WO2023125339A1 - 参考信号的传输方法及装置 - Google Patents

参考信号的传输方法及装置 Download PDF

Info

Publication number
WO2023125339A1
WO2023125339A1 PCT/CN2022/141708 CN2022141708W WO2023125339A1 WO 2023125339 A1 WO2023125339 A1 WO 2023125339A1 CN 2022141708 W CN2022141708 W CN 2022141708W WO 2023125339 A1 WO2023125339 A1 WO 2023125339A1
Authority
WO
WIPO (PCT)
Prior art keywords
resources
resource
terminal
resource group
configuration information
Prior art date
Application number
PCT/CN2022/141708
Other languages
English (en)
French (fr)
Inventor
陈伟超
秦熠
窦圣跃
陈二凯
曹佑龙
徐瑞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023125339A1 publication Critical patent/WO2023125339A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technologies, and in particular to a reference signal transmission method and device.
  • extended reality (XR) technology In wireless communication networks, extended reality (XR) technology has the advantages of multi-view, strong interactivity, etc., and can provide users with a brand-new visual experience, which has great application value and commercial potential.
  • XR includes virtual reality (virtual reality, VR), augmented reality (augmented reality, AR), and mixed reality (mix reality, MR) technologies, which can be widely used in entertainment, games, medical care, advertising, industry, online education, and Engineering and many other fields.
  • the immersive services provided by XR have improved the user experience unprecedentedly, the requirements for network transmission are very strict.
  • the transmission of high-definition video requires a higher network throughput rate.
  • the real-time nature of video streams and user interaction behaviors have put forward stricter requirements on network transmission delay.
  • the cloud VR service after the user terminal initiates a request to the cloud VR server, the cloud server sends video frames according to the request, and after the terminal receives the video frame data, the terminal presents the VR picture to the user.
  • Cloud XR is a quasi-periodic video streaming service, and the video frame rate determines the interval at which video frames are generated.
  • RS reference signal
  • some reference signal (RS) configuration periods have a wide range of values, they cannot be well adapted to the XR service video frame delivery period, which may cause inaccurate channel measurement and terminal power saving And other issues. Therefore, according to the service characteristics of the XR video streaming service, how to configure an appropriate cycle for the RS of XR data transmission to achieve the effect of saving power and resources has become an urgent problem to be solved.
  • Embodiments of the present application provide a reference signal transmission method and device.
  • the embodiment of the present application provides a method for sending a reference signal.
  • the method may be executed by a terminal device, or may be executed by a component of the terminal device (such as a processor, a chip, or a chip system, etc.), or may be executed by a A logic module or software implementation that realizes all or part of the functions of a terminal device.
  • the method includes: receiving configuration information from a network device.
  • the RS resource may be a sounding reference signal (sounding reference signal, SRS), and may also be applicable to other RSs sent by the terminal.
  • SRS sounding reference signal
  • the SRS is taken as an example to introduce the solution, but the solution is also applicable to other RSs sent by the terminal, and there is no limitation here.
  • the RS sent on the RS resource configured by the above configuration information can be well adapted to the XR service cycle, and by intensively reporting the RS before the video frame transmission is completed, it helps the network device to obtain the latest channel status information, which is beneficial for network devices to perform antenna selection and other processes, and improves transmission reliability.
  • the aforementioned RS resource is an SRS resource
  • the aforementioned configuration information includes SRS resource group information and is used for configuration of the SRS resource.
  • the transceiver antennas For the case where the transceiver antennas are equal, consider adding the field SRS ResourceSet clustering in the SRS-Config of the configuration information to indicate which SRS ResourceSets belong to the same group; for the case where the transceiver antennas are not equal, consider adding the field SRS ResourceSet clustering to indicate which SRS Resource belongs to the same group.
  • the SRS Resource clustering in the configuration information will include all the SRS ResourceIds in the group.
  • receiving the configuration information from the network device may be receiving radio resource control (radio resource control, RRC) layer signaling from the network device, and the configuration information is carried in the RRC In the newly added field of signaling.
  • RRC radio resource control
  • a new field may be added in RRC signaling SRS-Config to configure SRS resource group information, and the SRS resource group information is used to configure which resources the terminal sends SRS on, where one SRS resource corresponds to one SRS transmission.
  • the terminal can configure the RS resource group through the configuration information, so as to realize intensive transmission of all RS resources of the terminal on the RS resource group, and help the network device obtain the latest channel state information, thereby facilitating the antenna selection of the network device And other processes, improve the transmission reliability.
  • the above configuration information is also used to configure the number of first RS resources in the above RS resource group as K.
  • the network device configures the number K of the first RS resources in the RS resource group according to subcarrier spacing (subcarrier spacing, SCS), frame structure, and time jitter (jitter) range.
  • the terminal can configure the transmission density of RS resource group resources, so as to meet the flexible adaptation of the terminal to different XR services, and help the network equipment to obtain the latest channel state information, which is beneficial to the antenna selection and other processes of the network equipment, and improves transmission reliability.
  • the above configuration information is also used to configure the transmission interval between adjacent RS resource groups in the time domain (for example, the transmission interval Q i between RS resource group i and RS resource group i).
  • the network device configures the transmission interval in the time domain between adjacent RS resource groups according to the SCS and the frame structure.
  • the transmission interval Q i may be obtained by the network device through a graph, or may be obtained by specifying a satisfactory mathematical formula, which is not limited in this application.
  • the terminal can configure the transmission interval between adjacent RS resource groups in the time domain, so as to satisfy the flexible adaptation of the terminal to different XR services, and help the network device obtain the latest channel state information, which is beneficial to the network device Antenna selection and other processes are performed to improve transmission reliability.
  • the above configuration information is also used to configure the transmission interval P m of adjacent RS resources in an RS resource group in the time domain, where the value of P m can be determined according to a specific time slot pattern.
  • the terminal can configure the transmission interval of adjacent RS resources in the time domain, so that the terminal can flexibly adapt to different time slot patterns, and help the network device obtain the latest channel state information, which is beneficial for the network device to perform antenna Selection and other processes improve transmission reliability.
  • the terminal receives indication information from the network device, where the indication information indicates to skip sending RS on the remaining RS resources of the current RS resource group.
  • the terminal will no longer send RS on the remaining RS resources of the current RS resource group, so as to achieve the beneficial effect of saving power and resources.
  • the indication information is carried in media access control element (MAC CE) signaling.
  • MAC CE media access control element
  • the terminal sends the SRS in all the SRS resources of the SRS resource group according to the configuration information.
  • the network device After the network device finishes receiving the current video frame, the network device will send MAC CE signaling to the terminal, skipping sending SRS on the remaining SRS resources of the current SRS resource group.
  • both the terminal and the network device know the sending time of all SRS resources in the current SRS resource group, so the MAC CE only deactivates the SRS resources in the current SRS resource group.
  • the terminal can obtain the indication information through MAC CE signaling, and according to the indication information will no longer send RS on the remaining RS resources of the current RS resource group, so as to achieve the beneficial effect of saving power and resources.
  • Q i 15ms or 17.5ms and satisfy i ⁇ n ⁇ i+2.
  • an appropriate RS resource group can be configured for the XR service with a video frame rate of 60 Hz and a transmission subcarrier interval of 30 kHz, to help the network device obtain the latest channel state information, thereby facilitating the network device to perform antenna selection and other processes. Improved transmission reliability.
  • Q i 10ms or 7.5ms and satisfy i ⁇ n ⁇ i+5.
  • an appropriate RS resource group can be configured for XR services with a video frame rate of 120 Hz and a transmission subcarrier interval of 30 kHz, helping network devices obtain the latest channel state information, thereby facilitating the network device to perform antenna selection and other processes. Improved transmission reliability.
  • Q i 10ms or 12.5ms and satisfy i ⁇ n ⁇ i+8.
  • an appropriate RS resource group can be configured for the XR service with a video frame rate of 90 Hz and a transmission subcarrier interval of 30 kHz, which helps network devices obtain the latest channel state information, thereby facilitating the network device to perform antenna selection and other processes. Improved transmission reliability.
  • Q i 15ms or 20ms and satisfy i ⁇ n ⁇ i+2.
  • an appropriate RS resource group can be configured for the XR service with a video frame rate of 60 Hz and a transmission subcarrier interval of 15 kHz, which helps network devices obtain the latest channel state information, thereby facilitating the network device to perform antenna selection and other processes. Improved transmission reliability.
  • the embodiment of the present application provides a method for sending a reference signal, and the method may be executed by a radio access network device, or may be performed by a component of the radio access network device (such as a processor, a chip, or a chip system, etc.)
  • the execution may also be realized by a logic module or software that can realize all or part of the functions of the wireless access network equipment.
  • the method includes: sending configuration information to the terminal.
  • the RS resource may be a sounding reference signal (sounding reference signal, SRS), and may also be applicable to other RSs sent by the terminal.
  • SRS sounding reference signal
  • the SRS is taken as an example to introduce the solution, but the solution is also applicable to other RSs sent by the terminal, and there is no limitation here.
  • the RS received on the RS resource configured by the above configuration information can be well adapted to the XR service cycle, and by intensively reporting the RS before the video frame transmission is completed, it helps the network device to obtain the latest channel status information, which is beneficial for network devices to perform antenna selection and other processes, and improves transmission reliability.
  • the aforementioned RS resource is an SRS resource
  • the aforementioned configuration information includes SRS resource group information and is used for configuration of the SRS resource.
  • the transceiver antennas For the case where the transceiver antennas are equal, consider adding the field SRS ResourceSet clustering in the SRS-Config of the configuration information to indicate which SRS ResourceSets belong to the same group; for the case where the transceiver antennas are not equal, consider adding the field SRS ResourceSet clustering to indicate which SRS Resource belongs to the same group.
  • the SRS Resource clustering in the configuration information will include all the SRS ResourceIds in the group.
  • sending configuration information to the terminal may be sending radio resource control (radio resource control, RRC) layer signaling to the terminal, and the configuration information is carried in the RRC signaling newly added in the field.
  • RRC radio resource control
  • a new field may be added in RRC signaling SRS-Config to configure SRS resource group information, and the SRS resource group information is used to configure which resources the terminal sends SRS on, where one SRS resource corresponds to one SRS transmission.
  • the terminal can configure the RS resource group through the configuration information, so as to realize intensive transmission of all RS resources of the terminal on the RS resource group, and help the network device obtain the latest channel state information, thereby facilitating the antenna selection of the network device And other processes, improve the transmission reliability.
  • the above configuration information is also used to configure the number of first RS resources in the above RS resource group as K.
  • the network device configures the number K of the first RS resources in the RS resource group according to subcarrier spacing (subcarrier spacing, SCS), frame structure, and time jitter (jitter) range.
  • the terminal can configure the transmission density of RS resource group resources, so as to meet the flexible adaptation of the terminal to different XR services, and help the network equipment to obtain the latest channel state information, which is beneficial to the antenna selection and other processes of the network equipment, and improves transmission reliability.
  • the above configuration information is also used to configure the transmission interval between adjacent RS resource groups in the time domain (for example, the transmission interval Q i between RS resource group i and RS resource group i).
  • the network device configures the transmission interval in the time domain between adjacent RS resource groups according to the SCS and the frame structure.
  • the transmission interval Q i may be obtained by the network device through a graph, or may be obtained by specifying a satisfactory mathematical formula, which is not limited in this application.
  • the terminal can configure the transmission interval between adjacent RS resource groups in the time domain, so as to satisfy the flexible adaptation of the terminal to different XR services, and help the network device obtain the latest channel state information, which is beneficial to the network device Antenna selection and other processes are performed to improve transmission reliability.
  • the above configuration information is also used to configure the transmission interval P m of adjacent RS resources in an RS resource group in the time domain, where the value of P m can be determined according to a specific time slot pattern.
  • the terminal can configure the transmission interval of adjacent RS resources in the time domain, so that the terminal can flexibly adapt to different time slot patterns, and help the network device obtain the latest channel state information, which is beneficial for the network device to perform antenna Selection and other processes improve transmission reliability.
  • the network device sends indication information to the above-mentioned terminal, where the indication information indicates to skip sending RS on remaining RS resources of the current RS resource group.
  • the terminal will no longer send RS on the remaining RS resources of the current RS resource group, so as to achieve the beneficial effect of saving power and resources.
  • the indication information is carried in media access control element (MAC CE) signaling.
  • MAC CE media access control element
  • the terminal sends the SRS in all the SRS resources of the SRS resource group according to the configuration information.
  • the network device After the network device finishes receiving the current video frame, the network device will send MAC CE signaling to the terminal, skipping sending SRS on the remaining SRS resources of the current SRS resource group.
  • both the terminal and the network device know the sending time of all SRS resources in the current SRS resource group, so the MAC CE only deactivates the SRS resources in the current SRS resource group.
  • the terminal can obtain the indication information through MAC CE signaling, and according to the indication information will no longer send RS on the remaining RS resources of the current RS resource group, so as to achieve the beneficial effect of saving power and resources.
  • Q i 15ms or 17.5ms and satisfy i ⁇ n ⁇ i+2.
  • an appropriate RS resource group can be configured for the XR service with a video frame rate of 60 Hz and a transmission subcarrier interval of 30 kHz, to help the network device obtain the latest channel state information, thereby facilitating the network device to perform antenna selection and other processes. Improved transmission reliability.
  • Q i 10ms or 7.5ms and satisfy i ⁇ n ⁇ i+5.
  • an appropriate RS resource group can be configured for XR services with a video frame rate of 120 Hz and a transmission subcarrier interval of 30 kHz, helping network devices obtain the latest channel state information, thereby facilitating the network device to perform antenna selection and other processes. Improved transmission reliability.
  • Q i 10ms or 12.5ms and satisfy i ⁇ n ⁇ i+8.
  • an appropriate RS resource group can be configured for the XR service with a video frame rate of 90 Hz and a transmission subcarrier interval of 30 kHz, which helps network devices obtain the latest channel state information, thereby facilitating the network device to perform antenna selection and other processes. Improved transmission reliability.
  • Q i 15ms or 20ms and satisfy i ⁇ n ⁇ i+2.
