WO2022080195A1 - Radiation-sensitive resin composition - Google Patents

Radiation-sensitive resin composition Download PDF

Info

Publication number
WO2022080195A1
WO2022080195A1 PCT/JP2021/036865 JP2021036865W WO2022080195A1 WO 2022080195 A1 WO2022080195 A1 WO 2022080195A1 JP 2021036865 W JP2021036865 W JP 2021036865W WO 2022080195 A1 WO2022080195 A1 WO 2022080195A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
resin composition
sensitive resin
acid
film
Prior art date
Application number
PCT/JP2021/036865
Other languages
French (fr)
Japanese (ja)
Inventor
綾子 江頭
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN202180068371.1A priority Critical patent/CN116406453A/en
Priority to JP2022557395A priority patent/JPWO2022080195A1/ja
Priority to KR1020237010832A priority patent/KR20230086669A/en
Publication of WO2022080195A1 publication Critical patent/WO2022080195A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface

Definitions

  • the present invention relates to a radiation-sensitive resin composition, and more particularly to a radiation-sensitive resin composition that can be suitably used for forming a flattening film, a protective film, an insulating film, and the like used for electronic components.
  • Various resin films are provided as a flattening film, a protective film, an insulating film, etc. on electronic components such as a liquid crystal display device, an organic EL display device, an integrated circuit element, a solid-state image sensor, and a touch panel.
  • a rewiring layer is formed by using a patterned interlayer insulating film (passivation film). Then, for the pattern-formed interlayer insulating film, for example, the radiation-sensitive resin composition applied on the substrate is prebaked, the obtained coating film is exposed and developed to form a pattern, and then the pattern-formed coating film is formed. It is formed by exposing and post-baking the film to cure it (see, for example, Patent Document 1).
  • the resin composition used for forming a resin film such as a patterned interlayer insulating film includes, for example, an alkali-soluble resin, a quinonediazide compound, and a photoacid having a maximum absorption wavelength shorter than the maximum absorption wavelength of the quinonediazide compound.
  • a positive radiation-sensitive resin composition containing a generator and the like has been proposed (see, for example, Patent Document 2).
  • a resin film (cured film) is satisfactorily formed even if a heat treatment such as post-baking is performed at a low temperature.
  • a radiation-sensitive resin composition there is a demand for a radiation-sensitive resin composition to be obtained.
  • a low temperature for example, 150 ° C. or lower, preferably 130 ° C. or lower
  • the chemical resistance and insulation reliability of the obtained resin film may decrease.
  • an object of the present invention is to provide a radiation-sensitive resin composition capable of forming a resin film having excellent chemical resistance and insulation reliability even when heat-treated at a low temperature.
  • the present inventor has conducted diligent studies for the purpose of solving the above problems.
  • the present inventor includes an alkali-soluble resin, an acid generator that decomposes when irradiated with radiation to generate an acid having a pKa of a predetermined value or less, and a cross-linking agent, and the decomposition rate of the acid generator.
  • the present invention has been newly found that a resin film having excellent chemical resistance and insulation reliability can be formed even when heat-treated at a low temperature by using a radiation-sensitive resin composition having a value equal to or higher than a predetermined value. Completed.
  • the present invention aims to advantageously solve the above problems, and the radiation-sensitive resin composition of the present invention contains an alkali-soluble resin (A) and a generated acid having a pKa of -3 or less. It contains a certain acid generator (B) and a cross-linking agent (C), and the decomposition rate of the acid generator (B) is 40% or more.
  • the radiation-sensitive resin composition can be used. A resin film having excellent chemical resistance and insulation reliability can be formed even when heat-treated at a low temperature.
  • pKa of the generated acid refers to the measured value obtained by the method described in OECD test guideline 112 "Dissociation Constants in Water".
  • the decomposition rate of the acid generator (B) can be measured by the method described in the examples of the present specification.
  • the "decomposition rate of the acid generator (B)" in the present invention is as follows. You can ask for it on the street.
  • the acid generator (B) is a mixture containing the acid generators (B 1 ) to (B n ) having a pKa of the generated acid of -3 or less (n is an integer of 2 or more)
  • the decomposition rate of B) is determined by setting the decomposition rates of the acid generators (B 1 ) to (B n ) measured according to the methods described in the examples of the present specification to R 1 to R n , and the radiosensitizing resin composition.
  • the content of each acid generator (B 1 ) to (B n ) in the substance is S 1 to Sn , and the total content of the acid generators (B 1 ) to (B n ) in the radiation-sensitive resin composition.
  • T is an amount (that is, the content of the acid generator (B)).
  • Decomposition rate of acid generator (B) ⁇ (R i ⁇ S i ) / T [i is an integer of 1 or more and n or less]
  • the cross-linking agent (C) contains at least one of an epoxy compound and an oxetane compound. If the cross-linking agent (C) contains at least one of an epoxy compound and an oxetane compound, the resin film formed by heat treatment at a low temperature using a radiation-sensitive resin composition exhibits further excellent chemical resistance and insulation reliability. can do.
  • the content of the acid generator (B) is 0.004 parts by mass or more and 1.2 parts by mass or less with respect to 100 parts by mass of the cross-linking agent (C). Is preferable.
  • the content of the acid generator (B) is within the above-mentioned predetermined range, the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition exhibits further excellent chemical resistance and insulation reliability. It is also excellent in tensile strength and low water absorption.
  • the radiation-sensitive resin composition of the present invention preferably contains a resin in which the alkali-soluble resin (A) has a carboxyl group. If a resin having a carboxyl group is used as the alkali-soluble resin (A), the resin film formed by heat treatment at a low temperature using a radiation-sensitive resin composition can exhibit further excellent chemical resistance and insulation reliability. can. Further, the radiation-sensitive resin composition of the present invention preferably contains at least one selected from the group consisting of an acrylic resin, an amidoimide resin, and a cyclic olefin resin in the alkali-soluble resin (A), preferably a cyclic olefin. It is more preferable to contain a based resin.
  • the radiation-sensitive resin composition of the present invention further contains the quinonediazide compound (D). If the radiation-sensitive resin composition further contains the quinonediazide compound (D), the resin film formed by heat-treating at a low temperature using the radiation-sensitive resin composition can exhibit further excellent insulation reliability. Has excellent tensile strength.
  • the present invention it is possible to provide a radiation-sensitive resin composition capable of forming a resin film having excellent chemical resistance and insulation reliability even when heat-treated at a low temperature.
  • the radiation-sensitive resin composition of the present invention is not particularly limited, and is not particularly limited, and is, for example, a resin film contained in an electronic component such as a liquid crystal display device, an organic EL display device, an integrated circuit element, a solid-state image pickup device, and a touch panel.
  • an electronic component such as a liquid crystal display device, an organic EL display device, an integrated circuit element, a solid-state image pickup device, and a touch panel.
  • it can be used when forming a flattening film, a protective film, an insulating film, etc.
  • the radiation-sensitive resin composition of the present invention can be suitably used when forming an insulating film, and can be particularly preferably used when forming an insulating film constituting a touch panel.
  • the radiation-sensitive resin composition of the present invention contains an alkali-soluble resin (A), an acid generator (B) in which the pKa of the generated acid is equal to or less than a predetermined value, and a cross-linking agent (C), and is optionally contained.
  • a quinone diazide compound, an additive and at least one selected from the group consisting of a solvent may further be included.
  • the decomposition rate of the acid generator (B) contained in the radiation-sensitive resin composition of the present invention is at least a predetermined value.
  • the radiation-sensitive resin composition of the present invention can form a resin film having excellent chemical resistance and insulation reliability even when heat-treated at a low temperature.
  • the alkali-soluble resin (A) is not particularly limited as long as it is a resin capable of alkaline development.
  • the alkali-soluble resin is not particularly limited, and is, for example, a novolak resin, an acrylic resin containing a (meth) acrylic acid ester monomer unit, a polyimide resin, a polybenzoxazole resin, an amidoimide resin, and a vinylphenol resin.
  • a cyclic olefin resin which is a resin containing a cyclic olefin monomer unit.
  • an acrylic resin an amidoimide resin, and a cyclic olefin resin
  • a cyclic olefin resin it is preferable to use an acrylic resin, an amidoimide resin, and a cyclic olefin resin
  • these can be used alone or in combination of two or more.
  • the term "resin or polymer contains a monomer unit” means that "a resin or polymer obtained by using the monomer contains a structural unit derived from a monomer.” It means “is.”
  • the "(meth) acrylic acid ester monomer unit” means "acrylic acid ester monomer unit and / or methacrylic acid ester monomer unit".
  • Specific examples of the monomer capable of forming the (meth) acrylate monomer unit include methyl acrylate, methyl methacrylate and the like.
  • the alkali-soluble resin (A) includes a resin having a carboxyl group. It is preferable to use, and it is more preferable to use an acrylic resin having a carboxyl group, an amidoimide resin, and a cyclic olefin resin. Further, from the viewpoint of lowering the water absorption of the resin film, it is more preferable to use a cyclic olefin resin having a carboxyl group as the alkali-soluble resin (A).
  • the cyclic olefin resin having a carboxyl group suitable as the alkali-soluble resin (A) has a cyclic structure (ali ring or aromatic ring) derived from the cyclic olefin monomer and a carboxyl group in the main chain. It is a homopolymer or copolymer of a cyclic olefin monomer.
  • Examples of the monomer for constituting the cyclic olefin resin having a carboxyl group include a cyclic olefin monomer (a) having a carboxyl group, a cyclic olefin monomer (b) having a polar group other than the carboxyl group, and a polarity.
  • a cyclic olefin monomer (c) having no group and a monomer (d) other than the cyclic olefin monomer hereinafter, these monomers are simply referred to as “monomers (a) to (d)”. ) Is mentioned.
  • the monomers (b), (c), and (d) can be used as long as the characteristics are not affected.
  • the ratio of the cyclic olefin monomer unit having a carboxyl group to all the structural units of the cyclic olefin resin having a carboxyl group is usually 30% by mass or more and 100% by mass or less, preferably 50% by mass or more and 100% by mass or less.
  • the cyclic olefin resin having a carboxyl group is preferably composed of the monomer (a), the monomer (b) and / or the monomer (c), and the monomer (a). And the monomer (b) are more preferable.
  • the monomer (a) include 5-hydroxycarbonylbicyclo [2.2.1] hept-2-ene and 5-methyl-5-hydroxycarbonylbicyclo [2.2.1] hept-2-. En, 5-carboxymethyl-5-hydroxycarbonylbicyclo [2.2.1] hept-2-ene, 5,6-dihydroxycarbonylbicyclo [2.2.1] hept-2-ene, 4-hydroxycarbonyltetra Cyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-9-ene, 9-methyl-9-hydroxycarbonyltetracyclo [6.2.1.1 3,6 .
  • Examples thereof include carboxy group-containing cyclic olefins such as dodeca-4-ene.
  • carboxyl group-containing cyclic olefin monomers (a) may be used alone or in combination of two or more.
  • polar group other than the carboxyl group contained in the cyclic olefin monomer (b) having a polar group other than the carboxyl group include an ester group (collectively referred to as an alkoxycarbonyl group and an aryloxycarbonyl group) and N.
  • ester group collectively referred to as an alkoxycarbonyl group and an aryloxycarbonyl group
  • N -Substituted imide group, epoxy group, halogen atom, cyano group, carbonyloxycarbonyl group (acid anhydride residue of dicarboxylic acid), alkoxy group, carbonyl group, tertiary amino group, sulfone group, acryloyl group and the like can be mentioned. ..
  • an ester group, an N-substituted imide group and a cyano group are preferable, an ester group and an N-substituted imide group are more preferable, and an N-substituted imide group is particularly preferable.
  • the monomer (b) include the following cyclic olefins.
  • the cyclic olefin having an ester group include 5-acetoxybicyclo [2.2.1] hept-2-ene, 5-methoxycarbonylbicyclo [2.2.1] hept-2-ene, and 5-methyl-.
  • Dodeca-4-en and the like can be mentioned.
  • Examples of the cyclic olefin having an N-substituted imide group include N-phenylbicyclo [2.2.1] hepto-5-en-2,3-dicarboxyimide and N- (2-ethylhexyl) -1-isopropyl.
  • Examples of the cyclic olefin having a cyano group include 9-cyanotetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-methyl-9-cyanotetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodeca-4-ene, 5-cyanobicyclo [2.2.1] hept-2-ene and the like can be mentioned.
  • Examples of the cyclic olefin having a halogen atom include 9-chlorotetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-methyl-9-chlorotetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-en and the like can be mentioned.
  • the cyclic olefin monomer (b) having a polar group other than these carboxyl groups may be used alone or in combination of two or more.
  • cyclic olefin monomer (c) having no polar group examples include bicyclo [2.2.1] hept-2-ene (also referred to as “norbornene”) and 5-ethyl-bicyclo [2.2]. .1] Hept-2-ene, 5-butyl-bicyclo [2.2.1] hept-2-ene, 5-ethylidene-bicyclo [2.2.1] hept-2-ene, 5-methylidene-bicyclo [2.2.1] Hept-2-ene, 5-vinyl-bicyclo [2.2.1] Hept-2-ene, tricyclo [5.2.1.0 2,6 ] Deca-3,8- Diene (trivial name: dicyclopentadiene), tetracyclo [10.2.1.0 2,1 1 0 4,9 ] pentadeca-4,6,8,13-tetraene, tetracyclo [6.2.1.1 3 ] , 6 .
  • Dodeca-4-ene (also referred to as "tetracyclododecene"), 9-methyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ]
  • Dodeca-4-ene, tetracyclo [9.2.1.0 2,10 . 0 3,8 ] Tetradeca-3,5,7,12-Tetraene, Pentacyclo [9.2.1.1 3,9 . 0 2,10 ] Pentadeca-12-en and the like can be mentioned.
  • the cyclic olefin monomer (c) having no polar group may be used alone or in combination of two or more.
  • the monomer (d) other than the cyclic olefin examples include chain olefins.
  • chain olefins examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene and 4-.
  • Methyl-1-pentene 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, ⁇ -olefins having 2 to 20 carbon atoms such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene; 1,4-hexadiene, 4-methyl-1 , 4-Hexadiene, 5-methyl-1,4-hexadiene, non-conjugated diene such as 1,7-octadiene and the like.
  • the monomer (d) other than these cyclic olefins can be used alone or in combination of two or more.
  • the cyclic olefin resin having a carboxyl group used in the present invention is obtained by polymerizing the monomer (a) together with one or more monomers selected from the monomers (b) to (d), if desired. can get.
  • the polymer obtained by the polymerization may be further hydrogenated.
  • the hydrogenated polymer is also included in the cyclic olefin resin having a carboxyl group.
  • the cyclic olefin resin having a carboxyl group used in the present invention is prepared by introducing a carboxyl group into the cyclic olefin resin having no carboxyl group using a known modifier and hydrogenating as desired. Can also be obtained. Here, hydrogenation may be performed on the polymer before the introduction of the carboxyl group. Further, the cyclic olefin resin having a carboxyl group used in the present invention may be obtained by a method of further introducing a carboxyl group into the cyclic olefin resin having a carboxyl group.
  • the weight average molecular weight (Mw) of the alkali-soluble resin (A) is usually in the range of 1,000 to 1,000,000, preferably 1,500 to 100,000, more preferably 2,000 to 10,000. be.
  • the molecular weight distribution of the alkali-soluble resin (A) is usually 4 or less, preferably 3 or less, and more preferably 2.5 or less in terms of weight average molecular weight / number average molecular weight (Mw / Mn) ratio.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the alkali-soluble resin (A) are determined as polystyrene-equivalent values by gel permeation chromatography (GPC) using a solvent such as tetrahydrofuran as an eluent. The value.
  • the acid generator (B) is a compound that decomposes when irradiated with radiation to generate an acid having a pKa of a predetermined value or less.
  • the acid generator (B) contained in the radiation-sensitive resin composition of the present invention has a decomposition rate of a predetermined value or more when irradiated with radiation. Since the radiation-sensitive resin composition of the present invention contains the above-mentioned predetermined acid generator (B), radiation can be applied to a coating film formed by using the radiation-sensitive resin composition which may be patterned.
  • a resin film having excellent chemical resistance and insulation reliability is formed. can do. Further, the resin film has excellent tensile strength and low water absorption (that is, excellent in low water absorption).
  • the radiation is not particularly limited, and is, for example, visible light; ultraviolet rays; X-rays; single-wavelength rays such as g-rays, h-rays, and i-rays; KrF excimer laser light, ArF excimer laser light, and the like.
  • Laser beam particle beam such as an electron beam; and the like.
  • the pKa of the acid (generated acid) generated when the acid generating agent (B) is irradiated with radiation and decomposed needs to be -3 or less, preferably -6 or less, and-. It is more preferably 8 or less, further preferably -12 or less, and even more preferably -14 or less.
  • the pKa of the acid generated from the acid generator (B) is -3 or less, a resin having excellent chemical resistance and insulation reliability even when heat-treated at a low temperature using a radiation-sensitive resin composition. A film can be formed.
  • the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition has further excellent tensile strength and low water absorption. Can be demonstrated.
  • the pKa of the acid generated from the acid generator (B) is not particularly limited, but is preferably ⁇ 20 or more.
  • the acid generated from the acid generator (B) is trifluoromethanesulfonic acid from the viewpoint of further improving the insulation reliability of the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition. preferable.
  • the decomposition rate of the acid generator (B) contained in the radiation-sensitive resin composition needs to be 40% or more, preferably 50% or more, and more preferably 60% or more. It is preferably 70% or more, and more preferably 70% or more.
  • the decomposition rate of the acid generator (B) is 40% or more, a resin film having excellent chemical resistance can be formed even when heat-treated at a low temperature using a radiation-sensitive resin composition. ..
  • the decomposition rate of the acid generator (B) is equal to or higher than the above lower limit, the resin film formed by heat treatment at a low temperature using a radiation-sensitive resin composition has further excellent insulation reliability, tensile strength and low water absorption. It can exert its sexuality.
  • the decomposition rate of the acid generator (B) is not particularly limited, but can be 100% or less.
  • Examples of the compound that can be used as the acid generator (B) include an oxime sulfonate compound and an imide sulfonate compound.
  • an oxime sulfonate compound PAG169 (manufactured by BASF Japan, manufactured by BASF Japan, compound name: (E) -7-methoxy-3- (2,2,2-trifluoro-1- ⁇ ) represented by the following formula (I) [(Trifluoromethanesulfonyl) oxy] imino ⁇ ethyl, generated acid: trifluoromethanesulfonic acid) -2H-chromen-2-one), and PAG121 (manufactured by BASF Japan, compound name: represented by the following formula (III)).
  • X is an oxygen atom or a sulfur atom
  • R 3 may have at least one structure selected from the group consisting of a silyl group, an alkyloxycarbonyl group, and an ether bond. It is a hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 1 to 20 carbon atoms which may have at least one of a carboxylic acid group and an oxycarbonyl group.
  • Specific examples of the compound represented by the formula (II) or the formula (VI) include NP-TM2 (manufactured by San-Apro Co., Ltd., generated acid: trifluoromethanesulfonic acid).
  • PAG169 as the acid generator (B) from the viewpoint of further improving the insulation reliability of the resin film formed by heat-treating at a low temperature using the radiation-sensitive resin composition.
  • these acid generators (B) can be used individually by 1 type or by mixing 2 or more types.
  • the content of the acid generator (B) in the radiation-sensitive resin composition is preferably 0.004 part by mass or more, preferably 0.01 with respect to 100 parts by mass of the cross-linking agent (C) described later. It is more preferably 0 parts by mass or more, further preferably 0.04 parts by mass or more, preferably 1.2 parts by mass or less, more preferably 0.2 parts by mass or less, and 0. It is more preferably 16 parts by mass or less.
  • the content of the acid generator (B) in the radiation-sensitive resin composition is equal to or higher than the above lower limit, the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition has further excellent chemical resistance. , Insulation reliability, tensile strength and low water absorption can be exhibited.
  • the content of the acid generator (B) in the radiation-sensitive resin composition is not more than the above upper limit, the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition is further excellent in insulation. It can exhibit reliability, tensile strength and low water absorption.
  • the content of the acid generator (B) in the radiation-sensitive resin composition is preferably 0.003 parts by mass or more, preferably 0.0075 parts by mass, based on 100 parts by mass of the alkali-soluble resin (A). More than parts, more preferably 0.03 parts by mass or more, further preferably 0.04 parts by mass or more, preferably 0.8 parts by mass or less, and 0.15 parts by mass. It is more preferably 0 parts by mass or less, further preferably 0.12 parts by mass or less, and further preferably 0.1 parts by mass or less.
  • the content of the acid generator (B) in the radiation-sensitive resin composition is equal to or higher than the above lower limit, the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition has further excellent chemical resistance.
  • the content of the acid generator (B) in the radiation-sensitive resin composition is not more than the above upper limit, the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition is further excellent in insulation. It can exhibit reliability, tensile strength and low water absorption.
  • Cross-linking agent (C) examples include a compound that forms a cross-linked structure between the cross-linking agent molecules by heating, and a compound that reacts with the alkali-soluble resin (A) to form a cross-linked structure.
  • the cross-linking agent (C) is not particularly limited, but preferably contains at least one of an epoxy compound and an oxetane compound.
  • a cross-linking agent (C) containing at least one of an epoxy compound and an oxetane compound the chemical resistance and insulation reliability of the resin film formed by heat treatment at a low temperature using a radiation-sensitive resin composition can be further improved. Can be done.
  • the cross-linking agent (C) may contain a cross-linking agent (other cross-linking agent) other than the epoxy compound and the oxetane compound, or epoxy.
  • the cross-linking agent (C) may be a cross-linking agent containing at least one of an epoxy compound and an oxetane compound and another cross-linking agent, or a cross-linking agent consisting of at least one of an epoxy compound and an oxetane compound. You may.
  • the epoxy compound is a compound containing at least one epoxy group in the molecule.
  • Specific examples of the epoxy compound that can be used as the cross-linking agent (C) include, for example, an epoxy compound having a dicyclopentadiene as a skeleton (trade name “HP-7200”, manufactured by DIC), 2,2-bis (hydroxymethyl).
  • 1,2-Epoxy-4- (2-oxylanyl) cyclohexane adduct of -1-butanol (15-functional alicyclic epoxy resin having a cyclohexane skeleton and a terminal epoxy group, trade name "EHPE3150", manufactured by Daicel) , Epoxy 3-cyclohexene-1,2-dicarboxylate bis (3-cyclohexenylmethyl) modified ⁇ -caprolactone (epoxy cyclic trifunctional epoxy resin, trade name "Epolide GT301", manufactured by Daicel), Butanetetra Tetra carboxylate (3,4-epoxycyclohexylmethyl) modified ⁇ -caprolactone (aliphatic cyclic tetrafunctional epoxy resin, trade name "Epolide GT401", manufactured by Daicel), 3,4-epoxycyclohexenylmethyl-3' , 4'-Epoxycyclohexene carboxylate (trade names "Seloxiside 2021", "Se
  • the oxetane compound is a compound containing at least one oxetanyl group in the molecule.
  • examples of the oxetane compound include 3-ethyl-3- ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane (trade name "OXT-221", manufactured by Toa Synthetic Co., Ltd.), 1,4-bis [().
  • the cross-linking agent (C) includes tetra butanetetracarboxylate (3,4-epoxy). It is particularly preferable to use (cyclohexylmethyl) modified ⁇ -caprolactone (trade name “Epolide GT401”, manufactured by Daicel).
  • cross-linking agent other cross-linking agent
  • examples of the cross-linking agent (other cross-linking agent) other than the above-mentioned epoxy compound and oxetane compound include the compound having two or more alkoxymethyl groups and two or more methylol groups described in International Publication No. 2019/065262.
  • a compound having, a compound having two or more isocyanate groups, and the like can be used.
  • These other cross-linking agents can be used alone or in combination of two or more.
  • the content of the cross-linking agent (C) in the radiation-sensitive resin composition is preferably 50 parts by mass or more and 60 parts by mass or more with respect to 100 parts by mass of the alkali-soluble resin (A). Is more preferably 70 parts by mass or more, further preferably 75 parts by mass or more, and preferably 90 parts by mass or less.
  • the content of the cross-linking agent (C) in the radiation-sensitive resin composition is at least the above lower limit, the chemical resistance of the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition is further improved. be able to.
  • the content of the cross-linking agent (C) in the radiation-sensitive resin composition is not more than the above upper limit, the residual film ratio is sufficiently sufficient when the coating film formed by using the radiation-sensitive resin composition is developed. Can be secured.
  • the radiation-sensitive resin composition of the present invention optionally further comprises a quinonediazide compound (D).
  • the quinonediazide compound (D) is a compound that decomposes to generate a carboxylic acid when irradiated with radiation.
  • the coating film formed by using the radiation-sensitive resin composition of the present invention containing the quinone diazide compound (D) is irradiated with radiation, the alkali solubility of the irradiated portion increases. Therefore, the radiation-sensitive resin composition of the present invention containing the quinonediazide compound (D) can be used as a positive radiation-sensitive resin composition.
  • the quinone diazide compound (D) is a component different from the above-mentioned acid generator (B). That is, it is assumed that the pKa of the carboxylic acid (generated acid) generated by the decomposition of the quinone diazide compound (D) by irradiation with radiation is more than -3.
  • the radiation is not particularly limited, and is, for example, visible light; ultraviolet rays; X-rays; single-wavelength rays such as g-rays, h-rays, and i-rays; KrF excimer laser light, ArF excimer laser light, and the like.
  • Laser beam particle beam such as an electron beam; and the like.
  • the radiation-sensitive resin composition of the present invention further contains the quinonediazide compound (D)
  • the insulation reliability of the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition is further improved, and the insulation reliability is further improved.
  • the tensile strength of the resin film can be increased.
  • the quinone diazide compound (D) for example, an ester compound of a quinone diazide sulfonic acid halide and a compound having a phenolic hydroxyl group can be used.
  • specific examples of the quinonediazide sulfonic acid halide include 1,2-naphthoquinonediazide-5-sulfonic acid chloride (6-diazo-5,6-dihydro-5-oxo-1-naphthalenesulfonic acid chloride), 1, Examples thereof include 2-naphthoquinone diazide-4-sulfonic acid chloride, 1,2-benzoquinone diazide-5-sulfonic acid chloride and the like.
  • the compound having a phenolic hydroxyl group examples include 1,1,3-tris (2,5-dimethyl-4-hydroxyphenyl) -3-phenylpropane and 4,4'-[1- [4- [4-]. [1- [4-Hydroxyphenyl] -1-methylethyl] phenyl] Ethiliden] Bisphenol, 2,3,4-trihydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2-bis (4-bis) Hydroxyphenyl) Propane, Tris (4-hydroxyphenyl) methane, 1,1,1-Tris (4-hydroxy-3-methylphenyl) ethane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, Examples thereof include an oligomer of a novolak resin, an oligomer obtained by copolymerizing a compound having one or more phenolic hydroxyl groups with dicyclopentadiene, and the like.
  • the quinone diazide compound (D) includes 1,2-naphthoquinone diazide-5-sulfonic acid chloride (6-diazo-5,6-dihydro-5-oxo-1-naphthalene sulfonic acid chloride) and 4,4'. -[1- [4- [1- [4-Hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] ester compounds with bisphenol are preferred.
  • the quinone diazide compound (D) can be used alone or in combination of two or more.
  • the content of the quinonediazide compound (D) in the radiation-sensitive resin composition is preferably 10 parts by mass or more, preferably 20 parts by mass or more, based on 100 parts by mass of the alkali-soluble resin (A). Is more preferably 34 parts by mass or more, more preferably 60 parts by mass or less, and even more preferably 50 parts by mass or less.
  • the content of the quinonediazide compound (D) in the radiation-sensitive resin composition is at least the above lower limit, a sufficient residual film ratio is secured when the coating film formed using the radiation-sensitive resin composition is developed. can do.
  • the content of the quinonediazide compound (D) in the radiation-sensitive resin composition is at least the above lower limit, the insulation reliability of the resin film formed by heat-treating the radiation-sensitive resin composition at a low temperature is further improved. At the same time, the tensile strength of the resin film can be further increased.
  • the content of the quinonediazide compound (D) in the radiation-sensitive resin composition is not more than the above upper limit, the resolution is lowered or the residue is reduced when the coating film formed by using the radiation-sensitive resin composition is patterned. Can be suppressed from occurring.
  • the additive that can be arbitrarily contained in the radiation-sensitive resin composition of the present invention include a sensitizer, a silane coupling agent, an antioxidant, a surfactant and the like.
  • the sensitizer functions to transfer the energy of the irradiated radiation to another substance.
  • the sensitizer is not particularly limited, and a known sensitizer can be used (see, for example, International Publication No. 2019/065262).
  • the silane coupling agent functions to enhance the adhesion between the coating film or the resin film obtained by using the radiation-sensitive resin composition of the present invention and the substrate on which the coating film or the resin film is formed. ..
  • the silane coupling agent is not particularly limited, and known ones can be used (see, for example, Japanese Patent Application Laid-Open No. 2015-94910).
  • the antioxidant can improve the light resistance and heat resistance of the coating film or the resin film obtained by using the radiation-sensitive resin composition of the present invention.
  • the antioxidant is not particularly limited, and known phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, amine-based antioxidants, lactone-based antioxidants, and the like are used. (See, for example, International Publication No. 2015/033901).
  • the surfactant can improve the coatability of the radiation-sensitive resin composition of the present invention.
  • the surfactant is not particularly limited, and is known as a silicone-based surfactant, a fluorine-based surfactant, a polyoxyalkylene-based surfactant, a methacrylic acid copolymer-based surfactant, and an acrylic acid copolymer.
  • Systematic surfactants and the like can be used (see, eg, International Publication No. 2015/033901).
  • these additives can be used individually by 1 type or by mixing 2 or more types. Further, the amount of the additive to be blended in the radiation-sensitive resin composition can be arbitrarily adjusted.
  • the solvent that can be arbitrarily contained in the radiation-sensitive resin composition of the present invention is not particularly limited, and a known solvent can be used as the solvent of the resin composition.
  • a known solvent include linear ketones, alcohols, alcohol ethers, esters, cellosolve esters, propylene glycols, diethylene glycols such as diethylene glycol ethylmethyl ether, saturated ⁇ -lactones, and hydrocarbons.
  • hydrocarbons, aromatic hydrocarbons, and polar solvents such as dimethylacetamide, dimethylformamide and N-methylacetamide, N-methyl-2-pyrrolidone (see, eg, International Publication No. 2015/033901). ..
  • the amount of the solvent in the radiation-sensitive resin composition is not particularly limited and can be appropriately adjusted within a range in which the desired effect of the present invention can be obtained.
  • the amount of the solvent in the radiation-sensitive resin composition can be adjusted so that the total concentration of the components other than the solvent is 20% by mass or more and 50% by mass or less.
  • the radiation-sensitive resin composition of the present invention can be prepared by mixing the above-mentioned components by a known method and optionally filtering.
  • a known mixer such as a stirrer, a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, and a fill mix can be used for mixing.
  • a general filtration method using a filter medium such as a filter can be adopted for filtering the mixture.
  • the resin film using the radiation-sensitive resin composition of the present invention is not particularly limited, and for example, a coating film is provided on a substrate forming the resin film by using the radiation-sensitive resin composition of the present invention. After that, it can be formed by irradiating the coating film with radiation and further heating the coating film after the irradiation.
  • the coating film provided on the substrate may be patterned.
  • the arrangement of the coating film on the substrate on which the resin film is formed is not particularly limited, and after forming the coating film on the substrate by using a method such as a coating method or a film laminating method, the coating film is arbitrarily applied. This can be done by patterning the film.
  • the coating film formed by the coating method can be formed by coating the radiation-sensitive resin composition on the substrate and then heating and drying (prebaking) the coating film.
  • the method for applying the radiation-sensitive resin composition include a spray coating method, a spin coating method, a roll coating method, a die coating method, a doctor blade method, a rotary coating method, a bar coating method, a screen printing method, and an inkjet method.
  • Various methods such as can be adopted.
  • the heating and drying conditions differ depending on the type and blending ratio of the components contained in the radiation-sensitive resin composition, but the heating temperature is usually 30 to 150 ° C., preferably 60 to 120 ° C., and the heating time. Is usually 0.5 to 90 minutes, preferably 1 to 60 minutes, and more preferably 1 to 30 minutes.
  • a radiation-sensitive resin composition is applied onto a B-stage film-forming substrate such as a resin film or a metal film, and the B-stage film is heat-dried (prebaked) to form a B-stage film. After obtaining it, it can be performed by laminating this B stage film on a substrate.
  • the application of the radiation-sensitive resin composition on the substrate for forming the B stage film and the heat-drying of the radiation-sensitive resin composition are the same as the application and heat-drying of the radiation-sensitive resin composition in the above-mentioned coating method. Can be done.
  • the laminating can be performed by using a crimping machine such as a pressure laminator, a press, a vacuum laminator, a vacuum press, and a roll laminator.
  • the developing solution is brought into contact with the coating film having the latent image pattern to reveal the pattern. It can be carried out by using a known patterning method such as a method of causing.
  • the radiation is particularly limited as long as it can improve the solubility of the irradiation unit in a developing solution by, for example, decomposing the above-mentioned quinonediazide compound (D) to generate a carboxylic acid or the like.
  • Any radiation can be used without. Specifically, for example, visible light; ultraviolet rays; X-rays; single-wavelength rays such as g-rays, h-rays, and i-rays; laser beams such as KrF excimer laser light and ArF excimer laser light; particle beams such as electron beams. ; Etc. can be used. It should be noted that these radiations can be used alone or in combination of two or more.
  • a known method such as a method of irradiating radiation through a desired mask pattern using a reduced projection exposure apparatus can be used. ..
  • the irradiation conditions of the radiation are appropriately selected according to the radiation to be used.
  • the wavelength of the radiation can be in the range of 365 nm or more and 436 nm or less, and the irradiation amount is 1500 mJ / cm 2 or less. can do.
  • a known alkaline developing solution such as an aqueous solution of an alkaline compound described in International Publication No. 2015/141719 can be used.
  • the method and conditions for bringing the developer into contact with the coating film are not particularly limited, and for example, the method and conditions described in International Publication No. 2015/141719 can be adopted.
  • the coating film formed in the pattern as described above can be rinsed with a rinsing solution in order to remove the development residue, if necessary. After the rinsing treatment, the remaining rinsing liquid may be further removed by compressed air or compressed nitrogen.
  • the resin film can be formed by irradiating the coating film with radiation and then heating (post-baking) the coating film to cure it.
  • the irradiation of radiation to the coating film when forming the resin film is usually performed on the entire surface of the coating film.
  • the above-mentioned acid generator (B) is decomposed to generate an acid, thereby improving the chemical resistance and insulation reliability of the resin film even when the coating film is heated at a low temperature.
  • Any radiation can be used without particular limitation as long as it can be used. Specifically, for example, visible light; ultraviolet rays; X-rays; single-wavelength rays such as g-rays, h-rays, and i-rays; laser beams such as KrF excimer laser light and ArF excimer laser light; particle beams such as electron beams. ; Etc. can be used.
  • these radiations can be used alone or in combination of two or more.
  • the irradiation conditions of the radiation are appropriately selected according to the radiation to be used.
  • the wavelength of the radiation can be in the range of 365 nm or more and 436 nm or less, and the irradiation amount is 3000 mJ / cm 2 or less. can do.
  • the coating film can be heated without particular limitation using, for example, a hot plate, an oven, or the like.
  • the heating may be performed in an inert gas atmosphere, if necessary.
  • the inert gas include nitrogen, argon, helium, neon, xenon, krypton and the like. Among these, nitrogen and argon are preferable, and nitrogen is particularly preferable.
  • the temperature at which the coating film is heated can be, for example, 150 ° C. or lower, preferably 100 ° C. or higher and 130 ° C. or lower.
  • the radiation-sensitive resin composition of the present invention it is possible to obtain a resin film having excellent chemical resistance and insulation reliability even if the temperature at which the coating film is heated is equal to or lower than the above upper limit value. Further, if the temperature at which the coating film is heated is set to the above lower limit value or more, the chemical resistance of the resin film can be sufficiently improved.
  • the time for heating the coating film can be appropriately selected depending on the area and thickness of the coating film, the equipment used, and the like, and can be, for example, 3 to 60 minutes.
  • the base resin composition was prepared by the same operation as described above except that the acid generator (B) was not added.
  • the acid generator (B) was not added.
  • After spin-coating the radiation-sensitive resin composition for measurement on a glass substrate it is heated (prebaked) at 110 ° C. for 2 minutes using a hot plate before irradiation, which comprises a resin film having a film thickness of 2 ⁇ m and a glass substrate.
  • a laminate for measurement was obtained.
  • the absorbance A1 of the measurement laminate before irradiation was measured with a spectrophotometer V-560 (manufactured by JASCO Corporation).
  • the absorbance at the wavelength having the highest absorbance in the range of 300 to 450 nm was defined as A1.
  • the measurement laminate before irradiation was irradiated with radiation (g, h, i-line, wavelength: 365 to 436 nm) at an irradiation amount of 1000 mJ / cm 2 , to obtain a measurement laminate after irradiation.
  • the absorbance A2 of the measurement laminate after irradiation was measured by the same operation as described above.
  • the laminate obtained by heating (prebaking) at 110 ° C. for 2 minutes using a hot plate is irradiated with an irradiation amount of 1000 mJ / cm 2 .
  • the radiation-sensitive resin compositions prepared in each Example and Comparative Example were spin-coated on a silicon substrate, and then heated (prebaked) at 110 ° C. for 2 minutes using a hot plate to form a resin film.
  • the resin film is irradiated with radiation (g, h, i-rays, wavelength: 365 to 436 nm) at an irradiation amount of 1000 mJ / cm 2 , and then using an oven, the temperature is 130 ° C. for 20 minutes in an air atmosphere.
  • the resin film was thermally cured by heating (post-baking).
  • the radiation-sensitive resin composition prepared in each Example and Comparative Example was applied onto a silicon wafer having an aluminum thin film having a film thickness of 100 nm by a spin coating method, and a hot plate was used. It was heated (prebaked) at 110 ° C. for 2 minutes to form a resin film having a film thickness of 2.0 ⁇ m.
  • the formed resin film was irradiated with radiation (g, h, i-line, wavelength: 365 to 436 nm) at an irradiation amount of 1000 mJ / cm 2 . Next, using an oven, post-baking was performed by heating at 130 ° C.
  • the obtained laminate was immersed in a 0.1 mol / L hydrochloric acid aqueous solution, and the aluminum thin film located between the silicon wafer and the resin film was dissolved in the hydrochloric acid aqueous solution to peel off the resin film from the silicon wafer. Then, the peeled resin film was washed with water and dried. The dried resin film was cut into a size of 10 mm ⁇ 50 mm to obtain a test piece, and a tensile test was performed on this test piece to measure the tensile elongation.
  • a tensile test is performed using an autograph (manufactured by Shimadzu Corporation, "AGS-5kNG") under the conditions of a chuck distance of 20 mm, a tensile speed of 2 mm / min, and a measurement temperature of 23 ° C.
  • the tensile elongation (%) of the piece was measured.
  • Five test pieces were cut out from the resin film obtained above, and the average value of the measured values for each test piece was calculated. Based on the average value of the tensile elongation, the tensile strength of the resin film was evaluated according to the following criteria.
  • B Tensile elongation is 3% or more and less than 5%
  • C Tensile elongation is less than 3%
  • a Cu thin film having a film thickness of 100 nm was formed on a glass substrate using a sputtering device. Next, a Cu thin film was patterned using a photoresist to prepare a comb-shaped electrode substrate having a Cu wiring width of 7 ⁇ m.
  • the radiation-sensitive resin composition prepared in each Example and Comparative Example was applied onto such a comb-shaped electrode substrate by a spin coating method, and heated (prebaked) at 110 ° C. for 2 minutes using a hot plate to obtain a film thickness. A 2.0 ⁇ m resin film was formed.
  • the formed resin film was irradiated with radiation (g, h, i-line, wavelength: 365 to 436 nm) at an irradiation amount of 1000 mJ / cm 2 .
  • the resin film is post-baked by heating it at 130 ° C. for 20 minutes in an air atmosphere using an oven, so that the resin film-Cu wiring-glass substrate, which is a test piece, is laminated in this order.
  • a laminate was obtained.
  • the obtained test piece was placed in a high temperature and humidity chamber having a temperature of 110 ° C. and a humidity of 85% for 400 hours with a voltage of 15 V applied, and migration (insulation resistance value was 1) for each test piece.
  • the radiation-sensitive resin composition prepared in each Example and Comparative Example was spin-coated on a silicon substrate, and then heated (prebaked) at 110 ° C. for 2 minutes using a hot plate to obtain a resin having a film thickness of 1.5 ⁇ m. A film was formed. Next, the resin film is irradiated with radiation (g, h, i-rays, wavelength: 365 to 436 nm) at an irradiation amount of 1000 mJ / cm 2 , and then using an oven, the temperature is 130 ° C. for 20 minutes in an air atmosphere. After heating (post-baking), the laminate composed of the resin film and the silicon substrate was cut into 10 mm squares to obtain test pieces.
  • radiation g, h, i-rays, wavelength: 365 to 436 nm
  • the test piece was placed in a glass bottle containing ultrapure water, and the glass bottle was placed in a constant temperature and humidity chamber at 60 ° C. and 90 RH% and left for 20 hours. Next, the test piece was taken out from the glass bottle, the water on the surface of the test piece was dried, and then the number of water molecules in the test piece was measured with a temperature rising desorption gas analyzer (heating condition: 130 ° C. ⁇ 30 minutes). , The water absorption amount (mg / g) of the resin film was calculated by the following formula.
  • Two test pieces were cut out from each laminated body, and the average value of the water absorption amount (mg / g) obtained for each test piece was calculated. Based on the average value of water absorption, the low water absorption of the resin film was evaluated according to the following criteria. The smaller the value of water absorption, the more excellent the resin film is in low water absorption.
  • B Water absorption is 1 mg / g or more
  • the obtained polymerization reaction solution was placed in an autoclave and stirred at 150 ° C. and a hydrogen pressure of 4 MPa for 5 hours to carry out a hydrogenation reaction to obtain a polymer solution containing a cyclic olefin polymer (A-1). ..
  • the obtained cyclic olefin polymer (A-1) has a polymerization conversion rate of 99.9%, a polystyrene-equivalent weight average molecular weight of 7,200, a number average molecular weight of 4,700, a molecular weight distribution of 1.52, and a hydrogen conversion rate. was 99.7%.
  • the solid content concentration of the obtained polymer solution of the cyclic olefin polymer (A-1) was 34.4%.
  • Example 1 100 parts of the cyclic olefin polymer (A-1) as the alkali-soluble resin (A) and (E) -7-methoxy-3- (2) represented by the following formula (I) as the acid generator (B).
  • the mixture was filtered through a filter made of polytetrafluoroethylene having a pore size of 0.45 ⁇ m to prepare a radiation-sensitive resin composition. Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. In addition, the decomposition rate of the acid generator (B) used above was measured. The results are shown in Table 1.
  • Examples 2 to 7 A radiation-sensitive resin composition was prepared in the same manner as in Example 1 except that the amount of the acid generator (B) used was changed as shown in Table 1. Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 1.
  • Example 8 As the cross-linking agent (C), isophthalic acid, which is an oxetane compound, is used instead of 75 parts of the epoxy compound, butanetetracarboxylate (3,4-epoxycyclohexylmethyl) -modified ⁇ -caprolactone (Epolide GT401, manufactured by Daicel).
  • a radiation-sensitive resin composition was prepared in the same manner as in Example 4 except that 75 parts of bis [(3-ethyloxetane-3-yl) methyl] (trade name “OXIPA”, manufactured by Ube Kosan Co., Ltd.) was used. Prepared. Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
  • Example 9 As the cross-linking agent (C), instead of 75 parts of the epoxy compound tetrabutanetetracarboxylate (3,4-epoxycyclohexylmethyl) modified ⁇ -caprolactone (Epolide GT401 manufactured by Daicel Co., Ltd.), the epoxy compound butanetetracarbonate is used. 60 parts of tetra (3,4-epoxycyclohexylmethyl) modified ⁇ -caprolactone (Epolide GT401, manufactured by Daicel) and 1,2-epoxy of 2,2-bis (hydroxymethyl) -1-butanol, which is an epoxy compound.
  • the epoxy compound tetrabutanetetracarboxylate (3,4-epoxycyclohexylmethyl) modified ⁇ -caprolactone
  • the epoxy compound butanetetracarbonate 60 parts of tetra (3,4-epoxycyclohexylmethyl) modified ⁇ -caprolactone (Epolide GT401, manufactured by Daicel) and
  • a radiation-sensitive resin composition was prepared in the same manner as in Example 4 except that 15 parts of a 4- (2-oxylanyl) cyclohexane adduct (EHPE3150 manufactured by Daicel Co., Ltd.) was used. Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
  • a radiation-sensitive resin composition was prepared in the same manner as in Example 4 except that 15 parts of the name “OXIPA” (manufactured by Ube Kosan Co., Ltd.) were used. Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
  • Example 11 As the cross-linking agent (C), instead of 75 parts of the epoxy compound tetrabutanetetracarboxylate (3,4-epoxycyclohexylmethyl) modified ⁇ -caprolactone (Epolide GT401 manufactured by Daicel Co., Ltd.), the epoxy compound butanetetracarbonate is used. 60 parts of tetra (3,4-epoxycyclohexylmethyl) modified ⁇ -caprolactone (Epolide GT401, manufactured by Daicel) and 15 parts of polyfunctional epoxypolybutadiene (Epolide PB4700, manufactured by Daicel), which is an epoxy compound, were used. Except for the above, a radiation-sensitive resin composition was prepared in the same manner as in Example 4. Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
  • Example 12 4,4'-[1- [4- [1- (4-Hydroxyphenyl) -1-methylethyl] phenyl] ethylidene] bisphenol and 6-diazo-5,6-dihydro-5 as quinonediazide compound (D)
  • a radiation-sensitive resin composition was prepared in the same manner as in Example 4 except that 34 parts of an ester compound with -oxonaphthalene-1-sulfonic acid chloride (TS-250, manufactured by Toyo Synthetic Industry Co., Ltd.) was not used. Prepared. Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
  • Example 13 As the alkali-soluble resin (A), 100 parts of an acrylic resin having a carboxyl group obtained by the synthesis described later was used instead of 100 parts of the cyclic olefin polymer (A-1) which is a cyclic olefin resin. , A radiation-sensitive resin composition was prepared in the same manner as in Example 4. Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
  • ⁇ Acrylic resin synthesis example> In a glass ampoule containing a stirrer, 100.0 g of isobornyl methacrylate, 16.6 g of methacrylic acid, 0.26 g of 2,4-diphenyl-4-methyl-1-pentene, 4.2 g of azobisisobutyronitrile, 217 g of cyclopentanone was added and sealed, and pressurization and depressurization with nitrogen gas were repeated 10 times to remove oxygen in the system. The mixture was heated to 60 ° C. and reacted for 6 hours. After adding 200 g of tetrahydrofuran to the reaction solution, the reaction solution was added dropwise to 3000 mL of MeOH to precipitate a polymer.
  • the precipitate was collected by filtration and then dried at 50 ° C. for 24 hours to obtain an acrylic resin.
  • the polystyrene-equivalent weight average molecular weight of the acrylic resin by GPC analysis was 28,000, and the molecular weight distribution was 2.8.
  • Example 14 As the alkali-soluble resin (A), 100 parts of an amidoimide resin (EMG-1015 manufactured by DIC Corporation) having a carboxyl group was used instead of 100 parts of the cyclic olefin polymer (A-1) which is a cyclic olefin resin. Except for the above, a radiation-sensitive resin composition was prepared in the same manner as in Example 4. Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
  • a radiosensitive resin composition was prepared in the same manner as in Example 4 except that a mixture with 0.05 part was used. Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2. After measuring the decomposition rates of the acid generators (B 1 ) and (B 2 ) used above, the decomposition rate of the acid generator (B) was calculated by the following formula. The acid generator (B) ) was 43%.
  • Decomposition rate of acid generator (B) [%] [Amount of acid generator (B 1 ) added x Decomposition rate of acid generator (B 1 ) + Amount of acid generator (B 2 ) added x Acid generator Decomposition rate of (B 2 )] / Total amount of acid generators (B 1 ) and (B 2 ) added
  • ON BASF Japan, PAG169
  • Example 18 As the acid generator (B), (E) -7-methoxy-3- (2,2,2-trifluoro-1- ⁇ [(trifluoromethanesulfonyl) oxy] imino ⁇ ethyl) -2H-chromen-2- On (manufactured by BASF Japan, PAG169) instead of 0.1 part, PAG121 (manufactured by BASF Japan, compound name: 2- [2- (4-methylphenylsulfonyloxyimino) thiophene represented by the following formula (III))
  • a radiation-sensitive resin composition was prepared. Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. In addition, the decomposition rate of the acid generator (B) used above was measured. The results are shown in Table 2.
  • the radiation-sensitive radiation of Examples 1 to 18 containing an alkali-soluble resin, an acid generator having a pKa of the generated acid of -3 or less, and a cross-linking agent, and having a decomposition rate of the acid generator of 40% or more.
  • the sex resin composition can form a resin film having excellent chemical resistance and insulation reliability even when heat-treated at a low temperature.
  • the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin compositions of Comparative Examples 1 and 3 in which an acid generator having a pKa of generated acid of -3 or less was not used has chemical resistance and chemical resistance. It can be seen that it is inferior to any of the insulation reliability.
  • the present invention it is possible to provide a radiation-sensitive resin composition capable of forming a resin film having excellent chemical resistance and insulation reliability even when heat-treated at a low temperature.

