WO2024095502A1 - 通信観点および非通信観点に基づく混雑状況の推定 - Google Patents

通信観点および非通信観点に基づく混雑状況の推定 Download PDF

Info

Publication number
WO2024095502A1
WO2024095502A1 PCT/JP2022/048284 JP2022048284W WO2024095502A1 WO 2024095502 A1 WO2024095502 A1 WO 2024095502A1 JP 2022048284 W JP2022048284 W JP 2022048284W WO 2024095502 A1 WO2024095502 A1 WO 2024095502A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
congestion
cell
people
state
Prior art date
Application number
PCT/JP2022/048284
Other languages
English (en)
French (fr)
Inventor
健一郎 青柳
仁 久住
拓也 宮澤
Original Assignee
楽天モバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楽天モバイル株式会社 filed Critical 楽天モバイル株式会社
Publication of WO2024095502A1 publication Critical patent/WO2024095502A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • This disclosure relates to estimating congestion conditions from a communication perspective and a non-communication perspective.
  • wireless communication devices such as smartphones and IoT (Internet of Things) devices
  • communication devices such as smartphones and IoT (Internet of Things) devices
  • 5G fifth generation mobile communication system
  • 3GPP Third Generation Partnership Project
  • 6G sixth generation mobile communication system
  • communication traffic that indicates the congestion status in that communication cell is constantly monitored.
  • communication traffic does not necessarily indicate the actual congestion status of people and objects within that communication cell. This is because communication traffic is generally monitored separately for each different communication carrier, and it is not easy to access communication traffic of carriers other than one's own.
  • people and objects that are within the communication cell but are not actually communicating cannot be monitored appropriately because they do not show up as communication traffic.
  • This disclosure has been made in consideration of these circumstances, and provides a communication control device and the like that can effectively estimate the congestion status in a communication cell.
  • a communication control device includes at least one processor that detects a communication congestion state in a communication cell using a communication congestion detection unit, measures a congestion state of at least one of people and objects in the communication cell using a congestion measurement unit, and estimates a congestion state in the communication cell using a congestion state estimation unit based on the communication congestion state detected by the communication congestion detection unit and the congestion state of at least one of people and objects measured by the congestion measurement unit.
  • the congestion state in the communication cell can be effectively estimated based on the communication congestion state detected by the communication congestion detection unit (hereinafter also referred to as the congestion state from a "communication perspective”) and the congestion state of at least one of people and objects measured by the congestion measurement unit (hereinafter also referred to as the congestion state from a "non-communication perspective").
  • This communication control method detects a communication congestion state in a communication cell, measures a congestion state of at least one of people and objects in the communication cell, and estimates the congestion state in the communication cell based on the detected communication congestion state and the measured congestion state of at least one of people and objects.
  • This storage medium stores a communication control program that causes a computer to detect a communication congestion state in a communication cell, measure a congestion state of at least one of people and objects in the communication cell, and estimate a congestion state in the communication cell based on the detected communication congestion state and the measured congestion state of at least one of people and objects.
  • This disclosure makes it possible to effectively estimate the congestion status in a communication cell.
  • FIG. 1 illustrates a schematic overview of a wireless communication system to which a communication control device is applied.
  • FIG. 2 is a functional block diagram of a communication control device.
  • FIG. 1 is a schematic diagram showing an overview of a wireless communication system 1 to which a communication control device according to an embodiment of the present disclosure is applied.
  • the wireless communication system 1 includes a 5G wireless communication system 11, a 4G wireless communication system 12, and a satellite communication system 13.
  • the 5G wireless communication system 11 complies with a fifth generation mobile communication system (5G) that uses NR (New Radio) or 5G NR (Fifth Generation New Radio) as a radio access technology (RAT: Radio Access Technology) and 5GC (Fifth Generation Core) as a core network (CN: Core Network).
  • 5G fifth generation mobile communication system
  • 5G uses NR (New Radio) or 5G NR (Fifth Generation New Radio) as a radio access technology (RAT: Radio Access Technology)
  • 5GC Feifth Generation Core
  • CN Core Network
  • the 4G wireless communication system 12 complies with a fourth generation mobile communication system (4G) that uses LTE (Long Term Evolution) or LTE-Advanced as a radio access technology and EPC (Evolved Packet Core) as a core network.
  • the satellite communication system 13 is responsible for satellite communication via a communication satellite 131.
  • the wireless communication system 1 may include a wireless communication system of a generation earlier than 4G, may include a wireless communication system of a generation later than 5G (such as 6G), or may include any wireless communication system that is not associated with a generation, such as Wi-Fi (registered trademark).
  • the 5G wireless communication system 11 includes communication devices 2A, 2B, 2C, and 2D (hereinafter collectively referred to as communication devices 2) such as smartphones that are installed on the ground and are also called UE (User Equipment), and a plurality of 5G base stations 111A, 111B, and 111C (hereinafter collectively referred to as 5G base stations 111) that can communicate by 5G NR.
  • the base station 111 in 5G is also called gNodeB (gNB).
  • the communication range or support range of each of the 5G base stations 111A, 111B, and 111C is called a cell, and is illustrated as 112A, 112B, and 112C (hereinafter collectively referred to as 5G cells 112), respectively.
  • the size of the 5G cell 112 of each 5G base station 111 is arbitrary, but typically has a radius of several meters to tens of kilometers. Although there is no established definition, a cell with a radius of several meters to tens of meters is called a femtocell, a cell with a radius of tens to tens of meters is called a picocell, a cell with a radius of tens to hundreds of meters is called a microcell, and a cell with a radius of more than several hundred meters is called a macrocell.
  • 5G often uses high-frequency radio waves such as millimeter waves, and because of their high line-propagation ability, the radio waves are blocked by obstacles and the communication distance is shortened. For this reason, 5G tends to make greater use of smaller cells than 4G and earlier generations.
  • the communication device 2 can perform 5G communication if it is located inside at least one of the multiple 5G cells 112A, 112B, and 112C.
  • the communication device 2B located inside the 5G cells 112A and 112B can communicate with both the 5G base stations 111A and 111B by 5G NR.
  • the communication device 2C located inside the 5G cell 112C can communicate with the 5G base station 111C by 5G NR. Since the communication devices 2A and 2D are outside all of the 5G cells 112A, 112B, and 112C, they are unable to communicate by 5G NR.
  • the 5G communication by 5G NR between each communication device 2 and each 5G base station 111 is managed by the 5GC, which is a core network.
  • the 5GC performs data exchange with each 5G base station 111, data exchange with external networks such as EPC, satellite communication system 13, and the Internet, and mobility management of the communication device 2.
  • the 4G wireless communication system 12 includes multiple 4G base stations 121 (only one is shown in FIG. 1).
  • the multiple 4G base stations 121 are installed on the ground and are capable of communicating with the communication device 2 via LTE or LTE-Advanced.
  • the base station 121 in 4G is also called an eNodeB (eNB).
  • eNB eNodeB
  • the communication range or support range of each 4G base station 121 is also called a cell and is illustrated as 122.
  • the communication device 2 can perform 4G communication.
  • communication devices 2A and 2B inside the 4G cell 122 can communicate with the 4G base station 121 via LTE or LTE-Advanced.
  • Communication devices 2C and 2D are outside the 4G cell 122 and are therefore unable to communicate via LTE or LTE-Advanced.
  • 4G communication by LTE or LTE-Advanced between each communication device 2 and each 4G base station 121 is managed by the EPC, which is a core network.
  • the EPC handles the exchange of data with each 4G base station 121, the exchange of data with external networks such as 5GC, satellite communication system 13, and the Internet, and manages the movement of communication device 2.
  • the communication device 2A is in a state where 4G communication with the 4G base station 121 is possible
  • the communication device 2B is in a state where 5G communication with the 5G base stations 111A and 111B and 4G communication with the 4G base station 121 are possible
  • the communication device 2C is in a state where 5G communication with the 5G base station 111C is possible.
  • there are multiple base stations (111A, 111B, 121) with which communication is possible as in the case of the communication device 2B, one base station that is determined to be optimal in terms of communication quality, etc.
  • the communication device 2B is selected under the management of the core network 5GC and/or EPC, and communication is performed with the communication device 2B.
  • the communication device 2D is not in a state where communication is possible with any of the 5G base stations 111 and 4G base stations 121, communication is performed via the satellite communication system 13 described next.
  • the satellite communication system 13 is a wireless communication system that uses a communication satellite 131 as a non-terrestrial base station, which is a low-orbit satellite that flies in space at a low orbit at an altitude of about 500 km to 700 km above the earth's surface.
  • the communication range or support range of the communication satellite 131 is also called a cell and is illustrated as 132.
  • the communication satellite 131 as a non-terrestrial base station provides the satellite communication cell 132 as a non-terrestrial communication cell to the ground. If the terrestrial communication device 2 is inside the satellite communication cell 132, it can perform satellite communication.
  • the communication satellite 131 as a base station in the satellite communication system 13 can wirelessly communicate with the communication device 2 in the satellite communication cell 132 directly or indirectly via an aircraft or the like.
  • the wireless access technology that the communication satellite 131 uses for wireless communication with the communication device 2 in the satellite communication cell 132 may be 5G NR, the same as the 5G base station 111, LTE or LTE-Advanced, the same as the 4G base station 121, or any other wireless access technology that the communication device 2 can use. For this reason, the communication device 2 does not need to be provided with special functions or components for satellite communication.
  • the satellite communication system 13 includes a gateway 133 as a ground station installed on the ground and capable of communicating with the communication satellite 131.
  • the gateway 133 includes a satellite antenna for communicating with the communication satellite 131, and is connected to a 5G base station 111 and a 4G base station 121 as terrestrial base stations constituting a terrestrial network (TN).
  • TN terrestrial network
  • the gateway 133 connects the non-terrestrial network (NTN) constituted by the communication satellite 131 as a non-terrestrial base station or satellite base station and the TN constituted by the terrestrial base stations 111 and 121 so that they can communicate with each other.
  • NTN non-terrestrial network
  • the communication satellite 131 When the communication satellite 131 performs 5G communication with the communication device 2 in the satellite communication cell 132 by 5G NR, the 5GC connected via the gateway 133 and the 5G base station 111 (or the 5G radio access network) in the TN is used as the core network, and when the communication satellite 131 performs 4G communication with the communication device 2 in the satellite communication cell 132 by LTE or LTE-Advanced, the EPC connected via the gateway 133 and the 4G base station 121 (or the 4G radio access network) in the TN is used as the core network. In this way, appropriate coordination is achieved between different wireless communication systems such as 5G communication, 4G communication, and satellite communication via the gateway 133.
  • Satellite communication by the communication satellite 131 is mainly used to cover areas where there are no or few terrestrial base stations such as the 5G base station 111 and the 4G base station 121.
  • the communication device 2D which is outside the communication cells of all terrestrial base stations, communicates with the communication satellite 131.
  • the communication devices 2A, 2B, and 2C which are in a state where they can communicate well with any of the terrestrial base stations, are also able to communicate with the communication satellite 131 because they are within the satellite communication cell 132.
  • the limited communication resources (including power) of the communication satellite 131 are saved for the communication device 2D and the like.
  • the communication satellite 131 improves the quality of communication with the communication device 2D by directing communication radio waves to the communication device 2D within the satellite communication cell 132 using beamforming.
  • the size of the satellite communication cell 132 of the communication satellite 131 as a satellite base station can be set arbitrarily according to the number of beams emitted by the communication satellite 131. For example, a maximum of 2,800 beams can be combined to form a satellite communication cell 132 with a diameter of approximately 24 km. As shown in the figure, the satellite communication cell 132 is typically larger than a terrestrial communication cell such as the 5G cell 112 or the 4G cell 122, and may include one or more 5G cells 112 and/or 4G cells 122 inside.
