WO2024095637A1 - Actinic-ray-curable composition and cured object - Google Patents

Actinic-ray-curable composition and cured object Download PDF

Info

Publication number
WO2024095637A1
WO2024095637A1 PCT/JP2023/034725 JP2023034725W WO2024095637A1 WO 2024095637 A1 WO2024095637 A1 WO 2024095637A1 JP 2023034725 W JP2023034725 W JP 2023034725W WO 2024095637 A1 WO2024095637 A1 WO 2024095637A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
monofunctional monomer
acrylamide
curable composition
Prior art date
Application number
PCT/JP2023/034725
Other languages
French (fr)
Japanese (ja)
Inventor
俊貴 児島
和哉 前田
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Publication of WO2024095637A1 publication Critical patent/WO2024095637A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G

Definitions

  • the present invention relates to an active energy ray-curable composition and a cured product.
  • the object of the present invention is to provide an active energy ray-curable composition that gives a cured product that is highly flexible and stretchable.
  • the present invention provides an active energy ray-curable composition containing a monofunctional monomer (A), a polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, and a photopolymerization initiator (D), wherein the monofunctional monomer (A) contains a monofunctional monomer (A1) having a homopolymer glass transition temperature of less than 25° C. and a monofunctional monomer (A2) having a homopolymer glass transition temperature of 25° C.
  • the content of the monofunctional monomer (A) is 10 to 75% by weight
  • the content of the polyfunctional (meth)acrylate (C) is 25 to 90% by weight
  • the content of the photopolymerization initiator (D) is 0.1 to 20% by weight, based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C), and the molecular weight between crosslinking points is 1,000 to 25,000; and a cured product obtained by curing the active energy ray-curable composition.
  • the active energy ray-curable composition of the present invention has the effect of producing a cured product that is highly flexible and stretchable.
  • the active energy ray-curable composition of the present invention is an active energy ray-curable composition that contains a monofunctional monomer (A), a polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, and a photopolymerization initiator (D).
  • A monofunctional monomer
  • C polyfunctional (meth)acrylate
  • D photopolymerization initiator
  • (meth)acrylate means “methacrylate or acrylate”
  • (meth)acrylic means “methacrylic or acrylic”
  • (meth)acryloyl means “methacryloyl or acryloyl”.
  • the essential components of the active energy ray-curable composition of the present invention the monofunctional monomer (A), the polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, and the photopolymerization initiator (D), are described below in order.
  • the monofunctional monomer (A) contains a monofunctional monomer (A1) whose homopolymer has a glass transition temperature of less than 25°C and a monofunctional monomer (A2) whose homopolymer has a glass transition temperature of 25°C or higher.
  • the chemical structure of the monofunctional monomer (A1) having a homopolymer glass transition temperature of less than 25°C is not particularly limited as long as the homopolymer has a glass transition temperature of less than 25°C.
  • the glass transition temperature of a homopolymer refers to the temperature at which the loss tangent (tan ⁇ ) is maximum when the dynamic viscoelasticity of the polymer obtained by homopolymerizing the monofunctional monomer using the method described below is measured using the method described below.
  • the laminate of (2) is irradiated with 1000 mJ/cm2 at an illuminance of 1500 mW/cm2 (UV- A ) using an ultraviolet irradiation device (e.g., VPS/I600 manufactured by Fusion UV Systems Japan, lamp: D bulb) in an environment of 25 ° C.
  • the laminate of (2) is then turned over and irradiated from the other side with 1000 mJ/ cm2 to cure the composition.
  • the hardened sample of (3) is cut into a test piece having a length of 40 mm, a width of 5 mm, and a thickness of 1 mm.
  • ⁇ Dynamic viscoelasticity measurement method> Using this test piece, the dynamic viscoelasticity is measured under the following conditions using a dynamic viscoelasticity measuring device (eg, Rheogel-E4000, manufactured by UBM). Measurement mode: temperature dependence, measurement temperature range: -80°C to 200°C, frequency: 10 Hz, heating rate: 4°C/min, distortion waveform: sine wave, measurement jig: tensile.
  • the temperature at which the ratio (tan ⁇ ) of the loss modulus E" to the storage modulus E' in the obtained spectrum is maximum is defined as the glass transition temperature (Tg).
  • the monofunctional monomer (A1) having a homopolymer glass transition temperature of less than 25°C is preferably at least one selected from the group consisting of monofunctional (meth)acrylates (E) having a linear or branched alkyl group with 10 to 22 carbon atoms, monofunctional urethane (meth)acrylates (F) and other monofunctional (meth)acrylates (G).
  • Examples of monofunctional (meth)acrylates (E) having a straight-chain or branched alkyl group having 10 to 22 carbon atoms include decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, and behenyl (meth)acrylate.
  • These (meth)acrylates can be easily produced by direct esterification or transesterification of (meth)acrylic acid or methyl (meth)acrylate with natural or synthetic alcohol.
  • the alkyl group will be straight-chained and have an even carbon number. If a synthetic alcohol is used, for example, Dobanol (manufactured by Mitsubishi Chemical Corporation), the alkyl group will be a mixture of straight-chain and branched, and the number of carbon atoms will be a mixture of odd and even. If Diadol (manufactured by Mitsubishi Chemical Corporation) is used, the alkyl group will be a mixture of straight-chain and branched, and the number of carbon atoms will be only odd. In the present invention, these monofunctional (meth)acrylates (E) having a linear or branched alkyl group having 10 to 22 carbon atoms may be used alone or in combination of two or more kinds.
  • these monofunctional (meth)acrylates (E) having a linear or branched alkyl group having 10 to 22 carbon atoms may be used alone or in combination of two or more kinds.
  • lauryl (meth)acrylate, isodecyl (meth)acrylate, and isostearyl (meth)acrylate are preferred from the viewpoints of the elongation rate of the cured product, the strength of the cured product, and the adhesion to the substrate.
  • the monofunctional urethane (meth)acrylate (F) in the present invention means a monomer having one (meth)acryloyl group and at least one urethane group in the molecule. From the viewpoint of viscosity, a monomer having one (meth)acryloyl group and one urethane group is preferred.
  • Examples of the monofunctional urethane (meth)acrylate (F) include a reaction product of a monofunctional (meth)acrylate having a hydroxyl group (a) and an organic monoisocyanate compound (b).
  • Examples of the monofunctional (meth)acrylate (a) having a hydroxyl group include hydroxyalkyl (meth)acrylates (2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and 1,4-cyclohexanedimethanol monoacrylate).
  • the hydroxyl group-containing monofunctional (meth)acrylate (a) may be used alone or in combination of two or more kinds.
  • Examples of the organic monoisocyanate compound (b) include an aliphatic monoisocyanate compound (b1), an alicyclic monoisocyanate compound (b2), and an aromatic monoisocyanate compound (b3).
  • Examples of the aliphatic monoisocyanate compound (b1) include methyl isocyanate, ethyl isocyanate, propyl isocyanate, isopropyl isocyanate, butyl isocyanate, hexyl isocyanate, octyl isocyanate, lauryl isocyanate, tetradecyl isocyanate, hexadecyl isocyanate, and octadecyl isocyanate.
  • Examples of the alicyclic monoisocyanate compound (b2) include cyclohexyl isocyanate.
  • Examples of the aromatic monoisocyanate compound (b3) include phenyl isocyanate and tolylene isocyanate.
  • the organic monoisocyanate compound (b) may be used alone or in combination of two or more kinds.
  • organic monoisocyanate compounds (b) from the viewpoint of the elongation rate and viscosity of the cured product, the aliphatic monoisocyanate compound (b1) and the alicyclic monoisocyanate compound (b2) are preferred, the aliphatic monoisocyanate compound (b1) is more preferred, and methyl isocyanate, ethyl isocyanate, propyl isocyanate, butyl isocyanate, and hexyl isocyanate are particularly preferred.
  • the monofunctional urethane (meth)acrylate (F) a reaction product obtained by subjecting a monofunctional (meth)acrylate having a hydroxyl group (a) and an organic monoisocyanate compound (b) to a urethane reaction by a known method can be used.
  • products available on the market may be used, and examples of commercially available products include Viscoat #216 (2-[(butylamino)carbonyl]oxyethyl acrylate: manufactured by Osaka Organic Chemical Industry Co., Ltd.), Etermer EM2080 (manufactured by Choko Materials Co., Ltd.), and Genomer 1122 (manufactured by RAHN).
  • Other monofunctional (meth)acrylates (G) include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, tert-butyl (meth)acrylate, hexyl (meth)acrylate, isoamyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, 2-ethylhexyl diglycol (meth)acrylate, 2-ethylhexyl carbitol (meth)acrylate, 2,2,2-tetrafluoroethyl (meth)acrylate, 1H,1H,2H,2H-perf
  • the acrylates include fluorodecyl (meth)acrylate, 4-butylphenyl (meth)acrylate,
  • the chemical structure of the monofunctional monomer (A2) having a homopolymer glass transition temperature of 25°C or higher is not particularly limited as long as the homopolymer glass transition temperature is 25°C or higher.
  • Examples of the monofunctional monomer (A2) having a homopolymer glass transition temperature of 25°C or higher include (meth)acrylates (H) having an alicyclic skeleton, monofunctional monomers (I) having a nitrogen atom in the molecule, and other monofunctional (meth)acrylates (J), and from the viewpoint of curability, monofunctional monomers (I) having a nitrogen atom in the molecule are preferred.
  • Examples of the (meth)acrylate (H) having an alicyclic skeleton include isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, 1-ethylcyclohexyl (meth)acrylate, and adamantyl (meth)acrylate.
  • these (meth)acrylates (H) having an alicyclic skeleton may be used alone or in combination of two or more kinds.
  • (meth)acrylates (H) having an alicyclic skeleton isobornyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, trimethylcyclohexyl (meth)acrylate, and 1-ethylcyclohexyl (meth)acrylate are preferred from the viewpoint of the elongation rate and strength of the cured product.
  • Examples of the monofunctional monomer (I) having a nitrogen atom in the molecule include N-substituted vinyl monomers and N-substituted (meth)acrylamides, with N-substituted (meth)acrylamides being preferred from the viewpoint of curability.
  • Examples of N-substituted vinyl monomers include N-vinylpyrrolidone, N-vinylcarbazole, N-vinylcaprolactam, N-vinylimidazole, and vinylmethyloxazolidinone.
  • the N-substituted (meth)acrylamide means a (meth)acrylamide in which one or two hydrogen atoms of the amino group are substituted with a substituent such as a hydrocarbon group.
  • N-substituted (meth)acrylamide examples include linear amides (I1) having an N-(meth)acryloyl group, cyclic amides (I2) having an N-(meth)acryloyl group, and diacetone acrylamide.
  • chain amides (I1) having an N-(meth)acryloyl group examples include N-alkyl(meth)acrylamides (I11), N,N-dialkyl(meth)acrylamides (I12), N-hydroxyalkyl(meth)acrylamides (I13), N-alkoxyalkyl(meth)acrylamides (I14), and N-alkyl-N-alkoxy(meth)acrylamides (I15).
  • N-alkyl(meth)acrylamides (I11) include N-methyl(meth)acrylamide, N-ethyl(meth)acrylamide, N-propyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-dodecyl(meth)acrylamide, and N-octadecyl(meth)acrylamide.
  • N,N-dialkyl(meth)acrylamide (I12) includes N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N,N-dipropyl(meth)acrylamide, N,N-diisopropyl(meth)acrylamide, N,N-dibutyl(meth)acrylamide, N,N-diisobutyl(meth)acrylamide, N,N-di-tert-butyl(meth)acrylamide, N,N-diheptyl(meth)acrylamide, N,N-dioctyl(meth)acrylamide, N,N-di-tert-octyl(meth)acrylamide, N,N-didodecyl(meth)acrylamide, and N,N-dioctadecyl(meth)acrylamide.
  • the two alkyl groups in N,N-dialkyl(meth)acrylamide (I12) may be the same or different, and the number of carbon atoms in the alkyl group is preferably 1 to 20, more preferably 1 to 8, and particularly preferably 1 to 4, from the viewpoint of curability.
  • N-hydroxyalkyl(meth)acrylamide (I13) includes N-hydroxymethyl(meth)acrylamide, N-hydroxyethyl(meth)acrylamide, and N-(3-hydroxypropyl)(meth)acrylamide. From the viewpoint of curability, the number of carbon atoms in the alkyl group of N-hydroxyalkyl(meth)acrylamide (I13) is preferably 1 to 20, more preferably 1 to 8, and particularly preferably 1 to 4.
  • N-alkoxyalkyl(meth)acrylamide (I14) includes N-methoxymethyl(meth)acrylamide, N-ethoxymethyl(meth)acrylamide, N-propoxymethyl(meth)acrylamide, N-butoxymethyl(meth)acrylamide, N-methoxyethyl(meth)acrylamide, N-ethoxyethyl(meth)acrylamide, N-butoxyethyl(meth)acrylamide, N-methoxypropyl(meth)acrylamide, N-ethoxypropyl(meth)acrylamide, N-methoxybutyl(meth)acrylamide, and N-ethoxybutyl(meth)acrylamide.
  • the number of carbon atoms in the alkoxyalkyl group of N-alkoxyalkyl(meth)acrylamide (I14) is preferably 2 to 20, more preferably 2 to 8, and particularly preferably 2 to 6.
  • the number of carbon atoms in the alkyl group of the alkoxyalkyl group is preferably 1 to 4, more preferably 1 to 3, and particularly preferably 1 to 2.
  • N-alkyl-N-alkoxy(meth)acrylamide (I15) includes N-methyl-N-methoxy(meth)acrylamide, N-methyl-N-ethoxy(meth)acrylamide, N-methyl-N-propoxy(meth)acrylamide, N-methyl-N-butoxy(meth)acrylamide, N-ethyl-N-methoxy(meth)acrylamide, N-ethyl-N-ethoxy(meth)acrylamide, N-ethyl-N-butoxy(meth)acrylamide, N-propyl-N-methoxy(meth)acrylamide, N-propyl-N-ethoxy(meth)acrylamide, N-butyl-N-methoxy(meth)acrylamide, and N-butyl-N-ethoxy(meth)acrylamide.
  • Examples of the cyclic amide (I2) having an N-(meth)acryloyl group include N-(meth)acryloylmorpholine, N-(meth)acryloylthiomorpholine, N-(meth)acryloylpiperidine, N-(meth)acryloylpyrrolidine, and N-(meth)acryloylpiperidine.
  • the number of carbon atoms in the cyclic amide having an N-(meth)acryloyl group is preferably 7 to 20, more preferably 7 to 18, and particularly preferably 7 to 16.
  • these N-substituted (meth)acrylamides may be used alone or in combination of two or more.
  • N-substituted (meth)acrylamides from the viewpoints of viscosity, curability, and elongation of the cured product, preferred are N,N-dialkyl(meth)acrylamides (I12), N-alkoxyalkyl(meth)acrylamides (I14), and cyclic amides having an N-(meth)acryloyl group (I2), more preferred are N,N-dialkyl(meth)acrylamides (I12) and cyclic amides having an N-(meth)acryloyl group (I2), and particularly preferred are N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, and N-(meth)acryloylmorpholine.
  • Other monofunctional (meth)acrylates (J) include cyclic trimethylolpropane formal (meth)acrylate, 2-phenoxyethyl acrylate, etc.
  • a bifunctional (meth)acrylate having a number average molecular weight of 500 to 40,000 is preferred, and examples of such a bifunctional (meth)acrylate include the bifunctional (meth)acrylate (K) represented by the general formula (1) and other bifunctional (meth)acrylates (L).
  • the bifunctional (meth)acrylate (K) represented by the general formula (1) is as follows. CH 2 ⁇ CXCO-O-(R—O) n -COCX ⁇ CH 2 (1) [In the general formula (1), n is an integer of 2 to 15, R is an alkylene group having 2 to 6 carbon atoms (when there are multiple R in one molecule, each R is independently an alkylene group having 2 to 6 carbon atoms), and each X is independently a hydrogen atom or a methyl group.]
  • R represents an alkylene group having 2 to 6 carbon atoms, and specific examples thereof include an ethylene group, a 1,2-propylene group, a 1,3-propylene group, a 1,2-butylene group, a 1,3-butylene group, and a 1,4-butylene group. From the viewpoint of hardness of the cured product, R preferably has 2 to 3 carbon atoms, and more preferably is an ethylene group or a 1,2-propylene group. n is an integer of 2 or more and 15 or less, and is preferably an integer of 7 or more and 15 or less from the viewpoint of low outgassing properties and bending resistance.
  • n means the number of repeats of the alkyleneoxy group. The same applies hereinafter.
  • These difunctional (meth)acrylates (K) can be used alone or in combination of two or more.
  • Other bifunctional (meth)acrylates (L) include di(meth)acrylates (L1) of 4-25 moles of alkylene oxide (alkylene group has 2-4 carbon atoms) adducts of dihydric phenol compounds, diesters of (meth)acrylic acid and 1-15 moles of alkylene oxide (alkylene group has 2-4 carbon atoms) adducts of dihydric alcohols having 2-30 carbon atoms, diesters of diglycidyl ether and (meth)acrylic acid, and di(meth)acrylates of ethylene oxide adducts of fluorene, silicone diacrylates (L2), urethane diacrylates (L3), etc.
  • Di(meth)acrylates (L1) of 4 to 25 moles of alkylene oxide (alkylene group carbon number 2 to 4) adducts of dihydric phenol compounds include di(meth)acrylates of alkylene oxide adducts of dihydric phenol compounds [monocyclic phenols (catechol, resorcinol, hydroquinone, etc.), condensed polycyclic phenols (dihydroxynaphthalene, etc.), bisphenol compounds (bisphenol A, bisphenol F, bisphenol S, etc.)], such as di(meth)acrylates of ethylene oxide (hereinafter, ethylene oxide may be abbreviated as EO) adducts of catechol, di(meth)acrylates of propylene oxide (hereinafter, 1,2- or 1,3-propylene oxide may be abbreviated as PO) adducts of dihydroxynaphthalene, and di(meth)acrylates of EO adducts of bisphenol A.
  • silicone diacrylate (L2) examples include EBECRYL350 and EBECRYL1360.
  • Urethane diacrylate (L3) is a urethane (meth)acrylate containing polyol (m), polyisocyanate (n), and active hydrogen group-containing (meth)acrylate (c) as constituent raw materials.
  • Polyols (m) include linear aliphatic polyols (m1) having 1 to 20 carbon atoms, alicyclic polyols (m2) having 6 to 20 carbon atoms, and aromatic polyols (m3) having 6 to 20 carbon atoms, as well as their alkylene oxide adducts [ethylene oxide (EO), 1,2- or 1,3-propylene oxide (PO), and 1,2-, 1,3-, 1,4- or 2,3-butylene oxide, etc.].
  • EO ethylene oxide
  • PO 1,2- or 1,3-propylene oxide
  • 2,3-butylene oxide 1,3-butylene oxide
  • linear aliphatic polyol (m1) examples include linear aliphatic diols having 1 to 20 carbon atoms (ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-dodecanediol, etc.), branched aliphatic diols (1,2-propanediol, 1,2-, 1,3- or 2,3-butanediol, 2-methyl-1,4-butanediol, neopentyl glycol, 2,2-diethyl-1,3-propanediol, 2-methyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, etc.), and linear alipha
  • Examples of alicyclic polyols (m2) having 6 to 20 carbon atoms include 1,2-cyclohexanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanediol, 1,3-cyclopentanediol, 1,4-cycloheptanediol, 1,4-bis(hydroxymethyl)cyclohexane, 2,2-bis(4-hydroxycyclohexyl)propane, and 1,3,5-cyclohexanetriol.
  • aromatic polyols (m3) having 6 to 20 carbon atoms include resorcinol, hydroquinone, naphthalene diol, and bisphenols (such as bisphenol A, bisphenol F, and bisphenol S).
  • the number of moles of alkylene oxide added is preferably 1 to 50 moles, more preferably 4 to 30 moles, from the viewpoint of the elongation of the cured product.
  • polys (m) from the viewpoint of elongation of the cured product, preferred are alkylene oxide adducts of the above-mentioned chain aliphatic polyols (m1), more preferred are 1,4-butylene oxide adducts of the aliphatic polyols (m1), and particularly preferred is poly-1,4-butylene oxide (polytetramethylene glycol).
  • the polyol (m) may be used alone or in combination of two or more kinds.
  • polyisocyanates (n) examples include linear aliphatic polyisocyanates (n1) having 4 to 20 carbon atoms, alicyclic polyisocyanates (n2) having 6 to 22 carbon atoms, and aromatic polyisocyanates (n3) having 8 to 22 carbon atoms.
  • chain aliphatic polyisocyanates (n1) having 4 to 20 carbon atoms examples include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and lysine diisocyanate.
  • alicyclic polyisocyanates (n2) having 6 to 22 carbon atoms include cyclohexane-1,3-diylbismethylene diisocyanate, isophorone diisocyanate (IPDI), 2,4- or 2,6-methylcyclohexane diisocyanate (hydrogenated TDI), dicyclohexylmethane-4,4'-diisocyanate (hydrogenated MDI; hereafter sometimes referred to as MDIH), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, bis(2-isocyanatoethyl)-4-cyclohexylene-1,2-dicarboxylate, 2,5- or 2,6-norbornane diisocyanate, and dimer acid diisocyanate.
  • IPDI isophorone diisocyanate
  • TDI 2,4- or 2,6-methylcyclohexane diisocyanate
  • MDIH di
  • Aromatic polyisocyanates (n3) having 8 to 22 carbon atoms include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate (TDI), 4,4'- or 2,4'-diphenylmethane diisocyanate (MDI), m- or p-isocyanatophenylsulfonyl isocyanate, 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatodiphenylmethane, 1,5-naphthylene diisocyanate, m- or p-isocyanatophenylsulfonyl isocyanate, m- or p-xylylene diisocyanate (XDI), and ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diis
  • polyisocyanates (n) from the viewpoint of elongation and light resistance of the cured product, preferred are alicyclic polyisocyanates (n2) having 6 to 22 carbon atoms and aromatic polyisocyanates (n3) having 8 to 22 carbon atoms, more preferred are alicyclic polyisocyanates having 6 to 20 carbon atoms and aromatic polyisocyanates having 8 to 20 carbon atoms, particularly preferred are cyclohexane-1,3-diylbismethylene diisocyanate, IPDI, XDI, TMXDI, MDI and TDI, and most preferred is IPDI.
  • the polyisocyanate (n) may be used alone or in combination of two or more kinds.
  • Examples of the active hydrogen group-containing (meth)acrylate (c) include hydroxyl group-containing (meth)acrylate (c1), amino group-containing (meth)acrylate (c2), and carboxyl group-containing (meth)acrylate (c3), etc. Among these, preferred is the hydroxyl group-containing (meth)acrylate.
  • Examples of the hydroxyl group-containing (meth)acrylate (c1) include hydroxyalkyl (meth)acrylate (c11) and polyalkylene glycol mono(meth)acrylate (c12).
  • Hydroxyalkyl (meth)acrylates (c11) preferably include hydroxyalkyl (meth)acrylates having 4 to 20 carbon atoms, and specific examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 3-hydroxypropyl (meth)acrylate.
  • polyalkylene glycol mono(meth)acrylates (c12) examples include polyethylene glycol mono(meth)acrylate and polypropylene glycol mono(meth)acrylate.
