WO2023053976A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2023053976A1
WO2023053976A1 PCT/JP2022/034479 JP2022034479W WO2023053976A1 WO 2023053976 A1 WO2023053976 A1 WO 2023053976A1 JP 2022034479 W JP2022034479 W JP 2022034479W WO 2023053976 A1 WO2023053976 A1 WO 2023053976A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
cyclic olefin
olefin polymer
group
mol
Prior art date
Application number
PCT/JP2022/034479
Other languages
French (fr)
Japanese (ja)
Inventor
隆志 堤
耕平 蒲田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN202280057436.7A priority Critical patent/CN117836339A/en
Priority to JP2023551297A priority patent/JPWO2023053976A1/ja
Priority to KR1020247006128A priority patent/KR20240067232A/en
Publication of WO2023053976A1 publication Critical patent/WO2023053976A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1063Esters of polycondensation macromers of alcohol terminated polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/72Derivatisation

Definitions

  • the present invention relates to resin compositions.
  • electronic parts such as integrated circuit elements and organic EL elements have a protective film to prevent deterioration and damage to the parts themselves, a planarizing film to flatten the element surface and wiring, and a film to maintain electrical insulation.
  • Various resin films are provided as an electrical insulation film, a pixel separation film for separating light emitting portions, an optical film for condensing and diffusing light, and the like.
  • Patent Document 1 discloses a cyclic olefin polymer having a plurality of crosslinkable double bonds in the side chain portion, a predetermined polyphenylene ether, triallyl isocyanurate and/or triallyl cyanurate, and an organic peroxide.
  • a resin composition is disclosed comprising: According to Patent Document 1, a resin film having a low dielectric loss tangent can be formed by using the resin composition described above.
  • the resin film is provided with a desired pattern shape according to its use.
  • Cyclic ketones such as cyclopentanone are widely used as developing solutions for patterning.
  • the cyclic olefin polymer is difficult to dissolve in the cyclic ketone.
  • an object of the present invention is to provide a resin composition containing a cyclic olefin polymer, which is capable of forming a resin film having excellent patterning properties when a cyclic ketone is used as a developer.
  • the inventor of the present invention has diligently studied in order to achieve the above purpose. Then, the present inventor provides a resin composition comprising a cyclic olefin polymer containing two types of predetermined structural units and having a total content ratio of the two types of structural units equal to or greater than a predetermined value, and a radical initiator. The present inventors have newly found that a resin film having excellent patterning properties can be formed when a cyclic ketone is used as a developer, and have completed the present invention.
  • an object of the present invention is to advantageously solve the above problems, and the present invention provides the following resin compositions [1] to [5].
  • the resin composition, wherein the total content of the structural units (II) is 80 mol% or more.
  • R 1 to R 4 is a radical crosslinkable group
  • each of R 1 to R 4 not corresponding to a radical crosslinkable group is independently a hydrogen atom, an alkyl group, or an aromatic ring group. and two of R 1 to R 4 that do not correspond to radical crosslinkable groups may combine to form a ring, and m is an integer of 0 or more and 4 or less.
  • R 5 to R 8 is an aromatic ring group, or two of R 5 to R 8 together form an aromatic ring-containing structure, and the aromatic ring group R 5 to R 8 which do not correspond and do not form an aromatic ring-containing structure are each independently a hydrogen atom or an alkyl group, and n is an integer of 0 or more and 4 or less.
  • the “content ratio” of each structural unit contained in the polymer can be measured using a nuclear magnetic resonance (NMR) method such as 1 H-NMR and 13 C-NMR.
  • the content of the structural unit (II) in the cyclic olefin polymer is 70 mol% or more when the amount of all structural units contained in the cyclic olefin polymer is 100 mol%.
  • the radical cross-linkable group “having a styryl skeleton” means that the radical cross-linkable group is “CH 2 ⁇ CH—Ph— (Ph is a phenylene group and one of the hydrogen atoms in the formula part or all of which may be substituted with any substituent)”.
  • the group “having a styryl skeleton” does not correspond to "aromatic ring group” but to "radical crosslinkable group”.
  • radical cross-linkable group “having an acrylate skeleton” means that the radical cross-linkable group is “CH 2 ⁇ CH—C( ⁇ O)—O— (part of the hydrogen atoms in the formula or All of which may be substituted with any substituents.)”.
  • a polymer containing a structural unit derived from a cyclic olefin does not correspond to a "crosslinking agent” and is referred to as a "cyclic olefin polymer. ” shall be applicable.
  • cross-linking agent contains at least one of a cross-linking agent (III) represented by the following formula (III) and a cross-linking agent (IV) represented by the following formula (IV) Composition.
  • A is a divalent organic group
  • a and b are integers of 0 or more and 300 or less. Note that a and b may be the same or different, except when only one of a and b is 0. If a resin composition containing the cross-linking agent (III) and/or the cross-linking agent (IV) is used as the cross-linking agent, the dielectric loss tangent of the resin film formed from the resin composition can be further reduced while the stretchability can be further improved. can be done.
  • the resin composition containing the cyclic olefin polymer of the present invention it is possible to form a resin film with excellent patterning properties when a cyclic ketone is used as a developer.
  • the resin composition of the present invention is not particularly limited, and can be used when forming resin films that can be provided in electronic components such as integrated circuit elements, organic EL elements, and semiconductor packages.
  • the resin composition of the present invention can be suitably used when manufacturing insulating organic films such as organic EL, semiconductor packages, printed wiring boards, and solder resists.
  • the resin composition of the present invention can be suitably used as a negative-type photosensitive resin composition in which the solubility of the exposed portion in the developing solution is reduced and the exposed portion remains after development.
  • the active energy ray used when exposing the resin film formed using the resin composition of the present invention is not particularly limited, and is a single-wavelength ray such as ultraviolet rays, g-line, h-line, i-line, or the like.
  • Light rays, light rays such as KrF excimer laser light and ArF excimer laser light, and particle beams such as electron beams can be mentioned.
  • the resin composition of the present invention is required to contain a cyclic olefin polymer and a radical initiator, and may optionally contain at least one selected from the group consisting of a cross-linking agent, a solvent, and other additive components.
  • the cyclic olefin polymer contained in the resin composition of the present invention is a polymer capable of undergoing a cross-linking reaction by radicals generated by irradiation with active energy rays in the presence of a radical initiator.
  • the cyclic olefin polymer includes a structural unit (I) represented by the following formula (I) and a structural unit (II) represented by the following formula (II), and all structures contained in the cyclic olefin polymer When the amount of the units is 100 mol%, the total content of the structural unit (I) and the structural unit (II) in the cyclic olefin polymer must be 80 mol% or more.
  • R 1 to R 4 is a radical crosslinkable group
  • each of R 1 to R 4 not corresponding to a radical crosslinkable group is independently a hydrogen atom, an alkyl group, or an aromatic ring group. and two of R 1 to R 4 that do not correspond to radical crosslinkable groups may combine to form a ring, and m is an integer of 0 or more and 4 or less.
  • R 5 to R 8 is an aromatic ring group, or two of R 5 to R 8 together form an aromatic ring-containing structure, and the aromatic ring group R 5 to R 8 which do not correspond and do not form an aromatic ring-containing structure are each independently a hydrogen atom or an alkyl group, and n is an integer of 0 or more and 4 or less.
  • the resin composition of the present invention containing the cyclic olefin polymer having the composition described above it is possible to form a resin film having excellent patterning properties when a cyclic ketone is used as the developer.
  • the reason why the resin film formed from the resin composition of the present invention is excellent in patterning properties when a cyclic ketone is used as a developer is not clear, but is presumed as follows. First, the resin film obtained using the resin composition containing the cyclic olefin polymer having the composition described above is less likely to be turbid due to phase separation, and can suppress the scattering of active energy rays during exposure. .
  • the cyclic olefin polymer having the composition described above contained in the unexposed portion of the resin film is highly soluble in the cyclic ketone used as the developer. Due to the contribution of the cyclic olefin polymer having such properties, it is believed that the use of the resin composition of the present invention enables formation of a resin film having excellent patterning properties when a cyclic ketone is used as a developer.
  • R 1 to R 4 is a radical crosslinkable group.
  • R 1 to R 4 which do not correspond to radical crosslinkable groups are each independently a hydrogen atom, an alkyl group or an aromatic ring group, and two of R 1 to R 4 which do not correspond to radical crosslinkable groups are may form a ring.
  • m is an integer of 0 or more and 4 or less.
  • the cyclic olefin polymer may contain only one type of structural unit (I), or may contain a plurality of types.
  • the radical crosslinkable group that can constitute R 1 to R 4 has a carbon-carbon unsaturated bond (especially an ethylenically unsaturated bond) and is caused by a radical generated by a radical initiator.
  • a radical crosslinkable group preferably includes a radical crosslinkable group having a styryl skeleton and a radical crosslinkable group having an acrylate skeleton.
  • radical crosslinkable groups having a styryl skeleton include groups represented by the following formula (V).
  • X and Z are each independently a single bond or an alkylene group having 1 to 10 carbon atoms
  • Y is an oxygen atom or a sulfur atom
  • R 9 is a hydrogen atom or a substituent and p is an integer of 0 or more and 4 or less.
  • the alkylene group having 1 to 10 carbon atoms that can be X and Z in the formula (V) is not particularly limited, but a methylene group, an ethylene group, a propylene group, an n-butylene group, an isobutylene group, or the like having 1 or more carbon atoms.
  • a chain alkylene group of 6 or less is preferable, and a linear alkylene group having 1 to 6 carbon atoms such as a methylene group, an ethylene group, a propylene group, and an n-butylene group is more preferable, and a methylene group, an ethylene group, a propylene group, etc. is more preferably a linear alkylene group having 1 or more and 3 or less carbon atoms, and a methylene group is particularly preferable.
  • Substituents that can be R 9 in formula (V) include, but are not particularly limited to, alkyl groups such as methyl and ethyl groups, and halogeno groups such as fluoro and chloro groups.
  • p is preferably 0, that is, the phenylene group (--C 6 H 4 --) constituting the styryl skeleton preferably has no substituent.
  • radical crosslinkable groups having an acrylate skeleton include groups represented by the following formula (VI).
  • G is an alkylene group having 1 to 10 carbon atoms
  • R 10 is a hydrogen atom or an alkyl group.
  • the substituted or unsubstituted acryloyl group is bonded to the cyclic olefin structure via the alkylene group represented by G, so that the mobility of the acryloyl group is enhanced.
  • the cross-linking reactivity of the acryloyl group is improved.
  • a cyclic olefin polymer having a radically crosslinkable group represented by formula (VI) is used, the dielectric loss tangent of the resin film formed from the resin composition is reduced while the extensibility is improved.
  • the patterning characteristics of the resin film can be further enhanced when a cyclic ketone is used as the developer.
  • the alkylene group having 1 to 10 carbon atoms that can be G in the formula (VI) is not particularly limited, but is a group having 1 to 6 carbon atoms such as a methylene group, ethylene group, propylene group, n-butylene group and isobutylene group.
  • a chain alkylene group of is preferable, a methylene group, an ethylene group, a propylene group, a linear alkylene group having 1 to 6 carbon atoms such as an n-butylene group is more preferable, a methylene group, an ethylene group, a carbon such as a propylene group
  • a linear alkylene group having a number of 1 or more and 3 or less is more preferable, and a methylene group is particularly preferable.
  • the alkyl group that can be R 10 in formula (VI) is not particularly limited, and examples thereof include alkyl groups having 1 to 5 carbon atoms. Among them, the alkyl group that can constitute R 10 is preferably a methyl group or an ethyl group.
  • the alkyl group that can constitute R 1 to R 4 other than the radical crosslinkable group is not particularly limited, and examples thereof include alkyl groups having 1 to 5 carbon atoms.
  • the aromatic ring group other than the radical crosslinkable group, which may constitute R 1 to R 4 is not particularly limited as long as it does not correspond to a radical crosslinkable group, and examples thereof include a phenyl group and a naphthyl group. , fluorenyl group, anthracenyl group, triphenylenyl group, pyrenyl group, and other aromatic ring groups having 4 to 30 carbon atoms.
  • the structure in which two of R 1 to R 4 other than the radical crosslinkable group form a ring together is not particularly limited, and examples thereof include a carbocyclic ring having a monocyclic structure or a polycyclic structure.
  • m is an integer of 0 to 4, preferably 0, 1 or 2, more preferably 0 or 1, as described above.
  • one of R 1 to R 4 in formula (I) is preferably a radical crosslinkable group and the others are preferably hydrogen atoms. This is because if the structural unit (I) has such a structure, the synthesis is relatively easy and the production efficiency of the resin composition is increased.
  • the content of the structural unit (I) in the cyclic olefin polymer is preferably 1 mol% or more when the amount of all structural units contained in the cyclic olefin polymer is 100 mol%. It is more preferably 5 mol% or more, still more preferably 10 mol% or more, particularly preferably 15 mol% or more, preferably 60 mol% or less, and 50 mol% or less. is more preferably 40 mol % or less, still more preferably 30 mol % or less, and particularly preferably 20 mol % or less.
  • the content of the structural unit (I) in the cyclic olefin polymer is 1 mol % or more, the patterning properties of the resin film formed from the resin composition can be further enhanced when the cyclic ketone is used as the developer. can be done.
  • the content of the structural unit (I) in the cyclic olefin polymer is 60 mol % or less, the dielectric loss tangent of the resin film formed from the resin composition can be lowered while the extensibility can be improved.
  • R 5 to R 8 is an aromatic ring group, or two of R 5 to R 8 together form an aromatic ring-containing structure.
  • R 5 to R 8 which do not correspond to an aromatic ring group and do not form an aromatic ring-containing structure are each independently a hydrogen atom or an alkyl group, and n is an integer of 0 or more and 4 or less.
  • the cyclic olefin polymer may contain only one type of structural unit (II), or may contain a plurality of types.
  • the aromatic ring group that can constitute R 5 to R 8 of formula (II) is not particularly limited, but includes an aromatic ring group having 4 or more and 30 or less carbon atoms.
  • the aromatic ring group having 4 to 30 carbon atoms include phenyl group, naphthyl group, fluorenyl group, anthracenyl group, triphenylenyl group and pyrenyl group.
  • examples of the aromatic ring in the aromatic ring-containing structure formed by combining two of R 5 to R 8 of formula (II) include aromatic hydrocarbon rings such as benzene ring and naphthalene ring. be done.
  • the aromatic ring-containing structure may contain only one aromatic ring, or may contain a plurality of aromatic rings.
  • the aromatic ring-containing structure has a plurality of aromatic rings
  • the plurality of aromatic rings may be the same type of aromatic rings or different types of aromatic rings.
  • the aromatic ring-containing structure formed by combining two of R 5 to R 8 is not particularly limited, but the total number of carbon atoms is preferably 7 or more and 60 or less. Also, the aromatic ring-containing structure is preferably composed only of carbon atoms.
  • the alkyl group that can constitute R 5 to R 8 which is not an aromatic ring group and does not form an aromatic ring-containing structure is not particularly limited .
  • the same alkyl groups that can be composed are included.
  • n is an integer of 0 to 4, preferably 0, 1 or 2, more preferably 0 or 1, as described above.
  • Structural unit (II) reduces the dielectric loss tangent of the resin film formed from the resin composition while improving the extensibility, and further improves the patterning properties of the resin film when a cyclic ketone is used as a developer.
  • one of R 5 to R 8 is an aromatic ring group and the others are hydrogen atoms
  • one of R 5 and R 6 and one of R 7 and R 8 together An embodiment in which an aromatic ring-containing structure (for example, a structure containing a benzene ring) is formed and the others are hydrogen atoms is preferred, and the latter embodiment is more preferred.
  • the content ratio of the structural unit (II) in the cyclic olefin polymer is 10 mol% or more when the amount of all structural units contained in the cyclic olefin polymer is 100 mol%. % or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, particularly preferably 80 mol% or more, and 99 mol% or less. It is preferably 95 mol % or less, more preferably 90 mol % or less.
  • the content ratio of the structural unit (II) in the cyclic olefin polymer is 10 mol% or more, the dielectric loss tangent of the resin film formed from the resin composition is reduced and the mechanical strength (tensile strength) is improved. can be done.
  • the content of the structural unit (II) in the cyclic olefin polymer is 99 mol% or less, the resin film formed from the resin composition can further improve the patterning properties when the cyclic ketone is used as the developer. can be enhanced.
  • the patterning properties of the resin film formed from the resin composition are ensured when a cyclic ketone is used as a developer. can do. Further, when the total content of the structural unit (I) and the structural unit (II) is 80 mol% or more, the mechanical strength (tensile strength) of the resin film formed from the resin composition can be improved.
  • the cyclic olefin polymer can optionally contain structural units (other structural units) other than the structural units (I) and (II) described above.
  • Other structural units include, for example, structural units derived from known monomers copolymerizable with monomers capable of forming structural unit (I) and monomers capable of forming structural unit (II). can be used.
  • the content of other structural units in the cyclic olefin polymer must be 20 mol% or less when the amount of all structural units contained in the cyclic olefin polymer is 100 mol%. .
  • the content of other structural units in the cyclic olefin polymer is 10 mol% or less from the viewpoint of further improving the patterning properties when a cyclic ketone is used as a developer. is preferably 5 mol% or less, more preferably 3 mol% or less, even more preferably 1 mol% or less, and 0 mol% (i.e., cyclic olefin weight It is particularly preferred that the coalescence does not contain other structural units).
  • the weight average molecular weight (Mw) of the cyclic olefin polymer is preferably 3,000 or more, more preferably 5,000 or more, still more preferably 10,000 or more, and 500,000 or less. preferably 300,000 or less, and even more preferably 100,000 or less. If the weight average molecular weight of the cyclic olefin polymer is 3,000 or more, the mechanical strength (tensile strength) of the resin film formed from the resin composition can be increased.
  • the weight average molecular weight of the cyclic olefin polymer is 500,000 or less, the solubility of the resin film formed from the resin composition in the cyclic ketone as a developer can be enhanced. As a result, the patterning characteristics of the resin film can be further improved when the cyclic ketone is used as the developer.
  • the molecular weight distribution (Mw/Mn) of the cyclic olefin polymer is preferably 4.0 or less, more preferably 3.0 or less. When the molecular weight distribution of the cyclic olefin polymer is 4.0 or less, it is possible to improve the resolution when the resulting resin film is patterned.
  • “molecular weight distribution (Mw/Mn)” refers to the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn).
  • the weight-average molecular weight and number-average molecular weight of the cyclic olefin polymer are obtained as polystyrene equivalent values by gel permeation chromatography (GPC).
  • a ring-opening polymer is synthesized by a ring-opening polymerization reaction of a norbornene-based monomer, and the resulting ring-opening polymer is subjected to a hydrogenation reaction.
  • ring-opening polymerization and hydrogenation step Efficient synthesis can be achieved by a method including a step of introducing a radical crosslinkable group into the hydrogenated ring polymer (hereinafter referred to as a “modification step”). Each step will be described in detail below.
  • Ring-opening polymerization and hydrogenation step In the ring-opening polymerization and hydrogenation step, first, a norbornene-based monomer (I) capable of forming the structural unit (I) described above and a norbornene-based monomer (II) capable of forming the structural unit (II) described above ) to synthesize a ring-opening polymer by a ring-opening polymerization reaction. If necessary, a ring-opening polymerization reaction may be performed by adding a monomer other than the norbornene-based monomer (I) and the norbornene-based monomer (II).
  • the norbornene monomer (I) includes, for example, 2-norbornene-5-methanol, 2-methyl-2-hydroxymethylbicyclo[2.2.1]hept-5-ene, 2,3- dihydroxymethylbicyclo[2.2.1]hept-5-ene, 3-hydroxytricyclo[5.2.1.0 2,6 ]deca-4,8-diene, 3-hydroxymethyltricyclo[5. 2.1.0 2,6 ]deca-4,8-diene, 4-hydroxytetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-9-ene, 4-hydroxymethyltetracyclo[6.2.1.1 3,6 .
  • Examples of the norbornene monomer (II) include tetracyclo[4.4.0.1 2,5 . 1 7,10 ]dodeca-3-ene (common name: tetracyclododecene), 8-ethylidene-tetracyclo[4.4.0.1 2,5 .
  • a derivative refers to what has a substituent in a ring structure.
  • Substituents that may be present in the ring structure include, for example, alkyl groups, alkylene groups, vinyl groups, alkoxycarbonyl groups, and alkylidene groups.
  • the ring structure of the derivative may have one or more of these substituents.
  • Norbornene-based monomers (II) can be used singly or in combination of multiple types.
  • the ring-opening polymerization reaction can be carried out in a reaction solvent according to a known method.
  • the reaction solvent is not particularly limited, and organic solvents such as tetrahydrofuran and toluene can be used, for example.
  • ethylene propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl -1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1 - ⁇ -olefins having 3 to 20 carbon atoms such as octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosene; 1,4-hexadiene, 1,5-hexadiene , 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 1,7-octadiene
  • the ring-opening polymerization time is usually 1 hour or more and 10 hours or less, preferably 2 hours or more and 5 hours or less.
  • the ring-opening polymerization temperature is usually 20° C. or higher and 100° C. or lower, preferably 90° C. or lower.
  • the resulting ring-opening polymer is subjected to a hydrogenation reaction to synthesize a hydrogenated ring-opening polymer.
  • the hydrogenation reaction can be carried out according to a known method.
  • the hydrogenation reaction time, hydrogenation reaction temperature and hydrogenation pressure in the hydrogenation reaction are not particularly limited, but the hydrogenation reaction time is usually 1 hour or more and 10 hours, preferably 5 hours or less.
  • the hydrogenation reaction temperature is usually 100° C. or higher and 200° C. or lower, preferably 180° C. or lower.
  • the hydrogenation pressure is generally 1 MPa or more and 10 MPa or less, preferably 5 MPa or less.
  • the ring-opening polymer hydrogenated product obtained in the ring-opening polymerization and hydrogenation step is subjected to a modification reaction with a modifying agent to introduce a radical crosslinkable group, thereby forming the structural unit (I) described above. to obtain a cyclic olefin polymer containing
  • the modifier used in the modification reaction can be appropriately selected according to the structure of the desired radical crosslinkable group contained in the structural unit (I).
  • denaturant can be used individually by 1 type or in combination of multiple types.
  • the modifier When introducing a radically crosslinkable group having a styryl skeleton, the modifier may be a functional group (such as a hydroxy group) possessed by the hydrogenated ring-opening polymer and a functional group (halogen group, tosyl group, mesyl group, etc.) capable of undergoing a modification reaction. etc.) and a styryl skeleton (styryl modifier) can be used.
  • a functional group such as a hydroxy group
  • a functional group halogen group, tosyl group, mesyl group, etc.
  • styryl modifiers examples include 2-(fluoromethyl)styrene, 3-(fluoromethyl)styrene, 4-(fluoromethyl)styrene, 2-(chloromethyl)styrene, 3-(chloromethyl)styrene, 4 -(chloromethyl)styrene, 2-(bromomethyl)styrene, 3-(bromomethyl)styrene, 4-(bromomethyl)styrene, 2-(iodomethyl)styrene, 3-(iodomethyl)styrene, 4-(iodomethyl)styrene, etc.
  • halogenated methylstyrene 2-(tosylmethyl)styrene, 3-(tosylmethyl)styrene, 4-(tosylmethyl)styrene, 2-(mesylmethyl)styrene, 3-(mesylmethyl)styrene, 4-(mesylmethyl)styrene, etc. .
  • These can be used individually by 1 type or in combination of multiple types.
  • 4-(chloromethyl)styrene and 4-(bromomethyl)styrene are preferably used from the viewpoint of efficient modification reaction.
  • the modifying agent When introducing a radical crosslinkable group having an acrylate skeleton, the modifying agent includes a functional group (such as a hydroxy group) possessed by the hydrogenated ring-opening polymer and a functional group capable of modification reaction (halogen group, carboxylic anhydride group etc.) and an acrylate skeleton (acrylate modifier) can be used.
  • a functional group such as a hydroxy group
  • a functional group capable of modification reaction halogen group, carboxylic anhydride group etc.
  • an acrylate skeleton acrylate modifier
  • Acrylate-based modifiers include acrylic acid chloride, acrylic anhydride, methacrylic acid chloride, and methacrylic acid anhydride. These can be used individually by 1 type or in combination of multiple types. Among these, it is preferable to use acrylic acid chloride and methacrylic acid chloride from the viewpoint of efficiently performing the modification reaction.
  • the procedure and conditions of the modification reaction are not particularly limited, and can be appropriately set, for example, according to the type of modifier used.
  • the reaction solvent in the modification reaction is not particularly limited, and for example, the same reaction solvent as used in the ring-opening polymerization reaction can be used.
  • the modification reaction can be carried out, for example, by reacting the hydrogenated ring-opening polymer with the styryl-based modifier in the presence of a base in a reaction solvent.
  • the base is not particularly limited, and alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, and t-butoxylithium.
  • t-butoxysodium, t-butoxypotassium metal alkoxides triethylamine, pyridine, diazabicycloundecene, diazabicyclononene, tetramethylguanidine, and the like can be used.
  • metal alkoxides such as t-butoxylithium, t-butoxysodium, and t-butoxypotassium are preferably used from the viewpoint of efficient modification reaction.
  • a styryl-based modifier it is preferable to use a compound capable of generating iodide ions, such as potassium iodide and tetrabutylammonium iodide, as a catalyst.
  • the reaction in the modification step can be promoted.
  • the blending ratio of the catalyst capable of generating iodide ions may be, for example, 1.0 parts by mass or more and 10.0 parts by mass or less per 100 parts by mass of the hydrogenated ring-opening polymer.
  • the modification reaction temperature and modification reaction time are not particularly limited, but the modification reaction temperature is usually ⁇ 10° C. or more and 100° C. or less, and the modification reaction time is usually 1 hours or more and 15 hours or less.
  • the modification reaction can be carried out by reacting the hydrogenated ring-opening polymer with the acrylate modifier in the presence of a modification reaction catalyst in a reaction solvent.
  • the modification reaction catalyst is not particularly limited, and for example, triethylamine, pyridine, or the like can be used.
  • the modification reaction temperature and modification reaction time are not particularly limited, but the modification reaction temperature is usually ⁇ 10° C. or higher and 15° C. or lower, and the modification reaction time is usually , from 1 hour to 15 hours.
  • the radical initiator is a component capable of cross-linking the cyclic olefin polymer by generating radicals by exposure or heating to react radical cross-linkable groups when obtaining a resin film using the resin composition.
  • a radical initiator for example, a photo-radical generator, a thermal radical generator, or the like can be used.
  • a radical initiator can be used individually by 1 type or in combination of multiple types.
  • a photoradical generator can be used individually by 1 type or in combination of multiple types. Among them, it is preferable to use an oxime ester-based photo-radical generator as the photo-radical generator from the viewpoint of improving the exposure sensitivity and the residual film rate after development.
  • Acylphosphine oxide photoradical generators include, for example, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, 2,4,6- Trimethylbenzoylphenylethoxyphosphine oxide and the like can be used.
  • oxime ester photoradical generators examples include 1,2-octanedione, 1-[4-(phenylthio)phenyl]-,2-(o-benzoyloxime) (manufactured by BASF, "Irgacure (registered trademark) OXE01”); ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(O-acetyloxime) (manufactured by BASF, "Irgacure OXE02 ”); and a compound (chemical formula unpublished) manufactured by BASF and distributed as “Irgacure OXE03”.
  • aromatic ketone photoradical generators benzophenone, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 1-hydroxycyclohexylphenyl Ketone, 2,2-dimethoxy-1,2-diphenylethan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanone-1, 2-hydroxy-2-methyl-1 -phenyl-propan-1-one, 2-methyl-1[4-methylthio]phenyl]-2-morpholinopropan-1-one, methyl o-benzoylbenzoate, [4-(methylphenylthio)phenyl]phenyl Methane, 1,4 dibenzoylbenzene, 2-benzoylnaphthalene, 4-benzoylbiphenyl, 4-benzoyldiphenyl ether, benzyl and the like can be used.
  • the content of the radical initiator in the resin composition of the present invention is preferably 0.3 parts by mass or more, more preferably 1 part by mass or more, per 100 parts by mass of the cyclic olefin polymer. It is more preferably at least 25 parts by mass, more preferably 15 parts by mass or less, and even more preferably 10 parts by mass or less. If the content of the radical initiator in the resin composition is 0.3 parts by mass or more per 100 parts by mass of the cyclic olefin polymer, the resin film formed from the resin composition is formed using a cyclic ketone as the developer. patterning properties can be sufficiently improved.
  • the content of the radical initiator in the resin composition is 25 parts by mass or less per 100 parts by mass of the cyclic olefin polymer, the value of the dielectric loss tangent of the resin film formed from the resin composition can be reduced. .
  • the resin composition of the present invention preferably contains a cross-linking agent having at least two polymerizable unsaturated bonds from the viewpoint of reducing the dielectric loss tangent of the resin film to be obtained and improving the extensibility.
  • the cross-linking agent reacts with the cyclic olefin polymer through a radical reaction initiated by the above-described radical initiator, and cooperates with the cyclic olefin polymer in the resin film. It is a component that can form a strong crosslinked structure.
  • the cross-linking agent is not particularly limited as long as it has two or more polymerizable unsaturated bonds, and any cross-linking agent can be used.
  • a crosslinking agent can be used individually by 1 type or in combination of multiple types.
  • the cross-linking agent include a (meth)acryloyl group-containing cross-linking agent, a styryl group-containing cross-linking agent, and an allyl group-containing cross-linking agent.
  • (meth)acryloyl means acryloyl and/or methacryloyl.
  • Cross-linking agents having a (meth)acryloyl group include 1,6-hexanediol dimethacrylate, trimethylolprohane triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, tris(2-acryloyloxyethyl) isocyanurate, and bisphenol.
  • a dimethacrylate, polybutadiene-terminated diacrylate manufactured by Osaka Organic Chemical Industry Co., Ltd., "BAC-45
  • polyphenylene ether having a methacryloyl group manufactured by SABIC, "Noryl (registered trademark) SA9000
  • Cross-linking agents having a styryl group include 1,2-divinylbenzene, 1,3-divinylbenzene, 1,4-divinylbenzene, and 1,4-diisopropenylbenzene "OPE-2St 1200" and "OPE- 2St 2200” (all manufactured by Mitsubishi Gas Chemical Co., Ltd.), and the like.
  • Examples of crosslinking agents having an allyl group include diallyl ether, tetraallyloxyethane, pentaerythritol triallyl ether, 9,9-bis(4-allyloxyphenyl)fluorene, diallyl adipate, and 1,3,5-benzenetricarboxylic acid.
  • crosslinking agent (III) hereinafter sometimes abbreviated as "TAIC”
  • 2,4,6-trimethyl-2,4,6- and trivinylcyclotrisiloxane 2,4,6-trimethyl-2,4,6- and trivinylcyclotrisiloxane.
  • cross-linking agent (III) represented by the following formula (III) and the following formula A cross-linking agent (IV) represented by (IV) is preferred.
  • A is a divalent organic group.
  • an organic group represented by the following formula (VII) is preferable.
  • R a , R b , R c , R d , R e , R f , R g and R h each independently represent a hydrogen atom, a halogen atom, or an alkyl having 1 to 6 carbon atoms or a phenyl group.
  • Halogen atoms that can be R a to R h in formula (VII) include, for example, fluorine, chlorine, bromine and iodine atoms.
  • the alkyl group having 1 to 6 carbon atoms that can be R a to R h in formula (II) is not particularly limited, but is preferably a methyl group or an ethyl group, more preferably a methyl group.
  • a and b are each independently an integer of 0 or more and 300 or less. However, the case where one of a and b is 0 is excluded. From the viewpoint of further reducing the dielectric loss tangent of the resin film formed from the resin composition and further improving the stretchability, each of a and b is preferably an integer of 1 or more and 100 or less, and 1 or more and 50 or less. An integer is more preferable, and an integer of 1 or more and 10 or less is even more preferable.
  • the number average molecular weight of the cross-linking agent (IV) is preferably 100 or more, preferably 300 or more, from the viewpoint of further improving the extensibility while further reducing the dielectric loss tangent of the resin film formed from the resin composition. More preferably 500 or more, particularly preferably 1,000 or more, preferably 3,000 or less, and more preferably 2,500 or less.
  • the content of the cross-linking agent in the resin composition of the present invention is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and 20 parts by mass or more per 100 parts by mass of the cyclic olefin polymer. More preferably 25 parts by mass or more, particularly preferably 30 parts by mass or more, preferably 100 parts by mass or less, more preferably 90 parts by mass or less, It is more preferably 80 parts by mass or less, and particularly preferably 70 parts by mass or less.
  • the content of the cross-linking agent in the resin composition is 5 parts by mass or more per 100 parts by mass of the cyclic olefin polymer, the dielectric loss tangent of the resin film formed from the resin composition can be reduced while the extensibility can be improved. can.
  • the content of the cross-linking agent in the resin composition is 100 parts by mass or less per 100 parts by mass of the cyclic olefin polymer, the resin film formed from the resin composition can be formed using a cyclic ketone as the developer. Sufficient patterning characteristics can be ensured.
  • the resin composition preferably contains both the cross-linking agent (III) and the cross-linking agent (IV). And when the resin composition contains both the cross-linking agent (III) and the cross-linking agent (IV), the content of the cross-linking agent (III) in the resin composition is equal to the content of the cross-linking agent (III) and the cross-linking agent (IV) Assuming that the total content of the is preferred, 50% by mass or less is more preferred, and 40% by mass or less is even more preferred.
  • the ratio of the content of the cross-linking agent (III) to the total content of the cross-linking agent (III) and the cross-linking agent (IV) is within the above range, the dielectric loss tangent of the resin film formed from the resin composition is reduced. while improving extensibility.
  • the solvent that the resin composition of the present invention may optionally contain is not particularly limited.
  • Aromatic solvents such as 5-trimethylbenzene and tetralin, hydrocarbon solvents such as cyclohexane and decalin, ether solvents such as dibutyl ether, diisoamyl ether, tetrahydrofuran, cyclopentyl methyl ether, and anisole, butyl acetate, hexyl acetate, Ester solvents such as propylene glycol monomethyl ether acetate, and ketone solvents such as methyl ethyl ketone, diisobutyl ketone, and cyclopentanone are included. These solvents can be used singly or in combination.
  • the content of the solvent in the resin composition is preferably 10% by mass or more, more preferably 20% by mass or more, and preferably 60% by mass, based on the total mass of the resin composition other than the solvent.
  • the additive component that the resin composition of the present invention may optionally contain is not particularly limited, and examples thereof include surfactants, antioxidants, sensitizers, adhesion aids, and the like. These additive components can be used individually by 1 type or in combination of multiple types. Above all, from the viewpoint of improving the coatability of the resin composition of the present invention and improving the uniformity of the film thickness of the resulting resin film, it is preferable to contain a surfactant as an additive component.
  • the surfactant is not particularly limited, and known silicone-based surfactants, fluorine-based surfactants, and the like can be used.
  • the content of the surfactant in the resin composition is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, relative to the total mass of the resin composition.
  • the resin composition of the present invention can be prepared by mixing the essential components and various optional components described above by known methods.
  • the resin composition of the present invention is used, for example, as a resin composition obtained by dissolving each component in a solvent and filtering.
  • known mixers such as stirrers, ball mills, sand mills, bead mills, pigment dispersers, crushers, ultrasonic dispersers, homogenizers, planetary mixers and Filmix can be used.
  • a general filtration method using a filter medium such as a filter can be employed.
  • the resin composition of the present invention can form a resin film by using a known film forming method (see, for example, International Publication No. 2015/033901). Then, the obtained resin film is not particularly limited, and an exposure step of irradiating an arbitrary active energy ray, for example, exposure light with a wavelength of 200 nm or more and 500 nm or less, and a development step. It is possible to form a resin film having a pattern of In particular, the resin film formed from the resin composition of the present invention can efficiently form a desired pattern shape even when a cyclic ketone such as cyclopentanone or cyclohexanone is used as a developer in the development process. can.
  • a cyclic ketone such as cyclopentanone or cyclohexanone
  • a pre-baking process may be performed prior to the exposure process, or a post-exposure bake (PEB) process may be performed at a desired timing after the start of the exposure process. Furthermore, if necessary, a post-baking process may be performed after the development process is completed.
  • PEB post-exposure bake
  • ⁇ Weight average molecular weight and molecular weight distribution> The weight average molecular weight (Mw) and number average molecular weight (Mn) of the cyclic olefin polymers obtained in Examples and Comparative Examples were measured using gel permeation chromatography, and the molecular weight distribution (Mw/Mn) was calculated. Specifically, using a gel permeation chromatograph (manufactured by Tosoh, HLC-8220), using tetrahydrofuran as a developing solvent, the weight average molecular weight (Mw) and number average molecular weight (Mn) of the cyclic olefin polymer were measured using standard polystyrene. It was obtained as a converted value.
  • a tensile test was performed using a tensile tester ("AGS-10kNX” manufactured by Shimadzu Corporation) at 23°C at a grip interval of 20 mm and a tensile speed of 2 mm/min, and the elongation and strength at the breaking point were measured. bottom. Eight test pieces were tested, and the average value of the top three points was used as the tensile elongation rate and tensile strength of the resin film formed using the resin composition obtained in each example and each comparative example, according to the following criteria. evaluated. It means that the larger the value of the tensile elongation, the higher the extensibility of the resin film.
  • the higher the extensibility of the resin film the less likely cracks or peeling will occur during the temperature cycle test or the drop impact test, which is preferable. Moreover, it means that the higher the tensile strength, the higher the mechanical strength of the resin film.
  • Example 1 ⁇ Synthesis of Cyclic Olefin Polymer (B-1)> ⁇ Ring-opening polymerization and hydrogenation step>> 2-norbornene-5-methanol (hereinafter abbreviated as "NBMOH") as a norbornene-based monomer (I) 15 mol% and methanotetrahydrofluorene as a norbornene-based monomer (II) (hereinafter referred to as " 100 parts of a monomer mixture consisting of 85 mol%, 1.0 parts of 1,5-hexadiene as a molecular weight modifier, and (1,3-dimesitylimidazoline as a ring-opening polymerization catalyst -2-ylidene)(tricyclohexylphosphine)benzylidene ruthenium dichloride] (Org.
  • ⁇ Degeneration step> A three-necked flask equipped with a stirring blade and a thermometer was purged with nitrogen, and 100 parts of the hydrogenated ring-opening polymer (A-1), 87.4 parts of triethylamine as a modification reaction catalyst, and as a reaction solvent 500 parts of tetrahydrofuran was charged, and the reaction solution was cooled to 0°C in an ice bath. While maintaining the temperature of the reaction solution at 10° C. or lower, 54.2 parts of methacryloyl chloride as a modifier was added dropwise and stirred for 2 hours.
  • reaction solution was raised to room temperature, and stirring was continued for 12 hours.
  • reaction solution was cooled to 0°C, and methanol was added in an amount of 50 parts per 100 parts of methacryloyl chloride while maintaining the temperature of the reaction solution at 10°C or less. , 0° C. for 1 hour, warmed to room temperature and stirred for additional 1 hour.
  • the reaction liquid was added dropwise to 8000 parts of methanol, and the generated precipitate was collected by filtration. The precipitate was washed with methanol three times and then dried under reduced pressure at 50° C.
  • a cyclic olefin polymer (B-1) which is a modified hydrogenated ring-opening polymer (see the formula below).
  • the weight average molecular weight of the cyclic olefin polymer (B-1) measured by GPC was 20,100, and the molecular weight distribution was 2.13.
  • the methacryloyl modification rate of the hydrogenated ring-opening polymer (A-1) was 100%, and the methacryloyl-modified NBMOH-derived structural unit in the cyclic olefin polymer (B-1) was The content was confirmed to be 15 mol %.
  • ⁇ Preparation of resin composition 100 parts of the cyclic olefin polymer (B-1) obtained as described above, 5 parts of "Irgacure OXE01" (manufactured by BASF) as a radical initiator, and the total mass of the resin composition other than the solvent Addition amounts of anisole (solvent) totaling 30% were mixed and dissolved. Next, after adding KP-341 (manufactured by Shin-Etsu Silicone Co., Ltd.) as a surfactant so as to be 0.03% with respect to the total weight of the resin composition, it was filtered through a polytetrafluoroethylene filter with a pore size of 0.45 ⁇ m. to prepare a resin composition. And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
  • Example 2 Resin was prepared in the same manner as in Example 1, except that the cyclic olefin polymer (B-2) prepared as follows was used instead of the cyclic olefin polymer (B-1) in preparing the resin composition. A composition was prepared. And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
  • the ring-opening polymer hydrogenate (A-1) was changed to the ring-opening polymer hydrogenate (A-2), the amount of triethylamine was 83.5 parts, the amount of methacrylic acid chloride was 51.3 parts, and tetrahydrofuran.
  • the weight average molecular weight of the cyclic olefin polymer (B-2) measured by GPC was 22,900, and the molecular weight distribution was 2.03.
  • the methacryloyl modification rate of the hydrogenated ring-opening polymer (A-2) was 100%, and the methacryloyl-modified TCDMOH-derived structural unit in the cyclic olefin polymer (B-2) was The content was confirmed to be 15 mol %.
  • Example 3 When preparing the resin composition, 25 parts of "OPE-2St 1200" (manufactured by Mitsubishi Gas Chemical Company, number average molecular weight: 1,200, having a structure of the following formula (VIII)) as a cross-linking agent (IV) was added. A cyclic olefin polymer (B-1) and a resin composition were prepared in the same manner as in Example 1 except for the above. And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
  • Example 4 In preparing the resin composition, a cyclic olefin polymer (B-3) prepared as follows was used in place of the cyclic olefin polymer (B-1), and "OPE-2St 2200" (manufactured by Mitsubishi Gas Chemical Company, number average molecular weight: 2,200, having the structure of formula (VIII) above) was added in the same manner as in Example 1, except that 50 parts of the resin composition was prepared. And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
  • the cyclic olefin polymer (B-3) had a weight average molecular weight of 16,400 and a molecular weight distribution of 1.59 as measured by GPC. According to 1 H-NMR measurement, the methacryloyl modification rate of the hydrogenated ring-opening polymer (A-3) was 100%, and the methacryloyl-modified NBMOH-derived structural unit in the cyclic olefin polymer (B-3) was The content was confirmed to be 15 mol %.
  • Example 5 A cyclic olefin polymer (B-1) and a resin composition were prepared in the same manner as in Example 1, except that 20 parts of the cross-linking agent (III) (manufactured by Shinryo Corporation, TAIC) was added in the preparation of the resin composition. bottom. And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
  • Example 6 In the preparation of the resin composition, 10 parts of the cross-linking agent (III) (manufactured by Shinryo Corporation, TAIC), "OPE-2St 1200" (Mitsubishi Gas Chemical Co., Ltd., number average molecular weight: 1,200) as the cross-linking agent (IV)
  • a cyclic olefin polymer (B-2) and a resin composition were prepared in the same manner as in Example 2, except that 25 parts of cycloolefin polymer (B-2) was added. And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
  • Example 7 In the preparation of the resin composition, 10 parts of the cross-linking agent (III) (manufactured by Shinryo Corporation, TAIC), "OPE-2St 1200" (Mitsubishi Gas Chemical Co., Ltd., number average molecular weight: 1,200) as the cross-linking agent (IV)
  • a cyclic olefin polymer (B-1) and a resin composition were prepared in the same manner as in Example 1, except that 50 parts of cycloolefin polymer (B-1) was added. And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
  • Example 8 In the preparation of the resin composition, 10 parts of the cross-linking agent (III) (manufactured by Shinryo Corporation, TAIC), "OPE-2St 2200" (Mitsubishi Gas Chemical Co., Ltd., number average molecular weight: 2,200) as the cross-linking agent (IV)
  • a cyclic olefin polymer (B-2) and a resin composition were prepared in the same manner as in Example 2, except that 25 parts of cycloolefin polymer (B-2) was added. And various evaluations were performed according to the above using the obtained resin composition. Table 2 shows the results.
  • Example 9 A resin composition was prepared in the same manner as in Example 6, except that the cyclic olefin polymer (B-4) prepared as follows was used instead of the cyclic olefin polymer (B-2) in preparing the resin composition. prepared the product. And various evaluations were performed according to the above using the obtained resin composition. Table 2 shows the results. ⁇ Synthesis of cyclic olefin polymer (B-4)> ⁇ Ring-opening polymerization and hydrogenation step>> A hydrogenated ring-opening polymer (A-4) was obtained in the same manner as in Example 1, except that NBMOH was changed to 50 mol% and MTF was changed to 50 mol%.
  • ⁇ Modification step>> The ring-opening polymer hydrogenate (A-1) was changed to the ring-opening polymer hydrogenate (A-4), the amount of triethylamine was changed to 355.5 parts, and the amount of methacrylic acid chloride was changed to 204.2 parts.
  • the cyclic olefin polymer (B-4) had a weight average molecular weight of 22,000 and a molecular weight distribution of 2.14 as measured by GPC.
  • the methacryloyl modification rate of the hydrogenated ring-opening polymer (A-4) was 100%, and the methacryloyl-modified NBMOH-derived structural unit in the cyclic olefin polymer (B-4) was The content was confirmed to be 50 mol %.
  • a cyclic olefin polymer (B-5) prepared as follows was used in place of the cyclic olefin polymer (B-1), and "OPE-2St 1200" (manufactured by Mitsubishi Gas Chemical Company, number average molecular weight: 1,200, having the structure of formula (VIII) above) was added, and tetralin was used in place of anisole. to prepare a resin composition. And various evaluations were performed according to the above using the obtained resin composition. Table 2 shows the results.
  • the cyclic olefin polymer (B-5) had a weight average molecular weight of 20,000 and a molecular weight distribution of 1.76 as measured by GPC. According to 1 H-NMR measurement, the methacryloyl modification rate of the hydrogenated ring-opening polymer (A-5) was 100%, and the methacryloyl-modified NBMOH-derived structural unit in the cyclic olefin polymer (B-5) was The content was confirmed to be 15 mol %.
  • ⁇ Modification step>> The ring-opening polymer hydrogenate (A-1) was changed to the ring-opening polymer hydrogenate (A-6), the amount of triethylamine was changed to 94.5 parts, and the amount of methacrylic acid chloride was changed to 53.8 parts.
  • the cyclic olefin polymer (B-6) had a weight average molecular weight of 17,700 and a molecular weight distribution of 2.62 as measured by GPC.
  • the methacryloyl modification rate of the cyclic olefin polymer (A-6) was 100%, and the content of the methacryloyl-modified NBMOH-derived structural unit in the cyclic olefin polymer (B-6) was It was confirmed to be 15 mol %.
  • ⁇ Modification step>> The ring-opening polymer hydrogenated product (A-1) was changed to the addition polymer (A-7), the amount of triethylamine was changed to 170.4 parts, and the amount of methacrylic acid chloride was changed to 95.3 parts.
  • the weight average molecular weight of the cyclic olefin polymer (B-7) measured by GPC was 28,100, and the molecular weight distribution was 1.84.
  • the methacryloyl modification rate of the addition polymer (A-7) was 100%, and the content of the methacryloyl-modified NBMOH-derived structural unit in the cyclic olefin polymer (B-7) was 15. was confirmed to be mol %.
  • Examples 1 to 9 containing a cyclic olefin polymer containing the structural unit (I) and the structural unit (II) and having a total content ratio of 80 mol% or more and a radical initiator It can be seen that the resin composition can form a resin film having excellent patterning properties when a cyclic ketone is used as a developer.
  • the resin composition containing the cyclic olefin polymer of the present invention it is possible to form a resin film with excellent patterning properties when a cyclic ketone is used as a developer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)

Abstract

The purpose of the present invention is to provide a resin composition containing a cyclic olefin polymer, said resin composition being capable of forming a resin film that shows excellent patterning properties when a cyclic ketone is used as a developer. The resin composition of the present invention contains a cyclic olefin polymer and a radical initiator. The cyclic olefin polymer contains specific structural units (I) and (II). In the cyclic olefin polymer, the ratio of the sum of the contents of the structural units (I) and (II) in the cyclic olefin polymer is 80 mol% or more, when the amount of all structural units contained in the cyclic olefin polymer is regarded as 100 mol%.