  • an appropriate RS resource group can be configured for the XR service with a video frame rate of 60 Hz and a transmission subcarrier interval of 15 kHz, which helps network devices obtain the latest channel state information, thereby facilitating the network device to perform antenna selection and other processes. Improved transmission reliability.
  • the embodiments of the present application provide a device that can implement the method in the first aspect or any possible implementation manner of the first aspect.
  • the apparatus comprises corresponding units or components for performing the method described above.
  • the units included in the device may be implemented by software and/or hardware.
  • the apparatus may be, for example, a terminal or a network device, and may also be a chip, a chip system, or a processor that supports the terminal or network device to implement the above method.
  • the embodiments of the present application provide a device that can implement the method in the above-mentioned second aspect or any possible implementation manner of the second aspect.
  • the apparatus comprises corresponding units or components for performing the method described above.
  • the units included in the device may be implemented by software and/or hardware.
  • the apparatus may be, for example, a terminal or a network device, and may also be a chip, a chip system, or a processor that supports the terminal or network device to implement the above method.
  • the embodiment of the present application provides an apparatus, including: a processor, the processor is coupled to a memory, and the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor, Make the device implement the first aspect or the method in any possible implementation manner of the first aspect.
  • the embodiment of the present application provides an apparatus, including: a processor, the processor is coupled to a memory, and the memory is used to store a program or an instruction, and when the program or instruction is executed by the processor,
  • the device is made to implement the above second aspect or the method in any possible implementation manner of the second aspect.
  • the embodiments of the present application provide a computer-readable storage medium, on which computer programs or instructions are stored, and when the computer programs or instructions are executed, the computer executes the above-mentioned first aspect or any possibility of the first aspect. method in the implementation of .
  • the embodiments of the present application provide a computer-readable storage medium, on which computer programs or instructions are stored, and when the computer programs or instructions are executed, the computer executes any of the possibilities of the second aspect or the second aspect above. method in the implementation of .
  • the embodiment of the present application provides a computer program product, which includes computer program code, and when the computer program code runs on the computer, the computer executes the first aspect or any possible implementation manner of the first aspect method in .
  • an embodiment of the present application provides a computer program product, which includes computer program code, and when the computer program code is run on a computer, the computer executes the second aspect or any possible implementation manner of the second aspect method in .
  • the embodiment of the present application provides a chip, including: a processor, the processor is coupled to a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor , so that the chip implements the above first aspect or the method in any possible implementation manner of the first aspect.
  • the embodiment of the present application provides a chip, including: a processor, the processor is coupled to a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor , so that the chip implements the above-mentioned second aspect or the method in any possible implementation manner of the second aspect.
  • the embodiment of the present application provides a communication system, including: the device in the third aspect above and the device in the fourth aspect above.
  • the embodiment of the present application provides a communication system, including: the device of the fifth aspect and the device of the sixth aspect.
  • FIG. 1 is a schematic diagram of a communication system applied in an embodiment provided by the present application
  • Fig. 2 shows a schematic diagram of an example architecture of a communication system
  • Fig. 3 shows the transmission diagram of data packet in a video frame
  • FIGS. 4-6 show schematic diagrams of several system frameworks applicable to embodiments of the present application.
  • Figure 7 shows a schematic flow chart of the communication method provided by the embodiment of the present application
  • FIG. 8 shows a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • FIG. 1 shows a schematic structural diagram of a communication system.
  • the communication system 100 includes one or more network devices (a network device 110 and a network device 120 are shown in the figure), and one or more terminals communicating with the one or more network devices.
  • Terminal 114 and terminal 118 are shown in FIG. 1 in communication with network device 110
  • terminals 124 and 128 are shown in communication with network device 120 .
  • network devices and terminals may also be referred to as communication devices.
  • the technology described in the embodiments of the present invention can be used in various communication systems, such as the fourth generation (4th generation, 4G) communication system, 4.5G communication system, 5G communication system, a system where multiple communication systems are integrated, or a communication system that will evolve in the future (eg 6G communication system).
  • 4G fourth generation
  • 4G fourth generation
  • 5G communication system a system where multiple communication systems are integrated
  • 6G communication system a communication system that will evolve in the future
  • 6G communication system e.g 6G communication system.
  • long term evolution long term evolution, LTE
  • new radio interface new radio, NR
  • wireless fidelity wireless-fidelity
  • WiFi wireless fidelity
  • wireless ad hoc system wireless ad hoc system
  • device-to-device direct communication system wireless ad hoc system
  • 3GPP 3rd generation partnership project
  • Fig. 2 shows a schematic diagram of a possible architecture example of a communication system, as shown in Fig. unit, DU) base station (such as gNodeB or gNB) with separate architecture.
  • the RAN may be connected to the core network (for example, it may be the core network of LTE, or the core network of 5G, etc.).
  • CU and DU can be understood as the division of the base station from the perspective of logical functions.
  • CU and DU can be physically separated or deployed together. Multiple DUs can share one CU.
  • One DU can also be connected to multiple CUs (not shown in the figure).
  • the CU and the DU may be connected through an interface, such as an F1 interface.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • RLC radio link control
  • MAC media access control
  • DU physical (physical) layer
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • DU physical (physical) layer
  • some functions of the RLC layer and functions of the protocol layers above the RLC layer are set in the CU, and the remaining functions of the RLC layer and functions of the protocol layers below the RLC layer are set in the DU.
  • the functions of the CU or DU may also be divided according to service types or other system requirements. For example, according to delay, the functions whose processing time needs to meet the delay requirement are set in the DU, and the functions that do not need to meet the delay requirement are set in the CU.
  • the network architecture shown in FIG. 2 can be applied to a 5G communication system, and it can also share one or more components or resources with the LTE system.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally or separately.
  • the CU can be set on the network side to facilitate centralized management.
  • the DU can have multiple radio functions, or the radio functions can be set remotely.
  • the function of the CU can be realized by one entity, or the control plane (CP) and the user plane (UP) can be further separated, that is, the control plane (CU-CP) and the user plane (CU-UP) of the CU can have different functions entity, and the CU-CP and CU-UP can be coupled with the DU to jointly complete the functions of the base station.
  • a network device may be any device with a wireless transceiver function. Including but not limited to: evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in LTE, base station (gNodeB or gNB) or transmission receiving point (transmission receiving point/transmission reception point, TRP) in NR, 3GPP Subsequent evolved base stations, access nodes in the WiFi system, wireless relay nodes, wireless backhaul nodes, core network equipment, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc.
  • Multiple base stations may support the aforementioned networks of the same technology, or may support the aforementioned networks of different technologies.
  • a base station may contain one or more co-sited or non-co-sited TRPs.
  • the network device may also be a server (such as a cloud server), a wireless controller, a CU, and/or a DU in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • Network devices can also be servers, wearable devices, machine communication devices, vehicle-mounted devices, or smart screens, etc.
  • a network device is used as an example for description.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment, and can also communicate with the terminal equipment through the relay station.
  • the terminal device can communicate with multiple base stations of different technologies.
  • the terminal device can communicate with the base station supporting the LTE network, and also can communicate with the base station supporting the 5G network. It can also support the communication between the base station of the LTE network and the base station of the 5G network. double connection.
  • all or part of the functions of the network device in this application can also be realized by software functions running on hardware, or by virtualization functions instantiated on a platform (such as a cloud platform).
  • the terminal is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, etc.) and satellites, etc.).
  • the terminal may be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a VR terminal device, an AR terminal device, an MR terminal device, a terminal in an industrial control (industrial control), a vehicle-mounted terminal device, Terminals in self driving, terminals in assisted driving, terminals in remote medical, terminals in smart grid, terminals in transportation safety, smart cities ( terminals in a smart city, terminals in a smart home, and so on.
  • the embodiments of the present application do not limit the application scenarios.
  • a terminal may sometimes be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, machine terminal, UE proxy or UE device, etc.
  • Terminals can be fixed or mobile.
  • the terminal may be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal can be a terminal in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • MTC machine type communication
  • the terminal of the present application may be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip, or a vehicle-mounted unit built into a vehicle as one or more components or units.
  • an on-board chip or an on-board unit can implement the method of the present application. Therefore, the embodiments of the present application can be applied to the Internet of Vehicles, such as vehicle to everything (V2X), long term evolution of vehicle communication (long term evolution vehicle, LTE-V), vehicle to vehicle (vehicle to vehicle, V2V) wait.
  • V2X vehicle to everything
  • LTE-V long term evolution vehicle
  • V2V vehicle to vehicle
  • V2V vehicle to vehicle
  • a terminal in this application may also be a VR terminal, an AR terminal, or an MR terminal.
  • VR terminals, AR terminals, and MR terminals can all be referred to as XR terminals.
  • an XR terminal can be a head-mounted device (such as a helmet or glasses), an all-in-one machine, a TV, a monitor, a car, a vehicle-mounted device, a tablet or a smart screen, etc.
  • XR terminals can present XR data to users, and users can experience diversified XR services by wearing or using XR terminals.
  • XR terminals can access the network through wireless or wired methods, such as accessing the network through WiFi or 5G systems.
  • VR technology mainly refers to the rendering of visual and audio scenes to simulate as much as possible the sensory stimulation of visual and audio in the real world to users.
  • a user can wear an XR terminal (such as a head-mounted device) to simulate vision and/or hearing to the user.
  • VR technology can also track the user's movements to update the simulated visual and/or auditory content in time.
  • AR technology mainly refers to providing additional visual and/or auditory information or artificially generated content in the real environment perceived by the user, where the user's acquisition of the real environment can be direct (for example, without sensing, processing and rendering), It can also be indirect (for example, transmitted through sensors, etc.), and further enhanced processing is performed.
  • MR technology is to insert some virtual elements into the physical scene, the purpose is to provide users with an immersive experience that these elements are part of the real scene.
  • Network devices can process and transmit data generated by XR services (which can be called XR data).
  • XR data For example, network devices in the cloud can render and encode XR source data (such as source coding).
  • the connected network device transmits the XR data to the XR terminal.
  • the XR terminal provides users with a variety of XR experiences (such as immersive experience, visual experience, interactive experience or device experience, etc.) by processing the XR data.
  • evaluation dimensions for XR experience including one or more of the following evaluation dimensions: picture clarity, picture fluency, picture distortion, picture stereoscopic effect, picture black border, picture smear, sound quality, sound effect, Field of view, stuttering, blurred screen, dizziness, audio and video synchronization, degree of freedom of interaction, response speed of interactive operation, accuracy of interactive operation, loading speed of interactive content, terminal wearing comfort, terminal wearing fatigue, terminal battery life , terminal portability, or terminal visual impairment friendliness, etc.
  • picture frames or slices or slices of picture frames may be sent to the terminal in the form of data packets.
  • the picture frame or the fragmentation or fragmentation of the picture frame is divided into Internet protocol (internet protocol, IP) packets at the network transmission layer and transmitted to the fixed network/core network, and then the IP data packets are transmitted to the terminal through the wireless air interface.
  • IP Internet protocol
  • a picture frame in this application may also be called a video frame or a data frame.
  • the immersive services provided by XR have improved the user experience unprecedentedly, the requirements for network transmission are very strict.
  • the transmission of high-definition video requires a higher network throughput rate.
  • the real-time nature of video streams and user interaction behaviors have put forward stricter requirements on network transmission delay.
  • Cloud XR is a quasi-periodic video streaming service, and the video frame rate determines the interval at which video frames are generated.
  • the network device In order to establish an efficient communication link between the network device and the terminal, the network device will configure the time-frequency resources of the monitoring signal (such as sounding reference signal or SRS), and then according to the sounding reference signal (SRS) or channel sent by the terminal State information (channel-state information-reference signal, CSI-RS) measurement results to estimate the uplink channel quality of different frequency bands.
  • the network device can use the SRS sent by the terminal to estimate the quality of the downlink channel, or can send CSI to the terminal -RS to estimate the downlink channel quality, so as to assist network equipment to make a better downlink transmission strategy.
  • both LTE and NR already support SRS.
  • network equipment can also use SRS for beam management, including beam training and switching. It can be understood that the embodiment of the present application uses the SRS as an example to introduce the solution, but this solution is also applicable to the CSI-RS, which is not limited here.
  • the configuration of the SRS resource set type can be mainly divided into three types: periodic type, semi-persistent type and aperiodic type. For all SRS resources belonging to the same SRS resource set, the time-domain characteristics of their resources must be the same.
  • the parameters of the three types can be configured through RRC signaling.
  • the semi-persistent SRS can be activated and deactivated through the media access control element (MAC CE) signaling, and the aperiodic SRS can also be controlled through the downlink. Signal (downlink control information, DCI) trigger.
  • MAC CE media access control element
  • DCI downlink control information
  • the embodiments in this application mainly consider the periodic SRS configuration, and the range of the SRS configuration period is generally 1 to 81920 time slots (slots).
  • the value range of the SRS configuration cycle is very wide, it cannot be well adapted to the XR service video frame sending cycle, which may cause problems such as inaccurate channel measurement and poor power saving of terminals.
  • a video frame video frame
  • its actual arrival time will have a certain degree of jitter. Therefore, if the video frame arrives later, the more advanced SRS information is outdated; if the video frame arrives earlier or has been transmitted, the subsequent SRS information does not need to be sent.
  • the SRS transmission period cannot be adapted to the video frame period.
  • the embodiments in this application provide a reference signal (such as SRS or CSI-RS) transmission method for XR data.
  • a reference signal such as SRS or CSI-RS
  • the terminal needs to Send SRS information or CSI-RS measurement information before or during video frame delivery (the channel information reflected at this time is the most accurate), so that network devices can allocate resources and beams according to the SRS information or CSI-RS measurement information or antenna selection to make a decision.
  • the terminal does not need to send SRS or the network device does not need to send CSI-RS .
  • RS related resources are configured in the dedicated bandwidth part (BWP), which is divided into two levels of RS resource set Resource Set and RS resource Resource configuration.
  • An RS resource group includes one or more RS resource sets, and each resource set may include one or more RS resources.