  • amino group-containing (meth)acrylates (c2) include monoalkyl (carbon number 1-4) aminoalkyl (carbon number 2-6) (meth)acrylates ⁇ aminoethyl, aminopropyl, methylaminoethyl, ethylaminoethyl, butylaminoethyl, or methylaminopropyl (meth)acrylate ⁇ and dialkyl (carbon number 1-4) aminoalkyl (carbon number 2-6) (meth)acrylates ⁇ dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dibutylaminoethyl (meth)acrylate, etc. ⁇ .
  • carboxyl group-containing (meth)acrylates (c3) examples include 2-(meth)acryloyloxyethyl succinate, 2-(meth)acryloyloxyethyl phthalate, and 2-(meth)acryloyloxyethyl hexahydrophthalate.
  • hydroxyl group-containing (meth)acrylates (c) from the viewpoints of reactivity in the urethane reaction and elongation of the cured product, preferred are hydroxyl group-containing (meth)acrylates (c1), more preferred are hydroxyl group-containing monofunctional (meth)acrylates, particularly preferred are hydroxyalkyl (meth)acrylates (c11), and most preferred is 2-hydroxyethyl (meth)acrylate.
  • the active hydrogen group-containing (meth)acrylate (c) may be used alone or in combination of two or more kinds.
  • the urethane diacrylate (L3) may be used alone or in combination of two or more kinds.
  • the molar ratio of the isocyanate groups in the polyisocyanate (n) to the active hydrogen groups in the polyol (m) and active hydrogen group-containing (meth)acrylate (c) [isocyanate groups in (n)/total of active hydrogen groups in (m) and active hydrogen groups in (c)] is not particularly limited, but is preferably 1/0.5 to 1/10, more preferably 1/0.7 to 1/5, and particularly preferably 1/1 to 1/2, from the viewpoint of storage stability.
  • the urethane diacrylate (L3) in the present invention can be produced by reacting a polyol (m), a polyisocyanate (n) and an active hydrogen group-containing (meth)acrylate (c) by a known method.
  • a polyol (m) and a polyisocyanate (n) it is preferable to produce the urethane prepolymer having two or more isocyanate groups by subjecting a polyol (m) and a polyisocyanate (n) to a polyaddition reaction, and then subjecting the urethane prepolymer to an addition reaction with an active hydrogen group-containing (meth)acrylate (c).
  • a urethanization catalyst may be used.
  • the urethanization catalyst include metal compounds (organobismuth compounds, organotin compounds, organotitanium compounds, etc.) and quaternary ammonium salts.
  • the polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000 may be a trifunctional or higher functional (meth)acrylate, such as urethane tetraacrylate.
  • the photopolymerization initiator (D) is not limited as long as it generates radicals, ions, and the like when irradiated with active energy rays, thereby initiating a polymerization reaction of the monomers.
  • a photopolymerization initiator that generates radicals when irradiated with active energy rays can be preferably used.
  • Preferred examples of the photopolymerization initiator (D) include acylphosphine oxide compounds (D1), ⁇ -hydroxyalkylphenone compounds (D2), ⁇ -aminoalkylphenone compounds (D3), ketal compounds (D4), benzoylformate compounds (D5), thioxanthone compounds (D6), benzophenone compounds (D7), and oxime ester compounds (D8).
  • Examples of the acylphosphine oxide compound (D1) include bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and ethyl 2,4,6-trimethylbenzoylphenylphosphinate.
  • ⁇ -Hydroxyalkylphenone compounds (D2) include 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2-methyl-1-phenylpropan-1-one.
  • Examples of ⁇ -aminoalkylphenone compounds (D3) include 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-butan-1-one, and 2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-butan-1-one.
  • ketal compounds (D4) include benzyl dimethyl ketal.
  • benzoyl formate compounds (D5) examples include methyl benzoyl formate, etc.
  • Thioxanthone compounds (D6) include 2,4-diethylthioxanthone, 2-isopropylthioxanthone, and 2-chlorothioxanthone.
  • benzophenone compounds (D7) include benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, and 4,4'-bismethylaminobenzophenone.
  • Examples of the oxime ester compound (D8) include 1-[4-(phenylthio)phenyl]-1,2-octanedione 2-(O-benzoyloxime) and 1-[6-(2-methylbenzoyl)-9-ethyl-9H-carbazol-3-yl]-ethanone-1-(O-acetyloxime).
  • these photopolymerization initiators (D) may be used alone or in combination of two or more.
  • the acylphosphine oxide compounds (D1) and ⁇ -hydroxyalkylphenone compounds (D2) are preferred from the viewpoints of curability and transmittance of the cured product, with the acylphosphine oxide compounds (D1) being more preferred, and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide being particularly preferred.
  • the content of monofunctional monomer (A) in the present invention is 10 to 75% by weight based on the total weight of monofunctional monomer (A) and polyfunctional (meth)acrylate (C). If the content of monofunctional monomer (A) is less than 10% by weight, the elongation of the cured product will be insufficient, and if it exceeds 75% by weight, the elasticity of the cured product will be insufficient.
  • the content of the monofunctional monomer (A1) having a homopolymer glass transition temperature of less than 25° C. is preferably 5 to 30% by weight, more preferably 5 to 25% by weight, based on the total content of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C), from the viewpoints of curability and flexibility.
  • the content of the monofunctional monomer (A2) having a homopolymer glass transition temperature of 25° C. or higher is preferably 5 to 70% by weight based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C) from the viewpoints of curability and flexibility.
  • the content of the polyfunctional (meth)acrylate (C) in the present invention is 25 to 90% by weight based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C). If the content of the polyfunctional (meth)acrylate (C) is less than 25% by weight, the elasticity of the cured product is insufficient, and if it exceeds 90% by weight, the elongation percentage is insufficient.
  • the content of the photopolymerization initiator (D) in the present invention is 0.1 to 20% by weight, preferably 2 to 20% by weight, more preferably 2 to 18% by weight, and even more preferably 5 to 15% by weight, based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C). If the content of the photopolymerization initiator (D) is less than 0.1% by weight, the curability will be insufficient, and if it exceeds 20% by weight, the transmittance of the cured product will be insufficient.
  • the molecular weight between crosslinking points in the present invention is 1000 to 25000.
  • the molecular weight between crosslinking points is expressed as [Mc] (g/mol), and from the viewpoint of flexibility and restorability, it is preferably 1200 to 20000 g/mol, more preferably 1300 to 15000.
  • the active energy ray-curable composition of the present invention may contain another monomer (M) other than the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, within a range that does not impair the effects of the present invention.
  • the other monomer (M) include difunctional or higher functional (meth)acrylates other than the polyfunctional (meth)acrylate (C) [for example, difunctional (meth)acrylates (N) (excluding those corresponding to the polyfunctional (meth)acrylate (C)), trifunctional or higher functional (meth)acrylates (O), and (meth)acrylates having a phosphate group (P), etc.].
  • the storage stability of the active energy ray-curable composition may become insufficient, and therefore it is preferable not to use such a monomer.
  • Examples of the bifunctional (meth)acrylate (N) include polyalkylene glycol (alkylene group having 2 to 4 carbon atoms) di(meth)acrylate (N1), di(meth)acrylate (N2) of an alkylene oxide (alkylene group having 2 to 4 carbon atoms) adduct of a dihydric phenol compound, diester of an alkylene oxide (alkylene group having 2 to 4 carbon atoms) adduct of a polyhydric (preferably dihydric to octahydric) alcohol having 2 to 30 carbon atoms and (meth)acrylic acid, diester of a diglycidyl ether and (meth)acrylic acid, and di(meth)acrylate of an ethylene oxide adduct of fluorene, cyclohexanemethanol di(meth)acrylate, ethoxylated cyclohexanemethanol di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, and 1,
  • these bifunctional (meth)acrylates (N) may be used alone or in combination of two or more.
  • trifunctional or higher (meth)acrylates (O) include trifunctional (meth)acrylate monomers and tetrafunctional or higher (meth)acrylate monomers.
  • trifunctional (meth)acrylate monomers include trimethylolethane tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolpropane modified with an alkylene oxide having 3 to 4 carbon atoms, pentaerythritol tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, trimethylolpropane tri((meth)acryloyloxypropyl)ether, sorbitol tri(meth)acrylate, tri(meth)acrylate of an adduct of pentaerythritol with 1 to 30 moles of an alkylene oxide having 3 to 4 carbon atoms, and ethoxylated glycerin tri(meth)acrylate.
  • tetrafunctional or higher (meth)acrylate monomers include pentaerythritol tetra(meth)acrylate, sorbitol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol propionate tetra(meth)acrylate, tetra(meth)acrylate of an adduct of pentaerythritol with 1 to 11 moles of an alkylene oxide having 3 to 4 carbon atoms, sorbitol penta(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, sorbitol hexa(meth)acrylate, and caprolactone-modified dipentaerythritol hexa(me
  • the (meth)acrylate (P) having a phosphate group is not limited as long as it is a phosphate ester having a (meth)acryloyl group, and examples thereof include those having 1 to 3 functional groups in the (meth)acryloyl group.
  • (meth)acrylates (P) having a phosphate group from the viewpoint of metal adhesion, preferred are (meth)acrylates having a phosphate group with a functionality of 1 to 2 (meth)acryloyl groups, and more preferred are 2-(meth)acryloyloxyethyl acid phosphate, bis ⁇ 2-(meth)acryloyloxyethyl ⁇ acid phosphate, and a reaction product of a 6-hexanolide addition polymer of 2-hydroxyethyl methacrylate and phosphoric anhydride.
  • the content of the other monomer (M) is preferably 0 to 20% by weight, more preferably 0 to 10% by weight, based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C).
  • the total content of the polyfunctional (meth)acrylate (C) and the difunctional or higher (meth)acrylate other than the polyfunctional (meth)acrylate (C) is preferably 50% by weight or less based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C) from the viewpoint of elongation.
  • the active energy ray-curable composition of the present invention may contain various additives as necessary within the range that does not impair the effects of the present invention.
  • the additives include leveling agents, charge adjusters, light stabilizers, ultraviolet absorbers, surface treatment agents, antioxidants, antiaging agents, crosslinking accelerators, plasticizers, preservatives, pH adjusters, antifoaming agents, and moisturizing agents.
  • the method for producing the active energy ray-curable composition of the present invention is not particularly limited.
  • the active energy ray-curable composition can be produced by stirring and mixing the above-mentioned components in a suitable container such as a glass beaker, a can, or a plastic cup with a stirring rod, a spatula, or the like, or by uniformly mixing the components with a known mixing device (a method using a mechanical stirrer, a magnetic stirrer, or the like, a mixing device equipped with a paddle-shaped stirring spring, a dissolver, a ball mill, a planetary mixer, or the like).
  • a known mixing device a method using a mechanical stirrer, a magnetic stirrer, or the like, a mixing device equipped with a paddle-shaped stirring spring, a dissolver, a ball mill, a planetary mixer, or the like.
  • the active energy ray-curable composition of the present invention is preferably in a liquid state at room temperature, and its viscosity can be measured using an E-type viscosity measuring device [such as "VISCOMETER TV-25L” manufactured by Toki Sangyo Co., Ltd.] and a B-type viscosity measuring device.
  • E-type viscosity measuring device such as "VISCOMETER TV-25L” manufactured by Toki Sangyo Co., Ltd.
  • the active energy ray-curable composition is applied to a substrate by a known method, and then cured by irradiating the composition with active energy rays.
  • the active energy rays in the present invention include ultraviolet rays and electron beams.
  • the active energy rays used for curing the active energy ray-curable composition of the present invention can be adjusted by selecting a photopolymerization initiator.
  • the composition can be photocured by irradiation with active energy rays having a wavelength of 200 to 700 nm, and it is preferable that the composition is cured by irradiation with light (ultraviolet light) having a wavelength of 200 to 400 nm.
  • LED light sources that emit ultraviolet rays include high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, high-power metal halide lamps, etc. (Latest Trends in UV/EB Curing Technology, edited by RadTech Research Group, CMC Publishing, p. 138, 2006) and LEDs. Among them, LEDs consume less power and generate less ozone than other light sources, have low running costs, and are environmentally friendly.
  • an LED light source ultraviolet irradiation device for example, LED light source ultraviolet irradiation device "FJ100 150x20 365, phoseon", manufactured by TECHNOLOGY Co., Ltd.] can be used.
  • the amount of ultraviolet light irradiated when curing the active energy ray-curable composition of the present invention is preferably 10 to 10,000 mJ/cm 2 , more preferably 50 to 5,000 mJ/cm 2 , from the viewpoints of curability and flexibility of the cured product.
  • a known electron beam irradiation device can be used.
  • the irradiation dose of the electron beam is preferably 1 to 10 Mrad from the viewpoints of curability and suppression of deterioration of the cured product.
  • the material to be applied to the active energy ray-curable composition of the present invention may be appropriately selected depending on the application, etc., and organic materials such as plastics and inorganic materials such as metals and glass can be used.
  • organic materials such as plastics and inorganic materials such as metals and glass
  • metals include steel, hot-dip galvanized steel, electrolytic galvanized steel, tinplate, tin-free steel, various other plated or alloy-plated steel, stainless steel, aluminum, gold, platinum, silver, copper, etc.
  • the metals may be those that have been subjected to various surface treatments such as phosphate treatment, chromate treatment, organic phosphate treatment, organic chromate treatment, and heavy metal replacement treatment.
  • plastic materials include polyester resins (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), acrylic resins (methyl methacrylate copolymers, etc.), triacetyl cellulose, acrylonitrile-butadiene-styrene copolymer (ABS) resin, styrene resin, polysulfone resin, polyethersulfone resin, polycarbonate resin, vinyl chloride resin, polymethacrylimide resin, and polyolefin resins (polyethylene, polypropylene, cycloolefin polymer, etc.).
  • Inorganic materials include glass and ceramics. Among these, the active energy ray-curable composition of the present invention has particularly excellent adhesion to metals.
  • the active energy ray-curable composition of the present invention can be applied to a substrate by known coating methods such as spin coating, roll coating, and spray coating, and known printing methods such as lithographic printing, carton printing, metal printing, offset printing, screen printing, and gravure printing.
  • coating methods such as spin coating, roll coating, and spray coating
  • printing methods such as lithographic printing, carton printing, metal printing, offset printing, screen printing, and gravure printing.
  • the composition of the present invention has a low viscosity at room temperature, it can also be applied to inkjet coating (inkjet printing) in which fine droplets are continuously ejected.
  • inkjet printing is capable of precise, high-speed printing using relatively simple equipment, and is therefore suitable for use in the manufacture of display components such as liquid crystal displays and organic EL displays, as well as other electronic and optical components.
  • the active energy ray curable composition of the present invention has a low viscosity, and the cured product of the active energy ray curable composition has excellent elongation and elastic modulus, making it useful as a material for various electronic and optical components, including display components.
  • it can be suitably used for bonding and sealing electronic components such as display components and image sensors, and semiconductor packages. It can also be widely used in various coatings, inks (UV printing inks and UV inkjet printing inks, etc.), paints, etc.
  • the present invention may include the following configurations.
  • An active energy ray-curable composition containing a monofunctional monomer (A), a polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, and a photopolymerization initiator (D), wherein the monofunctional monomer (A) contains a monofunctional monomer (A1) having a homopolymer glass transition temperature of less than 25° C. and a monofunctional monomer (A2) having a homopolymer glass transition temperature of 25° C.
  • the content of the monofunctional monomer (A) is 10 to 75% by weight
  • the content of the polyfunctional (meth)acrylate (C) is 25 to 90% by weight
  • the content of the photopolymerization initiator (D) is 0.1 to 20% by weight, based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C), and the molecular weight between crosslinking points is 1,000 to 25,000.
  • ⁇ 3> The active energy ray-curable composition according to ⁇ 1> or ⁇ 2>, wherein the monofunctional monomer (A2) is an N-substituted (meth)acrylamide.
  • Examples 1 to 14 and Comparative Examples 1 to 5 ⁇ Preparation of active energy ray-curable composition> (Examples 1 to 14 and Comparative Examples 1 to 5)
  • the monofunctional monomer (A), the polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, the photopolymerization initiator (D), and the other monomer (M) were charged into a glass container and stirred until uniform, thereby obtaining active energy ray-curable compositions of Examples 1 to 14 and Comparative Examples 1 to 5.
  • the raw materials used in Table 1 are as follows: (A1-1): Lauryl acrylate [product name: LA, manufactured by Osaka Organic Chemical Industry Co., Ltd.] (Tg of homopolymer: -30°C) (A1-2): Isostearyl acrylate [product name: ISTA, manufactured by Osaka Organic Chemical Industry Co., Ltd.] (Tg of homopolymer: -15°C) (A1-3): 2-[(butylamino)carbonyl]oxyethyl acrylate [product name: Viscoat #216, manufactured by Osaka Organic Chemical Industry Co., Ltd.] (Tg of homopolymer: 0° C.) (A1-4): Tetrahydrofurfuryl acrylate [product name: Viscoat #150, manufactured by Osaka Organic Chemical Industry Co., Ltd.] (Tg of homopolymer: -12°C) (A2-1): N-acryloylmorpholine [product name: ACMO, manufactured by KJ Chemicals] (Tg of
  • the coating curability was evaluated according to the following criteria.
  • the coating curability is preferably 2 or more, and more preferably 3.
  • the film was exposed to light at an irradiation intensity of 200 mW/cm 2 under a nitrogen atmosphere using an LED light source ultraviolet irradiation device [model number "FJ100 150 ⁇ 20 385", manufactured by phoseon TECHNOLOGY Co., Ltd., irradiation wavelength 385 nm] to prepare an evaluation sample.
  • the exposure amount was 2000 mJ/cm 2 .
  • the prepared evaluation sample was kept at 25° C. for 30 minutes, and the total light transmittance (%) was measured in accordance with JIS K7136: 2000 using a total light transmittance measuring device [trade name "haze-garddual", manufactured by BYK Gardner Co., Ltd.].
  • the total light transmittance is preferably 90% or more.
  • a PET film [product name: Lumirror S, manufactured by Toray Industries, Inc.] was attached to a glass plate [product name: GLASS PLATE, manufactured by AS ONE Corporation, length 200 mm x width 200 mm x thickness 5 mm], and an active energy ray curable composition was applied using an applicator so that the film thickness after curing was 100 ⁇ m.
  • ultraviolet ray irradiation device model number "VPS/I600", manufactured by Fusion UV Systems Co., Ltd.
  • ultraviolet rays were irradiated at 2000 mJ/ cm2 under a nitrogen atmosphere to obtain a PET film covered with a cured product of the active energy ray curable composition.
  • the PET film coated with the above-mentioned cured product was punched out into a dumbbell shape No. 3 in accordance with JIS K 6251:2017, and then the PET film was peeled off to obtain a test specimen for measurement.
  • the elastic modulus is preferably 1000 MPa or less, more preferably 500 MPa or less, and even more preferably 100 MPa or less.
  • the elongation is preferably 50% or more, and more preferably 100% or more.
  • Recovery rate (%) (gauge line distance before test (20 mm))/(gauge line distance after test) ⁇ 100
  • the restoration rate is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more.
  • the average number of adhered grids is preferably 80 or more, more preferably 90 or more, and even more preferably 100.
  • the active energy ray-curable composition of the present invention is excellent in both elongation and elastic modulus, and is therefore useful as a material for various electronic components, including display components such as flexible displays, stretchable devices, and various optical components.
  • display components such as flexible displays, stretchable devices, and various optical components.
  • it can be suitably used for adhesion and sealing of display components, electronic components such as image sensors, semiconductor packages, etc.
  • coatings inks (UV printing inks, UV inkjet printing inks, screen printing inks, etc.), paints, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

An actinic-ray-curable composition comprising monofunctional monomers (A), a polyfunctional (meth)acrylate (C) having a number-average molecular weight of 500-40,000, and a photopolymerization initiator (D), wherein the monofunctional monomers (A) comprise a monofunctional monomer (A1), a homopolymer of which has a glass transition temperature lower than 25°C, and a monofunctional monomer (A2), a homopolymer of which has a glass transition temperature of 25°C or higher. With respect to the total weight of the monofunctional monomers (A) and the polyfunctional (meth)acrylate (C), the content of the monofunctional monomers (A) is 10-75 wt%, the content of the polyfunctional (meth)acrylate (C) is 25-90 wt%, and the content of the photopolymerization initiator (D) is 0.1-20 wt%. The inter-crosslink molecular weight is 1,000-25,000.