Description

樹脂組成物resin composition
 本発明は、樹脂組成物に関するものである。 The present invention relates to resin compositions.
 従来、集積回路素子や有機EL素子等の電子部品には、部品自体の劣化や損傷を防止するための保護膜、素子表面や配線を平坦化するための平坦化膜、電気絶縁性を保つための電気絶縁膜、発光部を分離する画素分離膜、光を集光、拡散させる光学膜等として種々の樹脂膜が設けられている。 Conventionally, electronic parts such as integrated circuit elements and organic EL elements have a protective film to prevent deterioration and damage to the parts themselves, a planarizing film to flatten the element surface and wiring, and a film to maintain electrical insulation. Various resin films are provided as an electrical insulation film, a pixel separation film for separating light emitting portions, an optical film for condensing and diffusing light, and the like.
 そして近年、このような樹脂膜を構成する樹脂材料として、各種性能に優れる環状オレフィン重合体が注目されている。例えば特許文献1には、側鎖部分に架橋性の二重結合を複数有する環状オレフィン重合体と、所定のポリフェニレンエーテルと、トリアリルイソシアヌレート及び/又はトリアリルシアヌレートと、有機過酸化物とを含む樹脂組成物が開示されている。そして特許文献1によれば、上述した樹脂組成物を用いることで誘電正接が低い樹脂膜を形成することができる。 In recent years, cyclic olefin polymers, which are excellent in various performances, have attracted attention as resin materials that constitute such resin films. For example, Patent Document 1 discloses a cyclic olefin polymer having a plurality of crosslinkable double bonds in the side chain portion, a predetermined polyphenylene ether, triallyl isocyanurate and/or triallyl cyanurate, and an organic peroxide. A resin composition is disclosed comprising: According to Patent Document 1, a resin film having a low dielectric loss tangent can be formed by using the resin composition described above.
特開2018-39950号公報JP 2018-39950 A
 ここで一般に、樹脂膜には、その用途に応じた所望のパターン形状が付与される。そしてパターニングに際しては、現像液としてシクロペンタノン等の環状ケトンが広く用いられている。しかしながら上記従来の樹脂組成物を用いて形成される樹脂膜を露光し、露光後の樹脂膜に対して環状ケトンによる現像を行っても、環状オレフィン重合体が環状ケトンに溶解し難い等の理由で樹脂膜に所望のパターン形状を良好に付与することが困難であった。
 すなわち環状オレフィン重合体を含む上記従来の樹脂組成物には、当該樹脂組成物から形成される樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を高めるという点で更なる改善の余地があった。
Here, generally, the resin film is provided with a desired pattern shape according to its use. Cyclic ketones such as cyclopentanone are widely used as developing solutions for patterning. However, even if the resin film formed using the above-mentioned conventional resin composition is exposed and the resin film after exposure is developed with a cyclic ketone, the cyclic olefin polymer is difficult to dissolve in the cyclic ketone. However, it was difficult to impart a desired pattern shape to the resin film.
That is, the conventional resin composition containing a cyclic olefin polymer has room for further improvement in terms of enhancing the patterning properties of a resin film formed from the resin composition when a cyclic ketone is used as a developer. was there.
 そこで、本発明は、環状オレフィン重合体を含む樹脂組成物であって、現像液として環状ケトンを用いた場合のパターニング特性に優れる樹脂膜を形成可能な樹脂組成物の提供を目的とする。 Therefore, an object of the present invention is to provide a resin composition containing a cyclic olefin polymer, which is capable of forming a resin film having excellent patterning properties when a cyclic ketone is used as a developer.
 本発明者は、上記目的を達成するために鋭意検討を行った。そして、本発明者は、所定の二種の構造単位を含み且つ当該二種の構造単位の含有割合合計が所定の値以上である環状オレフィン重合体と、ラジカル開始剤とを含む樹脂組成物を用いれば、現像液として環状ケトンを用いた場合のパターニング特性に優れる樹脂膜を形成しうることを新たに見出し、本発明を完成させた。 The inventor of the present invention has diligently studied in order to achieve the above purpose. Then, the present inventor provides a resin composition comprising a cyclic olefin polymer containing two types of predetermined structural units and having a total content ratio of the two types of structural units equal to or greater than a predetermined value, and a radical initiator. The present inventors have newly found that a resin film having excellent patterning properties can be formed when a cyclic ketone is used as a developer, and have completed the present invention.
 すなわち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明によれば、下記〔1〕~〔5〕の樹脂組成物が提供される。
〔1〕環状オレフィン重合体と、ラジカル開始剤とを含む樹脂組成物であって、前記環状オレフィン重合体は、下記式(I)で示される構造単位(I)と、下記式(II)で示される構造単位(II)とを含み、前記環状オレフィン重合体に含まれる全構造単位の量を100モル%とした場合に、前記環状オレフィン重合体中の前記構造単位(I)の含有割合と前記構造単位(II)の含有割合の合計が80モル%以上である、樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
 式(I)中、R~Rは少なくとも一つがラジカル架橋性基であり、ラジカル架橋性基に該当しないR~Rは、それぞれ独立して、水素原子、アルキル基又は芳香環基であり、ラジカル架橋性基に該当しないR~Rのうち二つが一緒になって環を形成していてもよく、mは0以上4以下の整数である。
Figure JPOXMLDOC01-appb-C000006
 式(II)中、R~Rの少なくとも一つが芳香環基であるか、又はR~Rのうち二つが一緒になって芳香環含有構造を形成しており、芳香環基に該当せず且つ芳香環含有構造も形成しないR~Rは、それぞれ独立して、水素原子又はアルキル基であり、nは0以上4以下の整数である。
 かかる樹脂組成物によれば、現像液として環状ケトンを用いた場合のパターニング特性に優れる樹脂膜を形成することができる。
 なお、本明細書において、重合体に含まれる各構造単位の「含有割合」は、H-NMRや13C-NMRなどの核磁気共鳴(NMR)法を用いて測定することができる。
That is, an object of the present invention is to advantageously solve the above problems, and the present invention provides the following resin compositions [1] to [5].
[1] A resin composition containing a cyclic olefin polymer and a radical initiator, wherein the cyclic olefin polymer comprises a structural unit (I) represented by the following formula (I) and a structural unit (I) represented by the following formula (II): and the structural unit (II) shown, and the content ratio of the structural unit (I) in the cyclic olefin polymer when the amount of all structural units contained in the cyclic olefin polymer is 100 mol% The resin composition, wherein the total content of the structural units (II) is 80 mol% or more.
Figure JPOXMLDOC01-appb-C000005
In formula (I), at least one of R 1 to R 4 is a radical crosslinkable group, and each of R 1 to R 4 not corresponding to a radical crosslinkable group is independently a hydrogen atom, an alkyl group, or an aromatic ring group. and two of R 1 to R 4 that do not correspond to radical crosslinkable groups may combine to form a ring, and m is an integer of 0 or more and 4 or less.
Figure JPOXMLDOC01-appb-C000006
In formula (II), at least one of R 5 to R 8 is an aromatic ring group, or two of R 5 to R 8 together form an aromatic ring-containing structure, and the aromatic ring group R 5 to R 8 which do not correspond and do not form an aromatic ring-containing structure are each independently a hydrogen atom or an alkyl group, and n is an integer of 0 or more and 4 or less.
According to such a resin composition, it is possible to form a resin film having excellent patterning properties when a cyclic ketone is used as a developer.
In this specification, the “content ratio” of each structural unit contained in the polymer can be measured using a nuclear magnetic resonance (NMR) method such as 1 H-NMR and 13 C-NMR.
〔2〕前記環状オレフィン重合体に含まれる全構造単位の量を100モル%とした場合に、前記環状オレフィン重合体中の前記構造単位(II)の含有割合が70モル%以上である、上記〔1〕に記載の樹脂組成物。
 環状オレフィン重合体中の構造単位(II)の含有割合が70モル%以上であれば、樹脂組成物から形成される樹脂膜の誘電正接を低下させつつ機械的強度を向上させることができる。
[2] The content of the structural unit (II) in the cyclic olefin polymer is 70 mol% or more when the amount of all structural units contained in the cyclic olefin polymer is 100 mol%. The resin composition according to [1].
If the content ratio of the structural unit (II) in the cyclic olefin polymer is 70 mol% or more, the dielectric loss tangent of the resin film formed from the resin composition can be lowered and the mechanical strength can be improved.
〔3〕前記ラジカル架橋性基がスチリル骨格とアクリレート骨格の少なくとも一方を有する、上記〔1〕又は〔2〕に記載の樹脂組成物。
 構造単位(I)がスチリル骨格を有するラジカル架橋性基を含めば、樹脂組成物から形成される樹脂膜の誘電正接を低下させ、また当該樹脂膜について現像液として環状ケトンを用いた場合のパターニング特性を更に高めることができる。そして、構造単位(I)がアクリレート骨格を有するラジカル架橋性基を含めば、樹脂組成物から形成される樹脂膜の誘電正接を低下させつつ伸長性を向上させ、また当該樹脂膜について現像液として環状ケトンを用いた場合のパターニング特性を更に高めることができる。
 なお、本明細書において、ラジカル架橋性基が「スチリル骨格を有する」とは、ラジカル架橋性基が「CH=CH-Ph-(Phはフェニレン基であり、そして式中の水素原子の一部又は全部が任意の置換基で置換されていてもよい。)」で示される化学構造を含むことをいう。そして、本明細書において、「スチリル骨格を有する」基は、「芳香環基」には該当せず「ラジカル架橋性基」に該当するものとする。
 また、本明細書において、ラジカル架橋性基が「アクリレート骨格を有する」とは、ラジカル架橋性基が「CH=CH-C(=O)-O-(式中の水素原子の一部又は全部が任意の置換基で置換されていてもよい。)」で占めされる化学構造を含むことをいう。
[3] The resin composition according to [1] or [2] above, wherein the radical crosslinkable group has at least one of a styryl skeleton and an acrylate skeleton.
If the structural unit (I) contains a radically crosslinkable group having a styryl skeleton, the dielectric loss tangent of the resin film formed from the resin composition is reduced, and the resin film is patterned when a cyclic ketone is used as a developer. Properties can be further enhanced. Then, if the structural unit (I) contains a radical crosslinkable group having an acrylate skeleton, the dielectric loss tangent of the resin film formed from the resin composition is reduced while the extensibility is improved, and the resin film can be used as a developer. Patterning properties can be further enhanced when cyclic ketones are used.
In this specification, the radical cross-linkable group “having a styryl skeleton” means that the radical cross-linkable group is “CH 2 ═CH—Ph— (Ph is a phenylene group and one of the hydrogen atoms in the formula part or all of which may be substituted with any substituent)”. In this specification, the group "having a styryl skeleton" does not correspond to "aromatic ring group" but to "radical crosslinkable group".
Further, in this specification, the radical cross-linkable group “having an acrylate skeleton” means that the radical cross-linkable group is “CH 2 ═CH—C(═O)—O— (part of the hydrogen atoms in the formula or All of which may be substituted with any substituents.)”.
〔4〕重合性不飽和結合を少なくとも二つ有する架橋剤を更に含む、上記〔1〕~〔3〕の何れかに記載の樹脂組成物。
 上述した環状オレフィン重合体及びラジカル開始剤に加え、重合性不飽和結合を少なくとも二つ有する架橋剤(以下、「架橋剤」と略記する場合がある。)を含む樹脂組成物を用いれば、樹脂組成物から形成される樹脂膜の誘電正接を低下させつつ伸張性を向上させることができる。
 なお、本明細書において、環状オレフィンに由来する構造単位を含む重合体は、重合性不飽和結合を少なくとも二つ有する場合であっても、「架橋剤」には該当せず「環状オレフィン重合体」に該当するものとする。
[4] The resin composition according to any one of [1] to [3] above, further comprising a cross-linking agent having at least two polymerizable unsaturated bonds.
In addition to the cyclic olefin polymer and the radical initiator described above, if a resin composition containing a cross-linking agent having at least two polymerizable unsaturated bonds (hereinafter sometimes abbreviated as "cross-linking agent") is used, the resin It is possible to improve extensibility while reducing the dielectric loss tangent of the resin film formed from the composition.
In the present specification, a polymer containing a structural unit derived from a cyclic olefin, even if it has at least two polymerizable unsaturated bonds, does not correspond to a "crosslinking agent" and is referred to as a "cyclic olefin polymer. ” shall be applicable.
〔5〕前記架橋剤が、下記式(III)で示される架橋剤(III)と、下記式(IV)で示される架橋剤(IV)の少なくとも一方を含む、上記〔4〕に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 式(IV)中、Aは二価の有機基であり、a、bは、0以上300以下の整数である。なお、a及びbは同一でも異なっていてもよいが、aとbの一方のみが0である場合は除く。
 架橋剤として、架橋剤(III)及び/又は架橋剤(IV)を含む樹脂組成物を用いれば、樹脂組成物から形成される樹脂膜の誘電正接を更に低下させつつ伸張性を一層向上させることができる。
[5] The resin according to [4] above, wherein the cross-linking agent contains at least one of a cross-linking agent (III) represented by the following formula (III) and a cross-linking agent (IV) represented by the following formula (IV) Composition.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
In formula (IV), A is a divalent organic group, and a and b are integers of 0 or more and 300 or less. Note that a and b may be the same or different, except when only one of a and b is 0.
If a resin composition containing the cross-linking agent (III) and/or the cross-linking agent (IV) is used as the cross-linking agent, the dielectric loss tangent of the resin film formed from the resin composition can be further reduced while the stretchability can be further improved. can be done.
 本発明の環状オレフィン重合体を含む樹脂組成物によれば、現像液として環状ケトンを用いた場合のパターニング特性に優れる樹脂膜を形成することができる。 According to the resin composition containing the cyclic olefin polymer of the present invention, it is possible to form a resin film with excellent patterning properties when a cyclic ketone is used as a developer.
 ここで、本発明の樹脂組成物は、特に限定されることなく、集積回路素子や有機EL素子、半導体パッケージ等の電子部品等に備えられ得る樹脂膜を形成する際に用いることができる。特に、本発明の樹脂組成物は、有機EL、半導体パッケージ、プリント配線基板、ソルダーレジスト等の絶縁性有機膜を製造する際等に好適に用いられ得る。さらに、本発明の樹脂組成物は、露光部位の現像液に対する溶解性が低下し、現像によって露光部位が残る、ネガ型の感光性樹脂組成物として好適に用いることができる。また、本発明の樹脂組成物を用いて形成した樹脂膜を露光する場合に用いる活性エネルギー線としては、特に限定されることなく、紫外線、g線、h線、i線等の単一波長の光線、KrFエキシマレーザー光、ArFエキシマレーザー光等の光線、及び電子線のような粒子線を挙げることができる。 Here, the resin composition of the present invention is not particularly limited, and can be used when forming resin films that can be provided in electronic components such as integrated circuit elements, organic EL elements, and semiconductor packages. In particular, the resin composition of the present invention can be suitably used when manufacturing insulating organic films such as organic EL, semiconductor packages, printed wiring boards, and solder resists. Furthermore, the resin composition of the present invention can be suitably used as a negative-type photosensitive resin composition in which the solubility of the exposed portion in the developing solution is reduced and the exposed portion remains after development. In addition, the active energy ray used when exposing the resin film formed using the resin composition of the present invention is not particularly limited, and is a single-wavelength ray such as ultraviolet rays, g-line, h-line, i-line, or the like. Light rays, light rays such as KrF excimer laser light and ArF excimer laser light, and particle beams such as electron beams can be mentioned.
(樹脂組成物)
 本発明の樹脂組成物は、環状オレフィン重合体及びラジカル開始剤を含むことを必要とし、任意に、架橋剤、溶剤、及びその他の添加成分からなる群から選択される少なくとも一つを含み得る。
(resin composition)
The resin composition of the present invention is required to contain a cyclic olefin polymer and a radical initiator, and may optionally contain at least one selected from the group consisting of a cross-linking agent, a solvent, and other additive components.
<環状オレフィン重合体>
 本発明の樹脂組成物に含まれる環状オレフィン重合体は、ラジカル開始剤の存在下、活性エネルギー線を照射することで発生するラジカルによって架橋反応が進行し得る重合体である。
 ここで、環状オレフィン重合体は、下記式(I)で示される構造単位(I)と、下記式(II)で示される構造単位(II)とを含み、環状オレフィン重合体に含まれる全構造単位の量を100モル%とした場合に、環状オレフィン重合体中の構造単位(I)の含有割合と構造単位(II)の含有割合の合計が80モル%以上であることが必要である。
<Cyclic olefin polymer>
The cyclic olefin polymer contained in the resin composition of the present invention is a polymer capable of undergoing a cross-linking reaction by radicals generated by irradiation with active energy rays in the presence of a radical initiator.
Here, the cyclic olefin polymer includes a structural unit (I) represented by the following formula (I) and a structural unit (II) represented by the following formula (II), and all structures contained in the cyclic olefin polymer When the amount of the units is 100 mol%, the total content of the structural unit (I) and the structural unit (II) in the cyclic olefin polymer must be 80 mol% or more.
Figure JPOXMLDOC01-appb-C000009
 式(I)中、R~Rは少なくとも一つがラジカル架橋性基であり、ラジカル架橋性基に該当しないR~Rは、それぞれ独立して、水素原子、アルキル基又は芳香環基であり、ラジカル架橋性基に該当しないR~Rのうち二つが一緒になって環を形成していてもよく、mは0以上4以下の整数である。
Figure JPOXMLDOC01-appb-C000009
In formula (I), at least one of R 1 to R 4 is a radical crosslinkable group, and each of R 1 to R 4 not corresponding to a radical crosslinkable group is independently a hydrogen atom, an alkyl group, or an aromatic ring group. and two of R 1 to R 4 that do not correspond to radical crosslinkable groups may combine to form a ring, and m is an integer of 0 or more and 4 or less.
Figure JPOXMLDOC01-appb-C000010
 式(II)中、R~Rの少なくとも一つが芳香環基であるか、又はR~Rのうち二つが一緒になって芳香環含有構造を形成しており、芳香環基に該当せず且つ芳香環含有構造も形成しないR~Rは、それぞれ独立して、水素原子、又はアルキル基であり、nは0以上4以下の整数である。
Figure JPOXMLDOC01-appb-C000010
In formula (II), at least one of R 5 to R 8 is an aromatic ring group, or two of R 5 to R 8 together form an aromatic ring-containing structure, and the aromatic ring group R 5 to R 8 which do not correspond and do not form an aromatic ring-containing structure are each independently a hydrogen atom or an alkyl group, and n is an integer of 0 or more and 4 or less.
 そして、上述した組成を有する環状オレフィン重合体を含む本発明の樹脂組成物を用いれば、現像液として環状ケトンを用いた場合のパターニング特性に優れる樹脂膜を形成することができる。
 なお、本発明の樹脂組成物によって形成される樹脂膜が、現像液として環状ケトンを用いた場合のパターニング特性に優れる理由は明らかではないが、以下の通りと推察される。
 まず、上述した組成の環状オレフィン重合体を含む樹脂組成物を用いて得られる樹脂膜は、相分離に起因する濁りが発生し難く、露光の際に活性エネルギー線の散乱を抑制することができる。加えて樹脂膜の未露光部位に含まれる上述した組成の環状オレフィン重合体は、現像液として用いられる環状ケトンへの溶解性が高い。このような特性を有する環状オレフィン重合体の寄与により、本発明の樹脂組成物を用いることで、現像液として環状ケトンを用いた場合のパターニング特性に優れる樹脂膜を形成し得ると考えられる。
By using the resin composition of the present invention containing the cyclic olefin polymer having the composition described above, it is possible to form a resin film having excellent patterning properties when a cyclic ketone is used as the developer.
The reason why the resin film formed from the resin composition of the present invention is excellent in patterning properties when a cyclic ketone is used as a developer is not clear, but is presumed as follows.
First, the resin film obtained using the resin composition containing the cyclic olefin polymer having the composition described above is less likely to be turbid due to phase separation, and can suppress the scattering of active energy rays during exposure. . In addition, the cyclic olefin polymer having the composition described above contained in the unexposed portion of the resin film is highly soluble in the cyclic ketone used as the developer. Due to the contribution of the cyclic olefin polymer having such properties, it is believed that the use of the resin composition of the present invention enables formation of a resin film having excellent patterning properties when a cyclic ketone is used as a developer.
<<構造単位(I)>>
 上記式(I)で示される構造単位(I)において、R~Rは少なくとも一つがラジカル架橋性基である。そして、ラジカル架橋性基に該当しないR~Rは、それぞれ独立して、水素原子、アルキル基又は芳香環基であり、ラジカル架橋性基に該当しないR~Rのうち二つが一緒になって環を形成していてもよい。また、mは0以上4以下の整数である。
 なお、環状オレフィン重合体は、構造単位(I)を一種のみ含有していてもよく、複数種含有していてもよい。
<<Structural unit (I)>>
In structural unit (I) represented by formula (I), at least one of R 1 to R 4 is a radical crosslinkable group. R 1 to R 4 which do not correspond to radical crosslinkable groups are each independently a hydrogen atom, an alkyl group or an aromatic ring group, and two of R 1 to R 4 which do not correspond to radical crosslinkable groups are may form a ring. Moreover, m is an integer of 0 or more and 4 or less.
The cyclic olefin polymer may contain only one type of structural unit (I), or may contain a plurality of types.
[ラジカル架橋性基]
 ここで、R~Rを構成し得るラジカル架橋性基としては、炭素-炭素不飽和結合(特にはエチレン性不飽和結合)を有し、そしてラジカル開始剤により発生したラジカルに起因してラジカル反応しうる分子骨格を有する基であれば特に限定されない。ラジカル架橋性基としては、スチリル骨格を有するラジカル架橋性基、アクリレート骨格を有するラジカル架橋性基が好ましく挙げられる。
[Radical crosslinkable group]
Here, the radical crosslinkable group that can constitute R 1 to R 4 has a carbon-carbon unsaturated bond (especially an ethylenically unsaturated bond) and is caused by a radical generated by a radical initiator. There is no particular limitation as long as it is a group having a molecular skeleton capable of undergoing a radical reaction. The radical crosslinkable group preferably includes a radical crosslinkable group having a styryl skeleton and a radical crosslinkable group having an acrylate skeleton.
―スチリル骨格を有するラジカル架橋性基―
 環状オレフィン重合体の構造単位(I)がスチリル骨格を有するラジカル架橋性基を備えていれば、構造単位(I)における極性原子の占める割合が低減されるためと推察されるが、樹脂膜の誘電正接を低下させることができる。また樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を更に高めることができる。
 ここで、スチリル骨格を有するラジカル架橋性基としては、例えば、下記式(V)で示される基が挙げられる。
-Radical crosslinkable group having a styryl skeleton-
It is presumed that if the structural unit (I) of the cyclic olefin polymer has a radical crosslinkable group having a styryl skeleton, the ratio of polar atoms in the structural unit (I) is reduced. Dielectric loss tangent can be lowered. Moreover, for the resin film, patterning characteristics can be further enhanced when a cyclic ketone is used as the developer.
Here, examples of radical crosslinkable groups having a styryl skeleton include groups represented by the following formula (V).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(V)において、X及びZはそれぞれ独立して単結合又は炭素数1以上10以下のアルキレン基であり、Yは、酸素原子又は硫黄原子であり、Rは、水素原子又は置換基であり、pは0以上4以下の整数である。 In formula (V), X and Z are each independently a single bond or an alkylene group having 1 to 10 carbon atoms, Y is an oxygen atom or a sulfur atom, and R 9 is a hydrogen atom or a substituent and p is an integer of 0 or more and 4 or less.
 式(V)においてX及びZでありうる炭素数1以上10以下のアルキレン基としては、特に限定されないが、メチレン基、エチレン基、プロピレン基、n-ブチレン基、イソブチレン基などの炭素数1以上6以下の鎖状アルキレン基が好ましく、メチレン基、エチレン基、プロピレン基、n-ブチレン基などの炭素数1以上6以下の直鎖状アルキレン基がより好ましく、メチレン基、エチレン基、プロピレン基などの炭素数1以上3以下の直鎖状アルキレン基が更に好ましく、メチレン基が特に好ましい。 The alkylene group having 1 to 10 carbon atoms that can be X and Z in the formula (V) is not particularly limited, but a methylene group, an ethylene group, a propylene group, an n-butylene group, an isobutylene group, or the like having 1 or more carbon atoms. A chain alkylene group of 6 or less is preferable, and a linear alkylene group having 1 to 6 carbon atoms such as a methylene group, an ethylene group, a propylene group, and an n-butylene group is more preferable, and a methylene group, an ethylene group, a propylene group, etc. is more preferably a linear alkylene group having 1 or more and 3 or less carbon atoms, and a methylene group is particularly preferable.
 式(V)においてRでありうる置換基としては、特に限定されることなく、例えば、メチル基及びエチル基などのアルキル基、並びに、フルオロ基及びクロロ基などのハロゲノ基などが挙げられる。 Substituents that can be R 9 in formula (V) include, but are not particularly limited to, alkyl groups such as methyl and ethyl groups, and halogeno groups such as fluoro and chloro groups.
