてもよい。
(Synthesis Example 2)
<Synthesis of polyimide compound (A-2)> (Composition: a-BPDA/HFBAPP/4ASt)
A polyimide compound (A-2) represented by the following formula (A-2) was obtained in the same manner as in Synthesis Example 1, except that 37.4 g of 2,3,3',4'-biphenyltetracarboxylic dianhydride (abbreviated as "a-BPDA") was added instead of 51.5 g of BPADA, the amount of HFBAPP added was changed to 59.5 g, the amount of 4ASt added was changed to 3.0 g, the amount of pyridine added was changed to 34.6 g, and the amount of acetic anhydride added was changed to 53.0 g. The weight average molecular weight of the polyimide compound (A-2) was 9900, and the molecular weight distribution was 1.8.
Figure JPOXMLDOC01-appb-C000026
The formula (A-2) is merely one example of the structure of the polyimide compound (A-2) obtained in Synthesis Example 2 above. For example, the polyimide compound (A-2) may be a compound represented by the following formula (a):
Figure JPOXMLDOC01-appb-C000027
At least a part of the structure derived from a-BPDA represented by the following formula (a'):
Figure JPOXMLDOC01-appb-C000028
The structure may have a structure represented by the following formula:
(合成例3)
<ポリイミド化合物(A-3)の合成>(組成:BPADA/BAFL/4ASt)
 合成例1において、BPADAの添加量を60.7gに変更し、HFBAPP46.2gに代えて、9,9-ビス(4-アミノフェニル)フルオレン(「BAFL」と略記する。)36.6gを添加し、4AStの添加量を2.8gに変更し、ピリジンの添加量を36.4gに変更し、無水酢酸の添加量を57.4gに変更したこと以外は合成例1と同様にして、下記式(A-3)で示されるポリイミド化合物(A-3)を得た。ポリイミド化合物(A-3)の重量平均分子量は16000、分子量分布は1.5であった。
Figure JPOXMLDOC01-appb-C000029
(Synthesis Example 3)
<Synthesis of polyimide compound (A-3)> (Composition: BPADA/BAFL/4ASt)
A polyimide compound (A-3) represented by the following formula (A-3) was obtained in the same manner as in Synthesis Example 1, except that the amount of BPADA added was changed to 60.7 g, 36.6 g of 9,9-bis(4-aminophenyl)fluorene (abbreviated as "BAFL") was added instead of 46.2 g of HFBAPP, the amount of 4ASt added was changed to 2.8 g, the amount of pyridine added was changed to 36.4 g, and the amount of acetic anhydride added was changed to 57.4 g. The weight average molecular weight of the polyimide compound (A-3) was 16,000, and the molecular weight distribution was 1.5.
Figure JPOXMLDOC01-appb-C000029
(合成例4)
<ポリイミド化合物(A-4)の合成>(組成:BPAF/HFBAPP/4ASt)
 合成例1において、BPADA51.5gに代えて、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(「BPAF」と略記する。)46.3gを添加し、HFBAPPの添加量を39.2gに変更し、4AStの添加量を2.5gに変更し、ピリジンの添加量を33.3gに変更し、無水酢酸の添加量を52.3gに変更したこと以外は、合成例1と同様にして、ポリイミド化合物(A-4)を得た。ポリイミド化合物(A-4)の重量平均分子量は16100、分子量分布は1.6であった。
Figure JPOXMLDOC01-appb-C000030
(Synthesis Example 4)
<Synthesis of polyimide compound (A-4)> (Composition: BPAF/HFBAPP/4ASt)
A polyimide compound (A-4) was obtained in the same manner as in Synthesis Example 1, except that 46.3 g of 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (abbreviated as "BPAF") was added instead of 51.5 g of BPADA, the amount of HFBAPP added was changed to 39.2 g, the amount of 4ASt added was changed to 2.5 g, the amount of pyridine added was changed to 33.3 g, and the amount of acetic anhydride added was changed to 52.3 g in Synthesis Example 1. The weight average molecular weight of the polyimide compound (A-4) was 16,100, and the molecular weight distribution was 1.6.
Figure JPOXMLDOC01-appb-C000030
(実施例1)(組成:MTF/NBMOH-MA/(BPADA/HFBAPP/4ASt)、モル比(MTF/NBMOH-MA)=70/30)
<重合体(C-1)の合成>
<<開環重合工程、水素添加工程>>
 ポリイミド化合物(A-1)92.9部、ノルボルネン系単量体(I´)としての2-ノルボルネン-5-メタノール(「NBMOH」と略記する。)30モル%と、ノルボルネン系単量体(III´)としてのメタノテトラヒドロフルオレン(「MTF」と略記する。)70モル%とからなる単量体混合物100部、開環重合触媒としてのベンジリデン[1,3-ビス(2,4,6-トリメチルフェニル)-2-イミダゾリジニリデン]ジクロロ(トリシクロヘキシルホスフィン)ルテニウム0.4部、および溶媒としてのテトラヒドロフラン900部を、窒素置換したガラス製耐圧反応器に仕込み、撹拌しながら50℃にて4時間反応させて重合反応液を得た。
 得られた重合反応液をオートクレーブに入れて、130℃、水素圧10MPaで、5時間撹拌して水素添加反応を行った後、反応溶液に溶媒としてのテトラヒドロフラン900部を加えた。これをメタノール8000部に滴下し、生成した沈殿物をろ過により回収して50℃で減圧乾燥することで、開環重合体水素添加物(B-1)を得た(下記式参照)。開環重合体水素添加物(B-1)の重量平均分子量は33100、分子量分布は1.9であった。
Figure JPOXMLDOC01-appb-C000031
<<変性工程>>
 撹拌翼および温度計を取り付けた3つ口フラスコを窒素置換し、開環重合体水素添加物(B-1)100部、変性反応触媒としてのとしてのトリエチルアミン99.6部、および溶媒としてのテトラヒドロフラン500部を仕込み、反応溶液を氷浴で0℃に冷却した。反応溶液の温度を10℃以下に保ちながら、変性剤としてのメタクリル酸クロライド58.8部を滴下して2時間撹拌した。さらに反応溶液を室温に昇温し、12時間撹拌を続けた。次いで反応溶液に溶媒としてのテトラヒドロフラン200部を加えた後、0℃に冷却し、メタクリル酸クロライドに対して質量基準で0.5倍の量のメタノールを、反応溶液の温度を10℃以下に保ちながら加え、0℃で1時間撹拌し、室温に昇温してさらに1時間撹拌した。
 反応溶液をメタノール8000部に滴下し、生成した沈殿物をろ過により回収した。沈殿物をメタノールで3回洗浄した後、50℃で減圧乾燥することで、開環重合体水素添加物(B-1)の変性物である重合体(C-1)を得た(下記式参照)。GPC測定による重合体(C-1)の重量平均分子量は22600、分子量分布は1.5であった。
 H-NMR測定により、メタクリロイル変性率は100%であり、重合体(C-1)中のメタクリロイル変性されたNBMOH(「NBMOH-MA」と略記する。)に由来する構造単位の含有割合は、MTFに由来する構造単位とNBMOH-MAに由来する構造単位の合計含有量を100モル%とした場合に、30モル%であることが確認された。
Figure JPOXMLDOC01-appb-C000032
<樹脂組成物の調製>