Abstract

The purpose of the present invention is to provide a radiation-sensitive resin composition that makes it possible to form a resin film having excellent chemical resistance and insulation reliability even when subjected to heat treatment at a low temperature. This radiation-sensitive resin composition is characterized by including an alkali-soluble resin (A), an acid generator (B) which generates an acid with a pKa of -3 or less, and a crosslinking agent (C), and by the decomposition rate of the acid generator (B) being at least 40%.

Description

感放射線性樹脂組成物Radiation-sensitive resin composition
 本発明は、感放射線性樹脂組成物に関し、特には、電子部品に用いられる平坦化膜、保護膜および絶縁膜などの形成に好適に使用し得る感放射線性樹脂組成物に関するものである。 The present invention relates to a radiation-sensitive resin composition, and more particularly to a radiation-sensitive resin composition that can be suitably used for forming a flattening film, a protective film, an insulating film, and the like used for electronic components.
 液晶表示装置、有機EL表示装置、集積回路素子、固体撮像素子、タッチパネルなどの電子部品には、平坦化膜、保護膜、絶縁膜等として種々の樹脂膜が設けられている。 Various resin films are provided as a flattening film, a protective film, an insulating film, etc. on electronic components such as a liquid crystal display device, an organic EL display device, an integrated circuit element, a solid-state image sensor, and a touch panel.
 具体的には、例えば、有機EL表示装置や液晶表示装置などでは、パターン形成された層間絶縁膜(パッシベーション膜)を用いて再配線層を形成している。そして、パターン形成された層間絶縁膜は、例えば、基板上に塗布した感放射線性樹脂組成物をプリベークし、得られた塗膜を露光および現像してパターンを形成した後、パターン形成された塗膜を露光およびポストベークして硬化させることにより、形成されている(例えば、特許文献1参照)。 Specifically, for example, in an organic EL display device or a liquid crystal display device, a rewiring layer is formed by using a patterned interlayer insulating film (passivation film). Then, for the pattern-formed interlayer insulating film, for example, the radiation-sensitive resin composition applied on the substrate is prebaked, the obtained coating film is exposed and developed to form a pattern, and then the pattern-formed coating film is formed. It is formed by exposing and post-baking the film to cure it (see, for example, Patent Document 1).
 また、パターン形成された層間絶縁膜などの樹脂膜の形成に用いられる樹脂組成物としては、例えば、アルカリ可溶性樹脂と、キノンジアジド化合物と、キノンジアジド化合物の極大吸収波長より短い極大吸収波長を有する光酸発生剤とを含有するポジ型感放射線性樹脂組成物などが提案されている(例えば、特許文献2参照)。 The resin composition used for forming a resin film such as a patterned interlayer insulating film includes, for example, an alkali-soluble resin, a quinonediazide compound, and a photoacid having a maximum absorption wavelength shorter than the maximum absorption wavelength of the quinonediazide compound. A positive radiation-sensitive resin composition containing a generator and the like has been proposed (see, for example, Patent Document 2).
国際公開第2014/030441号International Publication No. 2014/030441 特開2016-042127号公報Japanese Unexamined Patent Publication No. 2016-042127
 ここで、近年では、樹脂膜を形成する基板として耐熱性の低い基板も使用し得るようにする観点から、ポストベークなどの熱処理を低温で行っても樹脂膜(硬化膜)を良好に形成し得る感放射線性樹脂組成物が求められている。
 しかし、上記従来の感放射線性樹脂組成物では、低温(例えば150℃以下、好ましくは130℃以下)で熱処理すると、得られる樹脂膜の耐薬品性および絶縁信頼性が低下する場合があった。
Here, in recent years, from the viewpoint of making it possible to use a substrate having low heat resistance as a substrate for forming a resin film, a resin film (cured film) is satisfactorily formed even if a heat treatment such as post-baking is performed at a low temperature. There is a demand for a radiation-sensitive resin composition to be obtained.
However, in the above-mentioned conventional radiation-sensitive resin composition, when heat-treated at a low temperature (for example, 150 ° C. or lower, preferably 130 ° C. or lower), the chemical resistance and insulation reliability of the obtained resin film may decrease.
 そこで、本発明は、低温で熱処理した場合であっても耐薬品性および絶縁信頼性に優れる樹脂膜を形成可能な感放射線性樹脂組成物を提供することを目的とする。 Therefore, an object of the present invention is to provide a radiation-sensitive resin composition capable of forming a resin film having excellent chemical resistance and insulation reliability even when heat-treated at a low temperature.
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、アルカリ可溶性樹脂と、放射線を照射されると分解してpKaが所定値以下である酸を発生する酸発生剤と、架橋剤とを含み、当該酸発生剤の分解率が所定値以上である感放射線性樹脂組成物を用いれば、低温で熱処理した場合であっても耐薬品性および絶縁信頼性に優れる樹脂膜を形成可能であることを新たに見出し、本発明を完成させた。 The present inventor has conducted diligent studies for the purpose of solving the above problems. The present inventor includes an alkali-soluble resin, an acid generator that decomposes when irradiated with radiation to generate an acid having a pKa of a predetermined value or less, and a cross-linking agent, and the decomposition rate of the acid generator. The present invention has been newly found that a resin film having excellent chemical resistance and insulation reliability can be formed even when heat-treated at a low temperature by using a radiation-sensitive resin composition having a value equal to or higher than a predetermined value. Completed.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の感放射線性樹脂組成物は、アルカリ可溶性樹脂(A)と、発生酸のpKaが-3以下である酸発生剤(B)と、架橋剤(C)とを含み、前記酸発生剤(B)の分解率が40%以上であることを特徴とする。このように、アルカリ可溶性樹脂と、発生酸のpKaが所定値以下であり、且つ、分解率が所定値以上である酸発生剤と、架橋剤とを含む感放射線性樹脂組成物を用いれば、低温で熱処理した場合であっても耐薬品性および絶縁信頼性に優れる樹脂膜を形成することができる。
 なお、本発明において、発生酸のpKaは、OECDテストガイドライン112「Dissociation Constants in Water」に記載の方法で得られた測定値を指す。
 また、本発明において、酸発生剤(B)の分解率は、本明細書の実施例に記載の方法により測定することができる。
 なお、酸発生剤(B)が発生酸のpKaが-3以下である酸発生剤を2種以上含む混合物である場合、本発明における「酸発生剤(B)の分解率」は、下記の通りに求めることができる。即ち、酸発生剤(B)が発生酸のpKaが-3以下である酸発生剤(B)~(B)を含む混合物(nは2以上の整数)である場合、酸発生剤(B)の分解率は、本明細書の実施例に記載の方法に従って測定された各酸発生剤(B)~(B)の分解率をR~Rとし、感放射線性樹脂組成物中における各酸発生剤(B)~(B)の含有量をS~Sとし、感放射線性樹脂組成物中における酸発生剤(B)~(B)の合計含有量(即ち、酸発生剤(B)の含有量)をTとして、下記の式により求めることができる。
  酸発生剤(B)の分解率=Σ(R・S)/T 〔iは1以上n以下の整数〕
That is, the present invention aims to advantageously solve the above problems, and the radiation-sensitive resin composition of the present invention contains an alkali-soluble resin (A) and a generated acid having a pKa of -3 or less. It contains a certain acid generator (B) and a cross-linking agent (C), and the decomposition rate of the acid generator (B) is 40% or more. As described above, if an alkali-soluble resin, an acid generator having a pKa of the generated acid of a predetermined value or less and a decomposition rate of the predetermined value or more, and a cross-linking agent are used, the radiation-sensitive resin composition can be used. A resin film having excellent chemical resistance and insulation reliability can be formed even when heat-treated at a low temperature.
In the present invention, pKa of the generated acid refers to the measured value obtained by the method described in OECD test guideline 112 "Dissociation Constants in Water".
Further, in the present invention, the decomposition rate of the acid generator (B) can be measured by the method described in the examples of the present specification.
When the acid generator (B) is a mixture containing two or more acid generators having a pKa of the generated acid of -3 or less, the "decomposition rate of the acid generator (B)" in the present invention is as follows. You can ask for it on the street. That is, when the acid generator (B) is a mixture containing the acid generators (B 1 ) to (B n ) having a pKa of the generated acid of -3 or less (n is an integer of 2 or more), the acid generator (n) The decomposition rate of B) is determined by setting the decomposition rates of the acid generators (B 1 ) to (B n ) measured according to the methods described in the examples of the present specification to R 1 to R n , and the radiosensitizing resin composition. The content of each acid generator (B 1 ) to (B n ) in the substance is S 1 to Sn , and the total content of the acid generators (B 1 ) to (B n ) in the radiation-sensitive resin composition. It can be calculated by the following formula, where T is an amount (that is, the content of the acid generator (B)).
Decomposition rate of acid generator (B) = Σ (R i · S i ) / T [i is an integer of 1 or more and n or less]
 ここで、本発明の感放射線性樹脂組成物は、前記架橋剤(C)がエポキシ化合物およびオキセタン化合物の少なくとも一方を含むことが好ましい。架橋剤(C)がエポキシ化合物およびオキセタン化合物の少なくとも一方を含めば、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜は、更に優れた耐薬品性および絶縁信頼性を発揮することができる。 Here, in the radiation-sensitive resin composition of the present invention, it is preferable that the cross-linking agent (C) contains at least one of an epoxy compound and an oxetane compound. If the cross-linking agent (C) contains at least one of an epoxy compound and an oxetane compound, the resin film formed by heat treatment at a low temperature using a radiation-sensitive resin composition exhibits further excellent chemical resistance and insulation reliability. can do.
 また、本発明の感放射線性樹脂組成物は、前記酸発生剤(B)の含有量が、前記架橋剤(C)100質量部に対して、0.004質量部以上1.2質量部以下であることが好ましい。酸発生剤(B)の含有量が上記所定の範囲内であれば、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜は更に優れた耐薬品性および絶縁信頼性を発揮し得ると共に、引張強度および低吸水性にも優れている。 Further, in the radiation-sensitive resin composition of the present invention, the content of the acid generator (B) is 0.004 parts by mass or more and 1.2 parts by mass or less with respect to 100 parts by mass of the cross-linking agent (C). Is preferable. When the content of the acid generator (B) is within the above-mentioned predetermined range, the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition exhibits further excellent chemical resistance and insulation reliability. It is also excellent in tensile strength and low water absorption.
 また、本発明の感放射線性樹脂組成物は、前記アルカリ可溶性樹脂(A)がカルボキシル基を有する樹脂を含むことが好ましい。アルカリ可溶性樹脂(A)としてカルボキシル基を有する樹脂を用いれば、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜は更に優れた耐薬品性および絶縁信頼性を発揮することができる。
 さらに、本発明の感放射線性樹脂組成物は、前記アルカリ可溶性樹脂(A)がアクリル樹脂、アミドイミド樹脂、および環状オレフィン系樹脂からなる群より選択される少なくとも1種を含むことが好ましく、環状オレフィン系樹脂を含むことがより好ましい。
Further, the radiation-sensitive resin composition of the present invention preferably contains a resin in which the alkali-soluble resin (A) has a carboxyl group. If a resin having a carboxyl group is used as the alkali-soluble resin (A), the resin film formed by heat treatment at a low temperature using a radiation-sensitive resin composition can exhibit further excellent chemical resistance and insulation reliability. can.
Further, the radiation-sensitive resin composition of the present invention preferably contains at least one selected from the group consisting of an acrylic resin, an amidoimide resin, and a cyclic olefin resin in the alkali-soluble resin (A), preferably a cyclic olefin. It is more preferable to contain a based resin.
 また、本発明の感放射線性樹脂組成物は、キノンジアジド化合物(D)を更に含むことが好ましい。感放射線性樹脂組成物がキノンジアジド化合物(D)を更に含んでいれば、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜は更に優れた絶縁信頼性を発揮し得ると共に、引張強度に優れている。 Further, it is preferable that the radiation-sensitive resin composition of the present invention further contains the quinonediazide compound (D). If the radiation-sensitive resin composition further contains the quinonediazide compound (D), the resin film formed by heat-treating at a low temperature using the radiation-sensitive resin composition can exhibit further excellent insulation reliability. Has excellent tensile strength.
 本発明によれば、低温で熱処理した場合であっても耐薬品性および絶縁信頼性に優れる樹脂膜を形成可能な感放射線性樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a radiation-sensitive resin composition capable of forming a resin film having excellent chemical resistance and insulation reliability even when heat-treated at a low temperature.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
(感放射線性樹脂組成物)
 ここで、本発明の感放射線性樹脂組成物は、特に限定されることなく、例えば、液晶表示装置、有機EL表示装置、集積回路素子、固体撮像素子、タッチパネル等の電子部品が有する樹脂膜(例えば、平坦化膜、保護膜および絶縁膜など)を形成する際に用いることができる。中でも、本発明の感放射線性樹脂組成物は、絶縁膜を形成する際に好適に用いることができ、タッチパネルを構成する絶縁膜を形成する際に特に好適に用いることができる。
(Radiation-sensitive resin composition)
Here, the radiation-sensitive resin composition of the present invention is not particularly limited, and is not particularly limited, and is, for example, a resin film contained in an electronic component such as a liquid crystal display device, an organic EL display device, an integrated circuit element, a solid-state image pickup device, and a touch panel. For example, it can be used when forming a flattening film, a protective film, an insulating film, etc.). Above all, the radiation-sensitive resin composition of the present invention can be suitably used when forming an insulating film, and can be particularly preferably used when forming an insulating film constituting a touch panel.
 そして、本発明の感放射線性樹脂組成物は、アルカリ可溶性樹脂(A)と、発生酸のpKaが所定値以下である酸発生剤(B)と、架橋剤(C)とを含み、任意に、キノンジアジド化合物、添加剤および溶剤からなる群より選択される少なくとも1種を更に含み得る。そして、本発明の感放射線性樹脂組成物に含まれる酸発生剤(B)の分解率は、所定値以上である。 The radiation-sensitive resin composition of the present invention contains an alkali-soluble resin (A), an acid generator (B) in which the pKa of the generated acid is equal to or less than a predetermined value, and a cross-linking agent (C), and is optionally contained. , A quinone diazide compound, an additive and at least one selected from the group consisting of a solvent may further be included. The decomposition rate of the acid generator (B) contained in the radiation-sensitive resin composition of the present invention is at least a predetermined value.
 本発明の感放射線性樹脂組成物は、低温で熱処理した場合であっても耐薬品性および絶縁信頼性に優れる樹脂膜を形成することができる。 The radiation-sensitive resin composition of the present invention can form a resin film having excellent chemical resistance and insulation reliability even when heat-treated at a low temperature.
<アルカリ可溶性樹脂(A)>
 アルカリ可溶性樹脂(A)は、アルカリ現像が可能な樹脂であれば、特に限定されない。アルカリ可溶性樹脂としては、特に限定されることなく、例えば、ノボラック樹脂、(メタ)アクリル酸エステル単量体単位を含む樹脂であるアクリル樹脂、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、アミドイミド樹脂、ビニルフェノール樹脂、および、環状オレフィン単量体単位を含む樹脂である環状オレフィン系樹脂等が挙げられる。中でも、アクリル樹脂、アミドイミド樹脂、および環状オレフィン系樹脂を用いることが好ましく、環状オレフィン系樹脂を用いることがより好ましい。これらは一種単独で、或いは2種以上を混合して用いることができる。
 なお、本明細書において、樹脂または重合体が「単量体単位を含む」とは、「その単量体を用いて得た樹脂または重合体中に単量体由来の構造単位が含まれている」ことを意味する。
 また、本明細書中において、「(メタ)アクリル酸エステル単量体単位」とは、「アクリル酸エステル単量体単位および/またはメタクリル酸エステル単量体単位」を意味する。(メタ)アクリル酸エステル単量体単位を形成し得る単量体の具体例としては、例えば、アクリル酸メチル、メタクリル酸メチル等が挙げられる。
<Alkali-soluble resin (A)>
The alkali-soluble resin (A) is not particularly limited as long as it is a resin capable of alkaline development. The alkali-soluble resin is not particularly limited, and is, for example, a novolak resin, an acrylic resin containing a (meth) acrylic acid ester monomer unit, a polyimide resin, a polybenzoxazole resin, an amidoimide resin, and a vinylphenol resin. , And a cyclic olefin resin which is a resin containing a cyclic olefin monomer unit. Among them, it is preferable to use an acrylic resin, an amidoimide resin, and a cyclic olefin resin, and it is more preferable to use a cyclic olefin resin. These can be used alone or in combination of two or more.
In the present specification, the term "resin or polymer contains a monomer unit" means that "a resin or polymer obtained by using the monomer contains a structural unit derived from a monomer." It means "is."
Further, in the present specification, the "(meth) acrylic acid ester monomer unit" means "acrylic acid ester monomer unit and / or methacrylic acid ester monomer unit". Specific examples of the monomer capable of forming the (meth) acrylate monomer unit include methyl acrylate, methyl methacrylate and the like.
 そして、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜の耐薬品性および絶縁信頼性を更に向上させる観点から、アルカリ可溶性樹脂(A)としては、カルボキシル基を有する樹脂を用いることが好ましく、カルボキシル基を有するアクリル樹脂、アミドイミド樹脂、環状オレフィン樹脂を用いることがより好ましい。更に当該樹脂膜の吸水性を低くする観点からは、アルカリ可溶性樹脂(A)としては、カルボキシル基を有する環状オレフィン系樹脂を用いることがより好ましい。 From the viewpoint of further improving the chemical resistance and insulation reliability of the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition, the alkali-soluble resin (A) includes a resin having a carboxyl group. It is preferable to use, and it is more preferable to use an acrylic resin having a carboxyl group, an amidoimide resin, and a cyclic olefin resin. Further, from the viewpoint of lowering the water absorption of the resin film, it is more preferable to use a cyclic olefin resin having a carboxyl group as the alkali-soluble resin (A).
 ここで、アルカリ可溶性樹脂(A)として好適なカルボキシル基を有する環状オレフィン系樹脂は、主鎖に、環状オレフィン単量体に由来する環状構造(脂環または芳香環)とカルボキシル基とを有する、環状オレフィン単量体の単独重合体または共重合体である。 Here, the cyclic olefin resin having a carboxyl group suitable as the alkali-soluble resin (A) has a cyclic structure (ali ring or aromatic ring) derived from the cyclic olefin monomer and a carboxyl group in the main chain. It is a homopolymer or copolymer of a cyclic olefin monomer.
 カルボキシル基を有する環状オレフィン系樹脂を構成するための単量体としては、カルボキシル基を有する環状オレフィン単量体(a)、カルボキシル基以外の極性基を有する環状オレフィン単量体(b)、極性基を持たない環状オレフィン単量体(c)、および、環状オレフィン単量体以外の単量体(d)(以下、これらの単量体を単に「単量体(a)~(d)」という。)が挙げられる。ここで単量体(b)、(c)、(d)は、特性に影響が無い範囲で使用可能である。
 なお、カルボキシル基を有する環状オレフィン系樹脂の全構造単位中、カルボキシル基を有する環状オレフィン単量体単位の割合は、通常30質量%以上100質量%以下、好ましくは50質量%以上100質量%以下である。そして、カルボキシル基を有する環状オレフィン系樹脂は、単量体(a)と、単量体(b)および/または単量体(c)とから構成されることが好ましく、単量体(a)と単量体(b)とから構成されることが更に好ましい。
Examples of the monomer for constituting the cyclic olefin resin having a carboxyl group include a cyclic olefin monomer (a) having a carboxyl group, a cyclic olefin monomer (b) having a polar group other than the carboxyl group, and a polarity. A cyclic olefin monomer (c) having no group and a monomer (d) other than the cyclic olefin monomer (hereinafter, these monomers are simply referred to as “monomers (a) to (d)”. ) Is mentioned. Here, the monomers (b), (c), and (d) can be used as long as the characteristics are not affected.
The ratio of the cyclic olefin monomer unit having a carboxyl group to all the structural units of the cyclic olefin resin having a carboxyl group is usually 30% by mass or more and 100% by mass or less, preferably 50% by mass or more and 100% by mass or less. Is. The cyclic olefin resin having a carboxyl group is preferably composed of the monomer (a), the monomer (b) and / or the monomer (c), and the monomer (a). And the monomer (b) are more preferable.
 単量体(a)の具体例としては、5-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-メチル-5-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシメチル-5-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5,6-ジヒドロキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、4-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、9-メチル-9-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9,10-ジヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン等のカルボキシ基含有環状オレフィン等が挙げられる。これらのカルボキシル基含有環状オレフィン単量体(a)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いても良い。 Specific examples of the monomer (a) include 5-hydroxycarbonylbicyclo [2.2.1] hept-2-ene and 5-methyl-5-hydroxycarbonylbicyclo [2.2.1] hept-2-. En, 5-carboxymethyl-5-hydroxycarbonylbicyclo [2.2.1] hept-2-ene, 5,6-dihydroxycarbonylbicyclo [2.2.1] hept-2-ene, 4-hydroxycarbonyltetra Cyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-9-ene, 9-methyl-9-hydroxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9,10-dihydroxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] Examples thereof include carboxy group-containing cyclic olefins such as dodeca-4-ene. These carboxyl group-containing cyclic olefin monomers (a) may be used alone or in combination of two or more.
 カルボキシル基以外の極性基を有する環状オレフィン単量体(b)が有する、カルボキシル基以外の極性基の具体例としては、エステル基(アルコキシカルボニル基およびアリーロキシカルボニル基を総称していう。)、N-置換イミド基、エポキシ基、ハロゲン原子、シアノ基、カルボニルオキシカルボニル基(ジカルボン酸の酸無水物残基)、アルコキシ基、カルボニル基、第三級アミノ基、スルホン基、アクリロイル基等が挙げられる。中でも、カルボキシル基以外の極性基としては、エステル基、N-置換イミド基およびシアノ基が好ましく、エステル基およびN-置換イミド基がより好ましく、N-置換イミド基が特に好ましい。 Specific examples of the polar group other than the carboxyl group contained in the cyclic olefin monomer (b) having a polar group other than the carboxyl group include an ester group (collectively referred to as an alkoxycarbonyl group and an aryloxycarbonyl group) and N. -Substituted imide group, epoxy group, halogen atom, cyano group, carbonyloxycarbonyl group (acid anhydride residue of dicarboxylic acid), alkoxy group, carbonyl group, tertiary amino group, sulfone group, acryloyl group and the like can be mentioned. .. Among them, as the polar group other than the carboxyl group, an ester group, an N-substituted imide group and a cyano group are preferable, an ester group and an N-substituted imide group are more preferable, and an N-substituted imide group is particularly preferable.
 そして、単量体(b)の具体例としては、以下のような環状オレフィンが挙げられる。
 エステル基を有する環状オレフィンとしては、例えば、5-アセトキシビシクロ[2.2.1]ヘプト-2-エン、5-メトキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-メチル-5-メトキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、9-アセトキシテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-n-プロポキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-イソプロポキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-n-ブトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチル-9-メトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチル-9-エトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチル-9-n-プロポキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチル-9-イソプロポキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチル-9-n-ブトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-(2,2,2-トリフルオロエトキシカルボニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチル-9-(2,2,2-トリフルオロエトキシカルボニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン等が挙げられる。
 N-置換イミド基を有する環状オレフィンとしては、例えば、N-フェニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-エチルヘキシル)-1-イソプロピル-4-メチルビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボキシイミド、N-(2-エチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-[(2-エチルブトキシ)エトキシプロピル]-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(エンド-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジイルジカルボニル)アスパラギン酸ジメチル等が挙げられる。
 シアノ基を有する環状オレフィンとしては、例えば、9-シアノテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチル-9-シアノテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、5-シアノビシクロ[2.2.1]ヘプト-2-エン等が挙げられる。