  • a communication satellite 131 flying in low orbit space at an altitude of about 500 km to 700 km above the earth's surface has been exemplified as a flying non-terrestrial base station, but a communication satellite flying in high orbit space such as a geostationary orbit, or an unmanned or manned aircraft or drone flying in the atmosphere such as the stratosphere at a lower altitude (for example, about 20 km above the earth's surface) may be used as a non-terrestrial base station in addition to or instead of the communication satellite 131.
  • the communication control device 3 includes a communication congestion detection unit 31, a congestion measurement unit 32, a congestion status estimation unit 33, and a congestion status sharing unit 34. As long as the communication control device 3 can achieve at least some of the actions and/or effects described below, some of these functional blocks can be omitted. These functional blocks are realized by the cooperation of hardware resources such as the central processing unit of a computer, memory, input devices, output devices, and peripheral devices connected to the computer, and software executed using them. Regardless of the type of computer or the installation location, each of the above functional blocks may be realized by the hardware resources of a single computer, or may be realized by combining hardware resources distributed among multiple computers.
  • some or all of the functional blocks of the communication control device 3 may be realized in a centralized or distributed manner by the communication device 2, the sensor unit 4 described later, the base stations 111, 121, and 131 (distributed units and/or aggregate units), the gateway 133, and computers and processors provided in the core network CN.
  • many of the functions of the communication control device 3 are realized on a first mobile communication network provided by a first communication operator OP1.
  • a first base station BS1 e.g., 5G base station 111 belonging to the first mobile communication network provides a first communication cell CC1 (e.g., 5G cell 112).
  • a second communication operator OP2 different from the first communication operator OP1 provides a second mobile communication network different from the first mobile communication network.
  • a second base station BS2 (e.g., 5G base station 111) belonging to the second mobile communication network provides a second communication cell CC2 (e.g., 5G cell 112).
  • the first communication cell CC1 provided by the first base station BS1 and the second communication cell CC2 provided by the second base station BS2 cover approximately the same area on the ground.
  • the communication congestion detection unit 31 under the management of the first communication operator OP1 detects the communication congestion status of at least the first communication operator OP1 in the first communication cell CC1 provided by the first base station BS1. Specifically, the communication congestion detection unit 31 detects the traffic of the first communication performed by the communication device 2 (not shown in FIG. 2) in the first communication cell CC1 that can communicate on the first mobile communication network based on a communication service contract with the first communication operator OP1 (hereinafter also referred to as the first communication device 2) connected to the first base station BS1. On the other hand, the communication congestion detection unit 31 under the management of the first communication operator OP1 cannot detect the traffic of the second communication performed by the communication device 2 (not shown in FIG.
  • the communication device 2 in the first communication cell CC1 that does not have a communication service contract with the first communication operator OP1, for example, the communication device 2 (hereinafter also referred to as the second communication device 2) that can communicate on the second mobile communication network based on a communication service contract with the second communication operator OP2 that is connected to the second base station BS2.
  • the communication congestion detection unit 31 belonging to a specific mobile communication network cannot detect the traffic of all communication devices 2 within that communication cell (first communication cell CC1), and cannot directly detect communication traffic on other mobile communication networks (second mobile communication networks).
  • the communication traffic on the first mobile communication network detected by the communication congestion detection unit 31 is merely information that represents a fragmentary representation of the actual congestion situation of people and objects within the first communication cell CC1 as a physical or geographical area.
  • people who do not have a communication device 2 capable of mobile communication and objects without mobile communication capabilities e.g., automobiles
  • do not generate communication traffic and therefore cannot be detected by the communication congestion detection unit 31 even if they are within the first communication cell CC1.
  • the congestion situation from a "non-communication perspective” measured by the congestion measurement unit 32 is also used.
  • “Non-communication perspective” means that the measurement of the congestion situation by the congestion measurement unit 32 is not based on the communication between the measurement target and the first base station BS1.
  • “communication perspective” means that the detection of the congestion situation, i.e., the communication traffic, by the communication congestion detection unit 31 is based on the communication between the first communication device 2 as the detection target and the first base station BS1 as described above.
  • the congestion measurement unit 32 measures the congestion situation of at least one of the people and objects (the first communication device 2 that can be detected by the communication congestion detection unit 31 may be excluded) in the first communication cell CC1. For example, the congestion measurement unit 32 measures the congestion situation of at least one of the people and objects (e.g., the second communication device 2) communicating at least through the second communication operator OP2 in the first communication cell CC1.
  • the non-communication-perspective measurement by the congestion measurement unit 32 may be performed through the communication radio waves of the first base station BS1 that provides the first communication cell CC1.
  • the communication radio waves emitted by the first base station BS1 are reflected by a person or object (or a collection of these) that serves as the measurement target.
  • the first base station BS1 and sensors such as the sensor unit 4 described below that are located at various locations (preferably near the measurement target) within the first communication cell CC1 can detect the measurement target by measuring the communication radio waves reflected by the measurement target.
  • this measurement uses communication radio waves, it is not based on communication between the measurement target and the first base station BS1 (and/or the sensor), but rather uses the physical properties of the communication radio waves as electromagnetic waves, and is therefore classified as a "non-communication-perspective" measurement.
  • the non-communication-oriented measurement by the congestion measurement unit 32 may be based on the communication quality measured by the first communication device 2 on the first mobile communication network in which the communication traffic is detected by the communication congestion detection unit 31.
  • the first communication device 2 constantly measures the communication quality, such as the strength and quality of the communication radio waves received from the first base station BS1. For example, when there are many other first communication devices 2 and second communication devices 2 around the first communication device 2, the communication quality (on the first mobile network) measured by the first communication device 2 may change or deteriorate due to the influence of interference from the communication performed by them on the first mobile communication network or the second mobile communication network. In such a case, the change in communication quality detected by the first communication device 2 indirectly indicates the congestion situation around the first communication device 2.
  • This measurement also uses the communication radio waves of the first base station BS1, but since it is not based on communication between the second communication device 2, etc., which is the main measurement target, and the first base station BS1 (it is based on communication between the first communication device 2, which is not the main measurement target here, and the first base station BS1), it is classified as a measurement from a "non-communication perspective.”
  • non-communication perspective measurements made through the communication radio waves of the first base station BS1 can be made more accurate by using a small communication cell (base station) such as a femtocell.
  • base station such as a femtocell.
  • high-frequency communication radio waves with high linearity or directionality such as millimeter waves make it easier to capture the relationship between irradiation and reflection at the measurement target, making it possible to make "non-communication perspective" measurements more accurate.
  • the non-communication-based measurements by the congestion measurement unit 32 may be performed through sensors such as the sensor unit 4 located at various locations within the first communication cell CC1.
  • the sensors including the sensor unit 4 acquire any measurement information that indicates the congestion status of people and objects within the first communication cell CC1, and provide this information to the congestion measurement unit 32 via the first mobile communication network.
  • the senor may be an image sensor such as a camera, and the congestion measurement unit 32, which can use various image recognition technologies, and the congestion situation estimation unit 33, which will be described later, can detect the congestion situation based on an image captured by the image sensor.
  • the sensor may be an audio sensor such as a microphone, and the congestion measurement unit 32, which can use various voice recognition technologies, and the congestion situation estimation unit 33, which will be described later, can detect the congestion situation based on the voice acquired by the voice sensor.
  • the sensor may also be a temperature sensor, humidity sensor, electrical sensor, magnetic sensor, optical sensor, mechanical sensor, acoustic sensor, chemical sensor, biological sensor, etc., that measures physical quantities, chemical quantities, or biological quantities that directly or indirectly indicate various conditions in the measured area. If the measurement values of such various sensors are significantly outside the range that can be obtained under normal or non-crowded conditions, the congestion measurement unit 32 or the congestion state estimation unit 33 described below may determine that the measured area is crowded.
  • the sensor may acquire communication measurement information such as communication quality, traffic volume, and communication type in the mobile communication network (first mobile communication network and/or second mobile communication network). For example, if the traffic volume in a specific location increases rapidly compared to other locations, the congestion measurement unit 32 or the congestion situation estimation unit 33 described below may determine that the location is congested. Also, if emergency communications such as emergency calls are occurring in a concentrated manner in a specific location, the congestion measurement unit 32 or the congestion situation estimation unit 33 described below may determine that the location is congested as a result of some kind of emergency occurring there.
  • the above-mentioned various sensors are distributed in various manners or forms on the mobile communication network (particularly, the first mobile communication network), specifically within the first communication cell CC1.
  • a communication device 2 capable of communicating with a mobile communication network (particularly, the first mobile communication network).
  • various sensor functions provided in a general-purpose communication device 2 such as a smartphone constitute each sensor.
  • a communication device 2 such as a smartphone is equipped with various communication measurement (communication sensor) functions as standard for mobile communication with the mobile communication network.
  • the communication device 2 functioning as a communication sensor measures the communication quality, etc. at its own position and provides the results in the form of channel state information (CSI) or the like to a base station (particularly, the first base station BS1).
  • CSI channel state information
  • the sensors may be provided in communication stations that constitute a mobile communication network and are capable of communicating with the communication device 2.
  • the mobile communication network refers to the entire network including a radio access network (RAN) including various base stations 111, 121, 131 as exemplified in FIG. 1, and a core network.
  • the communication stations mainly constitute the RAN, and specific examples include various base stations 111, 121, 131, IAB (Integrated Access and Backhaul) nodes, and relay stations.
  • Each communication station may be equipped with one or more sensors of any type.
  • the sensors may be provided as sensor units 4 capable of communicating directly or indirectly with communication stations (base stations, IAB nodes, relay stations, etc.) constituting a mobile communication network, or directly or indirectly with a RAN.
  • the sensor units 4 may be provided in any object equipped with a communication function, such as a moving object such as a vehicle. These sensor units 4 do not need to have advanced communication functions like general-purpose communication devices 2 such as smartphones, and may be something like IoT devices equipped with a minimum communication function capable of sharing measurement results with a RAN and/or a core network.
  • the sensor units 4 may provide measurement results to nearby communication devices 2, communication stations, other sensor units 4, etc., using short-range wireless communication technology such as Bluetooth (trademark), and may then relay or provide the measurement results to the RAN and/or core network as necessary.
  • the various sensors are interconnected or coupled to each other via a mobile communication network (particularly RAN) to form a sensor network.