  • SRS resources as an example, the quantitative relationship between the SRS resource set and SRS resources in the case of equal or unequal transceiver antennas is as follows:
  • each resource set contains 1 SRS resource;
  • each SRS resource set includes 2 SRS resources in the case of 1T2R and 2T4R, and each SRS resource set includes 4 SRS resources in the case of 1T4R.
  • the RS resource may also be a CSI-RS.
  • the present invention uses the SRS signal as an example to introduce the scheme, but this scheme is also applicable to the CSI-RS signal, and there is no limitation here.
  • the terminal sends RS information or RS measurement information according to the scheme and resources configured by the network device, so it needs to be sent in an uplink time slot (slot).
  • DDDSU of the more common frame structure D represents all downlink time slots
  • S represents mixed time slots
  • U represents all uplink time slots.
  • the S slot includes two structures, which are downlink-dominant slot (DL-dominant slot) and uplink-dominant slot (UL-dominant slot).
  • Cloud XR Cloud Extended Reality
  • Cloud XR also called the cloudization of XR refers to the introduction of technologies such as cloud computing and cloud rendering into the application of XR services, and the encoding and compression of the display output and sound output of the cloud to the XR terminal through the network.
  • FIG. 4 shows a schematic diagram of network elements of a system to which this embodiment of the present application is applicable.
  • FIG. 4 illustrates a system 400, including a cloud server 410, a core network and an access network 420 (which may be referred to simply as a transmission network 420, such as LTE, 5G or 6G network), and an XR terminal 430.
  • the cloud server 410 can be used to encode, decode and render the XR source data
  • the transmission network 420 can be used to transmit the XR data
  • the XR terminal 430 can provide users with a variety of XR experiences by processing the XR data.
  • the transmission network 420 and the XR terminal 430 may be included between the transmission network 420 and the XR terminal 430, for example, other terminals (such as mobile phones, notebook computers, or cars, etc.) and/or network equipment (such as relays, WiFi routers, or WiFi access point, etc.), the XR terminal 430 obtains XR data from the transmission network 420 by means of other terminals and/or network devices.
  • the system 400 also includes a centralized controller 440, the centralized controller 440 can receive/collect data from one or more of the cloud server 410, the transmission network 420 or the XR terminal 430, and can also transmit data to the cloud server 410, One or more of network 420 or XR terminal 430 transmits data.
  • the centralized controller 440 can be deployed independently from the cloud server 410, the transmission network 420, and the XR terminal 430, or can be deployed in the cloud server 410, the transmission network 420, or the XR terminal 430, or can be deployed without the centralized controller 440.
  • the function of the centralized controller 440 is realized by the cloud server 410 , the transmission network 420 or the XR terminal 430 .
  • FIG. 5 shows a schematic diagram of another system network element applicable to the embodiment of the present application.
  • FIG. 5 illustrates a system 500 comprising XR terminals 520 and other terminals 510 .
  • the other terminal 510 is a terminal other than the XR terminal 520, and the other terminal 510 may be an XR terminal, or a common terminal (also called a non-XR terminal).
  • Other terminals 510 may transmit XR data to XR terminal 520 .
  • the system 500 further includes a centralized controller 530 , the centralized controller 530 can receive/collect data from the XR terminal 520 and/or other terminals 510 , and can also send data to the XR terminal 520 and/or other terminals 510 .
  • the centralized controller 530 can be deployed independently of the XR terminal 520 and other terminals 510, or can be deployed in the XR terminal 520 or other terminals 510, or the centralized controller 530 can not be deployed but be deployed by the XR terminal 520 or other terminals 510 realizes the function of centralized controller 530 .
  • FIG. 6 shows a schematic diagram of another system network element applicable to this embodiment of the present application.
  • FIG. 6 illustrates a system 600 , including an XR terminal 630 , a WiFi router or a WiFi access point 620 (which may be referred to as a WiFi device 620 for short), and other terminals 610 .
  • the other terminal 610 is a terminal other than the XR terminal 630, and the other terminal 610 may be a kind of XR or a common terminal (also called a non-XR terminal).
  • Other terminals 610 can transmit XR data to the XR terminal 630 via the WiFi device 620 .
  • the system 600 also includes a centralized controller 640, the centralized controller 640 can receive/collect data from one or more of other terminals 610, WiFi devices 620 or XR terminals 630, and can also send data to other terminals 610, WiFi One or more of device 620 or XR terminal 630 transmits data.
  • the centralized controller 640 can be deployed independently from other terminals 610, WiFi devices 620 and XR terminals 630, or can be deployed in other terminals 610, WiFi devices 620 or XR terminals 630, or can be deployed without the centralized controller 640.
  • the function of the centralized controller 640 is realized by other terminals 610 , WiFi devices 620 or XR terminals 630 .
  • FIG. 7 is a schematic flowchart of a communication method 700 provided in an embodiment of the present application.
  • the execution subject of the method may be a terminal (such as an XR terminal), or may be a chip, a chip system, or a processor that supports the terminal to implement the method.
  • the execution bodies of the various parts in Fig. 7 may be the same or different.
  • the method 700 of this embodiment may include part 710 and part 720:
  • Section 710 Receive configuration information from a network device.
  • receiving the configuration information from the network device may be receiving RRC signaling from the network device, and the configuration information is carried in a new field of the RRC signaling.
  • a new field may be added in RRC signaling SRS-Config to configure SRS resource group information, and the SRS resource group information is used to configure which resources the terminal sends SRS on, where one SRS resource corresponds to one SRS transmission.
  • an RS is sent on the RS resource configured by configuration information
  • the RS resource is an SRS resource
  • the configuration information includes SRS resource group information and is used for configuration of the SRS resource.
  • the transceiver antennas For the case where the transceiver antennas are equal, consider adding the field SRS ResourceSet clustering in the SRS-Config of the configuration information to indicate which SRS ResourceSets belong to the same group; for the case where the transceiver antennas are not equal, consider adding the field SRS ResourceSet clustering to indicate which SRS Resource belongs to the same group.
  • the SRS Resource clustering in the configuration information will include all the SRS ResourceIds in the group.
  • the configuration information is also used to configure K as the number of first RS resources in the RS resource group.
  • the network device configures the number K of first RS resources in the RS resource group according to subcarrier spacing (subcarrier spacing, SCS), frame structure, and time jitter (jitter) range.
  • subcarrier spacing subcarrier spacing
  • jitter time jitter
  • the SRS resource is configured on the S time slot. Since the duration of each time slot is 0.5 ms, the occurrence period of the S time slot is 2.5 ms.
  • the arrival jitter range of the video frame is -4ms ⁇ jitter ⁇ 4ms, it can be configured within this range SRS resources (sets), where Indicates rounding down.
  • the SRS resource (set) before the jitter range as the first SRS resource in the SRS resource group, so the first RS resource
  • the number K of is 4.
  • the configuration information is also used to configure the transmission interval in the time domain between adjacent RS resource groups (for example, the transmission interval Q i between RS resource group i and RS resource group i).
  • the network device configures the transmission interval in the time domain between adjacent RS resource groups according to the SCS and the frame structure.
  • the sum of the transmission intervals between several consecutive adjacent RS resource groups is a fixed value and can start from any RS resource group, for example, it can start from RS resource group i, or it can start from RS resource group i+ 1, but the fixed value of the sum does not change (e.g. ).
  • the transmission interval Q i can be obtained by the network device through a graph, as shown in Table 1, or can be obtained by specifying a satisfactory mathematical formula.
  • the RS adaptation cycle is a set.
  • the elements in the set can be the same or different.
  • the number of elements in the set represents the value of w in the above example, and the arrangement order of the elements in the set does not represent the specific Q i order of values.
  • Table 1 are for illustrative purposes only, and only include the values of some configuration parameters. However, the embodiments of this application can be extended to different scenarios according to different configuration parameters. The values in Table 1 are not specified in this application. Do limited.
  • the configuration information is also used to configure the transmission interval P m of adjacent RS resources in a RS resource group in the time domain, where the value of P m can be determined according to a specific time slot pattern.
  • the frame structure is a DDDSU time slot pattern and the RS resource group is an SRS resource group
  • all RS resources in the RS resource group can be sent on S slot or U slot in the time slot pattern.
  • RS resource group i Taking RS resource group i as an example, if the resource m in RS resource group i is sent on the S slot in a certain time slot pattern DDDSU, the next adjacent resource m+1 is sent on the S slot in the next time slot pattern DDDSU Then, the interval P m between resource m and resource m+1 at transmission time is equal to 5 time slots. If the resource m in the RS resource group i is sent on the S slot in a certain time slot pattern DDDSU, and the next adjacent resource m+1 is sent on the U slot in the next time slot pattern DDDSU, then resource m and resource The interval P m of m+1 at the time of transmission is equal to 6 time slots.
  • the resource m in the RS resource group i is sent on the U slot in a certain time slot pattern DDDSU, and the next adjacent resource m+1 is sent on the S slot in the next time slot pattern DDDSU, then the resource The interval P m between m and resource m+1 at transmission time is equal to 4 time slots. If the resource m in the RS resource group i is sent on the U slot in a certain time slot pattern DDDSU, and the next adjacent resource m+1 is sent on the U slot in the next time slot pattern DDDSU, then resource m and resource The interval P m of m+1 at the time of transmission is equal to 5 time slots.
  • the specific value of P m is related to the time slot pattern and the time slot in which RS resources are selected for transmission, and can be flexibly selected, and is not limited in this embodiment of the present application.
  • an optional 730 portion may also be included.
  • Part 730 receiving indication information from the network device, where the indication information indicates to skip sending RS on the remaining RS resources of the current RS resource group.
  • the indication information is carried in the MAC CE signaling.
  • the terminal sends the SRS in all the SRS resources of the SRS resource group according to the configuration information.
  • the network device will send MAC CE signaling to the terminal, skipping sending SRS on the remaining SRS resources of the current SRS resource group.
  • both the terminal and the network device know the sending time of all SRS resources in the current SRS resource group, so the MAC CE only deactivates the SRS resources in the current SRS resource group. It can be understood that the deactivation command will not take effect on the SRS resource group of the next video frame arrival period.
  • FIG. 8 is a schematic flowchart of another communication method 800 provided by an embodiment of the present application.
  • the subject of execution of the method may be a network device (such as a core network device, an access network device, a WiFi router, or a WiFi access point), or a chip, a chip system, or a processor that supports the network device to implement the method.
  • the subject of execution of the method may be a server (such as a cloud server), or a chip, a chip system, or a processor that supports the server to implement the method.
  • the subject of execution of the method may be a centralized controller, or a chip, a chip system, or a processor that supports the centralized controller to implement the method.
  • the execution bodies of the various parts in Fig. 8 may be the same or different.
  • the method 800 of this embodiment may include part 810 and part 820 .
  • Section 810 sending configuration information to the terminal.
  • sending configuration information to the terminal may be sending RRC signaling to the terminal, and the configuration information is carried in a newly added field of the RRC signaling.
  • a new field may be added in RRC signaling SRS-Config to configure SRS resource group information, and the SRS resource group information is used to configure which resources the terminal sends SRS on, where one SRS resource corresponds to one SRS transmission.
  • Part 820 receiving RS on the RS resource configured by the configuration information; the RS resource is included in multiple RS resource groups, wherein RS resource group i in the multiple RS resource groups includes K RS resources configured by the configuration information
  • the first RS resources, the transmission times of the K first RS resources are T i,1 , T i,2 ,...,T i,K in sequence, wherein the RS resource group i+1 in the plurality of RS resource groups includes
  • K is an integer greater than 1
  • i is the identifier of the RS resource group i
  • K is an integer greater than
  • an RS is received on the RS resource configured by the configuration information
  • the RS resource is an SRS resource
  • the configuration information includes SRS resource group information and is used for configuration of the SRS resource.
  • the transceiver antennas For the case where the transceiver antennas are equal, consider adding the field SRS ResourceSet clustering in the SRS-Config of the configuration information to indicate which SRS ResourceSets belong to the same group; for the case where the transceiver antennas are not equal, consider adding the field SRS ResourceSet clustering to indicate which SRS Resource belongs to the same group.
  • the SRS Resource clustering in the configuration information will include all the SRS ResourceIds in the group.
  • the content contained in the configuration information is the same as the part 720 in the method 700, and will not be repeated here.
  • an optional 830 portion may also be included.
  • Part 830 sending indication information to the terminal, where the indication information instructs the terminal to skip sending RS on the remaining RS resources in the current RS resource group.
  • the indication information is carried in the MAC CE signaling.
  • the terminal sends the SRS in all the SRS resources of the SRS resource group according to the configuration information.
  • the network device will send MAC CE signaling to the terminal, skipping sending SRS on the remaining SRS resources of the current SRS resource group.
  • both the terminal and the network device know the sending time of all SRS resources in the current SRS resource group, so the MAC CE only deactivates the SRS resources in the current SRS resource group. It can be understood that the deactivation command will not take effect on the SRS resource group of the next video frame arrival period.
  • Figure 9 shows a schematic structural view of a device.
  • the apparatus 900 may be a network device, a terminal device, a server or a centralized controller, or may be a chip, a chip system, or a processor that supports the network device, terminal device, server or centralized controller to implement the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • the apparatus 900 may include one or more processors 901, and the processors 901 may also be referred to as processing units, and may implement certain control functions.
  • the processor 901 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, and process Data for Software Programs.
  • the processor 901 can also store instructions and/or data 903, and the instructions and/or data 903 can be executed by the processor, so that the device 900 executes the method described in the above-mentioned embodiment. described method.
  • the processor 901 may include a transceiver unit configured to implement receiving and sending functions.
  • the transceiver unit may be a transceiver circuit, or an interface, or an interface circuit, or a communication interface.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the apparatus 900 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the device 900 may include one or more memories 902, on which instructions 904 may be stored, and the instructions may be executed on the processor, so that the device 900 executes the above-mentioned method embodiments. described method.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and memory can be set separately or integrated together. For example, the corresponding relationships described in the foregoing method embodiments may be stored in a memory, or stored in a processor.
  • the apparatus 900 may further include a transceiver 905 and/or an antenna 906 .