 ハロゲン原子を有する環状オレフィンとしては、例えば、9-クロロテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチル-9-クロロテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン等が挙げられる。
 これらのカルボキシル基以外の極性基を有する環状オレフィン単量体(b)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer (b) include the following cyclic olefins.
Examples of the cyclic olefin having an ester group include 5-acetoxybicyclo [2.2.1] hept-2-ene, 5-methoxycarbonylbicyclo [2.2.1] hept-2-ene, and 5-methyl-. 5-Methoxycarbonylbicyclo [2.2.1] hept-2-ene, 9-acetoxytetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-methoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-ethoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-n-propoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-isopropoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-n-butoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-methyl-9-methoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-methyl-9-ethoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-methyl-9-n-propoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-methyl-9-isopropoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-methyl-9-n-butoxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9- (2,2,2-trifluoroethoxycarbonyl) tetracyclo [ 6.2.1.13,6 . 0 2,7 ] Dodeca-4-ene, 9-methyl-9- (2,2,2-trifluoroethoxycarbonyl) tetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-en and the like can be mentioned.
Examples of the cyclic olefin having an N-substituted imide group include N-phenylbicyclo [2.2.1] hepto-5-en-2,3-dicarboxyimide and N- (2-ethylhexyl) -1-isopropyl. -4-Methylbicyclo [2.2.2] Oct-5-en-2,3-dicarboxyimide, N- (2-ethylhexyl) -bicyclo [2.2.1] Hept-5-en-2, 3-Dicarboxyimide, N-[(2-ethylbutoxy) ethoxypropyl] -bicyclo [2.2.1] Hept-5-en-2,3-dicarboxyimide, N- (endo-bicyclo [2. 2.1] Hept-5-ene-2,3-diyldicarbonyl) Dimethyl aspartate and the like can be mentioned.
Examples of the cyclic olefin having a cyano group include 9-cyanotetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-methyl-9-cyanotetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodeca-4-ene, 5-cyanobicyclo [2.2.1] hept-2-ene and the like can be mentioned.
Examples of the cyclic olefin having a halogen atom include 9-chlorotetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-methyl-9-chlorotetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-en and the like can be mentioned.
The cyclic olefin monomer (b) having a polar group other than these carboxyl groups may be used alone or in combination of two or more.
 極性基を持たない環状オレフィン単量体(c)の具体例としては、ビシクロ[2.2.1]ヘプト-2-エン(「ノルボルネン」ともいう。)、5-エチル-ビシクロ[2.2.1]ヘプト-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプト-2-エン、5-エチリデン-ビシクロ[2.2.1]ヘプト-2-エン、5-メチリデン-ビシクロ[2.2.1]ヘプト-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプト-2-エン、トリシクロ[5.2.1.02,6]デカ-3,8-ジエン(慣用名:ジシクロペンタジエン)、テトラシクロ[10.2.1.02,1 14,9]ペンタデカ-4,6,8,13-テトラエン、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン(「テトラシクロドデセン」ともいう。)、9-メチル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチリデン-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチリデン-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-ビニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-プロペニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、ペンタシクロ[9.2.1.13,9.02,10]ペンタデカ-5,12-ジエン、シクロペンテン、シクロペンタジエン、9-フェニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン、ペンタシクロ[9.2.1.13,9.02,10]ペンタデカ-12-エン等が挙げられる。
 これらの極性基を持たない環状オレフィン単量体(c)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the cyclic olefin monomer (c) having no polar group include bicyclo [2.2.1] hept-2-ene (also referred to as “norbornene”) and 5-ethyl-bicyclo [2.2]. .1] Hept-2-ene, 5-butyl-bicyclo [2.2.1] hept-2-ene, 5-ethylidene-bicyclo [2.2.1] hept-2-ene, 5-methylidene-bicyclo [2.2.1] Hept-2-ene, 5-vinyl-bicyclo [2.2.1] Hept-2-ene, tricyclo [5.2.1.0 2,6 ] Deca-3,8- Diene (trivial name: dicyclopentadiene), tetracyclo [10.2.1.0 2,1 1 0 4,9 ] pentadeca-4,6,8,13-tetraene, tetracyclo [6.2.1.1 3 ] , 6 . 0 2,7 ] Dodeca-4-ene (also referred to as "tetracyclododecene"), 9-methyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-ethyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-methylidene-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-ethylidene-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-vinyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, 9-propenyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, pentacyclo [9.2.1.1 3,9 . 0 2,10 ] Pentadeca-5,12-diene, cyclopentene, cyclopentadiene, 9-phenyl-tetracyclo [6.2.1.1 3,6 . 0 2,7 ] Dodeca-4-ene, tetracyclo [9.2.1.0 2,10 . 0 3,8 ] Tetradeca-3,5,7,12-Tetraene, Pentacyclo [9.2.1.1 3,9 . 0 2,10 ] Pentadeca-12-en and the like can be mentioned.
The cyclic olefin monomer (c) having no polar group may be used alone or in combination of two or more.
 環状オレフィン以外の単量体(d)の具体例としては、鎖状オレフィンが挙げられる。鎖状オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数2~20のα-オレフィン;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等の非共役ジエン等が挙げられる。
 これらの環状オレフィン以外の単量体(d)は、それぞれ単独で、または、2種以上を組み合わせて用いることができる。
Specific examples of the monomer (d) other than the cyclic olefin include chain olefins. Examples of the chain olefin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene and 4-. Methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, Α-olefins having 2 to 20 carbon atoms such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene; 1,4-hexadiene, 4-methyl-1 , 4-Hexadiene, 5-methyl-1,4-hexadiene, non-conjugated diene such as 1,7-octadiene and the like.
The monomer (d) other than these cyclic olefins can be used alone or in combination of two or more.
 本発明で使用するカルボキシル基を有する環状オレフィン系樹脂は、単量体(a)を、所望により単量体(b)~(d)から選ばれる1種以上の単量体と共に重合することにより得られる。重合により得られた重合体を更に水素化してもよい。本発明では、水素添加された重合体も、カルボキシル基を有する環状オレフィン系樹脂に含まれる。 The cyclic olefin resin having a carboxyl group used in the present invention is obtained by polymerizing the monomer (a) together with one or more monomers selected from the monomers (b) to (d), if desired. can get. The polymer obtained by the polymerization may be further hydrogenated. In the present invention, the hydrogenated polymer is also included in the cyclic olefin resin having a carboxyl group.
 なお、本発明で使用するカルボキシル基を有する環状オレフィン系樹脂は、カルボキシル基を有しない環状オレフィン系樹脂に、公知の変性剤を利用してカルボキシル基を導入し、所望により水素添加を行なう方法によっても得ることができる。ここで、水素添加は、カルボキシル基導入前の重合体に対して行なってもよい。
 また、本発明で使用するカルボキシル基を有する環状オレフィン系樹脂はカルボキシル基を有する環状オレフィン系樹脂に、更にカルボキシル基を導入する方法によって得てもよい。
The cyclic olefin resin having a carboxyl group used in the present invention is prepared by introducing a carboxyl group into the cyclic olefin resin having no carboxyl group using a known modifier and hydrogenating as desired. Can also be obtained. Here, hydrogenation may be performed on the polymer before the introduction of the carboxyl group.
Further, the cyclic olefin resin having a carboxyl group used in the present invention may be obtained by a method of further introducing a carboxyl group into the cyclic olefin resin having a carboxyl group.
 アルカリ可溶性樹脂(A)の重量平均分子量(Mw)は、通常、1,000~1,000,000、好ましくは1,500~100,000、より好ましくは2,000~10,000の範囲である。
 また、アルカリ可溶性樹脂(A)の分子量分布は、重量平均分子量/数平均分子量(Mw/Mn)比で、通常、4以下、好ましくは3以下、より好ましくは2.5以下である。アルカリ可溶性樹脂(A)の重量平均分子量(Mw)や分子量分布(Mw/Mn)は、テトラヒドロフラン等の溶媒を溶離液としたゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として求められる値である。
The weight average molecular weight (Mw) of the alkali-soluble resin (A) is usually in the range of 1,000 to 1,000,000, preferably 1,500 to 100,000, more preferably 2,000 to 10,000. be.
The molecular weight distribution of the alkali-soluble resin (A) is usually 4 or less, preferably 3 or less, and more preferably 2.5 or less in terms of weight average molecular weight / number average molecular weight (Mw / Mn) ratio. The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the alkali-soluble resin (A) are determined as polystyrene-equivalent values by gel permeation chromatography (GPC) using a solvent such as tetrahydrofuran as an eluent. The value.
<酸発生剤(B)>
 酸発生剤(B)は、放射線が照射されると分解して、pKaが所定値以下である酸を発生する化合物である。そして、本発明の感放射線性樹脂組成物に含まれる酸発生剤(B)は、放射線を照射されたときの分解率が所定値以上である。本発明の感放射線性樹脂組成物は、上記所定の酸発生剤(B)を含んでいるので、感放射線性樹脂組成物を用いて形成したパターニングされていてもよい塗膜に対して放射線の照射および熱処理を施して樹脂膜を形成する際に熱処理を低温(例えば150℃以下、好ましくは130℃以下)で行った場合であっても、耐薬品性および絶縁信頼性に優れる樹脂膜を形成することができる。また、当該樹脂膜は、引張強度に優れると共に、吸水性が低い(即ち、低吸水性に優れる)。
<Acid generator (B)>
The acid generator (B) is a compound that decomposes when irradiated with radiation to generate an acid having a pKa of a predetermined value or less. The acid generator (B) contained in the radiation-sensitive resin composition of the present invention has a decomposition rate of a predetermined value or more when irradiated with radiation. Since the radiation-sensitive resin composition of the present invention contains the above-mentioned predetermined acid generator (B), radiation can be applied to a coating film formed by using the radiation-sensitive resin composition which may be patterned. When forming a resin film by irradiation and heat treatment, even when the heat treatment is performed at a low temperature (for example, 150 ° C. or lower, preferably 130 ° C. or lower), a resin film having excellent chemical resistance and insulation reliability is formed. can do. Further, the resin film has excellent tensile strength and low water absorption (that is, excellent in low water absorption).
 ここで、放射線としては、特に限定されることなく、例えば、可視光線;紫外線;X線;g線、h線、i線等の単一波長の光線;KrFエキシマレーザー光、ArFエキシマレーザー光等のレーザー光線;電子線等の粒子線;などが挙げられる。 Here, the radiation is not particularly limited, and is, for example, visible light; ultraviolet rays; X-rays; single-wavelength rays such as g-rays, h-rays, and i-rays; KrF excimer laser light, ArF excimer laser light, and the like. Laser beam; particle beam such as an electron beam; and the like.
 そして、酸発生剤(B)が放射線を照射されて分解することにより発生する酸(発生酸)のpKaは、-3以下であることが必要であり、-6以下であることが好ましく、-8以下であることがより好ましく、-12以下であることが更に好ましく、-14以下であることが一層好ましい。酸発生剤(B)からの発生酸のpKaが-3以下であると、感放射線性樹脂組成物を用いて低温で熱処理した場合であっても、耐薬品性および絶縁信頼性に優れた樹脂膜を形成することができる。また、酸発生剤(B)からの発生酸のpKaが上記上限以下であれば、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜は更に優れた引張強度および低吸水性を発揮することができる。
 また、酸発生剤(B)からの発生酸のpKaは、特に限定されないが、-20以上であることが好ましい。
The pKa of the acid (generated acid) generated when the acid generating agent (B) is irradiated with radiation and decomposed needs to be -3 or less, preferably -6 or less, and-. It is more preferably 8 or less, further preferably -12 or less, and even more preferably -14 or less. When the pKa of the acid generated from the acid generator (B) is -3 or less, a resin having excellent chemical resistance and insulation reliability even when heat-treated at a low temperature using a radiation-sensitive resin composition. A film can be formed. Further, if the pKa of the acid generated from the acid generator (B) is not more than the above upper limit, the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition has further excellent tensile strength and low water absorption. Can be demonstrated.
The pKa of the acid generated from the acid generator (B) is not particularly limited, but is preferably −20 or more.
 pKaが上述した所定値以下である発生酸の具体例としては、例えば、トリフルオロメタンスルホン酸(pKa=-14)、p-トルエンスルホン酸(pKa=-3)等が挙げられる。そして、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜の絶縁信頼性を更に向上させる観点から、酸発生剤(B)からの発生酸はトリフルオロメタンスルホン酸であることが好ましい。 Specific examples of the generated acid in which pKa is equal to or less than the above-mentioned predetermined value include trifluoromethanesulfonic acid (pKa = -14), p-toluenesulfonic acid (pKa = -3) and the like. The acid generated from the acid generator (B) is trifluoromethanesulfonic acid from the viewpoint of further improving the insulation reliability of the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition. preferable.
 そして、感放射線性樹脂組成物に含まれる酸発生剤(B)の分解率は、40%以上であることが必要であり、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。酸発生剤(B)の分解率が40%以上であると、感放射線性樹脂組成物を用いて低温で熱処理した場合であっても、耐薬品性に優れた樹脂膜を形成することができる。また、酸発生剤(B)の分解率が上記下限以上であれば、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜に更に優れた絶縁信頼性、引張強度および低吸水性を発揮させることができる。
 また、酸発生剤(B)の分解率は、特に限定されないが、100%以下とすることができる。
The decomposition rate of the acid generator (B) contained in the radiation-sensitive resin composition needs to be 40% or more, preferably 50% or more, and more preferably 60% or more. It is preferably 70% or more, and more preferably 70% or more. When the decomposition rate of the acid generator (B) is 40% or more, a resin film having excellent chemical resistance can be formed even when heat-treated at a low temperature using a radiation-sensitive resin composition. .. Further, when the decomposition rate of the acid generator (B) is equal to or higher than the above lower limit, the resin film formed by heat treatment at a low temperature using a radiation-sensitive resin composition has further excellent insulation reliability, tensile strength and low water absorption. It can exert its sexuality.
The decomposition rate of the acid generator (B) is not particularly limited, but can be 100% or less.
 そして、酸発生剤(B)として用い得る化合物として、オキシムスルホネート化合物やイミドスルホネート化合物が挙げられる。オキシムスルホネート化合物の具体例としては、下記式(I)で示されるPAG169(BASFジャパン社製、化合物名:(E)-7-メトキシ-3-(2,2,2-トリフルオロ-1-{[(トリフルオロメタンスルホニル)オキシ]イミノ}エチル、発生酸:トリフルオロメタンスルホン酸)-2H-クロメン-2-オン)、および、下記式(III)で示されるPAG121(BASFジャパン社製、化合物名:2-[2-(4-メチルフェニルスルホニルオキシイミノ)チオフェン-3(2H)-イリデン-2-(2-メチルフェニル)アセトニトリル、発生酸:トリフルオロメタンスルホン酸)が挙げられる。また、イミドスルホネート化合物としては、下記式(II)や式(VI)で示される化合物を用いることができる。なお、式(II)中、RおよびRは水素原子、硫酸エステル基、またはチオ硫酸エステル基であり、互いに同一でも異なっていてもよい。また、式(VI)中、Xは酸素原子または硫黄原子であり、Rはシリル基、アルキルオキシカルボニル基、およびエーテル結合からなる群から選択される少なくとも1種の構造を有してもよい炭素数1~20の炭化水素基、または、カルボン酸基およびオキシカルボニル基の少なくとも一方を有してもよい炭素数1~20の炭化水素基である。式(II)や式(VI)で示される化合物の具体例としては、NP-TM2(サンアプロ社製、発生酸:トリフルオロメタンスルホン酸)が挙げられる。中でも、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜の絶縁信頼性を更に向上させる観点から、酸発生剤(B)としてはPAG169を用いることが好ましい。なお、これらの酸発生剤(B)は、一種単独で、或いは、2種以上を混合して用いることができる。
Figure JPOXMLDOC01-appb-C000001
Examples of the compound that can be used as the acid generator (B) include an oxime sulfonate compound and an imide sulfonate compound. As a specific example of the oxime sulfonate compound, PAG169 (manufactured by BASF Japan, manufactured by BASF Japan, compound name: (E) -7-methoxy-3- (2,2,2-trifluoro-1- {) represented by the following formula (I) [(Trifluoromethanesulfonyl) oxy] imino} ethyl, generated acid: trifluoromethanesulfonic acid) -2H-chromen-2-one), and PAG121 (manufactured by BASF Japan, compound name: represented by the following formula (III)). 2- [2- (4-Methylphenylsulfonyloxyimino) thiophene-3 (2H) -iriden-2- (2-methylphenyl) acetonitrile, generated acid: trifluoromethanesulfonic acid) can be mentioned. Further, as the imide sulfonate compound, a compound represented by the following formula (II) or formula (VI) can be used. In formula (II), R 1 and R 2 are hydrogen atoms, sulfate ester groups, or thiosulfate ester groups, and may be the same or different from each other. Further, in the formula (VI), X is an oxygen atom or a sulfur atom, and R 3 may have at least one structure selected from the group consisting of a silyl group, an alkyloxycarbonyl group, and an ether bond. It is a hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 1 to 20 carbon atoms which may have at least one of a carboxylic acid group and an oxycarbonyl group. Specific examples of the compound represented by the formula (II) or the formula (VI) include NP-TM2 (manufactured by San-Apro Co., Ltd., generated acid: trifluoromethanesulfonic acid). Above all, it is preferable to use PAG169 as the acid generator (B) from the viewpoint of further improving the insulation reliability of the resin film formed by heat-treating at a low temperature using the radiation-sensitive resin composition. In addition, these acid generators (B) can be used individually by 1 type or by mixing 2 or more types.
Figure JPOXMLDOC01-appb-C000001
 そして、感放射線性樹脂組成物中の酸発生剤(B)の含有量は、後述する架橋剤(C)100質量部に対して、0.004質量部以上であることが好ましく、0.01質量部以上であることがより好ましく、0.04質量部以上であることが更に好ましく、1.2質量部以下であることが好ましく、0.2質量部以下であることがより好ましく、0.16質量部以下であることが更に好ましい。感放射線性樹脂組成物中の酸発生剤(B)の含有量が上記下限以上であれば、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜に更に優れた耐薬品性、絶縁信頼性、引張強度および低吸水性を発揮させることができる。一方、感放射線性樹脂組成物中の酸発生剤(B)の含有量が上記上限以下であれば、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜に更に優れた絶縁信頼性、引張強度および低吸水性を発揮させることができる。 The content of the acid generator (B) in the radiation-sensitive resin composition is preferably 0.004 part by mass or more, preferably 0.01 with respect to 100 parts by mass of the cross-linking agent (C) described later. It is more preferably 0 parts by mass or more, further preferably 0.04 parts by mass or more, preferably 1.2 parts by mass or less, more preferably 0.2 parts by mass or less, and 0. It is more preferably 16 parts by mass or less. When the content of the acid generator (B) in the radiation-sensitive resin composition is equal to or higher than the above lower limit, the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition has further excellent chemical resistance. , Insulation reliability, tensile strength and low water absorption can be exhibited. On the other hand, if the content of the acid generator (B) in the radiation-sensitive resin composition is not more than the above upper limit, the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition is further excellent in insulation. It can exhibit reliability, tensile strength and low water absorption.
 また、感放射線性樹脂組成物中の酸発生剤(B)の含有量は、アルカリ可溶性樹脂(A)100質量部に対して、0.003質量部以上であることが好ましく、0.0075質量部以上であることがより好ましく、0.03質量部以上であることが更に好ましく、0.04質量部以上であることが一層好ましく、0.8質量部以下であることが好ましく、0.15質量部以下であることがより好ましく、0.12質量部以下であることが更に好ましく、0.1質量部以下であることが一層好ましい。感放射線性樹脂組成物中の酸発生剤(B)の含有量が上記下限以上であれば、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜に更に優れた耐薬品性、絶縁信頼性、引張強度および低吸水性を発揮させることができる。一方、感放射線性樹脂組成物中の酸発生剤(B)の含有量が上記上限以下であれば、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜に更に優れた絶縁信頼性、引張強度および低吸水性を発揮させることができる。 The content of the acid generator (B) in the radiation-sensitive resin composition is preferably 0.003 parts by mass or more, preferably 0.0075 parts by mass, based on 100 parts by mass of the alkali-soluble resin (A). More than parts, more preferably 0.03 parts by mass or more, further preferably 0.04 parts by mass or more, preferably 0.8 parts by mass or less, and 0.15 parts by mass. It is more preferably 0 parts by mass or less, further preferably 0.12 parts by mass or less, and further preferably 0.1 parts by mass or less. When the content of the acid generator (B) in the radiation-sensitive resin composition is equal to or higher than the above lower limit, the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition has further excellent chemical resistance. , Insulation reliability, tensile strength and low water absorption can be exhibited. On the other hand, if the content of the acid generator (B) in the radiation-sensitive resin composition is not more than the above upper limit, the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition is further excellent in insulation. It can exhibit reliability, tensile strength and low water absorption.
<架橋剤(C)>
 架橋剤(C)としては、加熱により架橋剤分子間に架橋構造を形成する化合物や、アルカリ可溶性樹脂(A)と反応して架橋構造を形成する化合物が挙げられる。
<Crosslinking agent (C)>
Examples of the cross-linking agent (C) include a compound that forms a cross-linked structure between the cross-linking agent molecules by heating, and a compound that reacts with the alkali-soluble resin (A) to form a cross-linked structure.
 そして、架橋剤(C)は、特に限定されないが、エポキシ化合物およびオキセタン化合物の少なくとも一方を含むことが好ましい。エポキシ化合物およびオキセタン化合物の少なくとも一方を含む架橋剤(C)を用いれば、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜の耐薬品性および絶縁信頼性を更に向上させることができる。
 なお、架橋剤(C)がエポキシ化合物およびオキセタン化合物の少なくとも一方を含む場合、架橋剤(C)はエポキシ化合物およびオキセタン化合物以外の架橋剤(その他の架橋剤)を含んでいてもよいし、エポキシ化合物およびオキセタン化合物以外の架橋剤を含まなくてもよい。即ち、架橋剤(C)は、エポキシ化合物およびオキセタン化合物の少なくとも一方と、その他の架橋剤とを含む架橋剤であってもよいし、エポキシ化合物およびオキセタン化合物の少なくとも一方のみからなる架橋剤であってもよい。
The cross-linking agent (C) is not particularly limited, but preferably contains at least one of an epoxy compound and an oxetane compound. By using a cross-linking agent (C) containing at least one of an epoxy compound and an oxetane compound, the chemical resistance and insulation reliability of the resin film formed by heat treatment at a low temperature using a radiation-sensitive resin composition can be further improved. Can be done.
When the cross-linking agent (C) contains at least one of the epoxy compound and the oxetane compound, the cross-linking agent (C) may contain a cross-linking agent (other cross-linking agent) other than the epoxy compound and the oxetane compound, or epoxy. It does not have to contain a cross-linking agent other than the compound and the oxetane compound. That is, the cross-linking agent (C) may be a cross-linking agent containing at least one of an epoxy compound and an oxetane compound and another cross-linking agent, or a cross-linking agent consisting of at least one of an epoxy compound and an oxetane compound. You may.
