WO2023010905A1 - 非连续接收的方法及装置 - Google Patents

非连续接收的方法及装置 Download PDF

Info

Publication number
WO2023010905A1
WO2023010905A1 PCT/CN2022/089271 CN2022089271W WO2023010905A1 WO 2023010905 A1 WO2023010905 A1 WO 2023010905A1 CN 2022089271 W CN2022089271 W CN 2022089271W WO 2023010905 A1 WO2023010905 A1 WO 2023010905A1
Authority
WO
WIPO (PCT)
Prior art keywords
duration
cycle
drx cycle
offset
drx
Prior art date
Application number
PCT/CN2022/089271
Other languages
English (en)
French (fr)
Inventor
陈二凯
廖树日
窦圣跃
冯淑兰
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22851626.6A priority Critical patent/EP4373179A1/en
Publication of WO2023010905A1 publication Critical patent/WO2023010905A1/zh
Priority to US18/430,836 priority patent/US20240172322A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communications, and in particular to a discontinuous reception method and device.
  • extended reality (XR) technology In wireless communication networks, extended reality (XR) technology has the advantages of multi-view, strong interactivity, etc., and can provide users with a brand-new visual experience, which has great application value and commercial potential.
  • XR includes virtual reality (virtual reality, VR), augmented reality (augmented reality, AR), and mixed reality (mix reality, MR) technologies, which can be widely used in entertainment, games, medical care, advertising, industry, online education, and Engineering and many other fields.
  • Terminals receiving XR data are generally sensitive to power consumption, so how to enable terminals to receive XR data with lower power consumption is an urgent problem to be solved.
  • the embodiment of the present application provides a communication method, which can be executed by a terminal, or by a component of the terminal (such as a processor, a chip, or a chip system, etc.), or can be implemented by all or part of the terminal A logical module or software implementation of a function.
  • the method includes: obtaining first discontinuous reception DRX configuration information.
  • the first cycle duration T1 of the first DRX cycle and the number N1 and duration of the first duration in the first DRX cycle are obtained based on the first DRX configuration information, where T1>0, N1>0.
  • the physical downlink control channel PDCCH is monitored in one or more first duration periods in the first DRX cycle.
  • the first DRX configuration information is carried by a radio resource control RRC message.
  • the first cycle duration T1 is 25ms, 50ms, 100ms, an integer multiple of 25ms, an integer multiple of 50ms, or an integer multiple of 100ms, or the like.
  • the number N1 of the first duration is an integer multiple of 3.
  • N1 can be 3, 6 or 9, etc.
  • the duration of the DRX cycle can be matched to the arrival cycle of the data without introducing a non-integer millisecond DRX cycle length, thereby reducing the probability of missed detection of the PDCCH by the terminal and improving the reliability of the terminal for data transmission and reception. performance.
  • the method further includes: obtaining the first start offset A1 and the first time slot offset corresponding to the first DRX cycle based on the first DRX configuration information, where A1 ⁇ 0.
  • monitoring the PDCCH on one or more first durations in the first DRX cycle includes: based on the first cycle duration T1, the first duration The number N1 and duration of periods, as well as the first start offset A1 and the first slot offset, monitor the PDCCH on one or more first durations in the first DRX cycle.
  • the first cycle duration T1 based on the first cycle duration T1, the number N1 and duration of the first duration, and the first start offset A1 and the first time slot offset
  • in Monitoring the PDCCH on one or more first durations in the first DRX cycle including: based on the first cycle duration T1, the number N1 of the first duration, and the first start offset A1 and the first slot offset, Obtain the start time of one or more first duration periods in the first DRX cycle, and based on the start time of the one or more first duration periods and the duration of the first duration period, in the first DRX cycle
  • the PDCCH is monitored during the one or more first durations.
  • the starting subframe of the i-th first duration in the above-mentioned first DRX cycle satisfies:
  • SF1 indicates the number of the starting subframe
  • SFN1 indicates the number of the system frame where the starting subframe is located
  • SF1 and SFN1 are integers greater than or equal to 0, and 1 ⁇ i ⁇ N1.
  • the start time of the i-th first duration in the first DRX cycle is obtained based on the start subframe and the first time slot offset. For example, there is the above-mentioned first time slot offset between the start time of the i-th first duration in the first DRX cycle and the start time of the start subframe SF1.
  • the duration period can be distributed as evenly as possible in the DRX cycle, so that the duration period in the DRX cycle can match the data arriving in the cycle, thereby reducing the probability of missed detection of the PDCCH by the terminal and improving the reliability of the terminal for data transmission and reception. performance.
  • the embodiment of the present application provides a communication method, which can be executed by a terminal, or by a component of the terminal (such as a processor, a chip, or a chip system, etc.), or can be implemented by all or part of the terminal A logical module or software implementation of a function.
  • the method includes: obtaining second DRX configuration information. Obtain the second cycle duration T2 of the second DRX cycle, the second start offset A2 and the offset adjustment Q corresponding to the second DRX cycle, and the duration of the second duration in the second DRX cycle based on the second DRX configuration information , where T2>0, A2 ⁇ 0, Q ⁇ 0. Based on the second cycle duration T2, the second start offset A2 and the offset adjustment amount Q, and the duration of the second duration, the PDCCH is monitored in the second duration in the second DRX cycle.
  • the second DRX configuration information is carried by an RRC message.
  • the second cycle duration T2 is 8ms, 10ms, 11ms, 16ms, 32ms, 33ms, an integer multiple of 8ms, an integer multiple of 10ms, an integer multiple of 11ms, an integer multiple of 16ms, an integer multiple of 32ms or an integer multiple of 33ms Times etc.
  • the offset adjustment Q is 1/9ms (0.11ms), 1/3ms (0.33ms), 2/3ms (0.67ms), 4/3ms (1.33ms), 10/9ms (1.11ms), Integer multiples of 1/9ms, integer multiples of 1/3ms, integer multiples of 2/3ms, integer multiples of 4/3ms or integer multiples of 10/9ms, etc.
  • the duration period in the DRX cycle can be matched with the arrival cycle of the data, thereby reducing the probability of missed detection of the PDCCH by the terminal and improving the performance of the terminal for transmitting and receiving data.
  • the method further includes: obtaining a second time slot offset corresponding to the second DRX cycle based on the second DRX configuration information.
  • Monitoring the PDCCH on the second duration in the second DRX cycle based on the second cycle duration T2, the second start offset A2 and the offset adjustment Q, and the duration of the second duration includes: based on the second The cycle duration T2, the second start offset A2 and the offset adjustment amount Q, the second time slot offset, and the duration of the second duration period are used to monitor the PDCCH during the second duration period in the second DRX cycle.
  • the above is based on the second cycle duration T2, the second start offset A2 and the offset adjustment Q, the second time slot offset, and the second duration monitor the PDCCH on the second duration in the second DRX cycle, including: based on the second cycle duration T2, the second start offset A2 and the offset adjustment Q, and the second time slot offset, obtain The start time of the second duration in the second DRX cycle, and based on the start time of the second duration and the duration of the second duration, monitor the PDCCH on the second duration in the second DRX cycle .
  • the second DRX cycle is identified by a positive integer j, and the start subframe of the second duration in the second DRX cycle satisfies:
  • SF2 represents the number of the starting subframe
  • SFN2 represents the number of the system frame where the starting subframe is located
  • SF2 and SFN2 are integers greater than or equal to 0.
  • the start time of the second duration in the second DRX cycle is obtained based on the start subframe and the second time slot offset. For example, there is the above-mentioned second time slot offset between the start time of the second duration period and the start time of the start subframe SF2 in the second DRX cycle.
  • the duration period can be distributed as evenly as possible in the DRX cycle, so that the duration period in the DRX cycle can match the data arriving in the cycle, thereby reducing the probability of missed detection of the PDCCH by the terminal and improving the reliability of the terminal for data transmission and reception. performance.
  • the embodiments of the present application provide a device that can implement the method in the first aspect, the second aspect, any possible implementation manner of the first aspect, or any possible implementation manner of the second aspect.