Description

活性エネルギー線硬化性組成物及び硬化物Active energy ray curable composition and cured product
 本発明は、活性エネルギー線硬化性組成物及び硬化物に関する。 The present invention relates to an active energy ray-curable composition and a cured product.
 近年、折り曲げ可能ないわゆるフレキシブルディスプレイや伸縮可能なストレッチャブルデバイスの開発が活発にされており、これに伴い材料として、折り曲げても破損せず部材同士の剥離が起こらない伸縮可能な特性が要求されている。また、室温において低粘度である活性エネルギー線硬化性組成物は、インクジェット方式も含めて適用できる塗布方法が多く、高精密な塗布が求められる電子部品や光学部品等の材料として用いられる。更に、ディスプレイ等の曲面への貼り付け等ができるように柔軟な材料が望まれている。従来、伸長するUV樹脂はあったが、復元率、柔軟性に劣っていたり、弾性率が高く、デバイスを引っ張った際に他基材から剥離してしまったりするという課題があった(特許文献1)。 In recent years, there has been active development of so-called flexible displays that can be bent and stretchable devices that can be expanded and contracted. Accordingly, materials are required to have the property of being stretchable and not breaking when bent and not peeling off from each other. In addition, active energy ray curable compositions have low viscosity at room temperature and can be applied to many coating methods, including the inkjet method, and are used as materials for electronic and optical components that require high precision coating. Furthermore, flexible materials are desired so that they can be attached to curved surfaces such as displays. Previously, stretchable UV resins were available, but they had problems such as poor recovery rate and flexibility, and a high elastic modulus, which caused them to peel off from other substrates when the device was pulled (Patent Document 1).
特開2020-70338号公報JP 2020-70338 A
 本発明の課題は、柔軟性かつ伸縮性に優れる硬化物を与える活性エネルギー線硬化性組成物を提供することにある。 The object of the present invention is to provide an active energy ray-curable composition that gives a cured product that is highly flexible and stretchable.
 本発明者らは、上記の課題を解決すべく鋭意検討した結果、本発明に到達した。
 即ち本発明は、単官能モノマー(A)、数平均分子量が500~40000である多官能(メタ)アクリレート(C)及び光重合開始剤(D)を含有する活性エネルギー線硬化性組成物であって、前記単官能モノマー(A)がホモポリマーのガラス転移温度が25℃未満の単官能モノマー(A1)とホモポリマーのガラス転移温度が25℃以上の単官能モノマー(A2)を含有し、前記単官能モノマー(A)及び前記多官能(メタ)アクリレート(C)の合計重量に基づいて、前記単官能モノマー(A)の含有量が10~75重量%、前記多官能(メタ)アクリレート(C)の含有量が25~90重量%、前記光重合開始剤(D)の含有量が0.1~20重量%であり、架橋点間分子量が1000~25000である活性エネルギー線硬化性組成物;前記活性エネルギー線硬化性組成物を硬化させてなる硬化物である。
The present inventors conducted extensive research to solve the above problems and arrived at the present invention.
That is, the present invention provides an active energy ray-curable composition containing a monofunctional monomer (A), a polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, and a photopolymerization initiator (D), wherein the monofunctional monomer (A) contains a monofunctional monomer (A1) having a homopolymer glass transition temperature of less than 25° C. and a monofunctional monomer (A2) having a homopolymer glass transition temperature of 25° C. or higher, the content of the monofunctional monomer (A) is 10 to 75% by weight, the content of the polyfunctional (meth)acrylate (C) is 25 to 90% by weight, and the content of the photopolymerization initiator (D) is 0.1 to 20% by weight, based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C), and the molecular weight between crosslinking points is 1,000 to 25,000; and a cured product obtained by curing the active energy ray-curable composition.
 本発明の活性エネルギー線硬化性組成物は、柔軟性かつ伸縮性に優れる硬化物を与えるという効果を奏する。 The active energy ray-curable composition of the present invention has the effect of producing a cured product that is highly flexible and stretchable.
 本発明の活性エネルギー線硬化性組成物は、単官能モノマー(A)、数平均分子量が500~40000である多官能(メタ)アクリレート(C)及び光重合開始剤(D)を含有する活性エネルギー線硬化性組成物である。 The active energy ray-curable composition of the present invention is an active energy ray-curable composition that contains a monofunctional monomer (A), a polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, and a photopolymerization initiator (D).
 なお、本発明において「(メタ)アクリレート」とは、「メタクリレート又はアクリレート」を、「(メタ)アクリル」とは、「メタクリル又はアクリル」を、「(メタ)アクリロイル」とは、「メタクリロイル又はアクリロイル」を意味する。 In the present invention, "(meth)acrylate" means "methacrylate or acrylate", "(meth)acrylic" means "methacrylic or acrylic", and "(meth)acryloyl" means "methacryloyl or acryloyl".
 以下に本発明の活性エネルギー線硬化性組成物の必須成分である単官能モノマー(A)、数平均分子量が500~40000である多官能(メタ)アクリレート(C)及び光重合開始剤(D)を順に説明する。 The essential components of the active energy ray-curable composition of the present invention, the monofunctional monomer (A), the polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, and the photopolymerization initiator (D), are described below in order.
 単官能モノマー(A)は、ホモポリマーのガラス転移温度が25℃未満の単官能モノマー(A1)とホモポリマーのガラス転移温度が25℃以上の単官能モノマー(A2)を含有する。 The monofunctional monomer (A) contains a monofunctional monomer (A1) whose homopolymer has a glass transition temperature of less than 25°C and a monofunctional monomer (A2) whose homopolymer has a glass transition temperature of 25°C or higher.
 ホモポリマーのガラス転移温度が25℃未満の単官能モノマー(A1)は、ホモポリマーのガラス転移温度が25℃未満であれば化学構造は特に限定されない。 The chemical structure of the monofunctional monomer (A1) having a homopolymer glass transition temperature of less than 25°C is not particularly limited as long as the homopolymer has a glass transition temperature of less than 25°C.
 ここで、ホモポリマーのガラス転移温度とは、その単官能モノマーを下記の方法で単独重合させた重合物の動的粘弾性を、下記の方法で測定した際の、損失正接(tanδ)が最大値を示す温度のことである。 Here, the glass transition temperature of a homopolymer refers to the temperature at which the loss tangent (tan δ) is maximum when the dynamic viscoelasticity of the polymer obtained by homopolymerizing the monofunctional monomer using the method described below is measured using the method described below.
<テストピースの作製>
(1)光ラジカル重合開始剤として、1-ヒドロキシシクロヘキシルフェニルケトン[商品名「イルガキュア184」、IGM Resins B.V.社製]を、単官能モノマーに対して3重量%添加し、均一になるまで撹拌し、テストピース作製サンプルとする。
(2)厚さ1mmのシリコンゴムシート[商品名:シリコンゴムシート、アズワン(株)製]を幅10mm×長さ150mmに切ったもの2枚をガラス板[商品名:GLASS PLATE、アズワン(株)製、タテ200mm×ヨコ200mm×厚さ5mm]の両端に貼り付け、シリコンゴムシートの間にテストピース作製サンプルを約5gのせ、上から空気が入らないようにPETフィルム[商品名:ルミラーS、東レ(株)製]を被せ、更に上からガラス板を被せて積層体を作製する。
(3)(2)の積層体を25℃の環境下で紫外線照射装置(例えばフュージョンUVシステムズジャパン社製 VPS/I600、ランプ:Dバルブ)により、照度1500mW/cm(UV-A)で1000mJ/cm照射する。更に(2)の積層体を裏返して反対面から1000mJ/cmで照射して、組成物を硬化させる。
(4)(3)の硬化したサンプルを縦幅40mm、横幅5mm、厚み1mmに切断し、テストピースとする。
<Preparation of test pieces>
(1) As a photoradical polymerization initiator, 1-hydroxycyclohexyl phenyl ketone [product name "Irgacure 184", manufactured by IGM Resins B.V.] is added in an amount of 3% by weight to the monofunctional monomer, and the mixture is stirred until it becomes uniform to prepare a test piece sample.
(2) Two 1 mm thick silicone rubber sheets [product name: Silicone Rubber Sheet, manufactured by AS ONE Corporation] cut to a width of 10 mm and a length of 150 mm were attached to both ends of a glass plate [product name: GLASS PLATE, manufactured by AS ONE Corporation, length 200 mm × width 200 mm × thickness 5 mm], approximately 5 g of a test piece preparation sample was placed between the silicone rubber sheets, and a PET film [product name: Lumirror S, manufactured by Toray Industries, Inc.] was placed on top to prevent air from entering, and then a glass plate was placed on top to prepare a laminate.
(3) The laminate of (2) is irradiated with 1000 mJ/cm2 at an illuminance of 1500 mW/cm2 (UV- A ) using an ultraviolet irradiation device (e.g., VPS/I600 manufactured by Fusion UV Systems Japan, lamp: D bulb) in an environment of 25 ° C. The laminate of (2) is then turned over and irradiated from the other side with 1000 mJ/ cm2 to cure the composition.
(4) The hardened sample of (3) is cut into a test piece having a length of 40 mm, a width of 5 mm, and a thickness of 1 mm.
<動的粘弾性測定方法>
 このテストピースを用いて、動的粘弾性測定装置(例えば、Rheogel-E4000、UBM社製)により、以下の条件で動的粘弾性を測定する。
測定モード:温度依存性、測定温度範囲:-80℃~200℃、周波数:10Hz、昇温速度:4℃/分、歪み波形:正弦波、測定治具:引っ張り
得られたスペクトルの貯蔵弾性率E’に対する損失弾性率E”の比(tanδ)が最大値となる温度をガラス転移温度(Tg)とする。
<Dynamic viscoelasticity measurement method>
Using this test piece, the dynamic viscoelasticity is measured under the following conditions using a dynamic viscoelasticity measuring device (eg, Rheogel-E4000, manufactured by UBM).
Measurement mode: temperature dependence, measurement temperature range: -80°C to 200°C, frequency: 10 Hz, heating rate: 4°C/min, distortion waveform: sine wave, measurement jig: tensile. The temperature at which the ratio (tan δ) of the loss modulus E" to the storage modulus E' in the obtained spectrum is maximum is defined as the glass transition temperature (Tg).
 ホモポリマーのガラス転移温度が25℃未満の単官能モノマー(A1)としては、炭素数10~22の直鎖又は分岐アルキル基を有する単官能(メタ)アクリレート(E)、単官能ウレタン(メタ)アクリレート(F)及びその他の単官能(メタ)アクリレート(G)からなる群から選ばれる少なくとも1種であることが好ましい。 The monofunctional monomer (A1) having a homopolymer glass transition temperature of less than 25°C is preferably at least one selected from the group consisting of monofunctional (meth)acrylates (E) having a linear or branched alkyl group with 10 to 22 carbon atoms, monofunctional urethane (meth)acrylates (F) and other monofunctional (meth)acrylates (G).
 炭素数10~22の直鎖又は分岐アルキル基を有する単官能(メタ)アクリレート(E)としては、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート及びベヘニル(メタ)アクリレート等が挙げられる。これら(メタ)アクリレートは、(メタ)アクリル酸やメチル(メタ)アクリレート等と天然若しくは合成アルコールとの直接エステル化、又はエステル交換反応によって容易に製造することができる。天然アルコールを用いればアルキル基は直鎖のものとなり炭素数は偶数のものとなる。合成アルコールを用いると、例えばドバノール(三菱ケミカル社製)を用いるとアルキル基は直鎖と分枝の混合したものとなり、炭素数も奇数、偶数の混合したものとなる。ダイアドール(三菱ケミカル社製)を用いるとアルキル基は直鎖と分岐の混合したものとなり、炭素数は奇数のもののみとなる。
 本発明において、これらの炭素数10~22の直鎖又は分岐アルキル基を有する単官能(メタ)アクリレート(E)は、1種を単独で用いても、2種以上を併用してもよい。
Examples of monofunctional (meth)acrylates (E) having a straight-chain or branched alkyl group having 10 to 22 carbon atoms include decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, and behenyl (meth)acrylate. These (meth)acrylates can be easily produced by direct esterification or transesterification of (meth)acrylic acid or methyl (meth)acrylate with natural or synthetic alcohol. If a natural alcohol is used, the alkyl group will be straight-chained and have an even carbon number. If a synthetic alcohol is used, for example, Dobanol (manufactured by Mitsubishi Chemical Corporation), the alkyl group will be a mixture of straight-chain and branched, and the number of carbon atoms will be a mixture of odd and even. If Diadol (manufactured by Mitsubishi Chemical Corporation) is used, the alkyl group will be a mixture of straight-chain and branched, and the number of carbon atoms will be only odd.
In the present invention, these monofunctional (meth)acrylates (E) having a linear or branched alkyl group having 10 to 22 carbon atoms may be used alone or in combination of two or more kinds.
 これらの炭素数10~22の直鎖又は分岐アルキル基を有する単官能(メタ)アクリレート(E)のうち、硬化物の伸び率、硬化物の強度及び基材密着性の観点から好ましくはラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート及びイソステアリル(メタ)アクリレートである。 Among these monofunctional (meth)acrylates (E) having a linear or branched alkyl group with 10 to 22 carbon atoms, lauryl (meth)acrylate, isodecyl (meth)acrylate, and isostearyl (meth)acrylate are preferred from the viewpoints of the elongation rate of the cured product, the strength of the cured product, and the adhesion to the substrate.
 本発明における単官能ウレタン(メタ)アクリレート(F)は、分子内に1個の(メタ)アクリロイル基と少なくとも1個のウレタン基を有するモノマーを意味する。粘度の観点から、1個の(メタ)アクリロイル基と1個のウレタン基を有するモノマーが好ましい。
 単官能ウレタン(メタ)アクリレート(F)としては、水酸基を有する単官能(メタ)アクリレート(a)と有機モノイソシアネート化合物(b)との反応物等が挙げられる。
The monofunctional urethane (meth)acrylate (F) in the present invention means a monomer having one (meth)acryloyl group and at least one urethane group in the molecule. From the viewpoint of viscosity, a monomer having one (meth)acryloyl group and one urethane group is preferred.
Examples of the monofunctional urethane (meth)acrylate (F) include a reaction product of a monofunctional (meth)acrylate having a hydroxyl group (a) and an organic monoisocyanate compound (b).
 水酸基を有する単官能(メタ)アクリレート(a)としては、ヒドロキシアルキル(メタ)アクリレート(2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート及び1,4-シクロヘキサンジメタノールモノアクリレート等)等が挙げられる。
 水酸基を有する単官能(メタ)アクリレート(a)は1種を単独で用いても、2種以上を併用してもよい。
Examples of the monofunctional (meth)acrylate (a) having a hydroxyl group include hydroxyalkyl (meth)acrylates (2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and 1,4-cyclohexanedimethanol monoacrylate).
The hydroxyl group-containing monofunctional (meth)acrylate (a) may be used alone or in combination of two or more kinds.
 これらの水酸基を有する単官能(メタ)アクリレート(a)のうち、粘度の観点から好ましくは2-ヒドロキシエチル(メタ)アクリレート及び4-ヒドロキシブチル(メタ)アクリレートである。 Among these monofunctional (meth)acrylates (a) having a hydroxyl group, 2-hydroxyethyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate are preferred from the viewpoint of viscosity.
 有機モノイソシアネート化合物(b)としては、脂肪族モノイソシアネート化合物(b1)、脂環式モノイソシアネート化合物(b2)及び芳香族モノイソシアネート化合物(b3)等が挙げられる。
 脂肪族モノイソシアネート化合物(b1)としては、メチルイソシアネート、エチルイソシアネート、プロピルイソシアネート、イソプロピルイソシアネート、ブチルイソシアネート、ヘキシルイソシアネート、オクチルイソシアネート、ラウリルイソシアネート、テトラデシルイソシアネート、ヘキサデシルイソシアネート及びオクタデシルイソシアネート等が挙げられる。
 脂環式モノイソシアネート化合物(b2)としては、シクロヘキシルイソシアネート等が挙げられる。
 芳香族モノイソシアネート化合物(b3)としては、フェニルイソシアネート及びトリレンイソシアネート等が挙げられる。
 有機モノイソシアネート化合物(b)は1種を単独で用いても、2種以上を併用してもよい。
Examples of the organic monoisocyanate compound (b) include an aliphatic monoisocyanate compound (b1), an alicyclic monoisocyanate compound (b2), and an aromatic monoisocyanate compound (b3).
Examples of the aliphatic monoisocyanate compound (b1) include methyl isocyanate, ethyl isocyanate, propyl isocyanate, isopropyl isocyanate, butyl isocyanate, hexyl isocyanate, octyl isocyanate, lauryl isocyanate, tetradecyl isocyanate, hexadecyl isocyanate, and octadecyl isocyanate.
Examples of the alicyclic monoisocyanate compound (b2) include cyclohexyl isocyanate.
Examples of the aromatic monoisocyanate compound (b3) include phenyl isocyanate and tolylene isocyanate.
The organic monoisocyanate compound (b) may be used alone or in combination of two or more kinds.
 これらの有機モノイソシアネート化合物(b)のうち、硬化物の伸び率及び粘度の観点から好ましくは脂肪族モノイソシアネート化合物(b1)及び脂環式モノイソシアネート化合物(b2)であり、更に好ましくは脂肪族モノイソシアネート化合物(b1)であり、特に好ましくはメチルイソシアネート、エチルイソシアネート、プロピルイソシアネート、ブチルイソシアネート及びヘキシルイソシアネートである。 Among these organic monoisocyanate compounds (b), from the viewpoint of the elongation rate and viscosity of the cured product, the aliphatic monoisocyanate compound (b1) and the alicyclic monoisocyanate compound (b2) are preferred, the aliphatic monoisocyanate compound (b1) is more preferred, and methyl isocyanate, ethyl isocyanate, propyl isocyanate, butyl isocyanate, and hexyl isocyanate are particularly preferred.
 単官能ウレタン(メタ)アクリレート(F)としては、水酸基を有する単官能(メタ)アクリレート(a)と有機モノイソシアネート化合物(b)とを公知の方法でウレタン化反応させることにより得られる反応物を用いることができる。また市場から入手できるものを用いても良く、市販品としては、ビスコート♯216(2-[(ブチルアミノ)カルボニル]オキシエチルアクリレート:大阪有機化学工業社製)、Etermer EM2080(長興材料工業社製)及びGenomer 1122(RAHN社製)等が挙げられる。 As the monofunctional urethane (meth)acrylate (F), a reaction product obtained by subjecting a monofunctional (meth)acrylate having a hydroxyl group (a) and an organic monoisocyanate compound (b) to a urethane reaction by a known method can be used. In addition, products available on the market may be used, and examples of commercially available products include Viscoat #216 (2-[(butylamino)carbonyl]oxyethyl acrylate: manufactured by Osaka Organic Chemical Industry Co., Ltd.), Etermer EM2080 (manufactured by Choko Materials Co., Ltd.), and Genomer 1122 (manufactured by RAHN).
 その他の単官能(メタ)アクリレート(G)としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、イソアミル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-エチルヘキシルジグリコール(メタ)アクリレート、2-エチルへキシルカルビトール(メタ)アクリレート、2,2,2-テトラフルオロエチル(メタ)アクリレート、1H,1H,2H,2H-パーフルオロデシル(メタ)アクリレート、4-ブチルフェニル(メタ)アクリレート、フェニル(メタ)アクリレート、2,4,5-テトラメチルフェニル(メタ)アクリレート、フェノキシメチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、トリメトキシシリルプロピル(メタ)アクリレート、トリエトキシシリルプロピル(メタ)アクリレート、トリメチルシリルプロピル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、テトラヒドロフルフリルアクリレート、ヒドロキシエチルアクリレート、メトキシトリエチレングリコールアクリレート等が挙げられる。
 本発明において、これらのその他の単官能(メタ)アクリレート(G)は、1種を単独で用いても、2種以上を併用してもよい。
Other monofunctional (meth)acrylates (G) include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, tert-butyl (meth)acrylate, hexyl (meth)acrylate, isoamyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, 2-ethylhexyl diglycol (meth)acrylate, 2-ethylhexyl carbitol (meth)acrylate, 2,2,2-tetrafluoroethyl (meth)acrylate, 1H,1H,2H,2H-perf Examples of the acrylates include fluorodecyl (meth)acrylate, 4-butylphenyl (meth)acrylate, phenyl (meth)acrylate, 2,4,5-tetramethylphenyl (meth)acrylate, phenoxymethyl (meth)acrylate, phenoxyethyl (meth)acrylate, trimethoxysilylpropyl (meth)acrylate, triethoxysilylpropyl (meth)acrylate, trimethylsilylpropyl (meth)acrylate, trifluoroethyl (meth)acrylate, perfluorooctylethyl (meth)acrylate, tetrahydrofurfuryl acrylate, hydroxyethyl acrylate, and methoxytriethylene glycol acrylate.
In the present invention, these other monofunctional (meth)acrylates (G) may be used alone or in combination of two or more kinds.
 ホモポリマーのガラス転移温度が25℃以上の単官能モノマー(A2)は、ホモポリマーのガラス転移温度が25℃以上であれば化学構造は特に限定されない。ホモポリマーのガラス転移温度が25℃以上の単官能モノマー(A2)としては、脂環式骨格を有する(メタ)アクリレート(H)や分子内に窒素原子を有する単官能モノマー(I)、その他の単官能(メタ)アクリレート(J)等が挙げられ、硬化性の観点から分子内に窒素原子を有する単官能モノマー(I)が好ましい。 The chemical structure of the monofunctional monomer (A2) having a homopolymer glass transition temperature of 25°C or higher is not particularly limited as long as the homopolymer glass transition temperature is 25°C or higher. Examples of the monofunctional monomer (A2) having a homopolymer glass transition temperature of 25°C or higher include (meth)acrylates (H) having an alicyclic skeleton, monofunctional monomers (I) having a nitrogen atom in the molecule, and other monofunctional (meth)acrylates (J), and from the viewpoint of curability, monofunctional monomers (I) having a nitrogen atom in the molecule are preferred.