 エポキシ化合物は、分子内に少なくとも1つのエポキシ基を含有する化合物である。架橋剤(C)として用い得るエポキシ化合物の具体例としては、例えば、ジシクロペンタジエンを骨格とするエポキシ化合物(商品名「HP-7200」、DIC社製)、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(シクロヘキサン骨格及び末端エポキシ基を有する15官能性の脂環式エポキシ樹脂、商品名「EHPE3150」、ダイセル社製)、エポキシ化3-シクロヘキセン-1,2-ジカルボン酸ビス(3-シクロヘキセニルメチル)修飾ε-カプロラクトン(脂肪族環状3官能性のエポキシ樹脂、商品名「エポリードGT301」、ダイセル社製)、ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(脂肪族環状4官能性のエポキシ樹脂、商品名「エポリードGT401」、ダイセル社製)、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート(商品名「セロキサイド2021」、「セロキサイド2021P」、ダイセル社製)、ε-カプロラクトン変性3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(商品名「セロキサイド2081」、ダイセル社製)、1,2:8,9-ジエポキシリモネン(商品名「セロキサイド3000」、ダイセル社製)等の脂環構造を有するエポキシ化合物(脂環式エポキシ化合物);および、ビスフェノールA型エポキシ化合物(商品名「jER825」、「jER827」、「jER828」、「jERYL980」、三菱化学社製、商品名「EPICLON840」、「EPICLON850」、DIC社製)、ビスフェノールF型エポキシ化合物(商品名「jER806」、「jER807」、「jERYL983U」、三菱化学社製、商品名「EPICLON830」、「EPICLON835」、DIC社製)、水添ビスフェノールA型エポキシ化合物(商品名「jERYX8000」、「jERYX8034」三菱化学社製、商品名「ST-3000」新日鉄住金社製、商品名「リカレジンHBE-100」新日本理化社製、商品名「エポライト4000」共栄化学社製)、長鎖ビスフェノールA型エポキシ樹脂(商品名「EXA-4816」、「EXA-4850-150」、「EXA-4850-1000」DIC社製)、EO変性ビスフェノールA型エポキシ化合物(商品名「アデカレジンEP-4000L」、「アデカレジンEP-4010L」、ADEKA社製)、フェノールノボラック型多官能エポキシ化合物(商品名「jER152」、三菱化学社製)、1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレンなどのナフタレン骨格を有する多官能エポキシ化合物(商品名「HP-4032D」、DIC社製)、ジシクロペンタジエンジメタノールジグリシジルエーテル(商品名「アデカレジンEP-4000L」、「アデカレジンEP-4088L」、ADEKA社製)、グリシジルアミン型エポキシ樹脂(商品名「商品名「jER630」、三菱化学社製、商品名「TETRAD-C」、「TETRAD-X」、三菱ガス化学社製)、鎖状アルキル多官能エポキシ化合物(商品名「SR-TMP」、阪本薬品工業社製)、多官能エポキシポリブタジエン(商品名「エポリードPB3600」、ダイセル社製)、(商品名「エポリードPB4700」、ダイセル社製)、グリセリンのグリシジルポリエーテル化合物(商品名「SR-GLG」、阪本薬品工業社製)、ジグリセリンポリグリシジルエーテル化合物(商品名「SR-DGE」、阪本薬品工業社製)、ポリグリセリンポリグリシジルエーテル化合物(商品名「SR-4GL」、阪本薬品工業社製)等の脂環構造を有さないエポキシ化合物;などを挙げることができる。これらのエポキシ化合物は、それぞれ単独で、または、2種以上を組み合わせて用いることができる。 The epoxy compound is a compound containing at least one epoxy group in the molecule. Specific examples of the epoxy compound that can be used as the cross-linking agent (C) include, for example, an epoxy compound having a dicyclopentadiene as a skeleton (trade name “HP-7200”, manufactured by DIC), 2,2-bis (hydroxymethyl). 1,2-Epoxy-4- (2-oxylanyl) cyclohexane adduct of -1-butanol (15-functional alicyclic epoxy resin having a cyclohexane skeleton and a terminal epoxy group, trade name "EHPE3150", manufactured by Daicel) , Epoxy 3-cyclohexene-1,2-dicarboxylate bis (3-cyclohexenylmethyl) modified ε-caprolactone (epoxy cyclic trifunctional epoxy resin, trade name "Epolide GT301", manufactured by Daicel), Butanetetra Tetra carboxylate (3,4-epoxycyclohexylmethyl) modified ε-caprolactone (aliphatic cyclic tetrafunctional epoxy resin, trade name "Epolide GT401", manufactured by Daicel), 3,4-epoxycyclohexenylmethyl-3' , 4'-Epoxycyclohexene carboxylate (trade names "Seloxiside 2021", "Seloxiside 2021P", manufactured by Daicel), ε-caprolactone modified 3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (commodity) Epoxy compounds having an alicyclic structure (aliphatic epoxy compounds) such as the name "Selokiside 2081" (manufactured by Daicel), 1,2: 8,9-diepoxy limonene (trade name "Selokiside 3000", manufactured by Daicel). ; And bisphenol A type epoxy compound (trade names "jER825", "jER827", "jER828", "jERYL980", manufactured by Mitsubishi Chemical Corporation, trade names "EPICLON840", "EPICLON850", manufactured by DIC), bisphenol F type Epoxy compounds (trade names "jER806", "jER807", "jERYL983U", manufactured by Mitsubishi Chemical Corporation, trade names "EPICLON830", "EPICLON835", manufactured by DIC), hydrogenated bisphenol A type epoxy compounds (trade name "jERYX8000") , "JERYX8034" manufactured by Mitsubishi Chemical Co., Ltd., product name "ST-3000" manufactured by Nippon Steel & Sumitomo Metal Corporation, product name "Rica Resin HBE-100" manufactured by Shin Nihon Rika Co., Ltd., product name "Epoxy 4000" manufactured by Kyoei Chemical Co., Ltd.), long chain bisphenol Type A epoxy resin (trade names "EXA-4816", "EXA-4850-150", "EXA-4850-1000" manufactured by DIC), EO variant Sex bisphenol A type epoxy compound (trade name "Adecaledin EP-4000L", "Adecaledin EP-4010L", manufactured by ADEKA), phenol novolac type polyfunctional epoxy compound (trade name "jER152", manufactured by Mitsubishi Chemical Corporation), 1, A polyfunctional epoxy compound having a naphthalene skeleton such as 6-bis (2,3-epoxypropane-1-yloxy) naphthalene (trade name "HP-4032D", manufactured by DIC), dicyclopentadiene dimethanol diglycidyl ether (commodity). Names "Adecaredin EP-4000L", "Adecaledin EP-4088L", manufactured by ADEKA), glycidylamine type epoxy resin (trade name "brand name" jER630 ", manufactured by Mitsubishi Chemical Corporation, product name" TETRAD-C "," TETRAD " -X ", manufactured by Mitsubishi Gas Chemicals, Inc.), chain alkyl polyfunctional epoxy compound (trade name" SR-TMP ", manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.), polyfunctional epoxy polybutadiene (trade name" Eporide PB3600 ", manufactured by Daicel Co., Ltd.) , (Product name "epoxy PB4700", manufactured by Daicel), glycidyl polyether compound of glycerin (trade name "SR-GLG", manufactured by Sakamoto Pharmaceutical Co., Ltd.), diglycerin polyglycidyl ether compound (trade name "SR-DGE") , Sakamoto Yakuhin Kogyo Co., Ltd.), polyglycerin polyglycidyl ether compound (trade name "SR-4GL", Sakamoto Yakuhin Kogyo Co., Ltd.) and other epoxy compounds that do not have an alicyclic structure. These epoxy compounds can be used alone or in combination of two or more.
 オキセタン化合物は、分子内に少なくとも1つのオキセタニル基を含有する化合物である。オキセタン化合物としては、3-エチル-3-{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(商品名「OXT-221」、東亜合成社製)、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン(商品名「OXT-121」、東亜合成社製)、イソフタル酸=ビス[(3-エチルオキセタン-3-イル)メチル](商品名「OXIPA」、宇部興産社製)等のビスオキセタン類、トリスオキセタン類、ノボラック型オキセタン類、カリックスアレーン型オキセタンカルド型オキセタン類、ポリヒドロキシスチレン型オキセタン類などのオキセタン化合物が挙げられる。これらのオキセタン化合物は、それぞれ単独で、または、2種以上を組み合わせて用いることができる。 The oxetane compound is a compound containing at least one oxetanyl group in the molecule. Examples of the oxetane compound include 3-ethyl-3-{[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane (trade name "OXT-221", manufactured by Toa Synthetic Co., Ltd.), 1,4-bis [(). 3-Ethyl-3-oxetane methoxy) methyl] benzene (trade name "OXT-121", manufactured by Toa Synthetic Co., Ltd.), isophthalic acid = bis [(3-ethyloxetane-3-yl) methyl] (trade name "OXIPA" , Ube Kosan Co., Ltd.) and the like, tris oxetane, novolak type oxetane, calix array type oxetane cardo type oxetane, polyhydroxystyrene type oxetane and the like. These oxetane compounds can be used alone or in combination of two or more.
 そして、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜の絶縁信頼性を一層向上させる観点から、架橋剤(C)としては、ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(商品名「エポリードGT401」、ダイセル社製)を用いることが特に好ましい。 From the viewpoint of further improving the insulation reliability of the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition, the cross-linking agent (C) includes tetra butanetetracarboxylate (3,4-epoxy). It is particularly preferable to use (cyclohexylmethyl) modified ε-caprolactone (trade name “Epolide GT401”, manufactured by Daicel).
 なお、上述したエポキシ化合物およびオキセタン化合物以外の架橋剤(その他の架橋剤)としては、例えば、国際公開第2019/065262号に記載のアルコキシメチル基を2つ以上有する化合物、メチロール基を2つ以上有する化合物、イソシアネート基を2つ以上有する化合物、等を用いることができる。これらのその他の架橋剤は、それぞれ単独で、または、2種以上を組み合わせて用いることができる。 Examples of the cross-linking agent (other cross-linking agent) other than the above-mentioned epoxy compound and oxetane compound include the compound having two or more alkoxymethyl groups and two or more methylol groups described in International Publication No. 2019/065262. A compound having, a compound having two or more isocyanate groups, and the like can be used. These other cross-linking agents can be used alone or in combination of two or more.
 そして、感放射線性樹脂組成物中の架橋剤(C)の含有量は、アルカリ可溶性樹脂(A)100質量部に対して、50質量部以上であることが好ましく、60質量部以上であることがより好ましく、70質量部以上であることが更に好ましく、75質量部以上であることが一層好ましく、90質量部以下であることが好ましい。感放射線性樹脂組成物中の架橋剤(C)の含有量が上記下限以上であれば、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜の耐薬品性を更に向上させることができる。また、感放射線性樹脂組成物中の架橋剤(C)の含有量が上記上限以下であれば、感放射線性樹脂組成物を用いて形成した塗膜を現像した場合に、残膜率を十分に確保することができる。 The content of the cross-linking agent (C) in the radiation-sensitive resin composition is preferably 50 parts by mass or more and 60 parts by mass or more with respect to 100 parts by mass of the alkali-soluble resin (A). Is more preferably 70 parts by mass or more, further preferably 75 parts by mass or more, and preferably 90 parts by mass or less. When the content of the cross-linking agent (C) in the radiation-sensitive resin composition is at least the above lower limit, the chemical resistance of the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition is further improved. be able to. Further, when the content of the cross-linking agent (C) in the radiation-sensitive resin composition is not more than the above upper limit, the residual film ratio is sufficiently sufficient when the coating film formed by using the radiation-sensitive resin composition is developed. Can be secured.
<キノンジアジド化合物(D)>
 本発明の感放射線性樹脂組成物は、任意で、キノンジアジド化合物(D)を更に含む。
 キノンジアジド化合物(D)は、放射線が照射されると分解してカルボン酸を発生する化合物である。そして、キノンジアジド化合物(D)を含む本発明の感放射線性樹脂組成物を用いて形成した塗膜は、放射線を照射されると、放射線照射部のアルカリ溶解性が増加する。したがって、キノンジアジド化合物(D)を含む本発明の感放射線性樹脂組成物は、ポジ型感放射線性樹脂組成物として用いることができる。
 なお、キノンジアジド化合物(D)は、上述した酸発生剤(B)とは異なる成分であるものとする。即ち、キノンジアジド化合物(D)が放射線を照射されて分解することにより発生するカルボン酸(発生酸)のpKaは-3超であるものとする。
<Chinone diazide compound (D)>
The radiation-sensitive resin composition of the present invention optionally further comprises a quinonediazide compound (D).
The quinonediazide compound (D) is a compound that decomposes to generate a carboxylic acid when irradiated with radiation. When the coating film formed by using the radiation-sensitive resin composition of the present invention containing the quinone diazide compound (D) is irradiated with radiation, the alkali solubility of the irradiated portion increases. Therefore, the radiation-sensitive resin composition of the present invention containing the quinonediazide compound (D) can be used as a positive radiation-sensitive resin composition.
It is assumed that the quinone diazide compound (D) is a component different from the above-mentioned acid generator (B). That is, it is assumed that the pKa of the carboxylic acid (generated acid) generated by the decomposition of the quinone diazide compound (D) by irradiation with radiation is more than -3.
 ここで、放射線としては、特に限定されることなく、例えば、可視光線;紫外線;X線;g線、h線、i線等の単一波長の光線;KrFエキシマレーザー光、ArFエキシマレーザー光等のレーザー光線;電子線等の粒子線;などが挙げられる。 Here, the radiation is not particularly limited, and is, for example, visible light; ultraviolet rays; X-rays; single-wavelength rays such as g-rays, h-rays, and i-rays; KrF excimer laser light, ArF excimer laser light, and the like. Laser beam; particle beam such as an electron beam; and the like.
 また、本発明の感放射線性樹脂組成物がキノンジアジド化合物(D)を更に含めば、感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜の絶縁信頼性を更に向上させると共に、当該樹脂膜の引張強度を高めることができる。 Further, if the radiation-sensitive resin composition of the present invention further contains the quinonediazide compound (D), the insulation reliability of the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin composition is further improved, and the insulation reliability is further improved. The tensile strength of the resin film can be increased.
 キノンジアジド化合物(D)としては、例えば、キノンジアジドスルホン酸ハライドとフェノール性水酸基を有する化合物とのエステル化合物を用いることができる。ここで、キノンジアジドスルホン酸ハライドの具体例としては、1,2-ナフトキノンジアジド-5-スルホン酸クロライド(6-ジアゾ-5,6-ジヒドロ-5-オキソ-1-ナフタレンスルホン酸クロライド)、1,2-ナフトキノンジアジド-4-スルホン酸クロライド、1,2-ベンゾキノンジアジド-5-スルホン酸クロライド等が挙げられる。また、フェノール性水酸基を有する化合物の具体例としては、1,1,3-トリス(2,5-ジメチル-4-ヒドロキシフェニル)-3-フェニルプロパン、4,4’-[1-[4-[1-[4-ヒドロキシフェニル]-1-メチルエチル]フェニル]エチリデン]ビスフェノール、2,3,4-トリヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2-ビス(4-ヒドロキシフェニル)プロパン、トリス(4-ヒドロキシフェニル)メタン、1,1,1-トリス(4-ヒドロキシ-3-メチルフェニル)エタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、ノボラック樹脂のオリゴマー、フェノール性水酸基を1つ以上有する化合物とジシクロペンタジエンとを共重合して得られるオリゴマー等が挙げられる。
 中でも、キノンジアジド化合物(D)としては、1,2-ナフトキノンジアジド-5-スルホン酸クロライド(6-ジアゾ-5,6-ジヒドロ-5-オキソ-1-ナフタレンスルホン酸クロライド)と、4,4’-[1-[4-[1-[4-ヒドロキシフェニル]-1-メチルエチル]フェニル]エチリデン]ビスフェノールとのエステル化合物が好ましい。
 なお、キノンジアジド化合物(D)は、一種単独で、或いは、2種以上を混合して用いることができる。
As the quinone diazide compound (D), for example, an ester compound of a quinone diazide sulfonic acid halide and a compound having a phenolic hydroxyl group can be used. Here, specific examples of the quinonediazide sulfonic acid halide include 1,2-naphthoquinonediazide-5-sulfonic acid chloride (6-diazo-5,6-dihydro-5-oxo-1-naphthalenesulfonic acid chloride), 1, Examples thereof include 2-naphthoquinone diazide-4-sulfonic acid chloride, 1,2-benzoquinone diazide-5-sulfonic acid chloride and the like. Specific examples of the compound having a phenolic hydroxyl group include 1,1,3-tris (2,5-dimethyl-4-hydroxyphenyl) -3-phenylpropane and 4,4'-[1- [4- [4-]. [1- [4-Hydroxyphenyl] -1-methylethyl] phenyl] Ethiliden] Bisphenol, 2,3,4-trihydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2-bis (4-bis) Hydroxyphenyl) Propane, Tris (4-hydroxyphenyl) methane, 1,1,1-Tris (4-hydroxy-3-methylphenyl) ethane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, Examples thereof include an oligomer of a novolak resin, an oligomer obtained by copolymerizing a compound having one or more phenolic hydroxyl groups with dicyclopentadiene, and the like.
Among them, the quinone diazide compound (D) includes 1,2-naphthoquinone diazide-5-sulfonic acid chloride (6-diazo-5,6-dihydro-5-oxo-1-naphthalene sulfonic acid chloride) and 4,4'. -[1- [4- [1- [4-Hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] ester compounds with bisphenol are preferred.
The quinone diazide compound (D) can be used alone or in combination of two or more.
 そして、感放射線性樹脂組成物中のキノンジアジド化合物(D)の含有量は、アルカリ可溶性樹脂(A)100質量部に対して、10質量部以上であることが好ましく、20質量部以上であることがより好ましく、34質量部以上であることが更に好ましく、60質量部以下であることが好ましく、50質量部以下であることがより好ましい。感放射線性樹脂組成物中のキノンジアジド化合物(D)の含有量が上記下限以上であれば、感放射線性樹脂組成物を用いて形成した塗膜を現像した際に、残膜率を十分に確保することができる。また、感放射線性樹脂組成物中のキノンジアジド化合物(D)の含有量が上記下限以上であれば、感放射線性樹脂組成物を低温で熱処理して形成した樹脂膜の絶縁信頼性を一層向上させると共に、当該樹脂膜の引張強度を更に高めることができる。一方、感放射線性樹脂組成物中のキノンジアジド化合物(D)の含有量が上記上限以下であれば、感放射線性樹脂組成物を用いて形成した塗膜をパターニングした場合に、解像度の低下や残渣の発生が起こるのを抑制することができる。 The content of the quinonediazide compound (D) in the radiation-sensitive resin composition is preferably 10 parts by mass or more, preferably 20 parts by mass or more, based on 100 parts by mass of the alkali-soluble resin (A). Is more preferably 34 parts by mass or more, more preferably 60 parts by mass or less, and even more preferably 50 parts by mass or less. When the content of the quinonediazide compound (D) in the radiation-sensitive resin composition is at least the above lower limit, a sufficient residual film ratio is secured when the coating film formed using the radiation-sensitive resin composition is developed. can do. Further, when the content of the quinonediazide compound (D) in the radiation-sensitive resin composition is at least the above lower limit, the insulation reliability of the resin film formed by heat-treating the radiation-sensitive resin composition at a low temperature is further improved. At the same time, the tensile strength of the resin film can be further increased. On the other hand, when the content of the quinonediazide compound (D) in the radiation-sensitive resin composition is not more than the above upper limit, the resolution is lowered or the residue is reduced when the coating film formed by using the radiation-sensitive resin composition is patterned. Can be suppressed from occurring.
<添加剤>
 本発明の感放射線性樹脂組成物が任意に含有し得る添加剤としては、増感剤、シランカップリング剤、酸化防止剤、界面活性剤等が挙げられる。
 ここで、増感剤は、照射された放射線のエネルギーを他の物質に渡すように機能する。そして、増感剤としては、特に限定されることなく、公知のものを用いることができる(例えば、国際公開第2019/065262号参照)。
 シランカップリング剤は、本発明の感放射線性樹脂組成物を用いて得られる塗膜または樹脂膜と、塗膜または樹脂膜が形成された基材との間の密着性を高めるように機能する。そして、シランカップリング剤としては、特に限定されることなく、公知のものを用いることができる(例えば、特開2015-94910号参照)。
 また、酸化防止剤は、本発明の感放射線性樹脂組成物を用いて得られる塗膜または樹脂膜の耐光性、耐熱性を向上させることができる。酸化防止剤としては、特に限定されることなく、公知のフェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、アミン系酸化防止剤、および、ラクトン系酸化防止剤等を用いることができる(例えば、国際公開第2015/033901号参照)。
 更に、界面活性剤は、本発明の感放射線性樹脂組成物の塗工性を向上させることができる。界面活性剤としては、特に限定されることなく、公知のシリコーン系界面活性剤、フッ素系界面活性剤、ポリオキシアルキレン系界面活性剤、メタクリル酸共重合体系界面活性剤、および、アクリル酸共重合体系界面活性剤などを用いることができる(例えば、国際公開第2015/033901号参照)。
 なお、これらの添加剤は、一種単独で、或いは、2種以上を混合して用いることができる。また、感放射線性樹脂組成物に配合する添加剤の量は、任意に調整し得る。
<Additives>
Examples of the additive that can be arbitrarily contained in the radiation-sensitive resin composition of the present invention include a sensitizer, a silane coupling agent, an antioxidant, a surfactant and the like.
Here, the sensitizer functions to transfer the energy of the irradiated radiation to another substance. The sensitizer is not particularly limited, and a known sensitizer can be used (see, for example, International Publication No. 2019/065262).
The silane coupling agent functions to enhance the adhesion between the coating film or the resin film obtained by using the radiation-sensitive resin composition of the present invention and the substrate on which the coating film or the resin film is formed. .. The silane coupling agent is not particularly limited, and known ones can be used (see, for example, Japanese Patent Application Laid-Open No. 2015-94910).
Further, the antioxidant can improve the light resistance and heat resistance of the coating film or the resin film obtained by using the radiation-sensitive resin composition of the present invention. The antioxidant is not particularly limited, and known phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, amine-based antioxidants, lactone-based antioxidants, and the like are used. (See, for example, International Publication No. 2015/033901).
Further, the surfactant can improve the coatability of the radiation-sensitive resin composition of the present invention. The surfactant is not particularly limited, and is known as a silicone-based surfactant, a fluorine-based surfactant, a polyoxyalkylene-based surfactant, a methacrylic acid copolymer-based surfactant, and an acrylic acid copolymer. Systematic surfactants and the like can be used (see, eg, International Publication No. 2015/033901).
In addition, these additives can be used individually by 1 type or by mixing 2 or more types. Further, the amount of the additive to be blended in the radiation-sensitive resin composition can be arbitrarily adjusted.
<溶剤>
 本発明の感放射線性樹脂組成物が任意に含有し得る溶剤としては、特に限定されることなく、樹脂組成物の溶剤として公知の溶剤を用いることができる。そのような溶剤としては、例えば、直鎖のケトン類、アルコール類、アルコールエーテル類、エステル類、セロソルブエステル類、プロピレングリコール類、ジエチレングリコールエチルメチルエーテルなどのジエチレングリコール類、飽和γ-ラクトン類、ハロゲン化炭化水素類、芳香族炭化水素類、並びに、ジメチルアセトアミド、ジメチルホルムアミドおよびN-メチルアセトアミド、N-メチル-2-ピロリドンなどの極性溶媒などが挙げられる(例えば、国際公開第2015/033901号参照)。
 なお、これらの溶剤は、一種単独で、或いは、2種以上を混合して用いることができる。
 そして、感放射線性樹脂組成物中の溶剤の量は、特に限定されることなく、本発明の所望の効果が得られる範囲内で適宜調整することができる。例えば、感放射線性樹脂組成物中の溶剤の量は、溶剤以外の成分の濃度の合計が20質量%以上50質量%以下になるように調整することができる。
<Solvent>
The solvent that can be arbitrarily contained in the radiation-sensitive resin composition of the present invention is not particularly limited, and a known solvent can be used as the solvent of the resin composition. Examples of such a solvent include linear ketones, alcohols, alcohol ethers, esters, cellosolve esters, propylene glycols, diethylene glycols such as diethylene glycol ethylmethyl ether, saturated γ-lactones, and hydrocarbons. Examples include hydrocarbons, aromatic hydrocarbons, and polar solvents such as dimethylacetamide, dimethylformamide and N-methylacetamide, N-methyl-2-pyrrolidone (see, eg, International Publication No. 2015/033901). ..
It should be noted that these solvents can be used alone or in combination of two or more.
The amount of the solvent in the radiation-sensitive resin composition is not particularly limited and can be appropriately adjusted within a range in which the desired effect of the present invention can be obtained. For example, the amount of the solvent in the radiation-sensitive resin composition can be adjusted so that the total concentration of the components other than the solvent is 20% by mass or more and 50% by mass or less.
<感放射線性樹脂組成物の製造方法>
 本発明の感放射線性樹脂組成物は、上述した成分を既知の方法により混合し、任意にろ過することで、調製することができる。ここで、混合には、スターラー、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの既知の混合機を用いることができる。また、混合物のろ過には、フィルター等のろ材を用いた一般的なろ過方法を採用することができる。
<Manufacturing method of radiation-sensitive resin composition>
The radiation-sensitive resin composition of the present invention can be prepared by mixing the above-mentioned components by a known method and optionally filtering. Here, a known mixer such as a stirrer, a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, and a fill mix can be used for mixing. Further, for filtering the mixture, a general filtration method using a filter medium such as a filter can be adopted.
<塗膜および樹脂膜の形成>
 本発明の感放射線性樹脂組成物を用いた樹脂膜は、特に限定されることなく、例えば、樹脂膜を形成する基板上に本発明の感放射線性樹脂組成物を使用して塗膜を設けた後、塗膜に放射線を照射し、更に放射線照射後の塗膜を加熱することにより、形成することができる。なお、基板上に設ける塗膜は、パターニングされていてもよい。
 また、樹脂膜を形成する基板上への塗膜の配設は、特に限定されることなく、塗布法やフィルム積層法等の方法を用いて基板上に塗膜を形成した後、任意に塗膜をパターニングすることにより行うことができる。
<Formation of coating film and resin film>
The resin film using the radiation-sensitive resin composition of the present invention is not particularly limited, and for example, a coating film is provided on a substrate forming the resin film by using the radiation-sensitive resin composition of the present invention. After that, it can be formed by irradiating the coating film with radiation and further heating the coating film after the irradiation. The coating film provided on the substrate may be patterned.
Further, the arrangement of the coating film on the substrate on which the resin film is formed is not particularly limited, and after forming the coating film on the substrate by using a method such as a coating method or a film laminating method, the coating film is arbitrarily applied. This can be done by patterning the film.
[塗膜の形成]
 ここで、塗布法による塗膜の形成は、感放射線性樹脂組成物を基板上に塗布した後、加熱乾燥(プリベーク)することにより行うことができる。なお、感放射線性樹脂組成物を塗布する方法としては、例えば、スプレーコート法、スピンコート法、ロールコート法、ダイコート法、ドクターブレード法、回転塗布法、バー塗布法、スクリーン印刷法、インクジェット法等の各種の方法を採用することができる。加熱乾燥条件は、感放射線性樹脂組成物に含まれている成分の種類や配合割合に応じて異なるが、加熱温度は、通常、30~150℃、好ましくは60~120℃であり、加熱時間は、通常、0.5~90分間、好ましくは1~60分間、より好ましくは1~30分間である。
[Formation of coating film]