 上記のようにして得られた重合体(C-1)100部、光ラジカル発生剤としての「Irgacure OXE01」(BASF社製)10部、ラジカル架橋剤としての「OPE-2St 1200」(三菱ガス化学社製、数平均分子量:1200)25部、「MIR-3000-70MT」(日本化薬社製、ラジカル架橋剤(IV))25部およびトリアリルイソシアヌレート(新菱社製)10部、ならびに樹脂組成物の全質量に対して溶剤以外の成分の合計が30%となる添加量のアニソール(溶剤)を混合し、溶解させた。次いで、樹脂組成物の全質量に対して0.03%となるようにシリコーン系界面活性剤としてのKP-341(信越シリコーン社製)を加えた後、孔径0.45μmのポリテトラフルオロエチレン製フィルターでろ過して、樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて、上記に従って各種評価を行った。結果を表1に示す。
(Example 1) (Composition: MTF/NBMOH-MA/(BPADA/HFBAPP/4ASt), molar ratio (MTF/NBMOH-MA) = 70/30)
<Synthesis of Polymer (C-1)>
<<Ring-opening polymerization step, hydrogenation step>>
A polymerization reaction liquid was obtained by charging 92.9 parts of polyimide compound (A-1), 100 parts of a monomer mixture consisting of 30 mol % of 2-norbornene-5-methanol (abbreviated as "NBMOH") as a norbornene-based monomer (I') and 70 mol % of methanotetrahydrofluorene (abbreviated as "MTF") as a norbornene-based monomer (III'), 0.4 parts of benzylidene[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(tricyclohexylphosphine)ruthenium as a ring-opening polymerization catalyst, and 900 parts of tetrahydrofuran as a solvent into a nitrogen-substituted glass pressure-resistant reactor and reacting the mixture at 50°C for 4 hours with stirring.
The obtained polymerization reaction solution was placed in an autoclave and stirred at 130°C and a hydrogen pressure of 10 MPa for 5 hours to carry out a hydrogenation reaction, after which 900 parts of tetrahydrofuran was added as a solvent to the reaction solution. This was dropped into 8000 parts of methanol, and the resulting precipitate was collected by filtration and dried under reduced pressure at 50°C to obtain a ring-opening polymer hydrogenation product (B-1) (see the following formula). The weight average molecular weight of the ring-opening polymer hydrogenation product (B-1) was 33,100, and the molecular weight distribution was 1.9.
Figure JPOXMLDOC01-appb-C000031
<<Modification process>>
A three-neck flask equipped with a stirring blade and a thermometer was substituted with nitrogen, and 100 parts of the hydrogenated ring-opening polymer (B-1), 99.6 parts of triethylamine as a modification reaction catalyst, and 500 parts of tetrahydrofuran as a solvent were charged, and the reaction solution was cooled to 0 ° C. in an ice bath. While maintaining the temperature of the reaction solution at 10 ° C. or less, 58.8 parts of methacrylic acid chloride as a modifying agent was added dropwise and stirred for 2 hours. The reaction solution was further heated to room temperature and stirred for 12 hours. Next, 200 parts of tetrahydrofuran as a solvent was added to the reaction solution, and the mixture was cooled to 0 ° C., and 0.5 times the amount of methanol by mass relative to the methacrylic acid chloride was added while maintaining the temperature of the reaction solution at 10 ° C. or less, and the mixture was stirred at 0 ° C. for 1 hour, heated to room temperature, and stirred for another 1 hour.
The reaction solution was dropped into 8,000 parts of methanol, and the resulting precipitate was collected by filtration. The precipitate was washed three times with methanol and then dried under reduced pressure at 50°C to obtain a modified product of the hydrogenated ring-opened polymer (B-1), polymer (C-1) (see the formula below). The weight average molecular weight of polymer (C-1) measured by GPC was 22,600, and the molecular weight distribution was 1.5.
It was confirmed by 1 H-NMR measurement that the methacryloyl modification rate was 100%, and the content ratio of structural units derived from methacryloyl-modified NBMOH (abbreviated as "NBMOH-MA") in polymer (C-1) was 30 mol % when the total content of structural units derived from MTF and structural units derived from NBMOH-MA was 100 mol %.
Figure JPOXMLDOC01-appb-C000032
<Preparation of Resin Composition>
100 parts of the polymer (C-1) obtained as described above, 10 parts of "Irgacure OXE01" (manufactured by BASF) as a photoradical generator, 25 parts of "OPE-2St 1200" (manufactured by Mitsubishi Gas Chemical Co., Ltd., number average molecular weight: 1200) as a radical crosslinking agent, 25 parts of "MIR-3000-70MT" (manufactured by Nippon Kayaku Co., Ltd., radical crosslinking agent (IV)) and 10 parts of triallyl isocyanurate (manufactured by Shinryo Corporation), and an amount of anisole (solvent) added such that the total of components other than the solvent is 30% relative to the total mass of the resin composition was mixed and dissolved. Next, KP-341 (manufactured by Shin-Etsu Silicone Co., Ltd.) as a silicone surfactant was added so that the amount was 0.03% relative to the total mass of the resin composition, and then the mixture was filtered through a polytetrafluoroethylene filter having a pore size of 0.45 μm to prepare a resin composition.