 なお、式(V)において、pは0であることが好ましく、すなわち、スチリル骨格を構成するフェニレン基(-C-)が置換基を有さないことが好ましい。 In formula (V), p is preferably 0, that is, the phenylene group (--C 6 H 4 --) constituting the styryl skeleton preferably has no substituent.
―アクリレート骨格を有するラジカル架橋性基―
 環状オレフィン重合体の構造単位(I)がアクリレート骨格を有するラジカル架橋性基を備えていれば、樹脂組成物から形成される樹脂膜の誘電正接を低下させつつ伸長性を向上させることができる。また樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を更に高めることができる。
 ここで、アクリレート骨格を有するラジカル架橋性基としては、例えば、下記式(VI)で示される基が挙げられる。
-Radical Crosslinkable Group Having an Acrylate Skeleton-
If the structural unit (I) of the cyclic olefin polymer has a radical crosslinkable group having an acrylate skeleton, the dielectric loss tangent of the resin film formed from the resin composition can be reduced while the extensibility can be improved. Moreover, for the resin film, patterning characteristics can be further enhanced when a cyclic ketone is used as the developer.
Here, examples of radical crosslinkable groups having an acrylate skeleton include groups represented by the following formula (VI).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(VI)において、Gは炭素数1以上10以下のアルキレン基であり、R10は、水素原子又はアルキル基である。 In formula (VI), G is an alkylene group having 1 to 10 carbon atoms, and R 10 is a hydrogen atom or an alkyl group.
 式(VI)で示されるラジカル架橋性基では、置換又は非置換のアクリロイル基がGで示されるアルキレン基を介して環状オレフィン構造に結合しているため、当該アクリロイル基の運動性が高められている。この運動性向上に起因して、当該アクリロイル基の架橋反応性が向上する。このためと推察されるが、式(VI)で示されるラジカル架橋性基を有する環状オレフィン重合体を用いれば、樹脂組成物から形成される樹脂膜の誘電正接を低下させつつ伸張性を向上させ、また当該樹脂膜について現像液として環状ケトンを用いた場合のパターニング特性を更に高めることができる。 In the radical crosslinkable group represented by formula (VI), the substituted or unsubstituted acryloyl group is bonded to the cyclic olefin structure via the alkylene group represented by G, so that the mobility of the acryloyl group is enhanced. there is Due to this improvement in mobility, the cross-linking reactivity of the acryloyl group is improved. Presumably for this reason, if a cyclic olefin polymer having a radically crosslinkable group represented by formula (VI) is used, the dielectric loss tangent of the resin film formed from the resin composition is reduced while the extensibility is improved. Moreover, the patterning characteristics of the resin film can be further enhanced when a cyclic ketone is used as the developer.
 式(VI)においてGでありうる炭素数1以上10以下のアルキレン基としては、特に限定されないが、メチレン基、エチレン基、プロピレン基、n-ブチレン基、イソブチレン基などの炭素数1以上6以下の鎖状アルキレン基が好ましく、メチレン基、エチレン基、プロピレン基、n-ブチレン基などの炭素数1以上6以下の直鎖状アルキレン基がより好ましく、メチレン基、エチレン基、プロピレン基などの炭素数1以上3以下の直鎖状アルキレン基が更に好ましく、メチレン基が特に好ましい。 The alkylene group having 1 to 10 carbon atoms that can be G in the formula (VI) is not particularly limited, but is a group having 1 to 6 carbon atoms such as a methylene group, ethylene group, propylene group, n-butylene group and isobutylene group. A chain alkylene group of is preferable, a methylene group, an ethylene group, a propylene group, a linear alkylene group having 1 to 6 carbon atoms such as an n-butylene group is more preferable, a methylene group, an ethylene group, a carbon such as a propylene group A linear alkylene group having a number of 1 or more and 3 or less is more preferable, and a methylene group is particularly preferable.
 式(VI)においてR10でありうるアルキル基としては、特に限定されず、例えば、炭素数1以上5以下のアルキル基が挙げられる。中でも、R10を構成し得るアルキル基としては、メチル基又はエチル基が好ましい。 The alkyl group that can be R 10 in formula (VI) is not particularly limited, and examples thereof include alkyl groups having 1 to 5 carbon atoms. Among them, the alkyl group that can constitute R 10 is preferably a methyl group or an ethyl group.
[ラジカル架橋性基以外の構造]
 式(I)において、ラジカル架橋性基以外のR~Rを構成し得るアルキル基としては、特に限定されないが、例えば、炭素数1以上5以下のアルキル基が挙げられる。
 式(I)において、ラジカル架橋性基以外のR~Rを構成し得る芳香環基としては、ラジカル架橋性基に該当しない限りにおいて特に限定されることなく、例えば、フェニル基、ナフチル基、フルオレニル基、アントラセニル基、トリフェニレニル基、ピレニル基などの炭素数4以上30以下の芳香環基が挙げられる。
 また、ラジカル架橋性基以外のR~Rのうちの二つが一緒になって環を形成する構造としては、特に限定されず、単環構造又は多環構造である炭素環が挙げられる。
[Structure other than radical crosslinkable group]
In formula (I), the alkyl group that can constitute R 1 to R 4 other than the radical crosslinkable group is not particularly limited, and examples thereof include alkyl groups having 1 to 5 carbon atoms.
In formula (I), the aromatic ring group other than the radical crosslinkable group, which may constitute R 1 to R 4 , is not particularly limited as long as it does not correspond to a radical crosslinkable group, and examples thereof include a phenyl group and a naphthyl group. , fluorenyl group, anthracenyl group, triphenylenyl group, pyrenyl group, and other aromatic ring groups having 4 to 30 carbon atoms.
Also, the structure in which two of R 1 to R 4 other than the radical crosslinkable group form a ring together is not particularly limited, and examples thereof include a carbocyclic ring having a monocyclic structure or a polycyclic structure.
 さらに、式(I)において、上述した通りmは0以上4以下の整数であり、0、1又は2であることが好ましく、0又は1であることがより好ましい。 Furthermore, in formula (I), m is an integer of 0 to 4, preferably 0, 1 or 2, more preferably 0 or 1, as described above.
[構造単位(I)の好適な構造]
 そして構造単位(I)は、式(I)において、R~Rのうちの一つがラジカル架橋性基であり、その他が水素原子であることが好ましい。構造単位(I)がそのような構造を有すれば、合成が比較的容易であり樹脂組成物の生産効率が高まるからである。
[Preferred Structure of Structural Unit (I)]
In structural unit (I), one of R 1 to R 4 in formula (I) is preferably a radical crosslinkable group and the others are preferably hydrogen atoms. This is because if the structural unit (I) has such a structure, the synthesis is relatively easy and the production efficiency of the resin composition is increased.
[構造単位(I)の含有割合]
 ここで、環状オレフィン重合体中の構造単位(I)の含有割合は、環状オレフィン重合体に含まれる全構造単位の量を100モル%とした場合に、1モル%以上であることが好ましく、5モル%以上であることがより好ましく、10モル%以上であることが更に好ましく、15モル%以上であることが特に好ましく、60モル%以下であることが好ましく、50モル%以下であることがより好ましく、40モル%以下であることが更に好ましく、30モル%以下であることが一層好ましく、20モル%以下であることが特に好ましい。環状オレフィン重合体中の構造単位(I)の含有割合が1モル%以上であれば、樹脂組成物から形成される樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を更に高めることができる。一方、環状オレフィン重合体中の構造単位(I)の含有割合が60モル%以下であれば、樹脂組成物から形成される樹脂膜の誘電正接を低下させつつ伸張性を向上させることができる。
[Content ratio of structural unit (I)]
Here, the content of the structural unit (I) in the cyclic olefin polymer is preferably 1 mol% or more when the amount of all structural units contained in the cyclic olefin polymer is 100 mol%. It is more preferably 5 mol% or more, still more preferably 10 mol% or more, particularly preferably 15 mol% or more, preferably 60 mol% or less, and 50 mol% or less. is more preferably 40 mol % or less, still more preferably 30 mol % or less, and particularly preferably 20 mol % or less. If the content of the structural unit (I) in the cyclic olefin polymer is 1 mol % or more, the patterning properties of the resin film formed from the resin composition can be further enhanced when the cyclic ketone is used as the developer. can be done. On the other hand, if the content of the structural unit (I) in the cyclic olefin polymer is 60 mol % or less, the dielectric loss tangent of the resin film formed from the resin composition can be lowered while the extensibility can be improved.
<<構造単位(II)>>
 上記式(II)で示される構造単位(II)において、R~Rの少なくとも一つが芳香環基であるか、又はR~Rのうち二つが一緒になって芳香環含有構造を形成しており、芳香環基に該当せず且つ芳香環含有構造も形成しないR~Rは、それぞれ独立して、水素原子、又はアルキル基であり、nは0以上4以下の整数である。
 なお、環状オレフィン重合体は、構造単位(II)を一種のみ含有していてもよく、複数種含有していてもよい。
<<Structural unit (II)>>
In the structural unit (II) represented by the above formula (II), at least one of R 5 to R 8 is an aromatic ring group, or two of R 5 to R 8 together form an aromatic ring-containing structure. R 5 to R 8 which do not correspond to an aromatic ring group and do not form an aromatic ring-containing structure are each independently a hydrogen atom or an alkyl group, and n is an integer of 0 or more and 4 or less. be.
The cyclic olefin polymer may contain only one type of structural unit (II), or may contain a plurality of types.
 ここで、式(II)のR~Rを構成し得る芳香環基としては、特に限定されないが、炭素数4以上30以下の芳香環基が挙げられる。炭素数4以上30以下の芳香環基としては、例えば、フェニル基、ナフチル基、フルオレニル基、アントラセニル基、トリフェニレニル基、ピレニル基が挙げられる。
 また、式(II)のR~Rのうち二つが一緒になって形成される芳香環含有構造中の芳香環としては、例えば、ベンゼン環、ナフタレン環などの芳香族炭素水素環が挙げられる。芳香環含有構造は、一つの芳香環のみを含んでいてもよく、複数の芳香環を含んでいてもよい。また芳香環含有構造が複数の芳香環を有する場合、当該複数の芳香環は同じ種類の芳香環であってよく、異なる種類の芳香環であってもよい。そして、R~Rのうち二つが一緒になって形成される芳香環含有構造は、特に限定されないが、炭素数の合計が7以上60以下であることが好ましい。また芳香環含有構造は、炭素原子のみで構成されることが好ましい。
Here, the aromatic ring group that can constitute R 5 to R 8 of formula (II) is not particularly limited, but includes an aromatic ring group having 4 or more and 30 or less carbon atoms. Examples of the aromatic ring group having 4 to 30 carbon atoms include phenyl group, naphthyl group, fluorenyl group, anthracenyl group, triphenylenyl group and pyrenyl group.
Further, examples of the aromatic ring in the aromatic ring-containing structure formed by combining two of R 5 to R 8 of formula (II) include aromatic hydrocarbon rings such as benzene ring and naphthalene ring. be done. The aromatic ring-containing structure may contain only one aromatic ring, or may contain a plurality of aromatic rings. Moreover, when the aromatic ring-containing structure has a plurality of aromatic rings, the plurality of aromatic rings may be the same type of aromatic rings or different types of aromatic rings. The aromatic ring-containing structure formed by combining two of R 5 to R 8 is not particularly limited, but the total number of carbon atoms is preferably 7 or more and 60 or less. Also, the aromatic ring-containing structure is preferably composed only of carbon atoms.
 式(II)において、芳香環基でなく且つ芳香環含有構造も形成しないR~Rを構成し得るアルキル基としては、特に限定されることなく、例えば、上述したR~Rを構成し得るアルキル基と同様のものが挙げられる。 In formula (II), the alkyl group that can constitute R 5 to R 8 which is not an aromatic ring group and does not form an aromatic ring-containing structure is not particularly limited . The same alkyl groups that can be composed are included.
 さらに、式(II)において、上述した通りnは0以上4以下の整数であり、0、1又は2であることが好ましく、0又は1であることがより好ましい。 Furthermore, in formula (II), n is an integer of 0 to 4, preferably 0, 1 or 2, more preferably 0 or 1, as described above.
[構造単位(II)の好適な構造]
 そして構造単位(II)は、樹脂組成物から形成される樹脂膜の誘電正接を低下させつつ伸張性を向上させ、また当該樹脂膜について現像液として環状ケトンを用いた場合のパターニング特性を更に高める観点から、R~Rのうち一つが芳香環基であり且つその他が水素原子である態様、並びに、R及びRの一方と、R及びRの一方とが一緒になって芳香環含有構造(例えば、ベンゼン環を含有する構造)を形成し且つその他が水素原子である態様が好ましく、後者の態様がより好ましい。
[Suitable Structure of Structural Unit (II)]
Structural unit (II) reduces the dielectric loss tangent of the resin film formed from the resin composition while improving the extensibility, and further improves the patterning properties of the resin film when a cyclic ketone is used as a developer. From the point of view, one of R 5 to R 8 is an aromatic ring group and the others are hydrogen atoms, and one of R 5 and R 6 and one of R 7 and R 8 together An embodiment in which an aromatic ring-containing structure (for example, a structure containing a benzene ring) is formed and the others are hydrogen atoms is preferred, and the latter embodiment is more preferred.
[構造単位(II)の含有割合]
 ここで、環状オレフィン重合体中の構造単位(II)の含有割合は、環状オレフィン重合体に含まれる全構造単位の量を100モル%とした場合に、10モル%以上であることが30モル%以上であることがより好ましく、50モル%以上であることが更に好ましく、70モル%以上であることが一層好ましく、80モル%以上であることが特に好ましく、99モル%以下であることが好ましく、95モル%以下であることがより好ましく、90モル%以下であることが更に好ましい。環状オレフィン重合体中の構造単位(II)の含有割合が10モル%以上であれば、樹脂組成物から形成される樹脂膜の誘電正接を低下させつつ機械的強度(引張強度)を向上させることができる。一方、環状オレフィン重合体中の構造単位(II)の含有割合が99モル%以下であれば、樹脂組成物から形成される樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を更に高めることができる。
[Content ratio of structural unit (II)]
Here, the content ratio of the structural unit (II) in the cyclic olefin polymer is 10 mol% or more when the amount of all structural units contained in the cyclic olefin polymer is 100 mol%. % or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, particularly preferably 80 mol% or more, and 99 mol% or less. It is preferably 95 mol % or less, more preferably 90 mol % or less. If the content ratio of the structural unit (II) in the cyclic olefin polymer is 10 mol% or more, the dielectric loss tangent of the resin film formed from the resin composition is reduced and the mechanical strength (tensile strength) is improved. can be done. On the other hand, if the content of the structural unit (II) in the cyclic olefin polymer is 99 mol% or less, the resin film formed from the resin composition can further improve the patterning properties when the cyclic ketone is used as the developer. can be enhanced.
<<構造単位(I)と構造単位(II)の含有割合合計>>
 そして、環状オレフィン重合体中において、構造単位(I)の含有割合と、構造単位(II)の含有割合の合計が、状オレフィン重合体に含まれる全構造単位の量を100モル%とした場合に、上述した通り80モル%以上であることが必要であり、90モル%以上であることが好ましく、95モル%以上であることがより好ましく、97モル%以上であることが更に好ましく、99モル%以上であることが一層好ましく、100モル%であることが特に好ましい。構造単位(I)と構造単位(II)の含有割合合計が80モル%以上であることで、樹脂組成物から形成される樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を確保することができる。また、構造単位(I)と構造単位(II)の含有割合合計が80モル%以上であれば、樹脂組成物から形成される樹脂膜の機械的強度(引張強度)を向上させることができる。
<<Total Content Ratio of Structural Unit (I) and Structural Unit (II)>>
Then, in the cyclic olefin polymer, when the sum of the content ratio of the structural unit (I) and the content ratio of the structural unit (II) is 100 mol% of the total structural units contained in the cyclic olefin polymer In addition, as described above, it is necessary to be 80 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more, further preferably 97 mol% or more, and 99 It is more preferably mol % or more, and particularly preferably 100 mol %. When the total content of the structural unit (I) and the structural unit (II) is 80 mol% or more, the patterning properties of the resin film formed from the resin composition are ensured when a cyclic ketone is used as a developer. can do. Further, when the total content of the structural unit (I) and the structural unit (II) is 80 mol% or more, the mechanical strength (tensile strength) of the resin film formed from the resin composition can be improved.
<<その他の構造単位>>
 なお、環状オレフィン重合体は、任意に、上述した構造単位(I)及び構造単位(II)以外の構造単位(その他の構造単位)を含むことができる。その他の構造単位としては、例えば、構造単位(I)を形成しうる単量体及び構造単位(II)を形成しうる単量体と共重合可能な既知の単量体に由来する構造単位を用いることができる。
 ここで、環状オレフィン重合体中のその他の構造単位の含有割合は、環状オレフィン重合体に含まれる全構造単位の量を100モル%とした場合に、20モル%以下であることが必要である。そして、樹脂組成物から形成される樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を更に高める観点から、環状オレフィン重合体中のその他の構造単位の含有割合は、10モル%以下であることが好ましく、5モル%以下であることがより好ましく、3モル%以下であることが更に好ましく、1モル%以下であることが一層好ましく、0モル%である(すなわち、環状オレフィン重合体がその他の構造単位を含まない)ことが特に好ましい。
<<Other structural units>>
The cyclic olefin polymer can optionally contain structural units (other structural units) other than the structural units (I) and (II) described above. Other structural units include, for example, structural units derived from known monomers copolymerizable with monomers capable of forming structural unit (I) and monomers capable of forming structural unit (II). can be used.
Here, the content of other structural units in the cyclic olefin polymer must be 20 mol% or less when the amount of all structural units contained in the cyclic olefin polymer is 100 mol%. . For the resin film formed from the resin composition, the content of other structural units in the cyclic olefin polymer is 10 mol% or less from the viewpoint of further improving the patterning properties when a cyclic ketone is used as a developer. is preferably 5 mol% or less, more preferably 3 mol% or less, even more preferably 1 mol% or less, and 0 mol% (i.e., cyclic olefin weight It is particularly preferred that the coalescence does not contain other structural units).
<<環状オレフィン重合体の性状>>
―重量平均分子量―
 環状オレフィン重合体の重量平均分子量(Mw)は、3,000以上であることが好ましく、5,000以上であることがより好ましく、10,000以上であることが更に好ましく、500,000以下であることが好ましく、300,000以下であることがより好ましく、100,000以下であることが更に好ましい。環状オレフィン重合体の重量平均分子量が3,000以上であれば、樹脂組成物から形成される樹脂膜の機械的強度(引張強度)を高めることができる。また、環状オレフィン重合体の重量平均分子量が500,000以下であれば、樹脂組成物から形成される樹脂膜の、現像液としての環状ケトンに対する溶解性を高めることができる。そのため樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を更に高めることができる。
<<Properties of Cyclic Olefin Polymer>>
―Weight average molecular weight―
The weight average molecular weight (Mw) of the cyclic olefin polymer is preferably 3,000 or more, more preferably 5,000 or more, still more preferably 10,000 or more, and 500,000 or less. preferably 300,000 or less, and even more preferably 100,000 or less. If the weight average molecular weight of the cyclic olefin polymer is 3,000 or more, the mechanical strength (tensile strength) of the resin film formed from the resin composition can be increased. Moreover, when the weight average molecular weight of the cyclic olefin polymer is 500,000 or less, the solubility of the resin film formed from the resin composition in the cyclic ketone as a developer can be enhanced. As a result, the patterning characteristics of the resin film can be further improved when the cyclic ketone is used as the developer.
―分子量分布―
 環状オレフィン重合体の分子量分布(Mw/Mn)は4.0以下が好ましく、3.0以下がより好ましい。環状オレフィン重合体の分子量分布が4.0以下であれば、得られる樹脂膜をパターニングした場合の解像性を向上させることができる。
 なお、本明細書において、「分子量分布(Mw/Mn)」とは、数平均分子量(Mn)に対する重量平均分子量(Mw)の比を指す。そして、環状オレフィン重合体の重量平均分子量及び数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として求められる。
―Molecular weight distribution―
The molecular weight distribution (Mw/Mn) of the cyclic olefin polymer is preferably 4.0 or less, more preferably 3.0 or less. When the molecular weight distribution of the cyclic olefin polymer is 4.0 or less, it is possible to improve the resolution when the resulting resin film is patterned.
In this specification, "molecular weight distribution (Mw/Mn)" refers to the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn). The weight-average molecular weight and number-average molecular weight of the cyclic olefin polymer are obtained as polystyrene equivalent values by gel permeation chromatography (GPC).
<<環状オレフィン重合体の合成方法>>
 上述した環状オレフィン重合体の合成方法は、特に限定されず、例えば、ノルボルネン系単量体の開環重合反応により開環重合体を合成し、得られる開環重合体に水素添加反応を行なうことで開環重合体水素添加物を得る工程(以下、「開環重合及び水添工程」と称する。)と、得られた開環重合体水素添加物に対して変性反応を行なうことで、開環重合体水素添加物にラジカル架橋性基を導入する工程(以下、「変性工程」と称する。)とを含む方法により、効率的に合成することができる。以下、各工程について詳細に説明する。
<<Method for Synthesizing Cyclic Olefin Polymer>>
The method for synthesizing the cyclic olefin polymer described above is not particularly limited. For example, a ring-opening polymer is synthesized by a ring-opening polymerization reaction of a norbornene-based monomer, and the resulting ring-opening polymer is subjected to a hydrogenation reaction. (hereinafter referred to as “ring-opening polymerization and hydrogenation step”) and performing a modification reaction on the resulting hydrogenated ring-opening polymer, Efficient synthesis can be achieved by a method including a step of introducing a radical crosslinkable group into the hydrogenated ring polymer (hereinafter referred to as a “modification step”). Each step will be described in detail below.
[開環重合及び水添工程]
 開環重合及び水添工程では、はじめに、上述した構造単位(I)を形成し得るノルボルネン系単量体(I)と、上述した構造単位(II)を形成し得るノルボルネン系単量体(II)との開環重合反応により開環重合体を合成する。なお、必要に応じて、ノルボルネン系単量体(I)とノルボルネン系単量体(II)以外の単量体を加えて開環重合反応を行ってもよい。
[Ring-opening polymerization and hydrogenation step]
In the ring-opening polymerization and hydrogenation step, first, a norbornene-based monomer (I) capable of forming the structural unit (I) described above and a norbornene-based monomer (II) capable of forming the structural unit (II) described above ) to synthesize a ring-opening polymer by a ring-opening polymerization reaction. If necessary, a ring-opening polymerization reaction may be performed by adding a monomer other than the norbornene-based monomer (I) and the norbornene-based monomer (II).
-ノルボルネン系単量体(I)-
 ここで、ノルボルネン系単量体(I)としては、例えば、2-ノルボルネン-5-メタノール、2-メチル-2-ヒドロキシメチルビシクロ[2.2.1]ヘプト-5-エン、2,3-ジヒドロキシメチルビシクロ[2.2.1]ヘプト-5-エン、3-ヒドロキシトリシクロ[5.2.1.02,6]デカ-4,8-ジエン、3-ヒドロキシメチルトリシクロ[5.2.1.02,6]デカ-4,8-ジエン、4-ヒドロキシテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-ヒドロキシメチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン(慣用名:「テトラシクロドデセンメタノール」)、4,5-ジヒドロキシメチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エンなどが挙げられる。ノルボルネン系単量体(I)は、一種を単独で、又は、複数種を組み合わせて用いることができる。
-Norbornene monomer (I)-
Here, the norbornene monomer (I) includes, for example, 2-norbornene-5-methanol, 2-methyl-2-hydroxymethylbicyclo[2.2.1]hept-5-ene, 2,3- dihydroxymethylbicyclo[2.2.1]hept-5-ene, 3-hydroxytricyclo[5.2.1.0 2,6 ]deca-4,8-diene, 3-hydroxymethyltricyclo[5. 2.1.0 2,6 ]deca-4,8-diene, 4-hydroxytetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-9-ene, 4-hydroxymethyltetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-9-ene (common name: “tetracyclododecenemethanol”), 4,5-dihydroxymethyltetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-9-ene and the like. Norbornene-based monomers (I) can be used singly or in combination of multiple types.
-ノルボルネン系単量体(II)-
 ノルボルネン系単量体(II)としては、例えば、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、8-エチリデン-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:エチリデンテトラシクロドデセン)、トリシクロ[5.2.1.02,6]デカ-3,8-ジエン(慣用名:ジシクロペンタジエン)、1,4-メタノ-1,4,4a-9a-テトラヒドロフルオレン(慣用名:メタノテトラヒドロフルオレン)、5-エチリデンビシクロ[2.2.1]ヘプト-2-エン(慣用名:エチリデンノボルネン)、ビシクロ[2.2.1]ヘプト-2-エン(「ノルボルネン」ともいう。)、5-エチル-ビシクロ[2.2.1]ヘプト-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプト-2-エン、5-メチリデン-ビシクロ[2.2.1]ヘプト-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプト-2-エン、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン、9-メチル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチリデン-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチリデン-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-ビニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-プロペニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、ペンタシクロ[9.2.1.13,9.02,10.04,8]ペンタデカ-5,12-ジエン、9-フェニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン、ペンタシクロ[9.2.1.13,9.02,10.04,8]ペンタデカ-12-エン、5-フェニルビシクロ[2.2.1]ヘプト-2-エン(慣用名:フェニルノルボルネン)及びこれらの誘導体などが挙げられる。なお、誘導体とは、環構造中に置換基を有するものを指す。そして、環構造中に有し得る置換基としては、例えば、アルキル基、アルキレン基、ビニル基、アルコキシカルボニル基、アルキリデン基が挙げられる。そして、誘導体の環構造は、これら置換基を一種有していてもよく、複数種有していてもよい。