 脂環式骨格を有する(メタ)アクリレート(H)としては、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、1-エチルシクロへキシル(メタ)アクリレート及びアダマンチル(メタ)アクリレート等が挙げられる。
 本発明において、これらの脂環式骨格を有する(メタ)アクリレート(H)は、1種を単独で用いても、2種以上を併用してもよい。
Examples of the (meth)acrylate (H) having an alicyclic skeleton include isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, 1-ethylcyclohexyl (meth)acrylate, and adamantyl (meth)acrylate.
In the present invention, these (meth)acrylates (H) having an alicyclic skeleton may be used alone or in combination of two or more kinds.
 これらの脂環式骨格を有する(メタ)アクリレート(H)のうち、硬化物の伸び率及び硬化物の強度の観点から好ましくはイソボルニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、トリメチルシクロヘキシル(メタ)アクリレート及び1-エチルシクロへキシル(メタ)アクリレートである。 Among these (meth)acrylates (H) having an alicyclic skeleton, isobornyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, trimethylcyclohexyl (meth)acrylate, and 1-ethylcyclohexyl (meth)acrylate are preferred from the viewpoint of the elongation rate and strength of the cured product.
 分子内に窒素原子を有する単官能モノマー(I)としては、N-置換ビニルモノマー、N-置換(メタ)アクリルアミド等が挙げられ、硬化性の観点からN-置換(メタ)アクリルアミドが好ましい。
 N-置換ビニルモノマーとしては、N-ビニルピロリドン、N-ビニルカルバゾール、N-ビニルカプロラクタム、N-ビニルイミダゾール、ビニルメチルオキサゾリジノン等が挙げられる。
 本発明において、N-置換(メタ)アクリルアミドとは、(メタ)アクリルアミドが有するアミノ基の水素原子のうち1個又は2個を炭化水素基等の置換基で置換したものを意味し、N-置換(メタ)アクリルアミドとしては、N-(メタ)アクリロイル基を有する鎖状アミド(I1)、N-(メタ)アクリロイル基を有する環状アミド(I2)、ダイアセトンアクリルアミド等が挙げられる。
Examples of the monofunctional monomer (I) having a nitrogen atom in the molecule include N-substituted vinyl monomers and N-substituted (meth)acrylamides, with N-substituted (meth)acrylamides being preferred from the viewpoint of curability.
Examples of N-substituted vinyl monomers include N-vinylpyrrolidone, N-vinylcarbazole, N-vinylcaprolactam, N-vinylimidazole, and vinylmethyloxazolidinone.
In the present invention, the N-substituted (meth)acrylamide means a (meth)acrylamide in which one or two hydrogen atoms of the amino group are substituted with a substituent such as a hydrocarbon group. Examples of the N-substituted (meth)acrylamide include linear amides (I1) having an N-(meth)acryloyl group, cyclic amides (I2) having an N-(meth)acryloyl group, and diacetone acrylamide.
 N-(メタ)アクリロイル基を有する鎖状アミド(I1)としては、N-アルキル(メタ)アクリルアミド(I11)、N,N-ジアルキル(メタ)アクリルアミド(I12)、N-ヒドロキシアルキル(メタ)アクリルアミド(I13)、N-アルコキシアルキル(メタ)アクリルアミド(I14)及びN-アルキル-N-アルコキシ(メタ)アクリルアミド(I15)等が挙げられる。 Examples of chain amides (I1) having an N-(meth)acryloyl group include N-alkyl(meth)acrylamides (I11), N,N-dialkyl(meth)acrylamides (I12), N-hydroxyalkyl(meth)acrylamides (I13), N-alkoxyalkyl(meth)acrylamides (I14), and N-alkyl-N-alkoxy(meth)acrylamides (I15).
 N-アルキル(メタ)アクリルアミド(I11)としては、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ドデシル(メタ)アクリルアミド及びN-オクタデシル(メタ)アクリルアミド等が挙げられる。 N-alkyl(meth)acrylamides (I11) include N-methyl(meth)acrylamide, N-ethyl(meth)acrylamide, N-propyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-dodecyl(meth)acrylamide, and N-octadecyl(meth)acrylamide.
 N,N-ジアルキル(メタ)アクリルアミド(I12)としては、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジプロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジブチル(メタ)アクリルアミド、N,N-ジイソブチル(メタ)アクリルアミド、N,N-ジ-tert-ブチル(メタ)アクリルアミド、N,N-ジヘプチル(メタ)アクリルアミド、N,N-ジオクチル(メタ)アクリルアミド、N,N-ジ-tert-オクチル(メタ)アクリルアミド、N,N-ジドデシル(メタ)アクリルアミド及びN,N-ジオクタデシル(メタ)アクリルアミド等が挙げられる。N,N-ジアルキル(メタ)アクリルアミド(I12)の2つあるアルキル基は同じでも異なっていてもよく、アルキル基の炭素数は硬化性の観点から好ましくは1~20であり、更に好ましくは1~8であり、特に好ましくは1~4である。 N,N-dialkyl(meth)acrylamide (I12) includes N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N,N-dipropyl(meth)acrylamide, N,N-diisopropyl(meth)acrylamide, N,N-dibutyl(meth)acrylamide, N,N-diisobutyl(meth)acrylamide, N,N-di-tert-butyl(meth)acrylamide, N,N-diheptyl(meth)acrylamide, N,N-dioctyl(meth)acrylamide, N,N-di-tert-octyl(meth)acrylamide, N,N-didodecyl(meth)acrylamide, and N,N-dioctadecyl(meth)acrylamide. The two alkyl groups in N,N-dialkyl(meth)acrylamide (I12) may be the same or different, and the number of carbon atoms in the alkyl group is preferably 1 to 20, more preferably 1 to 8, and particularly preferably 1 to 4, from the viewpoint of curability.
 N-ヒドロキシアルキル(メタ)アクリルアミド(I13)としては、N-ヒドロキシメチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド及びN-(3-ヒドロキシプロピル)(メタ)アクリルアミド等が挙げられる。N-ヒドロキシアルキル(メタ)アクリルアミド(I13)のアルキル基の炭素数は硬化性の観点から好ましくは1~20であり、更に好ましくは1~8であり、特に好ましくは1~4である。 N-hydroxyalkyl(meth)acrylamide (I13) includes N-hydroxymethyl(meth)acrylamide, N-hydroxyethyl(meth)acrylamide, and N-(3-hydroxypropyl)(meth)acrylamide. From the viewpoint of curability, the number of carbon atoms in the alkyl group of N-hydroxyalkyl(meth)acrylamide (I13) is preferably 1 to 20, more preferably 1 to 8, and particularly preferably 1 to 4.
 N-アルコキシアルキル(メタ)アクリルアミド(I14)としては、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-ブトキシエチル(メタ)アクリルアミド、N-メトキシプロピル(メタ)アクリルアミド、N-エトキシプロピル(メタ)アクリルアミド、N-メトキシブチル(メタ)アクリルアミド及びN-エトキシブチル(メタ)アクリルアミド等が挙げられる。N-アルコキシアルキル(メタ)アクリルアミド(I14)のアルコキシアルキル基の炭素数は硬化性の観点から好ましくは2~20であり、更に好ましくは2~8であり、特に好ましくは2~6である。アルコキシアルキル基のアルキル基の炭素数は硬化性の観点から好ましくは1~4であり、更に好ましくは1~3であり、特に好ましくは1~2である。 N-alkoxyalkyl(meth)acrylamide (I14) includes N-methoxymethyl(meth)acrylamide, N-ethoxymethyl(meth)acrylamide, N-propoxymethyl(meth)acrylamide, N-butoxymethyl(meth)acrylamide, N-methoxyethyl(meth)acrylamide, N-ethoxyethyl(meth)acrylamide, N-butoxyethyl(meth)acrylamide, N-methoxypropyl(meth)acrylamide, N-ethoxypropyl(meth)acrylamide, N-methoxybutyl(meth)acrylamide, and N-ethoxybutyl(meth)acrylamide. From the viewpoint of curability, the number of carbon atoms in the alkoxyalkyl group of N-alkoxyalkyl(meth)acrylamide (I14) is preferably 2 to 20, more preferably 2 to 8, and particularly preferably 2 to 6. From the viewpoint of curability, the number of carbon atoms in the alkyl group of the alkoxyalkyl group is preferably 1 to 4, more preferably 1 to 3, and particularly preferably 1 to 2.
 N-アルキル-N-アルコキシ(メタ)アクリルアミド(I15)としては、N-メチル-N-メトキシ(メタ)アクリルアミド、N-メチル-N-エトキシ(メタ)アクリルアミド、N-メチル-N-プロポキシ(メタ)アクリルアミド、N-メチル-N-ブトキシ(メタ)アクリルアミド、N-エチル-N-メトキシ(メタ)アクリルアミド、N-エチル-N-エトキシ(メタ)アクリルアミド、N-エチル-N-ブトキシ(メタ)アクリルアミド、N-プロピル-N-メトキシ(メタ)アクリルアミド、N-プロピル-N-エトキシ(メタ)アクリルアミド、N-ブチル-N-メトキシ(メタ)アクリルアミド及びN-ブチル-N-エトキシ(メタ)アクリルアミド等が挙げられる。 N-alkyl-N-alkoxy(meth)acrylamide (I15) includes N-methyl-N-methoxy(meth)acrylamide, N-methyl-N-ethoxy(meth)acrylamide, N-methyl-N-propoxy(meth)acrylamide, N-methyl-N-butoxy(meth)acrylamide, N-ethyl-N-methoxy(meth)acrylamide, N-ethyl-N-ethoxy(meth)acrylamide, N-ethyl-N-butoxy(meth)acrylamide, N-propyl-N-methoxy(meth)acrylamide, N-propyl-N-ethoxy(meth)acrylamide, N-butyl-N-methoxy(meth)acrylamide, and N-butyl-N-ethoxy(meth)acrylamide.
 N-(メタ)アクリロイル基を有する環状アミド(I2)としては、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルチオモルホリン、N-(メタ)アクリロイルピペリジン、N-(メタ)アクリロイルピロリジン及びN-(メタ)アクリロイルピペリジン等が挙げられる。N-(メタ)アクリロイル基を有する環状アミドの炭素数は硬化性の観点から好ましくは7~20であり、更に好ましくは7~18であり、特に好ましくは7~16である。
 本発明において、これらのN-置換(メタ)アクリルアミドは、1種を単独で用いても、2種以上を併用してもよい。
Examples of the cyclic amide (I2) having an N-(meth)acryloyl group include N-(meth)acryloylmorpholine, N-(meth)acryloylthiomorpholine, N-(meth)acryloylpiperidine, N-(meth)acryloylpyrrolidine, and N-(meth)acryloylpiperidine. From the viewpoint of curability, the number of carbon atoms in the cyclic amide having an N-(meth)acryloyl group is preferably 7 to 20, more preferably 7 to 18, and particularly preferably 7 to 16.
In the present invention, these N-substituted (meth)acrylamides may be used alone or in combination of two or more.
 これらのN-置換(メタ)アクリルアミドのうち、粘度、硬化性及び硬化物の伸び率の観点から好ましくはN,N-ジアルキル(メタ)アクリルアミド(I12)、N-アルコキシアルキル(メタ)アクリルアミド(I14)及びN-(メタ)アクリロイル基を有する環状アミド(I2)であり、更に好ましくはN,N-ジアルキル(メタ)アクリルアミド(I12)及びN-(メタ)アクリロイル基を有する環状アミド(I2)であり、特に好ましくはN,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-(メタ)アクリロイルモルホリンである。 Among these N-substituted (meth)acrylamides, from the viewpoints of viscosity, curability, and elongation of the cured product, preferred are N,N-dialkyl(meth)acrylamides (I12), N-alkoxyalkyl(meth)acrylamides (I14), and cyclic amides having an N-(meth)acryloyl group (I2), more preferred are N,N-dialkyl(meth)acrylamides (I12) and cyclic amides having an N-(meth)acryloyl group (I2), and particularly preferred are N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, and N-(meth)acryloylmorpholine.
 その他の単官能(メタ)アクリレート(J)としては、環状トリメチロールプロパンホルマール(メタ)アクリレート、アクリル酸2-フェノキシエチル等が挙げられる。 Other monofunctional (meth)acrylates (J) include cyclic trimethylolpropane formal (meth)acrylate, 2-phenoxyethyl acrylate, etc.
 数平均分子量が500~40000である多官能(メタ)アクリレート(C)としては、数平均分子量が500~40000である2官能(メタ)アクリレートが好ましく、一般式(1)で表される2官能(メタ)アクリレート(K)やその他の2官能(メタ)アクリレート(L)が挙げられる。 As the polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, a bifunctional (meth)acrylate having a number average molecular weight of 500 to 40,000 is preferred, and examples of such a bifunctional (meth)acrylate include the bifunctional (meth)acrylate (K) represented by the general formula (1) and other bifunctional (meth)acrylates (L).
一般式(1)で表される2官能(メタ)アクリレート(K)としては、以下のものである。
CH=CXCO-O-(R-O)-COCX=CH   (1) 
[一般式(1)中、nは2以上15以下の整数、Rは炭素数2以上6以下のアルキレン基(ただし1分子中にRが複数ある場合、Rは各々独立に炭素数2以上6以下のアルキレン基)、Xは各々独立に水素原子又はメチル基である。]
The bifunctional (meth)acrylate (K) represented by the general formula (1) is as follows.
CH 2 ═CXCO-O-(R—O) n -COCX═CH 2 (1)
[In the general formula (1), n is an integer of 2 to 15, R is an alkylene group having 2 to 6 carbon atoms (when there are multiple R in one molecule, each R is independently an alkylene group having 2 to 6 carbon atoms), and each X is independently a hydrogen atom or a methyl group.]
 一般式(1)中、Rは炭素数2以上6以下のアルキレン基を表し、具体的にはエチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基等が挙げられる。
 硬化物の硬度の観点からRは好ましくは炭素数2~3であり、更に好ましくはエチレン基及び1,2-プロピレン基である。
 nは2以上15以下の整数であり、低アウトガス性及び耐折り曲げ性の観点から好ましくは7以上15以下の整数である。
In the general formula (1), R represents an alkylene group having 2 to 6 carbon atoms, and specific examples thereof include an ethylene group, a 1,2-propylene group, a 1,3-propylene group, a 1,2-butylene group, a 1,3-butylene group, and a 1,4-butylene group.
From the viewpoint of hardness of the cured product, R preferably has 2 to 3 carbon atoms, and more preferably is an ethylene group or a 1,2-propylene group.
n is an integer of 2 or more and 15 or less, and is preferably an integer of 7 or more and 15 or less from the viewpoint of low outgassing properties and bending resistance.
 一般式(1)で表される2官能(メタ)アクリレート(K)としては、ポリエチレングリコール(n=9)ジ(メタ)アクリレート、ポリエチレングリコール(n=14)ジ(メタ)アクリレート、ポリプロピレングリコール(n=7)ジ(メタ)アクリレート及びポリプロピレングリコール(n=12)ジ(メタ)アクリレート等が挙げられる。なお、nはアルキレンオキシ基の繰り返し数を意味する。以下同様とする。
 これらの2官能(メタ)アクリレート(K)は、1種単独又は2種以上を併用できる。
 これらのうち、硬化物の硬度の観点から好ましくは2官能アクリレートであり、特に好ましくは、ポリエチレングリコール(n=9)ジアクリレート、ポリエチレングリコール(n=14)ジアクリレート、ポリプロピレングリコール(n=7)ジアクリレート及びポリプロピレングリコール(n=12)ジアクリレートであり、最も好ましくはポリプロピレングリコール(n=7)ジアクリレート及びポリプロピレングリコール(n=12)ジアクリレートである。
Examples of the bifunctional (meth)acrylate (K) represented by the general formula (1) include polyethylene glycol (n=9) di(meth)acrylate, polyethylene glycol (n=14) di(meth)acrylate, polypropylene glycol (n=7) di(meth)acrylate, and polypropylene glycol (n=12) di(meth)acrylate. Here, n means the number of repeats of the alkyleneoxy group. The same applies hereinafter.
These difunctional (meth)acrylates (K) can be used alone or in combination of two or more.
Of these, from the viewpoint of hardness of the cured product, preferred are bifunctional acrylates, particularly preferred are polyethylene glycol (n=9) diacrylate, polyethylene glycol (n=14) diacrylate, polypropylene glycol (n=7) diacrylate and polypropylene glycol (n=12) diacrylate, and most preferred are polypropylene glycol (n=7) diacrylate and polypropylene glycol (n=12) diacrylate.
 その他の2官能(メタ)アクリレート(L)としては、2価フェノール化合物のアルキレンオキサイド(アルキレン基の炭素数2~4)4~25モル付加物のジ(メタ)アクリレート(L1)、炭素数2~30の2価アルコールのアルキレンオキサイド(アルキレン基の炭素数2~4)1~15モル付加物と(メタ)アクリル酸のジエステル化物、ジグリシジルエーテルと(メタ)アクリル酸のジエステル化物及びフルオレンのエチレンオキサイド付加物のジ(メタ)アクリレート、シリコーンジアクリレート(L2)、ウレタンジアクリレート(L3)等が挙げられる。 Other bifunctional (meth)acrylates (L) include di(meth)acrylates (L1) of 4-25 moles of alkylene oxide (alkylene group has 2-4 carbon atoms) adducts of dihydric phenol compounds, diesters of (meth)acrylic acid and 1-15 moles of alkylene oxide (alkylene group has 2-4 carbon atoms) adducts of dihydric alcohols having 2-30 carbon atoms, diesters of diglycidyl ether and (meth)acrylic acid, and di(meth)acrylates of ethylene oxide adducts of fluorene, silicone diacrylates (L2), urethane diacrylates (L3), etc.
 2価フェノール化合物のアルキレンオキサイド(アルキレン基の炭素数2~4)4~25モル付加物のジ(メタ)アクリレート(L1)としては、2価フェノール化合物[単環フェノール(カテコール、レゾルシノール、ハイドロキノン等)、縮合多環フェノール(ジヒドロキシナフタレン等)、ビスフェノール化合物(ビスフェノールA、ビスフェノールF及びビスフェノールS等)]のアルキレンオキサイド付加物のジ(メタ)アクリレート、例えば、カテコールのエチレンオキサイド(以下、エチレンオキサイドをEOと略記することがある)付加物のジ(メタ)アクリレート、ジヒドロキシナフタレンのプロピレンオキサイド(以下、1,2-又は1,3-プロピレンオキサイドをPOと略記することがある)付加物のジ(メタ)アクリレート及びビスフェノールAのEO付加物のジ(メタ)アクリレートが挙げられる。 Di(meth)acrylates (L1) of 4 to 25 moles of alkylene oxide (alkylene group carbon number 2 to 4) adducts of dihydric phenol compounds include di(meth)acrylates of alkylene oxide adducts of dihydric phenol compounds [monocyclic phenols (catechol, resorcinol, hydroquinone, etc.), condensed polycyclic phenols (dihydroxynaphthalene, etc.), bisphenol compounds (bisphenol A, bisphenol F, bisphenol S, etc.)], such as di(meth)acrylates of ethylene oxide (hereinafter, ethylene oxide may be abbreviated as EO) adducts of catechol, di(meth)acrylates of propylene oxide (hereinafter, 1,2- or 1,3-propylene oxide may be abbreviated as PO) adducts of dihydroxynaphthalene, and di(meth)acrylates of EO adducts of bisphenol A.
 シリコーンジアクリレート(L2)としては、EBECRYL350、EBECRYL1360等が挙げられる。 Examples of silicone diacrylate (L2) include EBECRYL350 and EBECRYL1360.
 ウレタンジアクリレート(L3)はポリオール(m)とポリイソシアネート(n)と活性水素基含有(メタ)アクリレート(c)とを構成原料として含むウレタン(メタ)アクリレートである。 Urethane diacrylate (L3) is a urethane (meth)acrylate containing polyol (m), polyisocyanate (n), and active hydrogen group-containing (meth)acrylate (c) as constituent raw materials.
 ポリオール(m)としては、炭素数1~20の鎖状脂肪族ポリオール(m1)、炭素数6~20の脂環式ポリオール(m2)及び炭素数6~20の芳香族ポリオール(m3)並びにこれらのアルキレンオキサイド[エチレンオキサイド(EO)、1,2-又は1,3-プロピレンオキサイド(PO)及び1,2-、1,3-、1,4-又は2,3-ブチレンオキサイド等]付加物等が挙げられる。 Polyols (m) include linear aliphatic polyols (m1) having 1 to 20 carbon atoms, alicyclic polyols (m2) having 6 to 20 carbon atoms, and aromatic polyols (m3) having 6 to 20 carbon atoms, as well as their alkylene oxide adducts [ethylene oxide (EO), 1,2- or 1,3-propylene oxide (PO), and 1,2-, 1,3-, 1,4- or 2,3-butylene oxide, etc.].
 鎖状脂肪族ポリオール(m1)としては、炭素数1~20の直鎖の脂肪族ジオール(エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール及び1,10-ドデカンジオール等)、分岐の脂肪族ジオール(1,2-プロパンジオール、1,2-、1,3-又は2,3-ブタンジオール、2-メチル-1,4-ブタンジオール、ネオペンチルグリコール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-1,5-ペンタンジオール及び3-メチル-1,5-ペンタンジオール等)及び鎖状脂肪族3~8価アルコール(ペンタエリスリトール、ソルビトール、マンニトール、ソルビタン、ジグリセリン及びジペンタエリスリトール等)等が挙げられる。 Examples of the linear aliphatic polyol (m1) include linear aliphatic diols having 1 to 20 carbon atoms (ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-dodecanediol, etc.), branched aliphatic diols (1,2-propanediol, 1,2-, 1,3- or 2,3-butanediol, 2-methyl-1,4-butanediol, neopentyl glycol, 2,2-diethyl-1,3-propanediol, 2-methyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, etc.), and linear aliphatic trihydric to octahydric alcohols (pentaerythritol, sorbitol, mannitol, sorbitan, diglycerin, dipentaerythritol, etc.).
 炭素数6~20の脂環式ポリオール(m2)としては、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、1,3-シクロペンタンジオール、1,4-シクロヘプタンジオール、1,4-ビス(ヒドロキシメチル)シクロヘキサン、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン及び1,3,5-シクロヘキサントリオール等が挙げられる。 Examples of alicyclic polyols (m2) having 6 to 20 carbon atoms include 1,2-cyclohexanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanediol, 1,3-cyclopentanediol, 1,4-cycloheptanediol, 1,4-bis(hydroxymethyl)cyclohexane, 2,2-bis(4-hydroxycyclohexyl)propane, and 1,3,5-cyclohexanetriol.
 炭素数6~20の芳香族ポリオール(m3)としては、レゾルシノール、ハイドロキノン、ナフタレンジオール及びビスフェノール(ビスフェノールA、ビスフェノールF及びビスフェノールS等)等が挙げられる。 Examples of aromatic polyols (m3) having 6 to 20 carbon atoms include resorcinol, hydroquinone, naphthalene diol, and bisphenols (such as bisphenol A, bisphenol F, and bisphenol S).
 ポリオール(m)として、前記の鎖状脂肪族ポリオール(m1)、脂環式ポリオール(m2)又は芳香族ポリオール(m3)のアルキレンオキサイド付加物を用いる場合、アルキレンオキサイドの付加モル数は、硬化物の伸びの観点から好ましくは1~50モルであり、更に好ましくは4~30モルである。 When an alkylene oxide adduct of the above-mentioned linear aliphatic polyol (m1), alicyclic polyol (m2) or aromatic polyol (m3) is used as the polyol (m), the number of moles of alkylene oxide added is preferably 1 to 50 moles, more preferably 4 to 30 moles, from the viewpoint of the elongation of the cured product.
 これらのポリオール(m)の内、硬化物の伸びの観点から好ましくは、前記の鎖状脂肪族ポリオール(m1)のアルキレンオキサイド付加物であり、更に好ましいのは脂肪族ポリオール(m1)の1,4-ブチレンオキサイド付加物であり、特に好ましくは、ポリ1,4-ブチレンオキサイド(ポリテトラメチレングリコール)である。
 ポリオール(m)は、1種を単独で用いても、2種以上を併用してもよい。
Of these polyols (m), from the viewpoint of elongation of the cured product, preferred are alkylene oxide adducts of the above-mentioned chain aliphatic polyols (m1), more preferred are 1,4-butylene oxide adducts of the aliphatic polyols (m1), and particularly preferred is poly-1,4-butylene oxide (polytetramethylene glycol).
The polyol (m) may be used alone or in combination of two or more kinds.
 ポリイソシアネート(n)としては、炭素数4~20の鎖状脂肪族ポリイソシアネート(n1)、炭素数6~22の脂環式ポリイソシアネート(n2)及び炭素数8~22の芳香族ポリイソシアネート(n3)等が挙げられる。 Examples of polyisocyanates (n) include linear aliphatic polyisocyanates (n1) having 4 to 20 carbon atoms, alicyclic polyisocyanates (n2) having 6 to 22 carbon atoms, and aromatic polyisocyanates (n3) having 8 to 22 carbon atoms.