The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 1.
(実施例2)(組成:MTF/NBMOH-MA/(BPADA/HFBAPP/4ASt)、モル比(MTF/NBMOH-MA)=70/30)
 実施例1の樹脂組成物の調製に際し、熱ラジカル発生剤としてのジクミルパーオキサイド(ナカライテスク社製)1.6部を添加したこと以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて、上記に従って各種評価を行った。結果を表1に示す。
(Example 2) (Composition: MTF/NBMOH-MA/(BPADA/HFBAPP/4ASt), molar ratio (MTF/NBMOH-MA)=70/30)
The resin composition of Example 1 was prepared in the same manner as in Example 1, except that 1.6 parts of dicumyl peroxide (manufactured by Nacalai Tesque, Inc.) was added as a thermal radical generator.
The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 1.
(実施例3)(組成:MTF/NBMOH-MA/(BPADA/HFBAPP/4ASt)、モル比(MTF/NBMOH-MA)=70/30)
 実施例1の樹脂組成物の調製に際し、熱ラジカル発生剤としてのジクミルパーオキサイド1.35部を添加し、ラジカル架橋剤としての「OPE-2St 1200」25部、「MIR-3000-70MT」25部およびトリアリルイソシアヌレート10部に代えて、「OPE-2St 2200」(三菱ガス化学社製、数平均分子量:2200)25部およびトリアリルイソシアヌレート10部を用いたこと以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて、上記に従って各種評価を行った。結果を表1に示す。
(Example 3) (Composition: MTF/NBMOH-MA/(BPADA/HFBAPP/4ASt), molar ratio (MTF/NBMOH-MA)=70/30)
In preparing the resin composition of Example 1, 1.35 parts of dicumyl peroxide was added as a thermal radical generator, and 25 parts of "OPE-2St 1200" as a radical crosslinking agent, 25 parts of "MIR-3000-70MT" as a radical crosslinking agent, 25 parts of "OPE-2St 2200" (manufactured by Mitsubishi Gas Chemical Company, number average molecular weight: 2200) and 10 parts of triallyl isocyanurate were used instead of 10 parts of triallyl isocyanurate. The resin composition was prepared in the same manner as in Example 1.
The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 1.
(実施例4)(組成:MTF/NBMOH-MA/(a-BPDA/HFBAPP/4ASt)、モル比(MTF/NBMOH-MA)=70/30)
 実施例1の樹脂組成物の調製に際し、重合体(C-1)に代えて、以下のようにして調製した重合体(C-2)を用いるとともに、熱ラジカル発生剤としてのジクミルパーオキサイド1.35部を添加し、ラジカル架橋剤としての「MIR-3000-70MT」を添加しなかったこと以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて、上記に従って各種評価を行った。結果を表1に示す。
<重合体(C-2)の合成>
<<開環重合工程、水素添加工程>>
 実施例1の重合体(C-1)の合成の開環重合工程、水素添加工程において、ポリイミド化合物(A-1)92.9部に代えて、ポリイミド化合物(A-2)92.6部を添加したこと以外は、実施例1と同様にして、開環重合体水素添加物(B-2)を得た。
<<変性工程>>
 実施例1の重合体(C-1)の合成の変性工程において、開環重合体水素添加物(B-1)に代えて、上記のようにして得られた開環重合体水素添加物(B-2)を添加し、トリエチルアミンの添加量を99.6部に変更し、メタクリル酸クロライドの添加量を58.8部に変更したこと以外は、実施例1と同様にして、開環重合体水素添加物(B-2)の変性物である重合体(C-2)を得た(下記式参照)。GPC測定による重合体(C-2)の重量平均分子量は14100、分子量分布は1.6であった。
 H-NMR測定により、メタクリロイル変性率は100%であり、重合体(C-2)中のNBMOH-MA由来の構造単位の含有割合は、MTFに由来する構造単位とNBMOH-MAに由来する構造単位の合計含有量を100モル%とした場合、30モル%であることが確認された。
Figure JPOXMLDOC01-appb-C000033
(Example 4) (Composition: MTF/NBMOH-MA/(a-BPDA/HFBAPP/4ASt), molar ratio (MTF/NBMOH-MA)=70/30)
In preparing the resin composition of Example 1, the polymer (C-2) prepared as described below was used instead of the polymer (C-1), 1.35 parts of dicumyl peroxide was added as a thermal radical generator, and "MIR-3000-70MT" was not added as a radical crosslinking agent. The resin composition was prepared in the same manner as in Example 1.
The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 1.
<Synthesis of Polymer (C-2)>
<<Ring-opening polymerization step, hydrogenation step>>
A ring-opening polymer hydrogenation product (B-2) was obtained in the same manner as in Example 1, except that 92.6 parts of the polyimide compound (A-2) was added instead of 92.9 parts of the polyimide compound (A-1) in the ring-opening polymerization step and the hydrogenation step of the synthesis of the polymer (C-1) in Example 1.
<<Modification process>>
In the modification step of the synthesis of the polymer (C-1) of Example 1, instead of the ring-opening polymer hydrogenation product (B-1), the ring-opening polymer hydrogenation product (B-2) obtained as described above was added, the amount of triethylamine added was changed to 99.6 parts, and the amount of methacrylic acid chloride added was changed to 58.8 parts. Except for this, the procedure was the same as in Example 1 to obtain a modified product of the ring-opening polymer hydrogenation product (B-2) (see the following formula). The weight average molecular weight of the polymer (C-2) measured by GPC was 14100, and the molecular weight distribution was 1.6.
It was confirmed by 1 H-NMR measurement that the methacryloyl modification rate was 100%, and the content ratio of the structural units derived from NBMOH-MA in the polymer (C-2) was 30 mol % when the total content of the structural units derived from MTF and the structural units derived from NBMOH-MA was taken as 100 mol %.