  • the functions of the congestion measurement unit 32 and the congestion situation estimation unit 33 described later, which collect measurement information from various sensors from such a sensor network may be realized by at least a part of an AI (Artificial Intelligence)/ML (Machine Learning) function that collects and/or analyzes data on the mobile communication network, such as NWDAF (Network Data Analytics Function).
  • AI/ML functions and other data processing functions are typically realized in a core network, but may be realized at least in part in an edge server that is provided closer to the communication device 2 than the core network.
  • MEC multi-access edge computing
  • UPF user plane function
  • the congestion situation estimation unit 33 estimates the actual congestion situation in the first communication cell CC1 based on the congestion situation from a "communication perspective" within the first mobile communication network detected by the communication congestion detection unit 31 (i.e., communication traffic on the first mobile communication network, etc.) and the congestion situation from a "non-communication perspective" outside the first mobile communication network measured by the congestion measurement unit 32 (e.g., the congestion situation of people and things related to the second communication operator OP2).
  • the congestion situation estimation unit 33 estimates the physical congestion situation in the first communication cell CC1 by combining the congestion situations from a "communication perspective" and a "non-communication perspective".
  • the data analysis function of the congestion status estimation unit 33 may be realized, for example, by the NWDAF or other AI/ML functions introduced in 5GC as the core network of 5G.
  • the NWDAF is responsible for collecting and analyzing data on networks including 5G. Specifically, the NWDAF collects and accumulates measurement information from sensors such as a large number of communication devices 2, communication stations (base stations, IAB nodes, relay stations, etc.), and sensor units 4 connected to the mobile communication network, and utilizes the analysis results for traffic control on the mobile communication network, for example. It is assumed that functions similar to the NWDAF are provided under different names in other wireless communication systems, including wireless communication systems of generations after 5G, and in this embodiment, such similar functions may be used instead of or in addition to the NWDAF. Also, as described above, the data processing function in the congestion status estimation unit 33 may be realized by an edge server capable of executing MEC.
  • the congestion status sharing unit 34 shares the congestion status in the first communication cell CC1 estimated by the congestion status estimation unit 33 with the service provider SP that provides services within the first communication cell CC1.
  • the function of the congestion status sharing unit 34 to share or disclose information outside the first communication operator OP1 may be realized by a Network Exposure Function (NEF) that provides an application programming interface (API: Application Programming Interface) for various functions within 5GC.
  • NEF Network Exposure Function
  • API Application Programming Interface
  • the congestion status sharing unit 34 may distribute or publish the congestion status in the first communication cell CC1 estimated by the congestion status estimation unit 33 on the first mobile communication network or a general network such as the Internet, or may display it on a digital signage installed within the first communication cell CC1.
  • the congestion status sharing unit 34 may share the congestion status with a service provider SP that provides services at a store in the first communication cell CC1.
  • Examples of stores include shops, commercial facilities, and restaurants.
  • the first scene SC1 which is shown diagrammatically in FIG. 2, many people are lined up in front of a restaurant, forming a queue. Since people waiting in line tend to spend time looking at their smartphones or the like, a relatively large amount of communication traffic is generated in the first scene SC1. Of this, the communication traffic on the first mobile communication network is detected by the communication congestion detection unit 31.
  • the congestion measurement unit 32 directly or indirectly measures the number of people lined up in front of the restaurant.
  • the congestion situation estimation unit 33 determines that the area around the restaurant is actually crowded based on the detection result from the communication congestion detection unit 31, that a lot of communication traffic is occurring near the restaurant, and the measurement result from the congestion measurement unit 32, that many people are lined up in front of the restaurant, from a non-communication perspective. Furthermore, the congestion situation estimation unit 33 may recognize that the congestion around the restaurant is caused by a line of people, or that the people in the line have been waiting for a long time. Such congestion around the store, the cause of the congestion, and the state of the people and objects causing the congestion are shared with the store by the congestion situation sharing unit 34, and are linked to various actions against the congestion. For example, the store can distribute coupons that can be used at the store over the mobile communication network (the first mobile communication network and/or the second mobile communication network) to ease the frustration of people waiting in line.
  • the congestion status sharing unit 34 may share the congestion status with an emergency agency that provides emergency services according to the congestion status in the first communication cell CC1.
  • emergency agencies include public agencies such as police agencies, fire agencies, and the Japan Coast Guard. Note that emergency agencies are not limited to public agencies and may be non-public agencies. For example, management organizations or interested parties of the locations or facilities where congestion estimated by the congestion status estimation unit 33 is occurring, or organizations that are affected in some way by the congestion, may accept sharing of the congestion status from the congestion status sharing unit 34 as emergency agencies.
  • the communication traffic on the first mobile communication network is detected by the communication congestion detection unit 31.
  • the congestion measurement unit 32 directly or indirectly measures the number of people and cars around the accident scene.
  • the congestion situation estimation unit 33 determines that the area around the accident site is actually congested based on the detection result from a communication perspective by the communication congestion detection unit 31, that a lot of communication traffic is occurring near the accident site, and the measurement result from a non-communication perspective by the congestion measurement unit 32, that many people and cars are gathered around the accident site. Furthermore, the congestion situation estimation unit 33 may recognize that the congestion around the accident site is caused by a car accident, and the state of the expressions, movements, etc. of the people gathered around the accident site. Such congestion situation around the accident site, the cause of the accident, and the state of the people and objects causing the congestion are shared with each emergency agency by the congestion situation sharing unit 34, and are linked to various actions in response to the accident or congestion. For example, the police agency, as an emergency agency, can quickly dispatch police officers to the accident site.
  • the communication congestion detection unit 31 does not detect communication congestion on the first mobile communication network.
  • the congestion measurement unit 32 detects physical congestion by directly or indirectly measuring the number of people moving in a group.
  • the congestion situation estimation unit 33 determines that physical congestion that does not substantially affect the first mobile communication network is temporarily occurring due to the many people. In other words, the congestion situation estimation unit 33 determines the state of the many people measured by the congestion measurement unit 32 as "moving without performing mobile communication.” In this way, the congestion situation estimation unit 33 may determine at least one of the states of people and objects measured by the congestion measurement unit 32.
  • the state that can be determined by the congestion situation estimation unit 33 (and/or the state that can be measured by the congestion measurement unit 32) may include the presence or absence, position, posture, and movement (speed and acceleration) of the person or object to be determined.
  • the congestion state estimation unit 33 comprehensively estimates the actual congestion state in the first communication cell CC1 based on the congestion state from the "communication perspective" and the "non-communication perspective", and thus the congestion state from the "communication perspective” and/or the “non-communication perspective” can be precisely analyzed. For example, if an extremely large number of people are measured by the congestion measurement unit 32, but the communication traffic detected by the communication congestion detection unit 31 is significantly lower than expected, it is suspected that some kind of communication abnormality is occurring in the mobile communication network. Conversely, if a large amount of communication traffic is detected by the communication congestion detection unit 31, but the congestion measurement unit 32 does not measure people or objects that cause the communication traffic, it is suspected that the communication congestion detection unit 31 and/or the congestion measurement unit 32 are not functioning normally.
  • the congestion estimation unit 33 can effectively estimate the actual congestion situation in the first communication cell CC1 based on the congestion situation from a "communication perspective" detected by the communication congestion detection unit 31 and the congestion situation from a "non-communication perspective” measured by the congestion measurement unit 32.
  • the congestion condition estimation unit 33 can estimate the actual congestion condition beyond the boundaries of communication carriers.
  • the congestion condition sharing unit 34 can then share such highly objective congestion conditions that are not limited to a specific communication carrier with various service providers SP. This can also lead to the expansion of services and improvement of quality by the service provider SP.
  • each device and method described in the embodiments can be realized by hardware resources or software resources, or by the cooperation of hardware resources and software resources.
  • a processor, ROM, RAM, and various integrated circuits can be used as hardware resources.
  • an operating system, application programs, and the like can be used as software resources.
  • Item 1 Detecting a communication congestion state in a communication cell by a communication congestion detection unit; measuring a congestion state of at least one of people and objects in the communication cell by a congestion measurement unit; a congestion state estimation unit estimating a congestion state in the communication cell based on the communication congestion state detected by the communication congestion detection unit and the congestion state of at least one of people and objects measured by the congestion measurement unit;
  • a communication control device comprising at least one processor that executes the above.
  • Item 2 2. The communication control device according to item 1, wherein the at least one processor executes, via a congestion status sharing unit, sharing the congestion status in the communication cell estimated by the congestion status estimation unit with a service provider providing a service within the communication cell.
  • Item 3 3.
  • the communication control device according to item 2, wherein the service provider includes an emergency organization that provides emergency services according to a congestion state in the communication cell.
  • the communication control device according to any one of items 1 to 4, wherein the congestion state estimation unit determines a state of at least one of people and objects measured by the congestion measurement unit.
  • the communication cell is a first communication cell provided by a first communication carrier
  • the communication congestion detection unit detects a communication congestion state of at least the first communication carrier in the first communication cell
  • the congestion measurement unit measures a congestion state of at least one of people and objects communicating through at least a second communication carrier different from the first communication carrier in the first communication cell
  • the congestion status estimation unit estimates a congestion status in the first communication cell based on a communication congestion status of at least the first communication carrier detected by the communication congestion detection unit and a congestion status of at least one of people and things related to at least the second communication carrier measured by the congestion measurement unit.
  • a communication control device according to any one of items 1 to 5.
  • Item 7 7.
  • the communication control device according to any one of items 1 to 6, wherein the congestion measurement unit measures a congestion state of at least one of people and objects in the communication cell through communication radio waves of a base station that provides the communication cell.
  • Item 8 Detecting a communication congestion state in a communication cell; Measuring a congestion status of at least one of people and objects within the communication cell; estimating a congestion state in the communication cell based on the detected communication congestion state and the measured congestion state of at least one of people and objects; A communication control method for performing the above.
  • Item 9 Detecting a communication congestion state in a communication cell; Measuring a congestion status of at least one of people and objects within the communication cell; estimating a congestion state in the communication cell based on the detected communication congestion state and the measured congestion state of at least one of people and objects;
  • a storage medium that stores a communication control program that causes a computer to execute the above.
  • This disclosure relates to estimating congestion conditions from a communication perspective and a non-communication perspective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信制御装置は、通信混雑検知部によって、通信セルにおける通信の混雑状況を検知することと、混雑測定部によって、通信セル内の人および物の少なくともいずれかの混雑状況を測定することと、混雑状況推定部によって、通信混雑検知部によって検知された通信の混雑状況と、混雑測定部によって測定された人および物の少なくともいずれかの混雑状況に基づいて、通信セルにおける混雑状況を推定することと、を実行する少なくとも一つのプロセッサを備える。