  • the apparatus includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be realized by software and/or hardware.
  • the device can be, for example, a terminal, or a chip, a chip system, or a processor that supports the terminal to implement the above method, or a logic module or software that can realize all or part of the terminal functions.
  • an embodiment of the present application provides a device, including: a processor, the processor is coupled to a memory, and the memory is used to store instructions, and when the instructions are executed by the processor, the device implements the above-mentioned first aspect and the first aspect.
  • a device including: a processor, the processor is coupled to a memory, and the memory is used to store instructions, and when the instructions are executed by the processor, the device implements the above-mentioned first aspect and the first aspect.
  • the method in the second aspect any possible implementation manner of the first aspect, or any possible implementation manner of the second aspect.
  • the embodiment of the present application provides a computer-readable storage medium, on which instructions are stored, and when the instructions are executed, the computer executes any one of the possible implementation manners of the first aspect, the second aspect, and the first aspect, Or the method in any possible implementation manner of the second aspect.
  • the embodiment of the present application provides a computer program product, which includes computer program code.
  • the computer program code runs on the computer, the computer executes any one of the possible methods of the first aspect, the second aspect, and the first aspect. embodiment, or the method in any possible embodiment of the second aspect.
  • the embodiment of the present application provides a chip, including: a processor, the processor is coupled with a memory, and the memory is used to store instructions, and when the instructions are executed by the processor, the chip implements the above-mentioned first aspect and the first aspect.
  • a chip including: a processor, the processor is coupled with a memory, and the memory is used to store instructions, and when the instructions are executed by the processor, the chip implements the above-mentioned first aspect and the first aspect.
  • the method in the second aspect any possible implementation manner of the first aspect, or any possible implementation manner of the second aspect.
  • the embodiments of the present application provide a system that can implement the method in the first aspect, the second aspect, any possible implementation manner of the first aspect, or any possible implementation manner of the second aspect.
  • the system includes corresponding units or modules for performing the above-mentioned method.
  • the units or modules included in the system can be realized by software and/or hardware.
  • the system can be, for example, a terminal, or a chip, a chip system, or a processor that supports the terminal to implement the above method, or a logic module or software that can realize all or part of the terminal functions.
  • FIG. 1 is a schematic diagram of a communication system applied in an embodiment provided by the present application
  • FIGS. 2 to 5 show schematic diagrams of several system frameworks applicable to embodiments of the present application
  • Fig. 6 shows a schematic diagram of periodic data
  • Figure 7 and Figure 8 show schematic diagrams of several DRX
  • FIG. 9 shows a schematic diagram of the mismatch between periodic data and DRX cycle
  • FIG. 10 shows a schematic diagram of a DRX configuration method provided by an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of a DRX configuration provided by an embodiment of the present application.
  • Fig. 12 shows a schematic diagram of periodic data matching with a duration
  • FIG. 13 shows a schematic diagram of another DRX configuration method provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • Fig. 16 is a schematic diagram of another device provided by the embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system applied in an embodiment of the present application.
  • the communication system includes a radio access network 100 and a core network 130 , and optionally, the communication system 1000 may also include the Internet 140 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a-120j in FIG. 1 ).
  • the terminal is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network in a wireless or wired manner.
  • the core network equipment and the wireless access network equipment can be independent and different equipment, or the functions of the core network equipment and the logical functions of the wireless access network equipment can be integrated on the same equipment, or it can be integrated on one equipment. Functions of some core network devices and functions of some radio access network devices. Terminals and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as relay devices and backhaul devices, which are not shown in FIG. 1 .
  • the method and device provided by the embodiments of the present application can be used in various communication systems, such as the fourth generation (4th generation, 4G) communication system, 4.5G communication system, 5G communication system, 5.5G communication system, 6G communication system, various communication systems A system of system integration, or a communication system that will evolve in the future.
  • 4G fourth generation
  • 4G fourth generation
  • 5G communication system 5G communication system
  • 5.5G communication system 6G communication system
  • various communication systems A system of system integration, or a communication system that will evolve in the future.
  • long term evolution long term evolution, LTE
  • new air interface new radio, NR
  • wireless fidelity wireless-fidelity
  • 3GPP third generation partnership project
  • the wireless access network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), and a next generation base station (next generation NodeB, gNB) in a 5G mobile communication system , the next generation base station in the 6G mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit , CU), can also be a distributed unit (distributed unit, DU).
  • the radio access network device may be a macro base station (such as 110a in Figure 1), a micro base station or an indoor station (such as 110b in Figure 1), or a relay node or a donor node. It can be understood that all or part of the functions of the radio access network device in this application can also be realized by software functions running on hardware, or by virtualization functions instantiated on a platform (such as a cloud platform). The embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment. For ease of description, a base station is used as a radio access network device as an example for description below.
  • a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( Internet of things, IoT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • the terminal in this application may also be a VR terminal, an AR terminal, or an MR terminal.
  • VR terminals, AR terminals, and MR terminals can all be referred to as XR terminals.
  • an XR terminal can be a head-mounted device (such as a helmet or glasses), an all-in-one machine, a TV, a monitor, a car, a vehicle-mounted device, a tablet or a smart screen, etc.
  • XR terminals can present XR data to users, and users can experience diversified XR services by wearing or using XR terminals.
  • XR terminals can access the network through wireless or wired means, such as accessing the network through WiFi, 5G or other systems.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the roles of the base station and the terminal can be relative.
  • the aircraft or UAV 120i in FIG. base station for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • 120i compared to 110a, 120i is also a base station. Therefore, both the base station and the terminal can be collectively referred to as a communication device, 110a and 110b in FIG. 1 can be referred to as a communication device with a base station function, and 120a-120j in FIG. 1 can be referred to as a communication device with a terminal function.
  • the communication between the base station and the terminal, between the base station and the base station, and between the terminal and the terminal can be carried out through the licensed spectrum, the communication can also be carried out through the unlicensed spectrum, and the communication can also be carried out through the licensed spectrum and the unlicensed spectrum at the same time; Communications may be performed on frequency spectrums below megahertz (gigahertz, GHz), or communications may be performed on frequency spectrums above 6 GHz, or communications may be performed using both frequency spectrums below 6 GHz and frequency spectrums above 6 GHz.
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the application scenarios of the above-mentioned terminals such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or may be performed by a device including the terminal function.
  • the base station sends a downlink signal or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends an uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel;
  • the terminal sends a sidelink (sidelink ) signal or side link information, and the side link information is carried on the side link channel.
  • XR technology has the advantages of multi-view, strong interactivity, etc., and can provide users with a brand-new experience, which has great application value and commercial potential.
  • XR includes technologies such as VR, AR, and MR, and can be widely used in many fields such as entertainment, games, medical care, advertising, industry, online education, and engineering.
  • VR technology mainly refers to the rendering of visual and audio scenes to simulate the sensory stimulation of the visual and audio in the real world as much as possible.
  • users usually wear XR terminals (such as head-mounted devices) to simulate visual and/or auditory.
  • VR technology can also track the user's actions, so as to update the simulated visual and/or auditory content in time.
  • AR technology mainly refers to providing additional visual and/or auditory information or artificially generated content in the real environment perceived by the user, where the user's acquisition of the real environment can be direct (for example, without sensing, processing and rendering), It can also be indirect (for example, transmitted through sensors, etc.), and further enhanced processing is performed.
  • MR technology is to insert some virtual elements into the physical scene, the purpose is to provide users with an immersive experience that these elements are part of the real scene.
  • Terminals receiving XR data are generally sensitive to power consumption, so how to enable terminals to receive XR data with lower power consumption is an urgent problem to be solved.
  • This application provides a discontinuous reception (DRX) method.
  • DRX discontinuous reception
  • the terminal can reduce unnecessary power consumption while matching XR data reception. Thereby, the battery life of the terminal in the process of receiving XR data is improved.
  • the method provided in this application does not limit the type of data service it is applied to, and the type of data service other than XR data is also applicable.
  • FIG. 2 shows a schematic diagram of a scenario where this embodiment of the present application is applicable.