  • the processor 901 may be called a processing unit, and controls the apparatus 900 .
  • the transceiver 905 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver device, or a transceiver module, etc., and is used to implement a transceiver function.
  • the apparatus 900 in the embodiment of the present application may be used to execute the method described in FIG. 7 or 8 in the embodiment of the present application.
  • the processors and transceivers described in this application can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • the devices described in the above embodiments may be network devices or terminal devices, but the scope of the devices described in this application is not limited thereto, and the structure of the devices may not be limited by FIG. 9 .
  • a device may be a stand-alone device or may be part of a larger device.
  • the device may be:
  • a set of one or more ICs may also include a storage unit for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • FIG. 10 provides a schematic structural diagram of a terminal device.
  • the terminal device may be applicable to the scenarios shown in FIG. 1 , FIG. 4 , FIG. 5 or FIG. 6 .
  • FIG. 10 only shows main components of the terminal device.
  • the terminal device 1000 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire terminal, execute software programs, and process data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, analyze and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and processes the data deal with.
  • a storage may also be called a storage medium or a storage device, which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit, the baseband processor is mainly used to process communication protocols and communication data, and the central processor is mainly used to control the entire terminal device, execute A software program that processes data for a software program.
  • the processor in FIG. 10 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected through technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built into the processor, or stored in the storage unit in the form of software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiver function may be regarded as the transceiver unit 1011 of the terminal device 1000
  • the processor with the processing function may be regarded as the processing unit 1012 of the terminal device 1000
  • a terminal device 1000 includes a transceiver unit 1011 and a processing unit 1012 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 1011 for realizing the receiving function can be regarded as a receiving unit
  • the device in the transceiver unit 1011 for realizing the sending function can be regarded as a sending unit
  • the transceiver unit 1011 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • the above-mentioned receiving unit and sending unit may be one integrated unit, or may be multiple independent units.
  • the above-mentioned receiving unit and sending unit may be located in one geographic location, or may be dispersed in multiple geographic locations.
  • the device may be a terminal, network device, server or centralized controller, and may also be a component (such as an integrated circuit, chip, etc.) of the terminal, network device, server or centralized controller.
  • the device may also be another communication module, which is used to implement the method in the method embodiment of the present application.
  • the apparatus 1100 may include: a processing module 1102 (or referred to as a processing unit).
  • a processing module 1102 or referred to as a processing unit.
  • an interface module 1101 or called a transceiver unit or a transceiver module
  • a storage module 1103 or called a storage unit
  • the interface module 1101 is used to communicate with other devices.
  • the interface module 1101 may be, for example, a transceiver module or an input/output module.
  • one or more modules in Figure 11 may be implemented by one or more processors, or by one or more processors and memories; or by one or more processors and a transceiver; or by one or more processors, memories, and a transceiver, which is not limited in this embodiment of the present application.
  • the processor, memory, and transceiver can be set independently or integrated.
  • the device has the function of implementing the terminal described in the embodiment of this application.
  • the device includes a module or unit or means (means) corresponding to the terminal performing the steps related to the terminal described in the embodiment of this application.
  • the function or unit or The means (means) can be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware. For details, further reference may be made to the corresponding descriptions in the aforementioned corresponding method embodiments.
  • the device has the function of implementing the network device described in the embodiment of the present application, for example, the device includes a module or unit or means (means) corresponding to the network device performing the steps involved in the network device described in the embodiment of the present application , the function or unit or means (means) may be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware.
  • the function or unit or means (means) may be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware.
  • each module in the apparatus 1100 in the embodiment of the present application may be used to execute the method described in FIG. 7 in the embodiment of the present application.
  • an apparatus 1100 may include: a processing module 1102 and an interface module 1101 .
  • the interface module 1101 is used for receiving configuration information from network devices.
  • the processing module 1102 is configured to send RS on the RS resources configured by the configuration information; the RS resources are included in multiple RS resource groups, wherein the RS resource group i in the multiple RS resource groups includes K RS resources configured by the configuration information
  • the first RS resources, the transmission moments of the K first RS resources are T i,1 , T i,2 ,...,T i,K in sequence, wherein the RS resource group i+1 among the multiple RS resource groups includes
  • the method further includes: the interface module 1101 is further configured to receive indication information from the network device, where the indication information indicates to skip sending RS on the remaining RS resources of the current RS resource group. .
  • Q i 15ms or 17.5ms and satisfy i ⁇ n ⁇ i+2.
  • Q i 10 ms or 7.5 ms and satisfy i ⁇ n ⁇ i+5.
  • Q i 10ms or 12.5ms and satisfy i ⁇ n ⁇ i+8.
  • each module in the apparatus 1100 in the embodiment of the present application may be used to execute the method described in FIG. 8 in the embodiment of the present application.
  • an apparatus 1100 may include: a processing module 1102 and an interface module 1101 .
  • the interface module 1101 is used to send configuration information to the terminal.
  • the processing module 1102 is configured to receive RS on the RS resources configured by the configuration information; the RS resources are included in multiple RS resource groups, wherein the RS resource group i in the multiple RS resource groups includes K first RS resources configured by the configuration information
  • the transmission times of the K first RS resources are T i,1 , T i,2 ,...,T i,K
  • the method further includes: the interface module 1101 is further configured to send indication information to the terminal, where the indication information instructs the terminal to skip sending RS on remaining RS resources in the current RS resource group.
  • Q i 15ms or 17.5ms and satisfy i ⁇ n ⁇ i+2.
  • the processor in the embodiment of the present application may be an integrated circuit chip having a signal processing capability.
  • each step of the above-mentioned method embodiment can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other possible Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a processing unit for performing these techniques at a communication device may be implemented in one or more general-purpose processors, DSPs, digital signal processing devices, ASICs, Programmable logic device, FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination of the foregoing.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration to accomplish.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • references to "an embodiment” throughout the specification mean that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application.
  • the various embodiments throughout the specification are not necessarily referring to the same embodiment.