 炭素数4~20の鎖状脂肪族ポリイソシアネート(n1)としては、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート及びリジンジイソシアネート等が挙げられる。 Examples of chain aliphatic polyisocyanates (n1) having 4 to 20 carbon atoms include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and lysine diisocyanate.
 炭素数6~22の脂環式ポリイソシアネート(n2)としては、シクロヘキサン-1,3-ジイルビスメチレンジイソシアネート、イソホロンジイソシアネート(IPDI)、2,4-又は2,6-メチルシクロヘキサンジイソシアネート(水添TDI)、ジシクロヘキシルメタン-4,4’-ジイソシアネート(水添MDI。以降、MDIHと表記することがある)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(2-イソシアナトエチル)-4-シクロヘキシレン-1,2-ジカルボキシレート、2,5-又は2,6-ノルボルナンジイソシアネート及びダイマー酸ジイソシアネート等が挙げられる。 Examples of alicyclic polyisocyanates (n2) having 6 to 22 carbon atoms include cyclohexane-1,3-diylbismethylene diisocyanate, isophorone diisocyanate (IPDI), 2,4- or 2,6-methylcyclohexane diisocyanate (hydrogenated TDI), dicyclohexylmethane-4,4'-diisocyanate (hydrogenated MDI; hereafter sometimes referred to as MDIH), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, bis(2-isocyanatoethyl)-4-cyclohexylene-1,2-dicarboxylate, 2,5- or 2,6-norbornane diisocyanate, and dimer acid diisocyanate.
 炭素数8~22の芳香族ポリイソシアネート(n3)としては、1,3-又は1,4-フェニレンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート(TDI)、4,4’-又は2,4’-ジフェニルメタンジイソシアネート(MDI)、m-又はp-イソシアナトフェニルスルホニルイソシアネート、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、1,5-ナフチレンジイソシアネート、m-又はp-イソシアナトフェニルスルホニルイソシアネート、m-又はp-キシリレンジイソシアネート(XDI)及びα,α,α’,α’-テトラメチルキシリレンジイソシアネート(TMXDI)等が挙げられる。 Aromatic polyisocyanates (n3) having 8 to 22 carbon atoms include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate (TDI), 4,4'- or 2,4'-diphenylmethane diisocyanate (MDI), m- or p-isocyanatophenylsulfonyl isocyanate, 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatodiphenylmethane, 1,5-naphthylene diisocyanate, m- or p-isocyanatophenylsulfonyl isocyanate, m- or p-xylylene diisocyanate (XDI), and α,α,α',α'-tetramethylxylylene diisocyanate (TMXDI).
 これらのポリイソシアネート(n)の内、硬化物の伸び及び耐光性の観点から、好ましくは炭素数6~22の脂環式ポリイソシアネート(n2)及び炭素数8~22の芳香族ポリイソシアネート(n3)であり、更に好ましくは炭素数6~20の脂環式ポリイソシアネート及び炭素数8~20の芳香族ポリイソシアネートであり、特に好ましくはシクロヘキサン-1,3-ジイルビスメチレンジイソシアナート、IPDI、XDI、TMXDI、MDI及びTDIであり、最も好ましくはIPDIである。
 ポリイソシアネート(n)は、1種を単独で用いても、2種以上を併用してもよい。
Of these polyisocyanates (n), from the viewpoint of elongation and light resistance of the cured product, preferred are alicyclic polyisocyanates (n2) having 6 to 22 carbon atoms and aromatic polyisocyanates (n3) having 8 to 22 carbon atoms, more preferred are alicyclic polyisocyanates having 6 to 20 carbon atoms and aromatic polyisocyanates having 8 to 20 carbon atoms, particularly preferred are cyclohexane-1,3-diylbismethylene diisocyanate, IPDI, XDI, TMXDI, MDI and TDI, and most preferred is IPDI.
The polyisocyanate (n) may be used alone or in combination of two or more kinds.
 活性水素基含有(メタ)アクリレート(c)としては、水酸基含有(メタ)アクリレート(c1)、アミノ基含有(メタ)アクリレート(c2)及びカルボキシル基含有(メタ)アクリレート(c3)等が挙げられる。これらのうち、好ましいものは、水酸基含有(メタ)アクリレートである。
 水酸基含有(メタ)アクリレート(c1)としては、ヒドロキシアルキル(メタ)アクリレート(c11)及びポリアルキレングリコールモノ(メタ)アクリレート(c12)等が挙げられる。
Examples of the active hydrogen group-containing (meth)acrylate (c) include hydroxyl group-containing (meth)acrylate (c1), amino group-containing (meth)acrylate (c2), and carboxyl group-containing (meth)acrylate (c3), etc. Among these, preferred is the hydroxyl group-containing (meth)acrylate.
Examples of the hydroxyl group-containing (meth)acrylate (c1) include hydroxyalkyl (meth)acrylate (c11) and polyalkylene glycol mono(meth)acrylate (c12).
 ヒドロキシアルキル(メタ)アクリレート(c11)としては、好ましくは炭素数4~20のヒドロキシアルキル(メタ)アクリレート等が挙げられ、具体的には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート及び3-ヒドロキシプロピル(メタ)アクリレート等が挙げられる。 Hydroxyalkyl (meth)acrylates (c11) preferably include hydroxyalkyl (meth)acrylates having 4 to 20 carbon atoms, and specific examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 3-hydroxypropyl (meth)acrylate.
 ポリアルキレングリコールモノ(メタ)アクリレート(c12)としては、ポリエチレングリコールモノ(メタ)アクリレート及びポリプロピレングリコールモノ(メタ)アクリレート等が挙げられる。 Examples of polyalkylene glycol mono(meth)acrylates (c12) include polyethylene glycol mono(meth)acrylate and polypropylene glycol mono(meth)acrylate.
 アミノ基含有(メタ)アクリレート(c2)としては、モノアルキル(炭素数1~4)アミノアルキル(炭素数2~6)(メタ)アクリレート{アミノエチル、アミノプロピル、メチルアミノエチル、エチルアミノエチル、ブチルアミノエチル又はメチルアミノプロピル(メタ)アクリレート}及びジアルキル(炭素数1~4)アミノアルキル(炭素数2~6)(メタ)アクリレート{ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート及びジブチルアミノエチル(メタ)アクリレート等}等が挙げられる。 Examples of amino group-containing (meth)acrylates (c2) include monoalkyl (carbon number 1-4) aminoalkyl (carbon number 2-6) (meth)acrylates {aminoethyl, aminopropyl, methylaminoethyl, ethylaminoethyl, butylaminoethyl, or methylaminopropyl (meth)acrylate} and dialkyl (carbon number 1-4) aminoalkyl (carbon number 2-6) (meth)acrylates {dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dibutylaminoethyl (meth)acrylate, etc.}.
 カルボキシル基含有(メタ)アクリレート(c3)としては、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルフタル酸及び2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸等が挙げられる。 Examples of carboxyl group-containing (meth)acrylates (c3) include 2-(meth)acryloyloxyethyl succinate, 2-(meth)acryloyloxyethyl phthalate, and 2-(meth)acryloyloxyethyl hexahydrophthalate.
 活性水素基含有(メタ)アクリレート(c)のうち、ウレタン化反応の反応性及び硬化物の伸びの観点から好ましくは、水酸基含有(メタ)アクリレート(c1)であり、更に好ましくは水酸基含有単官能(メタ)アクリレートであり、特に好ましくはヒドロキシアルキル(メタ)アクリレート(c11)であり、最も好ましくは2-ヒドロキシエチル(メタ)アクリレートである。
 活性水素基含有(メタ)アクリレート(c)は、1種を単独で用いても、2種以上を併用してもよい。
 前記のウレタンジアクリレート(L3)は、1種を単独で用いてもよいし、2種以上を併用してもよい。
Of the active hydrogen group-containing (meth)acrylates (c), from the viewpoints of reactivity in the urethane reaction and elongation of the cured product, preferred are hydroxyl group-containing (meth)acrylates (c1), more preferred are hydroxyl group-containing monofunctional (meth)acrylates, particularly preferred are hydroxyalkyl (meth)acrylates (c11), and most preferred is 2-hydroxyethyl (meth)acrylate.
The active hydrogen group-containing (meth)acrylate (c) may be used alone or in combination of two or more kinds.
The urethane diacrylate (L3) may be used alone or in combination of two or more kinds.
 前記のウレタンジアクリレート(L3)の構成原料であるポリオール(m)、ポリイソシアネート(n)及び活性水素基含有(メタ)アクリレート(c)について、ポリイソシアネート(n)が有するイソシアネート基と、ポリオール(m)及び活性水素基含有(メタ)アクリレート(c)が有する活性水素基とのモル比[(n)が有するイソシアネート基/(m)が有する活性水素基と(c)が有する活性水素基の合計]は、特に限定されないが、貯蔵安定性の観点から好ましくは1/0.5~1/10、更に好ましくは1/0.7~1/5、特に好ましくは1/1~1/2である。 With regard to the polyol (m), polyisocyanate (n) and active hydrogen group-containing (meth)acrylate (c) which are the constituent raw materials of the urethane diacrylate (L3), the molar ratio of the isocyanate groups in the polyisocyanate (n) to the active hydrogen groups in the polyol (m) and active hydrogen group-containing (meth)acrylate (c) [isocyanate groups in (n)/total of active hydrogen groups in (m) and active hydrogen groups in (c)] is not particularly limited, but is preferably 1/0.5 to 1/10, more preferably 1/0.7 to 1/5, and particularly preferably 1/1 to 1/2, from the viewpoint of storage stability.
 本発明におけるウレタンジアクリレート(L3)は、ポリオール(m)、ポリイソシアネート(n)及び活性水素基含有(メタ)アクリレート(c)を公知の方法で反応させて製造することができる。
 中でも、ポリオール(m)とポリイソシアネート(n)とを重付加反応させて、イソシアネート基を2個以上有するウレタンプレポリマーを製造した後に、活性水素基含有(メタ)アクリレート(c)を付加反応させて製造することが好ましい。
 上記の重付加反応及び付加反応においては、ウレタン化触媒を用いても良い。
 ウレタン化触媒としては、金属化合物(有機ビスマス化合物、有機スズ化合物及び有機チタン化合物等)及び4級アンモニウム塩等が挙げられる。
The urethane diacrylate (L3) in the present invention can be produced by reacting a polyol (m), a polyisocyanate (n) and an active hydrogen group-containing (meth)acrylate (c) by a known method.
Among these, it is preferable to produce the urethane prepolymer having two or more isocyanate groups by subjecting a polyol (m) and a polyisocyanate (n) to a polyaddition reaction, and then subjecting the urethane prepolymer to an addition reaction with an active hydrogen group-containing (meth)acrylate (c).
In the above polyaddition reaction and addition reaction, a urethanization catalyst may be used.
Examples of the urethanization catalyst include metal compounds (organobismuth compounds, organotin compounds, organotitanium compounds, etc.) and quaternary ammonium salts.
 数平均分子量が500~40000である多官能(メタ)アクリレート(C)は、3官能以上の(メタ)アクリレートであってもよく、例えばウレタンテトラアクリレート等が挙げられる。 The polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000 may be a trifunctional or higher functional (meth)acrylate, such as urethane tetraacrylate.
 光重合開始剤(D)としては、活性エネルギー線の照射によってラジカル及びイオン等を発生してモノマーの重合反応を起こすものであれば制限はなく、活性エネルギー線の照射によってラジカルを発生する光重合開始剤を好ましく用いることができる。
 好ましい光重合開始剤(D)としては、アシルホスフィンオキサイド系化合物(D1)、α-ヒドロキシアルキルフェノン系化合物(D2)、α-アミノアルキルフェノン系化合物(D3)、ケタール系化合物(D4)、ベンゾイルホルメート系化合物(D5)、チオキサントン系化合物(D6)、ベンゾフェノン系化合物(D7)及びオキシムエステル系化合物(D8)等が挙げられる。
The photopolymerization initiator (D) is not limited as long as it generates radicals, ions, and the like when irradiated with active energy rays, thereby initiating a polymerization reaction of the monomers. A photopolymerization initiator that generates radicals when irradiated with active energy rays can be preferably used.
Preferred examples of the photopolymerization initiator (D) include acylphosphine oxide compounds (D1), α-hydroxyalkylphenone compounds (D2), α-aminoalkylphenone compounds (D3), ketal compounds (D4), benzoylformate compounds (D5), thioxanthone compounds (D6), benzophenone compounds (D7), and oxime ester compounds (D8).
 アシルホスフィンオキサイド系化合物(D1)としては、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、及び2,4,6-トリメチルベンゾイルフェニルホスフィン酸エチル等が挙げられる。 Examples of the acylphosphine oxide compound (D1) include bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and ethyl 2,4,6-trimethylbenzoylphenylphosphinate.
 α-ヒドロキシアルキルフェノン系化合物(D2)としては1-ヒドロキシシクロヘキシルフェニルケトン及び2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等が挙げられる。 α-Hydroxyalkylphenone compounds (D2) include 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2-methyl-1-phenylpropan-1-one.
 α-アミノアルキルフェノン系化合物(D3)としては2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-ブタン-1-オン及び2-ベンジル-2-(ジメチルアミノ)-1-[4-(4-モルホリニル)フェニル]-ブタン-1-オン等が挙げられる。 Examples of α-aminoalkylphenone compounds (D3) include 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-butan-1-one, and 2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-butan-1-one.
 ケタール系化合物(D4)としては、ベンジルジメチルケタール等が挙げられる。 Examples of ketal compounds (D4) include benzyl dimethyl ketal.
 ベンゾイルホルメート系化合物(D5)としては、メチルベンゾイルホルメート等が挙げられる。 Examples of benzoyl formate compounds (D5) include methyl benzoyl formate, etc.
 チオキサントン系化合物(D6)としては、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン及び2-クロロチオキサントン等が挙げられる。 Thioxanthone compounds (D6) include 2,4-diethylthioxanthone, 2-isopropylthioxanthone, and 2-chlorothioxanthone.
 ベンゾフェノン系化合物(D7)としては、ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド及び4,4’-ビスメチルアミノベンゾフェノン等が挙げられる。 Examples of benzophenone compounds (D7) include benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, and 4,4'-bismethylaminobenzophenone.
 オキシムエステル系化合物(D8)としては、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン2-(O-ベンゾイルオキシム)及び1-[6-(2-メチルベンゾイル)-9-エチル-9H-カルバゾール-3-イル]-エタノン-1-(O-アセチルオキシム)等が挙げられる。
 本発明において、これらの光重合開始剤(D)は1種を単独で用いても、2種以上を併用してもよい。
Examples of the oxime ester compound (D8) include 1-[4-(phenylthio)phenyl]-1,2-octanedione 2-(O-benzoyloxime) and 1-[6-(2-methylbenzoyl)-9-ethyl-9H-carbazol-3-yl]-ethanone-1-(O-acetyloxime).
In the present invention, these photopolymerization initiators (D) may be used alone or in combination of two or more.
 これらの光重合開始剤(D)のうち、硬化性及び硬化物の透過率の観点から好ましいのは、アシルホスフィンオキサイド系化合物(D1)及びα-ヒドロキシアルキルフェノン系化合物(D2)であり、更に好ましくはアシルホスフィンオキサイド系化合物(D1)であり、特に好ましくはビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド及び2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドである。 Among these photopolymerization initiators (D), the acylphosphine oxide compounds (D1) and α-hydroxyalkylphenone compounds (D2) are preferred from the viewpoints of curability and transmittance of the cured product, with the acylphosphine oxide compounds (D1) being more preferred, and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide being particularly preferred.
 本発明における単官能モノマー(A)の含有量は、単官能モノマー(A)及び多官能(メタ)アクリレート(C)の合計重量に基づいて、10~75重量%である。単官能モノマー(A)の含有量が10重量%未満であると硬化物の伸び率が不十分となり、75重量%を超えると硬化物の伸縮性が不十分となる。 The content of monofunctional monomer (A) in the present invention is 10 to 75% by weight based on the total weight of monofunctional monomer (A) and polyfunctional (meth)acrylate (C). If the content of monofunctional monomer (A) is less than 10% by weight, the elongation of the cured product will be insufficient, and if it exceeds 75% by weight, the elasticity of the cured product will be insufficient.
 本発明におけるホモポリマーのガラス転移温度が25℃未満の単官能モノマー(A1)の含有量は、単官能モノマー(A)及び多官能(メタ)アクリレート(C)の合計含有量に基づいて、硬化性及び柔軟性の観点から、好ましくは5~30重量%であり、より好ましくは5~25重量%である。
 ホモポリマーのガラス転移温度が25℃以上の単官能モノマー(A2)の含有量は、単官能モノマー(A)及び多官能(メタ)アクリレート(C)の合計重量に基づいて、硬化性及び柔軟性の観点から、好ましくは5~70重量%である。
 本発明における多官能(メタ)アクリレート(C)の含有量は、単官能モノマー(A)及び多官能(メタ)アクリレート(C)の合計重量に基づいて、25~90重量%である。多官能(メタ)アクリレート(C)の含有量が25重量%未満であると硬化物の伸縮性が不十分であり、90重量%を超えると伸び率が不十分となる。
In the present invention, the content of the monofunctional monomer (A1) having a homopolymer glass transition temperature of less than 25° C. is preferably 5 to 30% by weight, more preferably 5 to 25% by weight, based on the total content of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C), from the viewpoints of curability and flexibility.
The content of the monofunctional monomer (A2) having a homopolymer glass transition temperature of 25° C. or higher is preferably 5 to 70% by weight based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C) from the viewpoints of curability and flexibility.
The content of the polyfunctional (meth)acrylate (C) in the present invention is 25 to 90% by weight based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C). If the content of the polyfunctional (meth)acrylate (C) is less than 25% by weight, the elasticity of the cured product is insufficient, and if it exceeds 90% by weight, the elongation percentage is insufficient.
 本発明における光重合開始剤(D)の含有量は、単官能モノマー(A)及び多官能(メタ)アクリレート(C)の合計重量に基づいて0.1~20重量%であり、好ましくは2~20重量%であり、より好ましくは2~18重量%であり、更に好ましくは5~15重量%である。光重合開始剤(D)の含有量が0.1重量%未満であると硬化性が不十分となり、20重量%を超えると硬化物の透過率が不十分となる。 The content of the photopolymerization initiator (D) in the present invention is 0.1 to 20% by weight, preferably 2 to 20% by weight, more preferably 2 to 18% by weight, and even more preferably 5 to 15% by weight, based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C). If the content of the photopolymerization initiator (D) is less than 0.1% by weight, the curability will be insufficient, and if it exceeds 20% by weight, the transmittance of the cured product will be insufficient.
 本発明における架橋点間分子量は、1000~25000である。前記架橋点間分子量は[Mc](g/mol)で表され、柔軟性、復元性の観点から好ましくは1200~20000g/molであり、より好ましくは1300~15000である。架橋点間分子量[Mc](g/mol)は下記計算式(1)により算出できる。
 [Mc]=1/{a×(1/Mc)+a×(1/Mc)+・・・+a×(1/Mc)+・・・+a×(1/Mc)}  (1)
 上記計算式(1)中、a、a、・・・a、・・・aは、構成するモノマーの各成分(以下各成分と略記)の重量%を表す。
 また、Mc、Mc、・・・Mc、・・・Mcは、各成分毎の架橋点間分子量を表す。
 なお、[Mc](g/mol)は下記計算式(2)により算出できる。
 [Mc]=Mn/{2×(n-1)}  (2)
 上記計算式(2)中、Mnは、各成分の数平均分子量(g/mol)であり、nは各成分が有する(メタ)アクリロイル基の数(nは2以上)を表す。
The molecular weight between crosslinking points in the present invention is 1000 to 25000. The molecular weight between crosslinking points is expressed as [Mc] (g/mol), and from the viewpoint of flexibility and restorability, it is preferably 1200 to 20000 g/mol, more preferably 1300 to 15000. The molecular weight between crosslinking points [Mc] (g/mol) can be calculated by the following calculation formula (1).
[Mc]=1/{ a0 ×(1/ Mc0 )+ a1 ×(1/ Mc1 )+...+ ai ×(1/ Mci )+...+ an ×(1/ Mcn )} (1)
In the above formula (1), a 0 , a 1 , . . . a i , . . . a n represent the weight percentage of each of the constituent monomer components (hereinafter abbreviated as each component).
Additionally, Mc 0 , Mc 1 , . . . Mc i , . . . Mc n represent the molecular weight between crosslinking points of each component.
[Mc i ] (g/mol) can be calculated by the following formula (2).
[Mc i ]=Mn/{2×(n−1)} (2)
In the above formula (2), Mn is the number average molecular weight (g/mol) of each component, and n represents the number of (meth)acryloyl groups contained in each component (n is 2 or more).
 本発明の活性エネルギー線硬化性組成物は、本発明の効果を阻害しない範囲で、単官能モノマー(A)及び数平均分子量が500~40000である多官能(メタ)アクリレート(C)以外のその他のモノマー(M)を含有していてもよい。
 その他のモノマー(M)としては、多官能(メタ)アクリレート(C)以外の2官能以上の(メタ)アクリレート[例えば、2官能(メタ)アクリレート(N)(多官能(メタ)アクリレート(C)に該当するものを除く)、3官能以上の(メタ)アクリレート(O)及びリン酸基を有する(メタ)アクリレート(P)等]が挙げられる。
 なお、本発明においてビニルエーテル基及びN-ビニル基等のカチオン重合性基を有するモノマーを使用した場合、活性エネルギー線硬化性組成物の貯蔵安定性が不十分となる場合があるため、使用しないことが好ましい。
The active energy ray-curable composition of the present invention may contain another monomer (M) other than the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, within a range that does not impair the effects of the present invention.
Examples of the other monomer (M) include difunctional or higher functional (meth)acrylates other than the polyfunctional (meth)acrylate (C) [for example, difunctional (meth)acrylates (N) (excluding those corresponding to the polyfunctional (meth)acrylate (C)), trifunctional or higher functional (meth)acrylates (O), and (meth)acrylates having a phosphate group (P), etc.].
In the present invention, when a monomer having a cationically polymerizable group such as a vinyl ether group or an N-vinyl group is used, the storage stability of the active energy ray-curable composition may become insufficient, and therefore it is preferable not to use such a monomer.