Figure JPOXMLDOC01-appb-C000033
(実施例5)(組成:MTF/NBMOH-MA/(a-BPDA/HFBAPP/4ASt)、モル比(MTF/NBMOH-MA)=70/30)
 実施例4の樹脂組成物の調製に際し、ラジカル架橋剤としての「OPE-2St 1200」25部に代えて、「MIR-3000-70MT」25部を用いたこと以外は、実施例4と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて、上記に従って各種評価を行った。結果を表1に示す。
(Example 5) (Composition: MTF/NBMOH-MA/(a-BPDA/HFBAPP/4ASt), molar ratio (MTF/NBMOH-MA) = 70/30)
In preparing the resin composition of Example 4, 25 parts of "MIR-3000-70MT" was used instead of 25 parts of "OPE-2St 1200" as a radical crosslinking agent. A resin composition was prepared in the same manner as in Example 4.
The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 1.
(実施例6)(組成:MTF/NBMOH-MA/(BPADA/BAFL/4ASt)、モル比(MTF/NBMOH-MA)=70/30)
 実施例1の樹脂組成物の調製に際し、重合体(C-1)に代えて、以下のようにして調製した重合体(C-3)を用いるとともに、熱ラジカル発生剤としてのジクミルパーオキサイド1.25部を添加し、ラジカル架橋剤としての「OPE-2St 1200」25部、「MIR-3000-70MT」25部およびトリアリルイソシアヌレート10部に代えて、「MIR-3000-70MT」15部およびトリアリルイソシアヌレート10部を用いたこと以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて、上記に従って各種評価を行った。結果を表1に示す。
<重合体(C-3)の合成>
<<開環重合工程、水素添加工程>>
 実施例1の重合体(C-1)の合成の開環重合工程、水素添加工程において、ポリイミド化合物(A-1)92.9部に代えて、ポリイミド化合物(A-3)100.7部を添加したこと以外は、実施例1と同様にして、開環重合体水素添加物(B-3)を得た。
<<変性工程>>
 実施例1の重合体(C-1)の合成の変性工程において、開環重合体水素添加物(B-1)に代えて、上記のようにして得られた開環重合体水素添加物(B-3)を添加し、トリエチルアミンの添加量を96.0部に変更し、メタクリル酸クロライドの添加量を56.2部に変更したこと以外は、実施例1と同様にして、開環重合体水素添加物(B-3)の変性物である重合体(C-3)を得た(下記式参照)。重合体(C-3)の重量平均分子量は19600、分子量分布は1.6であった。
 H-NMR測定により、メタクリロイル変性率は100%であり、重合体(C-3)中のNBMOH-MAに由来する構造単位の含有量は、MTFに由来する構造単位とNBMOH-MAに由来する構造単位の合計含有量を100モル%とした場合に、30モル%であることが確認された。
Figure JPOXMLDOC01-appb-C000034
(Example 6) (Composition: MTF/NBMOH-MA/(BPADA/BAFL/4ASt), molar ratio (MTF/NBMOH-MA)=70/30)
In preparing the resin composition of Example 1, instead of the polymer (C-1), the polymer (C-3) prepared as follows was used, and 1.25 parts of dicumyl peroxide was added as a thermal radical generator. The resin composition was prepared in the same manner as in Example 1, except that 25 parts of “OPE-2St 1200” as a radical crosslinking agent, 25 parts of “MIR-3000-70MT” and 10 parts of triallyl isocyanurate were replaced with 15 parts of “MIR-3000-70MT” and 10 parts of triallyl isocyanurate.
The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 1.
<Synthesis of Polymer (C-3)>
<<Ring-opening polymerization step, hydrogenation step>>
A ring-opening polymer hydrogenation product (B-3) was obtained in the same manner as in Example 1, except that 100.7 parts of the polyimide compound (A-3) was added instead of 92.9 parts of the polyimide compound (A-1) in the ring-opening polymerization step and the hydrogenation step of the synthesis of the polymer (C-1) in Example 1.
<<Modification process>>
In the modification step of the synthesis of the polymer (C-1) of Example 1, the ring-opening polymer hydrogenated product (B-3) obtained as described above was added instead of the ring-opening polymer hydrogenated product (B-1), the amount of triethylamine added was changed to 96.0 parts, and the amount of methacrylic acid chloride added was changed to 56.2 parts. Except for this, the procedure was the same as in Example 1 to obtain a modified product of the ring-opening polymer hydrogenated product (B-3) (see the following formula). The weight average molecular weight of the polymer (C-3) was 19600, and the molecular weight distribution was 1.6.
It was confirmed by 1 H-NMR measurement that the methacryloyl modification rate was 100%, and the content of the structural units derived from NBMOH-MA in polymer (C-3) was 30 mol % when the total content of the structural units derived from MTF and the structural units derived from NBMOH-MA was taken as 100 mol %.
Figure JPOXMLDOC01-appb-C000034
(実施例7)(組成:MTF/NBMOH-MA/(BPADA/BAFL/4ASt)、モル比(MTF/NBMOH-MA)=70/30)
 実施例6の樹脂組成物の調製に際し、熱ラジカル発生剤としてのジクミルパーオキサイドの添加量を1.35部に変更し、ラジカル架橋剤としての「MIR-3000-70MT」15部に代えて、「OPE-2St 1200」25部を用いたこと以外は、実施例6と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて、上記に従って各種評価を行った。結果を表1に示す。
(Example 7) (Composition: MTF/NBMOH-MA/(BPADA/BAFL/4ASt), molar ratio (MTF/NBMOH-MA)=70/30)
In preparing the resin composition of Example 6, the amount of dicumyl peroxide added as a thermal radical generator was changed to 1.35 parts, and 25 parts of "OPE-2St 1200" was used instead of 15 parts of "MIR-3000-70MT" as a radical crosslinking agent. The resin composition was prepared in the same manner as in Example 6.
The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 1.
(実施例8)(組成:MTF/NBMOH-MA/(BPADA/BAFL/4ASt)、モル比(MTF/NBMOH-MA)=70/30)
 実施例6の樹脂組成物の調製に際し、熱ラジカル発生剤としてのジクミルパーオキサイドの添加量を1.1部に変更し、ラジカル架橋剤としての「MIR-3000-70MT」15部およびトリアリルイソシアヌレート10部に代えて、イソシアヌル酸トリス(2-アクリロイルオキシエチル)10部を用いたこと以外は、実施例6と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて、上記に従って各種評価を行った。結果を表2に示す。
(Example 8) (Composition: MTF/NBMOH-MA/(BPADA/BAFL/4ASt), molar ratio (MTF/NBMOH-MA)=70/30)
In preparing the resin composition of Example 6, the amount of dicumyl peroxide added as a thermal radical generator was changed to 1.1 parts, and 15 parts of "MIR-3000-70MT" as a radical crosslinking agent and 10 parts of tris(2-acryloyloxyethyl)isocyanurate were used instead of triallyl isocyanurate. The resin composition was prepared in the same manner as in Example 6.