  • FIG. 2 illustrates a system 200, including a server 210, a core network and an access network 220 (which may be referred to as a transport network 220 for short, such as an LTE, 5G or 6G network), and a terminal 230.
  • the server 210 can be used to encode, decode and render the XR source data
  • the transmission network 220 can be used to transmit the XR data
  • the terminal 230 can provide users with a variety of XR experiences by processing the XR data.
  • the terminal 230 obtains XR data from the transmission network 220 by means of other terminals and/or network devices.
  • other terminals such as mobile phones, laptop computers, or vehicle terminals, etc.
  • network equipment such as relay equipment, integrated access backhaul (integrated access backhaul, IAB) equipment, WiFi router, or WiFi access point, etc.
  • the terminal 230 obtains XR data from the transmission network 220 by means of other terminals and/or network devices.
  • FIG. 3 shows another schematic diagram of a scene where this embodiment of the present application is applicable.
  • FIG. 3 illustrates a system 300 including a terminal 320 and other terminals 310 .
  • Other terminals 310 are terminals other than terminal 320 .
  • Other terminals 310 may transmit XR data to terminal 320 .
  • other terminals 310 can project the XR data to the terminal 320 .
  • the other terminals 310 and 320 are vehicle-mounted terminals, and XR data can be exchanged between the vehicle-mounted terminals.
  • other terminals 310 may also be connected to a transmission network (such as LTE, 5G or 6G network) to obtain XR data from the transmission network, or send data to the transmission network.
  • a transmission network such as LTE, 5G or 6G network
  • FIG. 4 shows a schematic diagram of another applicable scenario of this embodiment of the present application.
  • FIG. 4 illustrates a system 400 , including a terminal 430 , a WiFi router or a WiFi access point 420 (which may be referred to as a WiFi device 420 for short), and other terminals 410 .
  • Other terminals 410 are terminals other than terminal 430 .
  • Other terminals 410 can transmit XR data to the terminal 430 by means of the WiFi device 420 .
  • the other terminal 410 is a mobile phone device
  • the WiFi device 420 is a WiFi router, a WiFi access point or a set-top box
  • the terminal 430 is a TV device, a smart screen device or an electronic tablet device. Project XR data to TV devices, smart screen devices or electronic tablet devices to present to users.
  • FIG. 5 shows another schematic diagram of a scene where this embodiment of the present application is applicable.
  • FIG. 5 illustrates a system 500 , including a server 510 , a fixed network 520 , a WiFi router or a WiFi access point 530 (which may be referred to as a WiFi device 530 for short), and a terminal 540 .
  • the server 510 can be used to encode, decode and render the XR source data, and transmit the XR data to the terminal 540 via the fixed network 520 and the WiFi device 530 .
  • the fixed network 520 is an operator network
  • the WiFi device 530 is a WiFi router, WiFi access point or set-top box
  • the server 510 transmits or projects XR data to the terminal 540 by means of the operator network 520 and the WiFi device 530 .
  • FIG. 2 to FIG. 5 only provide schematic illustrations of several applicable scenarios of the embodiment of the present application, and do not limit the applicable scenarios of the embodiment of the present application.
  • XR or video service data it usually has a certain frame rate and periodicity.
  • Figure 6 shows a schematic diagram of the time distribution of picture frames of the XR service in the case of a frame rate of 60 frames per second (frame per second, FPS). It can be seen from Figure 6 that in the case of 60FPS, a picture frame will appear or arrive every 1000/60 ⁇ 16.67ms.
  • Radio access network equipment can obtain the frame rate of XR or video service data in many different ways.
  • the radio access network device can obtain the frame rate of the XR or video service data through the configuration information of the quality of service (quality of service, QoS) flow corresponding to the data, such as a QoS profile (QoS profile).
  • QoS quality of service
  • the radio access network device may obtain the frame rate of the XR or video service data by detecting the arrival time interval of the data packets in the QoS flow.
  • the terminal may report the frame rate of uplink data or information related to the frame rate to the radio access network device through auxiliary information, such as the information element UEAssistanceInformation.
  • the DRX mechanism can reduce the power consumption of the terminal, and the DRX mechanism can be realized by configuring the duration of the DRX cycle.
  • the DRX cycle includes a continuous period and a sleep period.
  • the duration (on duration) may also be referred to as wake-up period, activation period, activity period or on duration, etc., and this application does not limit its name.
  • the terminal can monitor a physical downlink control channel (physical downlink control channel, PDCCH) during the continuous period.
  • the sleeping period may also be called a dormant period, an inactive period, an inactive period, or a closed period, etc., and this application does not limit its name.
  • the terminal does not monitor the PDCCH during the sleep period to reduce power consumption.
  • the configuration of DRX generally considers the balance between energy saving and delay. Setting a longer DRX cycle is beneficial to save the power consumption of the terminal, but it is not conducive to a quick response to data transmission and reception. Setting a shorter DRX cycle is more conducive to quick response to data transmission and reception, but is not conducive to saving terminal power consumption. Therefore, different DRX cycle lengths can be configured according to actual needs. Taking Figure 8 as an example, two DRX cycles can be configured for the terminal, that is, the DRX long cycle and the DRX short cycle. The configuration of the DRX long cycle is more beneficial to the power saving of the terminal, and the configuration of the DRX short cycle is more beneficial to the data transmission and reception of the terminal. Quick response. At a certain moment, the terminal can adopt one of the two DRX configurations according to needs. It can be understood that the DRX cycle mentioned in this application may be a DRX long cycle or a DRX short cycle, which is not limited in this application.
  • the cycle length of the DRX cycle is generally an integer millisecond ms.
  • the arrival cycle is generally not an integer number of milliseconds, it will cause a problem that the cycle length of the DRX cycle does not match the arrival cycle of the XR data.
  • the frame rate of the XR data is 60 FPS (period is 16.67 ms)
  • the cycle duration of the DRX cycle is an integer of 16 ms as an example. It can be seen from Figure 9 that due to the difference between 16.67 ms and 16 ms, the arrival time of XR data may not match the duration of the DRX cycle, causing the terminal to miss the detection of the PDCCH of XR data, thus making the transmission and reception of data difficult. Performance drops.
  • This application provides several DRX configuration methods, and these methods can solve the above-mentioned problem that the DRX cycle does not match the XR data arrival cycle without introducing a non-integer millisecond DRX cycle duration. It can be understood that the method provided in this application does not limit the type of data service it is applied to, and the type of data service other than XR data is also applicable.
  • FIG. 10 is a schematic diagram of interaction of a DRX configuration method 1000 provided by an embodiment of the present application.
  • the method is illustrated by taking the wireless access network device and the terminal as the execution subject of the interaction demonstration as an example, but the present application does not limit the execution subject of the interaction demonstration.
  • the wireless access network device in FIG. 10 may also be a chip, a chip system, or a processor that supports the wireless access network device to implement the method, and may also be a logic that can realize all or part of the functions of the wireless access network device.
  • the method 1000 of this embodiment may include part 1010 , part 1020 and part 1030 .
  • the wireless access network device sends the first DRX configuration information to the terminal, and the terminal obtains the first DRX configuration information.
  • the first DRX configuration information is used for DRX configuration.
  • the first DRX configuration information includes information about the first cycle duration T1 of the first DRX cycle, information about the number N1 of the first duration in the first DRX cycle, and information about the duration of the first duration in the first DRX cycle , where T1>0, N1>0.
  • the first DRX configuration information is carried by a radio resource control (radio resource control, RRC) message.
  • RRC radio resource control
  • the RRC message in this application may also be called RRC signaling or RRC information, which is not limited in this application.
  • the first cycle duration T1 is 25ms, 50ms, 100ms, an integer multiple of 25ms, an integer multiple of 50ms, or an integer multiple of 100ms, or the like.
  • the number N1 of the first duration is an integer multiple of 3.
  • N1 can be 3, 6 or 9, etc.
  • Part 1020 the terminal obtains the first cycle duration T1 of the first DRX cycle and the number N1 and duration of the first duration in the first DRX cycle based on the first DRX configuration information.