  • the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • system and “network” are often used herein interchangeably.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone The three cases of B, where A can be singular or plural, and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • the term "at least one of” or “at least one of” means all or any combination of the listed items, for example, "at least one of A, B and C", It can mean: A alone exists, B exists alone, C exists alone, A and B exist at the same time, B and C exist at the same time, and A, B and C exist at the same time, where A can be singular or plural, and B can be Singular or plural, C can be singular or plural.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.
  • the corresponding relationships shown in the tables in this application can be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefined in this application can be understood as defining, predefining, storing, prestoring, prenegotiating, preconfiguring, curing, or prefiring.
  • the systems, devices and methods described in this application can also be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本申请提供一种参考信号RS的传输方法及装置。该方法包括:接收来自网络设备的配置信息。在由该配置信息配置的RS资源上发送RS。该RS资源包含在多个RS资源组中,其中该多个RS资源组中的RS资源组i包含由该配置信息配置的K个第一RS资源,该K个第一RS资源的传输时刻依次为Ti,1,Ti,2,…,Ti,K,其中该多个RS资源组中的RS资源组i+1包含由该配置信息配置的K个第二RS资源,该K个第二RS资源的传输时刻依次为Ti+1,1,Ti+1,2,…,Ti+1,K,且满足:Ti,m+1-Ti,m=Pm,Ti+1,m+1-Ti+1,m=Pm以及Ti+1,k-Ti,k=Qi。通过该方法,传输装置可以在业务帧传输完成前密集地上报RS,并在业务帧传输完成后不再发送当前周期内后续的RS,达到省电和省资源的有益效果。

Description

参考信号的传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号的传输方法及装置。
背景技术
在无线通信网络中,扩展现实(extended reality,XR)技术具有多视角、交互性强等优点,能够为用户提供了一种全新的视觉体验,具有极大的应用价值和商业潜力。XR包含虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、和混合现实(mix reality,MR)等技术,能够广泛应用于娱乐、游戏、医疗、广告、工业、在线教育、以及工程等诸多领域。
尽管XR所提供的沉浸式服务使得用户体验有了前所未有的提升,但对网络传输的要求十分严格。一方面,高清视频的传输需要更高的网络吞吐速率,另一方面,视频流的实时性以及用户交互行为都对网络传输时延提出了更为严苛的要求。例如,在云VR业务中,用户终端向云端VR服务器发起请求后,云服务器根据请求下发视频帧,终端收到视频帧数据后,终端为用户呈现VR画面。
云XR是一种准周期性的视频流业务,视频的帧率决定着视频帧的生成间隔。然而,虽然一些参考信号(reference signal,RS)的配置周期的取值范围很广,但并不能很好的适配XR业务视频帧下发周期,从而可能造成信道测量不准、终端不省电等问题。因此,如何针对XR视频流业务的业务特点,为XR传输数据的RS配置合适的周期,达到省电和省资源的效果,成为亟需解决的问题。
发明内容
本申请实施例提供一种参考信号的传输方法及装置。
第一方面,本申请实施例提供一种参考信号的发送方法,该方法可以由终端设备执行,也可以由终端设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。该方法包括:接收来自网络设备的配置信息。在由该配置信息配置的RS资源上发送RS;该RS资源包含在多个RS资源组中,其中该多个RS资源组中的RS资源组i包含由该配置信息配置的K个第一RS资源,该K个第一RS资源的传输时刻依次为T i,1,T i,2,…,T i,K,其中该多个RS资源组中的RS资源组i+1包含由该配置信息配置的K个第二RS资源,该K个第二RS资源的传输时刻依次为T i+1,1,T i+1,2,…,T i+1,K,且满足:T i,m+1-T i,m=P m,T i+1,m+1-T i+1,m=P m以及T i+1,k-T i,k=Q i,其中K为大于1的整数,i为该RS资源组i的标识,i+1为该RS资源组i+1的标识,i为自然数且可以从0起始也可以从1起始,m为整数且满足1≤m<K,k为整数且满足1≤k≤K,P m>0,Q i>0。可以理解,在本申请实施例中,RS资源可以是探测参考信号(sounding reference signal,SRS),也可以适用于其它的由终端发送的RS。本申请实施例以SRS为例进行方案介绍,但本方案同样适用于其它的由终端发送的RS,在此不做限制。
通过该方法,在上述配置信息配置的RS资源上发送的RS可以与XR的业务周期达到很好地适配,并通过在视频帧传输完成前密集地上报RS,帮助网络设备获得最新的信道 状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
结合第一方面,在第一方面的某些实施方式中,上述RS资源为SRS资源,上述配置信息包括了SRS资源组信息并用于SRS资源的配置。对于收发天线相等的情况,可考虑在配置信息的SRS-Config中新增字段SRS ResourceSet clustering,表明哪些SRS ResourceSet属于同一组;对于收发天线不相等的情况,考虑新增字段SRS Resource clustering,表明哪些SRS Resource属于同一组。区别于字段SRS ResourceIdList仅包含了某一个SRS ResourceSet下的SRS ResourceId,配置信息中的SRS Resource clustering将包含组内所有的SRS ResourceId。通过该实施方式,可以将多个SRS资源绑定到一个SRS资源组在一个视频帧周期内进行密集发送,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
结合第一方面,在第一方面的某些实施方式中,接收来自网络设备的配置信息可以是接收来自网络设备的无线资源控制(radio resource control,RRC)层信令,该配置信息携带在RRC信令新增的字段中。示例性地,可以在RRC信令SRS-Config中新增一个字段来配置SRS资源组信息,该SRS资源组信息用于配置终端在哪些资源上发送SRS,其中一个SRS资源对应一个SRS的发送。通过该实施方式,终端可以通过配置信息来配置RS资源组,从而实现终端在RS资源组上的所有RS资源进行密集发送,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
可选地,上述配置信息还用于配置上述RS资源组内第一RS资源的数目为K。在一种实施方式中,网络设备根据子载波间隔(subcarrier spacing,SCS)、帧结构以及时间抖动(jitter)的范围来配置上述RS资源组内第一RS资源的数目K。通过该实施方式,终端可以配置RS资源组资源的发送密度,从而满足终端针对不同XR业务进行灵活适配,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
可选地,上述配置信息还用于配置相邻RS资源组之间在时域上的传输间隔(例如RS资源组i与RS资源组i之间的传输间隔Q i)。在一种实施方式中,网络设备根据SCS、帧结构来配置相邻RS资源组之间在时域上的传输间隔。可选地,该传输间隔Q i可以由网络设备通过图表的方式获得,也可以通过给定满足的数学公式的来获得,本申请不做限定。通过该实施方式,终端可以配置相邻RS资源组之间在时域上的传输间隔,从而满足终端针对不同XR业务进行灵活适配,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
可选地,上述配置信息还用于配置一个RS资源组内相邻RS资源在时域上的传输间隔P m,其中P m的取值可以根据具体的时隙图样确定。通过该实施方式,终端可以配置相邻RS资源在时域上的传输间隔,从而满足终端针对不同时隙图样进行灵活适配,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
结合第一方面,在第一方面的某些实施方式中,终端接收来自网络设备的指示信息,该指示信息指示跳过在当前RS资源组的剩余RS资源上发送RS。通过该实施方式,在视频帧传输完成后,终端将不再在当前RS资源组的剩余RS资源上发送RS,达到省电和省资源的有益效果。
结合第一方面,在第一方面在终端接收来自网络设备的指示信息一种实施方式中,该指示信息携带在媒体接入控制单元(media access control control element,MAC CE)信令中。示例性地,终端根据配置信息在SRS资源组的所有SRS资源中发送SRS。当网络设备完成当前 视频帧接收后,网络设备会发送MAC CE信令给终端,跳过在当前SRS资源组的剩余SRS资源上发送SRS。可选地,通过配置消息,终端和网络设备均已知当前SRS资源组内所有SRS资源的发送时刻,因此该MAC CE仅对当前SRS资源组内的SRS资源去激活。可以理解,该去激活命令不会对下一个视频帧到达周期的SRS资源组生效。通过该实施方式,终端可以通过MAC CE信令获得指示信息,并根据该指示信息将不再在当前RS资源组的剩余RS资源上发送RS,达到省电和省资源的有益效果。
结合第一方面,在第一方面在配置信息还用于配置相邻RS资源组之间在时域上的传输间隔的一种实施例中,该传输间隔通过满足的数学条件获得,即:Q i=15ms或17.5ms且满足
Figure PCTCN2022141708-appb-000001
i≤n≤i+2。通过该实施方式,可以针对视频帧率为60Hz,传输子载波间隔为30kHz的XR业务配置合适的RS资源组,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
结合第一方面,在第一方面在配置信息还用于配置相邻RS资源组之间在时域上的传输间隔的一种实施例中,该传输间隔通过满足的数学条件获得,即:Q i=10ms或7.5ms且满足
Figure PCTCN2022141708-appb-000002
i≤n≤i+5。通过该实施方式,可以针对视频帧率为120Hz,传输子载波间隔为30kHz的XR业务配置合适的RS资源组,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
结合第一方面,在第一方面在配置信息还用于配置相邻RS资源组之间在时域上的传输间隔的一种实施例中,该传输间隔通过满足的数学条件获得,即:Q i=10ms或12.5ms且满足
Figure PCTCN2022141708-appb-000003
i≤n≤i+8。通过该实施方式,可以针对视频帧率为90Hz,传输子载波间隔为30kHz的XR业务配置合适的RS资源组,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
结合第一方面,在第一方面在配置信息还用于配置相邻RS资源组之间在时域上的传输间隔的一种实施例中,该传输间隔通过满足的数学条件获得,即:Q i=15ms或20ms且满足
Figure PCTCN2022141708-appb-000004
i≤n≤i+2。通过该实施方式,可以针对视频帧率为60Hz,传输子载波间隔为15kHz的XR业务配置合适的RS资源组,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
第二方面,本申请实施例提供一种参考信号的发送方法,该方法可以由无线接入网设备执行,也可以由无线接入网设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分无线接入网设备功能的逻辑模块或软件实现。该方法包括:向终端发送配置信息。在由该配置信息配置的RS资源上接收RS;该RS资源包含在多个RS资源组中,其中该多个RS资源组中的RS资源组i包含由该配置信息配置的K个第一RS资源,该K个第一RS资源的传输时刻依次为T i,1,T i,2,…,T i,K,其中该多个RS资源组中的RS资源组i+1包含由该配置信息配置的K个第二RS资源,该K个第二RS资源的传输时刻依次为T i+1,1,T i+1,2,…,T i+1,K,且满足:T i,m+1-T i,m=P m,T i+1,m+1-T i+1,m=P m以及T i+1,k-T i,k=Q i,其中K为大于1的整数,i为该RS资源组i的标识,i+1为该RS资源组i+1的标识,i为自然数且可以从0起始也可以从1起始,m为整数且满足1≤m<K,k为整数且满足1≤k≤K,P m>0,Q i>0。可以理解,在本申请实施例中,RS资源可以是探测参考信号(sounding reference signal,SRS),也可以适用于其它的由终端发送的RS。本申请实施例以SRS为例进行方案介绍,但本方案同样适用于其它的由终端发送的RS,在此不做限制。
通过该方法,在上述配置信息配置的RS资源上接收的RS可以与XR的业务周期达到很好地适配,并通过在视频帧传输完成前密集地上报RS,帮助网络设备获得最新的信道 状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
结合第二方面,在第二方面的某些实施方式中,上述RS资源为SRS资源,上述配置信息包括了SRS资源组信息并用于SRS资源的配置。对于收发天线相等的情况,可考虑在配置信息的SRS-Config中新增字段SRS ResourceSet clustering,表明哪些SRS ResourceSet属于同一组;对于收发天线不相等的情况,考虑新增字段SRS Resource clustering,表明哪些SRS Resource属于同一组。区别于字段SRS ResourceIdList仅包含了某一个SRS ResourceSet下的SRS ResourceId,配置信息中的SRS Resource clustering将包含组内所有的SRS ResourceId。通过该实施方式,可以将多个SRS资源绑定到一个SRS资源组在一个视频帧周期内进行密集发送,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
结合第二方面,在第二方面的某些实施方式中,向终端发送配置信息可以是向终端发送无线资源控制(radio resource control,RRC)层信令,该配置信息携带在RRC信令新增的字段中。示例性地,可以在RRC信令SRS-Config中新增一个字段来配置SRS资源组信息,该SRS资源组信息用于配置终端在哪些资源上发送SRS,其中一个SRS资源对应一个SRS的发送。通过该实施方式,终端可以通过配置信息来配置RS资源组,从而实现终端在RS资源组上的所有RS资源进行密集发送,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
可选地,上述配置信息还用于配置上述RS资源组内第一RS资源的数目为K。在一种实施方式中,网络设备根据子载波间隔(subcarrier spacing,SCS)、帧结构以及时间抖动(jitter)的范围来配置上述RS资源组内第一RS资源的数目K。通过该实施方式,终端可以配置RS资源组资源的发送密度,从而满足终端针对不同XR业务进行灵活适配,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
可选地,上述配置信息还用于配置相邻RS资源组之间在时域上的传输间隔(例如RS资源组i与RS资源组i之间的传输间隔Q i)。在一种实施方式中,网络设备根据SCS、帧结构来配置相邻RS资源组之间在时域上的传输间隔。可选地,该传输间隔Q i可以由网络设备通过图表的方式获得,也可以通过给定满足的数学公式的来获得,本申请不做限定。通过该实施方式,终端可以配置相邻RS资源组之间在时域上的传输间隔,从而满足终端针对不同XR业务进行灵活适配,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
可选地,上述配置信息还用于配置一个RS资源组内相邻RS资源在时域上的传输间隔P m,其中P m的取值可以根据具体的时隙图样确定。通过该实施方式,终端可以配置相邻RS资源在时域上的传输间隔,从而满足终端针对不同时隙图样进行灵活适配,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
结合第二方面,在第二方面的某些实施方式中,网络设备向上述终端发送指示信息,该指示信息指示跳过在当前RS资源组的剩余RS资源上发送RS。通过该实施方式,在视频帧传输完成后,终端将不再在当前RS资源组的剩余RS资源上发送RS,达到省电和省资源的有益效果。
结合第二方面,在第二方面在网络设备向终端发送指示信息一种实施方式中,该指示信息携带在媒体接入控制单元(media access control control element,MAC CE)信令中。示例性地,终端根据配置信息在SRS资源组的所有SRS资源中发送SRS。当网络设备完成当前视频 帧接收后,网络设备会发送MAC CE信令给终端,跳过在当前SRS资源组的剩余SRS资源上发送SRS。可选地,通过配置消息,终端和网络设备均已知当前SRS资源组内所有SRS资源的发送时刻,因此该MAC CE仅对当前SRS资源组内的SRS资源去激活。可以理解,该去激活命令不会对下一个视频帧到达周期的SRS资源组生效。通过该实施方式,终端可以通过MAC CE信令获得指示信息,并根据该指示信息将不再在当前RS资源组的剩余RS资源上发送RS,达到省电和省资源的有益效果。
结合第二方面,在第二方面在配置信息还用于配置相邻RS资源组之间在时域上的传输间隔的一种实施例中,该传输间隔通过满足的数学条件获得,即:Q i=15ms或17.5ms且满足
Figure PCTCN2022141708-appb-000005
i≤n≤i+2。通过该实施方式,可以针对视频帧率为60Hz,传输子载波间隔为30kHz的XR业务配置合适的RS资源组,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
结合第二方面,在第二方面在配置信息还用于配置相邻RS资源组之间在时域上的传输间隔的一种实施例中,该传输间隔通过满足的数学条件获得,即:Q i=10ms或7.5ms且满足
Figure PCTCN2022141708-appb-000006