Here, the coating film formed by the coating method can be formed by coating the radiation-sensitive resin composition on the substrate and then heating and drying (prebaking) the coating film. Examples of the method for applying the radiation-sensitive resin composition include a spray coating method, a spin coating method, a roll coating method, a die coating method, a doctor blade method, a rotary coating method, a bar coating method, a screen printing method, and an inkjet method. Various methods such as can be adopted. The heating and drying conditions differ depending on the type and blending ratio of the components contained in the radiation-sensitive resin composition, but the heating temperature is usually 30 to 150 ° C., preferably 60 to 120 ° C., and the heating time. Is usually 0.5 to 90 minutes, preferably 1 to 60 minutes, and more preferably 1 to 30 minutes.
 また、フィルム積層法による塗膜の形成は、感放射線性樹脂組成物を樹脂フィルムや金属フィルム等のBステージフィルム形成用基材上に塗布し、加熱乾燥(プリベーク)することによりBステージフィルムを得た後、次いで、このBステージフィルムを基板上に積層することにより行うことができる。なお、Bステージフィルム形成用基材上への感放射線性樹脂組成物の塗布および感放射線性樹脂組成物の加熱乾燥は、上述した塗布法における感放射線性樹脂組成物の塗布および加熱乾燥と同様にして行うことができる。また、積層は、加圧ラミネータ、プレス、真空ラミネータ、真空プレス、ロールラミネータ等の圧着機を用いて行なうことができる。 To form a coating film by the film laminating method, a radiation-sensitive resin composition is applied onto a B-stage film-forming substrate such as a resin film or a metal film, and the B-stage film is heat-dried (prebaked) to form a B-stage film. After obtaining it, it can be performed by laminating this B stage film on a substrate. The application of the radiation-sensitive resin composition on the substrate for forming the B stage film and the heat-drying of the radiation-sensitive resin composition are the same as the application and heat-drying of the radiation-sensitive resin composition in the above-mentioned coating method. Can be done. Further, the laminating can be performed by using a crimping machine such as a pressure laminator, a press, a vacuum laminator, a vacuum press, and a roll laminator.
 基板上に設けた塗膜のパターニングは、例えば、パターニング前の塗膜に放射線を照射して潜像パターンを形成した後、潜像パターンを有する塗膜に現像液を接触させてパターンを顕在化させる方法などの公知のパターニング方法を用いて行うことができる。 For patterning of the coating film provided on the substrate, for example, after irradiating the coating film before patterning with radiation to form a latent image pattern, the developing solution is brought into contact with the coating film having the latent image pattern to reveal the pattern. It can be carried out by using a known patterning method such as a method of causing.
 ここで、放射線としては、例えば上述したキノンジアジド化合物(D)を分解してカルボン酸等を生成させることにより放射線照射部の現像液に対する溶解性を向上させることができるものであれば特に限定されることなく、任意の放射線を用いることができる。具体的には、例えば、可視光線;紫外線;X線;g線、h線、i線等の単一波長の光線;KrFエキシマレーザー光、ArFエキシマレーザー光等のレーザー光線;電子線等の粒子線;などを用いることができる。なお、これらの放射線は、一種単独で、或いは、2種以上を混合して用いることができる。
 また、放射線をパターン状に照射して潜像パターンを形成する方法としては、縮小投影露光装置を使用し、所望のマスクパターンを介して放射線を照射する方法などの公知の方法を用いることができる。
 そして、放射線の照射条件は、使用する放射線に応じて適宜選択されるが、例えば、放射線の波長は365nm以上436nm以下の範囲内とすることができ、また、照射量は1500mJ/cm以下とすることができる。
Here, the radiation is particularly limited as long as it can improve the solubility of the irradiation unit in a developing solution by, for example, decomposing the above-mentioned quinonediazide compound (D) to generate a carboxylic acid or the like. Any radiation can be used without. Specifically, for example, visible light; ultraviolet rays; X-rays; single-wavelength rays such as g-rays, h-rays, and i-rays; laser beams such as KrF excimer laser light and ArF excimer laser light; particle beams such as electron beams. ; Etc. can be used. It should be noted that these radiations can be used alone or in combination of two or more.
Further, as a method of irradiating radiation in a pattern to form a latent image pattern, a known method such as a method of irradiating radiation through a desired mask pattern using a reduced projection exposure apparatus can be used. ..
The irradiation conditions of the radiation are appropriately selected according to the radiation to be used. For example, the wavelength of the radiation can be in the range of 365 nm or more and 436 nm or less, and the irradiation amount is 1500 mJ / cm 2 or less. can do.
 また、現像液としては、国際公開第2015/141719号に記載のアルカリ性化合物の水性溶液等の既知のアルカリ現像液を用いることができる。
 そして、塗膜に現像液を接触させる方法および条件としては、特に限定されることなく、例えば、国際公開第2015/141719号に記載の方法および条件を採用することができる。
Further, as the developing solution, a known alkaline developing solution such as an aqueous solution of an alkaline compound described in International Publication No. 2015/141719 can be used.
The method and conditions for bringing the developer into contact with the coating film are not particularly limited, and for example, the method and conditions described in International Publication No. 2015/141719 can be adopted.
 なお、上述したようにしてパターン形成された塗膜は、必要に応じて、現像残渣を除去するために、リンス液でリンスすることができる。リンス処理の後、残存しているリンス液を圧縮空気や圧縮窒素により更に除去してもよい。 The coating film formed in the pattern as described above can be rinsed with a rinsing solution in order to remove the development residue, if necessary. After the rinsing treatment, the remaining rinsing liquid may be further removed by compressed air or compressed nitrogen.
[樹脂膜の形成]
 樹脂膜は、塗膜に放射線を照射した後、塗膜を加熱(ポストベーク)して硬化させることにより形成することができる。
[Formation of resin film]
The resin film can be formed by irradiating the coating film with radiation and then heating (post-baking) the coating film to cure it.
 ここで、樹脂膜を形成する際の塗膜への放射線の照射は、通常、塗膜の全面に対して行う。
 そして、放射線としては、上述した酸発生剤(B)を分解して酸を生成させることにより、塗膜を低温で加熱した場合であっても樹脂膜の耐薬品性および絶縁信頼性を向上させることができるものであれば特に限定されることなく、任意の放射線を用いることができる。具体的には、例えば、可視光線;紫外線;X線;g線、h線、i線等の単一波長の光線;KrFエキシマレーザー光、ArFエキシマレーザー光等のレーザー光線;電子線等の粒子線;などを用いることができる。なお、これらの放射線は、一種単独で、或いは、2種以上を混合して用いることができる。
 そして、放射線の照射条件は、使用する放射線に応じて適宜選択されるが、例えば、放射線の波長は365nm以上436nm以下の範囲内とすることができ、また、照射量は3000mJ/cm以下とすることができる。
Here, the irradiation of radiation to the coating film when forming the resin film is usually performed on the entire surface of the coating film.
As for radiation, the above-mentioned acid generator (B) is decomposed to generate an acid, thereby improving the chemical resistance and insulation reliability of the resin film even when the coating film is heated at a low temperature. Any radiation can be used without particular limitation as long as it can be used. Specifically, for example, visible light; ultraviolet rays; X-rays; single-wavelength rays such as g-rays, h-rays, and i-rays; laser beams such as KrF excimer laser light and ArF excimer laser light; particle beams such as electron beams. ; Etc. can be used. It should be noted that these radiations can be used alone or in combination of two or more.
The irradiation conditions of the radiation are appropriately selected according to the radiation to be used. For example, the wavelength of the radiation can be in the range of 365 nm or more and 436 nm or less, and the irradiation amount is 3000 mJ / cm 2 or less. can do.
 塗膜の加熱は、特に限定されることなく、例えば、ホットプレート、オーブン等を用いて行なうことができる。なお、加熱は、必要に応じて不活性ガス雰囲気下で行ってもよい。不活性ガスとしては、例えば、窒素、アルゴン、ヘリウム、ネオン、キセノン、クリプトン等が挙げられる。これらの中でも窒素とアルゴンが好ましく、特に窒素が好ましい。 The coating film can be heated without particular limitation using, for example, a hot plate, an oven, or the like. The heating may be performed in an inert gas atmosphere, if necessary. Examples of the inert gas include nitrogen, argon, helium, neon, xenon, krypton and the like. Among these, nitrogen and argon are preferable, and nitrogen is particularly preferable.
 ここで、塗膜を加熱する際の温度は、例えば、150℃以下とすることができ、100℃以上130℃以下とすることが好ましい。本発明の感放射線性樹脂組成物を使用すれば、塗膜を加熱する際の温度が上記上限値以下であっても、耐薬品性および絶縁信頼性に優れる樹脂膜を得ることができる。また、塗膜を加熱する際の温度を上記下限値以上にすれば、樹脂膜の耐薬品性を十分に向上させることができる。
 なお、塗膜を加熱する時間は、塗膜の面積や厚さ、使用機器等により適宜選択することができ、例えば3~60分間とすることができる。
Here, the temperature at which the coating film is heated can be, for example, 150 ° C. or lower, preferably 100 ° C. or higher and 130 ° C. or lower. By using the radiation-sensitive resin composition of the present invention, it is possible to obtain a resin film having excellent chemical resistance and insulation reliability even if the temperature at which the coating film is heated is equal to or lower than the above upper limit value. Further, if the temperature at which the coating film is heated is set to the above lower limit value or more, the chemical resistance of the resin film can be sufficiently improved.
The time for heating the coating film can be appropriately selected depending on the area and thickness of the coating film, the equipment used, and the like, and can be, for example, 3 to 60 minutes.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、酸発生剤(B)の分解率、並びに、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性は、それぞれ以下の方法を使用して評価した。
Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the following description, "%" and "part" representing quantities are based on mass unless otherwise specified.
In Examples and Comparative Examples, the decomposition rate of the acid generator (B) and the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated using the following methods, respectively.
<酸発生剤(B)の分解率>
 後述するアルカリ可溶性樹脂としての環状オレフィン系重合体(A-1)100部、エポキシ化合物としてのエポリードGT401(ダイセル社製)30部、および、各実施例および比較例で用いた酸発生剤(B)0.5部を、溶剤としてのジエチレングリコールエチルメチルエーテルに対して、溶剤以外の成分の濃度の合計が30%となるように混合し、溶解させた後、孔径0.45μmのポリテトラフルオロエチレン製フィルターでろ過して、測定用の感放射線性樹脂組成物を調製した。
 また、酸発生剤(B)を添加しなかったこと以外は、上述と同じ操作にて、ベースの樹脂組成物を調製した。
 測定用の感放射線性樹脂組成物をガラス基板上にスピンコートした後、ホットプレートを用いて110℃で2分間加熱(プリベーク)して、膜厚2μmの樹脂膜とガラス基板とからなる照射前の測定用積層体を得た。照射前の測定用積層体の吸光度Aを分光光度計V-560(日本分光社製)にて測定した。なお、300~450nmの範囲において最も吸光度の大きい波長における吸光度をAとした。
 次いで、照射前の測定用積層体に対して照射量1000mJ/cmで放射線(g,h,i線、波長:365~436nm)を照射して、照射後の測定用積層体を得た。上述と同じ操作にて、照射後の測定用積層体の吸光度Aを測定した。
 さらに、ベースの樹脂組成物をガラス基板上にスピンコートした後、ホットプレートを用いて110℃で2分間加熱(プリベーク)して得られた積層体に対して、照射量1000mJ/cmで放射線(g,h,i線、波長:365~436nm)を照射して、ベースの積層体を得た。上述と同じ操作にて、ベースの積層体の吸光度Aを測定した。
 そして、照射前の測定用積層体の吸光度A1、照射後の測定用積層体の吸光度A、およびベースの積層体の吸光度Aを用いて、下記の式により、酸発生剤(B)の分解率を算出した。
  酸発生剤(B)の分解率=(A-A)/(A-A)×100
<Decomposition rate of acid generator (B)>
100 parts of the cyclic olefin polymer (A-1) as an alkali-soluble resin described later, 30 parts of Epolyde GT401 (manufactured by Daicel) as an epoxy compound, and an acid generator (B) used in each Example and Comparative Example. ) 0.5 part was mixed with diethylene glycol ethylmethyl ether as a solvent so that the total concentration of the components other than the solvent was 30%, dissolved, and then polytetrafluoroethylene having a pore size of 0.45 μm. A radiation-sensitive resin composition for measurement was prepared by filtering with a manufacturing filter.
Further, the base resin composition was prepared by the same operation as described above except that the acid generator (B) was not added.
After spin-coating the radiation-sensitive resin composition for measurement on a glass substrate, it is heated (prebaked) at 110 ° C. for 2 minutes using a hot plate before irradiation, which comprises a resin film having a film thickness of 2 μm and a glass substrate. A laminate for measurement was obtained. The absorbance A1 of the measurement laminate before irradiation was measured with a spectrophotometer V-560 (manufactured by JASCO Corporation). The absorbance at the wavelength having the highest absorbance in the range of 300 to 450 nm was defined as A1.
Next, the measurement laminate before irradiation was irradiated with radiation (g, h, i-line, wavelength: 365 to 436 nm) at an irradiation amount of 1000 mJ / cm 2 , to obtain a measurement laminate after irradiation. The absorbance A2 of the measurement laminate after irradiation was measured by the same operation as described above.
Further, after spin-coating the base resin composition on a glass substrate, the laminate obtained by heating (prebaking) at 110 ° C. for 2 minutes using a hot plate is irradiated with an irradiation amount of 1000 mJ / cm 2 . (G, h, i-line, wavelength: 365 to 436 nm) was irradiated to obtain a base laminate. The absorbance A0 of the base laminate was measured by the same operation as described above.
Then, using the absorbance A 1 of the measurement laminate before irradiation, the absorbance A 2 of the measurement laminate after irradiation, and the absorbance A 0 of the base laminate, the acid generator (B) is calculated by the following formula. The decomposition rate of was calculated.
Decomposition rate of acid generator (B) = (A 1 -A 2 ) / (A 1 -A 0 ) x 100
<樹脂膜の耐薬品性>
 シリコン基板上に、各実施例および比較例で調製した感放射線性樹脂組成物をスピンコートした後、ホットプレートを用いて110℃で2分間加熱(プリベーク)して、樹脂膜を形成した。次いで、樹脂膜に対して、照射量1000mJ/cmで放射線(g,h,i線、波長:365~436nm)を照射し、次いで、オーブンを用いて、大気雰囲気下、130℃で20分間加熱(ポストベーク)することで、樹脂膜を熱硬化させた。
 上記で得られた樹脂膜とシリコン基板とからなる積層体を、23℃においてレジスト剥離剤であるシクロペンタノンに3分間浸漬した。そして、浸漬前後での樹脂膜の膜厚を光干渉式膜厚測定装置(ラムダエース)にて測定し、樹脂膜の膜厚変化率(=(浸漬後の樹脂膜の膜厚/浸漬前の樹脂膜の膜厚)×100)を算出した。算出した膜厚変化率(%)に基づいて、下記の基準に従って、樹脂膜の耐薬品性を評価した。
  A:膜厚変化率が10%未満
  B:膜厚変化率が10%以上15%未満
  C:膜厚変化率が15%以上
<Chemical resistance of resin film>
The radiation-sensitive resin compositions prepared in each Example and Comparative Example were spin-coated on a silicon substrate, and then heated (prebaked) at 110 ° C. for 2 minutes using a hot plate to form a resin film. Next, the resin film is irradiated with radiation (g, h, i-rays, wavelength: 365 to 436 nm) at an irradiation amount of 1000 mJ / cm 2 , and then using an oven, the temperature is 130 ° C. for 20 minutes in an air atmosphere. The resin film was thermally cured by heating (post-baking).
The laminate composed of the resin film and the silicon substrate obtained above was immersed in cyclopentanone, which is a resist stripping agent, at 23 ° C. for 3 minutes. Then, the film thickness of the resin film before and after immersion is measured by a light interference type film thickness measuring device (Lambda Ace), and the film thickness change rate of the resin film (= (film thickness of resin film after immersion / before immersion). The film thickness of the resin film) × 100) was calculated. Based on the calculated film thickness change rate (%), the chemical resistance of the resin film was evaluated according to the following criteria.
A: Film thickness change rate is less than 10% B: Film thickness change rate is 10% or more and less than 15% C: Film thickness change rate is 15% or more
<樹脂膜の引張強度>
 スパッタリング装置を用いて、アルミニウム薄膜が100nmの膜厚で形成されたシリコンウェハ上に、各実施例および比較例で調製した感放射線性樹脂組成物をスピンコート法により塗布し、ホットプレートを用いて110℃で2分間加熱(プリベーク)して、膜厚2.0μmの樹脂膜を形成した。形成された樹脂膜に対して、照射量1000mJ/cmで放射線(g,h,i線、波長:365~436nm)を照射した。次いで、オーブンを用いて、大気雰囲気下、130℃で20分間加熱するポストベークを行うことで、膜厚10μmの樹脂膜を片面に備える積層体を得た。
 得られた積層体を0.1mol/Lの塩酸水溶液に浸漬し、シリコンウェハと樹脂膜の間に位置するアルミニウム薄膜を塩酸水溶液にて溶解させることで樹脂膜をシリコンウェハから剥離した。次いで、剥離した樹脂膜を水洗し、乾燥した。乾燥後の樹脂膜を10mm×50mmの大きさに切り出して試験片とし、この試験片について引張試験を行うことで、引張伸び率を測定した。具体的には、オートグラフ(島津製作所社製、「AGS-5kNG」)を用いて、チャック間距離20mm、引張速度2mm/分、測定温度23℃の条件にて引張試験を行うことで、試験片の引張伸び率(%)を測定した。上記で得られた樹脂膜からそれぞれ5つの試験片を切り出し、各試験片について測定した値の平均値を算出した。引張伸び率の平均値に基づいて、下記の基準に従って、樹脂膜の引張強度を評価した。
  A:引張伸び率が5%以上
  B:引張伸び率が3%以上5%未満
  C:引張伸び率が3%未満
<Tensile strength of resin film>
Using a sputtering device, the radiation-sensitive resin composition prepared in each Example and Comparative Example was applied onto a silicon wafer having an aluminum thin film having a film thickness of 100 nm by a spin coating method, and a hot plate was used. It was heated (prebaked) at 110 ° C. for 2 minutes to form a resin film having a film thickness of 2.0 μm. The formed resin film was irradiated with radiation (g, h, i-line, wavelength: 365 to 436 nm) at an irradiation amount of 1000 mJ / cm 2 . Next, using an oven, post-baking was performed by heating at 130 ° C. for 20 minutes in an air atmosphere to obtain a laminate having a resin film having a film thickness of 10 μm on one side.
The obtained laminate was immersed in a 0.1 mol / L hydrochloric acid aqueous solution, and the aluminum thin film located between the silicon wafer and the resin film was dissolved in the hydrochloric acid aqueous solution to peel off the resin film from the silicon wafer. Then, the peeled resin film was washed with water and dried. The dried resin film was cut into a size of 10 mm × 50 mm to obtain a test piece, and a tensile test was performed on this test piece to measure the tensile elongation. Specifically, a tensile test is performed using an autograph (manufactured by Shimadzu Corporation, "AGS-5kNG") under the conditions of a chuck distance of 20 mm, a tensile speed of 2 mm / min, and a measurement temperature of 23 ° C. The tensile elongation (%) of the piece was measured. Five test pieces were cut out from the resin film obtained above, and the average value of the measured values for each test piece was calculated. Based on the average value of the tensile elongation, the tensile strength of the resin film was evaluated according to the following criteria.
A: Tensile elongation is 5% or more B: Tensile elongation is 3% or more and less than 5% C: Tensile elongation is less than 3%
<樹脂膜の絶縁信頼性>
 スパッタ装置を用いてガラス基板上に膜厚100nmのCu薄膜を形成した。次いで、フォトレジストを用いてCu薄膜のパターニングを行い、Cu配線幅7μmの櫛型電極基板を作製した。かかる櫛型電極基板上に、各実施例および比較例で調製した感放射線性樹脂組成物をスピンコート法により塗布し、ホットプレートを用いて110℃で2分間加熱(プリベーク)して、膜厚2.0μmの樹脂膜を形成した。形成された樹脂膜に対して、照射量1000mJ/cmで放射線(g,h,i線、波長:365~436nm)を照射した。次いで、この樹脂膜について、オーブンを用いて、大気雰囲気下、130℃で20分間加熱するポストベークを行うことで、試験体である、樹脂膜-Cu配線-ガラス基材の順に積層されてなる積層体を得た。そして、得られた試験体を15Vの電圧が印加された状態で、温度110℃、湿度85%の高温恒湿槽内に400時間設置し、各試験体に対してマイグレーション(絶縁抵抗値が1.0×10Ωを下回る)が発生するまでの時間を測定し、下記の基準に従って、樹脂膜の絶縁信頼性を評価した。
  SA:マイグレーション発生までの時間が400時間以上
  A:マイグレーション発生までの時間が300時間以上400時間未満
  B:マイグレーション発生までの時間が200時間以上300時間未満
  C:マイグレーション発生までの時間が200時間未満
<Insulation reliability of resin film>
A Cu thin film having a film thickness of 100 nm was formed on a glass substrate using a sputtering device. Next, a Cu thin film was patterned using a photoresist to prepare a comb-shaped electrode substrate having a Cu wiring width of 7 μm. The radiation-sensitive resin composition prepared in each Example and Comparative Example was applied onto such a comb-shaped electrode substrate by a spin coating method, and heated (prebaked) at 110 ° C. for 2 minutes using a hot plate to obtain a film thickness. A 2.0 μm resin film was formed. The formed resin film was irradiated with radiation (g, h, i-line, wavelength: 365 to 436 nm) at an irradiation amount of 1000 mJ / cm 2 . Next, the resin film is post-baked by heating it at 130 ° C. for 20 minutes in an air atmosphere using an oven, so that the resin film-Cu wiring-glass substrate, which is a test piece, is laminated in this order. A laminate was obtained. Then, the obtained test piece was placed in a high temperature and humidity chamber having a temperature of 110 ° C. and a humidity of 85% for 400 hours with a voltage of 15 V applied, and migration (insulation resistance value was 1) for each test piece. The time until the occurrence of (less than 0.0 × 10 6 Ω) was measured, and the insulation reliability of the resin film was evaluated according to the following criteria.
SA: Time until migration occurs 400 hours or more A: Time until migration occurs 300 hours or more and less than 400 hours B: Time until migration occurs 200 hours or more and less than 300 hours C: Time until migration occurs less than 200 hours
<樹脂膜の低吸水性>
 シリコン基板上に、各実施例および比較例で調製した感放射線性樹脂組成物をスピンコートした後、ホットプレートを用いて110℃で2分間加熱(プリベーク)して、膜厚1.5μmの樹脂膜を形成した。次いで、樹脂膜に対して、照射量1000mJ/cmで放射線(g,h,i線、波長:365~436nm)を照射し、次いで、オーブンを用いて、大気雰囲気下、130℃で20分間加熱(ポストベーク)した後、樹脂膜とシリコン基板とからなる積層体を10mm角にカットし、試験片を得た。
 試験片を超純水の入ったガラス瓶に入れ、そのガラス瓶を60℃、90RH%の恒温恒湿槽に入れて20時間置いた。次いで、試験片をガラス瓶から取り出し、試験片表面の水分を乾燥させた後、昇温脱離ガス分析装置(昇温条件:130℃×30分)にて試験片中の水分子数を測定し、下記の式により、樹脂膜の吸水量(mg/g)を算出した。
  樹脂膜の吸水量(mg/g)={試験片中の水分子数/(6.02×1023)×18×10}(mg)/樹脂膜の質量(g)
 各積層体からそれぞれ2つの試験片を切り出し、各試験片について得られた吸水量(mg/g)の平均値を算出した。吸水量の平均値に基づいて、下記の基準に従って、樹脂膜の低吸水性を評価した。なお、吸水量の値が小さいほど、樹脂膜は低吸水性に優れていることを示す。
  A:吸水量が1mg/g未満
  B:吸水量が1mg/g以上
<Low water absorption of resin film>
The radiation-sensitive resin composition prepared in each Example and Comparative Example was spin-coated on a silicon substrate, and then heated (prebaked) at 110 ° C. for 2 minutes using a hot plate to obtain a resin having a film thickness of 1.5 μm. A film was formed. Next, the resin film is irradiated with radiation (g, h, i-rays, wavelength: 365 to 436 nm) at an irradiation amount of 1000 mJ / cm 2 , and then using an oven, the temperature is 130 ° C. for 20 minutes in an air atmosphere. After heating (post-baking), the laminate composed of the resin film and the silicon substrate was cut into 10 mm squares to obtain test pieces.
The test piece was placed in a glass bottle containing ultrapure water, and the glass bottle was placed in a constant temperature and humidity chamber at 60 ° C. and 90 RH% and left for 20 hours. Next, the test piece was taken out from the glass bottle, the water on the surface of the test piece was dried, and then the number of water molecules in the test piece was measured with a temperature rising desorption gas analyzer (heating condition: 130 ° C. × 30 minutes). , The water absorption amount (mg / g) of the resin film was calculated by the following formula.
Water absorption of the resin film (mg / g) = {number of water molecules in the test piece / (6.02 × 10 23 ) × 18 × 10 3 } (mg) / mass of the resin film (g)
Two test pieces were cut out from each laminated body, and the average value of the water absorption amount (mg / g) obtained for each test piece was calculated. Based on the average value of water absorption, the low water absorption of the resin film was evaluated according to the following criteria. The smaller the value of water absorption, the more excellent the resin film is in low water absorption.
A: Water absorption is less than 1 mg / g B: Water absorption is 1 mg / g or more
(合成例1)
<アルカリ可溶性樹脂(A)としての環状オレフィン重合体(A-1)の調製>
 N-置換イミド基を有する環状オレフィンとしてのN-フェニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド(NBPI)40モル%と、カルボキシル基を有する環状オレフィンとしての4-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン(TCDC)60モル%とからなる単量体混合物100部、1,5-ヘキサジエン2.0部、(1,3-ジメシチルイミダゾリン-2-イリデン)(トリシクロへキシルホスフィン)ベンジリデンルテニウムジクロリド(Org.Lett.,第1巻,953頁,1999年に記載された方法で合成)0.02部、および、ジエチレングリコールエチルメチルエーテル200部を窒素置換したガラス製耐圧反応器に充填し、撹拌しながら80℃にて4時間反応させて重合反応液を得た。