  • FIG. 11 Several DRX configuration parameters included in the first DRX configuration information are described by taking FIG. 11 as an example.
  • the N1 first duration periods in the first DRX cycle may be distributed as evenly as possible within the first cycle duration T1.
  • the duration of each first duration in the first DRX cycle may be the same or different, which is not limited in this application.
  • the start time of the first duration is also illustrated in FIG. 11 .
  • Part 1030 the terminal monitors the PDCCH on one or more first durations in the first DRX cycle based on the first cycle duration T1 and the number N1 and duration of the first durations.
  • the duration of the DRX cycle can be matched with the arrival cycle of the XR data without introducing a non-integer millisecond DRX cycle length, thereby reducing the probability of missed detection of the PDCCH by the terminal and improving the transmission and reception of data by the terminal performance.
  • the method 1000 solves the problem that the duration period in the DRX cycle does not match the arrival period of the XR data.
  • a picture frame of a service with a frame rate of 60FPS as an example, a picture frame appears or arrives every 1000/60 ⁇ 16.67ms.
  • a frame interval of 16.67ms is not an integer, three consecutive frame intervals can form an integer of 50ms. Therefore, the first cycle duration T1 of the first DRX cycle can be configured as 50 ms, and the number N1 of the first duration in the first DRX cycle can be configured as three.
  • the three first duration periods are distributed as evenly as possible within the first cycle duration of 50 ms, for example, as shown in FIG.
  • the intervals between the three first duration periods are 16 ms, 17 ms and 17 ms respectively. This enables the duration of the DRX cycle to match the arrival cycle of XR data.
  • the first cycle duration T1 of the first DRX cycle may also be configured as G1*50ms, and the number N1 of the first duration in the first DRX cycle may be configured as G1*3, where G1 is an integer greater than or equal to 1.
  • the above-mentioned method 1000 provided in this application may also enable the duration of the DRX cycle to match the arrival cycle of XR data.
  • the first cycle duration T1 of the first DRX cycle can be configured as 100 ms, and the number N1 of the first duration in the first DRX cycle can be configured as three.
  • the first cycle duration T1 of the first DRX cycle may also be configured as G2*100ms, and the number N1 of the first duration in the first DRX cycle may be configured as G2*3, where G2 is an integer greater than or equal to 1.
  • the first cycle duration T1 of the first DRX cycle may be configured as 100 ms, and the number N1 of the first duration in the first DRX cycle may be configured as nine.
  • the first cycle duration T1 of the first DRX cycle may also be configured as G3*100ms, and the number N1 of the first duration in the first DRX cycle may be configured as G3*9, where G3 is an integer greater than or equal to 1.
  • the first cycle duration T1 of the first DRX cycle can be configured as 25 ms, and the number N1 of the first duration in the first DRX cycle can be configured as three.
  • the first cycle duration T1 of the first DRX cycle may also be configured as G4*25ms, and the number N1 of the first duration in the first DRX cycle may be configured as G4*3, where G4 is an integer greater than or equal to 1.
  • Table 1 schematically shows configurations of T1 and N1 at several frame rates, where G1 , G2 , G3 and G4 are integers greater than or equal to 1.
  • the terminal may further include: the terminal obtains the first start offset A1 and the first time slot offset corresponding to the first DRX cycle based on the first DRX configuration information, where A1 ⁇ 0.
  • the terminal based on the first cycle duration T1, the number N1 and duration of the first duration, and the first start offset A1 and the first time slot offset, the terminal Monitor the PDCCH during one or more first durations in a DRX cycle.
  • the terminal Based on the first cycle duration T1, the number N1 and duration of the first duration, and the first start offset A1 and the first time slot offset, the terminal performs one or more first durations in the first DRX cycle
  • the terminal obtains one of the first DRX cycles based on the first cycle duration T1, the number N1 of the first duration, and the first start offset A1 and the first time slot offset or the start time of multiple first duration periods, and based on the start time of one or more first duration periods and the duration of the first duration period, on one or more first duration periods in the first DRX cycle Monitor PDCCH.
  • the above-mentioned first start offset A1 may be understood as an offset of the start subframe of the first duration in the first DRX cycle relative to the first reference point.
  • the first reference point may be a system frame, a subframe, a time slot or a symbol.
  • the unit of the first start offset A1 may be ms, may also be a subframe, and may also be a time slot or a granularity smaller than a time slot (for example, one or more symbols).
  • the value of the first starting offset A1 is an integer greater than or equal to 0.
  • first start offset A1 when the value of the first start offset A1 is 0, it can also be understood that the start subframe of the first duration in the first DRX cycle has no offset relative to the above-mentioned first reference point.
  • the first start offset may also be referred to as a first start subframe offset or a first subframe offset, and this application does not limit the name of the first start offset.
  • the above-mentioned first time slot offset may be understood as an offset of the start time of a duration in the first DRX cycle relative to the start time of the start subframe of the duration.
  • the first time slot offset may also be understood as an offset of a duration in the first subframe of the duration in the first DRX cycle.
  • the first time slot offset may be in units of one or more time slots, or in a granularity smaller than a time slot (for example, one or more symbols), or in milliseconds or other time units.
  • the value of the first time slot offset is an integer greater than or equal to 0.
  • the first time slot offset can also be referred to as the first subframe offset or the first subframe time slot offset or the first start subframe time slot offset. This application refers to the name of the first time slot offset No limit.
  • the number of first duration periods in the first DRX cycle is N1, wherein, optionally, the starting subframe SF1 of the i-th first duration period in the first DRX cycle satisfies:
  • SF1 indicates the number of the starting subframe
  • SFN1 indicates the number of the system frame where the starting subframe is located
  • SF1 and SFN1 are integers greater than or equal to 0, and 1 ⁇ i ⁇ N1.
  • the start time of the i-th first duration in the first DRX cycle is obtained based on the start subframe and the first time slot offset. For example, there is the above-mentioned first time slot offset between the start time of the i-th first duration in the first DRX cycle and the start time of the start subframe SF1.
  • SF1 ref indicates the number of the subframe
  • SFN1 ref indicates the number of the system frame where the subframe is located
  • SF1 ref and SFN1 ref are integers greater than or equal to 0.
  • one system frame includes several subframes, one subframe includes one or more time slots, and one time slot includes one or more symbols.
  • the duration period can be distributed as uniformly as possible in the DRX cycle, so that the duration period in the DRX cycle can match the data (such as XR data) arriving in the period, thereby reducing the probability of missed detection of the PDCCH by the terminal and improving The performance of the terminal for sending and receiving data.
  • the information element DRX-Config can be understood as the first DRX configuration information, which includes information for DRX configuration.
  • the information element drx-onDurationTimer can be understood as information about the duration of the first duration in the first DRX cycle.
  • the value range of subMilliSeconds is an integer from 1 to 31, representing an integer multiple of 1/32ms. That is, when the value of subMilliSeconds is 1, the drx-onDurationTimer is 1/32ms; when the value of subMilliSeconds is 2, the drx-onDurationTimer is 2/32ms, and so on.
  • the value range of milliSeconds includes a set, where ms1 indicates that the drx-onDurationTimer is 1ms, ms2 indicates that the drx-onDurationTimer is 2ms, and so on.
  • spare1 ⁇ spare8 represent 8 reserved values, which are not used for the time being and are used for expansion in subsequent versions.
  • the value of drx-onDurationTimer is one of subMilliSeconds or milliSeconds.
  • the cell drx-LongCycleStartOffset is used to configure the DRX long cycle, which contains two parts.
  • a part is the information of the first cycle duration T1 of the first DRX cycle: ms10, ms20...ms10240, respectively indicating that the first cycle duration T1 is 10ms, 20ms...or 10240ms.
  • the other part is the information of the first start offset A1: INTEGER(0..9), INTEGER(0..19)...INTEGER(0..10239), respectively indicating that the duration T1 of the first cycle is 10ms, 20ms...or Possible values of the first starting offset A1 at 10240ms.