The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 2.
(実施例9)(組成:MTF/NBMOH-MA/(BPAF/HFBAPP/4ASt)、モル比(MTF/NBMOH-MA)=70/30)
 実施例1の樹脂組成物の調製に際し、重合体(C-1)に代えて、以下のようにして調製した重合体(C-4)を用いるとともに、熱ラジカル発生剤としてのジクミルパーオキサイド1.3部を添加し、ラジカル架橋剤としての「OPE-2St 1200」25部および「MIR-3000-70MT」25部に代えて、「MIR-3000-70MT」20部を用いたこと以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて、上記に従って各種評価を行った。結果を表2に示す。
<重合体(C-4)の合成>
<<開環重合工程、水素添加工程>>
 実施例1の重合体(C-1)の合成の開環重合工程、水素添加工程において、ポリイミド化合物(A-1)92.9部に代えて、ポリイミド化合物(A-4)106.6部を添加したこと以外は、実施例1と同様にして、開環重合体水素添加物(B-4)を得た。
<<変性工程>>
 実施例1の重合体(C-1)の合成の変性工程において、開環重合体水素添加物(B-1)に代えて、上記のようにして得られた開環重合体水素添加物(B-4)を添加し、トリエチルアミンの添加量を91.9部に変更し、メタクリル酸クロライドの添加量を53.3部に変更したこと以外は、実施例1と同様にして、開環重合体水素添加物(B-4)の変性物である重合体(C-4)を得た(下記式参照)。重合体(C-4)の重量平均分子量は38300、分子量分布は2.4であった。
 H-NMR測定により、メタクリロイル変性率は100%であり、重合体(C-4)中のNBMOH-MAに由来する構造単位の含有割合は、MTFに由来する構造単位とNBMOH-MAに由来する構造単位の合計含有量を100モル%とした場合に、30モル%であることが確認された。
Figure JPOXMLDOC01-appb-C000035
(Example 9) (Composition: MTF/NBMOH-MA/(BPAF/HFBAPP/4ASt), molar ratio (MTF/NBMOH-MA)=70/30)
In preparing the resin composition of Example 1, instead of the polymer (C-1), the polymer (C-4) prepared as follows was used, 1.3 parts of dicumyl peroxide was added as a thermal radical generator, and 25 parts of "OPE-2St 1200" and 25 parts of "MIR-3000-70MT" were used as radical crosslinking agents. Except for this, the resin composition was prepared in the same manner as in Example 1.
The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 2.
<Synthesis of Polymer (C-4)>
<<Ring-opening polymerization step, hydrogenation step>>
A ring-opening polymer hydrogenation product (B-4) was obtained in the same manner as in Example 1, except that 106.6 parts of the polyimide compound (A-4) was added instead of 92.9 parts of the polyimide compound (A-1) in the ring-opening polymerization step and the hydrogenation step of the synthesis of the polymer (C-1) in Example 1.
<<Modification process>>
In the modification step of the synthesis of the polymer (C-1) of Example 1, the ring-opening polymer hydrogenated product (B-4) obtained as described above was added instead of the ring-opening polymer hydrogenated product (B-1), the amount of triethylamine added was changed to 91.9 parts, and the amount of methacrylic acid chloride added was changed to 53.3 parts, but the procedure was the same as in Example 1 to obtain a modified product of the ring-opening polymer hydrogenated product (B-4) (see the following formula). The weight average molecular weight of the polymer (C-4) was 38,300, and the molecular weight distribution was 2.4.
It was confirmed by 1 H-NMR measurement that the methacryloyl modification rate was 100%, and the content ratio of the structural units derived from NBMOH-MA in polymer (C-4) was 30 mol % when the total content of the structural units derived from MTF and the structural units derived from NBMOH-MA was taken as 100 mol %.
Figure JPOXMLDOC01-appb-C000035
(比較例1)(組成:MTF/NBMOH-MA、モル比(MTF/NBMOH-MA)=70/30)
 実施例1の樹脂組成物の調製に際し、重合体(C-1)に代えて、以下のようにして調製した重合体(C-5)を用いるとともに、熱ラジカル発生剤としてのジクミルパーオキサイド1.35部を添加し、ラジカル架橋剤としての「OPE-2St 1200」25部を添加しなかったこと以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて、上記に従って各種評価を行った。結果を表2に示す。
<重合体(C-5)の合成>
<<開環重合工程、水素添加工程>>
 NBMOH 30モル%とMTF 70モル%とからなる単量体混合物100部、分子量調整剤としての1,5-ヘキサジエン1.0部、開環重合触媒としての(1,3-ジメシチルイミダゾリン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド]0.025部、および反応溶媒としてのテトラヒドロフラン300部を、窒素置換したガラス製耐圧反応器に仕込み、撹拌しながら80℃にて4時間反応させて重合反応液を得た。
 得られた重合反応液をオートクレーブに入れて、150℃、水素圧4MPaで、5時間撹拌して水素添加反応を行った後、反応溶液に溶媒としてのテトラヒドロフラン300部を加えた。これをメタノール8000部に滴下し、生成した沈殿物をろ過により回収して50℃で減圧乾燥することで、開環重合体水素添加物(B-5)を得た。
<<変性工程>>
 実施例1の重合体(C-1)の合成の変性工程において、開環重合体水素添加物(B-1)に代えて、上記のようにして得られた開環重合体水素添加物(B-5)を添加し、トリエチルアミンの添加量を87.4部に変更し、メタクリル酸クロライドの添加量を54.2部に変更したこと以外は、実施例1と同様にして、開環重合体水素添加物(B-5)の変性物である重合体(C-5)を得た(下記式参照)。GPC測定による重合体(C-5)の重量平均分子量は20100、分子量分布は2.13であった。
 H-NMR測定により、メタクリロイル変性率は100%であり、重合体(C-5)中のNBMOH-MAに由来する構造単位の含有割合は、MTFに由来する構造単位とNBMOH-MAに由来する構造単位の合計含有量を100モル%とした場合に、30モル%であることが確認された。
Figure JPOXMLDOC01-appb-C000036
(Comparative Example 1) (Composition: MTF/NBMOH-MA, molar ratio (MTF/NBMOH-MA)=70/30)
In preparing the resin composition of Example 1, the polymer (C-5) prepared as follows was used instead of the polymer (C-1), and 1.35 parts of dicumyl peroxide was added as a thermal radical generator. The resin composition was prepared in the same manner as in Example 1, except that 25 parts of "OPE-2St 1200" was not added as a radical crosslinking agent.