 得られた重合反応液をオートクレーブに入れ、150℃、水素圧4MPaの条件にて5時間撹拌して水素化反応を実施し、環状オレフィン重合体(A-1)を含む重合体溶液を得た。得られた環状オレフィン重合体(A-1)の重合転化率は99.9%、ポリスチレン換算重量平均分子量は7,200、数平均分子量は4,700、分子量分布は1.52、水素転化率は99.7%であった。また、得られた環状オレフィン重合体(A-1)の重合体溶液の固形分濃度は34.4%であった。
(Synthesis Example 1)
<Preparation of cyclic olefin polymer (A-1) as alkali-soluble resin (A)>
40 mol% of N-phenylbicyclo [2.2.1] hepto-5-ene-2,3-dicarboxyimide (NBPI) as a cyclic olefin having an N-substituted imide group, and as a cyclic olefin having a carboxyl group. 4-Hydroxycarbonyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] 100 parts of a monomer mixture consisting of 60 mol% of dodeca-9-ene (TCDC), 2.0 parts of 1,5-hexadiene, (1,3-dimeshylimidazolin-2-iriden) (Tricyclohexylphosphine) Benzilidene lutenium dichloride (Org. Lett., Vol. 1, p. 953, synthesized by the method described in 1999) 0.02 part and 200 parts of diethylene glycol ethylmethyl ether substituted with nitrogen. It was filled in a pressure resistant reactor and reacted at 80 ° C. for 4 hours with stirring to obtain a polymerization reaction solution.
The obtained polymerization reaction solution was placed in an autoclave and stirred at 150 ° C. and a hydrogen pressure of 4 MPa for 5 hours to carry out a hydrogenation reaction to obtain a polymer solution containing a cyclic olefin polymer (A-1). .. The obtained cyclic olefin polymer (A-1) has a polymerization conversion rate of 99.9%, a polystyrene-equivalent weight average molecular weight of 7,200, a number average molecular weight of 4,700, a molecular weight distribution of 1.52, and a hydrogen conversion rate. Was 99.7%. The solid content concentration of the obtained polymer solution of the cyclic olefin polymer (A-1) was 34.4%.
(実施例1)
 アルカリ可溶性樹脂(A)としての環状オレフィン重合体(A-1)100部、酸発生剤(B)としての下記の式(I)で示される(E)-7-メトキシ-3-(2,2,2-トリフルオロ-1-{[(トリフルオロメタンスルホニル)オキシ]イミノ}エチル)-2H-クロメン-2-オン(BASFジャパン社製、PAG169、発生酸:トリフルオロメタンスルホン酸、発生酸のpKa=-14)0.004部、架橋剤(C)としてのエポキシ化合物であるブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(ダイセル社製、エポリードGT401)75部、キノンジアジド化合物(D)としての4,4´-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノールと6-ジアゾ-5,6-ジヒドロ-5-オキソナフタレン-1-スルホン酸クロライド(1,2-ナフトキノンジアジド-5-スルホン酸クロライド)とのエステル化合物(東洋合成工業社製、TS-250、発生酸のpKa=4.2)34部、シランカップリング剤としてのグリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング社製、OFS-6040)1.5部および3-(フェニルアミノ)プロピルトリメトキシシラン(信越化学社製、KBM-573)3部、酸化防止剤としてのペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](BASFジャパン社製、Irganox1010FF)1.5部、並びに、界面活性剤としてのオルガノシロキサンポリマー(信越化学社製、KP-341)0.1部を、溶剤としてのジエチレングリコールエチルメチルエーテルに対して、溶剤以外の成分の濃度の合計が30%となるように混合し、溶解させた後、孔径0.45μmのポリテトラフルオロエチレン製フィルターでろ過して、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。また、上記で用いた酸発生剤(B)の分解率を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000002
(Example 1)
100 parts of the cyclic olefin polymer (A-1) as the alkali-soluble resin (A) and (E) -7-methoxy-3- (2) represented by the following formula (I) as the acid generator (B). 2,2-Trifluoro-1-{[(trifluoromethanesulfonyl) oxy] imino} ethyl) -2H-chromen-2-one (BASF Japan, PAG169, generated acid: trifluoromethanesulfonic acid, generated acid pKa = -14) 0.004 parts, 75 parts of ε-caprolactone (Epolide GT401, manufactured by Daicel) modified with tetra (3,4-epoxycyclohexylmethyl) butanetetracarboxylate, which is an epoxy compound as a cross-linking agent (C), quinonediazide 4,4'-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene] bisphenol and 6-diazo-5,6-dihydro-5- as compound (D) 34 parts of ester compound (TS-250, generated acid pKa = 4.2) with oxonaphthalene-1-sulfonic acid chloride (1,2-naphthoquinonediazide-5-sulfonic acid chloride), silane 1.5 parts of glycidoxypropyltrimethoxysilane (manufactured by Toray Dow Corning, OFS-6040) and 3- (phenylamino) propyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-573) 3 as a coupling agent Part, pentaerythritol tetrakis as an antioxidant [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (BASF Japan, Inc., Irganox1010FF) 1.5 parts, and as a surfactant 0.1 part of the organosiloxane polymer (KP-341 manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed with diethylene glycol ethylmethyl ether as a solvent so that the total concentration of the components other than the solvent was 30%, and dissolved. Then, the mixture was filtered through a filter made of polytetrafluoroethylene having a pore size of 0.45 μm to prepare a radiation-sensitive resin composition.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. In addition, the decomposition rate of the acid generator (B) used above was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000002
(実施例2~7)
 酸発生剤(B)の使用量を表1に示す通りに変更したこと以外は、実施例1と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。結果を表1に示す。
(Examples 2 to 7)
A radiation-sensitive resin composition was prepared in the same manner as in Example 1 except that the amount of the acid generator (B) used was changed as shown in Table 1.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 1.
(実施例8)
架橋剤(C)として、エポキシ化合物であるブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(ダイセル社製、エポリードGT401)75部に代えて、オキセタン化合物であるイソフタル酸=ビス[(3-エチルオキセタン-3-イル)メチル](商品名「OXIPA」、宇部興産社製)75部を用いたこと以外は、実施例4と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。結果を表2に示す。
(Example 8)
As the cross-linking agent (C), isophthalic acid, which is an oxetane compound, is used instead of 75 parts of the epoxy compound, butanetetracarboxylate (3,4-epoxycyclohexylmethyl) -modified ε-caprolactone (Epolide GT401, manufactured by Daicel). A radiation-sensitive resin composition was prepared in the same manner as in Example 4 except that 75 parts of bis [(3-ethyloxetane-3-yl) methyl] (trade name “OXIPA”, manufactured by Ube Kosan Co., Ltd.) was used. Prepared.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
(実施例9)
 架橋剤(C)として、エポキシ化合物であるブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(ダイセル社製、エポリードGT401)75部に代えて、エポキシ化合物であるブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(ダイセル社製、エポリードGT401)60部と、エポキシ化合物である2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(ダイセル社製、EHPE3150)15部とを用いたこと以外は、実施例4と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。結果を表2に示す。
(Example 9)
As the cross-linking agent (C), instead of 75 parts of the epoxy compound tetrabutanetetracarboxylate (3,4-epoxycyclohexylmethyl) modified ε-caprolactone (Epolide GT401 manufactured by Daicel Co., Ltd.), the epoxy compound butanetetracarbonate is used. 60 parts of tetra (3,4-epoxycyclohexylmethyl) modified ε-caprolactone (Epolide GT401, manufactured by Daicel) and 1,2-epoxy of 2,2-bis (hydroxymethyl) -1-butanol, which is an epoxy compound. A radiation-sensitive resin composition was prepared in the same manner as in Example 4 except that 15 parts of a 4- (2-oxylanyl) cyclohexane adduct (EHPE3150 manufactured by Daicel Co., Ltd.) was used.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
(実施例10)
 架橋剤(C)として、エポキシ化合物であるブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(ダイセル社製、エポリードGT401)75部に代えて、エポキシ化合物であるブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(ダイセル社製、エポリードGT401)60部と、オキセタン化合物であるイソフタル酸=ビス[(3-エチルオキセタン-3-イル)メチル](商品名「OXIPA」、宇部興産社製)15部とを用いたこと以外は、実施例4と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。結果を表2に示す。
(Example 10)
As the cross-linking agent (C), instead of 75 parts of the epoxy compound tetrabutanetetracarboxylate (3,4-epoxycyclohexylmethyl) modified ε-caprolactone (Epolide GT401 manufactured by Daicel Co., Ltd.), the epoxy compound butanetetracarbonate is used. 60 parts of tetra (3,4-epoxycyclohexylmethyl) modified ε-caprolactone (Epolide GT401, manufactured by Daicel) and isophthalic acid = bis [(3-ethyloxetane-3-yl) methyl] (commodity), which is an oxetane compound. A radiation-sensitive resin composition was prepared in the same manner as in Example 4 except that 15 parts of the name “OXIPA” (manufactured by Ube Kosan Co., Ltd.) were used.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
(実施例11)
 架橋剤(C)として、エポキシ化合物であるブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(ダイセル社製、エポリードGT401)75部に代えて、エポキシ化合物であるブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(ダイセル社製、エポリードGT401)60部と、エポキシ化合物である多官能エポキシポリブタジエン(ダイセル社製、エポリードPB4700)15部とを用いたこと以外は、実施例4と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。結果を表2に示す。
(Example 11)
As the cross-linking agent (C), instead of 75 parts of the epoxy compound tetrabutanetetracarboxylate (3,4-epoxycyclohexylmethyl) modified ε-caprolactone (Epolide GT401 manufactured by Daicel Co., Ltd.), the epoxy compound butanetetracarbonate is used. 60 parts of tetra (3,4-epoxycyclohexylmethyl) modified ε-caprolactone (Epolide GT401, manufactured by Daicel) and 15 parts of polyfunctional epoxypolybutadiene (Epolide PB4700, manufactured by Daicel), which is an epoxy compound, were used. Except for the above, a radiation-sensitive resin composition was prepared in the same manner as in Example 4.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
(実施例12)
 キノンジアジド化合物(D)としての4,4´-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノールと6-ジアゾ-5,6-ジヒドロ-5-オキソナフタレン-1-スルホン酸クロライドとのエステル体(東洋合成工業社製、TS-250)34部を使用しなかったこと以外は、実施例4と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。結果を表2に示す。
(Example 12)
4,4'-[1- [4- [1- (4-Hydroxyphenyl) -1-methylethyl] phenyl] ethylidene] bisphenol and 6-diazo-5,6-dihydro-5 as quinonediazide compound (D) A radiation-sensitive resin composition was prepared in the same manner as in Example 4 except that 34 parts of an ester compound with -oxonaphthalene-1-sulfonic acid chloride (TS-250, manufactured by Toyo Synthetic Industry Co., Ltd.) was not used. Prepared.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
(実施例13)
 アルカリ可溶性樹脂(A)として、環状オレフィン系樹脂である環状オレフィン重合体(A-1)100部に代えて、後述する合成で得られたカルボキシル基を有するアクリル樹脂100部を用いたこと以外は、実施例4と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。結果を表2に示す。
<アクリル樹脂の合成例>
 撹拌子を入れたガラス製のアンプルにメタクリル酸イソボルニル100.0g、メタクリル酸16.6g、2,4-ジフェニル-4-メチル-1-ペンテン0.26g、アゾビスイソブチロニトリル4.2g、シクロペンタノン217gを加えて密封し、窒素ガスで加圧、脱圧を10回繰り返して系内の酸素を除去した。60℃に加温し、6時間反応を行った。反応溶液にテトラヒドロフラン200gを加えた後、MeOH3000mL中に反応溶液を滴下して重合体を析出させた。沈殿物をろ過で回収した後、50℃で24時間乾燥させることで、アクリル樹脂を得た。GPC分析によるアクリル樹脂のポリスチレン換算重量平均分子量は28,000、分子量分布は2.8であった。
(Example 13)
As the alkali-soluble resin (A), 100 parts of an acrylic resin having a carboxyl group obtained by the synthesis described later was used instead of 100 parts of the cyclic olefin polymer (A-1) which is a cyclic olefin resin. , A radiation-sensitive resin composition was prepared in the same manner as in Example 4.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
<Acrylic resin synthesis example>
In a glass ampoule containing a stirrer, 100.0 g of isobornyl methacrylate, 16.6 g of methacrylic acid, 0.26 g of 2,4-diphenyl-4-methyl-1-pentene, 4.2 g of azobisisobutyronitrile, 217 g of cyclopentanone was added and sealed, and pressurization and depressurization with nitrogen gas were repeated 10 times to remove oxygen in the system. The mixture was heated to 60 ° C. and reacted for 6 hours. After adding 200 g of tetrahydrofuran to the reaction solution, the reaction solution was added dropwise to 3000 mL of MeOH to precipitate a polymer. The precipitate was collected by filtration and then dried at 50 ° C. for 24 hours to obtain an acrylic resin. The polystyrene-equivalent weight average molecular weight of the acrylic resin by GPC analysis was 28,000, and the molecular weight distribution was 2.8.
(実施例14)
 アルカリ可溶性樹脂(A)として、環状オレフィン系樹脂である環状オレフィン重合体(A-1)100部に代えて、カルボキシル基を有するアミドイミド樹脂(DIC社製、EMG-1015)100部を用いたこと以外は、実施例4と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。結果を表2に示す。
(Example 14)
As the alkali-soluble resin (A), 100 parts of an amidoimide resin (EMG-1015 manufactured by DIC Corporation) having a carboxyl group was used instead of 100 parts of the cyclic olefin polymer (A-1) which is a cyclic olefin resin. Except for the above, a radiation-sensitive resin composition was prepared in the same manner as in Example 4.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
(実施例15)
 アルカリ可溶性樹脂(A)として、カルボキシル基を有する環状オレフィン系樹脂である環状オレフィン重合体(A-1)100部に代えて、カルボキシル基を有しない樹脂であるノボラック樹脂(旭有機材社製、TRM30B35G、m-クレゾール/p-クレゾール/m-キシレノール=60/30/10(モル比)とホルムアルデヒドとの重合体)100部を用いたこと以外は、実施例4と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。結果を表2に示す。
(Example 15)
As the alkali-soluble resin (A), instead of 100 parts of the cyclic olefin polymer (A-1) which is a cyclic olefin resin having a carboxyl group, a novolak resin (manufactured by Asahi Organic Materials Co., Ltd.) which is a resin having no carboxyl group. Radiation-sensitive as in Example 4, except that 100 parts of TRM30B35G, m-cresol / p-cresol / m-xylenol = 60/30/10 (molar ratio) and formaldehyde polymer) was used. A resin composition was prepared.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
(実施例16)
 酸発生剤(B)として、(E)-7-メトキシ-3-(2,2,2-トリフルオロ-1-{[(トリフルオロメタンスルホニル)オキシ]イミノ}エチル)-2H-クロメン-2-オン(BASFジャパン社製、PAG169)0.1部に代えて、酸発生剤(B)としてのPAG169(BASFジャパン社製)0.05部と、酸発生剤(B)としての下記式(IV)で示されるNAI-105(みどり化学社製、化合物名:N-(トリフルオロメチルスルホニルオキシ)-1,8-ナフタルイミド、発生酸:トリフルオロメタンスルホン酸、発生酸のpKa=-14)0.05部との混合物を用いたこと以外は、実施例4と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。結果を表2に示す。
 なお、上記で用いた各酸発生剤(B)および(B)の分解率を測定した後、下記式により、酸発生剤(B)の分解率を算出したところ、酸発生剤(B)の分解率は43%であった。
  酸発生剤(B)の分解率〔%〕=[酸発生剤(B)の添加量×酸発生剤(B)の分解率+酸発生剤(B)の添加量×酸発生剤(B)の分解率]/酸発生剤(B)および(B)の合計添加量
Figure JPOXMLDOC01-appb-C000003
(Example 16)
As the acid generator (B), (E) -7-methoxy-3- (2,2,2-trifluoro-1-{[(trifluoromethanesulfonyl) oxy] imino} ethyl) -2H-chromen-2- Instead of 0.1 part of ON (PAG169 manufactured by BASF Japan), 0.05 part of PAG169 (manufactured by BASF Japan) as an acid generator (B 1 ) and the following formula as an acid generator (B 2 ) NAI-105 (manufactured by Midori Kagaku Co., Ltd., compound name: N- (trifluoromethylsulfonyloxy) -1,8-naphthalimide, generated acid: trifluoromethanesulfonic acid, generated acid pKa = -14) represented by (IV). ) A radiosensitive resin composition was prepared in the same manner as in Example 4 except that a mixture with 0.05 part was used.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. The results are shown in Table 2.
After measuring the decomposition rates of the acid generators (B 1 ) and (B 2 ) used above, the decomposition rate of the acid generator (B) was calculated by the following formula. The acid generator (B) ) Was 43%.
Decomposition rate of acid generator (B) [%] = [Amount of acid generator (B 1 ) added x Decomposition rate of acid generator (B 1 ) + Amount of acid generator (B 2 ) added x Acid generator Decomposition rate of (B 2 )] / Total amount of acid generators (B 1 ) and (B 2 ) added
Figure JPOXMLDOC01-appb-C000003
(実施例17)
 酸発生剤(B)として、(E)-7-メトキシ-3-(2,2,2-トリフルオロ-1-{[(トリフルオロメタンスルホニル)オキシ]イミノ}エチル)-2H-クロメン-2-オン(BASFジャパン社製、PAG169)0.1部に代えて、NP-TM2(サンアプロ社製、発生酸:トリフルオロメタンスルホン酸、発生酸のpKa=-14)0.1部を用いたこと以外は、実施例4と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。また、上記で用いた酸発生剤(B)の分解率を測定した。結果を表2に示す。
(Example 17)
As the acid generator (B), (E) -7-methoxy-3- (2,2,2-trifluoro-1-{[(trifluoromethanesulfonyl) oxy] imino} ethyl) -2H-chromen-2- Other than using 0.1 part of NP-TM2 (manufactured by San-Apro, generated acid: trifluoromethanesulfonic acid, generated acid pKa = -14) instead of 0.1 part of ON (BASF Japan, PAG169). Prepared a radiation-sensitive resin composition in the same manner as in Example 4.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. In addition, the decomposition rate of the acid generator (B) used above was measured. The results are shown in Table 2.
(実施例18)
 酸発生剤(B)として、(E)-7-メトキシ-3-(2,2,2-トリフルオロ-1-{[(トリフルオロメタンスルホニル)オキシ]イミノ}エチル)-2H-クロメン-2-オン(BASFジャパン社製、PAG169)0.1部に代えて、下記式(III)で示されるPAG121(BASFジャパン社製、化合物名:2-[2-(4-メチルフェニルスルホニルオキシイミノ)チオフェン-3(2H)-イリデン-2-(2-メチルフェニル)アセトニトリル、発生酸:p-トルエンスルホン酸、発生酸のpKa=-3)0.1部を用いたこと以外は、実施例4と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。また、上記で用いた酸発生剤(B)の分解率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-C000004
(Example 18)
As the acid generator (B), (E) -7-methoxy-3- (2,2,2-trifluoro-1-{[(trifluoromethanesulfonyl) oxy] imino} ethyl) -2H-chromen-2- On (manufactured by BASF Japan, PAG169) instead of 0.1 part, PAG121 (manufactured by BASF Japan, compound name: 2- [2- (4-methylphenylsulfonyloxyimino) thiophene represented by the following formula (III)) Example 4 and -3 (2H) -iriden-2- (2-methylphenyl) acetonitrile, generated acid: p-toluenesulfonic acid, pKa = -3) 0.1 part of the generated acid were used. Similarly, a radiation-sensitive resin composition was prepared.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. In addition, the decomposition rate of the acid generator (B) used above was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-C000004
(比較例1)
 酸発生剤(B)としての(E)-7-メトキシ-3-(2,2,2-トリフルオロ-1-{[(トリフルオロメタンスルホニル)オキシ]イミノ}エチル)-2H-クロメン-2-オン(BASFジャパン社製、PAG169)0.004部を使用しなかったこと以外は、実施例1と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。また、上記で用いた酸発生剤(B)の分解率を測定した。結果を表1に示す。
(Comparative Example 1)
(E) -7-methoxy-3- (2,2,2-trifluoro-1-{[(trifluoromethanesulfonyl) oxy] imino} ethyl) -2H-chromen-2- as an acid generator (B) A radiation-sensitive resin composition was prepared in the same manner as in Example 1 except that 0.004 part of ON (PAG169 manufactured by BASF Japan Ltd.) was not used.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. In addition, the decomposition rate of the acid generator (B) used above was measured. The results are shown in Table 1.
(比較例2)
 酸発生剤(B)として、(E)-7-メトキシ-3-(2,2,2-トリフルオロ-1-{[(トリフルオロメタンスルホニル)オキシ]イミノ}エチル)-2H-クロメン-2-オン(BASFジャパン社製、PAG169)0.1部に代えて、上述した式(IV)で示されるNAI-105(みどり化学社製、化合物名:N-(トリフルオロメチルスルホニルオキシ)-1,8-ナフタルイミド、発生酸:トリフルオロメタンスルホン酸、発生酸のpKa=-14)0.1部を用いたこと以外は、実施例4と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。また、上記で用いた酸発生剤(B)の分解率を測定した。結果を表2に示す。
(Comparative Example 2)
As the acid generator (B), (E) -7-methoxy-3- (2,2,2-trifluoro-1-{[(trifluoromethanesulfonyl) oxy] imino} ethyl) -2H-chromen-2- NAI-105 (manufactured by Midori Kagaku Co., Ltd., compound name: N- (trifluoromethylsulfonyloxy) -1, represented by the above formula (IV), instead of 0.1 part of ON (manufactured by BASF Japan, PAG169) A radiation-sensitive resin composition was prepared in the same manner as in Example 4 except that 0.1 part of 8-naphthalimide, generated acid: trifluoromethanesulfonic acid, and generated acid pKa = -14) was used.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. In addition, the decomposition rate of the acid generator (B) used above was measured. The results are shown in Table 2.
(比較例3)
 酸発生剤(B)として、(E)-7-メトキシ-3-(2,2,2-トリフルオロ-1-{[(トリフルオロメタンスルホニル)オキシ]イミノ}エチル)-2H-クロメン-2-オン(BASFジャパン社製、PAG169)0.1部に代えて、下記式(V)で示されるPAG103(BASFジャパン社製、化合物名:2-[2-(プロピルスルホニルオキシイミノ)チオフェン-3(2H )-イリデン]-2-(2-メチルフェニル)アセトニトリル、発生酸:1-プロパンスルホン酸、発生酸のpKa=2)0.1部を用いたこと以外は、実施例4と同様にして、感放射線性樹脂組成物を調製した。
 そして、得られた感放射線性樹脂組成物を用いて、樹脂膜の耐薬品性、引張強度、絶縁信頼性、および低吸水性を評価した。また、上記で用いた酸発生剤(B)の分解率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-C000005
(Comparative Example 3)
As the acid generator (B), (E) -7-methoxy-3- (2,2,2-trifluoro-1-{[(trifluoromethanesulfonyl) oxy] imino} ethyl) -2H-chromen-2- On (manufactured by BASF Japan, PAG169) instead of 0.1 part, PAG103 (manufactured by BASF Japan, compound name: 2- [2- (propylsulfonyloxyimino) thiophene-3) represented by the following formula (V). 2H) -iriden] -2- (2-methylphenyl) acetonitrile, generated acid: 1-propanesulfonic acid, pKa = 2) 0.1 part of the generated acid was used in the same manner as in Example 4. , A radiosensitive resin composition was prepared.
Then, using the obtained radiation-sensitive resin composition, the chemical resistance, tensile strength, insulation reliability, and low water absorption of the resin film were evaluated. In addition, the decomposition rate of the acid generator (B) used above was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1より、アルカリ可溶性樹脂と、発生酸のpKaが-3以下である酸発生剤と、架橋剤とを含み、酸発生剤の分解率が40%以上である実施例1~18の感放射線性樹脂組成物は、低温で熱処理した場合であっても耐薬品性および絶縁信頼性に優れる樹脂膜を形成可能であることが分かる。
 一方、発生酸のpKaが-3以下である酸発生剤を使用しなかった比較例1および3の感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜は、耐薬品性および絶縁信頼性のいずれにも劣ることが分かる。
 また、発生酸のpKaが-3以下である酸発生剤を使用したが、当該酸発生剤の分解率が40%未満である比較例2の感放射線性樹脂組成物を用いて低温で熱処理して形成した樹脂膜は、絶縁信頼性は良好であるものの、耐薬品性に劣ることが分かる。
From Table 1, the radiation-sensitive radiation of Examples 1 to 18 containing an alkali-soluble resin, an acid generator having a pKa of the generated acid of -3 or less, and a cross-linking agent, and having a decomposition rate of the acid generator of 40% or more. It can be seen that the sex resin composition can form a resin film having excellent chemical resistance and insulation reliability even when heat-treated at a low temperature.
On the other hand, the resin film formed by heat treatment at a low temperature using the radiation-sensitive resin compositions of Comparative Examples 1 and 3 in which an acid generator having a pKa of generated acid of -3 or less was not used has chemical resistance and chemical resistance. It can be seen that it is inferior to any of the insulation reliability.
Further, although an acid generator having a pKa of the generated acid of -3 or less was used, heat treatment was performed at a low temperature using the radiation-sensitive resin composition of Comparative Example 2 in which the decomposition rate of the acid generator was less than 40%. It can be seen that the resin film formed in the above process has good insulation reliability but is inferior in chemical resistance.
 本発明によれば、低温で熱処理した場合であっても耐薬品性および絶縁信頼性に優れる樹脂膜を形成可能な感放射線性樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a radiation-sensitive resin composition capable of forming a resin film having excellent chemical resistance and insulation reliability even when heat-treated at a low temperature.