  • the information element drx-SlotOffset can be understood as the information of the first time slot offset, and the possible value of the first time slot offset can be 0 to 31 shown in Table 2, for example.
  • the information element drx-OnDurationNumber can be understood as the information of the number N1 of the first duration in the first DRX cycle, and possible values of N1 can be 1 to 16 shown in Table 2, for example.
  • the offset of the start subframe may be respectively configured for each first duration in the first DRX cycle.
  • a drx-OnDurationOffset information element may be added in Table 2, which is used to configure the offset of the start subframe of each first duration in the first DRX cycle. This configuration mode can more flexibly adjust the position of the duration period in a DRX cycle.
  • Fig. 13 is a schematic diagram of interaction of another DRX configuration method 1300 provided by the embodiment of the present application.
  • the method is illustrated by taking the wireless access network device and the terminal as the execution subject of the interaction demonstration as an example, but the present application does not limit the execution subject of the interaction demonstration.
  • the wireless access network device in FIG. 13 may also be a chip, a chip system, or a processor that supports the wireless access network device to implement the method, and may also be a logic that can realize all or part of the functions of the wireless access network device.
  • the terminal in Figure 13 may also be a chip, a chip system, or a processor that supports the terminal to implement the method, and may also be a logic module or software that can realize all or part of the terminal functions.
  • method 1300 of this embodiment may include part 1310 , part 1320 and part 1330 .
  • the radio access network device sends the second DRX configuration information to the terminal, and the terminal obtains the second DRX configuration information.
  • the second DRX configuration information is used for DRX configuration.
  • the second DRX configuration information includes information about the second cycle duration T2 of the second DRX cycle, information about the second start offset A2 corresponding to the second DRX cycle, and information about the offset adjustment Q corresponding to the second DRX cycle , and duration information of the second duration in the second DRX cycle, where T2>0, A2 ⁇ 0, and Q ⁇ 0.
  • the second DRX configuration information is carried by an RRC message.
  • the second cycle duration T2 is 8ms, 10ms, 11ms, 16ms, 32ms, 33ms, an integer multiple of 8ms, an integer multiple of 10ms, an integer multiple of 11ms, an integer multiple of 16ms, an integer multiple of 32ms or an integer multiple of 33ms Times etc.
  • the above-mentioned second start offset A2 may be understood as an offset of the start subframe of the second DRX cycle relative to the second reference point.
  • the second reference point may be a system frame, a subframe, a time slot or a symbol.
  • the unit of the second start offset A2 may be ms, may also be a subframe, and may also be a time slot or a granularity smaller than a time slot (for example, one or more symbols).
  • the value of the second starting offset A2 is an integer greater than or equal to 0. It can be understood that when the value of the second start offset A2 is 0, it can also be understood that the start subframe of the second DRX cycle has no offset relative to the above-mentioned second reference point.
  • the second start offset may also be called a second start subframe offset or a second subframe offset, and this application does not limit the name of the second start offset.
  • the above-mentioned offset adjustment amount Q corresponding to the second DRX cycle may be understood as a reference offset of the start time of the second duration in the second DRX cycle relative to the start time of the second DRX cycle.
  • the offset adjustment Q can be understood as a reference offset of the start time of the second duration in the second DRX cycle relative to the start time of the first subframe in the second DRX cycle.
  • the unit of the offset adjustment amount Q may be ms, may also be a subframe, and may also be a time slot or at a granularity smaller than a time slot (for example, one or more symbols).
  • the value of the offset adjustment amount Q is a real number greater than or equal to 0.
  • the offset adjustment amount may also be referred to as a starting subframe offset adjustment amount or a subframe offset adjustment amount, and the name of the offset adjustment amount is not limited in this application.
  • the offset adjustment Q is 1/9ms (0.11ms), 1/3ms (0.33ms), 2/3ms (0.67ms), 4/3ms (1.33ms), 10/9ms (1.11ms), Integer multiples of 1/9ms, integer multiples of 1/3ms, integer multiples of 2/3ms, integer multiples of 4/3ms or integer multiples of 10/9ms, etc.
  • Part 1320 based on the second DRX configuration information, the terminal obtains the second cycle duration T2 of the second DRX cycle, the second start offset A2 and the offset adjustment Q corresponding to the second DRX cycle, and the second The duration of the duration.
  • Part 1330 based on the second cycle duration T2, the second start offset A2 and the offset adjustment amount Q, and the duration of the second duration, the terminal monitors the PDCCH in the second duration in the second DRX cycle.
  • the duration period in the DRX cycle can be matched with the arrival cycle of XR data, thereby reducing the probability of missed detection of the PDCCH by the terminal and improving the performance of the terminal for data transmission and reception.
  • the terminal may further include: the terminal obtains the second time slot offset corresponding to the second DRX cycle based on the second DRX configuration information.
  • the terminal based on the second cycle duration T2, the second start offset A2 and the offset adjustment Q, the second time slot offset, and the second duration The duration is to monitor the PDCCH during the second duration in the second DRX cycle.
  • the terminal Based on the second cycle duration T2, the second start offset A2 and the offset adjustment amount Q, the second time slot offset, and the duration of the second duration, the terminal is in the second duration of the second DRX cycle
  • the terminal obtains the second duration in the second DRX cycle based on the second cycle duration T2, the second start offset A2 and the offset adjustment Q, and the second time slot offset.
  • the start time of the time period and based on the start time of the second time period and the duration of the second time period, monitor the PDCCH in the second time period.
  • the above-mentioned second time slot offset may be understood as an offset of the start time of the second duration in the second DRX cycle relative to the start time of the start subframe of the second duration.
  • the second time slot offset may also be understood as an offset within the start subframe of the second duration in the second DRX cycle.
  • the second time slot offset may be in units of one or more time slots, or in a granularity smaller than a time slot (for example, one or more symbols), or in milliseconds or other time units.
  • the value of the second time slot offset is an integer greater than or equal to 0.
  • the second time slot offset may also be referred to as the second intra-subframe offset or the second intra-subframe time slot offset or the second start subframe intra-slot offset. This application refers to the second time slot offset The name is not limited.
  • the second DRX cycle is identified by a positive integer j, and the start subframe of the second duration in the second DRX cycle satisfies:
  • SF2 represents the number of the starting subframe
  • SFN2 represents the number of the system frame where the starting subframe is located
  • SF2 and SFN2 are integers greater than or equal to 0.
  • the start time of the second duration in the second DRX cycle is obtained based on the start subframe and the second time slot offset. For example, there is the above-mentioned second time slot offset between the start time of the second duration period and the start time of the start subframe SF2 in the second DRX cycle.
  • SF2 ref represents the number of the subframe
  • SFN2 ref represents the number of the system frame where the subframe is located
  • SF2 ref and SFN2 ref are integers greater than or equal to 0.
  • the duration period can be distributed as evenly as possible in the DRX cycle, so that the duration period in the DRX cycle can match the data (such as XR data) arriving in the cycle, thereby reducing the probability of missed detection of the PDCCH by the terminal and improving The performance of the terminal for sending and receiving data.
  • the duration of the DRX cycle can be distributed as evenly as possible in the DRX cycle, so that the duration of the DRX cycle can match the data arriving in the cycle (e.g. XR data).
  • the following exemplifies possible configuration modes under several frame rates.
  • a picture frame of a service with a frame rate of 60FPS as an example, a picture frame will appear or arrive every 1000/60 ⁇ 16.67ms, and a frame interval of 16.67ms is not an integer.
  • One possible configuration method is, because the maximum integer less than 16.67 is 16, so the second cycle duration T2 of the second DRX cycle can be configured as 16ms; since the difference between the frame interval and the second cycle duration T2 is 2/3ms (0.67ms) , the above offset adjustment Q can be configured as 2/3ms (0.67ms).
  • a picture frame will appear or arrive every 1000/30 ⁇ 33.33ms, and a frame interval of 33.33ms is not an integer.
  • a possible configuration method is, because the maximum integer less than 33.33 is 33, so the second cycle duration T2 of the second DRX cycle can be configured as 33ms; since the difference between the frame interval and the second cycle duration T2 is 1/3ms (0.33ms) , the above offset adjustment Q can be configured as 1/3ms (0.33ms).