i≤n≤i+5。通过该实施方式,可以针对视频帧率为120Hz,传输子载波间隔为30kHz的XR业务配置合适的RS资源组,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
结合第二方面,在第二方面在配置信息还用于配置相邻RS资源组之间在时域上的传输间隔的一种实施例中,该传输间隔通过满足的数学条件获得,即:Q i=10ms或12.5ms且满足
Figure PCTCN2022141708-appb-000007
i≤n≤i+8。通过该实施方式,可以针对视频帧率为90Hz,传输子载波间隔为30kHz的XR业务配置合适的RS资源组,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
结合第二方面,在第二方面在配置信息还用于配置相邻RS资源组之间在时域上的传输间隔的一种实施例中,该传输间隔通过满足的数学条件获得,即:Q i=15ms或20ms且满足
Figure PCTCN2022141708-appb-000008
i≤n≤i+2。通过该实施方式,可以针对视频帧率为60Hz,传输子载波间隔为15kHz的XR业务配置合适的RS资源组,帮助网络设备获得最新的信道状态信息,从而有利于网络设备进行天线选择等过程,提升了传输可靠性。
第三方面,本申请实施例提供一种装置,可以实现上述第一方面或第一方面任一种可能的实施方式中的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为终端或网络设备,也可以为支持终端或网络设备实现上述方法的芯片、芯片系统、或处理器等。
第四方面,本申请实施例提供一种装置,可以实现上述第二方面或第二方面任一种可能的实施方式中的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为终端或网络设备,也可以为支持终端或网络设备实现上述方法的芯片、芯片系统、或处理器等。
第五方面,本申请实施例提供一种装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该装置实现上述第一方面或第一方面任一种可能的实施方式中的方法。
第六方面,本申请实施例提供一种装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该装置实现上述第二方面或第二方面任一种可能的实施方式中的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或 指令,所述计算机程序或指令被执行时使得计算机执行上述第一方面或第一方面任一种可能的实施方式中的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,所述计算机程序或指令被执行时使得计算机执行上述第二方面或第二方面任一种可能的实施方式中的方法。
第九方面,本申请实施例提供一种计算机程序产品,其包括计算机程序代码,所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面任一种可能的实施方式中的方法。
第十方面,本申请实施例提供一种计算机程序产品,其包括计算机程序代码,所述计算机程序代码在计算机上运行时,使得计算机执行上述第二方面或第二方面任一种可能的实施方式中的方法。
第十一方面,本申请实施例提供一种芯片,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片实现上述第一方面或第一方面任一种可能的实施方式中的方法。
第十二方面,本申请实施例提供一种芯片,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片实现上述第二方面或第二方面任一种可能的实施方式中的方法。
第十三方面,本申请实施例提供一种通信系统,包括:上述第三方面的装置和上述第四方面的装置。
第十四方面,本申请实施例提供一种通信系统,包括:上述第五方面的装置和上述第六方面的装置。
可以理解,第三方面至第十四方面与第一方面或第二方面对应特征的有益效果,请参见第一方面或第二方面中的有关描述,不重复赘述。
附图说明
图1为本申请提供的实施例应用的通信系统的示意图;
图2示出了通信系统的一种架构举例示意图;
图3示出了一个视频帧中数据包的传输示意图;
图4-图6示出了本申请实施例适用的几种系统框架示意图;
图7示出了本申请实施例提供的通信方法的流程示意图
图8示出了本申请实施例提供的通信方法的流程示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的一种终端的结构示意图;
图11为本申请实施例提供的另一种通信装置的示意图。
具体实施方式
本申请实施例提供的方法及装置可以应用于通信系统中。如图1示出了一种通信系统结构示意图。该通信系统100中包括一个或多个网络设备(图中示出网络设备110和网络设备120),以及与该一个或多个网络设备通信的一个或多个终端。图1中所示终端114和终端118与网络设备110通信,所示终端124和终端128与网络设备120通信。可以理解的是,网络设备和终端也可以被称为通信设备。
本发明实施例描述的技术可用于各种通信系统,例如第四代(4th generation,4G)通信系统,4.5G通信系统,5G通信系统,多种通信系统融合的系统,或者未来演进的通信系统(例如6G通信系统)。例如长期演进(long term evolution,LTE)系统,新空口(new radio,NR)系统,无线保真(wireless-fidelity,WiFi)系统,无线自组织系统,设备与设备直连通信系统,以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的通信系统等,以及其他此类通信系统。
图2示出了通信系统的一种可能的架构举例示意图,如图2所示无线接入网(radio access network,RAN)中的网络设备包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU)分离架构的基站(如gNodeB或gNB)。RAN可以与核心网相连(例如可以是LTE的核心网,也可以是5G的核心网等)。CU和DU可以理解为是对基站从逻辑功能角度的划分。CU和DU在物理上可以是分离的也可以部署在一起。多个DU可以共用一个CU。一个DU也可以连接多个CU(图中未示出)。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及无线资源控制(radio resource control,RRC)层的功能设置在CU,而无线链路控制(radio link control,RLC),媒体接入控制(media access control,MAC)层,物理(physical)层等的功能设置在DU。可以理解对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。图2所示的网络架构可以应用于5G通信系统,其也可以与LTE系统共享一个或多个部件或资源。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
CU的功能可以由一个实体来实现,也可以进一步将控制面(CP)和用户面(UP)分离,即CU的控制面(CU-CP)和用户面(CU-UP)可以由不同的功能实体来实现,所述CU-CP和CU-UP可以与DU相耦合,共同完成基站的功能。
可以理解的是,本申请中提供的实施例也适用于CU和DU不分离的架构。
本申请中,网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),NR中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点,核心网设备等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。网络设备还可以是服务器(例如云服务器)、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、CU,和/或,DU。网络设备还可以是服务器,可穿戴设备,机器通信设备、车载设备、或智慧屏幕等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进 行通信。终端设备可以与不同技术的多个基站进行通信,例如,终端设备可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。可以理解,本申请中的网络设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
终端是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、VR终端设备、AR终端设备、MR终端设备、工业控制(industrial control)中的终端、车载终端设备、无人驾驶(self driving)中的终端、辅助驾驶中的终端、远程医疗(remote medical)中的终端、智能电网(smart grid)中的终端、运输安全(transportation safety)中的终端、智慧城市(smart city)中的终端、智慧家庭(smart home)中的终端等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、机器终端、UE代理或UE装置等。终端可以是固定的,也可以是移动的。
作为示例而非限定,在本申请中,终端可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请中,终端可以是物联网(internet of things,IoT)系统中的终端,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。本申请中的终端可以是机器类型通信(machine type communication,MTC)中的终端。本申请的终端可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。因此,本申请实施例可以应用于车联网,例如车辆外联(vehicle to everything,V2X)、车间通信长期演进技术(long term evolution vehicle,LTE-V)、车到车(vehicle to vehicle,V2V)等。
在本申请中的终端还可以是VR终端、AR终端、或MR终端。VR终端、AR终端、和MR终端都可称为XR终端。XR终端例如可以是头戴式设备(例如头盔或眼镜),也可以是一体机,还可以是电视、显示器、汽车、车载设备、平板或智慧屏等。XR终端能够将XR数据呈现给用户,用户通过佩戴或使用XR终端能够体验多样化的XR业务。XR终端可以通过无线或有线的方式接入网络,例如通过WiFi或5G系统接入网络。
VR技术主要是指对视觉和音频场景的渲染以尽可能地模拟现实世界中的视觉和音频对用户的感官刺激。VR技术中,用户可佩戴XR终端(例如头戴式设备)进而向用户模拟视觉和/或听觉。VR技术还可以对用户进行动作跟踪,从而及时更新模拟的视觉和/或听觉内容。AR技术主要是指在用户感知的现实环境中提供视觉和/或听觉的附加信息或人工生成内容,其中,用户对现实环境的获取可以是直接的(例如不进行感测、处理和渲染),也可以是间接 的(例如通过传感器等方式进行传递),并进行进一步的增强处理。MR技术是将一些虚拟元素插入到物理场景中,目的是为用户提供一种这些元素是真实场景一部分的沉浸体验。网络设备可以对XR业务产生的数据(可称为XR数据)进行处理和传输,例如云端的网络设备可以对XR的源数据进行渲染和编码(比如信源编码),借助核心网和/或接入网的网络设备将XR数据传输到XR终端。XR终端通过对XR数据的处理为用户提供多样化的XR体验(例如沉浸体验、视觉体验、交互体验或设备体验等)。XR体验有多种不同的评价维度,例如包括以下评价维度中的一种或多种:画面清晰度、画面流畅度、画面畸变、画面立体感、画面黑边、画面拖影、音质、音效、视场角、卡顿感、花屏感、眩晕感、音视频同步、交互自由度、交互操作响应速度、交互操作精准度、交互内容加载速度、终端佩戴舒适度、终端佩戴疲劳感、终端续航能力、终端便携度、或终端视力障碍友好度等。
对于XR等视频类业务的传输,可以将画面帧或者画面帧的分条或分片以数据包的形式发送给终端。例如,将画面帧或者画面帧的分条或分片在网络传输层分成网际协议(internet protocol,IP)包传输到固网/核心网,之后IP数据包再经过无线空口传输到终端。可以理解,本申请中的画面帧也可以称为视频帧或数据帧。
尽管XR所提供的沉浸式服务使得用户体验有了前所未有的提升,但对网络传输的要求十分严格。一方面,高清视频的传输需要更高的网络吞吐速率,另一方面,视频流的实时性以及用户交互行为都对网络传输时延提出了更为严苛的要求。例如,在云VR业务中,用户终端向云端VR服务器发起请求后,云服务器根据请求下发视频帧,终端收到视频帧数据后,终端为用户呈现VR画面。云XR是一种准周期性的视频流业务,视频的帧率决定着视频帧的生成间隔。例如,当帧率(frame per second,FPS)为60Hz时,理想情况下服务器将会每隔1/60=16.67ms产生一个视频帧交付给网络传输,最终到达用户。由于服务器产生的每个视频帧通常较大,因此,每个视频帧会被划分为若干个数据包在网络中传输和调度,如图3所示。
为使网络设备和终端之间建立高效的通信链路,网络设备会配置监听信号(例如探测参考信号或)的时频资源,然后根据终端发送的探测参考信号(sounding reference signal,SRS)或信道状态信息(channel-state information-reference signal,CSI-RS)的测量结果来估计不同频段的上行信道质量。在假设上行/下行信道互易的前提下(例如时分双工time division duplex,TDD模式),利用信道对称性,网络设备可以利用终端发送的SRS来估计下行信道质量,或者可以通过向终端发送CSI-RS来估计下行信道质量,从而辅助网络设备做出更好的下行传输策略。其中,LTE和NR均已支持SRS,网络设备除了可以利用SRS评估上行/下行质量以外,还可以利用SRS进行波束管理,包括波束训练和切换等等。可以理解,本申请实施例以SRS为例进行方案介绍,但本方案同样适用于CSI-RS,在此不做限制。
SRS资源集类型的配置主要可以分为三类:周期型、半持续型和非周期型。对于属于同一SRS资源集的所有SRS资源,其资源的时域特性必须相同。三种类型均可通过RRC信令进行参数配置,半持续型SRS可通过媒体接入控制单元(media access control control element,MAC CE)信令激活和去激活,非周期型SRS也可通过下行控制信号(downlink control information,DCI)触发。本申请中的实施例主要考虑周期性SRS配置,SRS配置周期的范围一般为1~81920个时隙(slot)。虽然SRS配置周期的取值范围很广,但并不能很好的适配XR业务视频帧下发周期,从而可能造成信道测量不准、终端不省电等问题。例如,实际的XR业务中视频帧(video frame)不会严格按照既定的FPS周期到达网络设备,其实际的到达时间会存在一定程度的抖动(jitter)。因此,若视频帧到达较晚,则超前较多的SRS信息已 经过时;若视频帧到达较早或者已经传输完成,后续的SRS信息则无需发送。此外,SRS发送周期不能与视频帧周期适配。对于较小的视频帧周期,发送频繁不利于终端省电;对于较大的视频帧周期,同样会存在较早的SRS信息已经过时的问题。尽管视频帧周期配置策略会根据系统资源使用情况、终端能力等因素做自适应的调整,但仍然不能适应视频帧周期下发周期。因此,如何针对XR视频流业务的业务特点,为XR传输数据的RS配置合适的周期,达到省电和省资源的效果,成为亟需解决的问题。
本申请中的实施例为XR数据提供了一种参考信号(例如SRS或CSI-RS)的传输方法,在该方法中为了更好的保障低时延高吞吐的XR业务,需要终端在最靠近视频帧下发前或过程中发送SRS信息或CSI-RS的测量信息(此时所反映的信道信息最为准确),以便网络设备根据该SRS信息或CSI-RS的测量信息对资源分配、波束管理或天线选择做出决定。另一方面,如果当前视频帧已经发送完成,则直到下一个视频帧到达前的一段时间内,从终端省电和省资源的角度出发,终端无需再发送SRS或网络设备无需再发送CSI-RS。
下面以具体实施例结合附图对本申请的技术方案进行详细说明。下述实施例和实施方式可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。应理解,本申请中所解释的功能可以通过独立硬件电路、使用结合处理器/微处理器或通用计算机而运行的软件、使用专用集成电路,和/或使用一个或多个数字信号处理器来实现。当本申请描述为方法时,其还可以在计算机处理器和被耦合到处理器的存储器中实现。
为易于理解本申请中的实施例,首先对本申请所涉及的一些概念或者术语作简要说明。
1、RS资源组
RS的相关资源在专用部分带宽(BWP)中配置,分为RS资源集Resource Set和RS资源Resource两级配置。一个RS资源组包含了一个或多个RS资源集,每个资源集又可包括一个或多个RS资源。以SRS资源为例,在收发天线相等和不等情况下的SRS资源集和SRS资源之间的数量关系如下:
-对于收发天线相等的情况(1T1R,2T2R,4T4R,其中XTYR代表X根发射天线和Y根接收天线的配置),至多能配置2个SRS资源集,每个资源集内包含1个SRS资源;
-对于收发天线不等的情况,在1T2R以及2T4R情况下每个SRS资源集包含2个SRS资源,1T4R情况下每个SRS资源集包含4个SRS资源。
可以理解,在本申请实施例中,RS资源还可以是CSI-RS。本发明以SRS信号为例进行方案介绍,但本方案同样适用于CSI-RS信号,在此不做限制。
2、时隙图样
终端根据网络设备配置的方案和资源发送RS信息或RS测量信息,因此需要在上行时隙(slot)发送。以当下较常见帧结构的时隙图样DDDSU为例,D代表全下行时隙,S代表混合时隙,U代表全上行时隙。其中,S时隙包含两种结构,分别为下行为主的时隙(DL-dominant slot)和上行为主的时隙(UL-dominant slot)。其中DL-dominant slot里的多数符号用于下行数据传输,同时少量的符号可以用于传输上行控制信号或SRS信号;而UL-dominant slot里的多数符号用于上行数据传输,同时少量的符号可以用于传输下行控制信号。因此,在S时隙为DL-dominant slot下,终端可以在S或U时隙上发送SRS。可以理解,本申请实施例根据这种帧结构为DDDSU时隙图样的进行解释说明,但本申请实施例同样可适用于其他类型的帧结构时隙图样,在此不做限制。
3、云扩展现实(云XR)
云XR(也可称为XR的云化)是指将云计算和云渲染等技术引入到XR业务的应用中, 借助网络将云端的显示输出和声音输出等经过编码压缩后传输到XR终端。
本申请提供的实施例适用于多种不同的场景。图4-图6示出了本申请实施例适用的几种系统框架示意图。
图4示出了一种本申请实施例适用的系统网元示意图。图4示意了一个系统400,包含云服务器410、核心网和接入网420(可简称为传输网络420,例如LTE、5G或6G网络)、以及XR终端430。其中,云服务器410可用于对XR的源数据进行编解码和渲染,传输网络420可用于对XR数据的传输,XR终端430通过对XR数据的处理为用户提供多样化的XR体验。可以理解,传输网络420与XR终端430之间还可以包含其他的装置,例如还可以包含其他的终端(例如手机、笔记本电脑、或汽车等)和/或网络设备(例如中继、WiFi路由器、或WiFi接入点等),XR终端430借助其他的终端和/或网络设备从传输网络420获得XR数据。可选地,系统400中还包括集中控制器440,集中控制器440可以从云服务器410、传输网络420或XR终端430中的一个或多个接收/收集数据,也可以向云服务器410、传输网络420或XR终端430中的一个或多个发送数据。可以理解,集中控制器440可以独立于云服务器410、传输网络420和XR终端430进行部署,也可以部署在云服务器410、传输网络420或XR终端430中,还可以不部署集中控制器440而是由云服务器410、传输网络420或XR终端430实现集中控制器440的功能。