The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 2.
<Synthesis of Polymer (C-5)>
<<Ring-opening polymerization step, hydrogenation step>>
100 parts of a monomer mixture consisting of 30 mol % of NBMOH and 70 mol % of MTF, 1.0 part of 1,5-hexadiene as a molecular weight regulator, 0.025 parts of (1,3-dimesitylimidazolin-2-ylidene)(tricyclohexylphosphine)benzylidene ruthenium dichloride as a ring-opening polymerization catalyst, and 300 parts of tetrahydrofuran as a reaction solvent were charged into a nitrogen-substituted glass pressure-resistant reactor, and reacted with stirring at 80° C. for 4 hours to obtain a polymerization reaction liquid.
The obtained polymerization reaction solution was placed in an autoclave and stirred at 150° C. and a hydrogen pressure of 4 MPa for 5 hours to carry out a hydrogenation reaction, after which 300 parts of tetrahydrofuran as a solvent was added to the reaction solution, which was then dropped into 8,000 parts of methanol, and the resulting precipitate was collected by filtration and dried under reduced pressure at 50° C. to obtain a hydrogenated ring-opened polymer (B-5).
<<Modification process>>
In the modification step of the synthesis of the polymer (C-1) of Example 1, instead of the ring-opening polymer hydrogenation product (B-1), the ring-opening polymer hydrogenation product (B-5) obtained as described above was added, the amount of triethylamine added was changed to 87.4 parts, and the amount of methacrylic acid chloride added was changed to 54.2 parts. Except for this, the procedure was the same as in Example 1 to obtain a modified product of the ring-opening polymer hydrogenation product (B-5), polymer (C-5) (see the following formula). The weight average molecular weight of the polymer (C-5) measured by GPC was 20100, and the molecular weight distribution was 2.13.
It was confirmed by 1 H-NMR measurement that the methacryloyl modification rate was 100%, and the content ratio of the structural units derived from NBMOH-MA in polymer (C-5) was 30 mol % when the total content of the structural units derived from MTF and the structural units derived from NBMOH-MA was taken as 100 mol %.
Figure JPOXMLDOC01-appb-C000036
(比較例2)(組成:MTF/NBMOH-MA/(BPADA/HFBAPP/4ASt)、モル比(MTF/NBMOH-MA)=70/30)
 実施例1の樹脂組成物の調製に際し、ラジカル架橋剤としての「OPE-2St 1200」25部、「MIR-3000-70MT」25部およびトリアリルイソシアヌレート10部を添加しなかったこと以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて、上記に従って各種評価を行った。結果を表2に示す。
(Comparative Example 2) (Composition: MTF/NBMOH-MA/(BPADA/HFBAPP/4ASt), molar ratio (MTF/NBMOH-MA)=70/30)
In preparing the resin composition of Example 1, 25 parts of “OPE-2St 1200” as a radical crosslinking agent, 25 parts of “MIR-3000-70MT” and 10 parts of triallyl isocyanurate were not added. The resin composition was prepared in the same manner as in Example 1.
The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 2.
(比較例3)(組成:MTF/NBMOH-MA/(BPADA/HFBAPP/4ASt)、モル比(MTF/NBMOH-MA)=70/30)
 実施例1の樹脂組成物の調製に際し、ラジカル架橋剤としての「OPE-2St 1200」25部、「MIR-3000-70MT」25部およびトリアリルイソシアヌレート10部に代えて、非ラジカル架橋剤である「ニカラック MW-100LM」(三和ケミカル社製)25部を用いたこと以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて、上記に従って各種評価を行った。結果を表2に示す。
(Comparative Example 3) (Composition: MTF/NBMOH-MA/(BPADA/HFBAPP/4ASt), molar ratio (MTF/NBMOH-MA)=70/30)
In preparing the resin composition of Example 1, 25 parts of "OPE-2St 1200" as a radical crosslinking agent, 25 parts of "MIR-3000-70MT" as a radical crosslinking agent, and 25 parts of "Nicalac MW-100LM" (manufactured by Sanwa Chemical Co., Ltd.) were used in place of 10 parts of triallyl isocyanurate. The resin composition was prepared in the same manner as in Example 1.
The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 2.
(比較例4)(組成:MTF/NBMOH/(BPADA/HFBAPP/4ASt)、
モル比(MTF/NBMOH)=70/30)
 実施例1の樹脂組成物の調製に際し、重合体(C-1)に代えて、開環重合体水素添加物(B-1)を用いたこと以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて、上記に従って各種評価を行った。結果を表2に示す。
(Comparative Example 4) (Composition: MTF/NBMOH/(BPADA/HFBAPP/4ASt),
Molar ratio (MTF / NBMOH) = 70 / 30)
In preparing the resin composition of Example 1, the resin composition was prepared in the same manner as in Example 1, except that the ring-opening polymer hydrogenation product (B-1) was used instead of the polymer (C-1).
The resin composition thus obtained was subjected to various evaluations as described above. The results are shown in Table 2.
 なお、以下に示す表1~2中、
「NBMOH-MA」は、メタクリロイル変性された2-ノルボルネン-5-メタノール単位を示し、
「A-1」~「A-4」は、それぞれ、ポリイミド化合物(A-1)~(A-4)に由来する構造単位を示し、
「MTF」は、メタノテトラヒドロフルオレン単位を示し、
「NBMOH」は、メタクリロイル変性されていない2-ノルボルネン-5-メタノール単位を示し、
「MIR3000」は、MIR-3000-70MT(ラジカル架橋剤(IV))を示し、
「THEIC」は、イソシアヌル酸トリス(2-アクリロイルオキシエチル)を示し、
「TAIC」は、トリアリルイソシアヌレートを示し、
「MW100LM」は、ニカラック MW-100LMを示す。
In addition, in Tables 1 and 2 shown below,
"NBMOH-MA" indicates a methacryloyl-modified 2-norbornene-5-methanol unit;
"A-1" to "A-4" represent structural units derived from polyimide compounds (A-1) to (A-4), respectively.