 そして、ノルボルネン系単量体(II)は、一種を単独で、又は、複数種を組み合わせて用いることができる。
-Norbornene monomer (II)-
Examples of the norbornene monomer (II) include tetracyclo[4.4.0.1 2,5 . 1 7,10 ]dodeca-3-ene (common name: tetracyclododecene), 8-ethylidene-tetracyclo[4.4.0.1 2,5 . 1 7,10 ]dodeca-3-ene (common name: ethylidenetetracyclododecene), tricyclo[5.2.1.0 2,6 ]deca-3,8-diene (common name: dicyclopentadiene), 1,4-methano-1,4,4a-9a-tetrahydrofluorene (common name: methanotetrahydrofluorene), 5-ethylidenebicyclo[2.2.1]hept-2-ene (common name: ethylidenenobornene), bicyclo[2.2.1]hept-2-ene (also referred to as "norbornene"), 5-ethyl-bicyclo[2.2.1]hept-2-ene, 5-butyl-bicyclo[2.2. 1]hept-2-ene, 5-methylidene-bicyclo[2.2.1]hept-2-ene, 5-vinyl-bicyclo[2.2.1]hept-2-ene, tetracyclo[10.2. 1.0 2, 11 . 0 4,9 ]pentadeca-4,6,8,13-tetraene, 9-methyl-tetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-4-ene, 9-ethyl-tetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-4-ene, 9-methylidene-tetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-4-ene, 9-ethylidene-tetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-4-ene, 9-vinyl-tetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-4-ene, 9-propenyl-tetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-4-ene, pentacyclo[9.2.1.1 3,9 . 0 2, 10 . 0 4,8 ]pentadeca-5,12-diene, 9-phenyl-tetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-4-ene, tetracyclo[9.2.1.0 2,10 . 0 3,8 ]tetradeca-3,5,7,12-tetraene, pentacyclo[9.2.1.1 3,9 . 0 2, 10 . 0 4,8 ]pentadeca-12-ene, 5-phenylbicyclo[2.2.1]hept-2-ene (common name: phenylnorbornene) and derivatives thereof. In addition, a derivative refers to what has a substituent in a ring structure. Substituents that may be present in the ring structure include, for example, alkyl groups, alkylene groups, vinyl groups, alkoxycarbonyl groups, and alkylidene groups. The ring structure of the derivative may have one or more of these substituents.
Norbornene-based monomers (II) can be used singly or in combination of multiple types.
 開環重合反応は、反応溶媒中、公知の方法に従って行うことができる。
 その際、反応溶媒としては、特に限定されず、例えばテトラヒドロフラン、トルエン等の有機溶媒を用いることができる。
 また、分子量調整剤として、エチレン;プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数3以上20以下のα-オレフィン;1,4-ヘキサジエン、1,5-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等の非共役ジエン、及びこれらの誘導体;等を用いてもよい。
 また、開環重合触媒としては、モリブデン、タングステン、ルテニウム等の金属を含む金属触媒を用いることができ、中でも、ルテニウムを含む金属触媒を用いることが好ましい。
 さらに、開環重合時間は、通常は、1時間以上10時間以下であり、2時間以上5時間以下であることが好ましい。そして、開環重合温度は、通常は、20℃以上100℃以下であり、90℃以下であることが好ましい。
The ring-opening polymerization reaction can be carried out in a reaction solvent according to a known method.
At that time, the reaction solvent is not particularly limited, and organic solvents such as tetrahydrofuran and toluene can be used, for example.
Further, as a molecular weight modifier, ethylene; propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl -1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1 - α-olefins having 3 to 20 carbon atoms such as octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosene; 1,4-hexadiene, 1,5-hexadiene , 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 1,7-octadiene, and derivatives thereof;
As the ring-opening polymerization catalyst, a metal catalyst containing metals such as molybdenum, tungsten, and ruthenium can be used. Among them, it is preferable to use a metal catalyst containing ruthenium.
Furthermore, the ring-opening polymerization time is usually 1 hour or more and 10 hours or less, preferably 2 hours or more and 5 hours or less. The ring-opening polymerization temperature is usually 20° C. or higher and 100° C. or lower, preferably 90° C. or lower.
 次いで、得られた開環重合体に対して水素添加反応を行い、開環重合体水素添加物を合成する。
 その際、水素添加反応は、公知の方法に従って行うことができる。また、水素化反応における水素化反応時間、水素化反応温度及び水素化圧力は、特に限定されないが、水素化反応時間は、通常、1時間以上10時間であり、5時間以下であることが好ましい。また、水素化反応温度は、通常、100℃以上200℃以下であり、180℃以下であることが好ましい。そして、水素化圧力は、通常、1MPa以上10MPa以下であり、5MPa以下であることが好ましい。
Next, the resulting ring-opening polymer is subjected to a hydrogenation reaction to synthesize a hydrogenated ring-opening polymer.
At that time, the hydrogenation reaction can be carried out according to a known method. The hydrogenation reaction time, hydrogenation reaction temperature and hydrogenation pressure in the hydrogenation reaction are not particularly limited, but the hydrogenation reaction time is usually 1 hour or more and 10 hours, preferably 5 hours or less. . Moreover, the hydrogenation reaction temperature is usually 100° C. or higher and 200° C. or lower, preferably 180° C. or lower. The hydrogenation pressure is generally 1 MPa or more and 10 MPa or less, preferably 5 MPa or less.
[変性工程]
 変性工程では、開環重合及び水添工程で得られた開環重合体水素添加物に対して、変性剤による変性反応を行うことでラジカル架橋性基を導入し、上述した構造単位(I)を含む環状オレフィン重合体を得る。
[denaturation step]
In the modification step, the ring-opening polymer hydrogenated product obtained in the ring-opening polymerization and hydrogenation step is subjected to a modification reaction with a modifying agent to introduce a radical crosslinkable group, thereby forming the structural unit (I) described above. to obtain a cyclic olefin polymer containing
―変性剤―
 変性反応に用いる変性剤は、構造単位(I)が含む所望のラジカル架橋性基の構造に応じて適宜選択することができる。なお変性剤は、一種を単独で、又は、複数種を組み合わせて用いることができる。
- Denaturant -
The modifier used in the modification reaction can be appropriately selected according to the structure of the desired radical crosslinkable group contained in the structural unit (I). In addition, a modifier|denaturant can be used individually by 1 type or in combination of multiple types.
 スチリル骨格を有するラジカル架橋性基を導入する場合、変性剤としては、開環重合体水素添加物が有する官能基(ヒドロキシ基など)と変性反応しうる官能基(ハロゲン基、トシル基、メシル基など)と、スチリル骨格とを有する化合物(スチリル系変性剤)を用いることができる。スチリル系変性剤としては、例えば、2-(フルオロメチル)スチレン、3-(フルオロメチル)スチレン、4-(フルオロメチル)スチレン、2-(クロロメチル)スチレン、3-(クロロメチル)スチレン、4-(クロロメチル)スチレン、2-(ブロモメチル)スチレン、3-(ブロモメチル)スチレン、4-(ブロモメチル)スチレン、2-(ヨードメチル)スチレン、3-(ヨードメチル)スチレン、4-(ヨードメチル)スチレン等のハロゲン化メチルスチレン、2-(トシルメチル)スチレン、3-(トシルメチル)スチレン、4-(トシルメチル)スチレン、2-(メシルメチル)スチレン、3-(メシルメチル)スチレン、4-(メシルメチル)スチレン等が挙げられる。これらは一種を単独で、又は、複数種を組み合わせて用いることができる。そしてこれらの中でも、変性反応を効率的に行う観点からは、4-(クロロメチル)スチレン、4-(ブロモメチル)スチレンを用いることが好ましい。 When introducing a radically crosslinkable group having a styryl skeleton, the modifier may be a functional group (such as a hydroxy group) possessed by the hydrogenated ring-opening polymer and a functional group (halogen group, tosyl group, mesyl group, etc.) capable of undergoing a modification reaction. etc.) and a styryl skeleton (styryl modifier) can be used. Examples of styryl modifiers include 2-(fluoromethyl)styrene, 3-(fluoromethyl)styrene, 4-(fluoromethyl)styrene, 2-(chloromethyl)styrene, 3-(chloromethyl)styrene, 4 -(chloromethyl)styrene, 2-(bromomethyl)styrene, 3-(bromomethyl)styrene, 4-(bromomethyl)styrene, 2-(iodomethyl)styrene, 3-(iodomethyl)styrene, 4-(iodomethyl)styrene, etc. halogenated methylstyrene, 2-(tosylmethyl)styrene, 3-(tosylmethyl)styrene, 4-(tosylmethyl)styrene, 2-(mesylmethyl)styrene, 3-(mesylmethyl)styrene, 4-(mesylmethyl)styrene, etc. . These can be used individually by 1 type or in combination of multiple types. Among these, 4-(chloromethyl)styrene and 4-(bromomethyl)styrene are preferably used from the viewpoint of efficient modification reaction.
 アクリレート骨格を有するラジカル架橋性基を導入する場合、変性剤としては、開環重合体水素添加物が有する官能基(ヒドロキシ基など)と変性反応しうる官能基(ハロゲン基、カルボン酸無水物基など)と、アクリレート骨格とを有する化合物(アクリレート系変性剤)を用いることができる。アクリレート系変性剤としては、アクリル酸クロライド、アクリル酸無水物、メタクリル酸クロライド、メタクリル酸無水物が挙げられる。これらは一種を単独で、又は、複数種を組み合わせて用いることができる。そしてこれらの中でも、変性反応を効率的に行う観点からは、アクリル酸クロライド、メタクリル酸クロライドを用いることが好ましい。 When introducing a radical crosslinkable group having an acrylate skeleton, the modifying agent includes a functional group (such as a hydroxy group) possessed by the hydrogenated ring-opening polymer and a functional group capable of modification reaction (halogen group, carboxylic anhydride group etc.) and an acrylate skeleton (acrylate modifier) can be used. Acrylate-based modifiers include acrylic acid chloride, acrylic anhydride, methacrylic acid chloride, and methacrylic acid anhydride. These can be used individually by 1 type or in combination of multiple types. Among these, it is preferable to use acrylic acid chloride and methacrylic acid chloride from the viewpoint of efficiently performing the modification reaction.
―変性反応の手順及び条件―
 変性反応の手順及び条件は特に限定されず、例えば用いる変性剤の種類に応じて適宜設定することができる。なお変性反応における反応溶媒としては、特に限定されず、例えば、開環重合反応で用いた反応溶媒と同様のものを用いることができる。
-Procedure and conditions for denaturation reaction-
The procedure and conditions of the modification reaction are not particularly limited, and can be appropriately set, for example, according to the type of modifier used. The reaction solvent in the modification reaction is not particularly limited, and for example, the same reaction solvent as used in the ring-opening polymerization reaction can be used.
 例えば変性剤としてスチリル系変性剤を用いる場合、変性反応は、例えば、塩基存在下、開環重合体水素添加物と、スチリル系変性剤とを反応溶媒中で反応させて行うことができる。その際、塩基としては、特に限定されず、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物、水酸化カルシウムなどのアルカリ土類金属の水酸化物、t-ブトキシリチウム、t―ブトキシナトリウム、t-ブトキシカリウムなの金属アルコキシド、トリエチルアミン、ピリジン、ジアザビシクロウンデセン、ジアザビシクロノネン、テトラメチルグアニジン、などの有機塩基を使用することができる。これらの中でも、変性反応を効率的に行う観点からは、t-ブトキシリチウム、t―ブトキシナトリウム、及びt-ブトキシカリウムなの金属アルコキシドを用いることが好ましい。
 変性剤としてスチリル系変性剤を用いる場合、ヨウ化カリウム及びテトラブチルアンモニウムヨージドなどのヨウ化物イオンの発生源となりうる化合物を触媒として用いることが好ましい。かかる触媒を配合することで変性工程における反応を促進することができる。ヨウ化物イオンを発生しうる触媒の配合割合は、例えば、開環重合体水素添加物100質量部あたり、1.0質量部以上10.0質量部以下でありうる。
 変性剤としてスチリル系変性剤を用いる場合、変性反応温度及び変性反応時間は、特に限定されないが、変性反応温度は、通常、-10℃以上100℃以下であり、変性反応時間は、通常、1時間以上15時間以下である。
For example, when a styryl-based modifier is used as the modifier, the modification reaction can be carried out, for example, by reacting the hydrogenated ring-opening polymer with the styryl-based modifier in the presence of a base in a reaction solvent. At that time, the base is not particularly limited, and alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, and t-butoxylithium. , t-butoxysodium, t-butoxypotassium metal alkoxides, triethylamine, pyridine, diazabicycloundecene, diazabicyclononene, tetramethylguanidine, and the like can be used. Among these, metal alkoxides such as t-butoxylithium, t-butoxysodium, and t-butoxypotassium are preferably used from the viewpoint of efficient modification reaction.
When a styryl-based modifier is used as the modifier, it is preferable to use a compound capable of generating iodide ions, such as potassium iodide and tetrabutylammonium iodide, as a catalyst. By blending such a catalyst, the reaction in the modification step can be promoted. The blending ratio of the catalyst capable of generating iodide ions may be, for example, 1.0 parts by mass or more and 10.0 parts by mass or less per 100 parts by mass of the hydrogenated ring-opening polymer.
When a styryl-based modifier is used as the modifier, the modification reaction temperature and modification reaction time are not particularly limited, but the modification reaction temperature is usually −10° C. or more and 100° C. or less, and the modification reaction time is usually 1 hours or more and 15 hours or less.
 また、例えば変性剤としてアクリレート系変性剤を用いる場合、変性反応は、変性反応触媒の存在下、開環重合体水素添加物と、アクリレート変性剤とを反応溶媒中で反応させて行うことができる。その際、変性反応触媒としては、特に限定されず、例えば、トリエチルアミン、ピリジン等を使用することができる。また、変性剤としてアクリレート系変性剤を用いる場合、変性反応温度及び変性反応時間は、特に限定されないが、変性反応温度は、通常、-10℃以上15℃以下であり、変性反応時間は、通常、1時間以上15時間以下である。 Further, for example, when an acrylate-based modifier is used as the modifier, the modification reaction can be carried out by reacting the hydrogenated ring-opening polymer with the acrylate modifier in the presence of a modification reaction catalyst in a reaction solvent. . At that time, the modification reaction catalyst is not particularly limited, and for example, triethylamine, pyridine, or the like can be used. When an acrylate-based modifier is used as the modifier, the modification reaction temperature and modification reaction time are not particularly limited, but the modification reaction temperature is usually −10° C. or higher and 15° C. or lower, and the modification reaction time is usually , from 1 hour to 15 hours.
<ラジカル開始剤>
 ラジカル開始剤は、樹脂組成物を用いて樹脂膜を得る際、露光や加熱によりラジカルを発生してラジカル架橋性基を反応させ、環状オレフィン重合体を架橋させうる成分である。
 ここで、ラジカル開始剤としては、例えば、光ラジカル発生剤、熱ラジカル発生剤等を用いることができる。なお、ラジカル開始剤は、一種を単独で、又は、複数種を組み合わせて用いることができる。そしてラジカル開始剤としては、光ラジカル発生剤を用いることが好ましい。
<Radical initiator>
The radical initiator is a component capable of cross-linking the cyclic olefin polymer by generating radicals by exposure or heating to react radical cross-linkable groups when obtaining a resin film using the resin composition.
Here, as the radical initiator, for example, a photo-radical generator, a thermal radical generator, or the like can be used. In addition, a radical initiator can be used individually by 1 type or in combination of multiple types. As the radical initiator, it is preferable to use a photoradical generator.
<<光ラジカル発生剤>>
 光ラジカル発生剤としては、アシルフォスフィンオキサイド系、オキシムエステル系、又は芳香族ケトン系光ラジカル発生剤等を用いることができる。光ラジカル発生剤は、一種を単独で、又は、複数種を組み合わせて用いることができる。中でも、露光感度をより向上させるとともに、現像後の残膜率を向上できる観点から、光ラジカル発生剤として、オキシムエステル系光ラジカル発生剤を用いることが好ましい。
<<Photo radical generator>>
Acylphosphine oxide-based, oxime ester-based, or aromatic ketone-based photo-radical generators can be used as the photo-radical generator. A photoradical generator can be used individually by 1 type or in combination of multiple types. Among them, it is preferable to use an oxime ester-based photo-radical generator as the photo-radical generator from the viewpoint of improving the exposure sensitivity and the residual film rate after development.
 アシルフォスフィンオキサイド系光ラジカル発生剤としては、例えば、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシド、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、2,4,6-トリメチルベンゾイルフェニルエトキシホスフィンオキサイド等を用いることができる。 Acylphosphine oxide photoradical generators include, for example, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, 2,4,6- Trimethylbenzoylphenylethoxyphosphine oxide and the like can be used.
 オキシムエステル系光ラジカル発生剤としては、例えば、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(o-ベンゾイルオキシム)(BASF社製、「Irgacure(登録商標) OXE01」として流通);エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(BASF社製、「Irgacure OXE02」として流通);及び、BASF社製「Irgacure OXE03」として流通する化合物(化学式非公表)等を用いることができる。 Examples of oxime ester photoradical generators include 1,2-octanedione, 1-[4-(phenylthio)phenyl]-,2-(o-benzoyloxime) (manufactured by BASF, "Irgacure (registered trademark) OXE01"); ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(O-acetyloxime) (manufactured by BASF, "Irgacure OXE02 ”); and a compound (chemical formula unpublished) manufactured by BASF and distributed as “Irgacure OXE03”.
 また、芳香族ケトン系光ラジカル発生剤としては、ベンゾフェノン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1[4-メチルチオ]フェニル]-2-モルフォリノプロパン-1-オン、o-ベンゾイル安息香酸メチル、[4-(メチルフェニルチオ)フェニル]フェニルメタン、1,4ジベンゾイルベンゼン、2-ベンゾイルナフタレン、4-ベンゾイルビフェニル、4-ベンゾイルジフェニルエーテル、ベンジル等を用いることができる。 As aromatic ketone photoradical generators, benzophenone, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 1-hydroxycyclohexylphenyl Ketone, 2,2-dimethoxy-1,2-diphenylethan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butanone-1, 2-hydroxy-2-methyl-1 -phenyl-propan-1-one, 2-methyl-1[4-methylthio]phenyl]-2-morpholinopropan-1-one, methyl o-benzoylbenzoate, [4-(methylphenylthio)phenyl]phenyl Methane, 1,4 dibenzoylbenzene, 2-benzoylnaphthalene, 4-benzoylbiphenyl, 4-benzoyldiphenyl ether, benzyl and the like can be used.
<<ラジカル開始剤の含有量>>
 そして、本発明の樹脂組成物におけるラジカル開始剤の含有量は、環状オレフィン重合体100質量部当たり、0.3質量部以上であることが好ましく、1質量部以上であることがより好ましく、5質量部以上であることが更に好ましく、25質量部以下であることが好ましく、15質量部以下であることがより好ましく、10質量部以下であることが更に好ましい。樹脂組成物中のラジカル開始剤の含有量が環状オレフィン重合体100質量部当たり0.3質量部以上であれば、樹脂組成物から形成される樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を十分に向上させることができる。一方、樹脂組成物中のラジカル開始剤の含有量が環状オレフィン重合体100質量部当たり25質量部以下であれば、樹脂組成物から形成される樹脂膜の誘電正接の値を低下させることができる。
<<Content of radical initiator>>
The content of the radical initiator in the resin composition of the present invention is preferably 0.3 parts by mass or more, more preferably 1 part by mass or more, per 100 parts by mass of the cyclic olefin polymer. It is more preferably at least 25 parts by mass, more preferably 15 parts by mass or less, and even more preferably 10 parts by mass or less. If the content of the radical initiator in the resin composition is 0.3 parts by mass or more per 100 parts by mass of the cyclic olefin polymer, the resin film formed from the resin composition is formed using a cyclic ketone as the developer. patterning properties can be sufficiently improved. On the other hand, if the content of the radical initiator in the resin composition is 25 parts by mass or less per 100 parts by mass of the cyclic olefin polymer, the value of the dielectric loss tangent of the resin film formed from the resin composition can be reduced. .
<重合性不飽和結合を少なくとも二つ有する架橋剤>
 本発明の樹脂組成物は、得られる樹脂膜の誘電正接を低下させつつ伸張性を向上させる観点から、重合性不飽和結合を少なくとも二つ有する架橋剤を含むことが好ましい。
 ここで架橋剤は、樹脂組成物を用いて樹脂膜を得る際、上述したラジカル開始剤により開始されたラジカル反応により環状オレフィン重合体と反応し、環状オレフィン重合体と共同して樹脂膜中で強固な架橋構造を形成しうる成分である。
<Crosslinking agent having at least two polymerizable unsaturated bonds>
The resin composition of the present invention preferably contains a cross-linking agent having at least two polymerizable unsaturated bonds from the viewpoint of reducing the dielectric loss tangent of the resin film to be obtained and improving the extensibility.
Here, when a resin film is obtained using the resin composition, the cross-linking agent reacts with the cyclic olefin polymer through a radical reaction initiated by the above-described radical initiator, and cooperates with the cyclic olefin polymer in the resin film. It is a component that can form a strong crosslinked structure.
 架橋剤としては、重合性不飽和結合を二つ以上有すれば特に限定されず、任意の架橋剤を用いることができる。なお架橋剤は、一種を単独で、又は、複数種を組み合わせて用いることができる。
 ここで架橋剤としては、例えば、(メタ)アクリロイル基を有する架橋剤、スチリル基を有する架橋剤、アリル基を有する架橋剤が挙げられる。
 なお、本明細書において、「(メタ)アクリロイル」とは、アクリロイル及び/又はメタクリロイルを意味する。
 (メタ)アクリロイル基を有する架橋剤としては、1,6-ヘキサンジオールジメタクリレート、トリメチロールプロハントリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、イソシアヌル酸トリス(2-アクリロイルオキシエチル)、ビスフェノールAジメタクリレート、ポリブタジエン末端ジアクリレート(大阪有機化学工業社製、「BAC-45」)、メタクリロイル基を有するポリフェニレンエーテル(SABIC社製「ノリル(登録商標)SA9000」)等が挙げられる。
 スチリル基を有する架橋剤としては、1,2-ジビニルベンゼン、1,3-ジビニルベンゼン、1,4-ジビニルベンゼン、並びに、1,4-ジイソプロペニルベンゼン「OPE-2St 1200」及び「OPE-2St 2200」(何れも三菱ガス化学社製)に例示される架橋剤(IV)、等が挙げられる。
 アリル基を有する架橋剤としては、ジアリルエーテル、テトラアリルオキシエタン、ペンタエリスリトールトリアリルエーテル、9,9-ビス(4-アリルオキシフェニル)フルオレン、アジピン酸ジアリル、1,3,5-ベンゼントリカルボン酸トリアリル、シアヌル酸トリアリル、イソシアヌル酸ジアリルプロピル、トリアリルイソシアヌレート(架橋剤(III)。以下、「TAIC」と略記する場合がある。)、2,4,6-トリメチル-2,4,6-トリビニルシクロトリシロキサン等が挙げられる。
The cross-linking agent is not particularly limited as long as it has two or more polymerizable unsaturated bonds, and any cross-linking agent can be used. In addition, a crosslinking agent can be used individually by 1 type or in combination of multiple types.
Examples of the cross-linking agent include a (meth)acryloyl group-containing cross-linking agent, a styryl group-containing cross-linking agent, and an allyl group-containing cross-linking agent.
In addition, in this specification, "(meth)acryloyl" means acryloyl and/or methacryloyl.
Cross-linking agents having a (meth)acryloyl group include 1,6-hexanediol dimethacrylate, trimethylolprohane triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, tris(2-acryloyloxyethyl) isocyanurate, and bisphenol. A dimethacrylate, polybutadiene-terminated diacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., "BAC-45"), polyphenylene ether having a methacryloyl group (manufactured by SABIC, "Noryl (registered trademark) SA9000"), and the like.
Cross-linking agents having a styryl group include 1,2-divinylbenzene, 1,3-divinylbenzene, 1,4-divinylbenzene, and 1,4-diisopropenylbenzene "OPE-2St 1200" and "OPE- 2St 2200" (all manufactured by Mitsubishi Gas Chemical Co., Ltd.), and the like.
Examples of crosslinking agents having an allyl group include diallyl ether, tetraallyloxyethane, pentaerythritol triallyl ether, 9,9-bis(4-allyloxyphenyl)fluorene, diallyl adipate, and 1,3,5-benzenetricarboxylic acid. triallyl, triallyl cyanurate, diallylpropyl isocyanurate, triallyl isocyanurate (crosslinking agent (III), hereinafter sometimes abbreviated as "TAIC"), 2,4,6-trimethyl-2,4,6- and trivinylcyclotrisiloxane.
 そして、架橋剤としては、樹脂組成物から形成される樹脂膜の誘電正接を更に低下させつつ伸張性を一層向上させる観点から、下記式(III)で示される架橋剤(III)と、下記式(IV)で示される架橋剤(IV)が好ましく挙げられる。 Then, as the cross-linking agent, from the viewpoint of further improving the extensibility while further reducing the dielectric loss tangent of the resin film formed from the resin composition, the cross-linking agent (III) represented by the following formula (III) and the following formula A cross-linking agent (IV) represented by (IV) is preferred.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 架橋剤(IV)において、Aは二価の有機基である。ここで、式(IV)のAを構成する二価の有機基としては、以下の式(VII)で示される有機基が好ましい。