  • the second cycle duration T2 of the second DRX cycle can be configured to be 32ms (that is, the maximum integer less than 33.33 minus 1), and the above-mentioned offset adjustment Q can be configured to be 4/3ms (1.33ms) .
  • a picture frame will appear or arrive every 1000/90 ⁇ 11.11ms, and a frame interval of 11.11ms is not an integer.
  • One possible configuration method is that, because the largest integer less than 11.11 is 11, the second cycle duration T2 of the second DRX cycle can be configured as 11ms; since the difference between the frame interval and the second cycle duration T2 is 1/9ms (0.11ms) , the above offset adjustment Q can be configured as 1/9ms (0.11ms).
  • the second cycle duration T2 of the second DRX cycle can be configured to be 10ms (that is, the largest integer less than 11.11 minus 1), and the above-mentioned offset adjustment Q can be configured to be 10/9ms (1.11ms) .
  • a picture frame will appear or arrive every 1000/120 ⁇ 8.33ms, and a frame interval of 8.33ms is not an integer.
  • One possible configuration method is, because the maximum integer less than 8.33 is 8, so the second cycle duration T2 of the second DRX cycle can be configured as 8ms; since the difference between the frame interval and the second cycle duration T2 is 1/3ms (0.33ms) , the above offset adjustment Q can be configured as 1/3ms (0.33ms).
  • Table 3 schematically shows configurations of T2 and Q at several frame rates.
  • the information element DRX-Config can be understood as the second DRX configuration information, which includes information for DRX configuration.
  • the cell drx-onDurationTimer can be understood as the duration information of the second duration in the second DRX cycle, and the meaning of the parameters can refer to the introduction in Table 2.
  • the cell drx-LongCycleStartOffset is used to configure the DRX long cycle, which contains two parts.
  • a part is the information of the second cycle duration T2 of the second DRX cycle: ms8, ms10...ms10240, respectively indicating that the second cycle duration T2 is 8ms, 10ms...or 10240ms.
  • the other part is the information of the second start offset A2: INTEGER(0..7), INTEGER(0..9)... INTEGER(0..10239), respectively indicating that the duration T2 of the second cycle is 8ms, 10ms... Or possible values of the second starting offset A2 at 10240ms.
  • the cell shortDRX is used to configure the DRX short cycle, which includes the cells drx-ShortCycle and drx-ShortCycleTimer.
  • the information element drx-ShortCycle is used to configure the cycle duration of the DRX short cycle, and it can also be used as information of the second cycle duration T2 of the second DRX cycle.
  • the cell drx-ShortCycleTimer is used to configure the number of DRX short cycles, and possible values may be 1 to 16 shown in Table 4, for example.
  • the information element drx-SlotOffset may be understood as the information of the second time slot offset, and possible values of the second time slot offset may be 0 to 31 shown in Table 4, for example.
  • the cell drx-SubframeOffset can be understood as the information of the above-mentioned offset adjustment Q, and the possible value of Q can be, for example, 1/9ms, 1/3ms, 2/3ms, 4/3ms or 10/9ms shown in Table 4.
  • the embodiments of the present application further provide corresponding apparatuses, including corresponding modules for executing the foregoing embodiments.
  • the modules may be software, or hardware, or a combination of software and hardware.
  • FIG. 14 provides a schematic structural diagram of a terminal.
  • the terminal may be applicable to the scenarios shown in FIG. 1 , FIG. 2 , FIG. 3 , FIG. 4 or FIG. 5 .
  • the terminal or components in the terminal may execute the foregoing method 1000 and various possible implementation manners, and may also execute the foregoing method 1300 and various possible implementation manners.
  • FIG. 14 only shows main components of the terminal.
  • a terminal 1400 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, control the entire terminal, execute the software program, and process the data of the software program.
  • Memory is primarily used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, analyze and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and processes the data .
  • FIG. 14 For ease of illustration, only one memory and processor are shown in FIG. 14 . In an actual terminal, there may be multiple processors and memories.
  • a storage may also be called a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit, the baseband processor is mainly used to process communication protocols and communication data, and the central processor is mainly used to control the entire terminal device, execute A software program that processes data for a software program.
  • the processor in FIG. 14 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple central processors to enhance its processing capability, and various components of the terminal may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • a terminal 1400 includes a transceiver unit 1411 and a processing unit 1412 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 1411 for realizing the receiving function can be regarded as a receiving unit
  • the device in the transceiver unit 1411 for realizing the sending function can be regarded as a sending unit
  • the transceiver unit 1411 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • the above-mentioned receiving unit and sending unit may be one integrated unit, or may be multiple independent units.
  • the above-mentioned receiving unit and sending unit may be located in one geographic location, or may be dispersed in multiple geographic locations.
  • the device may be a terminal, or a component of a terminal (for example, an integrated circuit, a chip, etc.).
  • the device may be a radio access network device, or a component of a network device (such as an integrated circuit, a chip, etc.), or a logic module or software capable of realizing all or part of the functions of the radio access network device.
  • the device can also be other communication modules.
  • the apparatus 1500 may implement the function of the radio access network device in the method 1000 or the method 1300, or the apparatus 1500 may implement the function of the terminal in the method 1000 or the method 1300.
  • the apparatus 1500 may include: a processing module 1502 (or referred to as a processing unit).
  • an interface module 1501 or called an interface unit
  • a storage module 1503 or called a storage unit
  • one or more modules in Figure 15 may be implemented by one or more processors, or by one or more processors and memory; or by one or more processors and a transceiver; or by one or more processors, memories, and a transceiver, which is not limited in this embodiment of the present application.
  • the processor, memory, and transceiver can be set independently or integrated.
  • the device has the function of implementing the terminal described in the embodiment of this application.
  • the device includes a module or unit or means (means) corresponding to the terminal performing the steps related to the terminal described in the embodiment of this application.
  • the function or unit or The means (means) can be implemented by software, or by hardware, or by executing corresponding software by hardware, or by a combination of software and hardware. For details, further reference may be made to the corresponding descriptions in the aforementioned corresponding method embodiments.
  • the apparatus has the function of realizing the radio access network equipment described in the embodiment of the present application, for example, the apparatus includes a module corresponding to the radio access network equipment performing the steps involved in the radio access network equipment described in the embodiment of the present application
  • Or unit or means (means) can be realized by software, or by hardware, can also be realized by executing corresponding software by hardware, and can also be realized by a combination of software and hardware.
  • the apparatus 1500 includes: a processing module 1502 and an interface module 1501 .
  • the interface module 1501 is configured to obtain first DRX configuration information.
  • the processing module 1502 is configured to obtain the first cycle duration T1 of the first DRX cycle and the number N1 and duration of the first duration in the first DRX cycle based on the first DRX configuration information, where T1>0, N1>0.
  • the processing module 1502 is further configured to control the apparatus 1500 to monitor the PDCCH on one or more first durations in the first DRX cycle based on the first cycle duration T1 and the number N1 and duration of the first durations.
  • the first DRX configuration information is carried by a radio resource control RRC message.
  • the first cycle duration T1 is 25ms, 50ms, 100ms, an integer multiple of 25ms, an integer multiple of 50ms, or an integer multiple of 100ms, or the like.
  • the number N1 of the first duration is an integer multiple of 3.
  • N1 can be 3, 6 or 9, etc.
  • the processing module 1502 is further configured to obtain a first start offset A1 and a first time slot offset corresponding to the first DRX cycle based on the first DRX configuration information, where A1 ⁇ 0.
  • the above processing module 1502 is configured to monitor the PDCCH on one or more first durations in the first DRX cycle based on the first cycle duration T1, and the number N1 and duration of the first duration, including: a processing module 1502, based on the first cycle duration T1, the number N1 and duration of the first duration, and the first start offset A1 and the first time slot offset, control the device 1500 in one or more first DRX cycles in the first DRX cycle Monitor the PDCCH for a duration.