Description

通信観点および非通信観点に基づく混雑状況の推定
 本開示は、通信観点および非通信観点に基づく混雑状況の推定に関する。
 スマートフォンやIoT(Internet of Things)デバイスに代表される無線通信デバイス(以下では総称して通信機とも表される)の数、種類、用途は増加の一途を辿っており、無線通信規格の拡張や改善が続けられている。例えば「5G」として知られる第5世代移動通信システムの商用サービスは2018年に開始したが、現在も3GPP(Third Generation Partnership Project)で規格策定が進められている。また、5Gに続く次世代の無線通信規格としての「6G」または第6世代移動通信システムの規格策定に向けた取り組みも始まっている。
日本国特開2010-278886号公報
 各通信セルにおける通信を最適化するために、当該各通信セルにおける通信の混雑状況を表す通信トラフィックが定常的にモニタされている。しかし、通信トラフィックは、当該各通信セル内の人や物の実際の混雑状況を表すとは限らない。なぜなら、通信トラフィックのモニタは異なる通信事業者毎に個別に行われるのが一般的であり、自身と異なる通信事業者の通信トラフィックには容易にアクセスできないためである。また、当該各通信セル内にいるものの実際に通信を行っていない人や物は、通信トラフィックとして顕在化しないため適切にモニタできない。
 本開示はこうした状況に鑑みてなされたものであり、通信セルにおける混雑状況を効果的に推定できる通信制御装置等を提供する。
 本開示のある態様の通信制御装置は、通信混雑検知部によって、通信セルにおける通信の混雑状況を検知することと、混雑測定部によって、通信セル内の人および物の少なくともいずれかの混雑状況を測定することと、混雑状況推定部によって、通信混雑検知部によって検知された通信の混雑状況と、混雑測定部によって測定された人および物の少なくともいずれかの混雑状況に基づいて、通信セルにおける混雑状況を推定することと、を実行する少なくとも一つのプロセッサを備える。
 このような態様によれば、通信混雑検知部によって検知された通信の混雑状況(以下では「通信観点」での混雑状況とも表される)と、混雑測定部によって測定された人および物の少なくともいずれかの混雑状況(以下では「非通信観点」での混雑状況とも表される)に基づいて、通信セルにおける混雑状況を効果的に推定できる。
 本開示の別の態様は、通信制御方法である。この通信制御方法は、通信セルにおける通信の混雑状況を検知することと、通信セル内の人および物の少なくともいずれかの混雑状況を測定することと、検知された通信の混雑状況と、測定された人および物の少なくともいずれかの混雑状況に基づいて、通信セルにおける混雑状況を推定することと、を実行する。
 本開示の更に別の態様は、記憶媒体である。この記憶媒体は、通信セルにおける通信の混雑状況を検知することと、通信セル内の人および物の少なくともいずれかの混雑状況を測定することと、検知された通信の混雑状況と、測定された人および物の少なくともいずれかの混雑状況に基づいて、通信セルにおける混雑状況を推定することと、をコンピュータに実行させる通信制御プログラムを記憶している。
 なお、以上の構成要素の任意の組合せや、これらの表現を方法、装置、システム、記録媒体、コンピュータプログラム等に変換したものも、本開示に包含される。
 本開示によれば、通信セルにおける混雑状況を効果的に推定できる。
通信制御装置が適用される無線通信システムの概要を模式的に示す。 通信制御装置の機能ブロック図である。
 図1は、本開示の実施形態に係る通信制御装置が適用される無線通信システム1の概要を模式的に示す。無線通信システム1は、5G無線通信システム11と、4G無線通信システム12と、衛星通信システム13と、を含む。5G無線通信システム11は、無線アクセス技術(RAT: Radio Access Technology)としてNR(New Radio)または5G NR(Fifth Generation New Radio)を使用し、コアネットワーク(CN:Core Network)として5GC(Fifth Generation Core)を使用する第5世代移動通信システム(5G)に準拠する。4G無線通信システム12は、無線アクセス技術としてLTE(Long Term Evolution)やLTE-Advancedを使用し、コアネットワークとしてEPC(Evolved Packet Core)を使用する第4世代移動通信システム(4G)に準拠する。衛星通信システム13は、通信衛星131を介した衛星通信を担う。図示は省略するが、無線通信システム1は、4Gより前の世代の無線通信システムを含んでもよいし、5Gより後の世代(6G等)の無線通信システムを含んでもよいし、Wi-Fi(登録商標)等の世代と関係づけられない任意の無線通信システムを含んでもよい。
 5G無線通信システム11は、地上に設置されてUE(User Equipment)とも呼ばれるスマートフォン等の通信機2A、2B、2C、2D(以下では総称して通信機2とも表される)と、5G NRによって通信可能な複数の5G基地局111A、111B、111C(以下では総称して5G基地局111とも表される)と、を含む。5Gにおける基地局111はgNodeB(gNB)とも呼ばれる。各5G基地局111A、111B、111Cの通信可能範囲またはサポート範囲はセルと呼ばれ、それぞれ112A、112B、112C(以下では総称して5Gセル112とも表される)として図示される。
 各5G基地局111の5Gセル112の大きさは任意であるが、典型的には半径数メートルから数十キロメートルである。確立した定義はないものの、半径数メートルから十メートルのセルはフェムトセルと呼ばれ、半径十メートルから数十メートルのセルはピコセルと呼ばれ、半径数十メートルから数百メートルのセルはマイクロセルと呼ばれ、半径数百メートルを超えるセルはマクロセルと呼ばれることがある。5Gではミリ波等の高い周波数の電波が使用されることも多く、直進性の高さ故に電波が障害物に遮られて通信可能距離が短くなる。このため、5Gでは4G以前の世代に比べて小さいセルが多用される傾向がある。
 通信機2は、複数の5Gセル112A、112B、112Cの少なくとも一つの内部にあれば、5G通信を行える。図示の例では、5Gセル112Aおよび112B内にある通信機2Bは、5G基地局111Aおよび111Bのいずれとも5G NRによって通信可能である。また、5Gセル112C内にある通信機2Cは、5G基地局111Cと5G NRによって通信可能である。通信機2Aおよび2Dは、全ての5Gセル112A、112B、112Cの外にあるため、5G NRによる通信ができない状態にある。各通信機2と各5G基地局111の間の5G NRによる5G通信は、コアネットワークである5GCによって管理される。例えば、5GCは、各5G基地局111との間のデータの授受、EPC、衛星通信システム13、インターネット等の外部ネットワークとの間のデータの授受、通信機2の移動管理等を行う。
 4G無線通信システム12は、複数の4G基地局121(図1では一つのみを示す)を含む。複数の4G基地局121は地上に設置され、通信機2とLTEやLTE-Advancedによって通信可能である。4Gにおける基地局121はeNodeB(eNB)とも呼ばれる。各5G基地局111と同様に、各4G基地局121の通信可能範囲またはサポート範囲もセルと呼ばれ122として図示される。
 通信機2は4Gセル122の内部にあれば4G通信を行える。図示の例では、4Gセル122内にある通信機2Aおよび2Bは、4G基地局121とLTEやLTE-Advancedによって通信可能である。通信機2Cおよび2Dは、4Gセル122の外にあるため、LTEやLTE-Advancedによる通信ができない状態にある。各通信機2と各4G基地局121の間のLTEやLTE-Advancedによる4G通信は、コアネットワークであるEPCによって管理される。例えば、EPCは、各4G基地局121との間のデータの授受、5GC、衛星通信システム13、インターネット等の外部ネットワークとの間のデータの授受、通信機2の移動管理等を行う。
 各通信機2A、2B、2C、2Dに着目すると、図示の例では、通信機2Aは4G基地局121との4G通信が可能な状態にあり、通信機2Bは5G基地局111A、111Bとの5G通信および4G基地局121との4G通信が可能な状態にあり、通信機2Cは5G基地局111Cとの5G通信が可能な状態にある。通信機2Bのように通信可能な基地局(111A、111B、121)が複数ある場合は、コアネットワークである5GCおよび/またはEPCによる管理の下、通信品質等の観点で最適と判断された一つの基地局が選択されて通信機2Bとの通信を行う。また、通信機2Dはいずれの5G基地局111および4G基地局121とも通信が可能な状態にないため、次に説明する衛星通信システム13による通信を行う。
 衛星通信システム13は、地表から500km~700km程度の高さの低軌道の宇宙空間を飛行する低軌道衛星としての通信衛星131を非地上基地局として用いる無線通信システムである。5G基地局111および4G基地局121と同様に、通信衛星131の通信可能範囲またはサポート範囲もセルと呼ばれ132として図示される。このように、非地上基地局としての通信衛星131は、非地上通信セルとしての衛星通信セル132を地上に提供する。地上の通信機2は衛星通信セル132の内部にあれば衛星通信を行える。5G無線通信システム11における5G基地局111および4G無線通信システム12における4G基地局121と同様に、衛星通信システム13における基地局としての通信衛星131は、衛星通信セル132内の通信機2と直接的にまたは航空機等を介して間接的に無線通信可能である。通信衛星131が衛星通信セル132内の通信機2との無線通信に使用する無線アクセス技術は、5G基地局111と同じ5G NRでもよいし、4G基地局121と同じLTEやLTE-Advancedでもよいし、通信機2が使用可能な任意の他の無線アクセス技術でもよい。このため、通信機2には衛星通信のための特別な機能や部品を設けなくてもよい。
 衛星通信システム13は、地上に設置されて通信衛星131と通信可能な地上局としてのゲートウェイ133を備える。ゲートウェイ133は、通信衛星131と通信するための衛星アンテナを備え、地上系ネットワーク(TN:Terrestrial Network)を構成する地上基地局としての5G基地局111および4G基地局121と接続されている。このように、ゲートウェイ133は、非地上基地局または衛星基地局としての通信衛星131によって構成される非地上系ネットワーク(NTN:Non-Terrestrial Network)と地上基地局111、121によって構成されるTNを相互通信可能に接続する。通信衛星131が5G NRによって衛星通信セル132内の通信機2と5G通信する場合は、ゲートウェイ133およびTNにおける5G基地局111(または5G無線アクセスネットワーク)を介して接続される5GCをコアネットワークとして利用し、通信衛星131がLTEやLTE-Advancedによって衛星通信セル132内の通信機2と4G通信する場合は、ゲートウェイ133およびTNにおける4G基地局121(または4G無線アクセスネットワーク)を介して接続されるEPCをコアネットワークとして利用する。このように、ゲートウェイ133を介して5G通信、4G通信、衛星通信等の異なる無線通信システムの間で適切な連携が取られる。
 通信衛星131による衛星通信は、主に、5G基地局111や4G基地局121等の地上基地局が設けられないまたは少ない地域をカバーするために利用される。図示の例では、全ての地上基地局の通信セル外にいる通信機2Dが通信衛星131と通信する。一方、いずれかの地上基地局と良好に通信できる状態にある通信機2A、2B、2Cも、衛星通信セル132内にいるため通信衛星131と通信可能ではあるが、原則として衛星基地局としての通信衛星131ではなく地上基地局と通信を行うことで、通信衛星131の限られた通信リソース(電力を含む)が通信機2D等のために節約される。通信衛星131は、ビームフォーミングによって通信電波を衛星通信セル132内の通信機2Dに向けることで、通信機2Dとの通信品質を向上させる。
 衛星基地局としての通信衛星131の衛星通信セル132の大きさは、通信衛星131が発するビームの本数に応じて任意に設定することができ、例えば、最大2,800本のビームを組み合わせることで直径約24kmの衛星通信セル132を形成できる。図示されるように、衛星通信セル132は、典型的には5Gセル112や4Gセル122等の地上通信セルより大きく、その内部に一または複数の5Gセル112および/または4Gセル122を含みうる。なお、以上では飛行する非地上基地局として、地表から500km~700km程度の高さの低軌道の宇宙空間を飛行する通信衛星131を例示したが、より高い静止軌道等の高軌道の宇宙空間を飛行する通信衛星や、より低い(例えば地表から20km程度)成層圏等の大気圏を飛行する無人または有人の航空機やドローンを非地上基地局として、通信衛星131に加えてまたは代えて使用してもよい。
 図2は、本実施形態に係る通信制御装置3の機能ブロック図である。通信制御装置3は、通信混雑検知部31と、混雑測定部32と、混雑状況推定部33と、混雑状況共有部34を備える。通信制御装置3が以下で説明する作用および/または効果の少なくとも一部を実現できる限り、これらの機能ブロックの一部は省略できる。これらの機能ブロックは、コンピュータの中央演算処理装置、メモリ、入力装置、出力装置、コンピュータに接続される周辺機器等のハードウェア資源と、それらを用いて実行されるソフトウェアの協働により実現される。コンピュータの種類や設置場所は問わず、上記の各機能ブロックは、単一のコンピュータのハードウェア資源で実現してもよいし、複数のコンピュータに分散したハードウェア資源を組み合わせて実現してもよい。特に本実施形態では、通信制御装置3の機能ブロックの一部または全部は、通信機2、後述するセンサユニット4、基地局111、121、131(分散ユニットおよび/または集約ユニット)、ゲートウェイ133、コアネットワークCNに設けられるコンピュータやプロセッサで集中的または分散的に実現してもよい。
 本実施形態の例では、通信制御装置3の機能の多くが、第1通信事業者OP1によって提供される第1モバイル通信ネットワーク上で実現される。第1モバイル通信ネットワークに属する第1基地局BS1(例えば、5G基地局111)は、第1通信セルCC1(例えば、5Gセル112)を提供する。また、第1通信事業者OP1と異なる第2通信事業者OP2は、第1モバイル通信ネットワークと異なる第2モバイル通信ネットワークを提供する。第2モバイル通信ネットワークに属する第2基地局BS2(例えば、5G基地局111)は、第2通信セルCC2(例えば、5Gセル112)を提供する。図示されるように、本実施形態の例では、第1基地局BS1によって提供される第1通信セルCC1と、第2基地局BS2によって提供される第2通信セルCC2が、地上において略同じ領域をカバーするものとする。
 第1通信事業者OP1の管理下の通信混雑検知部31は、第1基地局BS1によって提供される第1通信セルCC1における少なくとも第1通信事業者OP1の通信の混雑状況を検知する。具体的には、通信混雑検知部31は、第1通信セルCC1内にある通信機2(図2では不図示)のうち、第1通信事業者OP1との通信サービス契約に基づいて第1モバイル通信ネットワーク上で通信可能な通信機2(以下では第1通信機2とも表される)が、第1基地局BS1に接続されて行う第1通信のトラフィックを検知する。一方、第1通信事業者OP1の管理下の通信混雑検知部31は、第1通信セルCC1内にある通信機2のうち、第1通信事業者OP1との通信サービス契約がないもの、例えば、第2通信事業者OP2との通信サービス契約に基づいて第2モバイル通信ネットワーク上で通信可能な通信機2(以下では第2通信機2とも表される)が、第2基地局BS2に接続されて行う第2通信のトラフィックは検知できない。
 このように、特定のモバイル通信ネットワーク(第1モバイル通信ネットワーク)に属する通信混雑検知部31は、その通信セル(第1通信セルCC1)内の全ての通信機2のトラフィックを検知できる訳ではなく、他のモバイル通信ネットワーク(第2モバイル通信ネットワーク)上の通信トラフィックは直接的に検知できない。すなわち、通信混雑検知部31で検知される第1モバイル通信ネットワーク上の通信トラフィックは、物理的または地理的な領域としての第1通信セルCC1内の人や物の実際の混雑状況を断片的に表す情報に過ぎない。また、モバイル通信可能な通信機2を持っていない人や、モバイル通信機能を有しない物(例えば、自動車)は、通信トラフィックを生成しないため、第1通信セルCC1内にいたとしても通信混雑検知部31では検知できない。
 このような通信混雑検知部31によって検知される第1モバイル通信ネットワークのみに関する断片的な「通信観点」での混雑状況を補うために、本実施形態では、混雑測定部32によって測定される「非通信観点」での混雑状況が併せて利用される。「非通信観点」とは、混雑測定部32による混雑状況の測定が、測定対象と第1基地局BS1の間の通信に基づかないことを意味する。逆に「通信観点」とは、通信混雑検知部31による混雑状況すなわち通信トラフィックの検知が、前述のように検知対象としての第1通信機2と第1基地局BS1の間の通信に基づくことを意味する。混雑測定部32は、第1通信セルCC1内の人および物(通信混雑検知部31によって検知可能な第1通信機2は除外されてもよい)の少なくともいずれかの混雑状況を測定する。例えば、混雑測定部32は、第1通信セルCC1内で少なくとも第2通信事業者OP2を通じて通信する人および物(例えば、第2通信機2)の少なくともいずれかの混雑状況を測定する。
 混雑測定部32による非通信観点での測定は、第1通信セルCC1を提供する第1基地局BS1の通信電波を通じて行われてもよい。例えば、第1基地局BS1が発した通信電波は、測定対象としての人や物(あるいは、それらの集合)に当たって反射する。このため、第1基地局BS1や、第1通信セルCC1内の各所(好ましくは、測定対象の近傍)に位置する後述するセンサユニット4等のセンサは、測定対象で反射した通信電波を測定することで当該測定対象を検知できる。なお、この測定は通信電波を利用するものであるが、測定対象と第1基地局BS1(および/またはセンサ)の間の通信によるものではなく、電磁波としての通信電波の物理的な性質を利用したものであるため「非通信観点」での測定に分類される。
 また、混雑測定部32による非通信観点での測定は、通信混雑検知部31によって通信トラフィックが検知される第1モバイル通信ネットワーク上の第1通信機2によって測定される通信品質に基づくものでもよい。第1通信機2は、第1基地局BS1から受信する通信電波の強度や品質等の通信品質を定常的に測定している。例えば、第1通信機2の周りに多数の他の第1通信機2や第2通信機2が存在する場合、それらが第1モバイル通信ネットワークや第2モバイル通信ネットワーク上で行う通信からの干渉等の影響によって、第1通信機2によって測定される(第1モバイルネットワーク上での)通信品質が変化または劣化しうる。このような場合、第1通信機2によって検知された通信品質の変化は、当該第1通信機2の周りの混雑状況を間接的に表す。なお、この測定も第1基地局BS1の通信電波を利用するものであるが、主測定対象である第2通信機2等と第1基地局BS1の間の通信によるものではない(ここでの主測定対象ではない第1通信機2と第1基地局BS1の間の通信によるものである)ため「非通信観点」での測定に分類される。
 以上のような第1基地局BS1の通信電波を通じて行われる「非通信観点」での測定は、フェムトセル等の小型の通信セル(基地局)を利用することで高精度化できる。また、ミリ波等の直進性または指向性が高い高周波数の通信電波は、測定対象における照射と反射の関係を捕捉しやすいため、「非通信観点」での測定を高精度化できる。
 混雑測定部32による非通信観点での測定は、第1通信セルCC1内の各所に位置するセンサユニット4等のセンサを通じて行われてもよい。センサユニット4を含むセンサは、第1通信セルCC1内の人や物の混雑状況を示唆する任意の測定情報を取得し、第1モバイル通信ネットワークを通じて混雑測定部32に提供する。
 例えば、センサはカメラ等の画像センサでもよく、各種の画像認識技術を利用しうる混雑測定部32や後述の混雑状況推定部33は、当該画像センサによって撮影された画像に基づいて混雑状況を検知できる。同様に、センサはマイク等の音声センサでもよく、各種の音声認識技術を利用しうる混雑測定部32や後述の混雑状況推定部33は、当該音声センサによって取得された音声に基づいて混雑状況を検知できる。
 また、センサは、温度センサ、湿度センサ、電気センサ、磁気センサ、光学センサ、機械センサ、音響センサ、化学センサ、生体センサ等の、被測定領域の各種の状態を直接的または間接的に表す物理量、化学量、生物量を測定するものでもよい。このような各種のセンサの測定値が平常時または非混雑時に取りうる範囲から有意に外れている場合、混雑測定部32や後述の混雑状況推定部33は被測定領域が混雑していると判断してもよい。
 更に、センサは、モバイル通信ネットワーク(第1モバイル通信ネットワークおよび/または第2モバイル通信ネットワーク)における通信品質、トラフィック量、通信種別等の通信測定情報を取得するものでもよい。例えば、特定の場所におけるトラフィック量が他の場所に比べて急激に増加した場合、当該場所が混雑していると混雑測定部32や後述の混雑状況推定部33が判断してもよい。また、特定の場所において緊急呼等の緊急通信が集中的に発生している場合、そこで何らかの緊急事態が発生している結果、当該場所が混雑していると混雑測定部32や後述の混雑状況推定部33が判断してもよい。
 以上のような各種のセンサは、様々な態様または形態でモバイル通信ネットワーク(特に、第1モバイル通信ネットワーク)上、具体的には第1通信セルCC1内に分散配置される。
 少なくとも一部のセンサは、モバイル通信ネットワーク(特に、第1モバイル通信ネットワーク)と通信可能な通信機2に設けられてもよい。この場合、スマートフォン等の汎用通信機2に設けられている各種のセンサ機能が、各センサを構成する。具体的には、近年のスマートフォンは、例えば、画像センサ(カメラ)、音声センサ(マイク)、温度センサ、加速度センサ(慣性センサ)、位置センサ(GPS等)、生体センサ(心拍や血圧を測定するもの)のセンサ機能を備える。また、スマートフォン等の通信機2は、モバイル通信ネットワークとのモバイル通信のために、各種の通信測定(通信センサ)機能を標準的に備える。具体的には、通信センサとして機能する通信機2は、自身の位置における通信品質等を測定し、チャネル状態情報(CSI: Channel State Information)等の形で基地局(特に、第1基地局BS1)に提供する。
 少なくとも一部のセンサは、モバイル通信ネットワークを構成して通信機2と通信可能な通信局に設けられてもよい。ここで、モバイル通信ネットワークとは、図1において例示したような各種の基地局111、121、131を含む無線アクセスネットワーク(RAN: Radio Access Network)とコアネットワークを含むネットワーク全体を意味する。また、通信局は主にRANを構成するものであり、具体的には、各種の基地局111、121、131、IAB(Integrated Access and Backhaul)ノード、中継局が例示される。各通信局には、任意の種類の一または複数のセンサが搭載されうる。
 少なくとも一部のセンサは、モバイル通信ネットワークを構成する通信局(基地局、IABノード、中継局等)と直接的または間接的に通信可能な、あるいは、RANと直接的または間接的に通信可能なセンサユニット4として設けられてもよい。なお、センサユニット4は、車両等の移動体その他の通信機能を備える任意の物体に設けられてもよい。これらのセンサユニット4は、スマートフォン等の汎用通信機2のように高度な通信機能を備える必要はなく、測定結果をRANおよび/またはコアネットワークに共有可能な最低限の通信機能を備えるIoTデバイスのようなものでもよい。また、センサユニット4は、Bluetooth(商標)等の近距離無線通信技術を利用して、近傍の通信機2、通信局、他のセンサユニット4等に測定結果を提供し、そこから必要に応じてRANおよび/またはコアネットワークに中継または提供させてもよい。
 以上のように多種多様なセンサは、モバイル通信ネットワーク(特にRAN)を介して相互に接続または結合されたセンサネットワークを構成する。このようなセンサネットワークから各種のセンサの測定情報を収集する混雑測定部32や後述の混雑状況推定部33の機能は、NWDAF(Network Data Analytics Function)等のモバイル通信ネットワーク上のデータの収集および/または分析を担うAI(人工知能:Artificial Intelligence)/ML(機械学習:Machine Learning)機能の少なくとも一部によって実現されてもよい。このようなAI/ML機能その他のデータ処理機能は、典型的にはコアネットワークで実現されるが、コアネットワークより通信機2の近くに設けられるエッジサーバで少なくとも一部が実現されてもよい。このようなエッジサーバを利用することで処理の分散化および高速化を図る技術は、マルチアクセスエッジコンピューティング(MEC: Multi-access Edge Computing)とも呼ばれる。また、混雑測定部32や後述の混雑状況推定部33等で利用可能なデータ処理機能は、コアネットワークにおけるユーザプレーン機能(UPF: User Plane Function)で少なくとも一部が実現されてもよい。
 混雑状況推定部33は、通信混雑検知部31によって検知された第1モバイル通信ネットワーク内の「通信観点」での混雑状況(すなわち、第1モバイル通信ネットワーク上の通信トラフィック等)と、混雑測定部32によって測定された第1モバイル通信ネットワーク外の「非通信観点」での混雑状況(例えば、第2通信事業者OP2に関する人や物の混雑状況)に基づいて、第1通信セルCC1における実際の混雑状況を推定する。換言すれば、混雑状況推定部33は、「通信観点」および「非通信観点」での混雑状況を総合して、第1通信セルCC1における物理的な混雑状況を推定する。
 前述のように、混雑状況推定部33によるデータ分析機能は、例えば、5Gのコアネットワークとしての5GCに導入されたNWDAFその他のAI/ML機能によって実現されてもよい。NWDAFは、5Gを含むネットワーク上のデータの収集と分析を担う。具体的には、NWDAFは、モバイル通信ネットワークに接続された多数の通信機2、通信局(基地局、IABノード、中継局等)、センサユニット4等のセンサの測定情報を収集および蓄積し、それらの分析結果を例えばモバイル通信ネットワーク上のトラフィック制御に活用する。なお、5Gより後の世代の無線通信システムを含む他の無線通信システムにおいて、NWDAFと同様の機能が異なる名称で提供されることも想定されるが、本実施形態ではそのような類似機能をNWDAFに代えてまたは加えて利用してもよい。また、前述のように、混雑状況推定部33におけるデータ処理機能は、MECを実行可能なエッジサーバで実現されてもよい。
 混雑状況共有部34は、第1通信セルCC1内でサービスを提供するサービス提供者SPに対して、混雑状況推定部33によって推定された当該第1通信セルCC1における混雑状況を共有する。混雑状況共有部34における第1通信事業者OP1外への情報共有または情報開示の機能は、5GC内の各種の機能に対するアプリケーションプログラミングインターフェース(API: Application Programming Interface)を提供するNEF(Network Exposure Function)によって実現されてもよい。なお、混雑状況共有部34は、混雑状況推定部33によって推定された当該第1通信セルCC1における混雑状況を、第1モバイル通信ネットワーク上やインターネット等の一般ネットワーク上で配信または公開してもよいし、第1通信セルCC1内に設置されるデジタルサイネージ上に表示させてもよい。
 混雑状況共有部34は、第1通信セルCC1内の店舗においてサービスを提供するサービス提供者SPに対して混雑状況を共有してもよい。店舗としては、商店、商業施設、飲食店が例示される。図2において模式的に示される第1場面SC1では、飲食店の前に多くの人が並んで行列が形成されている。行列中で待っている人は手元のスマートフォン等を見ながら時間を過ごす傾向があるため、第1場面SC1では比較的多くの通信トラフィックが発生する。このうち、第1モバイル通信ネットワーク上の通信トラフィックは、通信混雑検知部31によって検知される。また、混雑測定部32は、この飲食店の前に並んでいる多くの人を直接的または間接的に測定する。
 そして、混雑状況推定部33は、この飲食店の近傍で多くの通信トラフィックが発生しているという通信混雑検知部31による通信観点での検知結果と、この飲食店の前に多くの人が並んでいるという混雑測定部32による非通信観点での測定結果に基づいて、この飲食店の周りが実際に混雑していると判断する。更に、混雑状況推定部33は、この飲食店の周りの混雑が人の行列によって引き起こされていることや、行列中の人が長時間に亘って待っているという状態を認識してもよい。このような店舗の周りの混雑状況、混雑の原因、混雑を引き起こしている人や物の状態は、混雑状況共有部34によって当該店舗に共有されて混雑に対する各種のアクションに繋げられる。例えば、店舗は、行列中で待っている人の不満を和らげるために、当該店舗で使用できるクーポンをモバイル通信ネットワーク(第1モバイル通信ネットワークおよび/または第2モバイル通信ネットワーク)上で配布できる。
 混雑状況共有部34は、第1通信セルCC1における混雑状況に応じた緊急サービスを提供する緊急機関に対して混雑状況を共有してもよい。緊急機関としては、警察機関、消防機関、海上保安庁等の公的機関が例示される。なお、緊急機関は、公的機関に限らず非公的機関でもよい。例えば、混雑状況推定部33によって推定された混雑が発生している場所や施設の管理組織や利害関係組織、当該混雑によって何らかの影響を受ける組織等が、緊急機関として混雑状況共有部34からの混雑状況の共有を受け付けてもよい。
 図2において模式的に示される第2場面SC2では、自動車の事故の発生現場の周りに多くの人が集まり、多くの他の自動車が渋滞している。渋滞中の他の自動車内の人を含む多くの人は、通報や事故に関する情報の確認等のために通信機2を使用するため、第2場面SC2では大量の通信トラフィックが発生する。このうち、第1モバイル通信ネットワーク上の通信トラフィックは、通信混雑検知部31によって検知される。また、混雑測定部32は、事故現場の周りの多くの人や自動車を直接的または間接的に測定する。
 そして、混雑状況推定部33は、この事故現場の近傍で多くの通信トラフィックが発生しているという通信混雑検知部31による通信観点での検知結果と、この事故現場の周りに多くの人や自動車が集まっているという混雑測定部32による非通信観点での測定結果に基づいて、この事故現場の周りが実際に混雑していると判断する。更に、混雑状況推定部33は、この事故現場の周りの混雑が自動車の事故によって引き起こされていることや、この事故現場の周りに集まっている人の表情や動作等の状態を認識してもよい。このような事故現場の周りの混雑状況、事故の原因、混雑を引き起こしている人や物の状態は、混雑状況共有部34によって各緊急機関に共有されて事故または混雑に対する各種のアクションに繋げられる。例えば、緊急機関としての警察機関は、事故現場に警察官を迅速に派遣できる。
 図2において模式的に示される第3場面SC3では、多くの人が集団で移動している。これらの移動中の人は通信機2を使用していないため、顕著な通信トラフィックは発生しない。このため、通信混雑検知部31では、第1モバイル通信ネットワーク上の通信の混雑が検知されない。一方、混雑測定部32は、集団で移動中の多くの人を直接的または間接的に測定することで、物理的な混雑を検知する。
 そして、混雑状況推定部33は、第1モバイル通信ネットワーク上の通信トラフィックが少ない(顕著な増加が見られない)という通信混雑検知部31による通信観点での検知結果と、多くの人が集団で移動しているという混雑測定部32による非通信観点での測定結果に基づいて、当該多くの人によって第1モバイル通信ネットワークに実質的な影響を及ぼさない物理的な混雑が一時的に発生していると判断する。すなわち、混雑状況推定部33は、混雑測定部32によって測定された当該多くの人の「モバイル通信を行わずに移動している」という状態を判定する。このように、混雑状況推定部33は、混雑測定部32によって測定された人および物の少なくともいずれかの状態を判定してもよい。混雑状況推定部33によって判定可能な状態(および/または、混雑測定部32によって測定可能な状態)は、判定対象の人や物の有無、位置、姿勢、移動(速度や加速度)を含んでもよい。
 以上のように、「通信観点」および「非通信観点」での混雑状況に基づいて、第1通信セルCC1における実際の混雑状況を総合的に推定する混雑状況推定部33によれば、「通信観点」および/または「非通信観点」での混雑状況を精緻に分析できる。例えば、混雑測定部32によって極めて多くの人が測定されているにも関わらず、通信混雑検知部31によって検知されている通信トラフィックが想定より著しく低い場合には、モバイル通信ネットワークに何らかの通信異常が発生していることが疑われる。逆に、通信混雑検知部31によって大量の通信トラフィックが検知されているにも関わらず、混雑測定部32によって当該通信トラフィックの原因となる人や物が測定されていない場合には、通信混雑検知部31および/または混雑測定部32が正常に機能していないことが疑われる。
 以上のような実施形態によれば、通信混雑検知部31によって検知された「通信観点」での混雑状況と、混雑測定部32によって測定された「非通信観点」での混雑状況に基づいて、第1通信セルCC1における実際の混雑状況を混雑状況推定部33によって効果的に推定できる。
 特に、第1通信事業者OP1に閉じた混雑状況を検知する通信混雑検知部31と、第1通信事業者OP1に閉じない混雑状況を測定する混雑測定部32を併用することで、混雑状況推定部33は通信事業者の垣根を越えた実際の混雑状況を推定できる。そして、混雑状況共有部34は、このような特定の通信事業者に限定されない客観性の高い混雑状況を各種のサービス提供者SPに対して共有できる。このことは、サービス提供者SPによるサービスの拡充や品質の向上ももたらしうる。
 以上、本開示を実施形態に基づいて説明した。例示としての実施形態における各構成要素や各処理の組合せには様々な変形例が可能であり、そのような変形例が本開示の範囲に含まれることは当業者にとって自明である。
 なお、実施形態で説明した各装置や各方法の構成、作用、機能は、ハードウェア資源またはソフトウェア資源によって、あるいは、ハードウェア資源とソフトウェア資源の協働によって実現できる。ハードウェア資源としては、例えば、プロセッサ、ROM、RAM、各種の集積回路を利用できる。ソフトウェア資源としては、例えば、オペレーティングシステム、アプリケーション等のプログラムを利用できる。
 本開示は以下の項目のように表現してもよい。
 項目1:
 通信混雑検知部によって、通信セルにおける通信の混雑状況を検知することと、
 混雑測定部によって、前記通信セル内の人および物の少なくともいずれかの混雑状況を測定することと、
 混雑状況推定部によって、前記通信混雑検知部によって検知された通信の混雑状況と、前記混雑測定部によって測定された人および物の少なくともいずれかの混雑状況に基づいて、前記通信セルにおける混雑状況を推定することと、
 を実行する少なくとも一つのプロセッサを備える通信制御装置。
 項目2:
 前記少なくとも一つのプロセッサは、混雑状況共有部によって、前記通信セル内でサービスを提供するサービス提供者に対して、前記混雑状況推定部によって推定された当該通信セルにおける混雑状況を共有することを実行する、項目1に記載の通信制御装置。
 項目3:
 前記サービス提供者は、前記通信セルにおける混雑状況に応じた緊急サービスを提供する緊急機関を含む、項目2に記載の通信制御装置。
 項目4:
 前記サービス提供者は、前記通信セル内の店舗においてサービスを提供する、項目2または3に記載の通信制御装置。
 項目5:
 前記混雑状況推定部は、前記混雑測定部によって測定された人および物の少なくともいずれかの状態を判定する、項目1から4のいずれかに記載の通信制御装置。
 項目6:
 前記通信セルは、第1通信事業者によって提供される第1通信セルであり、
 前記通信混雑検知部は、前記第1通信セルにおける少なくとも前記第1通信事業者の通信の混雑状況を検知し、
 前記混雑測定部は、前記第1通信セル内で少なくとも前記第1通信事業者と異なる第2通信事業者を通じて通信する人および物の少なくともいずれかの混雑状況を測定し、
 前記混雑状況推定部は、前記通信混雑検知部によって検知された少なくとも前記第1通信事業者の通信の混雑状況と、前記混雑測定部によって測定された少なくとも前記第2通信事業者に関する人および物の少なくともいずれかの混雑状況に基づいて、前記第1通信セルにおける混雑状況を推定する、
 項目1から5のいずれかに記載の通信制御装置。
 項目7:
 前記混雑測定部は、前記通信セルを提供する基地局の通信電波を通じて、当該通信セル内の人および物の少なくともいずれかの混雑状況を測定する、項目1から6のいずれかに記載の通信制御装置。
 項目8:
 通信セルにおける通信の混雑状況を検知することと、
 前記通信セル内の人および物の少なくともいずれかの混雑状況を測定することと、
 前記検知された通信の混雑状況と、前記測定された人および物の少なくともいずれかの混雑状況に基づいて、前記通信セルにおける混雑状況を推定することと、
 を実行する通信制御方法。
 項目9:
 通信セルにおける通信の混雑状況を検知することと、
 前記通信セル内の人および物の少なくともいずれかの混雑状況を測定することと、
 前記検知された通信の混雑状況と、前記測定された人および物の少なくともいずれかの混雑状況に基づいて、前記通信セルにおける混雑状況を推定することと、
 をコンピュータに実行させる通信制御プログラムを記憶している記憶媒体。
 本願は、2022年11月2日に出願された日本国特許出願2022-176218を基礎として優先権を主張するものであり、当該基礎出願の全内容を参照することによって援用する。
 本開示は、通信観点および非通信観点に基づく混雑状況の推定に関する。
 1 無線通信システム、2 通信機、3 通信制御装置、4 センサユニット、11 5G無線通信システム、12 4G無線通信システム、13 衛星通信システム、31 通信混雑検知部、32 混雑測定部、33 混雑状況推定部、34 混雑状況共有部、111 5G基地局、112 5Gセル、121 4G基地局、122 4Gセル、131 通信衛星、132 衛星通信セル、133 ゲートウェイ、OP1 第1通信事業者、OP2 第2通信事業者。