Figure JPOXMLDOC01-appb-C000015
 式(VII)中、Ra、R、R、R、Re、R、R及びRhは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1以上6以下のアルキル基、又はフェニル基である。
 式(VII)のRa~Rhでありうるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 式(II)のRa~Rhでありうる炭素数1以上6以下のアルキル基としては、特に限定されないが、例えば、メチル基、エチル基が好ましく、メチル基がより好ましい。
In crosslinker (IV), A is a divalent organic group. Here, as the divalent organic group constituting A in formula (IV), an organic group represented by the following formula (VII) is preferable.
Figure JPOXMLDOC01-appb-C000015
In formula (VII), R a , R b , R c , R d , R e , R f , R g and R h each independently represent a hydrogen atom, a halogen atom, or an alkyl having 1 to 6 carbon atoms or a phenyl group.
Halogen atoms that can be R a to R h in formula (VII) include, for example, fluorine, chlorine, bromine and iodine atoms.
The alkyl group having 1 to 6 carbon atoms that can be R a to R h in formula (II) is not particularly limited, but is preferably a methyl group or an ethyl group, more preferably a methyl group.
 架橋剤(IV)において、a、bはそれぞれ独立して0以上300以下の整数である。但しa及びbの一方が0である場合を除く。a、bは、樹脂組成物から形成される樹脂膜の誘電正接を更に低下させつつ伸張性を一層向上させる観点から、それぞれ、1以上100以下の整数であることが好ましく、1以上50以下の整数であることがより好ましく、1以上10以下の整数であることが更に好ましい。 In the cross-linking agent (IV), a and b are each independently an integer of 0 or more and 300 or less. However, the case where one of a and b is 0 is excluded. From the viewpoint of further reducing the dielectric loss tangent of the resin film formed from the resin composition and further improving the stretchability, each of a and b is preferably an integer of 1 or more and 100 or less, and 1 or more and 50 or less. An integer is more preferable, and an integer of 1 or more and 10 or less is even more preferable.
 また架橋剤(IV)の数平均分子量は、樹脂組成物から形成される樹脂膜の誘電正接を更に低下させつつ伸張性を一層向上させる観点から、100以上であることが好ましく、300以上であることがより好ましく、500以上であることが更に好ましく、1,000以上であることが特に好ましく、3,000以下であることが好ましく、2,500以下であることがより好ましい。 The number average molecular weight of the cross-linking agent (IV) is preferably 100 or more, preferably 300 or more, from the viewpoint of further improving the extensibility while further reducing the dielectric loss tangent of the resin film formed from the resin composition. more preferably 500 or more, particularly preferably 1,000 or more, preferably 3,000 or less, and more preferably 2,500 or less.
<<架橋剤の含有量>>
 そして、本発明の樹脂組成物における架橋剤の含有量は、環状オレフィン重合体100質量部当たり、5質量部以上であることが好ましく、10質量部以上であることがより好ましく、20質量部以上であることが更に好ましく、25質量部以上であることが一層好ましく、30質量部以上であることが特に好ましく、100質量部以下であることが好ましく、90質量部以下であることがより好ましく、80質量部以下であることが更に好ましく、70質量部以下であることが特に好ましい。樹脂組成物中の架橋剤の含有量が環状オレフィン重合体100質量部当たり5質量部以上であれば、樹脂組成物から形成される樹脂膜の誘電正接を低下させつつ伸張性を向上させることができる。一方、樹脂組成物中の架橋剤の含有量が環状オレフィン重合体100質量部当たり100質量部以下であれば、樹脂組成物から形成される樹脂膜について、現像液として環状ケトンを用いた場合のパターニング特性を十分に確保すことができる。
<<Content of cross-linking agent>>
The content of the cross-linking agent in the resin composition of the present invention is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and 20 parts by mass or more per 100 parts by mass of the cyclic olefin polymer. more preferably 25 parts by mass or more, particularly preferably 30 parts by mass or more, preferably 100 parts by mass or less, more preferably 90 parts by mass or less, It is more preferably 80 parts by mass or less, and particularly preferably 70 parts by mass or less. If the content of the cross-linking agent in the resin composition is 5 parts by mass or more per 100 parts by mass of the cyclic olefin polymer, the dielectric loss tangent of the resin film formed from the resin composition can be reduced while the extensibility can be improved. can. On the other hand, if the content of the cross-linking agent in the resin composition is 100 parts by mass or less per 100 parts by mass of the cyclic olefin polymer, the resin film formed from the resin composition can be formed using a cyclic ketone as the developer. Sufficient patterning characteristics can be ensured.
<<架橋剤の併用>>
 また、樹脂組成物から形成される樹脂膜の誘電正接を低下させつつ伸張性を向上させる観点から、樹脂組成物は、架橋剤(III)と架橋剤(IV)の双方を含むことが好ましい。
 そして樹脂組成物が架橋剤(III)と架橋剤(IV)の双方を含む場合、樹脂組成物における架橋剤(III)の含有量は、架橋剤(III)の含有量と架橋剤(IV)の含有量の合計を100質量%として、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが更に好ましく、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。架橋剤(III)と架橋剤(IV)の合計含有量に占める架橋剤(III)の含有量の割合が上記範囲内であれば、樹脂組成物から形成される樹脂膜の誘電正接を低下させつつ伸張性を向上させることができる。
<<Combination of cross-linking agent>>
Moreover, from the viewpoint of improving extensibility while reducing the dielectric loss tangent of the resin film formed from the resin composition, the resin composition preferably contains both the cross-linking agent (III) and the cross-linking agent (IV).
And when the resin composition contains both the cross-linking agent (III) and the cross-linking agent (IV), the content of the cross-linking agent (III) in the resin composition is equal to the content of the cross-linking agent (III) and the cross-linking agent (IV) Assuming that the total content of the is preferred, 50% by mass or less is more preferred, and 40% by mass or less is even more preferred. If the ratio of the content of the cross-linking agent (III) to the total content of the cross-linking agent (III) and the cross-linking agent (IV) is within the above range, the dielectric loss tangent of the resin film formed from the resin composition is reduced. while improving extensibility.
<溶剤>
 本発明の樹脂組成物が任意に含み得る溶剤としては、特に限定されることなく、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン、1,2,4-トリメチルベンゼン、1,3,5-トリメチルベンゼン、テトラリンなどの芳香族系溶剤、シクロヘキサン、デカリンなどの炭化水素系溶剤、ジブチルエーテル、ジイソアミルエーテル、テトラヒドロフラン、シクロペンチルメチルエーテル、アニソールなどのエーテル系溶剤、酢酸ブチル、酢酸ヘキシル、プロピレングリコールモノメチルエーテルアセテートなどのエステル系溶剤、メチルエチルケトン、ジイソブチルケトン、シクロペンタノンなどのケトン系溶剤などが挙げられる。これらの溶媒は、一種を単独で、又は、複数種を組み合わせて用いることができる。
<Solvent>
The solvent that the resin composition of the present invention may optionally contain is not particularly limited. Aromatic solvents such as 5-trimethylbenzene and tetralin, hydrocarbon solvents such as cyclohexane and decalin, ether solvents such as dibutyl ether, diisoamyl ether, tetrahydrofuran, cyclopentyl methyl ether, and anisole, butyl acetate, hexyl acetate, Ester solvents such as propylene glycol monomethyl ether acetate, and ketone solvents such as methyl ethyl ketone, diisobutyl ketone, and cyclopentanone are included. These solvents can be used singly or in combination.
 そして、樹脂組成物中の溶剤の含有量は、樹脂組成物の全質量に対して溶剤以外の合計が、好ましくは10質量%以上、より好ましくは20質量%以上であり、好ましくは60質量%以下、より好ましくは50質量%以下となる量とすることが好ましい。 The content of the solvent in the resin composition is preferably 10% by mass or more, more preferably 20% by mass or more, and preferably 60% by mass, based on the total mass of the resin composition other than the solvent. Hereinafter, it is preferable to set the amount to be 50% by mass or less, more preferably.
<添加成分>
 また、本発明の樹脂組成物が任意に含み得る添加成分としては、特に限定されることなく、例えば、界面活性剤、酸化防止剤、増感剤、密着助剤等が挙げられる。これらの添加成分は、一種を単独で、又は、複数種を組み合わせて用いることができる。中でも、本発明の樹脂組成物の塗工性を向上させて、得られる樹脂膜の膜厚の均一性を向上させる観点から、添加成分として、界面活性剤を含むことが好ましい。
<Additional ingredients>
Moreover, the additive component that the resin composition of the present invention may optionally contain is not particularly limited, and examples thereof include surfactants, antioxidants, sensitizers, adhesion aids, and the like. These additive components can be used individually by 1 type or in combination of multiple types. Above all, from the viewpoint of improving the coatability of the resin composition of the present invention and improving the uniformity of the film thickness of the resulting resin film, it is preferable to contain a surfactant as an additive component.
 界面活性剤としては、特に限定されることなく、公知のシリコーン系界面活性剤、フッ素系界面活性剤などを用いることができる。そして、樹脂組成物中の界面活性剤の含有割合は、樹脂組成物の全質量に対して0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましい。 The surfactant is not particularly limited, and known silicone-based surfactants, fluorine-based surfactants, and the like can be used. The content of the surfactant in the resin composition is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, relative to the total mass of the resin composition.
<樹脂組成物の調製方法>
 本発明の樹脂組成物は、上述した必須の各成分及び各種の任意成分を既知の方法により混合することで、調製することができる。ここで、本発明の樹脂組成物は、例えば、各成分を溶剤に対して溶解し、ろ過して得られる樹脂組成物として使用に供される。溶剤への溶解に際して、スターラー、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの既知の混合機を用いることができる。また、ろ過に際して、フィルター等のろ材を用いた一般的なろ過方法を採用することができる。
<Method for preparing resin composition>
The resin composition of the present invention can be prepared by mixing the essential components and various optional components described above by known methods. Here, the resin composition of the present invention is used, for example, as a resin composition obtained by dissolving each component in a solvent and filtering. For dissolution in a solvent, known mixers such as stirrers, ball mills, sand mills, bead mills, pigment dispersers, crushers, ultrasonic dispersers, homogenizers, planetary mixers and Filmix can be used. Moreover, at the time of filtration, a general filtration method using a filter medium such as a filter can be employed.
<樹脂膜の製造方法>
 なお、本発明の樹脂組成物は、既知の膜形成方法(例えば、国際公開第2015/033901号参照)にて用いることで、樹脂膜を形成することができる。そして、得られた樹脂膜に対して、特に限定されることなく、任意の活性エネルギー線、例えば、波長200nm以上500nm以下の露光光を照射する露光工程と、現像工程とを行うことで、所望のパターンを有する樹脂膜を形成することができる。
 特に本発明の樹脂組成物から形成される樹脂膜は、現像工程において現像液としてシクロペンタノン、シクロヘキサノン等の環状ケトンを用いた場合であっても、所望のパターン形状を効率良く形成することができる。
 なお、必要に応じて、露光工程に先立ってプリベーク工程を実施する、あるいは、露光工程の開始後所望のタイミングにおいて露光後ベーク(PEB)工程を実施しても良い。さらにまた、必要に応じて、現像工程の終了後に、ポストベーク工程を実施しても良い。
<Method for producing resin film>
The resin composition of the present invention can form a resin film by using a known film forming method (see, for example, International Publication No. 2015/033901). Then, the obtained resin film is not particularly limited, and an exposure step of irradiating an arbitrary active energy ray, for example, exposure light with a wavelength of 200 nm or more and 500 nm or less, and a development step. It is possible to form a resin film having a pattern of
In particular, the resin film formed from the resin composition of the present invention can efficiently form a desired pattern shape even when a cyclic ketone such as cyclopentanone or cyclohexanone is used as a developer in the development process. can.
If necessary, a pre-baking process may be performed prior to the exposure process, or a post-exposure bake (PEB) process may be performed at a desired timing after the start of the exposure process. Furthermore, if necessary, a post-baking process may be performed after the development process is completed.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 実施例及び比較例において、各種属性の測定及び各種の評価は、それぞれ以下の方法により実施した。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to these examples. In the following description, "%" and "parts" representing amounts are based on mass unless otherwise specified.
In Examples and Comparative Examples, measurements of various attributes and various evaluations were carried out by the following methods.
<重量平均分子量及び分子量分布>
 実施例及び比較例で得られた環状オレフィン重合体についてゲル浸透クロマトグラフィーを用いて重量平均分子量(Mw)及び数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を算出した。
 具体的には、ゲル浸透クロマトグラフ(東ソー製、HLC-8220)を使用し、展開溶媒としてテトラヒドロフランを用いて、環状オレフィン重合体の重量平均分子量(Mw)及び数平均分子量(Mn)を標準ポリスチレン換算値として求めた。そして、分子量分布(Mw/Mn)を算出した。
<伸張性(引張伸び率)及び機械的強度(引張強度)>
 スパッタリング装置(芝浦エレテック社製、「i-Miller CFS-4EP-LL」)を用いて50nm膜厚のアルミ膜を形成した4インチシリコンウエハ上に、各実施例及び各比較例において調製した樹脂組成物をスピンコートした後、ホットプレートを用いて90℃で2分間プリベークして、樹脂組成物よりなる樹脂膜を形成した。マスクアライナーを用いて1,000mJ/cmの露光を行った後、窒素中において230℃で1時間加熱することにより樹脂膜を硬化して、10μm厚の樹脂膜付きシリコンウエハを得た。得られた樹脂膜付きシリコンウエハを0.1モル%の塩酸水溶液に12時間浸漬してアルミのエッチングを行うことで、樹脂膜付きウエハから樹脂膜を剥離させた後、110℃のオーブンで1時間乾燥させた。
 乾燥後の樹脂膜を幅5mm、長さ40mmの短冊状に切り出して試験片とし、この試験片について引張試験を行った。具体的には、引張試験機(島津製作所社製、「AGS-10kNX」)で23℃において、つかみ具間隔20mm、引張速度2mm/分で引張試験を行い、破断点における伸び率及び強度を測定した。8本の試験片について試験を行い、上位3点の平均値を各実施例及び各比較例で得られた樹脂組成物を用いて形成した樹脂膜の引張伸び率及び引張強度として下記の基準で評価した。引張伸び率の値が大きいほど、樹脂膜の伸長性が高いことを意味する。そして、樹脂膜の伸長性が高いほど、温度サイクル試験や落下衝撃試験の際にクラックや剥離を生じ難いため、好ましい。また、引張強度が大きいほど、樹脂膜の機械的強度が高いことを意味する。
<<伸張性>>
A:引張伸び率が10%以上
B:引張伸び率が5%以上10%未満
C:引張伸び率が5%未満
<<機械的強度>>
A:引張強度が70MPa以上
B:引張強度が60MPa以上70MPa未満
C:引張強度が60MPa未満
<誘電正接>
 スパッタリング装置(芝浦エレテック社製、「i-Miller CFS-4EP-LL」)を用いて50nm膜厚のアルミ膜を形成した4インチシリコンウエハ上に、各実施例及び各比較例において調製した樹脂組成物をスピンコートした後、ホットプレートを用いて90℃で2分間プリベークして、樹脂組成物よりなる樹脂膜を形成した。次いでマスクアライナー(キャノン社製、「PLA501F」)でg-h-i混合線を用いて1000mJ/cmの照射量で露光後、窒素中において180℃で1時間加熱することにより樹脂膜を硬化して、10μm厚の樹脂膜付きシリコンウエハを得た。得られた樹脂膜付きシリコンウエハを0.1モル%の塩酸水溶液に12時間浸漬してアルミのエッチングを行うことで、シリコンウエハから樹脂膜を剥離させた。110℃のオーブンで1時間乾燥させた後、これを幅2mm、長さ50mmの短冊状に切り出して試験片とし、この試験片について空洞共振器法により10GHzにおける誘電正接の測定を行った。
A:誘電正接が0.0035未満
B:誘電正接が0.0035以上0.0040未満
C:誘電正接が0.0040以上
<濁りの有無>
 インチシリコンウエハ上に、各実施例及び各比較例において調製した樹脂組成物をスピンコートした後、ホットプレートを用いて90℃で2分間プリベークして、樹脂組成物よりなる樹脂膜を形成した。得られた樹脂膜を目視で観察し、濁りの有無を確認した。
<パターニング特性>
 インチシリコンウエハ上に、各実施例及び各比較例において調製した樹脂組成物をスピンコートした後、ホットプレートを用いて90℃で2分間プリベークして、樹脂組成物よりなる樹脂膜を形成した。次いでマスクアライナー(キャノン社製、「PLA501F」)でg-h-i混合線を用いて、100μm径のホールパターンを持つマスクを介して700mJ/cmの照射量で露光後、シクロペンタノンに90秒間浸漬して現像を行った。現像後の樹脂膜について、光学顕微鏡を用いホールパターンの開口の有無を確認した。
<Weight average molecular weight and molecular weight distribution>
The weight average molecular weight (Mw) and number average molecular weight (Mn) of the cyclic olefin polymers obtained in Examples and Comparative Examples were measured using gel permeation chromatography, and the molecular weight distribution (Mw/Mn) was calculated.
Specifically, using a gel permeation chromatograph (manufactured by Tosoh, HLC-8220), using tetrahydrofuran as a developing solvent, the weight average molecular weight (Mw) and number average molecular weight (Mn) of the cyclic olefin polymer were measured using standard polystyrene. It was obtained as a converted value. Then, the molecular weight distribution (Mw/Mn) was calculated.
<Extensibility (tensile elongation) and mechanical strength (tensile strength)>
Resin composition prepared in each example and each comparative example on a 4-inch silicon wafer on which an aluminum film with a thickness of 50 nm was formed using a sputtering device ("i-Miller CFS-4EP-LL" manufactured by Shibaura Eletech) After the product was spin-coated, it was pre-baked at 90° C. for 2 minutes using a hot plate to form a resin film made of the resin composition. After performing exposure of 1,000 mJ/cm 2 using a mask aligner, the resin film was cured by heating at 230° C. for 1 hour in nitrogen to obtain a silicon wafer with a resin film having a thickness of 10 μm. The obtained silicon wafer with a resin film was immersed in a 0.1 mol % hydrochloric acid aqueous solution for 12 hours to etch aluminum, thereby peeling off the resin film from the wafer with a resin film. dried for an hour.
A test piece having a width of 5 mm and a length of 40 mm was cut from the dried resin film, and a tensile test was performed on the test piece. Specifically, a tensile test was performed using a tensile tester ("AGS-10kNX" manufactured by Shimadzu Corporation) at 23°C at a grip interval of 20 mm and a tensile speed of 2 mm/min, and the elongation and strength at the breaking point were measured. bottom. Eight test pieces were tested, and the average value of the top three points was used as the tensile elongation rate and tensile strength of the resin film formed using the resin composition obtained in each example and each comparative example, according to the following criteria. evaluated. It means that the larger the value of the tensile elongation, the higher the extensibility of the resin film. Further, the higher the extensibility of the resin film, the less likely cracks or peeling will occur during the temperature cycle test or the drop impact test, which is preferable. Moreover, it means that the higher the tensile strength, the higher the mechanical strength of the resin film.
<<Extensibility>>
A: Tensile elongation is 10% or more B: Tensile elongation is 5% or more and less than 10% C: Tensile elongation is less than 5% <<Mechanical strength>>
A: Tensile strength of 70 MPa or more B: Tensile strength of 60 MPa or more and less than 70 MPa C: Tensile strength of less than 60 MPa <dielectric loss tangent>
Resin composition prepared in each example and each comparative example on a 4-inch silicon wafer on which an aluminum film with a thickness of 50 nm was formed using a sputtering device ("i-Miller CFS-4EP-LL" manufactured by Shibaura Eletech) After the product was spin-coated, it was pre-baked at 90° C. for 2 minutes using a hot plate to form a resin film made of the resin composition. Then, after exposure with a mask aligner ("PLA501F" manufactured by Canon Inc.) using a ghi mixed beam at a dose of 1000 mJ/ cm2 , the resin film was cured by heating at 180°C for 1 hour in nitrogen. Thus, a silicon wafer with a resin film having a thickness of 10 μm was obtained. The obtained silicon wafer with a resin film was immersed in a 0.1 mol % hydrochloric acid aqueous solution for 12 hours to etch aluminum, thereby peeling off the resin film from the silicon wafer. After drying in an oven at 110° C. for 1 hour, a strip of 2 mm in width and 50 mm in length was cut into a test piece, and the dielectric loss tangent of this test piece was measured at 10 GHz by the cavity resonator method.
A: Dielectric loss tangent less than 0.0035 B: Dielectric loss tangent 0.0035 or more and less than 0.0040 C: Dielectric loss tangent 0.0040 or more <Presence or absence of turbidity>
After spin-coating the resin composition prepared in each example and each comparative example on an inch silicon wafer, it was pre-baked at 90° C. for 2 minutes using a hot plate to form a resin film made of the resin composition. The obtained resin film was visually observed to confirm the presence or absence of turbidity.
<Patterning characteristics>
After spin-coating the resin composition prepared in each example and each comparative example on an inch silicon wafer, it was pre-baked at 90° C. for 2 minutes using a hot plate to form a resin film made of the resin composition. Then, using a mask aligner (manufactured by Canon, "PLA501F"), using ghi mixed rays, exposure was performed at a dose of 700 mJ/cm 2 through a mask having a hole pattern with a diameter of 100 μm. Development was performed by immersion for 90 seconds. The presence or absence of hole pattern openings on the resin film after development was confirmed using an optical microscope.
(実施例1)
<環状オレフィン重合体(B-1)の合成>
<<開環重合及び水添工程>>
 ノルボルネン系単量体(I)としての2-ノルボルネン-5-メタノール(以下、「NBMOH」と略記する。)15モル%と、ノルボルネン系単量体(II)としてのメタノテトラヒドロフルオレン(以下、「MTF」と略記する。)85モル%とからなる単量体混合物100部、分子量調整剤としての1,5-ヘキサジエン1.0部、開環重合触媒としての(1,3-ジメシチルイミダゾリン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド](Org.Lett.,第1巻,953頁,1999年に記載された方法で合成した)0.025部、及び反応溶媒としてのテトラヒドロフラン300部を、窒素置換したガラス製耐圧反応器に仕込み、撹拌しながら80℃にて4時間反応させて重合反応液を得た。
 得られた重合反応液をオートクレーブに入れて、150℃、水素圧4MPaで、5時間撹拌して水素添加反応を行った後、反応溶液に反応溶媒としてのテトラヒドロフラン300部を加えた。これをメタノール8000部に滴下し、生成した沈殿物をろ過により回収して50℃で減圧乾燥することで開環重合体水素添加物(A-1)を得た。
<変性工程>
 撹拌翼及び温度計を取り付けた3つ口フラスコを窒素置換し、開環重合体水素添加物(A-1)100部、変性反応触媒としてのとしてのトリエチルアミン87.4部、及び反応溶媒としてのテトラヒドロフラン500部を仕込み、反応溶液を氷浴で0℃に冷却した。反応溶液の温度を10℃以下に保ちながら、変性剤としてのメタクリル酸クロライド54.2部を滴下して2時間撹拌した。さらに反応溶液を室温に昇温し、12時間撹拌を続けた。次いで反応溶液に反応溶媒としてのテトラヒドロフラン200部を加えた後、0℃に冷却し、メタクリル酸クロライド100部に対して50部となる量のメタノールを反応溶液の温度を10℃以下に保ちながら加え、0℃で1時間、室温に昇温してさらに1時間撹拌した。
 反応液をメタノール8000部に滴下し、生成した沈殿物をろ過により回収した。沈殿物をメタノールで3回洗浄した後、50℃で減圧乾燥することで開環重合体水素添加物の変性物である環状オレフィン重合体(B-1)を得た(下式参照)。GPC測定による環状オレフィン重合体(B-1)の重量平均分子量は20,100、分子量分布は2.13であった。
 H-NMR測定により、開環重合体水素添加物(A-1)のメタクリロイル変性率は100%であり、環状オレフィン重合体(B-1)中のメタクリロイル変性されたNBMOH由来の構造単位の含有量は15モル%であることが確認された。
(Example 1)
<Synthesis of Cyclic Olefin Polymer (B-1)>
<<Ring-opening polymerization and hydrogenation step>>
2-norbornene-5-methanol (hereinafter abbreviated as "NBMOH") as a norbornene-based monomer (I) 15 mol% and methanotetrahydrofluorene as a norbornene-based monomer (II) (hereinafter referred to as " 100 parts of a monomer mixture consisting of 85 mol%, 1.0 parts of 1,5-hexadiene as a molecular weight modifier, and (1,3-dimesitylimidazoline as a ring-opening polymerization catalyst -2-ylidene)(tricyclohexylphosphine)benzylidene ruthenium dichloride] (Org. Lett., Vol. 1, p. 953, synthesized by the method described in 1999) 0.025 parts, and tetrahydrofuran 300 as a reaction solvent The mixture was placed in a nitrogen-purged glass pressure-resistant reactor and reacted at 80° C. for 4 hours while stirring to obtain a polymerization reaction liquid.
The resulting polymerization reaction solution was placed in an autoclave and stirred for 5 hours at 150° C. and a hydrogen pressure of 4 MPa for hydrogenation reaction, after which 300 parts of tetrahydrofuran as a reaction solvent was added to the reaction solution. This was added dropwise to 8000 parts of methanol, and the resulting precipitate was collected by filtration and dried at 50° C. under reduced pressure to obtain a hydrogenated ring-opening polymer (A-1).
<Degeneration step>