Claims (7)

  1.  アルカリ可溶性樹脂(A)と、
     発生酸のpKaが-3以下である酸発生剤(B)と、
     架橋剤(C)とを含み、
     前記酸発生剤(B)の分解率が40%以上である、感放射線性樹脂組成物。
    Alkali-soluble resin (A) and
    The acid generator (B) having a pKa of the generated acid of -3 or less and
    Including the cross-linking agent (C)
    A radiation-sensitive resin composition having a decomposition rate of the acid generator (B) of 40% or more.
  2.  前記架橋剤(C)がエポキシ化合物およびオキセタン化合物の少なくとも一方を含む、請求項1に記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to claim 1, wherein the cross-linking agent (C) contains at least one of an epoxy compound and an oxetane compound.
  3.  前記酸発生剤(B)の含有量が、前記架橋剤(C)100質量部に対して、0.004質量部以上1.2質量部以下である、請求項1または2に記載の感放射線性樹脂組成物。 The radiation-sensitive radiation according to claim 1 or 2, wherein the content of the acid generator (B) is 0.004 parts by mass or more and 1.2 parts by mass or less with respect to 100 parts by mass of the cross-linking agent (C). Sex resin composition.
  4.  前記アルカリ可溶性樹脂(A)がカルボキシル基を有する樹脂を含む、請求項1~3の何れかに記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to any one of claims 1 to 3, wherein the alkali-soluble resin (A) contains a resin having a carboxyl group.
  5.  前記アルカリ可溶性樹脂(A)が、アクリル樹脂、アミドイミド樹脂、および環状オレフィン系樹脂からなる群より選択される少なくとも1種を含む、請求項1~4の何れかに記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to any one of claims 1 to 4, wherein the alkali-soluble resin (A) contains at least one selected from the group consisting of an acrylic resin, an amidoimide resin, and a cyclic olefin resin. ..
  6.  前記アルカリ可溶性樹脂(A)が環状オレフィン系樹脂を含む、請求項1~5の何れかに記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to any one of claims 1 to 5, wherein the alkali-soluble resin (A) contains a cyclic olefin resin.
  7.  キノンジアジド化合物(D)を更に含む、請求項1~6の何れかに記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to any one of claims 1 to 6, further comprising a quinonediazide compound (D).
PCT/JP2021/036865 2020-10-13 2021-10-05 Radiation-sensitive resin composition WO2022080195A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180068371.1A CN116406453A (en) 2020-10-13 2021-10-05 Radiation sensitive resin composition
JP2022557395A JPWO2022080195A1 (en) 2020-10-13 2021-10-05
KR1020237010832A KR20230086669A (en) 2020-10-13 2021-10-05 Radiation-sensitive resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-172868 2020-10-13
JP2020172868 2020-10-13