"MTF" represents a methanotetrahydrofluorene unit;
"NBMOH" indicates a non-methacryloyl-modified 2-norbornene-5-methanol unit;
"MIR3000" indicates MIR-3000-70MT (radical crosslinking agent (IV)),
"THEIC" refers to tris(2-acryloyloxyethyl) isocyanurate;
"TAIC" refers to triallyl isocyanurate;
"MW100LM" refers to Nikalac MW-100LM.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表1~2より、所定の構造単位(I)および構造単位(II)を含有する重合体と、ラジカル架橋剤とを含む実施例1~9の樹脂組成物を用いれば、耐熱性に優れ、且つ、誘電正接が低い樹脂膜を形成できることが分かる。
 一方、重合体が所定の構造単位(II)を含有しない比較例1の樹脂組成物を用いた場合、樹脂膜の耐熱性が低下するとともに、樹脂膜の誘電正接が上昇することが分かる。
 そして、ラジカル架橋剤を含まない比較例2の樹脂組成物を用いた場合、樹脂膜の耐熱性が低下することが分かる。
 また、ラジカル架橋剤の代わりに非ラジカル架橋剤を含む比較例3の樹脂組成物を用いた場合、樹脂膜の誘電正接が上昇することが分かる。
 さらに、重合体が所定の構造単位(I)を含有しない比較例4の樹脂組成物を用いた場合、樹脂膜の誘電正接が上昇することが分かる。
From Tables 1 and 2, it can be seen that by using the resin compositions of Examples 1 to 9 containing a polymer containing a predetermined structural unit (I) and a structural unit (II) and a radical crosslinking agent, a resin film having excellent heat resistance and a low dielectric tangent can be formed.
On the other hand, when the resin composition of Comparative Example 1 in which the polymer does not contain the predetermined structural unit (II) is used, it is found that the heat resistance of the resin film decreases and the dielectric loss tangent of the resin film increases.
It is also clear that when the resin composition of Comparative Example 2, which does not contain a radical crosslinking agent, is used, the heat resistance of the resin film decreases.
It is also seen that when the resin composition of Comparative Example 3 containing a non-radical crosslinking agent instead of a radical crosslinking agent is used, the dielectric loss tangent of the resin film increases.
Furthermore, it is found that when the resin composition of Comparative Example 4, in which the polymer does not contain the predetermined structural unit (I), is used, the dielectric loss tangent of the resin film increases.
 本発明によれば、耐熱性に優れ、且つ、誘電正接が低い樹脂膜を形成可能な樹脂組成物を提供することができる。 The present invention provides a resin composition that is capable of forming a resin film that has excellent heat resistance and a low dielectric tangent.

Claims (6)

  1.  重合体と、ラジカル架橋剤とを含む樹脂組成物であって、
     前記重合体は、下記式(I)で示される構造単位(I)と、下記式(II)で示される構造単位(II)とを含む、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     式(I)中、R~Rは少なくとも一つがラジカル架橋性基であり、
     ラジカル架橋性基に該当しないR~Rは、それぞれ独立して、水素原子、アルキル基または芳香環基であり、ラジカル架橋性基に該当しないR~Rのうち二つが一緒になって環構造を形成していてもよく、
     mは0以上4以下の整数である。
    Figure JPOXMLDOC01-appb-C000002
     式(II)中、Xは2価の有機基であり、
     Yは4価の有機基であり、
     Zは2価の有機基であり、
     nは0以上の整数である。
    A resin composition comprising a polymer and a radical crosslinking agent,
    The polymer is a resin composition comprising a structural unit (I) represented by the following formula (I) and a structural unit (II) represented by the following formula (II):
    Figure JPOXMLDOC01-appb-C000001
    In formula (I), at least one of R 1 to R 4 is a radical crosslinkable group;
    R 1 to R 4 which do not fall under the category of radical crosslinkable groups are each independently a hydrogen atom, an alkyl group, or an aromatic ring group, and any two of R 1 to R 4 which do not fall under the category of radical crosslinkable groups may be combined to form a ring structure;
    m is an integer of 0 to 4.
    Figure JPOXMLDOC01-appb-C000002
    In formula (II), X is a divalent organic group.
    Y is a tetravalent organic group;
    Z is a divalent organic group;
    n is an integer of 0 or more.
  2.  前記重合体が、下記式(III)で示される構造単位(III)を更に含む、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
     式(III)中、R~Rの少なくとも一つが芳香環基であるか、またはR~Rのうち二つが一緒になって芳香環含有構造を形成しており、
     芳香環基に該当せず且つ芳香環含有構造も形成しないR~Rは、それぞれ独立して、水素原子またはアルキル基であり、
     kは0以上4以下の整数である。
    The resin composition according to claim 1 , wherein the polymer further comprises a structural unit (III) represented by the following formula (III):
    Figure JPOXMLDOC01-appb-C000003
    In formula (III), at least one of R 5 to R 8 is an aromatic ring group, or two of R 5 to R 8 together form an aromatic ring-containing structure;
    R 5 to R 8 , which do not correspond to an aromatic ring group and do not form an aromatic ring-containing structure, are each independently a hydrogen atom or an alkyl group;
    k is an integer of 0 to 4.
  3.  ラジカル開始剤を更に含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, further comprising a radical initiator.
  4.  前記ラジカル開始剤が、光ラジカル発生剤と熱ラジカル発生剤の少なくとも一方を含む、請求項3に記載の樹脂組成物。 The resin composition according to claim 3, wherein the radical initiator includes at least one of a photoradical generator and a thermal radical generator.
  5.  前記ラジカル架橋剤が、アリル基とマレイミド基の少なくとも一方を有する、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the radical crosslinking agent has at least one of an allyl group and a maleimide group.