 2官能(メタ)アクリレート(N)としては、ポリアルキレングリコール(アルキレン基の炭素数2~4)ジ(メタ)アクリレート(N1)、2価フェノール化合物のアルキレンオキサイド(アルキレン基の炭素数2~4)付加物のジ(メタ)アクリレート(N2)、炭素数2~30の多価(好ましくは2~8価)アルコールのアルキレンオキサイド(アルキレン基の炭素数2~4)付加物と(メタ)アクリル酸のジエステル化物、ジグリシジルエーテルと(メタ)アクリル酸のジエステル化物及びフルオレンのエチレンオキサイド付加物のジ(メタ)アクリレート、シクロヘキサンメタノールジ(メタ)アクリレート、エトキシ化シクロヘキサンメタノールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート及び1,3-アダマンチルジオールジ(メタ)アクリレート等が挙げられる。
 また、数平均分子量500未満である多官能(メタ)アクリレート(1,9-ノナンジオールジ(メタ)アクリレート等)も挙げられる。
Examples of the bifunctional (meth)acrylate (N) include polyalkylene glycol (alkylene group having 2 to 4 carbon atoms) di(meth)acrylate (N1), di(meth)acrylate (N2) of an alkylene oxide (alkylene group having 2 to 4 carbon atoms) adduct of a dihydric phenol compound, diester of an alkylene oxide (alkylene group having 2 to 4 carbon atoms) adduct of a polyhydric (preferably dihydric to octahydric) alcohol having 2 to 30 carbon atoms and (meth)acrylic acid, diester of a diglycidyl ether and (meth)acrylic acid, and di(meth)acrylate of an ethylene oxide adduct of fluorene, cyclohexanemethanol di(meth)acrylate, ethoxylated cyclohexanemethanol di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, and 1,3-adamantyldiol di(meth)acrylate.
Further, polyfunctional (meth)acrylates having a number average molecular weight of less than 500 (such as 1,9-nonanediol di(meth)acrylate) are also included.
 本発明において、これらの2官能(メタ)アクリレート(N)は1種を単独で用いても、2種以上を併用してもよい。 In the present invention, these bifunctional (meth)acrylates (N) may be used alone or in combination of two or more.
 3官能以上の(メタ)アクリレート(O)としては、3官能(メタ)アクリレートモノマー及び4官能以上の(メタ)アクリレートモノマー等が挙げられる。 Examples of trifunctional or higher (meth)acrylates (O) include trifunctional (meth)acrylate monomers and tetrafunctional or higher (meth)acrylate monomers.
 3官能(メタ)アクリレートモノマーとしては、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンの炭素数3~4のアルキレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスルトールトリ(メタ)アクリレート、トリメチロールプロパントリ((メタ)アクリロイルオキシプロピル)エーテル、ソルビトールトリ(メタ)アクリレート、ペンタエリスリトールの炭素数3~4のアルキレンオキサイド1~30モル付加物のトリ(メタ)アクリレート及びエトキシ化グリセリントリ(メタ)アクリレート等が挙げられる。 Examples of trifunctional (meth)acrylate monomers include trimethylolethane tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolpropane modified with an alkylene oxide having 3 to 4 carbon atoms, pentaerythritol tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, trimethylolpropane tri((meth)acryloyloxypropyl)ether, sorbitol tri(meth)acrylate, tri(meth)acrylate of an adduct of pentaerythritol with 1 to 30 moles of an alkylene oxide having 3 to 4 carbon atoms, and ethoxylated glycerin tri(meth)acrylate.
 4官能以上の(メタ)アクリレートモノマーとしては、ペンタエリスリトールテトラ(メタ)アクリレート、ソルビトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、プロピオン酸ジペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールの炭素数3~4のアルキレンオキサイド1~11モル付加物のテトラ(メタ)アクリレート、ソルビトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ソルビトールヘキサ(メタ)アクリレート及びカプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
 本発明において、これらの3官能以上の(メタ)アクリレート(O)は1種を単独で用いても、2種以上を併用してもよい。
Examples of tetrafunctional or higher (meth)acrylate monomers include pentaerythritol tetra(meth)acrylate, sorbitol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol propionate tetra(meth)acrylate, tetra(meth)acrylate of an adduct of pentaerythritol with 1 to 11 moles of an alkylene oxide having 3 to 4 carbon atoms, sorbitol penta(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, sorbitol hexa(meth)acrylate, and caprolactone-modified dipentaerythritol hexa(meth)acrylate.
In the present invention, these tri- or higher functional (meth)acrylates (O) may be used alone or in combination of two or more.
 リン酸基を有する(メタ)アクリレート(P)としては、(メタ)アクリロイル基を有するリン酸エステルであれば制限は無く、(メタ)アクリロイル基の官能基数1~3のものが挙げられる。市場から入手できるものを用いることができ、市販品としては、2-メタクリロイルオキシエチルアシッドホスフェート(ユニケミカル社製、ホスマーM)、アシッドホスフォキシポリオキシエチレングリコールモノメタクリレート(ユニケミカル社製、ホスマーPE)、アシッドホスフォキシポリオキシプロピレングリコールモノメタクリレート(ユニケミカル社製、ホスマーPP)、2-アクリロイルオキシエチルアシッドホスフェート(共栄社化学社製、ライトアクリレートP-1A(N))、2-メタクリロイルオキシエチルアシッドホスフェート(共栄社化学社製、ライトエステルP-1M)、ビス(2-メタクリロイルオキシエチル)アシッドホスフェート(共栄社化学社製、ライトエステルP-2M)、ビス(2-メタクリロイルオキシエチル)アシッドホスフェート(日本化薬社製、KAYAMER PM-2)及び2-ヒドロキシエチルメタクリレートの6-ヘキサノリド付加重合物と無水リン酸の反応生成物(日本化薬社製、KAYAMER PM-21)等があげられる。
 本発明において、これらのリン酸基を有する(メタ)アクリレート(P)は、1種を単独で用いても、2種以上を併用してもよい。
The (meth)acrylate (P) having a phosphate group is not limited as long as it is a phosphate ester having a (meth)acryloyl group, and examples thereof include those having 1 to 3 functional groups in the (meth)acryloyl group. Commercially available products can be used, and examples of commercially available products include 2-methacryloyloxyethyl acid phosphate (Phosmer M, manufactured by Unichemical Co., Ltd.), acid phosphoxy polyoxyethylene glycol monomethacrylate (Phosmer PE, manufactured by Unichemical Co., Ltd.), acid phosphoxy polyoxypropylene glycol monomethacrylate (Phosmer PP, manufactured by Unichemical Co., Ltd.), 2-acryloyloxyethyl acid phosphate (Light Acrylate P-1A(N), manufactured by Kyoeisha Chemical Co., Ltd.), 2-methacryloyloxyethyl acid phosphate (Light Ester P-1M, manufactured by Kyoeisha Chemical Co., Ltd.), bis(2-methacryloyloxyethyl) acid phosphate (Light Ester P-2M, manufactured by Kyoeisha Chemical Co., Ltd.), bis(2-methacryloyloxyethyl) acid phosphate (KAYAMER, manufactured by Nippon Kayaku Co., Ltd.), PM-2) and a reaction product of a 6-hexanolide addition polymer of 2-hydroxyethyl methacrylate with phosphoric anhydride (manufactured by Nippon Kayaku Co., Ltd., KAYAMER PM-21).
In the present invention, these (meth)acrylates (P) having a phosphate group may be used alone or in combination of two or more kinds.
 リン酸基を有する(メタ)アクリレート(P)のうち、金属密着性の観点から、好ましくは(メタ)アクリロイル基の官能基数1~2のリン酸基を有する(メタ)アクリレートであり、更に好ましくは2-(メタ)アクリロイルオキシエチルアシッドホスフェート、ビス{2-(メタ)アクリロイルオキシエチル}アシッドホスフェート及び2-ヒドロキシエチルメタクリレートの6-ヘキサノリド付加重合物と無水リン酸の反応生成物である。 Among the (meth)acrylates (P) having a phosphate group, from the viewpoint of metal adhesion, preferred are (meth)acrylates having a phosphate group with a functionality of 1 to 2 (meth)acryloyl groups, and more preferred are 2-(meth)acryloyloxyethyl acid phosphate, bis{2-(meth)acryloyloxyethyl} acid phosphate, and a reaction product of a 6-hexanolide addition polymer of 2-hydroxyethyl methacrylate and phosphoric anhydride.
 その他のモノマー(M)の含有量は、柔軟性及び密着性の観点から、単官能モノマー(A)及び多官能(メタ)アクリレート(C)の合計重量に基づいて好ましくは0~20重量%であり、更に好ましくは0~10重量%である。
 多官能(メタ)アクリレート(C)及び多官能(メタ)アクリレート(C)以外の2官能以上の(メタ)アクリレートの含有量の合計は、伸び性の観点から、単官能モノマー(A)及び多官能(メタ)アクリレート(C)の合計重量に基づいて、好ましくは50重量%以下である。
From the viewpoints of flexibility and adhesion, the content of the other monomer (M) is preferably 0 to 20% by weight, more preferably 0 to 10% by weight, based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C).
The total content of the polyfunctional (meth)acrylate (C) and the difunctional or higher (meth)acrylate other than the polyfunctional (meth)acrylate (C) is preferably 50% by weight or less based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C) from the viewpoint of elongation.
 本発明の活性エネルギー線硬化性組成物には、本発明の効果を阻害しない範囲で必要により種々の添加剤を含有させてもよい。
 添加剤としては、レベリング剤、荷電調整剤、光安定化剤、紫外線吸収剤、表面処理剤、酸化防止剤、老化防止剤、架橋促進剤、可塑剤、防腐剤、pH調整剤、消泡剤及び保湿剤等が挙げられる。
The active energy ray-curable composition of the present invention may contain various additives as necessary within the range that does not impair the effects of the present invention.
Examples of the additives include leveling agents, charge adjusters, light stabilizers, ultraviolet absorbers, surface treatment agents, antioxidants, antiaging agents, crosslinking accelerators, plasticizers, preservatives, pH adjusters, antifoaming agents, and moisturizing agents.
 本発明の活性エネルギー線硬化性組成物の製造方法は、特に限定はされない。例えば、上記の各成分を、ガラスビーカー、缶、プラスチックカップ等の適当な容器中にて、攪拌棒、へら等により撹拌混合すること、又は公知の混合装置(メカニカルスターラー及びマグネティックスターラー等を用いる方法、櫂型等の撹拌ばねを備えた混合装置、ディゾルバー、ボールミル並びにプラネタリミキサー等)を用いて均一混合することにより製造することができる。
 なお、本発明の活性エネルギー線硬化性組成物は、室温で液状であることが好ましく、その粘度はE型粘度測定装置[東機産業社製「VISCOMETER TV-25L」等]及びB型粘度測定装置等を用いて測定することができる。
The method for producing the active energy ray-curable composition of the present invention is not particularly limited. For example, the active energy ray-curable composition can be produced by stirring and mixing the above-mentioned components in a suitable container such as a glass beaker, a can, or a plastic cup with a stirring rod, a spatula, or the like, or by uniformly mixing the components with a known mixing device (a method using a mechanical stirrer, a magnetic stirrer, or the like, a mixing device equipped with a paddle-shaped stirring spring, a dissolver, a ball mill, a planetary mixer, or the like).
The active energy ray-curable composition of the present invention is preferably in a liquid state at room temperature, and its viscosity can be measured using an E-type viscosity measuring device [such as "VISCOMETER TV-25L" manufactured by Toki Sangyo Co., Ltd.] and a B-type viscosity measuring device.
 活性エネルギー線硬化性組成物の硬化物を得るには、活性エネルギー線硬化性組成物を公知の方法により基材に塗布した後、活性エネルギー線を照射して、硬化させる。本発明における活性エネルギー線には、紫外線及び電子線等が挙げられる。
 本発明の活性エネルギー線硬化性組成物の硬化に用いる活性エネルギー線は、光重合開始剤の選択により調整することができ、前記の光重合開始剤(D)を用いた場合には200~700nmの波長を有する活性エネルギー線の照射で光硬化でき、200~400nmの波長を持つ光(紫外線)の照射により硬化することが好ましい。
To obtain a cured product of the active energy ray-curable composition, the active energy ray-curable composition is applied to a substrate by a known method, and then cured by irradiating the composition with active energy rays. Examples of the active energy rays in the present invention include ultraviolet rays and electron beams.
The active energy rays used for curing the active energy ray-curable composition of the present invention can be adjusted by selecting a photopolymerization initiator. When the above-mentioned photopolymerization initiator (D) is used, the composition can be photocured by irradiation with active energy rays having a wavelength of 200 to 700 nm, and it is preferable that the composition is cured by irradiation with light (ultraviolet light) having a wavelength of 200 to 400 nm.
 紫外線を発する光源としては、高圧水銀灯の他、超高圧水銀灯、メタルハライドランプ及びハイパワーメタルハライドランプ等(UV・EB硬化技術の最新動向、ラドテック研究会編、シーエムシー出版、138頁、2006)及びLEDが使用できる。なかでも、LEDは、その他の光源と比較して、消費電力とオゾンの発生量が少なく、ランニングコストが低く環境負荷が少ない。LED光源で硬化させる場合は、LED光源紫外線照射装置[例えば、LED光源紫外線照射装置「FJ100 150×20 365、phoseon」、TECHNOLOGY(株)製]が使用できる。
 本発明の活性エネルギー線硬化性組成物を硬化するときの紫外線の照射量は、硬化性及び硬化物の可撓性の観点から好ましくは10~10,000mJ/cm、更に好ましくは50~5,000mJ/cmである。
 前記の電子線を照射する場合、公知の電子線照射装置を使用することができる。電子線の照射量は、硬化性及び硬化物の劣化抑制の観点から好ましくは1~10Mradである。
Examples of light sources that emit ultraviolet rays include high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, high-power metal halide lamps, etc. (Latest Trends in UV/EB Curing Technology, edited by RadTech Research Group, CMC Publishing, p. 138, 2006) and LEDs. Among them, LEDs consume less power and generate less ozone than other light sources, have low running costs, and are environmentally friendly. When curing with an LED light source, an LED light source ultraviolet irradiation device [for example, LED light source ultraviolet irradiation device "FJ100 150x20 365, phoseon", manufactured by TECHNOLOGY Co., Ltd.] can be used.
The amount of ultraviolet light irradiated when curing the active energy ray-curable composition of the present invention is preferably 10 to 10,000 mJ/cm 2 , more preferably 50 to 5,000 mJ/cm 2 , from the viewpoints of curability and flexibility of the cured product.
When irradiating with the electron beam, a known electron beam irradiation device can be used. The irradiation dose of the electron beam is preferably 1 to 10 Mrad from the viewpoints of curability and suppression of deterioration of the cured product.
 本発明の活性エネルギー線硬化性組成物を塗布する材料は用途等に応じて適宜選択すればよく、プラスチック等の有機材料や金属及びガラス等の無機材料を用いることができる。
 金属としては、鋼、溶融亜鉛めっき鋼、電気亜鉛めっき鋼、ブリキ、ティンフリースチール、その他各種のめっきあるいは合金めっき鋼、ステンレス鋼、アルミニウム、金、白金、銀及び銅等が挙げられる。さらにはリン酸塩処理、クロメート処理、有機リン酸塩処理、有機クロメート処理及び重金属置換処理等、各種の表面処理を施したものであってもよい。
 プラスチック材料としては、ポリエステル樹脂{ポリエチレンテレフタレート(PET)及びポリエチレンナフタレート(PEN)等}、アクリル樹脂(メチルメタクリレート共重合物等)、トリアセチルセルロース、アクリロニトリルーブタジエンースチレン共重合(ABS)樹脂、スチレン樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、ポリメタクリルイミド樹脂及びポリオレフィン樹脂(ポリエチレン、ポリプロピレン及びシクロオレフィンポリマー等)等が挙げられる。
 無機材料としては、ガラス及びセラミックス等が挙げられる。
 本発明の活性エネルギー線硬化性組成物はこれらのうち、金属への密着性が特に優れる。
The material to be applied to the active energy ray-curable composition of the present invention may be appropriately selected depending on the application, etc., and organic materials such as plastics and inorganic materials such as metals and glass can be used.
Examples of metals include steel, hot-dip galvanized steel, electrolytic galvanized steel, tinplate, tin-free steel, various other plated or alloy-plated steel, stainless steel, aluminum, gold, platinum, silver, copper, etc. Furthermore, the metals may be those that have been subjected to various surface treatments such as phosphate treatment, chromate treatment, organic phosphate treatment, organic chromate treatment, and heavy metal replacement treatment.
Examples of plastic materials include polyester resins (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), acrylic resins (methyl methacrylate copolymers, etc.), triacetyl cellulose, acrylonitrile-butadiene-styrene copolymer (ABS) resin, styrene resin, polysulfone resin, polyethersulfone resin, polycarbonate resin, vinyl chloride resin, polymethacrylimide resin, and polyolefin resins (polyethylene, polypropylene, cycloolefin polymer, etc.).
Inorganic materials include glass and ceramics.
Among these, the active energy ray-curable composition of the present invention has particularly excellent adhesion to metals.
 本発明の活性エネルギー線硬化性組成物の基材への塗布方法としては、スピンコート、ロールコート及びスプレーコート等の公知のコーティング法並びに平版印刷、カルトン印刷、金属印刷、オフセット印刷、スクリーン印刷及びグラビア印刷といった公知の印刷法を適用できる。また、本発明の組成物は室温で低粘度であるため、微細液滴を連続して吐出するインクジェット方式の塗布(インクジェット印刷)にも適用できる。
 インクジェット印刷は比較的簡易な設備で精密かつ高速な印刷が可能であることから、液晶ディスプレイ及び有機ELディスプレイ等のディスプレイ用部品や、その他の電子部品及び光学部品の製造に好適に利用されている。
The active energy ray-curable composition of the present invention can be applied to a substrate by known coating methods such as spin coating, roll coating, and spray coating, and known printing methods such as lithographic printing, carton printing, metal printing, offset printing, screen printing, and gravure printing. In addition, since the composition of the present invention has a low viscosity at room temperature, it can also be applied to inkjet coating (inkjet printing) in which fine droplets are continuously ejected.
Inkjet printing is capable of precise, high-speed printing using relatively simple equipment, and is therefore suitable for use in the manufacture of display components such as liquid crystal displays and organic EL displays, as well as other electronic and optical components.
 本発明の活性エネルギー線硬化性組成物は、粘度が低く、活性エネルギー線硬化性組成物の硬化物は、伸びと弾性率とが共に優れるため、ディスプレイ部品をはじめとする各種電子部品や光学部品の材料として有用である。特に、ディスプレイ部品やイメージセンサー等の電子部品、半導体パッケージ等の接着及び封止用途に好適に使用できる。また、各種コーティング、インキ(UV印刷インキ及びUVインクジェット印刷インキ等)及び塗料用等にも幅広く用いることができる。 The active energy ray curable composition of the present invention has a low viscosity, and the cured product of the active energy ray curable composition has excellent elongation and elastic modulus, making it useful as a material for various electronic and optical components, including display components. In particular, it can be suitably used for bonding and sealing electronic components such as display components and image sensors, and semiconductor packages. It can also be widely used in various coatings, inks (UV printing inks and UV inkjet printing inks, etc.), paints, etc.
 <その他>
 本発明は、以下の構成を含んでもよい。
<1>
 単官能モノマー(A)、数平均分子量が500~40000である多官能(メタ)アクリレート(C)及び光重合開始剤(D)を含有する活性エネルギー線硬化性組成物であって、前記単官能モノマー(A)がホモポリマーのガラス転移温度が25℃未満の単官能モノマー(A1)とホモポリマーのガラス転移温度が25℃以上の単官能モノマー(A2)を含有し、前記単官能モノマー(A)及び前記多官能(メタ)アクリレート(C)の合計重量に基づいて、前記単官能モノマー(A)の含有量が10~75重量%、前記多官能(メタ)アクリレート(C)の含有量が25~90重量%、前記光重合開始剤(D)の含有量が0.1~20重量%であり、架橋点間分子量が1000~25000である活性エネルギー線硬化性組成物。
<2>
 前記単官能モノマー(A2)が分子内に窒素原子を有する単官能モノマーである<1>に記載の活性エネルギー線硬化性組成物。
<3>
 前記単官能モノマー(A2)がN-置換(メタ)アクリルアミドである<1>又は<2>に記載の活性エネルギー線硬化性組成物。
<4>
 <1>~<3>のいずれかに記載の活性エネルギー線硬化性組成物を硬化させてなる硬化物。
<Other>
The present invention may include the following configurations.
<1>
An active energy ray-curable composition containing a monofunctional monomer (A), a polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, and a photopolymerization initiator (D), wherein the monofunctional monomer (A) contains a monofunctional monomer (A1) having a homopolymer glass transition temperature of less than 25° C. and a monofunctional monomer (A2) having a homopolymer glass transition temperature of 25° C. or higher, the content of the monofunctional monomer (A) is 10 to 75% by weight, the content of the polyfunctional (meth)acrylate (C) is 25 to 90% by weight, and the content of the photopolymerization initiator (D) is 0.1 to 20% by weight, based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C), and the molecular weight between crosslinking points is 1,000 to 25,000.
<2>
The active energy ray-curable composition according to <1>, wherein the monofunctional monomer (A2) is a monofunctional monomer having a nitrogen atom in the molecule.
<3>
The active energy ray-curable composition according to <1> or <2>, wherein the monofunctional monomer (A2) is an N-substituted (meth)acrylamide.
<4>
A cured product obtained by curing the active energy ray-curable composition according to any one of <1> to <3>.