A three-necked flask equipped with a stirring blade and a thermometer was purged with nitrogen, and 100 parts of the hydrogenated ring-opening polymer (A-1), 87.4 parts of triethylamine as a modification reaction catalyst, and as a reaction solvent 500 parts of tetrahydrofuran was charged, and the reaction solution was cooled to 0°C in an ice bath. While maintaining the temperature of the reaction solution at 10° C. or lower, 54.2 parts of methacryloyl chloride as a modifier was added dropwise and stirred for 2 hours. Further, the temperature of the reaction solution was raised to room temperature, and stirring was continued for 12 hours. After adding 200 parts of tetrahydrofuran as a reaction solvent to the reaction solution, the reaction solution was cooled to 0°C, and methanol was added in an amount of 50 parts per 100 parts of methacryloyl chloride while maintaining the temperature of the reaction solution at 10°C or less. , 0° C. for 1 hour, warmed to room temperature and stirred for additional 1 hour.
The reaction liquid was added dropwise to 8000 parts of methanol, and the generated precipitate was collected by filtration. The precipitate was washed with methanol three times and then dried under reduced pressure at 50° C. to obtain a cyclic olefin polymer (B-1) which is a modified hydrogenated ring-opening polymer (see the formula below). The weight average molecular weight of the cyclic olefin polymer (B-1) measured by GPC was 20,100, and the molecular weight distribution was 2.13.
According to 1 H-NMR measurement, the methacryloyl modification rate of the hydrogenated ring-opening polymer (A-1) was 100%, and the methacryloyl-modified NBMOH-derived structural unit in the cyclic olefin polymer (B-1) was The content was confirmed to be 15 mol %.
Figure JPOXMLDOC01-appb-C000016
<樹脂組成物の調製>
 上記のようにして得られた環状オレフィン重合体(B-1)100部、ラジカル開始剤としての「Irgacure OXE01」(BASF社製)5部、及び樹脂組成物の全質量に対して溶剤以外の合計が30%となる添加量のアニソール(溶剤)を混合し、溶解させた。次いで樹脂組成物の全重量に対して0.03%となるように界面活性剤としてKP-341(信越シリコーン社製)を加えた後、孔径0.45μmのポリテトラフルオロエチレン製フィルターでろ過して樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて上記に従って各種評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000016
<Preparation of resin composition>
100 parts of the cyclic olefin polymer (B-1) obtained as described above, 5 parts of "Irgacure OXE01" (manufactured by BASF) as a radical initiator, and the total mass of the resin composition other than the solvent Addition amounts of anisole (solvent) totaling 30% were mixed and dissolved. Next, after adding KP-341 (manufactured by Shin-Etsu Silicone Co., Ltd.) as a surfactant so as to be 0.03% with respect to the total weight of the resin composition, it was filtered through a polytetrafluoroethylene filter with a pore size of 0.45 μm. to prepare a resin composition.
And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
(実施例2)
 樹脂組成物の調製に際し、環状オレフィン重合体(B-1)に代えて、以下のようにして調製した環状オレフィン重合体(B-2)を用いた以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて上記に従って各種評価を行った。結果を表1に示す。
<環状オレフィン重合体(B-2)の合成>
<<開環重合及び水添工程>>
 NBMOHをテトラシクロドデセンメタノール(以下、「TCDMOH」と略記する。)に、テトラヒドロフランをトルエンに変更した以外は実施例1と同様の操作を行い、開環重合体水素添加物(A-2)を得た。
<<変性工程>>
 開環重合体水素添加物(A-1)を開環重合体水素添加物(A-2)に変更し、トリエチルアミンの量を83.5部、メタクリル酸クロライドの量を51.3部、テトラヒドロフランをトルエンに変更した以外は実施例1と同様の操作を行い、開環重合体水素添加物の変性物である環状オレフィン重合体(B-2)を得た(下式参照)。GPC測定による環状オレフィン重合体(B-2)の重量平均分子量は22,900、分子量分布は2.03であった。
 H-NMR測定により、開環重合体水素添加物(A-2)のメタクリロイル変性率は100%であり、環状オレフィン重合体(B-2)中のメタクリロイル変性されたTCDMOH由来の構造単位の含有量は15モル%であることが確認された。
(Example 2)
Resin was prepared in the same manner as in Example 1, except that the cyclic olefin polymer (B-2) prepared as follows was used instead of the cyclic olefin polymer (B-1) in preparing the resin composition. A composition was prepared.
And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
<Synthesis of Cyclic Olefin Polymer (B-2)>
<<Ring-opening polymerization and hydrogenation step>>
The same operation as in Example 1 was carried out, except that NBMOH was changed to tetracyclododecenemethanol (hereinafter abbreviated as "TCDMOH") and tetrahydrofuran was changed to toluene, to obtain a hydrogenated ring-opening polymer (A-2). got
<<Modification step>>
The ring-opening polymer hydrogenate (A-1) was changed to the ring-opening polymer hydrogenate (A-2), the amount of triethylamine was 83.5 parts, the amount of methacrylic acid chloride was 51.3 parts, and tetrahydrofuran. A cyclic olefin polymer (B-2), which is a modified product of the hydrogenated ring-opening polymer, was obtained in the same manner as in Example 1, except that toluene was used. The weight average molecular weight of the cyclic olefin polymer (B-2) measured by GPC was 22,900, and the molecular weight distribution was 2.03.
According to 1 H-NMR measurement, the methacryloyl modification rate of the hydrogenated ring-opening polymer (A-2) was 100%, and the methacryloyl-modified TCDMOH-derived structural unit in the cyclic olefin polymer (B-2) was The content was confirmed to be 15 mol %.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(実施例3)
 樹脂組成物の調製に際し、架橋剤(IV)としての「OPE-2St 1200」(三菱ガス化学社製、数平均分子量:1,200、下記式(VIII)の構造を有する。)25部を加えた以外は、実施例1と同様にして環状オレフィン重合体(B-1)、樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて上記に従って各種評価を行った。結果を表1に示す。
(Example 3)
When preparing the resin composition, 25 parts of "OPE-2St 1200" (manufactured by Mitsubishi Gas Chemical Company, number average molecular weight: 1,200, having a structure of the following formula (VIII)) as a cross-linking agent (IV) was added. A cyclic olefin polymer (B-1) and a resin composition were prepared in the same manner as in Example 1 except for the above.
And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(実施例4)
 樹脂組成物の調製に際し、環状オレフィン重合体(B-1)に代えて以下のようにして調製した環状オレフィン重合体(B-3)を用い、且つ架橋剤(IV)としての「OPE-2St 2200」(三菱ガス化学社製、数平均分子量:2,200、上記式(VIII)の構造を有する。)50部を加えた以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて上記に従って各種評価を行った。結果を表1に示す。
<環状オレフィン重合体(B-3)の合成>
<<開環重合及び水添工程>>
 MTFを55モル%に変更し、フェニルノルボルネンを30モル%加えた以外は実施例1と同様の操作を行い、開環重合体水素添加物(A-3)を得た。
<<変性工程>>
 開環重合体水素添加物(A-1)を開環重合体水素添加物(A-3)に変更し、トリエチルアミンの量を91.9部、メタクリル酸クロライドの量を55.3部に変更した以外は実施例1と同様の操作を行い、開環重合体水素添加物の変性物である環状オレフィン重合体(B-3)を得た(下式参照)。GPC測定による環状オレフィン重合体(B-3)の重量平均分子量は16,400、分子量分布は1.59であった。
 H-NMR測定により、開環重合体水素添加物(A-3)のメタクリロイル変性率は100%であり、環状オレフィン重合体(B-3)中のメタクリロイル変性されたNBMOH由来の構造単位の含有量は15モル%であることが確認された。
(Example 4)
In preparing the resin composition, a cyclic olefin polymer (B-3) prepared as follows was used in place of the cyclic olefin polymer (B-1), and "OPE-2St 2200" (manufactured by Mitsubishi Gas Chemical Company, number average molecular weight: 2,200, having the structure of formula (VIII) above) was added in the same manner as in Example 1, except that 50 parts of the resin composition was prepared.
And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
<Synthesis of Cyclic Olefin Polymer (B-3)>
<<Ring-opening polymerization and hydrogenation step>>
A hydrogenated ring-opening polymer (A-3) was obtained in the same manner as in Example 1, except that the MTF was changed to 55 mol % and 30 mol % of phenylnorbornene was added.
<<Modification step>>
The ring-opening polymer hydrogenate (A-1) was changed to the ring-opening polymer hydrogenate (A-3), the amount of triethylamine was changed to 91.9 parts, and the amount of methacrylic acid chloride was changed to 55.3 parts. A cyclic olefin polymer (B-3), which is a modified product of the hydrogenated ring-opening polymer, was obtained by performing the same operation as in Example 1, except for the above (see the formula below). The cyclic olefin polymer (B-3) had a weight average molecular weight of 16,400 and a molecular weight distribution of 1.59 as measured by GPC.
According to 1 H-NMR measurement, the methacryloyl modification rate of the hydrogenated ring-opening polymer (A-3) was 100%, and the methacryloyl-modified NBMOH-derived structural unit in the cyclic olefin polymer (B-3) was The content was confirmed to be 15 mol %.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(実施例5)
 樹脂組成物の調製に際し、架橋剤(III)(新菱社製、TAIC)20部を加えた以外は、実施例1と同様にして環状オレフィン重合体(B-1)、樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて上記に従って各種評価を行った。結果を表1に示す。
(Example 5)
A cyclic olefin polymer (B-1) and a resin composition were prepared in the same manner as in Example 1, except that 20 parts of the cross-linking agent (III) (manufactured by Shinryo Corporation, TAIC) was added in the preparation of the resin composition. bottom.
And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
(実施例6)
 樹脂組成物の調製に際し、架橋剤(III)(新菱社製、TAIC)10部、架橋剤(IV)としての「OPE-2St 1200」(三菱ガス化学社製、数平均分子量:1,200、上記式(VIII)の構造を有する。)25部を加えた以外は、実施例2と同様にして環状オレフィン重合体(B-2)、樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて上記に従って各種評価を行った。結果を表1に示す。
(Example 6)
In the preparation of the resin composition, 10 parts of the cross-linking agent (III) (manufactured by Shinryo Corporation, TAIC), "OPE-2St 1200" (Mitsubishi Gas Chemical Co., Ltd., number average molecular weight: 1,200) as the cross-linking agent (IV) A cyclic olefin polymer (B-2) and a resin composition were prepared in the same manner as in Example 2, except that 25 parts of cycloolefin polymer (B-2) was added.
And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
(実施例7)
 樹脂組成物の調製に際し、架橋剤(III)(新菱社製、TAIC)10部、架橋剤(IV)としての「OPE-2St 1200」(三菱ガス化学社製、数平均分子量:1,200、上記式(VIII)の構造を有する。)50部を加えた以外は、実施例1と同様にして環状オレフィン重合体(B-1)、樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて上記に従って各種評価を行った。結果を表1に示す。
(Example 7)
In the preparation of the resin composition, 10 parts of the cross-linking agent (III) (manufactured by Shinryo Corporation, TAIC), "OPE-2St 1200" (Mitsubishi Gas Chemical Co., Ltd., number average molecular weight: 1,200) as the cross-linking agent (IV) A cyclic olefin polymer (B-1) and a resin composition were prepared in the same manner as in Example 1, except that 50 parts of cycloolefin polymer (B-1) was added.
And various evaluations were performed according to the above using the obtained resin composition. Table 1 shows the results.
(実施例8)
 樹脂組成物の調製に際し、架橋剤(III)(新菱社製、TAIC)10部、架橋剤(IV)としての「OPE-2St 2200」(三菱ガス化学社製、数平均分子量:2,200、上記式(VIII)の構造を有する。)25部を加えた以外は、実施例2と同様にして環状オレフィン重合体(B-2)、樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて上記に従って各種評価を行った。結果を表2に示す。
(Example 8)
In the preparation of the resin composition, 10 parts of the cross-linking agent (III) (manufactured by Shinryo Corporation, TAIC), "OPE-2St 2200" (Mitsubishi Gas Chemical Co., Ltd., number average molecular weight: 2,200) as the cross-linking agent (IV) A cyclic olefin polymer (B-2) and a resin composition were prepared in the same manner as in Example 2, except that 25 parts of cycloolefin polymer (B-2) was added.
And various evaluations were performed according to the above using the obtained resin composition. Table 2 shows the results.
(実施例9)
 樹脂組成物の調製に際し、環状オレフィン重合体(B-2)に代えて以下のようにして調製した環状オレフィン重合体(B-4)を用いた以外は、実施例6と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて上記に従って各種評価を行った。結果を表2に示す。
<環状オレフィン重合体(B-4)の合成>
<<開環重合及び水添工程>>
 NBMOHを50モル%に変更し、MTFを50モル%に変更した以外は実施例1と同様の操作を行い、開環重合体水素添加物(A-4)を得た。
<<変性工程>>
 開環重合体水素添加物(A-1)を開環重合体水素添加物(A-4)に変更し、トリエチルアミンの量を355.5部、メタクリル酸クロライドの量を204.2部に変更した以外は実施例1と同様の操作を行い、開環重合体水素添加物の変性物である環状オレフィン重合体(B-4)を得た(下式参照)。GPC測定による環状オレフィン重合体(B-4)の重量平均分子量は22,000、分子量分布は2.14であった。
 H-NMR測定により、開環重合体水素添加物(A-4)のメタクリロイル変性率は100%であり、環状オレフィン重合体(B-4)中のメタクリロイル変性されたNBMOH由来の構造単位の含有量は50モル%であることが確認された。
(Example 9)
A resin composition was prepared in the same manner as in Example 6, except that the cyclic olefin polymer (B-4) prepared as follows was used instead of the cyclic olefin polymer (B-2) in preparing the resin composition. prepared the product.
And various evaluations were performed according to the above using the obtained resin composition. Table 2 shows the results.
<Synthesis of cyclic olefin polymer (B-4)>
<<Ring-opening polymerization and hydrogenation step>>
A hydrogenated ring-opening polymer (A-4) was obtained in the same manner as in Example 1, except that NBMOH was changed to 50 mol% and MTF was changed to 50 mol%.
<<Modification step>>
The ring-opening polymer hydrogenate (A-1) was changed to the ring-opening polymer hydrogenate (A-4), the amount of triethylamine was changed to 355.5 parts, and the amount of methacrylic acid chloride was changed to 204.2 parts. A cyclic olefin polymer (B-4), which is a modified product of the hydrogenated ring-opening polymer, was obtained by performing the same operation as in Example 1 except for the above (see the formula below). The cyclic olefin polymer (B-4) had a weight average molecular weight of 22,000 and a molecular weight distribution of 2.14 as measured by GPC.
According to 1 H-NMR measurement, the methacryloyl modification rate of the hydrogenated ring-opening polymer (A-4) was 100%, and the methacryloyl-modified NBMOH-derived structural unit in the cyclic olefin polymer (B-4) was The content was confirmed to be 50 mol %.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(比較例1)
 樹脂組成物の調製に際し、環状オレフィン重合体(B-1)に代えて以下のようにして調製した環状オレフィン重合体(B-5)を用い、且つ架橋剤(IV)としての「OPE-2St 1200」(三菱ガス化学社製、数平均分子量:1,200、上記式(VIII)の構造を有する。)50部を加え、そしてアニソールに代えてテトラリンを用いた以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて上記に従って各種評価を行った。結果を表2に示す。
<環状オレフィン重合体(B-5)の合成>
<<開環重合及び水添工程>>
 MTFを55モル%にし、エチリデンテトラシクロドデセン(以下、「ETD」と略記する。)を30モル%加えた以外は実施例1と同様の操作を行い、開環重合体水素添加物(A-5)を得た。
<<変性工程>>
 開環重合体水素添加物(A-1)を開環重合体水素添加物(A-5)に変更し、トリエチルアミンの量を355.5部、メタクリル酸クロライドの量を204.2部に変更した以外は実施例1と同様の操作を行い、開環重合体水素添加物の変性物である環状オレフィン重合体(B-5)を得た(下式参照)。GPC測定による環状オレフィン重合体(B-5)の重量平均分子量は20,000、分子量分布は1.76であった。
 H-NMR測定により、開環重合体水素添加物(A-5)のメタクリロイル変性率は100%であり、環状オレフィン重合体(B-5)中のメタクリロイル変性されたNBMOH由来の構造単位の含有量は15モル%であることが確認された。
(Comparative example 1)
In preparing the resin composition, a cyclic olefin polymer (B-5) prepared as follows was used in place of the cyclic olefin polymer (B-1), and "OPE-2St 1200" (manufactured by Mitsubishi Gas Chemical Company, number average molecular weight: 1,200, having the structure of formula (VIII) above) was added, and tetralin was used in place of anisole. to prepare a resin composition.
And various evaluations were performed according to the above using the obtained resin composition. Table 2 shows the results.
<Synthesis of Cyclic Olefin Polymer (B-5)>
<<Ring-opening polymerization and hydrogenation step>>
The same operation as in Example 1 was carried out, except that MTF was 55 mol% and ethylidenetetracyclododecene (hereinafter abbreviated as "ETD") was added at 30 mol% to obtain a hydrogenated ring-opening polymer (A -5) was obtained.
<<Modification step>>
The ring-opening polymer hydrogenate (A-1) was changed to the ring-opening polymer hydrogenate (A-5), the amount of triethylamine was changed to 355.5 parts, and the amount of methacrylic acid chloride was changed to 204.2 parts. A cyclic olefin polymer (B-5), which is a modified product of the hydrogenated ring-opening polymer, was obtained by performing the same operation as in Example 1 except for the above (see the formula below). The cyclic olefin polymer (B-5) had a weight average molecular weight of 20,000 and a molecular weight distribution of 1.76 as measured by GPC.
According to 1 H-NMR measurement, the methacryloyl modification rate of the hydrogenated ring-opening polymer (A-5) was 100%, and the methacryloyl-modified NBMOH-derived structural unit in the cyclic olefin polymer (B-5) was The content was confirmed to be 15 mol %.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(比較例2)
 樹脂組成物の調製に際し、環状オレフィン重合体(B-1)に代えて、以下のようにして調製した環状オレフィン重合体(B-6)を用い、そしてアニソールに代えてテトラリンを用いた以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて上記に従って各種評価を行った。結果を表2に示す。
<環状オレフィン重合体(B-6)の合成>
<<開環重合及び水添工程>>
 合成例1においてMTFをETDに変更した以外は合成例1と同様の操作を行い、開環重合体水素添加物(A-6)を得た。
<<変性工程>>
 開環重合体水素添加物(A-1)を開環重合体水素添加物(A-6)に変更し、トリエチルアミンの量を94.5部、メタクリル酸クロライドの量を53.8部に変更した以外は実施例1と同様の操作を行い、開環重合体水素添加物の変性物である環状オレフィン重合体(B-6)を得た(下式参照)。GPC測定による環状オレフィン重合体(B-6)の重量平均分子量は17,700、分子量分布は2.62であった。
 H-NMR測定により、環状オレフィン重合体(A-6)のメタクリロイル変性率は100%であり、環状オレフィン重合体(B-6)中のメタクリロイル変性されたNBMOH由来の構造単位の含有量は15モル%であることが確認された。
(Comparative example 2)
In the preparation of the resin composition, the cyclic olefin polymer (B-6) prepared as follows was used instead of the cyclic olefin polymer (B-1), and tetralin was used instead of anisole. A resin composition was prepared in the same manner as in Example 1.
And various evaluations were performed according to the above using the obtained resin composition. Table 2 shows the results.
<Synthesis of cyclic olefin polymer (B-6)>
<<Ring-opening polymerization and hydrogenation step>>
A hydrogenated ring-opening polymer (A-6) was obtained in the same manner as in Synthesis Example 1, except that MTF was changed to ETD.
<<Modification step>>
The ring-opening polymer hydrogenate (A-1) was changed to the ring-opening polymer hydrogenate (A-6), the amount of triethylamine was changed to 94.5 parts, and the amount of methacrylic acid chloride was changed to 53.8 parts. A cyclic olefin polymer (B-6), which is a modified product of the hydrogenated ring-opening polymer, was obtained by performing the same operation as in Example 1 except for the above (see the formula below). The cyclic olefin polymer (B-6) had a weight average molecular weight of 17,700 and a molecular weight distribution of 2.62 as measured by GPC.
According to 1 H-NMR measurement, the methacryloyl modification rate of the cyclic olefin polymer (A-6) was 100%, and the content of the methacryloyl-modified NBMOH-derived structural unit in the cyclic olefin polymer (B-6) was It was confirmed to be 15 mol %.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(比較例3)
 樹脂組成物の調製に際し、環状オレフィン重合体(B-1)に代えて、以下のようにして調製した変性付加重合体である環状オレフィン重合体(B-7)を用い、そしてアニソールに代えてテトラリンを用いた以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて上記に従って各種評価を行った。結果を表2に示す。
<環状オレフィン重合体(B-7)の合成>
<<付加重合工程>>
 スケールを20倍にした点を除き、Macromolecules 29,2761(1996)に記載されている方法に従い、ノルボルネンとNBMOHの付加重合体(A-7)を合成した。
<<変性工程>>
 開環重合体水素添加物(A-1)を付加重合体(A-7)に変更し、トリエチルアミンの量を170.4部、メタクリル酸クロライドの量を95.3部に変更した以外は実施例1と同様の操作を行い、変性付加重合体である環状オレフィン重合体(B-7)を得た(下式参照)。GPC測定による環状オレフィン重合体(B-7)の重量平均分子量は28,100、分子量分布は1.84であった。
 H-NMR測定により、付加重合体(A-7)のメタクリロイル変性率は100%であり、環状オレフィン重合体(B-7)中のメタクリロイル変性されたNBMOH由来の構造単位の含有量は15モル%であることが確認された。
(Comparative Example 3)
In preparing the resin composition, instead of the cyclic olefin polymer (B-1), a cyclic olefin polymer (B-7), which is a modified addition polymer prepared as follows, is used, and anisole is replaced with A resin composition was prepared in the same manner as in Example 1, except that tetralin was used.
And various evaluations were performed according to the above using the obtained resin composition. Table 2 shows the results.
<Synthesis of Cyclic Olefin Polymer (B-7)>
<<Addition polymerization step>>
An addition polymer of norbornene and NBMOH (A-7) was synthesized according to the method described in Macromolecules 29, 2761 (1996), except that the scale was increased 20 times.
<<Modification step>>
The ring-opening polymer hydrogenated product (A-1) was changed to the addition polymer (A-7), the amount of triethylamine was changed to 170.4 parts, and the amount of methacrylic acid chloride was changed to 95.3 parts. A cyclic olefin polymer (B-7), which is a modified addition polymer, was obtained by the same procedure as in Example 1 (see the formula below). The weight average molecular weight of the cyclic olefin polymer (B-7) measured by GPC was 28,100, and the molecular weight distribution was 1.84.
According to 1 H-NMR measurement, the methacryloyl modification rate of the addition polymer (A-7) was 100%, and the content of the methacryloyl-modified NBMOH-derived structural unit in the cyclic olefin polymer (B-7) was 15. was confirmed to be mol %.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(比較例4)
 比較例3と同様にして環状オレフィン重合体(B-7)を調製した。そして、樹脂組成物の調製に際し、環状オレフィン重合体(B-1)に代えて、環状オレフィン重合体(B-7)を用い、且つ架橋剤(IV)としての「OPE-2St 1200」(三菱ガス化学社製、数平均分子量:1,200、上記式(VIII)の構造を有する。)50部を加え、そしてアニソールに代えてテトラリンを用いた以外は、実施例1と同様にして樹脂組成物を調製した。
 そして、得られた樹脂組成物を用いて上記に従って各種評価を行った。結果を表2に示す。
(Comparative Example 4)
A cyclic olefin polymer (B-7) was prepared in the same manner as in Comparative Example 3. Then, in preparing the resin composition, the cyclic olefin polymer (B-7) is used instead of the cyclic olefin polymer (B-1), and "OPE-2St 1200" (Mitsubishi Gas Kagaku Co., Ltd., number average molecular weight: 1,200, having the structure of the above formula (VIII). prepared the product.
And various evaluations were performed according to the above using the obtained resin composition. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表1~2より、構造単位(I)及び構造単位(II)含有し且つそれらの含有割合の合計が80モル%以上である環状オレフィン重合体と、ラジカル開始剤とを含む実施例1~9の樹脂組成物を用いれば、現像液として環状ケトンを用いた場合のパターニング特性に優れる樹脂膜を形成し得ることが分かる。 From Tables 1 and 2, Examples 1 to 9 containing a cyclic olefin polymer containing the structural unit (I) and the structural unit (II) and having a total content ratio of 80 mol% or more and a radical initiator It can be seen that the resin composition can form a resin film having excellent patterning properties when a cyclic ketone is used as a developer.
 本発明の環状オレフィン重合体を含む樹脂組成物によれば、現像液として環状ケトンを用いた場合のパターニング特性に優れる樹脂膜を形成することができる。 According to the resin composition containing the cyclic olefin polymer of the present invention, it is possible to form a resin film with excellent patterning properties when a cyclic ketone is used as a developer.