图5示出了另一种本申请实施例适用的系统网元示意图。图5示意了一个系统500,包含XR终端520和其他终端510。其他终端510是XR终端520之外的终端,其他终端510可以是一种XR终端,也可以是一种普通的终端(也可称为非XR终端)。其他终端510可以向XR终端520传输XR数据。可选地,系统500中还包括集中控制器530,集中控制器530可以从XR终端520和/或其他终端510接收/收集数据,也可以向XR终端520和/或其他终端510发送数据。可以理解,集中控制器530可以独立于XR终端520和其他终端510进行部署,也可以部署在XR终端520或其他终端510中,还可以不部署集中控制器530而是由XR终端520或其他终端510实现集中控制器530的功能。
图6示出了另一种本申请实施例适用的系统网元示意图。图6示意了一个系统600,包含XR终端630、WiFi路由器或WiFi接入点620(可简称为WiFi装置620)、和其他终端610。其他终端610是XR终端630以外的终端,其他终端610可以是一种XR,也可以是一种普通的终端(也可称为非XR终端)。其他终端610可借助WiFi装置620向XR终端630传输XR数据。可选地,系统600中还包括集中控制器640,集中控制器640可以从其他终端610、WiFi装置620或XR终端630中的一个或多个接收/收集数据,也可以向其他终端610、WiFi装置620或XR终端630中的一个或多个发送数据。可以理解,集中控制器640可以独立于其他终端610、WiFi装置620和XR终端630进行部署,也可以部署在其他终端610、WiFi装置620或XR终端630中,还可以不部署集中控制器640而是由其他终端610、WiFi装置620或XR终端630实现集中控制器640的功能。
图7为本申请实施例提供的一种通信方法700的流程示意图。该方法的执行主体可以是终端(例如XR终端),也可以是支持终端实现该方法的芯片、芯片系统、或处理器等。图7中各部分的执行主体可以相同也可以不同。如图7所示,该实施例的方法700可包括710部分和720部分:
710部分:接收来自网络设备的配置信息。
在710部分一种可能的实施方式中,接收来自网络设备的配置信息可以是接收来自 网络设备的RRC信令,该配置信息携带在RRC信令新增的字段中。示例性地,可以在RRC信令SRS-Config中新增一个字段来配置SRS资源组信息,该SRS资源组信息用于配置终端在哪些资源上发送SRS,其中一个SRS资源对应一个SRS的发送。
720部分:在由配置信息配置的RS资源上发送RS;该RS资源包含在多个RS资源组中,其中该多个RS资源组中的RS资源组i包含由该配置信息配置的K个第一RS资源,该K个第一RS资源的传输时刻依次为T i,1,T i,2,…,T i,K,其中该多个RS资源组中的RS资源组i+1包含由该配置信息配置的K个第二RS资源,该K个第二RS资源的传输时刻依次为T i+1,1,T i+1,2,…,T i+1,K,且满足:T i,m+1-T i,m=P m,T i+1,m+1-T i+1,m=P m以及T i+1,k-T i,k=Q i,其中K为大于1的整数,i为该RS资源组i的标识,i+1为该RS资源组i+1的标识,i可以是大于等于0的整数,也可以是大于等于1的整数,m为整数且满足1≤m<K,k为整数且满足1≤k≤K,P m>0,Q i>0。
在720部分在由配置信息配置的RS资源上发送RS的一种实施方式中,该RS资源为SRS资源,该配置信息包括了SRS资源组信息并用于SRS资源的配置。对于收发天线相等的情况,可考虑在配置信息的SRS-Config中新增字段SRS ResourceSet clustering,表明哪些SRS ResourceSet属于同一组;对于收发天线不相等的情况,考虑新增字段SRS Resource clustering,表明哪些SRS Resource属于同一组。区别于字段SRS ResourceIdList仅包含了某一个SRS ResourceSet下的SRS ResourceId,配置信息中的SRS Resource clustering将包含组内所有的SRS ResourceId。
可选地,该配置信息还用于配置该RS资源组内第一RS资源的数目为K。在一种实施方式中,网络设备根据子载波间隔(subcarrier spacing,SCS)、帧结构以及时间抖动(jitter)的范围来配置该RS资源组内第一RS资源的数目K。示例性地,子载波间隔SCS=30kHz,帧结构为DDDSU时,在S时隙上配置SRS资源。由于每个时隙时长为0.5ms,所以S时隙的出现周期为2.5ms。当视频帧的到达jitter范围为-4ms≤jitter≤4ms时,该范围内可配置
Figure PCTCN2022141708-appb-000009
个SRS资源(集),其中
Figure PCTCN2022141708-appb-000010
表示向下取整。又因为仅有在视频帧到达前发送的SRS信息才是有效的信道测量,需要在抖动范围前增加1个SRS资源(集)作为SRS资源组内的第一个SRS资源,所以第一RS资源的数目K为4。
可选地,该配置信息还用于配置相邻RS资源组之间在时域上的传输间隔(例如RS资源组i与RS资源组i之间的传输间隔Q i)。在一种实施方式中,网络设备根据SCS、帧结构来配置相邻RS资源组之间在时域上的传输间隔。其中不同的两个相邻RS资源组之间的传输间隔可以相同(例如Q i=Q i+1),也可以不同。连续若干个(例如w个)相邻RS资源组之间的传输间隔的取和为一个固定值(例如
Figure PCTCN2022141708-appb-000011
为一个固定值),该固定值可以是连续w个视频周期的取和。示例性地,当视频帧率为60Hz时,视频周期即为1/FPS=16.67ms。若SCS=30kHz,则网络设备可以配置Q i=17.5ms,Q i+1=15,Q i+2=17.5ms为适配3个连续的相邻RS资源组之间在时域上的传输间隔;且满足
Figure PCTCN2022141708-appb-000012
即等于3个视频周期的取和。可以理解,连续若干个相邻RS资源组之间的传输间隔的取和为一个固定值可以从任意RS资源组起始,例如可以从RS资源组i起始,也可以从RS资源组i+1开始,但取和的固定值不变(例如
Figure PCTCN2022141708-appb-000013
)。可选地,该传输间隔Q i可以由网络设备通过图表的方式获得如表1所示,也可以通过给定满足的数学公式的来获得。
表1
Figure PCTCN2022141708-appb-000014
Figure PCTCN2022141708-appb-000015
在表1中,RS适配周期为一个集合,集合里的元素可以相同也可以不同,集合里的元素个数代表上述示例中w的值,且集合里的元素排列顺序不代表具体的Q i的取值顺序。例如,参考上述示例,当帧结构为DDDSU时隙图样,视频周期为16.67ms,SCS=30kHz时,网络设备可以根据表1配置Q i=17.5ms,Q i+1=15,Q i+2=17.5ms为适配3个连续的相邻RS资源组之间在时域上的传输间隔;还可以配置Q i=15ms,Q i+1=17.5,Q i+2=17.5ms或者Q i=17.5ms,Q i+1=17,Q i+2=15ms。可以理解,表1中的取值仅为示意作用,只包含部分配置参数的取值情况,但本申请实施例可以根据不同配置参数拓展到不同的场景,本申请对表1中的取值不做限定。
可选地,在配置信息还用于配置相邻RS资源组之间在时域上的传输间隔的一种实施例中,该传输间隔通过满足的数学条件获得,即:Q i=15ms或17.5ms且满足
Figure PCTCN2022141708-appb-000016
i≤n≤i+2。
可选地,在配置信息还用于配置相邻RS资源组之间在时域上的传输间隔的一种实施例中,该传输间隔通过满足的数学条件获得,即:Q i=10ms或7.5ms且满足
Figure PCTCN2022141708-appb-000017
i≤n≤i+5。
可选地,在配置信息还用于配置相邻RS资源组之间在时域上的传输间隔的一种实施例中,该传输间隔通过满足的数学条件获得,即:Q i=10ms或12.5ms且满足
Figure PCTCN2022141708-appb-000018
i≤n≤i+8。
可选地,在配置信息还用于配置相邻RS资源组之间在时域上的传输间隔的一种实施例中,该传输间隔通过满足的数学条件获得,即:Q i=15ms或20ms且满足
Figure PCTCN2022141708-appb-000019
i≤n≤i+2。
可选地,该配置信息还用于配置一个RS资源组内相邻RS资源在时域上的传输间隔P m,其中P m的取值可以根据具体的时隙图样确定。示例性地,当帧结构为DDDSU时隙图样时且RS资源组为SRS资源组,则RS资源组内的所有RS资源可以在时隙图样中的S slot上发送或U slot上发送。以RS资源组i为例,若RS资源组i中的资源m在某个时隙图样DDDSU中的S slot上发送,相邻的下一个资源m+1在下一个时隙图样DDDSU中的S slot上发送,则资源m与资源m+1在传输时刻上的间隔P m等于5个时隙。若RS资源组i中的资源m在某个时隙图样DDDSU中的S slot上发送,相邻的下一个资源m+1在下一个时隙图样DDDSU中的U slot上发送,则资源m与资源m+1在传输时刻上的间隔P m等于6个时隙。同理,若RS资源组i中的资源m在某个时隙图样DDDSU中的U slot上发送,相邻的下一个资源m+1 在下一个时隙图样DDDSU中的S slot上发送,则资源m与资源m+1在传输时刻上的间隔P m等于4个时隙。若RS资源组i中的资源m在某个时隙图样DDDSU中的U slot上发送,相邻的下一个资源m+1在下一个时隙图样DDDSU中的U slot上发送,则资源m与资源m+1在传输时刻上的间隔P m等于5个时隙。具体P m的取值与时隙图样以及RS资源在选择发送的时隙有关,可以灵活取值,本申请实施例不作限定。
在方法700中,还可以包括可选的730部分。
730部分:接收来自网络设备的指示信息,该指示信息指示跳过在当前RS资源组的剩余RS资源上发送RS。
在730部分的一种实施方式中,该指示信息携带在MAC CE信令中。示例性地,终端根据配置信息在SRS资源组的所有SRS资源中发送SRS。当网络设备完成当前视频帧接收后,网络设备会发送MAC CE信令给终端,跳过在当前SRS资源组的剩余SRS资源上发送SRS。可选地,通过配置消息,终端和网络设备均已知当前SRS资源组内所有SRS资源的发送时刻,因此该MAC CE仅对当前SRS资源组内的SRS资源去激活。可以理解,该去激活命令不会对下一个视频帧到达周期的SRS资源组生效。
图8为本申请实施例提供的另一种通信方法800的流程示意图。该方法的执行主体可以是网络设备(例如核心网设备、接入网设备、WiFi路由器、或WiFi接入点),也可以是支持网络设备实现该方法的芯片、芯片系统、或处理器等。该方法的执行主体可以是服务器(例如云服务器),也可以是支持服务器实现该方法的芯片、芯片系统、或处理器等。该方法的执行主体可以是集中控制器,也可以是支持集中控制器实现该方法的芯片、芯片系统、或处理器等。图8中各部分的执行主体可以相同也可以不同。如图8所述,该实施例的方法800可以包括810部分和820部分。
810部分:向终端发送配置信息。
在810部分一种可能的实施方式中,向终端发送配置信息可以是向终端发送RRC信令,该配置信息携带在RRC信令新增的字段中。示例性地,可以在RRC信令SRS-Config中新增一个字段来配置SRS资源组信息,该SRS资源组信息用于配置终端在哪些资源上发送SRS,其中一个SRS资源对应一个SRS的发送。
820部分:在由该配置信息配置的RS资源上接收RS;该RS资源包含在多个RS资源组中,其中该多个RS资源组中的RS资源组i包含由该配置信息配置的K个第一RS资源,该K个第一RS资源的传输时刻依次为T i,1,T i,2,…,T i,K,其中该多个RS资源组中的RS资源组i+1包含由该配置信息配置的K个第二RS资源,该K个第二RS资源的传输时刻依次为T i+1,1,T i+1,2,…,T i+1,K,且满足:T i,m+1-T i,m=P m,T i+1,m+1-T i+1,m=P m以及T i+1,k-T i,k=Q i,其中K为大于1的整数,i为该RS资源组i的标识,i+1为该RS资源组i+1的标识,i可以是大于等于0的整数,也可以是大于等于1的整数,m为整数且满足1≤m<K,k为整数且满足1≤k≤K,P m>0,Q i>0。
在820部分在由该配置信息配置的RS资源上接收RS的一种实施方式中,该RS资源为SRS资源,该配置信息包括了SRS资源组信息并用于SRS资源的配置。对于收发天线相等的情况,可考虑在配置信息的SRS-Config中新增字段SRS ResourceSet clustering,表明哪些SRS ResourceSet属于同一组;对于收发天线不相等的情况,考虑新增字段SRS Resource clustering,表明哪些SRS Resource属于同一组。区别于字段SRS ResourceIdList仅包含了某一个SRS ResourceSet下的SRS ResourceId,配置信息中的SRS Resource clustering将包含组内所有的SRS ResourceId。该配置信息包含的内容与方法700中的720 部分相同,在此不再赘述。
在方法800中,还可以包括可选的830部分。
830部分:向终端发送指示信息,该指示信息指示所述终端跳过在当前RS资源组中的剩余RS资源上发送RS。
在830部分的一种实施方式中,该指示信息携带在MAC CE信令中。示例性地,终端根据配置信息在SRS资源组的所有SRS资源中发送SRS。当网络设备完成当前视频帧接收后,网络设备会发送MAC CE信令给终端,跳过在当前SRS资源组的剩余SRS资源上发送SRS。可选地,通过配置消息,终端和网络设备均已知当前SRS资源组内所有SRS资源的发送时刻,因此该MAC CE仅对当前SRS资源组内的SRS资源去激活。可以理解,该去激活命令不会对下一个视频帧到达周期的SRS资源组生效。
图9给出了一种装置的结构示意图。所述装置900可以是网络设备、终端设备、服务器或集中控制器,也可以是支持网络设备、终端设备、服务器或集中控制器实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述装置900可以包括一个或多个处理器901,所述处理器901也可以称为处理单元,可以实现一定的控制功能。所述处理器901可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器901也可以存有指令和/或数据903,所述指令和/或数据903可以被所述处理器运行,使得所述装置900执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器901中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路,或者是通信接口。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,装置900可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述装置900中可以包括一个或多个存储器902,其上可以存有指令904,所述指令可在所述处理器上被运行,使得所述装置900执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器中,或者存储在处理器中。
可选的,所述装置900还可以包括收发器905和/或天线906。所述处理器901可以称为处理单元,对所述装置900进行控制。所述收发器905可以称为收发单元、收发机、收发电路、收发装置或收发模块等,用于实现收发功能。
可选的,本申请实施例中的装置900可以用于执行本申请实施例中图7或图8中描述的方法。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种 IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的装置可以是网络设备或者终端设备,但本申请中描述的装置的范围并不限于此,而且装置的结构可以不受图9的限制。装置可以是独立的设备或者可以是较大设备的一部分。例如所述装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备、机器设备、家居设备、医疗设备、工业设备等等;
(6)其他等等。
图10提供了一种终端设备的结构示意图。该终端设备可适用于图1、图4、图5或图6所示出的场景中。为了便于说明,图10仅示出了终端设备的主要部件。如图10所示,终端设备1000包括处理器、存储器、控制电路、天线、以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图10仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图10中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件 程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1000的收发单元1011,将具有处理功能的处理器视为终端设备1000的处理单元1012。如图10所示,终端设备1000包括收发单元1011和处理单元1012。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1011中用于实现接收功能的器件视为接收单元,将收发单元1011中用于实现发送功能的器件视为发送单元,即收发单元1011包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
如图11所示,本申请又一实施例提供了一种装置1100。该装置可以是终端、网络设备、服务器或集中控制器,也可以是终端、网络设备、服务器或集中控制器的部件(例如,集成电路,芯片等等)。该装置也可以是其他通信模块,用于实现本申请方法实施例中的方法。该装置1100可以包括:处理模块1102(或称为处理单元)。可选的,还可以包括接口模块1101(或称为收发单元或收发模块)和存储模块1103(或称为存储单元)。接口模块1101用于实现与其他设备进行通信。接口模块1101例如可以是收发模块或输入输出模块。
在一种可能的设计中,如图11中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述装置具备实现本申请实施例描述的终端的功能,比如,所述装置包括终端执行本申请实施例描述的终端涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。或者,所述装置具备实现本申请实施例描述的网络设备的功能,比如,所述装置包括所述网络设备执行本申请实施例描述的网络设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
可选的,本申请实施例中的装置1100中各个模块可以用于执行本申请实施例中图7描述的方法。
在一种可能的设计中,一种装置1100可包括:处理模块1102和接口模块1101。接口模块1101用于接收来自网络设备的配置信息。处理模块1102用于在由所述配置信息配置的RS资源上发送RS;RS资源包含在多个RS资源组中,其中多个RS资源组中的RS资源组i包含由配置信息配置的K个第一RS资源,K个第一RS资源的传输时刻依次为T i,1,T i,2,…,T i,K,其中多个RS资源组中的RS资源组i+1包含由配置信息配置的K个第二RS资源,K个第二RS资源的传输时刻依次为T i+1,1,T i+1,2,…,T i+1,K,且满足:T i,m+1-T i,m=P m,T i+1,m+1-T i+1,m=P m以及T i+1,k-T i,k=Q i,其中K为大于1的整数,i为RS资源组i的标识,i+1为RS资源组i+1的标识,m为整数且满足1≤m<K,k为整数且满足1≤k≤K,P m>0,Q i>0。