 以下本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be explained in detail below with reference to examples, but the present invention is not limited to these examples.
製造例1[ウレタン基を有する(メタ)アクリレート(C-4)の合成]
 反応容器にポリプロピレングリコール[商品名「サンニツクス PP-2000」、三洋化成工業(株)製、数平均分子量:2000]258重量部、MDI65重量部及びウレタン化触媒0.1重量部を仕込み、110℃で4時間反応させ、その後2-ヒドロキシエチルアクリレート33重量部を加え、80℃で8時間反応させて、ウレタン基を有する2官能アクリレート(C-4)を得た。(C-4)の数平均分子量は2700であった。
Production Example 1 [Synthesis of (meth)acrylate (C-4) having a urethane group]
A reaction vessel was charged with 258 parts by weight of polypropylene glycol [product name "Sannyx PP-2000", manufactured by Sanyo Chemical Industries, Ltd., number average molecular weight: 2000], 65 parts by weight of MDI, and 0.1 parts by weight of a urethanization catalyst, and reacted at 110°C for 4 hours, after which 33 parts by weight of 2-hydroxyethyl acrylate was added and reacted at 80°C for 8 hours to obtain a bifunctional acrylate (C-4) having a urethane group. The number average molecular weight of (C-4) was 2700.
<活性エネルギー線硬化性組成物の作製>
(実施例1~14及び比較例1~5)
 表1の配合部数(重量部)に従い、ガラス製の容器に、単官能モノマー(A)、数平均分子量が500~40000である多官能(メタ)アクリレート(C)及び光重合開始剤(D)とその他のモノマー(M)とを仕込み、均一になるまで撹拌し、実施例1~14及び比較例1~5の活性エネルギー線硬化性組成物を得た。
<Preparation of active energy ray-curable composition>
(Examples 1 to 14 and Comparative Examples 1 to 5)
According to the blending parts (parts by weight) in Table 1, the monofunctional monomer (A), the polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, the photopolymerization initiator (D), and the other monomer (M) were charged into a glass container and stirred until uniform, thereby obtaining active energy ray-curable compositions of Examples 1 to 14 and Comparative Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1中で使用した原料は以下の通りである。
(A1-1):ラウリルアクリレート[商品名:LA、大阪有機化学工業社製](ホモポリマーのTg:-30℃)
(A1-2):イソステアリルアクリレート[商品名:ISTA、大阪有機化学工業社製](ホモポリマーのTg:-15℃)
(A1-3):2-[(ブチルアミノ)カルボニル]オキシエチルアクリレート[商品名:ビスコート#216、大阪有機化学工業社製](ホモポリマーのTg:0℃)
(A1-4):テトラヒドロフルフリルアクリレート[商品名:ビスコート#150、大阪有機化学工業社製](ホモポリマーのTg:-12℃)
(A2-1):N-アクリロイルモルホリン[商品名:ACMO、KJケミカルズ社製](ホモポリマーのTg:145℃)
(A2-2):N,N-ジメチルアクリルアミド[商品名:DMAA、KJケミカルズ社製](ホモポリマーのTg:119℃)
(A2-3):イソボルニルアクリレート[商品名:ライトアクリレートIBXA、共栄社化学社製](ホモポリマーのTg:97℃)
(A2-4):環状トリメチロールプロパンホルマールアクリレート[商品名:ビスコート#200、大阪有機化学工業社製](ホモポリマーのTg:27℃)
(A2-5):ダイアセトンアクリルアミド[商品名:DAAM、KJケミカルズ社製](ホモポリマーのTg:77℃)
(C-1):ポリエチレングリコールジアクリレート(数平均分子量約1100)[商品名:NKエステル A-1000、新中村化学工業社製]
(C-2):ポリプロピレングリコールジアクリレート(数平均分子量約800)[商品名:NKエステル APG-700、新中村化学工業社製]
(C-3):シリコーンジアクリレート(数平均分子量約2500)[商品名:EBECRYL350、ダイセル・オルネクス社製]
(C-5):ウレタンジアクリレート(数平均分子量約18000)[商品名:UV-3000B、三菱ケミカル社製]
(C-6):ウレタンジアクリレート(数平均分子量約6500)[商品名:UN-6200、根上工業社製]
(C-7):ウレタンジアクリレート(数平均分子量約20000)[商品名:UN-7700、根上工業社製]
(C-8):ウレタンジアクリレート(数平均分子量約35000)[商品名:UF-C051、共栄社化学社製]
(C-9):ウレタンテトラアクリレート(数平均分子量約2000)[商品名:EBECRYL4513、ダイセル・オルネクス社製]
(M-1):2-ヒドロキシエチルメタクリレートの6-ヘキサノリド付加重合物と無水リン酸の反応生成物[商品名:KAYAMER PM-21、日本化薬社製]
(M-2):1,9-ノナンジオールジアクリレート[商品名:ビスコート#260、大阪有機化学工業社製]
(M-3):トリメチロールプロパントリアクリレート[商品名:ビスコート#295、大阪有機化学工業社製]
(D-1):(2,4,6-トリメチルベンゾイル)-ジフェニルホスフィンオキサイド[商品名:イルガキュアTPO、IGM Resins B.V.社製]
(D-2):ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド[商品名:イルガキュア819、IGM Resins B.V.社製]
(D-3):2,4,6-トリメチルベンゾイルフェニルホスフィン酸エチル[商品名:イルガキュアTPO―L、CHEMBRIDGE社製]
(D-4):1-ヒドロキシシクロヘキシルフェニルケトン[商品名:イルガキュア184、IGM Resins B.V.社製]
The raw materials used in Table 1 are as follows:
(A1-1): Lauryl acrylate [product name: LA, manufactured by Osaka Organic Chemical Industry Co., Ltd.] (Tg of homopolymer: -30°C)
(A1-2): Isostearyl acrylate [product name: ISTA, manufactured by Osaka Organic Chemical Industry Co., Ltd.] (Tg of homopolymer: -15°C)
(A1-3): 2-[(butylamino)carbonyl]oxyethyl acrylate [product name: Viscoat #216, manufactured by Osaka Organic Chemical Industry Co., Ltd.] (Tg of homopolymer: 0° C.)
(A1-4): Tetrahydrofurfuryl acrylate [product name: Viscoat #150, manufactured by Osaka Organic Chemical Industry Co., Ltd.] (Tg of homopolymer: -12°C)
(A2-1): N-acryloylmorpholine [product name: ACMO, manufactured by KJ Chemicals] (Tg of homopolymer: 145° C.)
(A2-2): N,N-dimethylacrylamide [product name: DMAA, manufactured by KJ Chemicals] (Tg of homopolymer: 119° C.)
(A2-3): Isobornyl acrylate [product name: Light Acrylate IBXA, manufactured by Kyoeisha Chemical Co., Ltd.] (Tg of homopolymer: 97° C.)
(A2-4): Cyclic trimethylolpropane formal acrylate [product name: Viscoat #200, manufactured by Osaka Organic Chemical Industry Co., Ltd.] (Tg of homopolymer: 27° C.)
(A2-5): Diacetone acrylamide [product name: DAAM, manufactured by KJ Chemicals] (Tg of homopolymer: 77° C.)
(C-1): Polyethylene glycol diacrylate (number average molecular weight: about 1100) [product name: NK Ester A-1000, manufactured by Shin-Nakamura Chemical Co., Ltd.]
(C-2): Polypropylene glycol diacrylate (number average molecular weight: about 800) [product name: NK Ester APG-700, manufactured by Shin-Nakamura Chemical Co., Ltd.]
(C-3): Silicone diacrylate (number average molecular weight: about 2500) [product name: EBECRYL350, manufactured by Daicel Allnex Corporation]
(C-5): Urethane diacrylate (number average molecular weight: about 18,000) [product name: UV-3000B, manufactured by Mitsubishi Chemical Corporation]
(C-6): Urethane diacrylate (number average molecular weight: about 6500) [product name: UN-6200, manufactured by Negami Chemical Industries, Ltd.]
(C-7): Urethane diacrylate (number average molecular weight: about 20,000) [product name: UN-7700, manufactured by Negami Chemical Industries, Ltd.]
(C-8): Urethane diacrylate (number average molecular weight: about 35,000) [product name: UF-C051, manufactured by Kyoeisha Chemical Co., Ltd.]
(C-9): Urethane tetraacrylate (number average molecular weight: about 2000) [product name: EBECRYL4513, manufactured by Daicel Allnex Corporation]
(M-1): Reaction product of 6-hexanolide addition polymer of 2-hydroxyethyl methacrylate and phosphoric anhydride [trade name: KAYAMER PM-21, manufactured by Nippon Kayaku Co., Ltd.]
(M-2): 1,9-nonanediol diacrylate [product name: Viscoat #260, manufactured by Osaka Organic Chemical Industry Co., Ltd.]
(M-3): Trimethylolpropane triacrylate [product name: Viscoat #295, manufactured by Osaka Organic Chemical Industry Co., Ltd.]
(D-1): (2,4,6-trimethylbenzoyl)-diphenylphosphine oxide [product name: Irgacure TPO, manufactured by IGM Resins B.V.]
(D-2): Bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide [product name: Irgacure 819, manufactured by IGM Resins B.V.]
(D-3): Ethyl 2,4,6-trimethylbenzoylphenylphosphinate [product name: Irgacure TPO-L, manufactured by CHEMBRIDGE]
(D-4): 1-hydroxycyclohexyl phenyl ketone [product name: Irgacure 184, manufactured by IGM Resins B.V.]
 実施例1~14及び比較例1~5で得た各活性エネルギー線硬化性組成物の初期粘度及び塗膜硬化性、並びに、硬化物の全光線透過率、弾性率、伸び率、復元率及び金属密着性を以下の試験法により測定又は評価した結果を表1に示す。 The initial viscosity and coating curability of each active energy ray-curable composition obtained in Examples 1 to 14 and Comparative Examples 1 to 5, as well as the total light transmittance, elastic modulus, elongation rate, recovery rate, and metal adhesion of the cured products were measured or evaluated using the following test methods, and the results are shown in Table 1.
(1)初期粘度の測定
 実施例1~14及び比較例1~5で得た各活性エネルギー線硬化性組成物を25℃で30分間温調し、E型粘度測定装置[東機産業社製「VISCOMETER TV-25L」]を用いて以下の条件で初期粘度(mPa・s)を測定した。
[測定条件]
コーンロータ :標準コーンロータ(1°34’×R24)
測定温度   :25℃
測定レンジ  :M
回転数    :50rpm
(1) Measurement of Initial Viscosity Each of the active energy ray-curable compositions obtained in Examples 1 to 14 and Comparative Examples 1 to 5 was heated at 25° C. for 30 minutes, and the initial viscosity (mPa s) was measured under the following conditions using an E-type viscosity measuring device ["VISCOMETER TV-25L" manufactured by Toki Sangyo Co., Ltd.].
[Measurement condition]
Cone rotor: Standard cone rotor (1°34' x R24)
Measurement temperature: 25°C
Measurement range: M
Rotation speed: 50 rpm
(2)塗膜硬化性の評価
 実施例1~14及び比較例1~5で得た各活性エネルギー線硬化性組成物を、表面処理を施した厚さ100μmのPET(ポリエチレンテレフタレート)フィルム[東洋紡(株)製コスモシャインA4300]に、アプリケーターを用いて膜厚10μmとなるように塗布した。続いて、LED光源紫外線照射装置[型番「FJ100 150×20 385」、phoseon TECHNOLOGY(株)製、照射波長 385nm]を使用して窒素雰囲気下で照射強度200mW/cmにて露光を行なった。露光量は1000mJ/cmであった。硬化後塗膜の光照射直後及び光照射10秒後の硬化性を、指触することにより、タックの有無を確認した。
 タックが有る場合は、さらに上記と同様に照射強度200mW/cmにて露光を行ない(1回目と2回目の合計露光量:2000mJ/cm)、光照射直後及び光照射10秒後の硬化性を、指触することにより、タックの有無を確認した。塗膜硬化性を下記基準で評価した。塗膜硬化性は2以上であることが好ましく、3であることがより好ましい。また、塗膜硬化性の評価が1の場合、硬化性が不十分であったため、続く硬化物の全光線透過率、弾性率、伸び率、復元率及び金属密着性の評価を行わなかった。
[評価基準]
 3:露光量1000mJ/cmでタックが無くなった。
 2:合計露光量2000mJ/cmでタックが無くなった。
 1:合計露光量2000mJ/cmでもタックあり。
(2) Evaluation of coating film curability Each active energy ray curable composition obtained in Examples 1 to 14 and Comparative Examples 1 to 5 was applied to a surface-treated PET (polyethylene terephthalate) film having a thickness of 100 μm [Cosmoshine A4300 manufactured by Toyobo Co., Ltd.] using an applicator so as to give a film thickness of 10 μm. Next, exposure was performed under a nitrogen atmosphere at an irradiation intensity of 200 mW/cm 2 using an LED light source ultraviolet irradiation device [model number "FJ100 150×20 385", manufactured by phoseon TECHNOLOGY Co., Ltd., irradiation wavelength 385 nm]. The exposure amount was 1000 mJ/cm 2. The curability of the cured coating film immediately after light irradiation and 10 seconds after light irradiation was confirmed by touching with a finger for the presence or absence of tack.
If tack was present, exposure was further performed at an irradiation intensity of 200 mW/ cm2 in the same manner as above (total exposure amount for the first and second exposures: 2000 mJ/ cm2 ), and the presence or absence of tack was confirmed by touching with a finger immediately after light exposure and 10 seconds after light exposure. The coating curability was evaluated according to the following criteria. The coating curability is preferably 2 or more, and more preferably 3. In addition, when the coating curability was evaluated as 1, the curability was insufficient, so the subsequent evaluation of the total light transmittance, elastic modulus, elongation rate, recovery rate, and metal adhesion of the cured product was not performed.
[Evaluation criteria]
3: Tack was lost at an exposure dose of 1000 mJ/ cm2 .
2: Tack was lost at a total exposure dose of 2000 mJ/ cm2 .
1: Tack was observed even with a total exposure of 2000 mJ/ cm2 .
(3)硬化物の全光線透過率の評価
 実施例1~14、比較例1~2及び4~5で得た各活性エネルギー線硬化性組成物を、表面処理を施した厚さ100μmのPET(ポリエチレンテレフタレート)フィルム[東洋紡(株)製コスモシャインA4300]に、アプリケーターを用いて膜厚10μmとなるように塗布した。続いて、LED光源紫外線照射装置[型番「FJ100 150×20 385」、phoseon TECHNOLOGY(株)製、照射波長 385nm]を使用して窒素雰囲気下で照射強度200mW/cmにて露光し、評価用サンプルを作製した。露光量は2000mJ/cmであった。
 作製した評価用サンプルを25℃で30分間温調し、JIS K7136:2000に準拠し、全光線透過率測定装置[商品名「haze-garddual」、BYK gardner(株)製]を用いて全光線透過率(%)を測定した。本発明では、全光線透過率が90%以上であることが好ましい。
(3) Evaluation of total light transmittance of cured product Each active energy ray curable composition obtained in Examples 1 to 14, Comparative Examples 1 to 2, and 4 to 5 was applied to a surface-treated PET (polyethylene terephthalate) film having a thickness of 100 μm [Cosmoshine A4300 manufactured by Toyobo Co., Ltd.] using an applicator so as to give a film thickness of 10 μm. Next, the film was exposed to light at an irradiation intensity of 200 mW/cm 2 under a nitrogen atmosphere using an LED light source ultraviolet irradiation device [model number "FJ100 150×20 385", manufactured by phoseon TECHNOLOGY Co., Ltd., irradiation wavelength 385 nm] to prepare an evaluation sample. The exposure amount was 2000 mJ/cm 2 .
The prepared evaluation sample was kept at 25° C. for 30 minutes, and the total light transmittance (%) was measured in accordance with JIS K7136: 2000 using a total light transmittance measuring device [trade name "haze-garddual", manufactured by BYK Gardner Co., Ltd.]. In the present invention, the total light transmittance is preferably 90% or more.
(4)硬化物の伸び率の評価
<試験片の作製>
 ガラス板[商品名:GLASS PLATE、アズワン(株)製、タテ200mm×ヨコ200mm×厚さ5mm]上に、PETフィルム[商品名:ルミラーS、東レ(株)製]を貼り付け、アプリケーターを用いて硬化後の膜厚が100μmとなるように活性エネルギー線硬化性組成物を塗布した。紫外線照射装置[型番「VPS/I600」、フュージョンUVシステムズ(株)製]により、窒素雰囲気下で紫外線を2000mJ/cm照射し、活性エネルギー線硬化性組成物の硬化物で被覆されたPETフィルムを得た。
 上記の硬化物で被覆されたPETフィルムをJIS K 6251:2017に準拠し、ダンベル状3号形に打ち抜き、その後PETフィルムを剥がすことにより、測定用試験片を得た。
<引張試験>
 得られた測定用試験片を25℃、50%RHで5時間静置した後、JIS K 6251:2017に準拠し、オートグラフ[型番「AG-IS」(株)島津製作所製]を用いて引張試験を行い、弾性率及び伸び率を測定した。
[測定条件]
チャック間距離:20mm
標線間距離  :20mm
引張速度   :10mm/分
 次に、下記式(2)で伸び率(%)を算出した。
 伸び率(%)=(破断時の標線間距離-標線間距離)/(標線間距離)×100・・・(2)
 弾性率は変位0.01~0.05mmの部分について解析を行った。
 本発明では、弾性率が1000MPa以下であることが好ましく、500MPa以下であることがより好ましく、さらに好ましくは100MPa以下である。また、伸び率が50%以上であることが好ましく、100%以上であることがより好ましい。
<復元率>
得られた測定用試験片を25℃、50%RHで5時間静置した後、JIS K 6251:2017に準拠し、オートグラフ[型番「AG-IS」(株)島津製作所製]を用いて50%の伸びまで伸長し、つかみ具を0%の位置まで戻し1時間静置した後の復元率を算出した。
 復元率(%)=(試験前の標線間距離(20mm))/(試験後の標線間距離)×100
 なお、比較例1、4については、試験片が破壊したため、復元率を算出できなかった。
 本発明では、復元率が80%以上であることが好ましく、90%以上であることがより好ましく、さらに好ましくは95%以上である。
(4) Evaluation of elongation of cured product <Preparation of test pieces>
A PET film [product name: Lumirror S, manufactured by Toray Industries, Inc.] was attached to a glass plate [product name: GLASS PLATE, manufactured by AS ONE Corporation, length 200 mm x width 200 mm x thickness 5 mm], and an active energy ray curable composition was applied using an applicator so that the film thickness after curing was 100 μm. Using an ultraviolet ray irradiation device [model number "VPS/I600", manufactured by Fusion UV Systems Co., Ltd.], ultraviolet rays were irradiated at 2000 mJ/ cm2 under a nitrogen atmosphere to obtain a PET film covered with a cured product of the active energy ray curable composition.
The PET film coated with the above-mentioned cured product was punched out into a dumbbell shape No. 3 in accordance with JIS K 6251:2017, and then the PET film was peeled off to obtain a test specimen for measurement.
<Tensile test>
The obtained test specimen was allowed to stand at 25°C and 50% RH for 5 hours, and then a tensile test was performed in accordance with JIS K 6251:2017 using an autograph [model number "AG-IS" (manufactured by Shimadzu Corporation)] to measure the elastic modulus and elongation.
[Measurement condition]
Chuck distance: 20 mm
Gauge distance: 20mm
Tensile speed: 10 mm/min. Next, the elongation (%) was calculated using the following formula (2).
Elongation (%)=(gauge length at break−gauge length)/(gauge length)×100 (2)
The elastic modulus was analyzed for the portion with a displacement of 0.01 to 0.05 mm.
In the present invention, the elastic modulus is preferably 1000 MPa or less, more preferably 500 MPa or less, and even more preferably 100 MPa or less. Also, the elongation is preferably 50% or more, and more preferably 100% or more.
<Recovery rate>
The obtained test piece for measurement was allowed to stand for 5 hours at 25°C and 50% RH, and then extended to 50% elongation using an autograph [model number "AG-IS" (manufactured by Shimadzu Corporation)] in accordance with JIS K 6251:2017. The gripping tool was returned to the 0% position, and the test piece was allowed to stand for 1 hour, after which the recovery rate was calculated.
Recovery rate (%)=(gauge line distance before test (20 mm))/(gauge line distance after test)×100
In addition, for Comparative Examples 1 and 4, the recovery rate could not be calculated because the test pieces were broken.
In the present invention, the restoration rate is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more.
(5)金属密着性の評価(対銅板)
 実施例1~14、比較例1~2及び4~5で得た各活性エネルギー線硬化性組成物を、銅板(膜厚1mm)に、アプリケーターを用いて膜厚10μmとなるように塗布した。続いて、LED光源紫外線照射装置[型番「FJ100 150×20 385」、phoseon TECHNOLOGY(株)製、照射波長 385nm]を使用して照射強度200mW/cmにて露光し、評価用サンプルを作製した。露光量は2000mJ/cmであった。得られた評価用サンプルを23℃、相対湿度50%の環境下で24時間静置した後、基材上の硬化塗膜を2mm×2mmの碁盤目(100個)にクロスカットし、この上にセロハン粘着テープを張り付けて、90度剥離を行ない、基材からの硬化物の剥離状態を目視で観察した。1サンプルにつき2箇所の碁盤目を作製して評価し、硬化物が剥がれずに基材に密着しているマス目の個数の平均値を表1に示した。密着しているマス目の個数の平均値が80以上であることが好ましく、より好ましくは90以上であり、更に好ましくは100である。
(5) Evaluation of metal adhesion (to copper plate)
Each of the active energy ray curable compositions obtained in Examples 1 to 14, Comparative Examples 1 to 2, and 4 to 5 was applied to a copper plate (film thickness 1 mm) using an applicator to a film thickness of 10 μm. Then, an LED light source ultraviolet irradiation device [model number "FJ100 150×20 385", manufactured by phoseon TECHNOLOGY Co., Ltd., irradiation wavelength 385 nm] was used to expose the plate at an irradiation intensity of 200 mW/cm 2 to prepare an evaluation sample. The exposure amount was 2000 mJ/cm 2. The obtained evaluation sample was left to stand for 24 hours under an environment of 23° C. and relative humidity 50%, and then the cured coating film on the substrate was cross-cut into 2 mm×2 mm grids (100 pieces), cellophane adhesive tape was attached thereon, and peeled at 90 degrees, and the peeling state of the cured product from the substrate was visually observed. Two grids were prepared for each sample and evaluated, and the average number of grids in which the cured product was not peeled off and was adhered to the substrate is shown in Table 1. The average number of adhered grids is preferably 80 or more, more preferably 90 or more, and even more preferably 100.
 本発明の活性エネルギー線硬化性組成物は、伸びと弾性率とが共に優れるため、フレキシブルディスプレイ等のディスプレイ部品をはじめとする各種電子部品やストレッチャブルデバイス、各種光学部品の材料として有用である。特に、ディスプレイ部品やイメージセンサー等の電子部品、半導体パッケージ等の接着及び封止用途に好適に使用できる。また、各種コーティング、インキ(UV印刷インキ及びUVインクジェット印刷インキ、スクリーン印刷インキ等)及び塗料用等にも幅広く用いることができる。