Claims (5)

  1.  環状オレフィン重合体と、ラジカル開始剤とを含む樹脂組成物であって、
     前記環状オレフィン重合体は、下記式(I)で示される構造単位(I)と、下記式(II)で示される構造単位(II)とを含み、前記環状オレフィン重合体に含まれる全構造単位の量を100モル%とした場合に、前記環状オレフィン重合体中の前記構造単位(I)の含有割合と前記構造単位(II)の含有割合の合計が80モル%以上である、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     式(I)中、R~Rは少なくとも一つがラジカル架橋性基であり、
     ラジカル架橋性基に該当しないR~Rは、それぞれ独立して、水素原子、アルキル基又は芳香環基であり、ラジカル架橋性基に該当しないR~Rのうち二つが一緒になって環を形成していてもよく、
     mは0以上4以下の整数である。
    Figure JPOXMLDOC01-appb-C000002
     式(II)中、R~Rの少なくとも一つが芳香環基であるか、又はR~Rのうち二つが一緒になって芳香環含有構造を形成しており、
     芳香環基に該当せず且つ芳香環含有構造も形成しないR~Rは、それぞれ独立して、水素原子又はアルキル基であり、
     nは0以上4以下の整数である。
    A resin composition comprising a cyclic olefin polymer and a radical initiator,
    The cyclic olefin polymer includes a structural unit (I) represented by the following formula (I) and a structural unit (II) represented by the following formula (II), and all structural units contained in the cyclic olefin polymer is 100 mol%, the sum of the content of the structural unit (I) and the content of the structural unit (II) in the cyclic olefin polymer is 80 mol% or more. .
    Figure JPOXMLDOC01-appb-C000001
    In formula (I), at least one of R 1 to R 4 is a radical crosslinkable group,
    R 1 to R 4 that do not correspond to radical crosslinkable groups are each independently a hydrogen atom, an alkyl group or an aromatic ring group, and two of R 1 to R 4 that do not correspond to radical crosslinkable groups may form a ring,
    m is an integer of 0 or more and 4 or less.
    Figure JPOXMLDOC01-appb-C000002
    In formula (II), at least one of R 5 to R 8 is an aromatic ring group, or two of R 5 to R 8 together form an aromatic ring-containing structure,
    R 5 to R 8 which do not correspond to an aromatic ring group and do not form an aromatic ring-containing structure are each independently a hydrogen atom or an alkyl group,
    n is an integer of 0 or more and 4 or less.
  2.  前記環状オレフィン重合体に含まれる全構造単位の量を100モル%とした場合に、前記環状オレフィン重合体中の前記構造単位(II)の含有割合が70モル%以上である、請求項1に記載の樹脂組成物。 2. The method according to claim 1, wherein the content of the structural unit (II) in the cyclic olefin polymer is 70 mol% or more when the amount of all structural units contained in the cyclic olefin polymer is 100 mol%. The described resin composition.
  3.  前記ラジカル架橋性基がスチリル骨格とアクリレート骨格の少なくとも一方を有する、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the radical crosslinkable group has at least one of a styryl skeleton and an acrylate skeleton.
  4.  重合性不飽和結合を少なくとも二つ有する架橋剤を更に含む、請求項1~3の何れかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, further comprising a cross-linking agent having at least two polymerizable unsaturated bonds.
  5.  前記架橋剤が、下記式(III)で示される架橋剤(III)と、下記式(IV)で示される架橋剤(IV)の少なくとも一方を含む、請求項4に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
     式(IV)中、Aは二価の有機基であり、a、bは、0以上300以下の整数である。なお、a及びbは同一でも異なっていてもよいが、aとbの一方のみが0である場合は除く。
    The resin composition according to claim 4, wherein the cross-linking agent contains at least one of a cross-linking agent (III) represented by the following formula (III) and a cross-linking agent (IV) represented by the following formula (IV).
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    In formula (IV), A is a divalent organic group, and a and b are integers of 0 or more and 300 or less. Note that a and b may be the same or different, except when only one of a and b is 0.
PCT/JP2022/034479 2021-09-29 2022-09-14 Resin composition WO2023053976A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280057436.7A CN117836339A (en) 2021-09-29 2022-09-14 Resin composition
JP2023551297A JPWO2023053976A1 (en) 2021-09-29 2022-09-14
KR1020247006128A KR20240067232A (en) 2021-09-29 2022-09-14 Resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-160008 2021-09-29
JP2021160008 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023053976A1 true WO2023053976A1 (en) 2023-04-06