在上述装置1100某些可能的实施方式中,所述方法还包括:接口模块1101还用于接 收来自网络设备的指示信息,该指示信息指示跳过在当前RS资源组的剩余RS资源上发送RS。
在上述装置1100某些可能的实施方式中,Q i=15ms或17.5ms且满足
Figure PCTCN2022141708-appb-000020
i≤n≤i+2。
在上述装置1100某些可能的实施方式中,Q i=10ms或7.5ms且满足
Figure PCTCN2022141708-appb-000021
i≤n≤i+5。
在上述装置1100某些可能的实施方式中,Q i=10ms或12.5ms且满足
Figure PCTCN2022141708-appb-000022
i≤n≤i+8。
在上述装置1100某些可能的实施方式中,其特征在于,Q i=15ms或20ms且满足
Figure PCTCN2022141708-appb-000023
i≤n≤i+2。
可选的,本申请实施例中的装置1100中各个模块可以用于执行本申请实施例中图8描述的方法。
在一种可能的设计中,一种装置1100可包括:处理模块1102和接口模块1101。接口模块1101用于向终端发送配置信息。处理模块1102用于在由配置信息配置的RS资源上接收RS;RS资源包含在多个RS资源组中,其中多个RS资源组中的RS资源组i包含由配置信息配置的K个第一RS资源,K个第一RS资源的传输时刻依次为T i,1,T i,2,…,T i,K,其中多个RS资源组中的RS资源组i+1包含由配置信息配置的K个第二RS资源,K个第二RS资源的传输时刻依次为T i+1,1,T i+1,2,…,T i+1,K,且满足:T i,m+1-T i,m=P m,T i+1,m+1-T i+1,m=P m以及T i+1,k-T i,k=Q i,其中K为大于1的整数,i为RS资源组i的标识,i+1为RS资源组i+1的标识,m为整数且满足1≤m<K,k为整数且满足1≤k≤K,P m>0,Q i>0。
在上述装置1100某些可能的实施方式中,所述方法还包括:接口模块1101还用于向终端发送指示信息,指示信息指示终端跳过在当前RS资源组中的剩余RS资源上发送RS。
在上述装置1100某些可能的实施方式中,Q i=15ms或17.5ms且满足
Figure PCTCN2022141708-appb-000024
i≤n≤i+2。
在上述装置1100某些可能的实施方式中,其特征在于,Q i=10ms或7.5ms且满足
Figure PCTCN2022141708-appb-000025
i≤n≤i+5。
在上述装置1100某些可能的实施方式中,其特征在于,Q i=10ms或12.5ms且满足
Figure PCTCN2022141708-appb-000026
i≤n≤i+8。
在上述装置1100某些可能的实施方式中,其特征在于,Q i=15ms或20ms且满足
Figure PCTCN2022141708-appb-000027
i≤n≤i+2。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以理解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员对于相应的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
可以理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件 形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本申请所描述的方案可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、DSP、数字信号处理器件、ASIC、可编程逻辑器件、FPGA、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特 性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中的“同时”可以理解为在相同的时间点,也可以理解为在一段时间段内,还可以理解为在同一个周期内。
本领域技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。本申请中的编号(也可被称为索引)的具体取值、数量的具体取值、以及位置仅作为示意的目的,并不是唯一的表示形式,也并不用来限制本申请实施例的范围。本申请中涉及的第一个、第二个等各种数字编号也仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。本申请中,在没有特别说明的情况下,“至少一个”旨在用于表示“一个或者多个”,“多个”旨在用于表示“两个或两个以上”。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A可以是单数或者复数,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况,其中A可以是单数或者复数,B可以是单数或者复数,C可以是单数或者复数。
可以理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以理解,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还 是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的系统、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (26)

  1. 一种参考信号RS的发送方法,其特征在于,所述方法包括:
    接收来自网络设备的配置信息;
    在由所述配置信息配置的RS资源上发送RS;
    所述RS资源包含在多个RS资源组中,其中所述多个RS资源组中的RS资源组i包含由所述配置信息配置的K个第一RS资源,所述K个第一RS资源的传输时刻依次为T i,1,T i,2,…,T i,K,其中所述多个RS资源组中的RS资源组i+1包含由所述配置信息配置的K个第二RS资源,所述K个第二RS资源的传输时刻依次为T i+1,1,T i+1,2,…,T i+1,K,且满足:T i,m+1-T i,m=P m,T i+1,m+1-T i+1,m=P m以及T i+1,k-T i,k=Q i,其中K为大于1的整数,i为所述RS资源组i的标识,i+1为所述RS资源组i+1的标识,m为整数且满足1≤m<K,k为整数且满足1≤k≤K,P m>0,Q i>0。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的指示信息,所述指示信息指示跳过在当前RS资源组的剩余RS资源上发送RS。
  3. 根据权利要求1或2所述的方法,其特征在于,Q i=15ms或17.5ms且满足
    Figure PCTCN2022141708-appb-100001
  4. 根据权利要求1或2所述的方法,其特征在于,Q i=10ms或7.5ms且满足
    Figure PCTCN2022141708-appb-100002
    Figure PCTCN2022141708-appb-100003
  5. 根据权利要求1或2所述的方法,其特征在于,Q i=10ms或12.5ms且满足
    Figure PCTCN2022141708-appb-100004
  6. 根据权利要求1或2所述的方法,其特征在于,Q i=15ms或20ms且满足
    Figure PCTCN2022141708-appb-100005
    Figure PCTCN2022141708-appb-100006
  7. 一种参考信号RS接收方法,其特征在于,所述方法包括:
    向终端发送配置信息;
    在由所述配置信息配置的RS资源上接收RS;
    所述RS资源包含在多个RS资源组中,其中所述多个RS资源组中的RS资源组i包含由所述配置信息配置的K个第一RS资源,所述K个第一RS资源的传输时刻依次为T i,1,T i,2,…,T i,K,其中所述多个RS资源组中的RS资源组i+1包含由所述配置信息配置的K个第二RS资源,所述K个第二RS资源的传输时刻依次为T i+1,1,T i+1,2,…,T i+1,K,且满足:T i,m+1-T i,m=P m,T i+1,m+1-T i+1,m=P m以及T i+1,k-T i,k=Q i,其中K为大于1的整数,i为所述RS资源组i的标识,i+1为所述RS资源组i+1的标识,m为整数且满足1≤m<K,k为整数且满足1≤k≤K,P m>0,Q i>0。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    向所述终端发送指示信息,所述指示信息指示所述终端跳过在当前RS资源组中的剩余RS资源上发送RS。
  9. 根据权利要求7或8所述的方法,其特征在于,Q i=15ms或17.5ms且满足
    Figure PCTCN2022141708-appb-100007
  10. 根据权利要求7或8所述的方法,其特征在于,Q i=10ms或7.5ms且满足
    Figure PCTCN2022141708-appb-100008
  11. 根据权利要求7或8所述的方法,其特征在于,Q i=10ms或12.5ms且满足
    Figure PCTCN2022141708-appb-100009
  12. 根据权利要求7或8所述的方法,其特征在于,Q i=15ms或20ms且满足
    Figure PCTCN2022141708-appb-100010
    Figure PCTCN2022141708-appb-100011
  13. 一种通信装置,其特征在于,包括:接口模块和处理模块;
    所述接口模块用于接收来自网络设备的配置信息;
    所述处理模块用于控制所述装置在由所述配置信息配置的参考信号RS资源上发送RS;
    所述RS资源包含在多个RS资源组中,其中所述多个RS资源组中的RS资源组i包含由所述配置信息配置的K个第一RS资源,所述K个第一RS资源的传输时刻依次为T i,1,T i,2,…,T i,K,其中所述多个RS资源组中的RS资源组i+1包含由所述配置信息配置的K个第二RS资源,所述K个第二RS资源的传输时刻依次为T i+1,1,T i+1,2,…,T i+1,K,且满足:T i,m+1-T i,m=P m,T i+1,m+1-T i+1,m=P m以及T i+1,k-T i,k=Q i,其中K为大于1的整数,i为所述RS资源组i的标识,i+1为所述RS资源组i+1的标识,m为整数且满足1≤m<K,k为整数且满足1≤k≤K,P m>0,Q i>0。
  14. 根据权利要求13所述的装置,其特征在于:
    所述接口模块还用于接收来自所述网络设备的指示信息,所述指示信息指示跳过在当前RS资源组的剩余RS资源上发送RS。
  15. 根据权利要求13或14所述的装置,其特征在于,Q i=15ms或17.5ms且满足
    Figure PCTCN2022141708-appb-100012
  16. 根据权利要求13或14所述的装置,其特征在于,Q i=10ms或7.5ms且满足
    Figure PCTCN2022141708-appb-100013
  17. 根据权利要求13或14所述的装置,其特征在于,Q i=10ms或12.5ms且满足
    Figure PCTCN2022141708-appb-100014
  18. 根据权利要求13或14所述的装置,其特征在于,Q i=15ms或20ms且满足
    Figure PCTCN2022141708-appb-100015
  19. 一种通信装置,其特征在于,包括:接口模块和处理模块;
    所述接口模块用于向终端发送配置信息;
    所述处理模块用于控制所述装置在由所述配置信息配置的参考信号RS资源上接收RS;
    所述RS资源包含在多个RS资源组中,其中所述多个RS资源组中的RS资源组i包含由所述配置信息配置的K个第一RS资源,所述K个第一RS资源的传输时刻依次为T i,1,T i,2,…,T i,K,其中所述多个RS资源组中的RS资源组i+1包含由所述配置信息配置的K个第二RS资源,所述K个第二RS资源的传输时刻依次为T i+1,1,T i+1,2,…,T i+1,K,且满足:T i,m+1-T i,m=P m,T i+1,m+1-T i+1,m=P m以及T i+1,k-T i,k=Q i,其中K为大于1的整数,i为所述RS资源组i的标识,i+1为所述RS资源组i+1的标识,m为整数且满足1≤m<K,k为整数且满足1≤k≤K,P m>0,Q i>0。
  20. 根据权利要求19所述的装置,其特征在于:
    所述接口模块还用于向所述终端发送指示信息,所述指示信息指示所述终端跳过在当前RS资源组中的剩余RS资源上发送RS。
  21. 根据权利要求19或20所述的装置,其特征在于,Q i=15ms或17.5ms且满足
    Figure PCTCN2022141708-appb-100016
  22. 根据权利要求19或20所述的装置,其特征在于,Q i=10ms或7.5ms且满足
    Figure PCTCN2022141708-appb-100017
  23. 根据权利要求19或20所述的装置,其特征在于,Q i=10ms或12.5ms且满足
    Figure PCTCN2022141708-appb-100018
  24. 根据权利要求19或20所述的装置,其特征在于,Q i=15ms或20ms且满足
    Figure PCTCN2022141708-appb-100019
  25. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至6、或,7至12中任一项所述的方法。
  26. 一种计算机可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至6、或,7至12中任一项所述的方法。
PCT/CN2022/141708 2021-12-27 2022-12-24 参考信号的传输方法及装置 WO2023125339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111611531.0 2021-12-27
CN202111611531.0A CN116418465A (zh) 2021-12-27 2021-12-27 参考信号的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2023125339A1 true WO2023125339A1 (zh) 2023-07-06

Family

ID=86997854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141708 WO2023125339A1 (zh) 2021-12-27 2022-12-24 参考信号的传输方法及装置

Country Status (2)

Country Link
CN (1) CN116418465A (zh)
WO (1) WO2023125339A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852294A (zh) * 2015-04-10 2018-03-27 南炡吉 在全阶多输入多输出无线通信系统中发送和接收信道状态信息‑参考信号的方法和设备
CN109802801A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 发送和接收信号的方法、装置和系统
WO2019213919A1 (zh) * 2018-05-10 2019-11-14 Oppo广东移动通信有限公司 信息确定方法、终端设备和网络设备
CN113692722A (zh) * 2019-07-29 2021-11-23 Oppo广东移动通信有限公司 一种信息配置方法及装置、终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852294A (zh) * 2015-04-10 2018-03-27 南炡吉 在全阶多输入多输出无线通信系统中发送和接收信道状态信息‑参考信号的方法和设备
CN109802801A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 发送和接收信号的方法、装置和系统
WO2019213919A1 (zh) * 2018-05-10 2019-11-14 Oppo广东移动通信有限公司 信息确定方法、终端设备和网络设备
CN113692722A (zh) * 2019-07-29 2021-11-23 Oppo广东移动通信有限公司 一种信息配置方法及装置、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Maintenance for Reference signals and QCL", 3GPP TSG RAN WG1 MEETING #94BIS, R1-1810215, 29 September 2018 (2018-09-29), XP051517631 *

Also Published As

Publication number Publication date
CN116418465A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
JP6858852B2 (ja) 非同期マルチポイント送信方式
TWI784951B (zh) 傳輸參考訊號的方法、網路設備和終端設備
US20230188472A1 (en) Data transmission method and apparatus
JP2023521211A (ja) データ伝送方法および通信装置
US20230413121A1 (en) Data transmission method and apparatus
WO2021068259A1 (zh) 联合调度的方法和装置
WO2022237527A1 (zh) 一种非连续接收的通信方法及装置
WO2023125339A1 (zh) 参考信号的传输方法及装置
CN113016166A (zh) 一种多媒体业务的传输方法及装置
WO2022151480A1 (zh) 数据传输方法及装置
WO2022188634A1 (zh) 一种通信方法及装置
US20230413104A1 (en) Signaling for frame rate and/or bit rate indication and inquiry related to traffic with a high data rate
WO2023035909A1 (zh) 数据传输方法及装置
WO2024067064A1 (zh) 数据传输方法及装置
WO2024093577A1 (zh) 数据传输方法及装置
WO2023010951A1 (zh) 资源配置方法和通信装置
WO2022051897A1 (zh) 编码方法及装置
WO2022152305A1 (zh) 扩展现实数据传输方法及装置
WO2023185975A1 (zh) 通信方法及装置
WO2023010905A1 (zh) 非连续接收的方法及装置
WO2024012140A1 (zh) 一种数据传输方法及装置
WO2021109047A1 (zh) 一种资源调度的方法和通信装置
JP2024512079A (ja) パケットデータコンバージェンスプロトコルエンティティのハイパーフレーム番号決定方法及びその装置
CN115515161A (zh) 一种数据传输方法和通信装置
CN117812712A (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914593

Country of ref document: EP

Kind code of ref document: A1