  6.  前記ラジカル架橋剤が、下記式(IV)で示されるラジカル架橋剤(IV)を含む、請求項1~5の何れかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
     式(IV)中、aは1以上30以下の整数である。
    The resin composition according to any one of claims 1 to 5, wherein the radical crosslinking agent comprises a radical crosslinking agent (IV) represented by the following formula (IV):
    Figure JPOXMLDOC01-appb-C000004
    In formula (IV), a is an integer of 1 or more and 30 or less.
PCT/JP2023/037748 2022-10-31 2023-10-18 Resin composition WO2024095777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022175101 2022-10-31
JP2022-175101 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024095777A1 true WO2024095777A1 (en) 2024-05-10

Family

ID=90930465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037748 WO2024095777A1 (en) 2022-10-31 2023-10-18 Resin composition

Country Status (1)

Country Link
WO (1) WO2024095777A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501369A (en) * 1985-01-04 1987-06-04 レイケム・コ−ポレイション Aromatic polymer composition
WO1998015595A1 (en) * 1996-10-09 1998-04-16 Nippon Zeon Co., Ltd. Norbornene polymer composition
JP2005517774A (en) * 2002-02-19 2005-06-16 カリフォルニア インスティテュート オブ テクノロジー Ring expansion of cyclic olefins by olefin metathesis reaction using acyclic dienes
JP2006152173A (en) * 2004-11-30 2006-06-15 Sumitomo Bakelite Co Ltd Resin composition, resin layer, carrier material with resin layers and circuit board
CN108219457A (en) * 2018-03-27 2018-06-29 华南理工大学 A kind of preparation method of water white transparency structure containing norbornene Kapton
US20180223048A1 (en) * 2017-02-08 2018-08-09 Zhen Ding Technology Co., Ltd. Resin composition, method for making resin composition and film for circuit board, and circuit board
JP2019151630A (en) * 2018-03-02 2019-09-12 学校法人早稲田大学 Polyfunctional compound and method for producing the same, amic acid compound and method for producing the same, and method for producing imide compound
WO2020175037A1 (en) * 2019-02-28 2020-09-03 日本ゼオン株式会社 Resin composition, electronic component, and method for producing resin film
WO2020262205A1 (en) * 2019-06-28 2020-12-30 日本ゼオン株式会社 Resin composition, electronic component, and method for producing resin film
WO2023127582A1 (en) * 2021-12-28 2023-07-06 日本ゼオン株式会社 Polymer, method for producing same, resin composition, and electronic component

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501369A (en) * 1985-01-04 1987-06-04 レイケム・コ−ポレイション Aromatic polymer composition
WO1998015595A1 (en) * 1996-10-09 1998-04-16 Nippon Zeon Co., Ltd. Norbornene polymer composition
JP2005517774A (en) * 2002-02-19 2005-06-16 カリフォルニア インスティテュート オブ テクノロジー Ring expansion of cyclic olefins by olefin metathesis reaction using acyclic dienes
JP2006152173A (en) * 2004-11-30 2006-06-15 Sumitomo Bakelite Co Ltd Resin composition, resin layer, carrier material with resin layers and circuit board
US20180223048A1 (en) * 2017-02-08 2018-08-09 Zhen Ding Technology Co., Ltd. Resin composition, method for making resin composition and film for circuit board, and circuit board
JP2019151630A (en) * 2018-03-02 2019-09-12 学校法人早稲田大学 Polyfunctional compound and method for producing the same, amic acid compound and method for producing the same, and method for producing imide compound
CN108219457A (en) * 2018-03-27 2018-06-29 华南理工大学 A kind of preparation method of water white transparency structure containing norbornene Kapton
WO2020175037A1 (en) * 2019-02-28 2020-09-03 日本ゼオン株式会社 Resin composition, electronic component, and method for producing resin film
WO2020262205A1 (en) * 2019-06-28 2020-12-30 日本ゼオン株式会社 Resin composition, electronic component, and method for producing resin film
WO2023127582A1 (en) * 2021-12-28 2023-07-06 日本ゼオン株式会社 Polymer, method for producing same, resin composition, and electronic component

Similar Documents

Publication Publication Date Title
TWI548674B (en) A photosensitive resin composition, a hardened asperity pattern, and a semiconductor device
WO2021020344A1 (en) Photosensitive resin composition, photosensitive sheet, cured film, method for producing cured film, interlayer insulating film and electronic component
CN111316165A (en) Photosensitive resin composition
KR20230110590A (en) Resin composition, cured product, laminate, method for producing cured product, and semiconductor device
JP3928702B2 (en) Photosensitive resin composition
WO2023127582A1 (en) Polymer, method for producing same, resin composition, and electronic component
CN115667404A (en) Curable resin composition, cured film, laminate, method for producing cured film, and semiconductor device
WO2024095777A1 (en) Resin composition
WO2022070871A1 (en) Negative photosensitive resin composition
WO2023120059A1 (en) Resin composition, cured article, laminate, method for producing cured article, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2023053976A1 (en) Resin composition
CN118159582A (en) Polymer, method for producing same, resin composition, and electronic component
KR20230152722A (en) Resin composition, cured product, laminate, method for producing cured product, and semiconductor device, and compound
KR20230134129A (en) Resin composition, cured product, laminate, method for producing cured product, and semiconductor device, and base generator
KR20240067232A (en) Resin composition
WO2022181561A1 (en) Resin composition
TW202043295A (en) Cured film production method, resin composition, cured film, laminate body production method, and semiconductor device manufacturing method
TWI819110B (en) Photosensitive resin composition, method for manufacturing pattern cured film, cured film, interlayer insulating film, cover coating, surface protective film and electronic parts
TW202328348A (en) Resin composition, cured object, laminate, cured object manufacturing method, laminate manufacturing method, semiconductor device manufacturing method, and semiconductor device
CN117642442A (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
KR20240037331A (en) Resin composition, cured product, laminate, manufacturing method of cured product, manufacturing method of laminate, manufacturing method of semiconductor device, and semiconductor device
TW202305040A (en) Method for producing cured product, method for producing multilayer body, method for producing semiconductor device, resin composition, cured product, multilayer body and semiconductor device
TW202311240A (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, semiconductor device and compound capable of obtaining a cured product with excellent reliability
WO2023026892A1 (en) Resin composition, cured article, layered body, cured article production method, layered body production method, semiconductor device production method, semiconductor device, and base generating agent
CN117715982A (en) Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device