Family

ID=85782447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034479 WO2023053976A1 (en) 2021-09-29 2022-09-14 Resin composition

Country Status (5)

Country Link
JP (1) JPWO2023053976A1 (en)
KR (1) KR20240067232A (en)
CN (1) CN117836339A (en)
TW (1) TW202330660A (en)
WO (1) WO2023053976A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075985A (en) * 2011-09-30 2013-04-25 Nippon Zeon Co Ltd Crosslinking complex, crosslinked complex, and method for production of the crosslinked complex
JP2013203892A (en) * 2012-03-28 2013-10-07 Nippon Zeon Co Ltd Polymerizable composition, crosslinkable resin molding, crosslinked resin molding and laminate
WO2016031766A1 (en) * 2014-08-26 2016-03-03 日本ゼオン株式会社 Crosslinkable resin molded body, crosslinked resin molded body and laminate
WO2016031765A1 (en) * 2014-08-26 2016-03-03 日本ゼオン株式会社 Crosslinkable resin molded body, crosslinked resin molded body and laminate
WO2016147984A1 (en) * 2015-03-13 2016-09-22 京セラ株式会社 Resin composition, prepreg, metal-clad laminate, and wiring board
JP2018039950A (en) * 2016-09-09 2018-03-15 京セラ株式会社 Resin composition, prepreg, metal-clad laminate, and wiring board
WO2020072776A1 (en) * 2018-10-03 2020-04-09 Materia, Inc. Polymers for specialty applications
WO2022070871A1 (en) * 2020-09-29 2022-04-07 日本ゼオン株式会社 Negative photosensitive resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075985A (en) * 2011-09-30 2013-04-25 Nippon Zeon Co Ltd Crosslinking complex, crosslinked complex, and method for production of the crosslinked complex
JP2013203892A (en) * 2012-03-28 2013-10-07 Nippon Zeon Co Ltd Polymerizable composition, crosslinkable resin molding, crosslinked resin molding and laminate
WO2016031766A1 (en) * 2014-08-26 2016-03-03 日本ゼオン株式会社 Crosslinkable resin molded body, crosslinked resin molded body and laminate
WO2016031765A1 (en) * 2014-08-26 2016-03-03 日本ゼオン株式会社 Crosslinkable resin molded body, crosslinked resin molded body and laminate
WO2016147984A1 (en) * 2015-03-13 2016-09-22 京セラ株式会社 Resin composition, prepreg, metal-clad laminate, and wiring board
JP2018039950A (en) * 2016-09-09 2018-03-15 京セラ株式会社 Resin composition, prepreg, metal-clad laminate, and wiring board
WO2020072776A1 (en) * 2018-10-03 2020-04-09 Materia, Inc. Polymers for specialty applications
WO2022070871A1 (en) * 2020-09-29 2022-04-07 日本ゼオン株式会社 Negative photosensitive resin composition

Also Published As

Publication number Publication date
CN117836339A (en) 2024-04-05
TW202330660A (en) 2023-08-01
KR20240067232A (en) 2024-05-16
JPWO2023053976A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
KR101824945B1 (en) Layered body, kit for organic semiconductor production, and resist composition for organic semiconductor production
TWI282040B (en) Silicone-based chemical-amplification positive-working photoresist composition
JP2016012104A (en) Positive resist composition and production method thereof, and resist pattern production method using the positive resist composition
CN111538210B (en) Positive photoresist composition and method for forming photoresist pattern
JP3928702B2 (en) Photosensitive resin composition
TW200815498A (en) Crosslinkable prepolymer, process for production thereof, and use thereof
TW201800426A (en) Method for producing polymer, method for producing negative photosensitive resin composition, method for producing resin membrane, method for producing electronic device and polymer
WO2023127582A1 (en) Polymer, method for producing same, resin composition, and electronic component
WO2022070871A1 (en) Negative photosensitive resin composition
JP4179164B2 (en) Radiation sensitive resin composition and pattern forming method
JP5413097B2 (en) Radiation sensitive resin composition and laminate
WO2023053976A1 (en) Resin composition
WO2004029720A1 (en) Radiation-sensitive resin composition, patterned resin film, method for formation of the film, and use thereof
KR20220029663A (en) Pattern forming method, resist material, and pattern forming apparatus
TW201111911A (en) Photosensitive resin composition, photosensitive resin laminate, and method for forming resist pattern
CN110892326B (en) Photosensitive resin composition and cured film
WO2022210326A1 (en) Fluorine resin, composition, photocrosslinked product, and electronic device provided therewith
JP4876597B2 (en) Method for preparing radiation-sensitive resin composition
WO2022181561A1 (en) Resin composition
JP2001188343A (en) Photosensitive resin composition
WO2024095777A1 (en) Resin composition
JP3984586B2 (en) Conjugate polymer pattern forming composition and pattern forming method using the same
KR102669132B1 (en) Resin compositions and electronic components
JP2018169547A (en) Photosensitive film with support and method for producing the same
WO2022080195A1 (en) Radiation-sensitive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875847

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551297

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280057436.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE