WO2024093577A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2024093577A1
WO2024093577A1 PCT/CN2023/121234 CN2023121234W WO2024093577A1 WO 2024093577 A1 WO2024093577 A1 WO 2024093577A1 CN 2023121234 W CN2023121234 W CN 2023121234W WO 2024093577 A1 WO2024093577 A1 WO 2024093577A1
Authority
WO
WIPO (PCT)
Prior art keywords
resources
data
information
terminal device
network device
Prior art date
Application number
PCT/CN2023/121234
Other languages
English (en)
French (fr)
Inventor
曹佑龙
秦熠
陈二凯
徐瑞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093577A1 publication Critical patent/WO2024093577A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present application relates to the field of communication technology, and in particular to a data transmission method and device.
  • Multimodal services are services that add a tactile experience dimension to extended reality (XR). They can realize remote touch and remote control, including remote perception in multiple aspects such as vision, hearing, touch, and kinesthetics.
  • XR extended reality
  • the tactile sensor in the multimodal service can generate data periodically; the network device configures periodic resources for the terminal device by means of configured grant transmission (configured grant, CG), so that the terminal device sends the data generated by the tactile sensor to the network device on the configured resources.
  • configured grant transmission Configured grant, CG
  • the encoded data sent by the terminal device at different times may come from different numbers of tactile sensors, that is, the amount of data sent by the terminal device to the network device at different times may be different.
  • the resources in each cycle based on the CG configuration are fixed. If the amount of data to be sent to the network device by the terminal device is large, the resources in one cycle based on the CG configuration may not be sufficient to transmit the large amount of data, and it is necessary to wait until the resources configured in the next cycle, which will cause a large delay in the terminal device sending data to the network device.
  • the embodiments of the present application provide a data transmission method and apparatus, which can reduce the delay of a terminal device sending data to a network device.
  • the present application provides a data transmission method, which can be applied to a terminal device, a chip in a terminal device, or a logic module or software that can realize all or part of the functions of the terminal device.
  • the following description is taken as an example of a terminal device.
  • the method includes: a terminal device receives first information from a network device; based on the first information, multiple candidate resources are determined; based on the first data volume of the data to be sent, a target resource is determined from multiple candidate resources; the terminal device sends part or all of the data to be sent to the network device on the target resource; and sends second information to the network device, where the second information is used to indicate the target resource.
  • the target resource for sending data is determined by the terminal device from multiple candidate resources based on the actual amount of data to be sent.
  • the amount of data that can be transmitted by the multiple candidate resources can cover the amount of data that the terminal device has a high probability of transmitting, which is conducive to improving the probability that the terminal device completes the transmission of the data to be sent within the range of multiple candidate resources, thereby helping to reduce the delay of data transmission.
  • the operation of the terminal device sending the second information to the network device is also conducive to the network device determining the resources for receiving data from the terminal device, which is conducive to saving the power consumption of the network device in receiving data compared to the network device determining the resources for receiving data by blind detection.
  • the multiple candidate resources are frequency domain resources, or time domain resources, or time-frequency domain resources.
  • At least two of the multiple candidate resources overlap. This method is advantageous in that, in a scenario where a network device configures candidate resources for multiple terminal devices respectively, the candidate resources configured for each terminal device can be different or not completely the same, thereby facilitating the reduction of interference of data sent by other terminal devices on data sent by the terminal device, and improving resource utilization.
  • a proportion of the overlapping portion of at least two candidate resources to one of the at least two candidate resources is greater than a first threshold.
  • multiple candidate resources do not overlap. This method is conducive to increasing the amount of data that can be transmitted by multiple candidate resources in total, thereby increasing the amount of data that can be transmitted by the terminal device within the scope of multiple candidate resources, and is conducive to increasing the probability of being able to transmit a large amount of data within the scope of multiple candidate resources, thereby helping to reduce the delay of the terminal device sending the data to be sent.
  • the plurality of candidate resources are frequency domain resources or time-frequency domain resources; the terminal device sends the second information to the network device, including: the terminal device sends a demodulation reference signal (DMRS) to the network device, and the second information is carried by the frequency domain position of the DMRS.
  • DMRS demodulation reference signal
  • the second information is carried by uplink control information (UCI). That is, the terminal device can inform the network device of the target resource through UCI, which is beneficial for the network device to know the target resource and thus helps to save The power consumption of network devices when receiving data.
  • UCI uplink control information
  • the second information indicates an index of the target resource; or the second information indicates a ratio of the target resource to multiple candidate resources. This method is advantageous for the network device to determine the target resource by the index of the target resource or the ratio of the target resource to multiple candidate resources, so that data from the terminal device can be received on the target resource, and it is also advantageous for saving power consumption of the network device in receiving data.
  • the present application provides a data transmission method, which can be applied to a network device, a chip in a network device, or a logic module or software that can realize all or part of the functions of the network device.
  • the following description takes a network device as an example, and the method includes: the network device sends first information to a terminal device, and the first information is used to determine multiple candidate resources; receives second information from the terminal device, and the second information is used to indicate a target resource, and the target resource belongs to multiple candidate resources; and receives data from the terminal device on the target resource.
  • the target resource for receiving data belongs to the multiple candidate resources configured by the network device for the terminal device.
  • the amount of data that can be transmitted by the multiple candidate resources can cover the amount of data that the terminal device has a high probability of transmitting, which is conducive to improving the probability that the terminal device completes the transmission of the data to be sent within the range of multiple candidate resources, thereby helping to reduce the delay of data transmission.
  • the network device can also determine the resource for receiving data from the terminal device through the second information from the terminal device, which is conducive to saving the power consumption of the network device in receiving data compared to the network device determining the resource for receiving data through blind detection.
  • the multiple candidate resources are frequency domain resources, or time domain resources, or time-frequency domain resources.
  • At least two candidate resources overlap among the multiple candidate resources. This method is advantageous in that in a scenario where a network device configures candidate resources for multiple terminal devices respectively, the candidate resources configured for each terminal device can be different or not completely the same, thereby facilitating the reduction of interference caused by data transmission by different terminal devices and improving resource utilization.
  • a proportion of the overlapping portion of at least two candidate resources to one of the at least two candidate resources is greater than a first threshold.
  • multiple candidate resources do not overlap. This method is conducive to increasing the amount of data that can be transmitted by multiple candidate resources in total, thereby increasing the amount of data that can be transmitted by the terminal device within the scope of multiple candidate resources, and is conducive to increasing the probability of being able to transmit a large amount of data within the scope of multiple candidate resources, thereby helping to reduce the delay of the terminal device sending the data to be sent.
  • the plurality of candidate resources are frequency domain resources or time-frequency domain resources; the network device receives the second information from the terminal device, including: the network device receives a DMRS from the terminal device, and the second information is carried by the frequency domain position of the DMRS.
  • This method enables the network device to determine the frequency domain position of the target resource by detecting the frequency domain position of the DMRS, thereby helping to save power consumption of the network device in receiving data.
  • the second information is carried by UCI. That is, the network device can learn the target resource through UCI, which is helpful to save the power consumption of the network device in receiving data.
  • the second information indicates an index of the target resource; or the second information indicates a ratio of the target resource to multiple candidate resources. This approach allows the network device to determine the target resource by the index of the target resource or the ratio of the target resource to multiple candidate resources, thereby receiving data from the terminal device on the target resource, which is conducive to saving power consumption of the network device in receiving data.
  • the present application also provides a communication device.
  • the communication device may be a network device or a terminal device, or a chip in a network device or a terminal device, or a logic module or software that can implement all or part of the functions of the network device or the terminal device.
  • the communication device has the function of implementing some or all of the implementation methods described in the first aspect above, or has the function of implementing some or all of the functional implementation methods described in the second aspect above.
  • the functions may be implemented by hardware, or by hardware executing corresponding software implementations.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform the corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other communication devices.
  • the communication device may also include a storage unit, which is used to couple with the processing unit and the communication unit, and store the necessary program instructions and data of the communication device.
  • the communication device includes: a processing unit and a communication unit, wherein the processing unit is used to control the communication unit to send and receive data/signaling.
  • the communication unit is used to receive first information from the network device.
  • the processing unit is used to determine multiple candidate resources based on the first information; the processing unit is also used to determine a target resource from the multiple candidate resources based on a first data volume of the data to be sent.
  • the communication unit is also used to send part or all of the data to be sent to the network device on the target resource; the communication unit is also used to send second information to the network device, and the second information is used to indicate the target resource.
  • the communication device includes: a communication unit.
  • the communication unit is used to send first information to the terminal device, the first information is used to determine multiple candidate resources; the communication unit is also used to receive second information from the terminal device, the second information is used to indicate a target resource, the target resource belongs to multiple candidate resources; the communication unit is also used to receive data from the terminal device on the target resource.
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory
  • the processing unit may be a processor.
  • the processor is coupled to the memory, the memory is used to store a program or an instruction processor, the processor may be used to enable the communication device to execute the method described in the first aspect or the second aspect when the program or instruction is executed by the processor, and the transceiver or the communication interface may be used to send and receive signals and/or data.
  • the communication device includes: a processor and a transceiver.
  • the transceiver is used to receive first information from a network device.
  • the processor is used to determine multiple candidate resources based on the first information; the processor is also used to determine a target resource from multiple candidate resources based on a first data volume of the data to be sent.
  • the transceiver is also used to send part or all of the data to be sent to the network device on the target resource; the transceiver is also used to send second information to the network device, and the second information is used to indicate the target resource.
  • the communication device includes: a transceiver.
  • the transceiver is used to send first information to a terminal device, the first information is used to determine multiple candidate resources; the transceiver is also used to receive second information from the terminal device, the second information is used to indicate a target resource, the target resource belongs to multiple candidate resources; the transceiver is also used to receive data from the terminal device on the target resource.
  • the communication device is a chip or a chip system.
  • the processing unit may also be embodied as a processing circuit or a logic circuit; the transceiver unit may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or the chip system.
  • the processor can be used to perform, for example, but not limited to, baseband-related processing, and the transceiver or communication interface can be used to perform, for example, but not limited to, radio frequency transceiver.
  • the above-mentioned devices can be respectively arranged on chips independent of each other, or at least partially or completely arranged on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor can be integrated with the transceiver (or communication interface) on the same chip, and the digital baseband processor can be arranged on an independent chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with a variety of application processors (such as but not limited to a graphics processor, a multimedia processor, etc.) on the same chip.
  • application processors such as but not limited to a graphics processor, a multimedia processor, etc.
  • SoC System on a Chip
  • the present application also provides a processor for executing the above-mentioned various methods.
  • the process of sending the above-mentioned signal and receiving the above-mentioned signal in the above-mentioned method can be understood as the process of outputting the above-mentioned signal by the processor, and the process of the above-mentioned signal input by the processor.
  • the processor When outputting the above-mentioned signal, the processor outputs the above-mentioned signal to the transceiver so that it can be transmitted by the transceiver (or communication interface). After the above-mentioned signal is output by the processor, it may also need to be processed otherwise before it reaches the transceiver (or communication interface).
  • the transceiver receives the above-mentioned signal and inputs it into the processor. Furthermore, after the transceiver (or communication interface) receives the above-mentioned signal, the above-mentioned signal may need to be processed otherwise before it is input into the processor.
  • the above-mentioned processor can be a processor specifically used to execute these methods, or it can be a processor that executes computer instructions in the memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated with the processor on the same chip, or can be set on different chips.
  • ROM read-only memory
  • the present application further provides a communication system, which includes at least one terminal device and at least one network device of the above aspects.
  • the system may also include other devices that interact with the terminal device and/or the network device in the solution provided by the present application.
  • the present application provides a computer-readable storage medium, which stores a computer program.
  • the computer program When the computer program is run, the method described in any one of the first aspect or the second aspect is executed.
  • the present application further provides a computer program product comprising instructions, the computer program product comprising: a computer program code, when the computer program code is run, the method described in any one of the first aspect or the second aspect is executed.
  • the present application provides a chip system, the chip system comprising a processor and an interface, the interface being used to obtain a program or an instruction
  • the processor is used to call the program or instruction to implement the function involved in the first aspect, or to call the program or instruction to implement the function involved in the second aspect.
  • the chip system also includes a memory, and the memory is used to store program instructions and data necessary for the terminal.
  • the chip system can be composed of a chip, or it can include a chip and other discrete devices.
  • FIG1 is a schematic diagram of the structure of a communication system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a multimodal service provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a dynamic scheduling provided by an embodiment of the present application.
  • FIG4 is a schematic diagram of a resource for transmitting a scheduling request (SR) provided in an embodiment of the present application
  • FIG5 is a schematic diagram of a dynamic scheduling for a logical channel (LCH) y provided in an embodiment of the present application;
  • FIG6 is a schematic diagram of a type 1 CG process provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a type 2 CG process provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a CG resource provided in an embodiment of the present application.
  • FIG9 is a schematic flow chart of a data transmission method provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of a resource distribution provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of a candidate resource provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of another candidate resource provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of another candidate resource provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of another candidate resource provided in an embodiment of the present application.
  • FIG15 is a schematic diagram of another candidate resource provided in an embodiment of the present application.
  • FIG16 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG17 is a schematic diagram of the structure of another communication device provided in an embodiment of the present application.
  • FIG. 18 is a schematic diagram of the structure of a chip provided in an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems.
  • the global mobile communication system the long term evolution (LTE) system
  • the universal mobile communication system the fourth generation mobile communication technology (4G) system
  • the next generation radio access network (NG-RAN) the next generation radio access network
  • NR new radio
  • the technical solution of the embodiment of the present application can also be used for subsequent evolved communication systems, such as the sixth generation mobile communication technology (6G) system, the seventh generation mobile communication technology (7G) system, and so on.
  • Figure 1 is a schematic diagram of the structure of a communication system provided in an embodiment of the present application.
  • the communication system may include but is not limited to a network device and a terminal device, wherein uplink transmission and downlink transmission can be performed between the network device and the terminal device.
  • the communication system may also include a channel for transmitting data/signals between the network device and the terminal device, such as a transmission medium such as optical fiber, cable or atmosphere.
  • a transmission medium such as optical fiber, cable or atmosphere.
  • the number and form of the devices shown in Figure 1 are used for example and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more network devices and two or more terminal devices may be included.
  • the communication system shown in Figure 1 is explained by taking a network device and two terminal devices (i.e., terminal device #1 and terminal device #2 in Figure 1) as an example.
  • the network device in Figure 1 takes a base station as an example
  • the terminal device takes virtual reality (VR) glasses as an example.
  • VR virtual reality
  • the network device may be a device with a wireless transceiver function, or may be a chip set in a device with a wireless transceiver function.
  • the network device includes but is not limited to: an evolved node B (eNB), a radio network controller (RNC), a node B (NB), a base station controller (BSC), a base transceiver station (BTS), a home network device (for example, a home evolved Node B, or a home Node B, HNB), a baseband unit (BBU), an access point (AP) in a wireless fidelity (WIFI) system, a wireless relay node, a wireless backhaul node, a transmission and reception point (TRP or transmission point, TP), etc.
  • eNB evolved node B
  • RNC radio network controller
  • NB node B
  • BSC base station controller
  • BTS base transceiver station
  • a home network device for example, a home evolved Node B, or a home Node B, H
  • NodeB or eNB or e-NodeB, evolutional Node B in LTE
  • next-generation LTE base station next-generation eNodeB, ng-eNB
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device, etc. It can be understood that all or part of the functions of the network device in this application can also be implemented by software functions running on hardware, or by virtualization functions instantiated on a platform (such as a cloud platform).
  • the terminal device may also be referred to as user equipment (UE), terminal, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, user agent or user device, and can be applied to 4G, 5G or even 6G systems, etc.
  • UE user equipment
  • the terminal device in the embodiments of the present application can be a joint device for transmitting and receiving digital signals on an ordinary telephone line, or it can be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver function, a head mounted display (head mounted display, HMD), VR terminal equipment (such as VR glasses), augmented reality (augmented reality, AR) terminal equipment (such as AR glasses), mixed reality (mixed reality, MR) terminal equipment, wireless terminals in industrial control (industrial control), tactile terminal equipment, vehicle-mounted terminal equipment, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid (smart grid), wireless terminals in transportation safety (transportation safety), wireless terminals in smart city (smart city), wireless terminals in smart home (smart home), RSU of the aforementioned wireless terminal types, wearable terminal devices, etc.
  • XR is a technology that can combine the real world with the virtual environment and provide human-computer interaction. XR can be applied to various fields closely related to people's production and life, such as education, entertainment, military, medical care, environmental protection, transportation, public health, etc. XR is a general term for various reality-related technologies, which can include VR, AR and MR.
  • VR refers to a technology that simulates the visual and audio sensory stimulation of users in the real world as much as possible by rendering visual and audio scenes.
  • VR can provide services to users by wearing head-mounted displays (HMD) and headphones.
  • the visual components simulated by the HMD can completely replace the user's field of view, and the headphones can provide the user with accompanying audio.
  • the user's head and movements can be tracked in VR, so that the simulated visual and audio content can be updated in time, so that the visual and audio content of the user's experience can be consistent with the user's movements.
  • AR refers to the technology that provides additional visual or auditory information or artificially generated content in the real environment perceived by the user.
  • the user's perception of the real environment can be direct, such as without sensing, processing and rendering the real environment; the user's perception of the real environment can also be indirect, such as the relevant information of the real environment can be transmitted to the user through sensors and other means, and further enhanced processing can be performed.
  • MR refers to technologies that can combine the real and virtual worlds to create new visual environments, and physical entities and digital objects coexist and interact in real time to simulate real objects.
  • MR is an advanced form of AR, and one of its implementation methods is to insert some virtual elements into the physical scene, thereby providing users with an immersive experience that these virtual elements are part of the real scene.
  • Multimodal services are services that add a tactile experience dimension to XR, which can realize remote touch and remote control, including remote perception in multiple aspects such as vision, hearing, touch, and kinesthetics.
  • Multimodal services have great development space in related fields such as industrial automation, healthcare, and distance education. They can provide users with a full range of interactive experiences and have great application value and commercial potential.
  • FIG. 2 shows the synchronous transmission of multiple data streams in a multi-sensory control scenario in a multi-modal service.
  • the master device and the slave device in FIG. 2 are both terminal devices; the channel (community channel, comm.Channel) can be implemented based on the communication network in the aforementioned communication system, and the network devices in the communication network can be used to forward and process data from the master device and the slave device to realize communication between the master device and the slave device.
  • the slave device can send data related to images (Video) and sounds (Audio) to the master device through the channel, and can also send tactile data (or tactile signals) obtained based on the tactile sensor to the master device through the channel.
  • the sensory data may be acquired by the slave device through a tactile sensor, for example, the tactile data (or tactile signal) may be a collected surface texture.
  • the master device may send the position, action, tactile and other sensory data and instructions to the slave device through a channel, and the slave device executes the instructions from the master device to obtain execution feedback data, and sends the execution feedback data to the master device through the channel; wherein the execution feedback data may include data related to force and position.
  • dynamic scheduling means that network devices use control information to instruct terminal devices to send data in each time slot. Based on the way of configuring resources for data transmission based on dynamic scheduling, the size of configured resources can be flexibly adjusted quickly according to business needs, but each scheduling requires the transmission of related control signaling, which has a large signaling overhead.
  • the terminal device in conjunction with Figure 3, in the scenario where the terminal device is to transmit uplink data, if the terminal device determines that it can send an SR, the terminal device can send an SR to the network device on the physical uplink control channel (PUCCH) to request an uplink grant (UL Grant) from the network device.
  • the network device sends an uplink grant to the terminal device through the physical downlink control channel (PDCCH).
  • the uplink grant carries scheduling information, which indicates the physical uplink shared channel (PUSCH) configured by the network device for the terminal device; the terminal device can send data to the network device on the PUSCH indicated by the scheduling information. If the terminal device does not receive an uplink grant from the network device, the terminal device can send an SR to the network device again.
  • PUSCH physical uplink shared channel
  • SR can be used to inform the network device whether there is uplink data to be transmitted, but it will not inform the specific amount of data to be transmitted.
  • SR occupies 1 bit.
  • the resources (including period, offset, etc.) used to transmit SR in each LCH may be different, and the resources for transmitting SR can be configured separately for each logical channel.
  • each small rectangle in Figure 4 represents the resources of 1 time slot
  • the resources indicated by the gray arrow are the resources configured for LCH x for transmitting SR
  • the resources indicated by the black arrow are the resources configured for LCH y for transmitting SR; it can be seen that the resources configured for transmitting SR in LCH x and LCH y are different.
  • the terminal device obtains the data to be sent to the network device at time t1 , and sends SR to the network device on time slot #1, until time slot #2 has not received the UL Grant from the network device, and sends SR to the network device again on time slot #2; then, the terminal device receives the UL Grant from the network device on time slot #3, and the scheduling information in the UL Grant indicates that the network device has configured resources in time slot #4 for the terminal device to send data; the terminal device sends data to the network device on the resources configured in time slot #4.
  • UL Grant can indicate scheduling information through downlink control information (DCI) in format 0_0 or format 0_1.
  • DCI downlink control information
  • the network device schedules the terminal device according to a smaller and fixed amount of data. Therefore, the amount of data that can be transmitted by the resources indicated by the scheduling information is smaller and fixed.
  • the data sent by the terminal device to the network device on the PUSCH indicated by the scheduling information may also include a buffer status report (BSR), which can be used to inform the network device: the amount of data that the terminal device still needs to send to the network device. If the BSR received by the network device is greater than 0, it can continue to schedule resources for the terminal device through the PDCCH carrying the scheduling information, so that the terminal device can continue to send data to the network device on the scheduled resources.
  • BSR buffer status report
  • CG refers to the resources that a network device allocates once for uplink transmission through radio resource control (RRC) signaling or PDCCH.
  • RRC radio resource control
  • the network device and the terminal device can reuse the resources periodically for uplink transmission.
  • CG can be applied to the uplink transmission of services with the characteristic of periodic transmission, for example, CG can be applied to the uplink transmission of XR services or video services.
  • the resources configured by CG for uplink transmission can also be called CG resources.
  • CG includes Type 1 and Type 2.
  • Type 1 the relevant parameters of CG are configured through RRC signaling, and the RRC is also used to activate CG resources.
  • Type 2 the relevant parameters of CG are configured through RRC signaling, and the configured CG resources and activated CG resources are indicated through PDCCH. The following describes these two types of CG respectively.
  • FIG6 shows a CG process of type 1.
  • the network device may carry relevant parameters of the CG in the RRC signaling, and the relevant parameters of the CG carried in the RRC signaling may include: configured scheduling radio network temporary identifier (CS-RNTI), CG period, frequency domain resource location, hybrid automatic repeat request process (HARQ Process) number (HARQ Process Number) and offset value, modulation and coding scheme (MCS) specific value, number of repetitions, etc.
  • CS-RNTI configured scheduling radio network temporary identifier
  • CG period CG period
  • frequency domain resource location HARQ Process number (HARQ Process Number) and offset value
  • MCS modulation and coding scheme
  • the terminal device may determine the periodically effective CG resources according to the received RRC signaling, and periodically send data to the network device on these CG resources.
  • MCS modulation and coding scheme
  • Figure 7 shows the CG process of type 2.
  • the network device can carry CG-related parameters in the RRC signaling, including CS-RNTI, CG period, etc.; when multiple CGs are configured, the RRC signaling can carry the relevant parameters of multiple CGs respectively.
  • CGs may correspond to different CG periods.
  • the network device also sends a PDCCH, which carries a DCI for activating CG resources.
  • the DCI indicates the frequency domain resources and MCS in the activated CG resources.
  • the terminal device determines the periodically effective CG resources and sends a PUSCH to the network device on these CG resources. If the CG resources need to be deactivated (also called releasing CG resources), the network device needs to send a PDCCH again.
  • the PDCCH carries a DCI for releasing CG resources.
  • the DCI indicates the CG resources that need to be released.
  • the format of the DCI meets the following conditions:
  • CRC is scrambled using the CS-RNTI provided in the RRC signaling;
  • HARQ Process Number is set to ‘0’; when multiple CGs are configured, HARQ Process Number will not be set to ‘0’, but will indicate the HARQ Process Number corresponding to the activated CG resources;
  • New data indicator (NDI) is set to ‘0’;
  • Redundancy version (RV) is set to ‘0’;
  • MCS is set to ‘1’;
  • FDRA Frequency domain resource allocation
  • the data sent by the terminal device to the network device is encoded data.
  • the periods of data generation by different tactile sensors may be different, such as generating 500 to 2000 data packets per second, and the size of each data packet is 12 to 48 bytes.
  • the duration of encoding the data generated by the tactile sensor may not be fixed, so that the data generated by each tactile sensor arrives at the terminal device randomly, and the time interval between two adjacent arrivals obeys the generalized Pareto distribution. Therefore, the amount of data arriving at the terminal device at different times may be different, and thus the amount of data sent by the terminal device to the network device at different times may be different.
  • data from three tactile sensors arrive at the terminal device, and the amount of data sent by the terminal device to the network device is the amount of data generated by these three tactile sensors;
  • data from four tactile sensors arrive at the terminal device, and the amount of data sent by the terminal device to the network device is the amount of data generated by these four tactile sensors.
  • the resources configured by the network device for the terminal device through the CG method are periodic, and the resources in each cycle are fixed. Combined with Figure 8, if a large amount of data arrives at the terminal device in a concentrated manner, that is, the amount of data that the terminal device wants to send to the network device is large, the resources in one cycle configured based on the CG may not be sufficient to transmit the large amount of data, and it is necessary to wait until the resources configured in the next cycle, which will cause a large delay in the terminal device sending data to the network device.
  • the embodiment of the present application provides a data transmission method, in which a terminal device receives first information from a network device; determines multiple candidate resources based on the first information; determines a target resource from multiple candidate resources based on a first data volume of the data to be sent; sends part or all of the data to be sent to the network device on the target resource; and sends second information to the network device, the second information being used to indicate the target resource.
  • the target resource for the terminal device to send data is determined by the terminal device from multiple candidate resources based on the actual amount of data to be sent, and the amount of data that can be transmitted by the multiple candidate resources can cover the amount of data that the terminal device has a high probability of transmitting, which is conducive to improving the probability of the terminal device completing data transmission within the range of multiple candidate resources, and further helps to reduce the delay of data transmission.
  • the operation of the terminal device sending the second information to the network device is also conducive to the network device determining the resources for receiving data, which can reduce the power consumption of the network device compared with the network device receiving data by blind detection.
  • the network device in the figure can also be a chip, a chip system, or a processor that supports the network device to implement the corresponding method, or a logic module or software that can implement all or part of the functions of the network device;
  • the terminal device in the figure can also be a chip, a chip system, or a processor that supports the terminal device to implement the corresponding method, or a logic module or software that can implement all or part of the functions of the terminal device.
  • FIG. 9 is a flow chart of a data transmission method provided in an embodiment of the present application.
  • the data transmission method is described from the perspective of interaction between a network device and a terminal device.
  • the data transmission method includes the following steps:
  • a network device sends first information to a terminal device, where the first information is used to determine a plurality of candidate resources.
  • the terminal device receives the first information from the network device.
  • the method may further include: the terminal device sends third information to the network device, the third information being used to indicate N second data amounts and the transmission probability corresponding to each of the N second data amounts; the transmission probability corresponding to each second data amount is the probability that the terminal device sends data having the second data amount to the network device; N is an integer greater than 1. Accordingly, the network device receives the third information from the terminal device; and determines a plurality of candidate resources based on the N second data amounts and the transmission probability corresponding to each second data amount.
  • the transmission probability corresponding to the second data amount may be a specific value or a range of values.
  • the third information may be carried by the BSR.
  • the terminal device needs to send data from the tactile sensor to the network device.
  • the second data volume may be the amount of data from the tactile transmitter that the terminal device predicts may reach the terminal device.
  • the transmission probability corresponding to the second data volume is It can be the probability that the amount of data from the tactile transmitter reaches the terminal device as predicted by the terminal device.
  • N is equal to 4, and the 4 second data amounts indicated by the third information include second data amount #1, second data amount #2, second data amount #3, and second data amount #4.
  • Table 1 exemplarily shows the transmission probability corresponding to each second data amount.
  • P1 , P2 , P3 , and P4 can be specific values or value ranges.
  • P1 is in the range of 0% to 25%
  • P2 is in the range of 25% to 50%
  • P3 is in the range of 50% to 75%
  • P4 is in the range of 75% to 100%; that is, the probability that the amount of data sent by the terminal device to the network device is the second amount of data #1 is 0% to 25%
  • the probability that the amount of data sent is the second amount of data #2 is 25% to 50%
  • the probability that the amount of data sent is the second amount of data #3 is 50% to 75%
  • the probability that the amount of data sent is the second amount of data #4 is 75% to 100%.
  • the network device can determine multiple candidate resources based on the second data volume predicted by the terminal device and the transmission probability corresponding to the second data volume, so that the data volume that can be transmitted by the determined multiple candidate resources can cover the data volume that the terminal device may send, thereby facilitating improving the probability that the terminal device completes data transmission within the range of multiple candidate resources, and facilitating reducing the delay in data transmission.
  • the operation of the terminal device predicting the third information and sending the third information to the network device can be performed before the actual data to be sent arrives at the terminal device. After receiving the third information, the network device can configure the terminal device with resources for transmitting the data to be sent.
  • the terminal device sends SR and BSR to the network device after the actual data to be sent arrives so that the network device configures resources, it can reduce the delay from the actual arrival of the data at the terminal device to the sending of the data to the network device.
  • a small rectangle containing “D” in FIG. 10 represents a time slot for downlink transmission
  • a small rectangle containing “S” represents a time slot for switching between downlink transmission and uplink transmission
  • a small rectangle containing “U” represents a time slot for uplink transmission.
  • the terminal device can predict the third information and send the third information to the network device before the actual time t1 when the data to be sent arrives at the terminal device. After receiving the third information, the network device can configure the resources in time slot #1 for transmitting the data to be sent for the terminal device.
  • Mode #2 is based on the dynamic scheduling of FIG. 3 .
  • the terminal device sends an SR to the network device in time slot #1 to request an uplink authorization from the network device, and sends a BSR to the network device in time slot #2 to inform the network device of the amount of data to be sent.
  • the network device configures the resources in time slot #3 for transmitting the data to be sent for the terminal device.
  • the time when the terminal device sends the data to be sent to the network device in method #1 is earlier than the time when the terminal device sends the data to be sent to the network device in method #2; that is, the delay from the time the data to be sent arrives at the terminal device until the terminal device sends the data to be sent to the network device in method #1 is less than the delay from the time the data to be sent arrives at the terminal device until the terminal device sends the data to be sent to the network device in method #2.
  • the method may further include: the network device sends fourth information to the terminal device, where the fourth information is used to indicate a value of N.
  • the fourth information may be carried by RRC signaling.
  • the network device may further configure fifth information in the RRC signaling, where the fifth information is used to indicate whether the network device requires the terminal device to report the third information.
  • the terminal device may further notify the network device through user assistant information (UAI): whether the terminal device has the ability to determine the third information.
  • UAI user assistant information
  • the method may further include: the network device determines multiple candidate resources according to the amount of data received from the terminal device in the first time period. In this way, the network device can count the amount of data received from the terminal device in a historical period of time (it can also count the time of receiving the amount of data), and predict the amount of data that the terminal device may send to the network device and the probability of sending the amount of data based on the counted amount of data, so that the amount of data that can be transmitted by the determined multiple candidate resources can cover the amount of data that the terminal device may send, thereby facilitating the improvement of the probability that the terminal device completes data transmission within the scope of multiple candidate resources, and facilitating the reduction of the delay of data transmission.
  • the operation of the network device to count the amount of data can be performed before the actual data to be sent arrives at the terminal device.
  • the network device After the network device determines the multiple candidate resources based on the counted amount of data, it can send the first information to the terminal device to configure the multiple candidate resources.
  • the terminal device sends SR and BSR to the network device after the actual data to be sent arrives so that the network device configures the resources, it can reduce the delay from the actual arrival of the data at the terminal device to the sending of the data by the terminal device to the network device.
  • the terminal device determines multiple candidate resources according to the first information.
  • At least two candidate resources overlap among the multiple candidate resources. Specifically, at least two candidate resources partially overlap among the multiple candidate resources, and/or at least two candidate resources among the multiple candidate resources have an inclusion relationship.
  • This method is advantageous in that in a scenario where a network device configures candidate resources for multiple terminal devices respectively, the candidate resources configured by the network device for each terminal device can be different or not completely the same, thereby reducing interference caused by data transmission by different terminal devices and improving resource utilization.
  • the partial overlap between at least two candidate resources means that some resources of each of the at least two candidate resources are the same. For example, in conjunction with FIG11, there are 4 candidate resources, and the 4 candidate resources partially overlap.
  • the rectangular box in FIG11 represents the candidate resources.
  • the gray part between the two dotted lines represents the overlapping part between the four candidate resources.
  • the inclusion relationship between two candidate resources means that all resources of one of the two candidate resources are the same as some resources of the other candidate resource, that is, one of the two candidate resources is a true subset of the other candidate resource.
  • a rectangular box is used in Figure 12 to represent each candidate resource, and the dotted line is used to illustrate that the starting positions of the four candidate resources are the same; in Figure 12, candidate resource #2, candidate resource #3 and candidate resource #4 are all true subsets of candidate resource #1, candidate resource #3 and candidate resource #4 are all true subsets of candidate resource #2, and candidate resource #4 is also a true subset of candidate resource #3; it can be seen that there is an inclusion relationship between any two candidate resources among the four candidate resources of candidate resource #1, candidate resource #2, candidate resource #3 and candidate resource #4.
  • candidate resource #1 is a true subset of candidate resource #2, that is, candidate resource #1 and candidate resource #2 have a containment relationship; candidate resource #2, candidate resource #3, and candidate resource #4 partially overlap.
  • the proportion of the overlapping part of at least two candidate resources to one of the at least two candidate resources is greater than or equal to a first threshold.
  • the value of the first threshold may be different.
  • the overlapping part of the four candidate resources accounts for a proportion greater than or equal to X1 % of candidate resource #1, a proportion greater than or equal to X2 % of candidate resource #2, a proportion greater than or equal to X3 % of candidate resource #3, and a proportion greater than or equal to X4 % of candidate resource #4.
  • the values of X1 , X2 , X3 and X4 may be different.
  • the first threshold may be predefined or manually set without limitation.
  • multiple candidate resources do not overlap with each other.
  • candidate resource #1, candidate resource #2, candidate resource #3, and candidate resource #4 do not overlap with each other.
  • the network device may send first information to the multiple terminal devices respectively, and the first information sent to different terminal devices is used to determine multiple candidate resources that are different or not completely the same.
  • the multiple candidate resources configured by the network device are arranged in descending order of resources, and the overlapping parts between the multiple candidate resources configured for different terminal devices are gradually reduced.
  • the dashed pattern and the rectangular box with a cross checkered pattern from the upper left to the lower right in Figure 15 represent the candidate resources determined by the terminal device #1 based on the first information #1
  • the dashed pattern and the rectangular box with a cross checkered pattern from the upper right to the lower left represent the candidate resources determined by the terminal device #2 based on the first information #2.
  • the rectangular box with a cross checkered pattern represents the overlapping part of the candidate resources determined based on the first information #1 and the candidate resources determined based on the first information #2; the dotted line on the left side indicates that the starting positions of the four candidate resources determined by the terminal device #1 are the same, and the dotted line on the right side indicates that the starting positions of the four candidate resources determined by the terminal device #2 are the same.
  • the network device sends first information #1 to terminal device #1.
  • the first information #1 is used by terminal device #1 to determine candidate resource #1A, candidate resource #2A, candidate resource #3A, and candidate resource #4A.
  • the network device sends first information #2 to terminal device #2.
  • the first information #2 is used by terminal device #2 to determine candidate resource #1B, candidate resource #2B, candidate resource #3B, and candidate resource #4B.
  • the partial overlap between multiple candidate resources for different terminal devices can improve resource utilization.
  • the overlapping part of candidate resource 3A with candidate resource #4B is used for terminal device #1 to send data
  • the remaining resources of candidate resource 3A except the overlapping part with candidate resource #4B are not used for terminal device #1 to send data. Since the remaining resources partially overlap with candidate resource 3B, part of the remaining resources can be used for terminal device #2 to send data. Compared with the non-overlap between candidate resource 3A and candidate resource 3B, resource waste is reduced and resource utilization is improved.
  • the multiple candidate resources are frequency domain resources, or time domain resources, or time-frequency domain resources.
  • the specific form of the first information used to determine the multiple candidate resources may be different.
  • the first information in the three cases of multiple candidate resources being frequency domain resources, multiple candidate resources being time domain resources, and multiple candidate resources being time-frequency domain resources is described below, as described in the following optional implementations 1.1 to 1.3.
  • Implementation 1.1 the case where multiple candidate resources are frequency domain resources.
  • the first information can be carried in the DCI and indicated by the FDRA in the DCI.
  • each of the multiple candidate resources is indicated by an FDRA, or multiple candidate resources are indicated by one FDRA.
  • the first information can be carried in the RRC, and the multiple candidate resources can be configured based on the CG of type 1.
  • the DCI may carry multiple FDRAs, each of which is used to indicate one of the multiple candidate resources.
  • the DCI may carry one FDRA, indicating The multiple FDRAs indicating multiple candidate resources are determined based on the FDRA carried by the DCI, and the pre-configured relationship between the multiple FDRAs and the FDRA carried by the DCI, and the pre-configured relationship can be carried in the RRC signaling.
  • the pre-configured relationship in the RRC signaling can be expressed as: the ratio of the multiple FDRAs used to indicate multiple candidate resources to the FDRA carried by the DCI, and the starting frequency domain positions of the candidate resources respectively indicated by the multiple FDRAs are the same as the starting frequency domain positions of the candidate resources indicated by the FDRA carried by the DCI.
  • FDRA#1 is used to indicate candidate resource #1
  • FDRA#2 is used to indicate candidate resource #2
  • FDRA#3 is used to indicate candidate resource #3
  • FDRA#4 is used to indicate candidate resource #4.
  • FDRA#1, FDRA#2, FDRA#3, and FDRA#4 are carried in DCI, and the terminal device determines candidate resource #1, candidate resource #2, candidate resource #3, and candidate resource #4, respectively, based on FDRA#1, FDRA#2, FDRA#3, and FDRA#4 carried in the DCI.
  • FDRA#1 is carried in the DCI, and the pre-configured relationship in the RRC signaling is expressed as follows: the starting frequency domain position of the candidate resources indicated by FDRA#2, FDRA#3, and FDRA#4 is the same as the starting frequency domain position of the candidate resources indicated by FDRA#1, and the proportions of the candidate resources indicated by FDRA#2, FDRA#3, and FDRA#4 to the candidate resources indicated by FDRA#1 are 80%, 70%, and 50%, respectively; then, after determining the candidate resource #1 indicated by FDRA#1, the terminal device uses the starting frequency domain position of candidate resource #1 as the starting frequency domain position of candidate resource #2, candidate resource #3, and candidate resource #4, determines 80% of the resources in candidate resource #1 as candidate resource #2, 70% of the resources in candidate resource #1 as candidate resource #3, and 50% of the resources in candidate resource #1 as candidate resource #4.
  • the DCI may carry one FDRA indicating multiple candidate resources; in this case, the multiple candidate resources indicated by one FDRA do not overlap.
  • the DCI may carry one FDRA indicating multiple resource block groups (RBGs), and the frequency domain resources of each RBG in the multiple RBGs are all candidate resources.
  • the RRC signaling may carry a frequency domain allocation (FrequencyDomainAllocation) field, which indicates multiple candidate resources. For example, it may indicate a continuous resource block (resource block) in the frequency domain.
  • FrequencyDomainAllocation frequency domain allocation
  • Implementation 1.2 the case where multiple candidate resources are time domain resources; the first information can be carried in RRC signaling.
  • each of the multiple candidate resources is configured by a field in the RRC signaling.
  • multiple fields can be added in the RRC signaling, and one of the multiple fields can be used to configure a candidate resource.
  • a field is used to carry the starting time domain position (such as: starting symbol) and time domain length (such as: symbol length) of a candidate resource, or a field is used to carry the starting time domain position (such as: starting symbol) and ending time domain position (such as: ending symbol) of a candidate resource, and so on.
  • the embodiment of the present application does not limit the content carried by the field used to configure the candidate resource.
  • the multiple fields added in the RRC signaling can be multiple starting symbols and lengths (startSymbolAndLength) fields added in the PUSCH-time domain resource allocation (time domain resource allocation, TDRA) configuration of the RRC signaling.
  • multiple candidate resources are configured by a field in the RRC signaling.
  • a field in the RRC signaling that configures a start symbol and a symbol length, and each of multiple symbols (Symbol) determined based on the start symbol and the symbol length is a candidate resource.
  • Implementation method 1.3 the case where multiple candidate resources are time-frequency domain resources.
  • the frequency domain position of each of the multiple candidate resources can be indicated by DCI or configured by RRC signaling; the time domain position of each of the multiple candidate resources can be configured by RRC signaling.
  • the way in which DCI indicates the frequency domain position of the candidate resources is similar to the way in which DCI indicates the frequency domain resources in implementation method 1.1, and the way in which RRC signaling configures the frequency domain position of the candidate resources is similar to the way in which RRC signaling configures the frequency domain resources in implementation method 1.1; the way in which RRC signaling configures the frequency domain position of the candidate resources is similar to the way in which RRC signaling configures the time domain resources in implementation method 1.2, and will not be repeated.
  • the terminal device determines a target resource from a plurality of candidate resources according to a first data volume of data to be sent.
  • the target resource may be at least one candidate resource among a plurality of candidate resources.
  • the method for determining the target resource may be as described in the following optional implementation modes 2.1 to 2.4.
  • the target resource may be a candidate resource among the multiple candidate resources whose amount of data that can be transmitted is greater than or equal to the first data amount and is closest to the first data amount.
  • the data amounts that can be transmitted by candidate resource #1, candidate resource #2, candidate resource #3, and candidate resource #4 are Q 1 , Q 2 , Q 3 , and Q 4 , respectively, and Q 1 > Q 2 > Q 3 > Q 4 .
  • the target resource is candidate resource #4; if the first data amount is greater than Q 4 and less than or equal to Q 3 , the target resource is candidate resource #3; if the first data amount is greater than Q 3 and less than or equal to Q 2 , the target resource is candidate resource #2; if the first data amount is greater than Q 2 and less than or equal to Q 1 , the target resource is candidate resource #1.
  • Implementation 2.2 The amount of data that can be transmitted by each of the multiple candidate resources is less than the first amount of data.
  • the target resource may be a candidate resource that can transmit the largest amount of data among the multiple candidate resources.
  • the amounts of data that can be transmitted by candidate resource #1, candidate resource #2, candidate resource #3, and candidate resource #4 are Q 1 , Q 2 , Q 3 , and Q 4 , respectively, and Q 1 > Q 2 > Q 3 > Q 4 .
  • implementation 2.1 and implementation 2.2 can be applied to the case where at least two candidate resources overlap among multiple candidate resources, and can also be applied to the case where multiple candidate resources do not overlap.
  • the target resource in addition to implementation 2.1 and implementation 2.2, can also be determined based on optional implementation 2.3 or optional implementation 2.4.
  • Implementation 2.3 Multiple candidate resources do not overlap each other, and the total amount of data that can be transmitted by the multiple candidate resources is greater than or equal to the first amount of data.
  • the target resource may be a group of candidate resources in the multiple groups of candidate resources whose amount of data that can be transmitted is greater than or equal to the first amount of data and is closest to the first amount of data, and each group of candidate resources in the multiple groups of candidate resources includes at least one candidate resource in the multiple candidate resources.
  • the data amounts that can be transmitted by candidate resource #1, candidate resource #2, and candidate resource #3 are Q 1 , Q 2 , and Q 3 , respectively.
  • candidate resources 1, 2, and 3 By selecting candidate resources 1, 2, and 3 from these three candidate resources, seven groups of candidate resources, namely group #1 to group #7, can be obtained.
  • the data amounts that can be transmitted by each group of candidate resources in group #1 to group #7 are respectively: Q 1 , Q 2 , Q 3 , Q 1 +Q 2 , Q 1 +Q 3 , Q 2 +Q 3 , Q 1 +Q 2 +Q 3 .
  • the target resource may be a group of candidate resources among the seven groups of candidate resources whose data amount capable of transmission is greater than or equal to the first data amount and is closest to the first data amount. Exemplarily, if Q1 + Q2 among the seven data amounts is greater than or equal to the first data amount and is closest to the first data amount, then the target resources are candidate resource #2 and candidate resource #3 in group #4.
  • the network device configures M consecutive symbols for the terminal device, each of the M symbols is a candidate resource, and the total amount of data that can be transmitted by the M symbols is greater than or equal to the first data amount; the terminal device can determine from the M symbols, m consecutive symbols whose amount of data that can be transmitted is equal to the first data amount, and the m symbols are the target resources; wherein M is an integer greater than 1, and m is a positive integer less than or equal to M.
  • Implementation method 2.4 when multiple candidate resources do not overlap, and the total amount of data that can be transmitted by the multiple candidate resources is less than the first data amount, in this case, the target resources can be the multiple candidate resources.
  • the amount of data that can be transmitted by candidate resource #1, candidate resource #2, and candidate resource #3 is Q 1 , Q 2 , and Q 3 , respectively, and Q 1 + Q 2 + Q 3 is less than the first data amount, then the target resources are candidate resource #1, candidate resource #2, and candidate resource #3.
  • the network device configures M consecutive symbols for the terminal device, each of the M symbols is a candidate resource, and the total amount of data that can be transmitted by the M symbols is less than the first data amount, then the M symbols are all target resources.
  • the first data amount may be a buffer size of the terminal device.
  • the first data amount may be a buffer size corresponding to a logical channel in the terminal device for transmitting data to be sent.
  • S104 The terminal device sends second information to the network device, where the second information is used to indicate the target resource.
  • the network device receives the second information from the terminal device.
  • the terminal device when the multiple candidate resources are frequency domain resources or time-frequency domain resources, the terminal device sends the second information to the network device, which may include: the terminal device sends a demodulation reference signal (DMRS) to the network device, and the second information is carried by the frequency domain position of the DMRS; correspondingly, the network device receives the DMRS from the terminal device.
  • DMRS demodulation reference signal
  • the frequency domain position of the DMRS indicates the frequency domain position of the target resource, so the network device can determine the frequency domain position of the detected DMRS as the frequency domain position of the target resource.
  • a field may be added to the RRC signaling, which may be used to indicate whether the terminal device is allowed to send DMRS on some or all of the multiple candidate resources. If the field indicates that the terminal device is allowed to send DMRS on some or all of the multiple candidate resources, then the terminal device may send DMRS on some of the multiple candidate resources, or may send DMRS on all of the multiple candidate resources, but is not required to send DMRS on all of the multiple candidate resources.
  • a field may be added to the RRC signaling, which may be used to indicate the granularity of the resources used to send DMRS in the multiple candidate resources.
  • the ratio of the resources used to send DMRS in the multiple candidate resources is a positive integer multiple of the granularity
  • the ratio of the target resources in the multiple candidate resources is also a positive integer multiple of the granularity.
  • the number of candidate resources is 16, and each RGB in the 16 RBGs is a candidate resource.
  • the granularity indicated by the field added in the RRC signaling is Then, the ratio of resources used to send DMRS to 16 RBGs is or or or or or or or 1, that is, the resources used to send the DMRS are 2 RBGs, 4 RBGs, 6 RBGs, 8 RBGs, 10 RBGs, 12 RBGs, 14 RBGs, or 16 RBGs among the 16 RBGs.
  • Another optional method is to add a field in the configuration for PUSCH to indicate whether the terminal device is allowed to send DMRS on some or all of multiple candidate resources, and/or a field to indicate the granularity of the resources used to send DMRS among multiple candidate resources.
  • the second information is carried by uplink control information (UCI).
  • UCI uplink control information
  • the second information may be carried by configuration authorization uplink control information (CG-UCI).
  • CG-UCI configuration authorization uplink control information
  • the second information indicates the index of the target resource.
  • multiple candidate resources are frequency domain resources or time-frequency domain resources, and the frequency domain position of each of the multiple candidate resources is indicated by an FDRA, respectively.
  • the second information indicates the index of the FDRA corresponding to the target resource, and the starting frequency domain position of the transmitted UCI can be the same as the starting frequency domain position of the target resource.
  • multiple candidate resources are time domain resources
  • the first information configures the starting time domain position and time domain length of each of the multiple candidate resources
  • the second information indicates the starting time domain position and time domain length of the target resource.
  • a field can be added to the UCI of format 2, format 3 or format 4, which is used to carry the index of the target resource.
  • the second information indicates the ratio of the target resource to the multiple candidate resources.
  • This method is applicable to the scenario where the multiple candidate resources do not overlap each other, and the value of the bit carrying the second information in the DCI may be different when the ratio of the target resource to the multiple candidate resources is different.
  • an FDRA in the DCI indicates the frequency domain resources of multiple RBGs, and the frequency domain resources of each RBG in the multiple RBGs are all candidate resources.
  • the target resource is the frequency domain resource of at least one RBG in the multiple RBGs starting with the RBG with the smallest frequency.
  • the value of the bit that carries the second information in the UCI of the network device is 0, it can be determined that the frequency domain resources of half of the RBGs in the multiple RBGs starting with the RBG with the smallest frequency domain in the multiple RBGs are the target resources; when the value of the bit that carries the second information in the UCI is 1, it can be determined that the multiple RBGs are all target resources.
  • multiple symbols are configured for the terminal device through RRC signaling, each of the multiple symbols is a candidate resource, the target resource is at least one symbol of the multiple symbols, and the starting symbol of the at least one symbol is the same as the starting symbol of the multiple symbols.
  • the ratio of the target resource to the multiple symbols is 0.5
  • the value of the bit carrying the second information in the UCI is 0
  • the ratio of the target resource to the multiple symbols is 1, the value of the bit carrying the second information in the UCI is 1.
  • the second information indicates a resource indicator value (RIV) corresponding to the target resource.
  • RIV resource indicator value
  • the second information indicates a bitmap
  • each bit in the bitmap corresponds to at least one candidate resource among the multiple candidate resources
  • the value of each bit is used to indicate whether the candidate resource corresponding to the bit belongs to the target resource.
  • the value of the bit can be "0" or "1" to indicate whether the candidate resource corresponding to the bit belongs to the target resource.
  • the candidate resource corresponding to the bit belongs to the target resource, and when the value of the bit is "0", the candidate resource corresponding to the bit does not belong to the target resource; or, when the value of the bit is "1", the candidate resource corresponding to the bit does not belong to the target resource, and when the value of the bit is "0", the candidate resource corresponding to the bit belongs to the target resource.
  • the value of the bit can also be expressed in other ways, for example, when the value of the bit is "true”, it indicates that the candidate resource corresponding to the bit belongs to the target resource, and when the value of the bit is "false", it indicates that the candidate resource corresponding to the bit does not belong to the target resource, without limitation.
  • an FDRA in the DCI indicates the frequency domain resources of 8 RBGs (RBG#1 to RBG#8, in sequence), and the frequency domain resources of each of the 8 RBGs are candidate resources; the bitmap includes 8 bits, and the 8 bits correspond to the 8 RBGs one by one.
  • the target resource is the frequency domain resource of RBG#1 to RBG#4
  • the values of the 8 bits are 1, 1, 1, 1, 0, 0, 0, 0, in sequence, where when the value of the bit is "1", the candidate resource corresponding to the bit belongs to the target resource, and when the value of the bit is "0", the candidate resource corresponding to the bit does not belong to the target resource; the bitmap is expressed as [1,1,1,0,0,0,0].
  • S105 The terminal device sends part or all of the data to be sent to the network device on the target resource.
  • the network device receives the data from the terminal device on the target resource.
  • the terminal device when the amount of data that the target resource can transmit is less than the first data amount, the terminal device sends part of the data to be sent to the network device on the target resource; when the amount of data that the target resource can transmit is greater than or equal to the first data amount, the terminal device sends all the data to be sent to the network device on the target resource.
  • the embodiment of the present application does not restrict the order of the two operations of the terminal device sending the second information to the network device, and the terminal device sending part or all of the data to be sent to the network device on the target resource.
  • the operation of the terminal device sending the second information to the network device may precede the operation of the terminal device sending part or all of the data to be sent to the network device on the target resource, or may be later than the operation of the terminal device sending part or all of the data to be sent to the network device on the target resource; when the second information is carried by the UCI, the terminal device may also perform these two operations at the same time, that is, the terminal device simultaneously sends the second information to the network device and sends part or all of the data to be sent to the network device on the target resource.
  • the network device after the network device receives the second information from the terminal device to determine the target resource, it receives the data from the terminal device on the target resource.
  • the terminal device receives first information from the network device; determines multiple candidate resources based on the first information; determines the target resource from the multiple candidate resources based on the first data volume of the data to be sent; sends part or all of the data to be sent to the network device on the target resource; sends second information to the network device, and the second information is used to indicate the target resource.
  • This method is equivalent to the network device allocating a "resource pool” consisting of multiple candidate resources to the terminal device, and the terminal device can select matching resources from the "resource pool” to send the data to be sent based on the actual data volume of the data to be sent.
  • the data volume that can be transmitted by the multiple candidate resources in the "resource pool” can cover The amount of data that the terminal device transmits with a high probability is conducive to improving the probability of the terminal device completing data transmission within the range of multiple candidate resources, thereby helping to reduce the delay of data transmission.
  • the operation of the terminal device sending the second information to the network device is also conducive to the network device determining the resources for receiving data, which can reduce the power consumption of the network device compared to the network device receiving data by blind detection.
  • the first information can be used to determine the multiple frequency domain resources
  • the second information can be used to indicate a frequency domain resource determined by the terminal device among the multiple frequency domain resources.
  • the network device sends first information to the terminal device; correspondingly, the terminal device receives the first information.
  • the terminal device determines a plurality of frequency domain resources according to the first information.
  • the network device may indicate multiple FDRAs in the DCI, the multiple FDRAs correspond one-to-one to multiple frequency domain resources, and each frequency domain resource in the multiple frequency domain resources is indicated by a corresponding FDRA. Furthermore, the terminal device may determine multiple frequency domain resources based on the multiple FDRAs indicated in the DCI.
  • the network device may indicate an FDRA in the DCI, and configure a pre-configured relationship between multiple FDRAs and the FDRA indicated in the DCI in the RRC signaling; the multiple FDRAs correspond one-to-one to multiple frequency domain resources, and each frequency domain resource in the multiple frequency domain resources is indicated by a corresponding FDRA. Furthermore, the terminal device may determine multiple frequency domain resources indicated by multiple FDRAs based on an FDRA indicated in the DCI and the pre-configured relationship configured in the RRC signaling.
  • At least two frequency domain resources among the multiple frequency domain resources partially overlap, and/or at least two frequency domain resources among the multiple frequency domain resources have an inclusion relationship.
  • the multiple frequency domain resources do not overlap.
  • the terminal device determines a frequency domain resource from multiple frequency domain resources according to a first data amount of data to be sent.
  • the determined frequency domain resource is a frequency domain resource among the multiple frequency domain resources that can transmit an amount of data greater than or equal to the first amount of data and is closest to the first amount of data.
  • the determined frequency domain resource is the frequency domain resource that can transmit the largest amount of data among the multiple frequency domain resources.
  • the terminal device sends second information to the network device, where the second information is used to indicate the frequency domain resources determined by the terminal device; accordingly, the network device receives the second information from the terminal device, and then the network device can obtain the frequency domain resources determined by the terminal device based on the received second information.
  • the second information is carried by UCI, and the second information indicates the index of the FDRA corresponding to the frequency domain resources determined by the terminal device.
  • the starting position of the frequency domain resources used to transmit the UCI may be the same as the starting position of the frequency domain resources determined by the terminal device.
  • the terminal device sends part or all of the data to be sent to the network device on the determined frequency domain resources; correspondingly, the network device receives the data from the terminal device on the frequency domain resources determined by the terminal device.
  • the embodiment of the present application does not limit the order of the operation of the terminal device sending the second information to the network device and the operation of the terminal device sending part or all of the data to be sent to the network device on the determined frequency domain resources.
  • S21 corresponds to S101 in the method of FIG. 9
  • S22 corresponds to S102 in FIG. 9
  • S23 corresponds to S103 in FIG. 9
  • S24 corresponds to S104 in FIG. 9
  • S25 corresponds to S105 in FIG. 9 .
  • this embodiment may also include other implementations of the data transmission method shown in FIG. 9 , which also have corresponding beneficial effects and are not described in detail.
  • the terminal device can determine a frequency domain resource from multiple frequency domain resources configured by the network device for sending the data to be sent based on the actual amount of data to be sent.
  • the amount of data that can be transmitted by the multiple frequency domain resources can cover the amount of data that the terminal device is likely to transmit, which is beneficial to improving the probability of the terminal device completing data transmission within the range of multiple frequency domain resources, and further helps to reduce the delay of data transmission.
  • the first information can be used to determine the multiple time domain resources
  • the second information can be used to indicate a time domain resource determined by the terminal device among the multiple time domain resources.
  • the network device sends first information to the terminal device; correspondingly, the terminal device receives the first information.
  • the terminal device determines multiple time domain resources based on the first information.
  • the network device may add multiple fields to the TDRA of the RRC signaling, the multiple resources correspond one-to-one to the multiple time domain resources, and each of the multiple time domain resources is indicated by a corresponding field.
  • the multiple fields in the TDRA of the command determine the multiple time domain resources.
  • each of the multiple fields can indicate the time domain starting position and time domain length of the time domain resource corresponding to the field.
  • At least two of the multiple time domain resources partially overlap, and/or at least two of the multiple time domain resources have an inclusion relationship.
  • the multiple time domain resources do not overlap.
  • the terminal device determines a time domain resource from multiple time domain resources according to the first data volume of the data to be sent.
  • the determined time domain resource is a time domain resource among the multiple time domain resources that can transmit a data amount greater than or equal to the first data amount and is closest to the first data amount.
  • the determined time domain resource is the time domain resource that can transmit the largest amount of data among the multiple time domain resources.
  • the terminal device sends second information to the network device, where the second information is used to indicate the time domain resources determined by the terminal device; accordingly, the network device receives the second information from the terminal device, and then the network device can obtain the time domain resources determined by the terminal device based on the received second information.
  • the second information is carried by UCI, and the second information indicates the starting time domain position and time domain length of the time domain resources determined by the terminal device.
  • the terminal device sends part or all of the data to be sent to the network device in the determined time domain resources; correspondingly, the network device receives the data from the terminal device in the time domain resources determined by the terminal device.
  • the embodiment of the present application does not limit the order of the operation of the terminal device sending the second information to the network device and the operation of the terminal device sending part or all of the data to be sent to the network device on the determined time domain resources.
  • S31 corresponds to S101 in the method of FIG. 9
  • S32 corresponds to S102 in FIG. 9
  • S33 corresponds to S103 in FIG. 9
  • S34 corresponds to S104 in FIG. 9
  • S35 corresponds to S105 in FIG. 9 .
  • this embodiment may also include other implementations of the data transmission method shown in FIG. 9 , which also have corresponding beneficial effects and are not described in detail.
  • the terminal device can determine a time domain resource from multiple time domain resources configured by the network device for sending the data to be sent based on the actual amount of data to be sent.
  • the amount of data that can be transmitted by these multiple time domain resources can cover the amount of data that the terminal device is likely to transmit, which is beneficial to increasing the probability of the terminal device completing data transmission within the range of multiple time domain resources, and further helps to reduce the delay of data transmission.
  • the interaction between the terminal device and the network device may include but is not limited to the following steps:
  • the network device sends first information to the terminal device; correspondingly, the terminal device receives the first information.
  • the first information is carried by DCI.
  • the terminal device determines multiple RBGs based on the first information.
  • the terminal device determines at least one RBG from among multiple RBGs according to a first data amount of data to be sent.
  • the terminal device sends second information to the network device, where the second information is used to indicate at least one RBG determined by the terminal device. Accordingly, the network device receives the second information from the terminal device, and the network device can learn the at least one RBG determined by the terminal device based on the received second information.
  • the second information indicates the ratio of the at least one determined RBG to the multiple RBGs.
  • the second information indicates RIV, which can characterize the position distribution of the at least one determined RBG in the multiple RBGs and the at least one determined RBG is continuously distributed in the multiple RBGs.
  • the second information indicates a bitmap, in which each bit corresponds to at least one RBG in the multiple RBGs, and the value of each bit is used to characterize whether the frequency domain resources of the RBG corresponding to the bit are used for the terminal device to send data to be sent.
  • the terminal device sends the second information to the network device, including: the terminal device sends a DMRS to the network device, and the second information is carried by the frequency domain position of the DMRS.
  • the terminal device sends part or all of the data to be sent to the network device on the determined frequency domain resources of at least one RBG; correspondingly, the network device receives the data from the terminal device.
  • the embodiment of the present application does not limit the order of the operation of the terminal device sending the second information to the network device and the operation of the terminal device sending part or all of the data to be sent to the network device on the frequency domain resources of at least one determined RBG.
  • S41 corresponds to S101 in the method of FIG. 9
  • S42 corresponds to S102 in FIG. 9
  • S43 corresponds to S103 in FIG. 9
  • S44 corresponds to S104 in FIG. 9
  • S45 corresponds to S105 in FIG. 9 .
  • this embodiment may also include other implementations of the data transmission method shown in FIG. 9 , and there are also The corresponding beneficial effects will not be elaborated on here.
  • the interaction between the terminal device and the network device may include but is not limited to the following steps:
  • the network device sends first information to the terminal device; correspondingly, the terminal device receives the first information.
  • the first information is carried by RRC signaling.
  • S52 The terminal device determines multiple symbols according to the first information.
  • the terminal device determines at least one symbol from a plurality of symbols according to a first data amount of data to be sent.
  • the terminal device sends second information to the network device, the second information is used to indicate at least one symbol determined by the terminal device. Accordingly, the network device receives the second information from the terminal device, and then the network device can learn the at least one symbol determined by the terminal device based on the received second information.
  • the second information indicates the ratio of the determined at least one symbol to the multiple symbols.
  • the second information indicates a bitmap, each bit in the bitmap corresponds to at least one symbol among the multiple symbols, and the value of each bit is used to indicate whether the symbol corresponding to the bit is used for the terminal device to send data to be sent.
  • the terminal device sends part or all of the data to be sent to the network device on at least one determined symbol; correspondingly, the network device receives the data from the terminal device.
  • the embodiment of the present application does not limit the order of the operation of the terminal device sending the second information to the network device and the operation of the terminal device sending part or all of the data to be sent to the network device on at least one determined symbol.
  • S51 corresponds to S101 in the method of FIG. 9
  • S52 corresponds to S102 in FIG. 9
  • S53 corresponds to S103 in FIG. 9
  • S54 corresponds to S104 in FIG. 9
  • S55 corresponds to S105 in FIG. 9 .
  • this embodiment may also include other implementations of the data transmission method shown in FIG. 9 , which also have corresponding beneficial effects and are not described in detail.
  • the interaction between the terminal device and the network device may include but is not limited to the following steps:
  • the network device sends first information to the terminal device; correspondingly, the terminal device receives the first information; the first information is used to determine multiple candidate resources.
  • the first information can be carried by RRC signaling.
  • the first information may be carried by RRC signaling.
  • the first information may be carried by DCI.
  • the time domain positions of the multiple candidate resources indicated by the first information may be carried by RRC signaling, and the frequency domain positions of the multiple candidate resources may be carried by DCI.
  • the terminal device determines multiple candidate resources based on the first information.
  • the terminal device determines a target resource from a plurality of candidate resources according to a first data volume of data to be sent.
  • the terminal device sends second information to the network device, where the second information is used to indicate the target resource. Accordingly, the network device receives the second information from the terminal device, and the network device can determine the target resource based on the received second information.
  • the second information can be carried by the CG-UCI.
  • the terminal device sends part or all of the data to be sent to the network device on the target resource; correspondingly, the network device receives the data from the terminal device on the target resource.
  • S61 corresponds to S101 in the method of FIG9
  • S62 corresponds to S102 in FIG9
  • S63 corresponds to S103 in FIG9
  • S64 corresponds to S104 in FIG9
  • S65 corresponds to S105 in FIG9 .
  • this embodiment may also include other implementations of the data transmission method shown in FIG9 , which also have corresponding beneficial effects and are not described in detail.
  • the network device or terminal device may include a hardware structure and/or a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. It can be implemented in the form of hardware structure, software module, or hardware structure plus software module, depending on the specific application and design constraints of the technical solution.
  • an embodiment of the present application provides a communication device 1600.
  • the communication device 1600 may be a component of a network device (for example, an integrated circuit, a chip, etc.), or a component of a terminal device (for example, an integrated circuit, a chip, etc.).
  • the communication device 1600 may also be other communication units for implementing the method in the method embodiment of the present application.
  • the communication device 1600 may include: a communication unit 1601 and a processing unit 1602. Among them, the processing unit 1602 is used to control the communication unit 1601 to send and receive data/signaling.
  • the communication device 1600 may also include a storage unit 1603.
  • the communication unit 1601 is used to receive first information from a network device.
  • the processing unit 1602 is used to determine multiple candidate resources based on the first information; the processing unit 1602 is also used to determine a target resource from multiple candidate resources based on a first data volume of the data to be sent.
  • the communication unit 1601 is also used to send part or all of the data to be sent to the network device on the target resource; the communication unit 1601 is also used to send second information to the network device, and the second information is used to indicate the target resource.
  • the multiple candidate resources are frequency domain resources, or time domain resources, or time-frequency domain resources.
  • a proportion of the overlapping portion of at least two candidate resources to one of the at least two candidate resources is greater than a first threshold.
  • the multiple candidate resources do not overlap with each other.
  • the multiple candidate resources are frequency domain resources or time-frequency domain resources; the communication unit 1601 sends the second information to the network device, specifically used to: send DMRS to the network device, and the second information is carried by the frequency domain position of the DMRS.
  • the second information is carried by UCI.
  • the second information indicates an index of the target resource; or, the second information indicates a proportion of the target resource to multiple candidate resources.
  • the communication unit 1601 is used to send first information to the terminal device, and the first information is used to determine multiple candidate resources; the communication unit 1601 is also used to receive second information from the terminal device, and the second information is used to indicate a target resource; the target resource belongs to multiple candidate resources; the communication unit 1601 is also used to receive data from the terminal device on the target resource.
  • the multiple candidate resources are frequency domain resources, or time domain resources, or time-frequency domain resources.
  • a proportion of the overlapping portion of at least two candidate resources to one of the at least two candidate resources is greater than a first threshold.
  • the multiple candidate resources do not overlap with each other.
  • the multiple candidate resources are frequency domain resources or time-frequency domain resources; the communication unit 1601 receives the second information from the terminal device, specifically for: receiving the DMRS from the terminal device, the second information is carried by the frequency domain position of the DMRS.
  • the second information is carried by UCI.
  • the second information indicates an index of the target resource; or, the second information indicates a proportion of the target resource to multiple candidate resources.
  • the embodiment of the present application also provides a communication device 1700, as shown in Figure 17.
  • the communication device 1700 can be a network device or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment, and the details can be referred to the description in the above method embodiment.
  • the communication device 1700 may include one or more processors 1701.
  • the processor may be used to implement part or all of the functions of the above-mentioned network device or terminal device through a logic circuit or running a computer program.
  • the processor 1701 may be a general-purpose processor or a dedicated processor, etc. For example, it may be a baseband processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component or a central processing unit (CPU).
  • CPU central processing unit
  • the baseband processor may be used to process the communication protocol and the communication data
  • the central processing unit may be used to control the communication device (such as a base station, a baseband chip, a terminal, a terminal chip, a DU or a CU, etc.), execute the software program, and process the data of the software program.
  • the communication device 1700 may include one or more memories 1702, on which instructions 1704 may be stored.
  • the instructions may be executed on the processor 1701, so that the communication device 1700 performs the method described in the above method embodiment. Data may also be stored.
  • the processor 1701 and the memory 1702 may be provided separately or integrated together.
  • Memory 1702 may include, but is not limited to, non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), random access memory (RAM), erasable programmable ROM (EPROM), ROM or portable read-only memory (compact disc read-only memory, CD-ROM), etc.
  • non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), random access memory (RAM), erasable programmable ROM (EPROM), ROM or portable read-only memory (compact disc read-only memory, CD-ROM), etc.
  • the communication device 1700 may further include a transceiver 1705 and an antenna 1706.
  • the transceiver 1705 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 1705 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication device 1700 is a terminal device: the transceiver 1705 is used to receive first information from the network device.
  • the processor 1701 is used to determine multiple candidate resources according to the first information; the processor 1701 is also used to determine the target resource among the multiple candidate resources according to the first data volume of the data to be sent.
  • the transceiver 1705 is also used to send part or all of the data to be sent to the network device on the target resource; the transceiver 1705 is also used to send second information to the network device, and the second information is used to indicate the target resource.
  • the multiple candidate resources are frequency domain resources, or time domain resources, or time-frequency domain resources.
  • a proportion of the overlapping portion of at least two candidate resources to one of the at least two candidate resources is greater than a first threshold.
  • the multiple candidate resources do not overlap with each other.
  • the multiple candidate resources are frequency domain resources or time-frequency domain resources; the transceiver 1705 sends the second information to the network device, specifically used to: send DMRS to the network device, and the second information is carried by the frequency domain position of the DMRS.
  • the second information is carried by UCI.
  • the second information indicates an index of the target resource; or, the second information indicates a proportion of the target resource to multiple candidate resources.
  • the communication device 1700 is a network device: the transceiver 1705 is used to send first information to the terminal device, and the first information is used to determine multiple candidate resources; the transceiver 1705 is also used to receive second information from the terminal device, and the second information is used to indicate a target resource; the target resource belongs to multiple candidate resources; the transceiver 1705 is also used to receive data from the terminal device on the target resource.
  • the multiple candidate resources are frequency domain resources, or time domain resources, or time-frequency domain resources.
  • a proportion of the overlapping portion of at least two candidate resources to one of the at least two candidate resources is greater than a first threshold.
  • the multiple candidate resources do not overlap with each other.
  • the multiple candidate resources are frequency domain resources or time-frequency domain resources; the transceiver 1705 receives the second information from the terminal device, specifically for: receiving a DMRS from the terminal device, the second information being carried by the frequency domain position of the DMRS.
  • the second information is carried by UCI.
  • the second information indicates an index of the target resource; or, the second information indicates a proportion of the target resource to multiple candidate resources.
  • the processor 1701 may include a transceiver for implementing the receiving and sending functions.
  • the transceiver may be a transceiver circuit, a communication interface, or an interface circuit.
  • the transceiver circuit, communication interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, communication interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, communication interface, or interface circuit may be used for transmitting or delivering signals.
  • the processor 1701 may store an instruction 1703, and the instruction 1703 runs on the processor 1701, which can enable the communication device 1700 to perform the method described in the above method embodiment.
  • the instruction 1703 may be solidified in the processor 1701, in which case the processor 1701 may be implemented by hardware.
  • the communication device 1700 may include a circuit that can implement the functions of sending, receiving or communicating in the aforementioned method embodiments.
  • the processor and transceiver described in the embodiments of the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit (RFIC), a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • IC integrated circuit
  • RFIC radio frequency integrated circuit
  • ASIC application specific integrated circuit
  • PCB printed circuit board
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS N-type metal oxide semiconductor
  • PMOS P-type metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the embodiments of the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 17.
  • the communication device may be an independent device or may be part of a larger device.
  • the communication device may be:
  • the IC set may also include a storage component for storing data and instructions;
  • ASIC such as a modem
  • the communication device can be a chip or a chip system
  • the chip 1800 shown in Figure 18 includes a processor 1801 and a communication interface 1802.
  • the number of processors 1801 can be one or more, and the number of communication interfaces 1802 can be multiple.
  • the processor 1801 can be a logic circuit, and the communication interface 1802 can be an input-output interface, an input interface, or an output interface.
  • the chip 1800 may also include a memory 1803.
  • the communication interface 1802 is used to receive first information from the network device.
  • the processor 1801 is used to determine multiple candidate resources according to the first information; the processor 1801 is also used to determine the target resource from the multiple candidate resources according to the first data volume of the data to be sent.
  • the communication interface 1802 is also used to send part or all of the data to be sent to the network device on the target resource; the communication interface 1802 is also used to send second information to the network device, and the second information is used to indicate the target resource.
  • Communication interface 1802 is used to send first information to a terminal device, and the first information is used to determine multiple candidate resources; communication interface 1802 is also used to receive second information from the terminal device, and the second information is used to indicate a target resource; the target resource belongs to multiple candidate resources; communication interface 1802 is also used to receive data from the terminal device on the target resource.
  • the communication device 1700 and the chip 1800 can also execute the implementation method described in the above-mentioned communication device 1600.
  • the various illustrative logical blocks and steps listed in the embodiment of the present application can be implemented by electronic hardware, computer software, or a combination of the two. Whether such functions are implemented by hardware or software depends on the specific application and the design requirements of the entire system. Those skilled in the art can use various methods to implement the described functions for each specific application, but such implementation should not be understood as exceeding the scope of protection of the embodiments of the present application.
  • the present application also provides a computer-readable storage medium for storing computer software instructions, which, when executed by a communication device, implement the functions of any of the above method embodiments.
  • the present application also provides a computer program product for storing computer software instructions, which, when executed by a communication device, implement the functions of any of the above method embodiments.
  • the present application also provides a computer program, which, when executed on a computer, implements the functions of any of the above method embodiments.
  • the present application also provides a communication system, which includes at least one network device and at least one terminal device in the above aspects.
  • the system may also include other devices that interact with the network device and the terminal device in the solution provided by the present application.
  • all or part of the embodiments can be implemented by software, hardware, firmware or any combination thereof.
  • all or part of the embodiments can be implemented in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.)
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more available media.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., an SSD).
  • “at least one” means one or more, and “more than one” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the previous and next associated objects are in an “or” relationship; in the formula of this application, the character “/” indicates that the previous and next associated objects are in a "division” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及装置,该数据传输方法中,终端设备接收来自网络设备的第一信息;根据第一信息,确定多个候选资源;根据待发送数据的第一数据量,在多个候选资源中确定目标资源;在目标资源上向网络设备发送待发送数据的部分或全部数据;向网络设备发送第二信息,第二信息用于指示目标资源。可见,目标资源是终端设备基于实际待发送的数据量从多个候选资源中确定的,该多个候选资源能够传输的数据量可覆盖终端设备大概率发送的数据量,有利于提高在多个候选资源的范围内完成数据传输的概率,进而有利于减少数据传输的时延。

Description

数据传输方法及装置
本申请要求于2022年11月1日提交中国国家知识产权局、申请号为202211354633.3、申请名称为“数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
多模态业务是一种在扩展现实(extended reality,XR)的基础上增加了触觉体验维度的业务,其可以实现远程触摸和远程操控,包括视觉、听觉、触觉、动觉等多方面的远程感知。
多模态业务中的触觉传感器可周期性地产生数据;网络设备通过配置授权传输(configured grant,CG)的方式为终端设备配置周期性的资源,从而终端设备在配置的资源上向网络设备发送触觉传感器所产生的数据。
然而,由于触觉传感器的个数可能是多个,且终端设备对每个触觉传感器产生的数据进行编码的用时可能不同,因此终端设备在不同时间发送的编码后的数据可能来自不同数量的触觉传感器,也就是说,终端设备在不同时间向网络设备发送的数据量可能不同。而基于CG配置的每个周期内的资源都是固定的,如果终端设备要向网络设备发送的数据量较大,基于CG配置的一个周期内的资源可能不足够传输大数据量的数据,还需进行等待直至下一周期内配置的资源,这会导致终端设备向网络设备发送数据的时延较大。
发明内容
本申请实施例提供一种数据传输方法及装置,能够减少终端设备向网络设备发送数据的时延。
第一方面,本申请提供一种数据传输方法,该方法可应用于终端设备,也可以应用于终端设备中的芯片,还可以应用于能实现全部或部分终端设备功能的逻辑模块或软件。下面以终端设备为例进行描述。该方法包括:终端设备接收来自网络设备的第一信息;根据第一信息,确定多个候选资源;根据待发送数据的第一数据量,在多个候选资源中确定目标资源;终端设备在目标资源上向网络设备发送待发送数据的部分或全部数据;向网络设备发送第二信息,第二信息用于指示目标资源。
可见,用于发送数据的目标资源是终端设备基于实际待发送的数据量从多个候选资源中确定的,该多个候选资源能够传输的数据量可覆盖终端设备大概率传输的数据量,有利于提高终端设备在多个候选资源的范围内完成待发送数据传输的概率,进而有利于减少数据传输的时延。另外,终端设备向网络设备发送第二信息的操作还有利于网络设备确定用于接收来自终端设备的数据的资源,相比于网络设备通过盲检的方式确定用于接收数据的资源,有利于节省网络设备接收数据的功耗。
在一种可选的实施方式中,多个候选资源是频域资源,或是时域资源,或是时频域资源。
在一种可选的实施方式中,多个候选资源中存在至少两个候选资源重叠。该方式有利于在网络设备为多个终端设备分别配置候选资源的场景下,为每个终端设备配置的候选资源可以不同或不完全相同,从而有利于减少终端设备发送数据受到其他终端设备发送数据的干扰,还可以提高资源利用率。
在一种可选的实施方式中,至少两个候选资源的重叠部分占至少两个候选资源中的一个候选资源的比例大于第一阈值。
在一种可选的实施方式中,多个候选资源互不重叠。该方式有利于增加多个候选资源一共能够传输的数据量,进而可增加终端设备在多个候选资源的范围内能够传输的数据量,有利于提高在多个候选资源的范围内能够传输大数据量的概率,进而有利于减少终端设备发送待发送数据的时延。
在一种可选的实施方式中,多个候选资源是频域资源或是时频域资源;终端设备向网络设备发送第二信息,包括:终端设备向网络设备发送解调参考信号(demodulation reference signal,DMRS),第二信息由DMRS的频域位置承载。该方式有利于网络设备可通过检测DMRS的频域位置来确定目标资源的频域位置,进而有利于节省网络设备接收数据的功耗。
在一种可选的实施方式中,第二信息由上行控制信息(uplink control information,UCI)承载。也就是说,终端设备可以通过UCI将目标资源告知给网络设备,有利于网络设备获知目标资源,进而有利于节省 网络设备接收数据的功耗。
在一种可选的实施方式中,第二信息指示目标资源的索引;或者,第二信息指示目标资源占多个候选资源的比例。该方式有利于网络设备可通过目标资源的索引或者目标资源占多个候选资源的比例来确定目标资源,从而能够在目标资源上接收来自终端设备的数据,还有利于节省网络设备接收数据的功耗。
第二方面,本申请提供一种数据传输方法,该方法可应用于网络设备,也可以应用于网络设备中的芯片,还可以应用于能实现全部或部分网络设备功能的逻辑模块或软件。下面以网络设备为例进行描述,该方法包括:网络设备向终端设备发送第一信息,第一信息用于多个候选资源的确定;接收来自终端设备的第二信息,第二信息用于指示目标资源,目标资源属于多个候选资源;在目标资源上接收来自终端设备的数据。
可见,用于接收数据的目标资源属于网络设备为终端设备配置的多个候选资源,该多个候选资源能够传输的数据量可覆盖终端设备大概率传输的数据量,有利于提高终端设备在多个候选资源的范围内完成待发送数据传输的概率,进而有利于减少数据传输的时延。另外,网络设备还可通过来自终端设备的第二信息确定用于接收来自终端设备的数据的资源,相比于网络设备通过盲检的方式确定用于接收数据的资源,有利于节省网络设备接收数据的功耗。
在一种可选的实施方式中,多个候选资源是频域资源,或是时域资源,或是时频域资源。
在一种可选的实施方式中,多个候选资源中存在至少两个候选资源重叠。该方式有利于在网络设备为多个终端设备分别配置候选资源的场景下,为每个终端设备配置的候选资源可以不同或不完全相同,从而有利于减少不同终端设备发送数据而产生的干扰,还可以提高资源利用率。
在一种可选的实施方式中,至少两个候选资源的重叠部分占至少两个候选资源中的一个候选资源的比例大于第一阈值。
在一种可选的实施方式中,多个候选资源互不重叠。该方式有利于增加多个候选资源一共能够传输的数据量,进而可增加终端设备在多个候选资源的范围内能够传输的数据量,有利于提高在多个候选资源的范围内能够传输大数据量的概率,进而有利于减少终端设备发送待发送数据的时延。
在一种可选的实施方式中,多个候选资源是频域资源或是时频域资源;网络设备接收来自终端设备的第二信息,包括:网络设备接收来自终端设备的DMRS,第二信息由DMRS的频域位置承载。该方式使得网络设备可通过检测DMRS的频域位置来确定目标资源的频域位置,进而有利于节省网络设备接收数据的功耗。
在一种可选的实施方式中,第二信息由UCI承载。也就是说,网络设备可以通过UCI获知目标资源,进而有利于节省网络设备接收数据的功耗。
在一种可选的实施方式中,第二信息指示目标资源的索引;或者,第二信息指示目标资源占多个候选资源的比例。该方式可使得网络设备可通过目标资源的索引或者目标资源占多个候选资源的比例来确定目标资源,从而在目标资源上接收来自终端设备的数据,有利于节省网络设备接收数据的功耗。
第三方面,本申请还提供一种通信装置。该通信装置可以是网络设备或终端设备,也可以是网络设备或终端设备中的芯片,还可以是能实现全部或部分网络设备或终端设备功能的逻辑模块或软件。该通信装置具有实现上述第一方面所述的部分或全部实施方式的功能,或者具有实现上述第二方面所述的部分或全部功能实施方式的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持该通信装置与其他通信装置之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:处理单元和通信单元,处理单元用于控制通信单元进行数据/信令收发。
通信单元用于接收来自网络设备的第一信息。处理单元用于根据第一信息,确定多个候选资源;处理单元还用于根据待发送数据的第一数据量,在多个候选资源中确定目标资源。通信单元还用于在目标资源上向网络设备发送待发送数据的部分或全部数据;通信单元还用于向网络设备发送第二信息,第二信息用于指示目标资源。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,所述通信装置包括:通信单元。
通信单元用于向终端设备发送第一信息,第一信息用于多个候选资源的确定;通信单元还用于接收来自终端设备的第二信息,第二信息用于指示目标资源,目标资源属于多个候选资源;通信单元还用于在目标资源上接收来自终端设备的数据。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
作为示例,通信单元可以为收发器或通信接口,存储单元可以为存储器,处理单元可以为处理器。处理器与存储器耦合,存储器用于存储程序或指令处理器,处理器可用于当程序或指令被处理器执行时使得通信装置执行上述第一方面或第二方面所述的方法,收发器或通信接口可用于收发信号和/或数据。
一种实施方式中,所述通信装置包括:处理器和收发器。收发器用于接收来自网络设备的第一信息。处理器用于根据第一信息,确定多个候选资源;处理器还用于根据待发送数据的第一数据量,在多个候选资源中确定目标资源。收发器还用于在目标资源上向网络设备发送待发送数据的部分或全部数据;收发器还用于向网络设备发送第二信息,第二信息用于指示目标资源。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,所述通信装置包括:收发器。收发器用于向终端设备发送第一信息,第一信息用于多个候选资源的确定;收发器还用于接收来自终端设备的第二信息,第二信息用于指示目标资源,目标资源属于多个候选资源;收发器还用于在目标资源上接收来自终端设备的数据。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
另一种实施方式中,该通信装置为芯片或芯片系统。所述处理单元也可以体现为处理电路或逻辑电路;所述收发单元可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器或通信接口可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器(或通信接口)集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on a Chip,SoC)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第四方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信号和接收上述信号的过程,可以理解为由处理器输出上述信号的过程,以及处理器输入的上述信号的过程。在输出上述信号时,处理器将该上述信号输出给收发器,以便由收发器(或通信接口)进行发射。该上述信号在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器(或通信接口)。类似的,处理器接收输入的上述信号时,收发器(或通信接口)接收该上述信号,并将其输入处理器。更进一步的,在收发器(或通信接口)收到该上述信号之后,该上述信号可能需要进行其他的处理,然后才输入处理器。
对于处理器所涉及的发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第五方面,本申请还提供了一种通信系统,该系统包括上述方面的至少一个终端设备和至少一个网络设备。在另一种可能的设计中,该系统还可以包括本申请提供的方案中与终端设备和/或网络设备进行交互的其他设备。
第六方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,当计算机程序被运行时,使得上述第一方面或第二方面任一项所述的方法被执行。
第七方面,本申请还提供了一种包括指令的计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码并运行时,使得上述第一方面或第二方面任一项所述的方法被执行。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指 令,所述处理器用于调用所述程序或指令以实现第一方面所涉及的功能,或者用于调用所述程序或指令以实现第二方面所涉及的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的一种多模态业务的示意图;
图3是本申请实施例提供的一种动态调度的示意图;
图4是本申请实施例提供的一种用于传输调度请求(scheduling request,SR)的资源的示意图;
图5是本申请实施例提供的一种针对逻辑信道(logical channel,LCH)y的动态调度的示意图;
图6是本申请实施例提供的一种类型1的CG流程的示意图;
图7是本申请实施例提供的一种类型2的CG流程的示意图;
图8是本申请实施例提供的一种CG资源的示意图;
图9是本申请实施例提供的一种数据传输方法的流程示意图;
图10是本申请实施例提供的一种资源分布的示意图;
图11是本申请实施例提供的一种候选资源的示意图;
图12是本申请实施例提供的另一种候选资源的示意图;
图13是本申请实施例提供的另一种候选资源的示意图;
图14是本申请实施例提供的另一种候选资源的示意图;
图15是本申请实施例提供的另一种候选资源的示意图;
图16是本申请实施例提供的一种通信装置的结构示意图;
图17是本申请实施例提供的另一种通信装置的结构示意图;
图18是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
首先,为了更好的理解本申请实施例公开的数据传输方法,对本申请实施例适用的通信系统进行描述。
本申请实施例的技术方案可应用于各种通信系统中。例如,全球移动通信系统、长期演进(long term evolution,LTE)系统、通用移动通信系统、第四代移动通信技术(4th generation,4G)系统、下一代无线接入网(next-generation radio access network,NG-RAN)、新空口技术(new radio,NR)系统、第五代移动通信技术(5th generation mobile networks,5G)系统,以及随着通信技术的不断发展,本申请实施例的技术方案还可用于后续演进的通信系统,如第六代移动通信技术(6th generation mobile networks,6G)系统、第七代移动通信技术(7th generation mobile networks,7G)系统,等等。
请参阅图1,图1是本申请实施例提供的一种通信系统的结构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,其中,网络设备和终端设备之间可以进行上行的传输,也可以进行下行的传输。另外,该通信系统还可以包括网络设备与终端设备之间用于传输数据/信号的信道,例如光纤、电缆或大气等传输媒介。图1所示的设备数量和形态用于举例并不构成对本申请实施例的限定,实际应用中可包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以一个网络设备和两个终端设备(即图1中的终端设备#1和终端设备#2)为例进行阐述。其中,图1中的网络设备以基站为例,终端设备以虚拟现实(virtual reality,VR)眼镜为例。
本申请实施例中,网络设备可以是具有无线收发功能的设备,或者可以是设置于具有无线收发功能的设备的芯片,该网络设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入节点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为4G、5G甚至6G系统中使用的设备,如,LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B)、下一代LTE基站(next-generation eNodeB,ng-eNB)、下一代基站(next-generation NodeB, gNodeB或gNB)、收发点,或,传输点(TRP或TP),或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU),或微微网络设备(Picocell),或毫微微网络设备(Femtocell),或,智能驾驶场景中的路侧单元(road side unit,RSU)。其中,基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。网络设备还可以是服务器、可穿戴设备,或车载设备等。可以理解,本申请中的网络设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、终端、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置,可以应用于4G、5G甚至6G系统等。本申请实施例中的终端设备可以是普通电话线上进行数字信号传送和接收的关节设备,还可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、头戴式显示器(head mounted display,HMD)、VR终端设备(如VR眼镜)、增强现实(augmented reality,AR)终端设备(如AR眼镜)、混合现实(mixed reality,MR)终端设备、工业控制(industrial control)中的无线终端、触觉终端设备、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的无线终端类型的RSU、可穿戴终端设备等等。
为了便于理解本申请公开的实施例,作以下两点说明。
(1)本申请公开的实施例中场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
(2)本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
其次,对本申请实施例涉及的相关概念进行简单的介绍。
1.扩展现实(extended reality,XR)
XR是一种能够将实境和虚拟环境相结合且可供人机交互的技术。XR可应用于教育、娱乐、军事、医疗、环保、交通运输、公共卫生等各种与人们生产、生活息息相关的领域当中。XR是各种现实相关技术的总称,其可以包括VR、AR和MR。
VR是指通过对视觉和音频场景的渲染,以尽可能模拟现实世界中视觉和音频对用户的感官刺激的技术。VR可以通过用户佩戴头戴式显示器(head mounted display,HMD)和耳机来为用户提供服务,其中,HMD所模拟的视觉组件能够完全取代用户视野,耳机可为用户提供随附的音频。另外,在VR中还可以对用户进行头部和动作的跟踪,从而及时更新所模拟的视觉和音频内容,进而使得用户体验的视觉和音频内容能够与用户的动作保持一致。
AR是指在用户感知的现实环境中提供视觉或听觉的附加信息或人工生成内容的技术。其中,用户对现实环境的感知可以是直接的,例如不对现实环境进行感测、处理和渲染等;用户对现实环境的感知还可以是间接的,例如可以通过传感器等方式将现实环境的相关信息传递给用户,并进行进一步的增强处理等。
MR是指能够结合真实和虚拟世界创造新的可视化环境,以及物理实体和数字对象共存且能实时相互作用以模拟真实物体的技术。MR是AR的一种高级形式,其实现方式之一是将一些虚拟元素插入到物理场景中,从而为用户提供一种这些虚拟元素是真实场景中一部分的沉浸体验。
2.多模态业务
多模态业务是一种在XR的基础上增加了触觉体验维度的业务,其可以实现远程触摸和远程操控,包括视觉、听觉、触觉、动觉等多方面的远程感知。多模态业务在工业自动化、医疗保健、远程教育等相关领域具有的极大的发展空间,其可以为用户提供一种全方位的交互体验,具有极大的应用价值和商业潜力。
示例性地,结合图2,图2展示了多模态业务中,在多感官控制场景下多数据流的同步传输。图2中的主(master)设备和从(slave)设备均为终端设备;信道(community channel,comm.Channel)可以是基于前述通信系统中的通信网络实现的,通信网络中的网络设备可用于转发和处理来自主设备和从设备的数据以实现主设备和从设备之间的通信。另外,从设备可通过信道将与图像(Video)、声音(Audio)相关的数据发送给主设备,还可通过信道将基于触觉传感器得到的触觉数据(或触觉信号)发送给主设备,触 觉数据(或触觉信号)可以是从设备通过触觉传感器获取的,例如,触觉数据(或触觉信号)可以是采集的表面纹理(surface texture)。主设备可通过信道将位置、动作、触觉等感知数据和指令发送给从设备,从设备执行来自主设备的指令得到执行反馈数据,并通过信道将执行反馈数据发送给主设备;其中,执行反馈数据可以包括与力度、位置相关的数据。
3.动态调度
在5G网络中,动态调度是指网络设备在每个时隙使用控制信息指示终端设备发送数据。基于动态调度配置用于传输数据的资源的方式,可以灵活根据业务需求快速调整配置的资源大小,但每次调度都需要传输相关的控制信令,信令开销较大。
结合图3,在终端设备要进行上行传输数据的场景中,在终端设备确定了可以发送SR的情况下,终端设备可在物理上行链路控制信道(physical uplink control channel,PUCCH)上发送SR给网络设备,以向网络设备请求上行授权(uplink grant,UL Grant)。网络设备响应接收到的SR,通过物理下行链路控制信道(physical downlink control channel,PDCCH)将上行授权发送给终端设备,该上行授权携带了调度信息,该调度信息指示了网络设备为终端设备配置的物理上行链路共享信道(physical uplink shared channel,PUSCH);终端设备可在调度信息所指示的PUSCH上向网络设备发送数据。如果终端设备没有接收到来自网络设备的上行授权,终端设备可以再次向网络设备发送SR。
其中,SR可用于向网络设备告知是否有上行数据要传输,但不会告知具体要传输的数据量,SR占用1比特(bit)。另外,每个LCH中用于传输SR的资源(包括周期、偏移等)可以不相同,针对每个逻辑信道可以单独配置用于传输SR的资源。例如,结合图4,图4中每个小矩形表示1个时隙的资源,灰色箭头所指的资源为针对LCH x配置的用于传输SR的资源,黑色箭头所指的资源为针对LCH y配置的用于传输SR的资源;可见,LCH x和LCH y中配置的用于传输SR的资源不相同。
以在图4中的LCH y上传输数据为例,结合图5,终端设备在t1时刻获取到待向网络设备发送的数据,在时隙#1上向网络设备发送SR,直至时隙#2始终未接收到来自网络设备的UL Grant,在时隙#2上向网络设备再次发送SR;接着,终端设备在时隙#3上接收到来自网络设备的UL Grant,该UL Grant中的调度信息指示了网络设备为终端设备配置了时隙#4中用于终端设备发送数据的资源;终端设备在时隙#4中配置的资源上向网络设备发送数据。
另外,UL Grant可以是通过格式(format)0_0或format 0_1的下行控制信息(downlink control information,DCI)来指示调度信息的。网络设备接收到SR,可以获知终端设备要向网络设备发送数据,但并不知道终端设备待发送的数据量,此时网络设备是按照一个较小的、固定的数据量对终端设备进行调度的,因此该调度信息所指示的资源能够传输的数据量较小且固定。
另外,终端设备在调度信息所指示的PUSCH上向网络设备发送的数据还可以包括缓存状态报告(buffer status report,BSR),该BSR可用于告知网络设备:终端设备还要向网络设备发送的数据量。如果网络设备收到的BSR大于0,可继续通过携带指示调度信息的PDCCH来为终端设备调度资源,从而终端设备可在调度的资源上继续向网络设备发送数据。
4.配置授权传输(configured grant,CG)
CG是指网络设备通过无线资源控制(radio resource control,RRC)信令或PDCCH分配指定一次用于上行传输的资源,网络设备和终端设备可以周期性地重复使用该资源进行上行传输。CG可应用于具有周期性传输这一特性的业务的上行传输中,例如CG可应用于XR业务或视频业务的上行传输中。另外,CG配置的用于上行传输的资源还可以称为CG资源。
CG包括类型(Type)1和类型2。类型1中通过RRC信令来配置CG的相关参数,同时该RRC还用于激活CG资源。类型2中通过RRC信令来配置CG的相关参数,通过PDCCH来指示配置的CG资源以及激活CG资源。下面对这两种类型的CG分别进行阐述。
结合图6,图6展示了类型1的CG流程。具体地,网络设备可在RRC信令中携带CG的相关参数,RRC信令中携带的CG的相关参数可包括:配置调度无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI)、CG周期、频域资源位置、混合自动重传请求进程(hybrid automatic repeat request process,HARQ Process)的数量(HARQ Process Number)以及偏移值、调制和编码方案(modulation and coding scheme,MCS)的具体数值、重复次数等。终端设备可根据接收的RRC信令确定周期性生效的CG资源,并在这些CG资源上周期性地向网络设备发送数据。
结合图7,图7展示了类型2的CG流程。具体地,网络设备可在RRC信令中携带CG的相关参数,包括CS-RNTI、CG周期等;在配置了多个CG时,RRC信令中可以携带多个CG分别的相关参数,该多 个CG可能对应不同的CG周期。网络设备还发送PDCCH,该PDCCH中携带了用于激活CG资源的DCI,该DCI指示了激活的CG资源中的频域资源以及MCS。终端设备确定周期性生效的CG资源,并在这些CG资源上向网络设备发送PUSCH。如果需要去激活CG资源(也可称为释放CG资源),网络设备需再次发送PDCCH,该PDCCH中携带了用于释放CG资源的DCI,该DCI指示了需要释放的CG资源,该DCI的格式满足以下条件:
(1)CRC采用RRC信令中所提供的CS-RNTI进行加扰;(2)HARQ Process Number全置‘0’;当配置了多个CG时,HARQ Process Number将不是全置‘0’,而是指示激活的CG资源所对应的HARQ Process Number;(3)新数据指示(new data indicator,NDI)全置‘0’;(4)冗余版本(redundancy version,RV)全置‘0’;(5)MCS全置‘1’;(6)频域资源分配(frequency domain resource allocation,FDRA)全置‘1’(特殊场景全置‘0’)。
终端设备向网络设备发送的数据是编码后的数据,例如,在多模态业务中,可能存在多个触觉传感器,每个触觉传感器可周期性地产生数据(或信号),不同触觉传感器产生数据的周期可能不同,如每秒钟产生500至2000个数据包,每个数据包的大小为12至48字节。并且,针对触觉传感器产生的数据进行编码的时长可能不固定,从而使得每个触觉传感器所产生的数据是随机到达终端设备的,且相邻两次的到达时间间隔服从广义帕累托分布。因此,在不同时刻到达终端设备的数据量可能不同,进而终端设备在不同时刻向网络设备发送的数据量可能不同。例如,在t1时刻存在3个触觉传感器的数据到达终端设备,终端设备向网络设备发送的数据量为这3个触觉传感器所产生的数据量;在t2时刻存在4个触觉传感器的数据到达终端设备,终端设备向网络设备发送的数据量为这4个触觉传感器产生的数据量。
网络设备通过CG的方式为终端设备配置的资源是周期性的,且每个周期内的资源都是固定的。结合图8,如果大数据量的数据集中到达终端设备,也就是说终端设备要向网络设备发送的数据量较大,基于CG配置的一个周期内的资源可能不足够传输大数据量的数据,还需进行等待直至下一周期内配置的资源,这会导致终端设备向网络设备发送数据的时延较大。
本申请实施例提供一种数据传输方法,该方法中,终端设备接收来自网络设备的第一信息;根据第一信息,确定多个候选资源;根据待发送数据的第一数据量,在多个候选资源中确定目标资源;在目标资源上向网络设备发送待发送数据的部分或全部数据;向网络设备发送第二信息,第二信息用于指示目标资源。可见,用于终端设备发送数据的目标资源是终端设备基于实际待发送的数据量从多个候选资源中确定的,该多个候选资源能够传输的数据量可覆盖终端设备大概率传输的数据量,有利于提高终端设备在多个候选资源的范围内完成数据传输的概率,进而有利于减少数据传输的时延。另外,终端设备向网络设备发送第二信息的操作还有利于网络设备确定用于接收数据的资源,与网络设备通过盲检的方式接收数据相比,能够减少网络设备的功耗。
以下结合附图对本申请实施例进行详细阐述。本申请中的流程示意图以网络设备和终端设备作为该交互示意的执行主体为例来示意相应的方法,但本申请并不限制交互示意的执行主体。例如,图中的网络设备也可以是支持该网络设备实现相应方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分网络设备功能的逻辑模块或软件;图中的终端设备也可以是支持该终端设备实现相应方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端设备功能的逻辑模块或软件。
请参阅图9,图9是本申请实施例提供的一种数据传输方法的流程示意图,该数据传输方法从网络设备与终端设备交互的角度进行阐述,该数据传输方法包括以下步骤:
S101、网络设备向终端设备发送第一信息,该第一信息用于多个候选资源的确定。相应的,终端设备接收来自网络设备的第一信息。
在一种可选的实施方式中,网络设备与终端设备之间传输第一信息之前,该方法还可以包括:终端设备向网络设备发送第三信息,该第三信息用于指示N个第二数据量和N个第二数据量中每个第二数据量对应的传输概率;每个第二数据量对应的传输概率是终端设备向网络设备发送具有该第二数据量的数据的概率;N为大于1的整数。相应的,网络设备接收来自终端设备的第三信息;根据N个第二数据量和每个第二数据量对应的传输概率,确定多个候选资源。可选的,第二数据量对应的传输概率可以是具体的数值,也可以是数值范围。可选的,第三信息可以是由BSR承载的。
例如,在多模态业务的场景下,终端设备要将来自触觉传感器的数据发送给网络设备,那么,第二数据量可以是终端设备预测的来自触觉传输器的、可能到达终端设备的数据量,第二数据量对应的传输概率 可以是终端设备预测的来自触觉传输器的数据量到达终端设备的概率。
又例如,N等于4,第三信息指示的4个第二数据量包括第二数据量#1、第二数据量#2、第二数据量#3和第二数据量#4,表1示例性地展示了各第二数据量对应的传输概率。
表1
其中,P1、P2、P3、P4可以是具体的数值,也可以是数值范围。例如,P1为0%至25%这一范围,P2为25%至50%这一范围,P3为50%至75%这一范围,P4为75%至100%这一范围;也就是说,终端设备向网络设备发送的数据量为第二数据量#1的概率是0%至25%,发送的数据量为第二数据量#2的概率是25%至50%,发送的数据量为第二数据量#3的概率是50%至75%,发送的数据量为第二数据量#4的概率是75%至100%。
可见,在上述实施方式中,网络设备可基于终端设备预测的第二数据量和第二数据量对应的传输概率来确定多个候选资源,使得确定的多个候选资源能够传输的数据量可覆盖终端设备可能发送的数据量,进而有利于提高终端设备在多个候选资源的范围内完成数据传输的概率,有利于减少数据传输的时延。另外,终端设备预测第三信息以及向网络设备发送第三信息的操作可以是在实际的待发送数据到达终端设备之前执行的,网络设备在接收到第三信息之后即可为终端设备配置用于传输待发送数据的资源,与终端设备在实际的待发送数据到达之后再向网络设备发送SR和BSR以使得网络设备配置资源的方式相比,能够减少数据实际到达终端设备直至终端设备向网络设备发送数据的时延。
示例性地,结合图10,图10中1个含“D”的小矩形表示用于下行传输的1个时隙,1个含“S”的小矩形表示用于下行传输和上行传输之间切换的1个时隙,1个含“U”的小矩形表示用于上行传输的1个时隙。在方式#1中终端设备可在实际的待发送数据到达终端设备的时刻t1之前,预测第三信息以及向网络设备发送第三信息,网络设备在接收到第三信息之后可为终端设备配置时隙#1中的用于传输待发送数据的资源。方式#2是基于图3的动态调度,具体地,待发送数据在t1时刻到达终端设备之后,终端设备在时隙#1上向网络设备发送SR以向网络设备请求上行授权,在时隙#2上向网络设备发送BSR以告知网络设备待发送数据的数据量,网络设备接收到BSR之后为终端设备配置时隙#3中的用于传输待发送数据的资源。可见,方式#1中终端设备向网络设备发送待发送数据的时间,早于方式#2中终端设备向网络设备发送待发送数据的时间;也就是说,方式#1中待发送数据到达终端设备直至终端设备向网络设备发送待发送数据的时延,小于方式#2中待发送数据到达终端设备直至终端设备向网络设备发送待发送数据的时延。
可选的,网络设备与终端设备之间传输第三信息之前,该方法还可以包括:网络设备向终端设备发送第四信息,第四信息用于指示N的取值。第四信息可以是由RRC信令承载的。
可选的,网络设备还可以在RRC信令中配置第五信息,该第五信息用于指示网络设备是否需要终端设备上报第三信息。可选的,终端设备还可通过用户辅助信息(user assistant information,UAI)通知网络设备:终端设备是否具有确定第三信息的能力。
在另一种可选的实施方式中,网络设备向终端设备发送第一信息之前,该方法还可以包括:网络设备根据在第一时间段内接收的来自终端设备的数据量确定多个候选资源。该方式中,网络设备可以统计历史的一段时间内接收到的来自终端设备的数据量(还可以统计接收该数据量的时间),基于统计的数据量预测终端设备可能向网络设备发送的数据量和发送该数据量的概率,从而使得确定的多个候选资源能够传输的数据量可覆盖终端设备可能发送的数据量,进而有利于提高终端设备在多个候选资源的范围内完成数据传输的概率,有利于减少数据传输的时延。另外,网络设备统计数据量的操作可以是在实际的待发送数据到达终端设备之前执行的,网络设备基于统计的数据量确定多个候选资源之后即可向终端设备发送第一信息以配置多个候选资源,与终端设备在实际的待发送数据到达之后再向网络设备发送SR和BSR以使得网络设备配置资源的方式相比,能够减少数据实际到达终端设备直至终端设备向网络设备发送数据的时延。
S102、终端设备根据第一信息,确定多个候选资源。
在一种可选的实施方式中,多个候选资源中存在至少两个候选资源重叠。具体地,多个候选资源中存在至少两个候选资源之间部分重叠,和/或,多个候选资源中存在至少两个候选资源之间具有包含关系。该方式有利于在网络设备为多个终端设备分别配置候选资源的场景下,网络设备为每个终端设备配置的候选资源可以不同或不完全相同,从而可以减少不同终端设备发送数据而产生的干扰,还可以提高资源利用率。
其中,至少两个候选资源之间部分重叠是指该至少两个候选资源中每个候选资源的部分资源是相同的。例如,结合图11,存在4个候选资源,该4个候选资源之间部分重叠,图11中的矩形框表示候选资源, 两虚线之间的灰色部分表示这4个候选资源之间的重叠部分。
两个候选资源之间具有包含关系是指该两个候选资源中的一个候选资源的全部资源与另一个候选资源的部分资源相同,也就是说,该两个候选资源中的一个候选资源是另一个候选资源的真子集。结合图12,图12中采用矩形框表示各候选资源,虚线用于说明这4个候选资源的起始位置相同;图12中,候选资源#2、候选资源#3和候选资源#4均是候选资源#1的真子集,候选资源#3和候选资源#4均是候选资源#2的真子集,候选资源#4还是候选资源#3的真子集;可见,候选资源#1、候选资源#2、候选资源#3和候选资源#4这4个候选资源中任意两个候选资源之间具有包含关系。
另外,多个候选资源中存在至少两个候选资源之间部分重叠,且存在至少两个候选资源之间具有包含关系的情况示例性地如图13所示。在图13所示的4个候选资源中,候选资源#1是候选资源#2的真子集,即候选资源#1和候选资源#2之间具有包含关系;候选资源#2、候选资源#3和候选资源#4之间部分重叠。
可选的,至少两个候选资源的重叠部分占该至少两个候选资源中的一个候选资源的比例大于或等于第一阈值。对于重叠部分占该至少两个候选资源中不同候选资源的比例来说,第一阈值的取值可能不同。例如,结合图11,4个候选资源的重叠部分(图11中的灰色部分)占候选资源#1的比例大于或等于X1%,占候选资源#2的比例大于或等于X2%,占候选资源#3的比例大于或等于X3%,占候选资源#4的比例大于或等于X4%,X1、X2、X3和X4的取值可能不同。另外,第一阈值可以是预定义的,还可以是人为设置的,不作限制。
在另一种可选的实施方式中,多个候选资源互不重叠。例如,结合图14,候选资源#1、候选资源#2、候选资源#3和候选资源#4互不重叠。
在一种可选的实施方式中,在存在多个终端设备的场景下,网络设备可以向多个终端设备分别发送第一信息,向不同终端设备发送的第一信息用于确定的多个候选资源不同或者不完全相同。可选的,网络设备配置的多个候选资源按照资源从大到小的顺序,为不同终端设备配置的多个候选资源之间的重叠部分逐渐减少。
例如,结合图15,图15中采用左上至右下的划线图案、交叉方格图案的矩形框表示终端设备#1基于第一信息#1确定的候选资源,采用右上至左下的划线图案、交叉方格图案的矩形框表示终端设备#2基于第一信息#2确定的候选资源,交叉方格图案的矩形框表示基于第一信息#1确定的候选资源与基于第一信息#2确定的候选资源的重叠部分;左侧虚线表示终端设备#1确定的4个候选资源的起始位置相同,右侧虚线表示终端设备#2确定的4个候选资源的起始位置相同。网络设备向终端设备#1发送了第一信息#1,第一信息#1用于终端设备#1确定候选资源#1A、候选资源#2A、候选资源#3A和候选资源#4A,候选资源#1A>候选资源#2A>候选资源#3A>候选资源#4A;网络设备向终端设备#2发送了第一信息#2,第一信息#2用于终端设备#2确定候选资源#1B、候选资源#2B、候选资源#3B和候选资源#4B,候选资源#1B>候选资源#2B>候选资源#3B>候选资源#4B。候选资源#1A和候选资源#1B的重叠部分>候选资源#2A和候选资源#2B的重叠部分>候选资源#3A和候选资源#3B的重叠部分>候选资源#4A和候选资源#4B的重叠部分。
另外,针对不同终端设备的多个候选资源之间存在部分重叠的方式可以提高资源利用率,例如,结合图15,终端设备#1采用候选资源#4B发送数据且终端设备#2采用候选资源3B发送数据的情况下,候选资源3A中与候选资源#4B的重叠部分用于终端设备#1发送数据,候选资源3A中除了与候选资源#4B的重叠部分之外的其余资源不用于终端设备#1发送数据,而由于该其余资源与候选资源3B之间部分重叠,因此该其余资源中的部分资源可用于终端设备#2发送数据,与候选资源3A和候选资源3B之间互不重叠相比,减少了资源浪费,提高了资源利用率。
在一种可选的实施方式中,多个候选资源是频域资源,或是时域资源,或是时频域资源。在这三种情况下,第一信息用于确定多个候选资源的具体形式可能不同。下面对多个候选资源是频域资源、多个候选资源是时域资源、多个候选资源是时频域资源这三种情况下的第一信息分别进行阐述,如下述可选的实施方式1.1至实施方式1.3所述。
实施方式1.1,多个候选资源是频域资源的情况。这一情况下,第一信息可以携带于DCI中,由DCI中的FDRA进行指示。具体地,多个候选资源中每个候选资源分别由一个FDRA进行指示,或者,多个候选资源均由一个FDRA进行指示。或者,第一信息可以携带于RRC中,多个候选资源可以是基于类型1的CG所配置的。
其中,在多个候选资源中每个候选资源分别由一个FDRA进行指示的情况下,DCI可携带多个FDRA,该多个FDRA中每个FDRA用于指示多个候选资源中的一个候选资源。或者,DCI可携带一个FDRA,指 示了多个候选资源的多个FDRA是基于DCI携带的FDRA、以及多个FDRA和DCI携带的FDRA之间的预配置关系确定的,该预配置关系可以携带于RRC信令中。示例性地,RRC信令中的预配置关系可以表示为:用于指示多个候选资源的多个FDRA占DCI携带的FDRA的比例,且该多个FDRA分别指示的候选资源的起始频域位置与DCI携带的FDRA所指示的候选资源的起始频域位置相同。
例如,FDRA#1用于指示候选资源#1,FDRA#2用于指示候选资源#2,FDRA#3用于指示候选资源#3,FDRA#4用于指示候选资源#4。一种方式中,在DCI中携带FDRA#1、FDRA#2、FDRA#3和FDRA#4,终端设备基于DCI中携带的FDRA#1、FDRA#2、FDRA#3和FDRA#4分别确定候选资源#1、候选资源#2、候选资源#3和候选资源#4。另一种方式中,在DCI中携带FDRA#1,RRC信令中的预配置关系表示为:FDRA#2、FDRA#3、FDRA#4所指示的候选资源的起始频域位置与FDRA#1所指示的候选资源的起始频域位置相同,且FDRA#2、FDRA#3、FDRA#4所指示的候选资源占FDRA#1所指示的候选资源的比例依次为80%、70%、50%;那么,终端设备在确定了FDRA#1所指示的候选资源#1之后,以候选资源#1起始频域位置作为候选资源#2、候选资源#3和候选资源#4的起始频域位置,将候选资源#1中80%的资源确定为候选资源#2,候选资源#1中70%的资源确定为候选资源#3,候选资源#1中50%的资源确定为候选资源#4。
在多个候选资源均由一个FDRA进行指示的情况下,DCI可携带一个FDRA,该FDRA指示了多个候选资源;该情况下,一个FDRA所指示的多个候选资源互不重叠。例如,DCI中存在一个FDRA指示了多个资源块组(resource block group,RBG),该多个RBG中每个RBG的频域资源均是一个候选资源。
或者,在多个候选资源均由一个FDRA进行指示的情况下,RRC信令可携带一个频域分配(FrequencyDomainAllocation)字段,该字段指示了多个候选资源,例如,可以指示频域上一段连续的资源块(resource block)。
实施方式1.2,多个候选资源是时域资源的情况;第一信息可以携带于RRC信令中。
可选的,多个候选资源中每个候选资源分别由RRC信令中的一个字段进行配置。具体地,可以在RRC信令中添加多个字段,该多个字段中的一个字段可用于配置一个候选资源。例如,一个字段用于承载一个候选资源的起始时域位置(如:起始符号)和时域长度(如:符号长度),或者,一个字段用于承载一个候选资源的起始时域位置(如:起始符号)和结束时域位置(如:结束符号),等等,本申请实施例对用于配置候选资源的字段承载内容不作限制。其中,在一个字段用于承载一个候选资源的起始符号和符号长度的情况下,RRC信令中添加的多个字段可以是在RRC信令的PUSCH-时域资源分配(time domain resource allocation,TDRA)配置中添加的多个起始符号和长度(startSymbolAndLength)字段。
可选的,多个候选资源均由RRC信令中的一个字段进行配置。例如,RRC信令中存在一个字段配置了起始符号和符号长度,基于该起始符号和符号长度确定的多个符号(Symbol)中的每个符号均是一个候选资源。
实施方式1.3,多个候选资源是时频域资源的情况。这一情况下,多个候选资源中每个候选资源的频域位置可由DCI进行指示或者由RRC信令进行配置;多个候选资源中每个候选资源的时域位置可由RRC信令进行配置。DCI指示候选资源的频域位置的方式与实施方式1.1中DCI指示频域资源的方式类似,RRC信令配置候选资源的频域位置的方式与实施方式1.1中RRC信令配置频域资源的方式类似;RRC信令配置候选资源的频域位置的方式与实施方式1.2中RRC信令配置时域资源的方式类似,不再赘述。
S103、终端设备根据待发送数据的第一数据量,在多个候选资源中确定目标资源。
其中,目标资源可以是多个候选资源中的至少一个候选资源。关于目标资源的确定方式可如下述可选的实施方式2.1至实施方式2.4所述。
实施方式2.1,在多个候选资源中,存在至少一个候选资源中每个候选资源能够传输的数据量均大于或等于第一数据量的情况。在这一情况下,目标资源可以是多个候选资源中能够传输的数据量大于或等于第一数据量且最接近第一数据量的一个候选资源。
例如,候选资源#1、候选资源#2、候选资源#3、候选资源#4能够传输的数据量分别为Q1、Q2、Q3、Q4,Q1>Q2>Q3>Q4。如果第一数据量小于或等于Q4,目标资源为候选资源#4;如果第一数据量大于Q4且小于或等于Q3,目标资源为候选资源#3;如果第一数据量大于Q3且小于或等于Q2,目标资源为候选资源#2;如果第一数据量大于Q2且小于或等于Q1,目标资源为候选资源#1。
实施方式2.2,多个候选资源中每个候选资源能够传输的数据量均小于第一数据量的情况。在这一情况下,目标资源可以是多个候选资源中能够传输的数据量最大的一个候选资源。例如,候选资源#1、候选资源#2、候选资源#3、候选资源#4能够传输的数据量分别为Q1、Q2、Q3、Q4,Q1>Q2>Q3>Q4。Q1、Q2、 Q3、Q4均小于第一数据量,那么目标资源是候选资源#1。
上述实施方式2.1和实施方式2.2可适用于多个候选资源中存在至少两个候选资源重叠的情况,也可适用于多个候选资源互不重叠的情况。另外,在多个候选资源互不重叠的情况下,除了实施方式2.1和实施方式2.2之外,还可以基于可选的实施方式2.3或可选的实施方式2.4来确定目标资源。
实施方式2.3,多个候选资源互不重叠,且多个候选资源一共能够传输的数据量大于或等于第一数据量的情况。这一情况下,目标资源可以是多组候选资源中能够传输的数据量大于或等于第一数据量且最接近第一数据量的一组候选资源,该多组候选资源中每组候选资源包括多个候选资源中的至少一个候选资源。
例如,候选资源#1、候选资源#2、候选资源#3能够传输的数据量分别为Q1、Q2、Q3,从这3个候选资源中选择1、2、3个候选资源,可以得到组#1至组#7这7组候选资源。其中,组#1:候选资源#1;组#2:候选资源#2;组#3:候选资源#3;组#4:候选资源#1和候选资源#2;组#5:候选资源#1和候选资源#3;组#6:候选资源#2和候选资源#3;组#7:候选资源#1、候选资源#2和候选资源#3。组#1至组#7中每组候选资源能够传输的数据量依次为:Q1、Q2、Q3、Q1+Q2、Q1+Q3、Q2+Q3、Q1+Q2+Q3。目标资源可以为这7组候选资源中能够传输的数据量大于或等于第一数据量且最接近第一数据量的一组候选资源。示例性地,如果这7个数据量中Q1+Q2大于或等于第一数据量且最接近第一数据量,那么,目标资源是组#4中的候选资源#2和候选资源#3。
又例如,网络设备为终端设备配置了连续的M个符号,该M个符号中每个符号均为一个候选资源,该M个符号一共能够传输的数据量大于或等于第一数据量;终端设备可以从M个符号中确定能够传输的数据量等于第一数据量的连续m个符号,该m个符号即为目标资源;其中,M为大于1的整数,m为小于或等于M的正整数。
实施方式2.4,多个候选资源互不重叠,且多个候选资源一共能够传输的数据量小于第一数据量的情况,这一情况下,目标资源可以是该多个候选资源。例如,候选资源#1、候选资源#2、候选资源#3能够传输的数据量分别为Q1、Q2、Q3,Q1+Q2+Q3小于第一数据量,那么,目标资源为候选资源#1、候选资源#2和候选资源#3。又例如,网络设备为终端设备配置了连续的M个符号,该M个符号中每个符号均为一个候选资源,该M个符号一共能够传输的数据量小于第一数据量,那么,该M个符号均为目标资源。
在一种可选的实施方式中,第一数据量可以是终端设备的缓存大小(buffer size),例如,第一数据量可以是终端设备中用于传输待发送数据的逻辑信道所对应的缓存大小。
S104、终端设备向网络设备发送第二信息,该第二信息用于指示目标资源。相应的,网络设备接收来自终端设备的第二信息。
在一种可选的实施方式中,多个候选资源是频域资源或是时频域资源的情况下,终端设备向网络设备发送第二信息,可以包括:终端设备向网络设备发送解调参考信号(demodulation reference signal,DMRS),第二信息由DMRS的频域位置承载;相应的,网络设备接收来自终端设备的DMRS。也就是说,DMRS的频域位置指示了目标资源的频域位置,那么,网络设备可以将检测到DMRS的频域位置确定为目标资源的频域位置。
可选的一种方式,可以在RRC信令中添加一个字段,该字段可用于指示是否允许终端设备在多个候选资源中的部分或全部资源上发送DMRS。如果该字段指示了允许终端设备在多个候选资源中的部分或全部资源上发送DMRS,那么终端设备可以在多个候选资源中的部分资源上发送DMRS,也可以在多个候选资源中的全部资源上发送DMRS,而非必须在多个候选资源中的全部资源上发送DMRS。可选的,为了简化网络设备检测DMRS的复杂度,还可以RRC信令中添加一个字段,该字段可用于指示用于发送DMRS的资源占多个候选资源的粒度,用于发送DMRS的资源占多个候选资源的比例是该粒度的正整数倍,那么目标资源占多个候选资源的比例也是该粒度的正整数倍。例如,候选资源的个数为16,16个RBG中每个RGB均是一个候选资源,RRC信令中添加的字段所指示的粒度为那么,用于发送DMRS的资源占16个RBG的比例为或1,即用于发送DMRS的资源是16个RBG中的2个RBG或4个RBG或6个RBG或8个RBG或10个RBG或12个RBG或14个RBG或16个RBG。
可选的另一种方式,可以在针对PUSCH的配置中增加用于指示是否允许终端设备在多个候选资源中的部分或全部资源上发送DMRS的字段,和/或,用于指示用于发送DMRS的资源占多个候选资源的粒度的字段。
在一种可选的实施方式中,第二信息由上行控制信息(uplink control information,UCI)承载。当多个候选资源是基于CG进行配置的情况下,第二信息可由配置授权上行控制信息(CG-UCI)承载。可选的, 第二信息指示目标资源的索引。例如,多个候选资源是频域资源或时频域资源,多个候选资源中每个候选资源的频域位置分别由一个FDRA进行指示,第二信息指示目标资源对应的FDRA的索引,传输UCI的起始频域位置可以与目标资源的起始频域位置相同。又例如,多个候选资源是时域资源,第一信息配置了多个候选资源中每个候选资源的起始时域位置和时域长度,第二信息指示目标资源的起始时域位置和时域长度。可选的,可以在format 2、format 3或format 4的UCI中可以增加一个字段,该字段用于承载目标资源的索引。
可选的,第二信息指示目标资源占多个候选资源的比例。该方式可适用于多个候选资源互不重叠的场景下,目标资源占多个候选资源的比例不同时DCI中承载了第二信息的比特位的值可以不同。
例如,DCI中的一个FDRA指示了多个RBG的频域资源,该多个RBG中每个RBG的频域资源均是一个候选资源。目标资源是该多个RBG中以频率最小的RBG为起始的至少一个RBG的频域资源,当目标资源占多个RBG的比例为0.5时,UCI中承载了第二信息的比特位的值为0;当目标资源占多个RBG的比例为1时,UCI中承载了第二信息的比特位的值为1。那么,网络设备在UCI中承载了第二信息的比特位的值为0时,可确定以多个RBG中频域最小的RBG为起始,多个RBG中半数的RBG的频域资源为目标资源;在UCI中承载了第二信息的比特位的值为1时,可确定多个RBG均为目标资源。
又例如,通过RRC信令为终端设备配置了多个符号,该多个符号中每个符号均是一个候选资源,目标资源是该多个符号中的至少一个符号,该至少一个符号的起始符号与多个符号中的起始符号相同。当目标资源占多个符号的比例为0.5时,UCI中承载第二信息的比特位的值为0;当目标资源占多个符号的比例为1时,UCI中承载第二信息的比特位的值为1。
可选的,第二信息指示目标资源对应的资源指示值(resource indicator value,RIV)。
可选的,多个候选资源互不重叠的情况下,第二信息指示比特位图,比特位图中每个比特位与多个候选资源中至少一个候选资源相对应,每个比特位的值用于表征该比特位对应的候选资源是否属于目标资源。可选的,比特位的值可采用“0”、“1”来表征该比特位对应的候选资源是否属于目标资源。例如,比特位的值为“1”时该比特位对应的候选资源属于目标资源,比特位的值为“0”时该比特位对应的候选资源不属于目标资源;或者,比特位的值为“1”时该比特位对应的候选资源不属于目标资源,比特位的值为“0”时该比特位对应的候选资源属于目标资源。另外,比特位的值还可以采用其他的表示方式,例如比特位的值为“true”时表示该比特位对应的候选资源属于目标资源,比特位的值为“false”时表示该比特位对应的候选资源不属于目标资源,不作限制。
例如,DCI中的一个FDRA指示了8个RBG(依次为RBG#1至RBG#8)的频域资源,该8个RBG中每个RBG的频域资源均是一个候选资源;比特位图包括8个比特位,该8个比特位与8个RBG一一对应。如果目标资源为RBG#1至RBG#4的频域资源,那么,8个比特位的值依次为1、1、1、1、0、0、0、0,其中,比特位的值为“1”时该比特位对应的候选资源属于目标资源,比特位的值为“0”时该比特位对应的候选资源不属于目标资源;比特位图表示为[1,1,1,1,0,0,0,0]。
S105、终端设备在目标资源上向网络设备发送待发送数据的部分或全部数据。相应的,网络设备在目标资源上接收来自终端设备的数据。
其中,当目标资源能够传输的数据量小于第一数据量时,终端设备在目标资源上向网络设备发送的是待发送数据的部分数据;当目标资源能够传输的数据量大于或等于第一数据量时,终端设备在目标资源上向网络设备发送的是待发送数据的全部数据。
另外,本申请实施例对终端设备向网络设备发送第二信息,以及终端设备在目标资源上向网络设备发送待发送数据的部分或全部数据这两个操作的先后顺序不作限制。具体地,终端设备向网络设备发送第二信息的操作可以先于终端设备在目标资源上向网络设备发送待发送数据的部分或全部数据的操作,也可以后于终端设备在目标资源上向网络设备发送待发送数据的部分或全部数据的操作;在第二信息由UCI承载的情况下,终端设备还可以同时执行这两个操作,即终端设备同时向网络设备发送第二信息以及在目标资源上向网络设备发送待发送数据的部分或全部数据。另外,对于网络设备来说,网络设备接收来自终端设备的第二信息以确定目标资源之后,再在目标资源上接收来自终端设备的数据。
综上所述,该数据传输方法中,终端设备接收来自网络设备的第一信息;根据第一信息,确定多个候选资源;根据待发送数据的第一数据量,在多个候选资源中确定目标资源;在目标资源上向网络设备发送待发送数据的部分或全部数据;向网络设备发送第二信息,第二信息用于指示目标资源。该方法相当于网络设备可为终端设备分配一个由多个候选资源构成的“资源池”,终端设备可基于实际的待发送数据的数据量从“资源池”中选择匹配的资源来发送待发送数据,“资源池”中的多个候选资源能够传输的数据量可覆盖 终端设备大概率传输的数据量,有利于提高终端设备在多个候选资源的范围内完成数据传输的概率,进而有利于减少数据传输的时延。另外,终端设备向网络设备发送第二信息的操作还有利于网络设备确定用于接收数据的资源,与网络设备通过盲检的方式接收数据相比,能够减少网络设备的功耗。
在候选资源是频域资源、目标资源是多个候选资源中的一个候选资源的场景下,第一信息可用于多个频域资源的确定,第二信息可用于指示终端设备在多个频域资源中确定的一个频域资源。结合上述图9所示的数据传输方法,该场景下终端设备与网络设备之间的交互可包括但不限于以下步骤:
S21,网络设备向终端设备发送第一信息;相应的,终端设备接收第一信息。
S22,终端设备根据第一信息,确定多个频域资源。
在一种可选的实施方式中,网络设备可在DCI中指示多个FDRA,该多个FDRA与多个频域资源一一对应,多个频域资源中每个频域资源由对应的FDRA进行指示。进而,终端设备可基于DCI中指示的多个FDRA来确定多个频域资源。
在另一种可选的实施方式中,网络设备可在DCI中指示一个FDRA,在RRC信令中配置多个FDRA与DCI中指示的FDRA之间的预配置关系;该多个FDRA与多个频域资源一一对应,多个频域资源中每个频域资源由对应的FDRA进行指示。进而,终端设备可基于DCI中指示的一个FDRA,以及RRC信令中配置的预配置关系,确定多个FDRA指示的多个频域资源。
在一种可选的实施方式中,多个频域资源中存在至少两个频域资源部分重叠,和/或,多个频域资源中存在至少两个频域资源具有包含关系。或者,多个频域资源互不重叠。
S23,终端设备根据待发送数据的第一数据量,在多个频域资源中确定一个频域资源。
在一种可选的实施方式中,在多个频域资源中存在频域资源能够传输的数据量大于或等于第一数据量的情况下,确定的一个频域资源是多个频域资源中能够传输的数据量大于或等于第一数据量且最接近第一数据量的一个频域资源。
另一种可选的实施方式中,在多个频域资源中每个频域资源能够传输的数据量均小于第一数据量的情况下,确定的一个频域资源是多个频域资源中能够传输的数据量最大的一个频域资源。
S24,终端设备向网络设备发送第二信息,该第二信息用于指示终端设备确定的频域资源;相应的,网络设备接收来自终端设备的第二信息,进而网络设备可基于接收到的第二信息获知终端设备所确定的频域资源。
在一种可选的实施方式中,第二信息由UCI承载,第二信息指示终端设备确定的频域资源所对应的FDRA的索引。可选的,用于传输UCI的频域资源的起始位置与终端设备确定的频域资源的起始位置可以相同。
S25,终端设备在确定的频域资源上向网络设备发送待发送数据的部分或全部数据;相应的,网络设备在终端设备确定的频域资源上接收来自终端设备的数据。
本申请实施例对终端设备向网络设备发送第二信息的操作与终端设备在确定的频域资源上向网络设备发送待发送数据的部分或全部数据的操作的先后顺序不作限制。
上述S21与图9所述方法中的S101相对应,S22与图9中S102相对应,S23与图9中S103相对应,S24与图9中S104相对应,S25与图9中S105相对应,具体阐述还可参见图9所示的数据传输方法中对应步骤的相关阐述。另外,该实施例中还可以包括图9所示的数据传输方法中的其他实施方式,也存在对应的有益效果,不再赘述。
综上,终端设备可基于实际待发送的数据量从网络设备配置的多个频域资源中确定一个频域资源用于发送待发送数据,该多个频域资源能够传输的数据量能够覆盖终端设备大概率传输的数据量,有利于提高终端设备在多个频域资源的范围内完成数据传输的概率,进而有利于减少数据传输的时延。
在候选资源是时域资源、目标资源是多个候选资源中的一个候选资源的场景下,第一信息可用于多个时域资源的确定,第二信息可用于指示终端设备在多个时域资源中确定的一个时域资源。结合上述图9所示的数据传输方法,该场景下终端设备与网络设备之间的交互可包括但不限于以下步骤:
S31,网络设备向终端设备发送第一信息;相应的,终端设备接收第一信息。
S32,终端设备根据第一信息,确定多个时域资源。
在一种可选的实施方式中,网络设备可在RRC信令的TDRA中增加多个字段,该多个资源与多个时域资源一一对应,多个时域资源中每个时域资源由对应的字段进行指示。进而,终端设备可基于RRC信 令的TDRA中多个字段来确定多个时域资源。可选的,多个字段中每个字段可以指示该字段对应的时域资源的时域起始位置和时域长度。
在一种可选的实施方式中,多个时域资源中存在至少两个时域资源部分重叠,和/或,多个时域资源中存在至少两个时域资源具有包含关系。或者,多个时域资源互不重叠。
S33,终端设备根据待发送数据的第一数据量,在多个时域资源中确定一个时域资源。
在一种可选的实施方式中,在多个时域资源中存在时域资源能够传输的数据量大于或等于第一数据量的情况下,确定的一个时域资源是多个时域资源中能够传输的数据量大于或等于第一数据量且最接近第一数据量的一个时域资源。
另一种可选的实施方式中,在多个时域资源中每个时域资源能够传输的数据量均小于第一数据量的情况下,确定的一个时域资源是多个时域资源中能够传输的数据量最大的一个时域资源。
S34,终端设备向网络设备发送第二信息,该第二信息用于指示终端设备确定的时域资源;相应的,网络设备接收来自终端设备的第二信息,进而网络设备可基于接收到的第二信息获知终端设备所确定的时域资源。
在一种可选的实施方式中,第二信息由UCI承载,第二信息指示终端设备确定的时域资源的起始时域位置和时域长度。
S35,终端设备在确定的时域资源上向网络设备发送待发送数据的部分或全部数据;相应的,网络设备在终端设备确定的时域资源上接收来自终端设备的数据。
本申请实施例对终端设备向网络设备发送第二信息的操作与终端设备在确定的时域资源上向网络设备发送待发送数据的部分或全部数据的操作的先后顺序不作限制。
上述S31与图9所述方法中的S101相对应,S32与图9中S102相对应,S33与图9中S103相对应,S34与图9中S104相对应,S35与图9中S105相对应,具体阐述还可参见图9所示的数据传输方法中对应步骤的相关阐述。另外,该实施例中还可以包括图9所示的数据传输方法中的其他实施方式,也存在对应的有益效果,不再赘述。
综上,终端设备可基于实际待发送的数据量从网络设备配置的多个时域资源中确定一个时域资源用于发送待发送数据,该多个时域资源能够传输的数据量能够覆盖终端设备大概率传输的数据量,有利于提高终端设备在多个时域资源的范围内完成数据传输的概率,进而有利于减少数据传输的时延。
结合上述图9所示的数据传输方法,在多个候选资源是DCI通过一个FDRA指示的多个RBG的频域资源,且一个候选资源是一个RBG的频域资源的场景下,终端设备与网络设备之间的交互可包括但不限于以下步骤:
S41,网络设备向终端设备发送第一信息;相应的,终端设备接收第一信息。该第一信息由DCI承载。
S42,终端设备根据第一信息,确定多个RBG。
S43,终端设备根据待发送数据的第一数据量,在多个RBG中确定至少一个RBG。
S44,终端设备向网络设备发送第二信息,该第二信息用于指示终端设备确定的至少一个RBG。相应的,网络设备接收来自终端设备的第二信息,进而网络设备可基于接收到的第二信息获知终端设备所确定至少一个RBG。
一种可选的实施方式中,第二信息指示确定的至少一个RBG占多个RBG的比例。或者,第二信息指示RIV,该RIV可表征确定的至少一个RBG在多个RBG中的位置分布且确定的至少一个RBG在多个RBG中是连续分布的。或者,第二信息指示比特位图,比特位图中每个比特位与多个RBG中至少一个RBG相对应,每个比特位的值用于表征该比特位对应的RBG的频域资源是否用于终端设备发送待发送的数据。
在另一种可选的实施方式中,终端设备向网络设备发送第二信息,包括:终端设备向网络设备发送DMRS,第二信息由DMRS的频域位置承载。
S45,终端设备在确定的至少一个RBG的频域资源上向网络设备发送待发送数据的部分或全部数据;相应的,网络设备接收来自终端设备的数据。
本申请实施例对终端设备向网络设备发送第二信息的操作与终端设备在确定的至少一个RBG的频域资源上向网络设备发送待发送数据的部分或全部数据的操作的先后顺序不作限制。
上述S41与图9所述方法中的S101相对应,S42与图9中S102相对应,S43与图9中S103相对应,S44与图9中S104相对应,S45与图9中S105相对应,具体阐述还可参见图9所示的数据传输方法中对应步骤的相关阐述。另外,该实施例中还可以包括图9所示的数据传输方法中的其他实施方式,也存在对 应的有益效果,不再赘述。
结合上述图9所示的数据传输方法,在多个候选资源是基于RRC信令配置的起始符号和符号长度确定的多个符号,且一个候选资源是一个符号的场景下,终端设备与网络设备之间的交互可包括但不限于以下步骤:
S51,网络设备向终端设备发送第一信息;相应的,终端设备接收第一信息。该第一信息由RRC信令承载。
S52,终端设备根据第一信息,确定多个符号。
S53,终端设备根据待发送数据的第一数据量,在多个符号中确定至少一个符号。
S54,终端设备向网络设备发送第二信息,该第二信息用于指示终端设备确定的至少一个符号。相应的,网络设备接收来自终端设备的第二信息,进而网络设备可基于接收到的第二信息获知终端设备所确定至少一个符号。
一种可选的实施方式中,第二信息指示确定的至少一个符号占多个符号的比例。或者,第二信息指示比特位图,比特位图中每个比特位与多个符号中至少一个符号相对应,每个比特位的值用于表征该比特位对应的符号是否用于终端设备发送待发送的数据。
S55,终端设备在确定的至少一个符号上向网络设备发送待发送数据的部分或全部数据;相应的,网络设备接收来自终端设备的数据。
本申请实施例对终端设备向网络设备发送第二信息的操作与终端设备在确定的至少一个符号上向网络设备发送待发送数据的部分或全部数据的操作的先后顺序不作限制。
上述S51与图9所述方法中的S101相对应,S52与图9中S102相对应,S53与图9中S103相对应,S54与图9中S104相对应,S55与图9中S105相对应,具体阐述还可参见图9所示的数据传输方法中对应步骤的相关阐述。另外,该实施例中还可以包括图9所示的数据传输方法中的其他实施方式,也存在对应的有益效果,不再赘述。
结合上述图9所示的数据传输方法,在多个候选资源是基于CG进行配置的场景下,终端设备与网络设备之间的交互可包括但不限于以下步骤:
S61,网络设备向终端设备发送第一信息;相应的,终端设备接收第一信息;第一信息用于多个候选资源的确定。
其中,在多个候选资源是基于类型1的CG进行配置的情况下,多个候选资源是时域资源或是频域资源或是时频域资源时,第一信息可由RRC信令承载。
在多个候选资源是基于类型2的CG进行配置的且多个候选资源是时域资源的情况下,第一信息可由RRC信令承载。在多个候选资源是基于类型2的CG进行配置的且多个候选资源是频域资源的情况下,第一信息可由DCI承载。在多个候选资源是基于类型2的CG进行配置的且多个候选资源是时频域资源的场景下,第一信息所指示的多个候选资源的时域位置可由RRC信令承载,多个候选资源的频域位置可由DCI承载。
S62,终端设备根据第一信息,确定多个候选资源。
S63,终端设备根据待发送数据的第一数据量,在多个候选资源中确定目标资源。
S64,终端设备向网络设备发送第二信息,该第二信息用于指示目标资源。相应的,网络设备接收来自终端设备的第二信息,进而网络设备可基于接收到的第二信息确定目标资源。其中,第二信息可由CG-UCI承载。
S65,终端设备在目标资源上向网络设备发送待发送数据的部分或全部数据;相应的,网络设备在目标资源上接收来自终端设备的数据。
上述S61与图9所述方法中的S101相对应,S62与图9中S102相对应,S63与图9中S103相对应,S64与图9中S104相对应,S65与图9中S105相对应,具体阐述还可参见图9所示的数据传输方法中对应步骤的相关阐述。另外,该实施例中还可以包括图9所示的数据传输方法中的其他实施方式,也存在对应的有益效果,不再赘述。
为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功 能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图16所示,本申请实施例提供了一种通信装置1600。该通信装置1600可以是网络设备的部件(例如,集成电路,芯片等等),也可以是终端设备的部件(例如,集成电路,芯片等等)。该通信装置1600也可以是其他通信单元,用于实现本申请方法实施例中的方法。该通信装置1600可以包括:通信单元1601和处理单元1602。其中,处理单元1602用于控制通信单元1601进行数据/信令收发。可选的,通信装置1600还可以包括存储单元1603。
在一种可能的设计中,通信单元1601用于接收来自网络设备的第一信息。处理单元1602用于根据第一信息,确定多个候选资源;处理单元1602还用于根据待发送数据的第一数据量,在多个候选资源中确定目标资源。通信单元1601还用于在目标资源上向网络设备发送待发送数据的部分或全部数据;通信单元1601还用于向网络设备发送第二信息,第二信息用于指示目标资源。
在一种可选的实施方式中,多个候选资源是频域资源,或是时域资源,或是时频域资源。
在一种可选的实施方式中,多个候选资源中存在至少两个候选资源重叠。
在一种可选的实施方式中,至少两个候选资源的重叠部分占至少两个候选资源中的一个候选资源的比例大于第一阈值。
在一种可选的实施方式中,多个候选资源互不重叠。
在一种可选的实施方式中,多个候选资源是频域资源或是时频域资源;通信单元1601向网络设备发送第二信息,具体用于:向网络设备发送DMRS,第二信息由DMRS的频域位置承载。
在一种可选的实施方式中,第二信息由UCI承载。
在一种可选的实施方式中,第二信息指示目标资源的索引;或者,第二信息指示目标资源占多个候选资源的比例。
在另一种可能的设计中,通信单元1601用于向终端设备发送第一信息,第一信息用于多个候选资源的确定;通信单元1601还用于接收来自终端设备的第二信息,第二信息用于指示目标资源;目标资源属于多个候选资源;通信单元1601还用于在目标资源上接收来自终端设备的数据。
在一种可选的实施方式中,多个候选资源是频域资源,或是时域资源,或是时频域资源。
在一种可选的实施方式中,多个候选资源中存在至少两个候选资源重叠。
在一种可选的实施方式中,至少两个候选资源的重叠部分占至少两个候选资源中的一个候选资源的比例大于第一阈值。
在一种可选的实施方式中,多个候选资源互不重叠。
在一种可选的实施方式中,多个候选资源是频域资源或是时频域资源;通信单元1601接收来自终端设备的第二信息,具体用于:接收来自终端设备的DMRS,第二信息由DMRS的频域位置承载。
在一种可选的实施方式中,第二信息由UCI承载。
在一种可选的实施方式中,第二信息指示目标资源的索引;或者,第二信息指示目标资源占多个候选资源的比例。
本申请实施例和上述所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,不再赘述。
本申请实施例还提供一种通信装置1700,如图17所示。通信装置1700可以是网络设备或终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置1700可以包括一个或多个处理器1701。处理器可用于通过逻辑电路或运行计算机程序实现上述网络设备或终端设备的部分或全部功能。所述处理器1701可以是通用处理器或者专用处理器等。例如可以是基带处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或中央处理器(Central Processing Unit,CPU)。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
可选的,通信装置1700中可以包括一个或多个存储器1702,其上可以存有指令1704,所述指令可在处理器1701上被运行,使得通信装置1700执行上述方法实施例中描述的方法。可选的,存储器1702中 还可以存储有数据。处理器1701和存储器1702可以单独设置,也可以集成在一起。
存储器1702可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(random access memory,RAM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、ROM或便携式只读存储器(compact disc read-only memory,CD-ROM)等等。
可选的,所述通信装置1700还可以包括收发器1705、天线1706。所述收发器1705可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1705可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
一种可能的设计中,通信装置1700为终端设备的情况:收发器1705用于接收来自网络设备的第一信息。处理器1701用于根据第一信息,确定多个候选资源;处理器1701还用于根据待发送数据的第一数据量,在多个候选资源中确定目标资源。收发器1705还用于在目标资源上向网络设备发送待发送数据的部分或全部数据;收发器1705还用于向网络设备发送第二信息,第二信息用于指示目标资源。
在一种可选的实施方式中,多个候选资源是频域资源,或是时域资源,或是时频域资源。
在一种可选的实施方式中,多个候选资源中存在至少两个候选资源重叠。
在一种可选的实施方式中,至少两个候选资源的重叠部分占至少两个候选资源中的一个候选资源的比例大于第一阈值。
在一种可选的实施方式中,多个候选资源互不重叠。
在一种可选的实施方式中,多个候选资源是频域资源或是时频域资源;收发器1705向网络设备发送第二信息,具体用于:向网络设备发送DMRS,第二信息由DMRS的频域位置承载。
在一种可选的实施方式中,第二信息由UCI承载。
在一种可选的实施方式中,第二信息指示目标资源的索引;或者,第二信息指示目标资源占多个候选资源的比例。
另一种可能的设计中,通信装置1700为网络设备的情况:收发器1705用于向终端设备发送第一信息,第一信息用于多个候选资源的确定;收发器1705还用于接收来自终端设备的第二信息,第二信息用于指示目标资源;目标资源属于多个候选资源;收发器1705还用于在目标资源上接收来自终端设备的数据。
在一种可选的实施方式中,多个候选资源是频域资源,或是时域资源,或是时频域资源。
在一种可选的实施方式中,多个候选资源中存在至少两个候选资源重叠。
在一种可选的实施方式中,至少两个候选资源的重叠部分占至少两个候选资源中的一个候选资源的比例大于第一阈值。
在一种可选的实施方式中,多个候选资源互不重叠。
在一种可选的实施方式中,多个候选资源是频域资源或是时频域资源;收发器1705接收来自终端设备的第二信息,具体用于:接收来自终端设备的DMRS,第二信息由DMRS的频域位置承载。
在一种可选的实施方式中,第二信息由UCI承载。
在一种可选的实施方式中,第二信息指示目标资源的索引;或者,第二信息指示目标资源占多个候选资源的比例。
另一种可能的设计中,处理器1701中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是通信接口,或者是接口电路。用于实现接收和发送功能的收发电路、通信接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、通信接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、通信接口或接口电路可以用于信号的传输或传递。
又一种可能的设计中,可选的,处理器1701可以存有指令1703,指令1703在处理器1701上运行,可使得所述通信装置1700执行上述方法实施例中描述的方法。指令1703可能固化在处理器1701中,该种情况下,处理器1701可能由硬件实现。
又一种可能的设计中,通信装置1700可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请实施例中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor, BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或终端设备,但本申请实施例中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图17的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(modulator);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图18所示的芯片的结构示意图。图18所示的芯片1800包括处理器1801和通信接口1802。其中,处理器1801的数量可以是一个或多个,通信接口1802的数量可以是多个。该处理器1801可以是逻辑电路,该通信接口1802可以是输入输出接口、输入接口或输出接口。所述芯片1800还可包括存储器1803。
一种设计中,对于芯片用于实现本申请实施例中终端设备的功能的情况:
通信接口1802用于接收来自网络设备的第一信息。处理器1801用于根据第一信息,确定多个候选资源;处理器1801还用于根据待发送数据的第一数据量,在多个候选资源中确定目标资源。通信接口1802还用于在目标资源上向网络设备发送待发送数据的部分或全部数据;通信接口1802还用于向网络设备发送第二信息,第二信息用于指示目标资源。
另一种设计中,对于芯片用于实现本申请实施例中网络设备的功能的情况:
通信接口1802用于向终端设备发送第一信息,第一信息用于多个候选资源的确定;通信接口1802还用于接收来自终端设备的第二信息,第二信息用于指示目标资源;目标资源属于多个候选资源;通信接口1802还用于在目标资源上接收来自终端设备的数据。
本申请实施例中通信装置1700、芯片1800还可执行上述通信装置1600所述的实现方式。本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例和上述的数据传输方法基于同一构思,其带来的技术效果也相同,具体原理请参照上述数据传输方法中的描述,不再赘述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序,当其在计算机上运行时,实现上述任一方法实施例的功能。
本申请还提供了一种通信系统,该系统包括上述方面的至少一个网络设备、至少一个终端设备。在另一种可能的设计中,该系统还可以包括本申请提供的方案中与网络设备、终端设备进行交互的其他设备。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数 据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (23)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    接收来自网络设备的第一信息;
    根据所述第一信息,确定多个候选资源;
    根据待发送数据的第一数据量,在所述多个候选资源中确定目标资源;
    在所述目标资源上向所述网络设备发送所述待发送数据的部分或全部数据;
    向所述网络设备发送第二信息,所述第二信息用于指示所述目标资源。
  2. 根据权利要求1所述的方法,其特征在于,所述多个候选资源是频域资源,或是时域资源,或是时频域资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述多个候选资源中存在至少两个候选资源重叠。
  4. 根据权利要求3所述的方法,其特征在于,所述至少两个候选资源的重叠部分占所述至少两个候选资源中的一个候选资源的比例大于第一阈值。
  5. 根据权利要求1或2所述的方法,其特征在于,所述多个候选资源互不重叠。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述多个候选资源是频域资源或是时频域资源;所述向所述网络设备发送第二信息,包括:
    向所述网络设备发送解调参考信号DMRS,所述第二信息由所述DMRS的频域位置承载。
  7. 根据权利要求1至5任一项所述的方法,其特征在于,所述第二信息由上行控制信息UCI承载。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第二信息指示所述目标资源的索引;或者,
    所述第二信息指示所述目标资源占所述多个候选资源的比例。
  9. 一种数据传输方法,其特征在于,所述方法包括:
    向终端设备发送第一信息,所述第一信息用于多个候选资源的确定;
    接收来自所述终端设备的第二信息,所述第二信息用于指示目标资源;所述目标资源属于所述多个候选资源;
    在所述目标资源上接收来自所述终端设备的数据。
  10. 根据权利要求9所述的方法,其特征在于,所述多个候选资源是频域资源,或是时域资源,或是时频域资源。
  11. 根据权利要求9或10所述的方法,其特征在于,所述多个候选资源中存在至少两个候选资源重叠。
  12. 根据权利要求11所述的方法,其特征在于,所述至少两个候选资源的重叠部分占所述至少两个候选资源中的一个候选资源的比例大于第一阈值。
  13. 根据权利要求9或10所述的方法,其特征在于,所述多个候选资源互不重叠。
  14. 根据权利要求9至13任一项所述的方法,其特征在于,所述多个候选资源是频域资源或是时频域资源;所述接收来自所述终端设备的第二信息,包括:
    接收来自所述终端设备的解调参考信号DMRS,所述第二信息由所述DMRS的频域位置承载。
  15. 根据权利要求9至13任一项所述的方法,其特征在于,所述第二信息由上行控制信息UCI承载。
  16. 根据权利要求15所述的方法,其特征在于,
    所述第二信息指示所述目标资源的索引;或者,
    所述第二信息指示所述目标资源占所述多个候选资源的比例。
  17. 一种通信装置,其特征在于,所述装置包括用于实现权利要求1至8中任一项所述的方法的模块或单元。
  18. 一种通信装置,其特征在于,所述装置包括用于实现权利要求9至16中任一项所述的方法的模块或单元。
  19. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至8中任一项所述的方法。
  20. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求9至16中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至8中任一项所述的方法,或者实现如权利要求9至16中任一项所述的方法。
  22. 一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,实现如权利要求1至8中任一项所述的方法,或者实现如权利要求9至16中任一项所述的方法。
  23. 一种通信系统,其特征在于,包括如权利要求17和18所述的装置,或者,包括如权利要求19和20所述的装置。
PCT/CN2023/121234 2022-11-01 2023-09-25 数据传输方法及装置 WO2024093577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211354633.3 2022-11-01
CN202211354633.3A CN117998598A (zh) 2022-11-01 2022-11-01 数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2024093577A1 true WO2024093577A1 (zh) 2024-05-10

Family

ID=90895985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121234 WO2024093577A1 (zh) 2022-11-01 2023-09-25 数据传输方法及装置

Country Status (2)

Country Link
CN (1) CN117998598A (zh)
WO (1) WO2024093577A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108737040A (zh) * 2017-04-14 2018-11-02 华为技术有限公司 传输方法、终端和网络设备
CN109274472A (zh) * 2017-07-17 2019-01-25 华为技术有限公司 数据传输方法、网络设备和终端设备
CN112399579A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 反馈信息的传输方法及通信装置
CN113596999A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 通信方法和装置
WO2022067726A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 用于资源调度的通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108737040A (zh) * 2017-04-14 2018-11-02 华为技术有限公司 传输方法、终端和网络设备
CN109274472A (zh) * 2017-07-17 2019-01-25 华为技术有限公司 数据传输方法、网络设备和终端设备
CN112399579A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 反馈信息的传输方法及通信装置
CN113596999A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 通信方法和装置
WO2022067726A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 用于资源调度的通信方法及装置

Also Published As

Publication number Publication date
CN117998598A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US11765600B2 (en) Electronic device and method for wireless communication and computer-readable storage medium
US11729777B2 (en) Channel detection apparatus and method, user equipment, and base station
EP3456128B1 (en) Method and apparatus for pausing uplink transmission during a transmission time interval
KR102460473B1 (ko) 전자 디바이스, 정보 처리 장치, 및 정보 처리 방법
US10757723B2 (en) Transmitting apparatus and receiving apparatus
WO2017219825A1 (zh) 无线通信方法和无线通信设备
US20230309088A1 (en) Transmitting apparatus and receiving apparatus
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
CN109757131A (zh) 信号传输方法、相关装置及系统
JP6980171B2 (ja) 情報の伝送方法および装置
US20230413121A1 (en) Data transmission method and apparatus
US20210135809A1 (en) Apparatus and method in wireless communication system
WO2024093577A1 (zh) 数据传输方法及装置
TW202420871A (zh) 資料傳輸方法及裝置
WO2024067064A1 (zh) 数据传输方法及装置
WO2023125339A1 (zh) 参考信号的传输方法及装置
WO2023035909A1 (zh) 数据传输方法及装置
WO2024140046A1 (zh) 通信方法、装置及系统
WO2023109431A1 (zh) 数据传输方法及装置
WO2024060970A1 (zh) 通信方法及装置
WO2023160043A1 (zh) 数据传输方法及装置
WO2021109047A1 (zh) 一种资源调度的方法和通信装置
CN117835438A (zh) 数据传输方法和相关产品
KR20240032125A (ko) 통신 방법 및 장치
CN116746267A (zh) 确定资源状态的方法、装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884509

Country of ref document: EP

Kind code of ref document: A1