Claims (9)

  1.  通信混雑検知部によって、通信セルにおける通信の混雑状況を検知することと、
     混雑測定部によって、前記通信セル内の人および物の少なくともいずれかの混雑状況を測定することと、
     混雑状況推定部によって、前記通信混雑検知部によって検知された通信の混雑状況と、前記混雑測定部によって測定された人および物の少なくともいずれかの混雑状況に基づいて、前記通信セルにおける混雑状況を推定することと、
     を実行する少なくとも一つのプロセッサを備える通信制御装置。
  2.  前記少なくとも一つのプロセッサは、混雑状況共有部によって、前記通信セル内でサービスを提供するサービス提供者に対して、前記混雑状況推定部によって推定された当該通信セルにおける混雑状況を共有することを実行する、請求項1に記載の通信制御装置。
  3.  前記サービス提供者は、前記通信セルにおける混雑状況に応じた緊急サービスを提供する緊急機関を含む、請求項2に記載の通信制御装置。
  4.  前記サービス提供者は、前記通信セル内の店舗においてサービスを提供する、請求項2に記載の通信制御装置。
  5.  前記混雑状況推定部は、前記混雑測定部によって測定された人および物の少なくともいずれかの状態を判定する、請求項1に記載の通信制御装置。
  6.  前記通信セルは、第1通信事業者によって提供される第1通信セルであり、
     前記通信混雑検知部は、前記第1通信セルにおける少なくとも前記第1通信事業者の通信の混雑状況を検知し、
     前記混雑測定部は、前記第1通信セル内で少なくとも前記第1通信事業者と異なる第2通信事業者を通じて通信する人および物の少なくともいずれかの混雑状況を測定し、
     前記混雑状況推定部は、前記通信混雑検知部によって検知された少なくとも前記第1通信事業者の通信の混雑状況と、前記混雑測定部によって測定された少なくとも前記第2通信事業者に関する人および物の少なくともいずれかの混雑状況に基づいて、前記第1通信セルにおける混雑状況を推定する、
     請求項1に記載の通信制御装置。
  7.  前記混雑測定部は、前記通信セルを提供する基地局の通信電波を通じて、当該通信セル内の人および物の少なくともいずれかの混雑状況を測定する、請求項1に記載の通信制御装置。
  8.  通信セルにおける通信の混雑状況を検知することと、
     前記通信セル内の人および物の少なくともいずれかの混雑状況を測定することと、
     前記検知された通信の混雑状況と、前記測定された人および物の少なくともいずれかの混雑状況に基づいて、前記通信セルにおける混雑状況を推定することと、
     を実行する通信制御方法。
  9.  通信セルにおける通信の混雑状況を検知することと、
     前記通信セル内の人および物の少なくともいずれかの混雑状況を測定することと、
     前記検知された通信の混雑状況と、前記測定された人および物の少なくともいずれかの混雑状況に基づいて、前記通信セルにおける混雑状況を推定することと、
     をコンピュータに実行させる通信制御プログラムを記憶している記憶媒体。
PCT/JP2022/048284 2022-11-02 2022-12-27 通信観点および非通信観点に基づく混雑状況の推定 WO2024095502A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-176218 2022-11-02
JP2022176218 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024095502A1 true WO2024095502A1 (ja) 2024-05-10

Family

ID=90930135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048284 WO2024095502A1 (ja) 2022-11-02 2022-12-27 通信観点および非通信観点に基づく混雑状況の推定

Country Status (1)

Country Link
WO (1) WO2024095502A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022855A (ja) * 2012-07-17 2014-02-03 Sony Corp 情報処理装置、通信システムおよび情報処理方法
JP2015127693A (ja) * 2013-11-28 2015-07-09 株式会社Screenホールディングス 避難経路提供システム、避難経路提供方法、および避難経路提供プログラム
JP2019029033A (ja) * 2018-10-17 2019-02-21 綜合警備保障株式会社 警備システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022855A (ja) * 2012-07-17 2014-02-03 Sony Corp 情報処理装置、通信システムおよび情報処理方法
JP2015127693A (ja) * 2013-11-28 2015-07-09 株式会社Screenホールディングス 避難経路提供システム、避難経路提供方法、および避難経路提供プログラム
JP2019029033A (ja) * 2018-10-17 2019-02-21 綜合警備保障株式会社 警備システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group TSG SA; Feasibility Study on Integrated Sensing and Communication (Release 19)", 3GPP TR 22.837, no. V0.1.0, 16 August 2022 (2022-08-16), pages 1 - 13, XP052210604 *
ALAIN SULTAN, RAKUTEN MOBILE: "Pseudo-CR Use case of sensing on Congestion Crowd Detection", 3GPP TSG SA WG1 #100 S1-223587, 24 November 2022 (2022-11-24), XP052230142 *
ATSUSHI MINOKUCHI, NTT DOCOMO, NTT: "Pseudo-CR on Use Case of crowd estimation in smart city", 3GPP TSG SA WG1 #99E S1-222094, 11 August 2022 (2022-08-11), XP052187205 *

Similar Documents

Publication Publication Date Title
US20210273857A1 (en) Method and system for virtual network emulation and self-organizing network control using deep generative models
US8442556B2 (en) Detecting mobile device usage within wireless networks
US20190182614A1 (en) Autonomous localization in wireless networks
EP3793096B1 (en) Efficient data generation for beam pattern optimization
EP4093126A1 (en) Scheduler information -based data acquisition and interference detection
JP2023546310A (ja) 接触追跡を助けるための障壁検出
Fortes et al. Location-based distributed sleeping cell detection and root cause analysis for 5G ultra-dense networks
CN113347557A (zh) 用于改进连接可靠性的未来定位估计
US20230314625A1 (en) Ensuring location information is correct
Wu et al. Modeling control delays for edge-enabled UAVs in cellular networks
Alabi et al. Application of UAV-assisted 5G communication: A case study of the Nigerian environment
WO2024095502A1 (ja) 通信観点および非通信観点に基づく混雑状況の推定
Wang et al. Mobile device localization in 5G wireless networks
US20220386159A1 (en) Determining a parameter characteristic of a state of a user equipment via autonomous scaling of input data resolution and aggregation
WO2023066662A1 (en) Criteria-based measurement data reporting to a machine learning training entity
US11638171B2 (en) Systems and methods for dynamic wireless network configuration based on mobile radio unit location
WO2024069812A1 (ja) モバイル通信ネットワークを通じた緊急通報
WO2023041169A1 (en) Device positioning
EP4260619A1 (en) Method and apparatus for efficient positioning
WO2024069680A1 (ja) 動的通信セルに関する干渉制御
WO2023210000A1 (ja) 移動局に関する接続制限
WO2023210001A1 (ja) 移動局に関する接続制限
WO2023148991A1 (ja) 移動局による緊急情報配信
WO2024147206A1 (ja) 緊急通報の管轄エリアの推定における分析対象の指定
CN116723534B (zh) Ue测量的放宽的方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964518

Country of ref document: EP

Kind code of ref document: A1