Publications (1)

Publication Number Publication Date
WO2022080195A1 true WO2022080195A1 (en) 2022-04-21

Family

ID=81208016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036865 WO2022080195A1 (en) 2020-10-13 2021-10-05 Radiation-sensitive resin composition

Country Status (5)

Country Link
JP (1) JPWO2022080195A1 (en)
KR (1) KR20230086669A (en)
CN (1) CN116406453A (en)
TW (1) TW202227901A (en)
WO (1) WO2022080195A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190698A (en) * 2012-03-14 2013-09-26 Asahi Kasei E-Materials Corp Photosensitive resin composition, cured relief pattern-manufacturing method, and semiconductor device
JP2019066828A (en) * 2017-09-28 2019-04-25 Jsr株式会社 Radiation sensitive resin composition and application thereof
JP2020086083A (en) * 2018-11-22 2020-06-04 サンアプロ株式会社 Photo-acid generator and resin composition for photolithography

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746606B1 (en) 2012-08-23 2017-06-13 후지필름 가부시키가이샤 Positive-type photosensitive resin composition, method for manufacturing cured film, cured film, organic el display device, and liquid crystal display device
JP2016042127A (en) 2014-08-15 2016-03-31 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulation film of display element, method of forming the same, and display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190698A (en) * 2012-03-14 2013-09-26 Asahi Kasei E-Materials Corp Photosensitive resin composition, cured relief pattern-manufacturing method, and semiconductor device
JP2019066828A (en) * 2017-09-28 2019-04-25 Jsr株式会社 Radiation sensitive resin composition and application thereof
JP2020086083A (en) * 2018-11-22 2020-06-04 サンアプロ株式会社 Photo-acid generator and resin composition for photolithography

Also Published As

Publication number Publication date
JPWO2022080195A1 (en) 2022-04-21
KR20230086669A (en) 2023-06-15
TW202227901A (en) 2022-07-16
CN116406453A (en) 2023-07-07

Similar Documents

Publication Publication Date Title
JP5181725B2 (en) Photosensitive resin composition, laminate, method for producing the same, and electronic component
TWI662363B (en) Radiation-sensitive resin composition and electronic component
TW201314364A (en) Resin composition and semiconductor element substrate
TWI689561B (en) Resin composition, resin film and electronic component
JP6524996B2 (en) Radiation-sensitive resin composition and electronic component
CN110366704B (en) Radiation-sensitive resin composition and electronic component
TWI664493B (en) Radiation-sensitive resin composition, resin film, and electronic component
KR102539141B1 (en) resin composition
JP5401835B2 (en) Positive-type radiation-sensitive resin composition, partition and organic electroluminescence device
JP4179164B2 (en) Radiation sensitive resin composition and pattern forming method
JP3965976B2 (en) Radiation sensitive resin composition, resin pattern forming method, resin pattern and use thereof
TW201514239A (en) Resin composition, resin film, and electronic component
WO2022080195A1 (en) Radiation-sensitive resin composition
JP7192775B2 (en) Positive radiation-sensitive resin composition
JP6819674B2 (en) Radiation-sensitive resin composition and electronic components
JP3960042B2 (en) Radiation sensitive resin composition, resin pattern forming method, resin pattern and use thereof
JP2005292277A (en) Radiation sensitive composition, laminate and method for manufacturing same, and electronic component
JP2013222170A (en) Permanent film and method for forming the same
TWI805898B (en) Resin composition, resin film and electronic part
JP2006186175A (en) Resin film forming material for electronic component and laminate using it
WO2019188432A1 (en) Resin composition and electronic component
JP2010072217A (en) Radiation-sensitive resin composition, resin film and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879935

Country of ref document: EP

Kind code of ref document: A1