  • the above-mentioned processing module 1502 is configured to control the The apparatus 1500 monitors the PDCCH on one or more first durations in the first DRX cycle, including: a processing module 1502 configured to use the first cycle duration T1, the number N1 of the first duration, and the first start offset A1 and the first time slot offset, to obtain the start time of one or more first duration periods in the first DRX cycle, and based on the start time of the one or more first duration periods and the duration of the first duration period , the control device 1500 monitors the PDCCH in one or more first duration periods in the first DRX cycle.
  • the starting subframe of the i-th first duration in the above-mentioned first DRX cycle satisfies:
  • SF1 indicates the number of the starting subframe
  • SFN1 indicates the number of the system frame where the starting subframe is located
  • SF1 and SFN1 are integers greater than or equal to 0, and 1 ⁇ i ⁇ N1.
  • the start time of the i-th first duration in the first DRX cycle is obtained based on the start subframe and the first time slot offset. For example, there is the above-mentioned first time slot offset between the start time of the i-th first duration in the first DRX cycle and the start time of the start subframe SF1.
  • the apparatus 1500 includes: a processing module 1502 and an interface module 1501 .
  • the interface module 1501 is configured to obtain second discontinuous reception DRX configuration information.
  • the processing module 1502 is configured to obtain, based on the second DRX configuration information, the second cycle duration T2 of the second DRX cycle, the second start offset A2 and the offset adjustment Q corresponding to the second DRX cycle, and the The duration of the second duration, where T2>0, A2 ⁇ 0, Q ⁇ 0.
  • the processing module 1502 is further configured to control the device 1500 on the second duration in the second DRX cycle based on the second cycle duration T2, the second start offset A2 and the offset adjustment Q, and the duration of the second duration. Monitor PDCCH.
  • the second DRX configuration information is carried by an RRC message.
  • the second cycle duration T2 is 8ms, 10ms, 11ms, 16ms, 32ms, 33ms, an integer multiple of 8ms, an integer multiple of 10ms, an integer multiple of 11ms, an integer multiple of 16ms, an integer multiple of 32ms or an integer multiple of 33ms Times etc.
  • the offset adjustment Q is 1/9ms (0.11ms), 1/3ms (0.33ms), 2/3ms (0.67ms), 4/3ms (1.33ms), 10/9ms (1.11ms), Integer multiples of 1/9ms, integer multiples of 1/3ms, integer multiples of 2/3ms, integer multiples of 4/3ms or integer multiples of 10/9ms, etc.
  • the processing module 1502 is further configured to obtain a second time slot offset corresponding to the second DRX cycle based on the second DRX configuration information.
  • the above-mentioned processing module 1502 is configured to control the device 1500 in the second duration of the second DRX cycle based on the second cycle duration T2, the second start offset A2 and the offset adjustment amount Q, and the duration of the second duration.
  • Listening to the PDCCH includes: a processing module 1502 configured to use a processing module 1502 based on the second cycle duration T2, the second start offset A2 and the offset adjustment amount Q, the second time slot offset, and the duration of the second duration, the control device 1500
  • the PDCCH is monitored during the second duration in the second DRX cycle.
  • the above-mentioned processing module 1502 is configured to: The control device 1500 monitors the PDCCH on the second duration in the second DRX cycle, including: the processing module 1502 is configured to base on the second cycle duration T2, the second start offset A2 and the offset adjustment amount Q, and The second time slot offset is to obtain the start time of the second duration in the second DRX cycle, and based on the start time of the second duration and the duration of the second duration, the control device 1500 in the second DRX cycle The PDCCH is monitored on the second duration of .
  • the second DRX cycle is identified by a positive integer j, and the start subframe of the second duration in the second DRX cycle satisfies:
  • SF2 represents the number of the starting subframe
  • SFN2 represents the number of the system frame where the starting subframe is located
  • SF2 and SFN2 are integers greater than or equal to 0.
  • the start time of the second duration in the second DRX cycle is obtained based on the start subframe and the second time slot offset. For example, there is the above-mentioned second time slot offset between the start time of the second duration period and the start time of the start subframe SF2 in the second DRX cycle.
  • the above apparatus 1500 may further include a storage module 1503 for storing data or instructions (also referred to as codes or programs), and the above other modules may interact or be coupled with the storage module to implement corresponding methods or functions.
  • the processing module 1502 may read data or instructions in the storage module 1503, so that the apparatus 1500 implements the methods in the foregoing embodiments.
  • the modules in the above device may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (application specific integrated circuit, ASIC), or, one or more A microprocessor (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA), or a combination of at least two of these integrated circuit forms.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the modules in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (central processing unit, CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the device includes: a processor 1610 and an interface 1630 , and the processor 1610 is coupled to the interface 1630 .
  • the interface 1630 is used to communicate with other modules or devices.
  • Interface 1630 may be a transceiver or an input-output interface.
  • Interface 1630 may be, for example, an interface circuit.
  • the device further includes a memory 1620 for storing instructions executed by the processor 1610 or storing input data required by the processor 1610 to execute the instructions or storing data generated after the processor 1610 executes the instructions.
  • the above-mentioned method 1000 , method 1300 and various possible implementation manners can be implemented by the processor 1610 calling programs or instructions stored in the memory 1620 .
  • the memory 1620 may be inside the device or outside the device, which is not limited in the present application.
  • the functions/implementation process of the interface module 1501 and the processing module 1502 in FIG. 15 may be implemented by the processor 1610 in the device shown in FIG. 16 .
  • the function/implementation process of the processing module 1502 in FIG. 15 can be realized by the processor 1610 in the device shown in FIG. 16
  • the interface 1630 in the device is implemented.
  • the function/implementation process of the interface module 1501 can be implemented by the processor calling the program instructions in the memory to drive the interface 1630.
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is from other terminals or wireless access network equipment; or, the chip sends information to other modules in the terminal (such as radio frequency modules or antennas) Information, the information is sent by the terminal to other terminals or wireless access network equipment.
  • the chip When the foregoing apparatus is a chip applied to radio access network equipment, the chip implements the functions of the radio access network equipment in the foregoing method embodiments.
  • the chip receives information from other modules in the wireless access network equipment (such as radio frequency modules or antennas), and the information is from other wireless access network equipment or terminals; or, the chip sends information to other modules in the wireless access network equipment (such as a radio frequency module or an antenna) to send information, and the information is sent by the radio access network device to other radio access network devices or terminals.
  • At least one item (one, species) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or Multiple.
  • “Multiple" means two or more than two, and other quantifiers are similar.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • the steps of the method described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of both.
  • the software unit may be stored in random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), registers, hard disk, removable disk or any other storage medium in this field.
  • the storage medium can be connected to the processor, so that the processor can read information from the storage medium, and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and storage medium can be provided in an ASIC.