 
The active energy ray-curable composition of the present invention is excellent in both elongation and elastic modulus, and is therefore useful as a material for various electronic components, including display components such as flexible displays, stretchable devices, and various optical components. In particular, it can be suitably used for adhesion and sealing of display components, electronic components such as image sensors, semiconductor packages, etc. It can also be widely used for various coatings, inks (UV printing inks, UV inkjet printing inks, screen printing inks, etc.), paints, etc.

Claims (4)

  1.  単官能モノマー(A)、数平均分子量が500~40000である多官能(メタ)アクリレート(C)及び光重合開始剤(D)を含有する活性エネルギー線硬化性組成物であって、前記単官能モノマー(A)がホモポリマーのガラス転移温度が25℃未満の単官能モノマー(A1)とホモポリマーのガラス転移温度が25℃以上の単官能モノマー(A2)を含有し、前記単官能モノマー(A)及び前記多官能(メタ)アクリレート(C)の合計重量に基づいて、前記単官能モノマー(A)の含有量が10~75重量%、前記多官能(メタ)アクリレート(C)の含有量が25~90重量%、前記光重合開始剤(D)の含有量が0.1~20重量%であり、架橋点間分子量が1000~25000である活性エネルギー線硬化性組成物。 An active energy ray curable composition containing a monofunctional monomer (A), a polyfunctional (meth)acrylate (C) having a number average molecular weight of 500 to 40,000, and a photopolymerization initiator (D), wherein the monofunctional monomer (A) contains a monofunctional monomer (A1) having a homopolymer glass transition temperature of less than 25°C and a monofunctional monomer (A2) having a homopolymer glass transition temperature of 25°C or higher, and the content of the monofunctional monomer (A) is 10 to 75% by weight, the content of the polyfunctional (meth)acrylate (C) is 25 to 90% by weight, and the content of the photopolymerization initiator (D) is 0.1 to 20% by weight, based on the total weight of the monofunctional monomer (A) and the polyfunctional (meth)acrylate (C), and the molecular weight between crosslinking points is 1,000 to 25,000.
  2.  前記単官能モノマー(A2)が分子内に窒素原子を有する単官能モノマーである請求項1に記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to claim 1, wherein the monofunctional monomer (A2) is a monofunctional monomer having a nitrogen atom in the molecule.
  3.  前記単官能モノマー(A2)がN-置換(メタ)アクリルアミドである請求項1に記載の活性エネルギー線硬化性組成物。 The active energy ray-curable composition according to claim 1, wherein the monofunctional monomer (A2) is an N-substituted (meth)acrylamide.
  4.  請求項1~3のいずれか1項に記載の活性エネルギー線硬化性組成物を硬化させてなる硬化物。

     
    A cured product obtained by curing the active energy ray-curable composition according to any one of claims 1 to 3.

PCT/JP2023/034725 2022-11-04 2023-09-25 Actinic-ray-curable composition and cured object WO2024095637A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022177338 2022-11-04
JP2022-177338 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024095637A1 true WO2024095637A1 (en) 2024-05-10

Family

ID=90930225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034725 WO2024095637A1 (en) 2022-11-04 2023-09-25 Actinic-ray-curable composition and cured object

Country Status (1)

Country Link
WO (1) WO2024095637A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204597A (en) * 2015-04-28 2016-12-08 Kjケミカルズ株式会社 Polymerizable composition using n-substituted (meth)acrylamide, copolymer thereof and molded article comprising the same
JP2017048288A (en) * 2015-09-01 2017-03-09 Kjケミカルズ株式会社 Active energy ray curable resin composition
JP2021146657A (en) * 2020-03-23 2021-09-27 株式会社リコー Composition for three-dimensional forming, high molecular weight body, three-dimensional formed article, and manufacturing method of three-dimensional formed article
JP2022037903A (en) * 2020-08-25 2022-03-09 三洋化成工業株式会社 Active energy ray-curable composition and cured product
JP2022153309A (en) * 2021-03-29 2022-10-12 三洋化成工業株式会社 Active energy ray curable composition and its cured material
JP2022164601A (en) * 2021-04-16 2022-10-27 三洋化成工業株式会社 Ultraviolet-curable composition and cured product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204597A (en) * 2015-04-28 2016-12-08 Kjケミカルズ株式会社 Polymerizable composition using n-substituted (meth)acrylamide, copolymer thereof and molded article comprising the same
JP2017048288A (en) * 2015-09-01 2017-03-09 Kjケミカルズ株式会社 Active energy ray curable resin composition
JP2021146657A (en) * 2020-03-23 2021-09-27 株式会社リコー Composition for three-dimensional forming, high molecular weight body, three-dimensional formed article, and manufacturing method of three-dimensional formed article
JP2022037903A (en) * 2020-08-25 2022-03-09 三洋化成工業株式会社 Active energy ray-curable composition and cured product
JP2022153309A (en) * 2021-03-29 2022-10-12 三洋化成工業株式会社 Active energy ray curable composition and its cured material
JP2022164601A (en) * 2021-04-16 2022-10-27 三洋化成工業株式会社 Ultraviolet-curable composition and cured product

Similar Documents

Publication Publication Date Title
WO2012121312A1 (en) Active-energy-curable resin composition and coating agent
JP6837869B2 (en) Active energy ray-curable resin composition for flooring materials, coated flooring materials, manufacturing methods for coated flooring materials, and methods for preventing contamination of flooring materials.
JP5935668B2 (en) Active energy ray-curable coating agent composition
JP2008143104A (en) Transfer sheet for forming coating film and method for forming covering coating film using same
JP6936896B2 (en) Active energy ray-curable composition and its cured product
JP2019172882A (en) Hard coat resin composition and hard coat film
JP2014189566A (en) Active energy ray-curable composition for cyclic olefin resin and cyclic olefin resin film using the composition
JP6840215B1 (en) Method for manufacturing active energy ray-curable composition for antiglare hard coat and antiglare hard coat film
JPWO2008056751A1 (en) Active energy ray-curable adhesive composition
JP4806965B2 (en) Method for forming antistatic coating
JP6372657B2 (en) Curable resin composition
JP2022153309A (en) Active energy ray curable composition and its cured material
JP2002080511A (en) Photocurable composition, coating composition for temporary rust prevention of steel pipe, its coating film, coated steel pipe, and method for rust prevention of steel pipe
JP6578473B2 (en) Active energy ray-curable resin composition, paint, coating film, and laminated film
JP2014177583A (en) Curable composition and laminate
WO2024095637A1 (en) Actinic-ray-curable composition and cured object
JP2014189565A (en) Active energy ray-curable composition for cyclic olefin resin and cyclic olefin resin film using the composition
JP6589435B2 (en) COATING COMPOSITION FOR REFORMING UNDERCOAT LAYER FOR METALLICATION TREATMENT AND RESIN MOLDED MATERIAL
JP7265226B2 (en) Curable composition for flexible hard coat
JP5371176B2 (en) Solventless active energy ray-curable resin composition, synthetic resin laminate, and method for producing synthetic resin laminate
WO2019182155A1 (en) Curable composition, cured product, method for producing cured product, and method for repairing damage of cured product
JP6509710B2 (en) Fluorine-containing copolymer-containing coating composition
JP7420595B2 (en) Photocurable coating composition
JP2014141593A (en) Fingerprint resistance adding agent, active energy ray-curable composition, active energy ray-curable coating composition for fingerprint resistance hard coat, cured product and article having cured product
JP2024068125A (en) Multi-layer hardened film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885401

Country of ref document: EP

Kind code of ref document: A1