  • the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种方法及装置。在该方法中,获得第一非连续接收DRX配置信息。基于第一DRX配置信息获得第一DRX周期的第一周期时长T1以及第一DRX周期中第一持续时段的数量N1和时长,其中T1>0,N1>0。基于第一周期时长T1、以及第一持续时段的数量N1和时长,在第一DRX周期中的一个或多个第一持续时段上监听物理下行控制信道PDCCH。通过该方法,使得DRX周期中的持续时段能够匹配于数据的到达周期,从而可以降低终端对PDCCH的漏检概率,提升终端对数据收发的性能。

Description

非连续接收的方法及装置
本申请要求于2021年08月04日提交国家知识产权局、申请号为202110892022.3、申请名称为“非连续接收的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种非连续接收的方法及装置。
背景技术
在无线通信网络中,扩展现实(extended reality,XR)技术具有多视角、交互性强等优点,能够为用户提供了一种全新的视觉体验,具有极大的应用价值和商业潜力。XR包含虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、和混合现实(mix reality,MR)等技术,能够广泛应用于娱乐、游戏、医疗、广告、工业、在线教育、以及工程等诸多领域。
接收XR数据的终端一般对电量比较敏感,因此如何使得终端能够在更低的功耗下接收XR数据是一个亟待解决的问题。
发明内容
第一方面,本申请实施例提供一种通信方法,该方法可以由终端执行,也可以由终端的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分终端功能的逻辑模块或软件实现。该方法包括:获得第一非连续接收DRX配置信息。基于第一DRX配置信息获得第一DRX周期的第一周期时长T1以及第一DRX周期中第一持续时段的数量N1和时长,其中T1>0,N1>0。基于第一周期时长T1、以及第一持续时段的数量N1和时长,在第一DRX周期中的一个或多个第一持续时段上监听物理下行控制信道PDCCH。
可选地,该第一DRX配置信息由无线资源控制RRC消息承载。
可选地,第一周期时长T1为25ms、50ms、100ms、25ms的整数倍、50ms的整数倍、或者100ms的整数倍等。
可选地,第一持续时段的数量N1为3的整数倍。例如,N1可以为3、6或9等。
通过该方法能够在不引入非整数毫秒的DRX周期时长的前提下,使得DRX周期中的持续时段能够匹配于数据的到达周期,从而可以降低终端对PDCCH的漏检概率,提升终端对数据收发的性能。
结合第一方面,在第一方面的某些实施方式中,该方法还包括:基于第一DRX配置信息获得第一DRX周期对应的第一起始偏移A1和第一时隙偏移,其中A1≥0。上述基于第一周期时长T1、以及第一持续时段的数量N1和时长,在第一DRX周期中的一个或多个第一持续时段上监听PDCCH,包括:基于第一周期时长T1、第一持续时段的数量N1和时长、以及第一起始偏移A1和第一时隙偏移,在第一DRX周期中的一个或多个第一持续时段上监听PDCCH。
结合第一方面,在第一方面的某些实施方式中,上述基于第一周期时长T1、第一持续时段的数量N1和时长、以及第一起始偏移A1和第一时隙偏移,在第一DRX周期中的一个或多个第一持续时段上监听PDCCH,包括:基于第一周期时长T1、第一持续时段的数量N1、以及第一起始偏移A1和第一时隙偏移,获得第一DRX周期中的一个或多个第一持续时段的起始时间,并基于该一个或多个第一持续时段的起始时间以及第一持续时段的时长,在第一DRX周期中的该一个或多个第一持续时段上监听PDCCH。
可选地,上述第一DRX周期中的第i个第一持续时段的起始子帧满足:
Figure PCTCN2022089271-appb-000001
或者
Figure PCTCN2022089271-appb-000002
或者
Figure PCTCN2022089271-appb-000003
或者
Figure PCTCN2022089271-appb-000004
其中,SF1表示该起始子帧的编号,SFN1表示该起始子帧所在的系统帧的编号,SF1和SFN1为大于等于0的整数,1≤i≤N1。第一DRX周期中的第i个第一持续时段的起始时间是基于该起始子帧和上述第一时隙偏移获得的。例如,第一DRX周期中的第i个第一持续时段的起始时间与起始子帧SF1的起始时间之间存在上述第一时隙偏移。
通过上述实施方式可以让持续时段尽可能均匀地分布在DRX周期中,使得DRX周期中的持续时段能够匹配于周期到达的数据,从而可以降低终端对PDCCH的漏检概率,提升终端对数据收发的性能。
第二方面,本申请实施例提供一种通信方法,该方法可以由终端执行,也可以由终端的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分终端功能的逻辑模块或软件实现。该方法包括:获得第二DRX配置信息。基于第二DRX配置信息获得第二DRX周期的第二周期时长T2、第二DRX周期对应的第二起始偏移A2和偏移调整量Q、以及第二DRX周期中第二持续时段的时长,其中T2>0,A2≥0,Q≥0。基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、以及第二持续时段的时长,在第二DRX周期中的第二持续时段上监听PDCCH。
可选地,该第二DRX配置信息由RRC消息承载。
可选地,第二周期时长T2为8ms,10ms,11ms,16ms,32ms,33ms,8ms的整数倍,10ms的整数倍,11ms的整数倍,16ms的整数倍,32ms的整数倍或者33ms的整数倍等。
可选地,偏移调整量Q为1/9ms(0.11ms),1/3ms(0.33ms),2/3ms(0.67ms),4/3ms(1.33ms),10/9ms(1.11ms),1/9ms的整数倍,1/3ms的整数倍,2/3ms的整数倍,4/3ms的整数倍或者10/9ms的整数倍等。
通过该方法能够使得DRX周期中的持续时段能够匹配于数据的到达周期,从而可以降低终端对PDCCH的漏检概率,提升终端对数据收发的性能。
结合第二方面,在第二方面的某些实施方式中,该方法还包括:基于第二DRX配置信息获得第二DRX周期对应的第二时隙偏移。上述基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、以及第二持续时段的时长,在第二DRX周期中的第二持续时段上监听PDCCH,包括:基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、第二时隙偏移、以及第二持续时段的时长,在第二DRX周期中的第二持续时段上监听PDCCH。
结合第二方面,在第二方面的某些实施方式中,上述基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、第二时隙偏移、以及第二持续时段的时长,在第二DRX周期中的第二持续时段上监听PDCCH,包括:基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、以及第二时隙偏移,获得第二DRX周期中的第二持续时段的起始时间,并基于该第二持续时段的起始时间以及该第二持续时段的时长,在第二DRX周期中的该第二持续时段上监听PDCCH。
可选地,上述第二DRX周期由正整数j标识,该第二DRX周期中的第二持续时段的起始子帧满足:
Figure PCTCN2022089271-appb-000005
或者
Figure PCTCN2022089271-appb-000006
或者
Figure PCTCN2022089271-appb-000007
或者
Figure PCTCN2022089271-appb-000008
其中,SF2表示该起始子帧的编号,SFN2表示该起始子帧所在的系统帧的编号,SF2和SFN2为大于等于0的整数。该第二DRX周期中第二持续时段的起始时间是基于该起始子帧和上述第二时隙偏移获得的。例如,该第二DRX周期中第二持续时段的起始时间与起始子帧SF2的起始时间之间存在上述第二时隙偏移。
通过上述实施方式可以让持续时段尽可能均匀地分布在DRX周期中,使得DRX周期中的持续时段能够匹配于周期到达的数据,从而可以降低终端对PDCCH的漏检概率,提升终端对数据收发的性能。
第三方面,本申请实施例提供一种装置,可以实现上述第一方面、第二方面、第一方面任一种可能的实施方式、或第二方面任一种可能的实施方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。该装置例如可以为终端,也可以为支持终端实现上述方法的芯片、芯片系统、或处理器等,还可以为能实现全部或部分终端功能的逻辑模块或软件。
第四方面,本申请实施例提供一种装置,包括:处理器,该处理器与存储器耦合,该存储器用于存储指令,当指令被处理器执行时,使得该装置实现上述第一方面、第二方面、第一方面任一种可能的实施方式、或第二方面任一种可能的实施方式中的方法。
第五方面,本申请实施例提供一种计算机可读存储介质,其上存储有指令,指令被执行时使得计算机执行上述第一方面、第二方面、第一方面任一种可能的实施方式、或第二方面任一种可能的实施方式中的方法。
第六方面,本申请实施例提供一种计算机程序产品,其包括计算机程序代码,计算机程序代码在计算机上运行时,使得计算机执行上述第一方面、第二方面、第一方面任一种可能的实施方式、或第二方面任一种可能的实施方式中的方法。
第七方面,本申请实施例提供一种芯片,包括:处理器,该处理器与存储器耦合,该存储器用于存储指令,当指令被处理器执行时,使得该芯片实现上述第一方面、第二方面、第一方面任一种可能的实施方式、或第二方面任一种可能的实施方式中的方法。
第八方面,本申请实施例提供一种系统,可以实现上述第一方面、第二方面、第一方面任一种可能的实施方式、或第二方面任一种可能的实施方式中的方法。该系统包括用于执行 上述方法的相应的单元或模块。该系统包括的单元或模块可以通过软件和/或硬件方式实现。该系统例如可以为终端,也可以为支持终端实现上述方法的芯片、芯片系统、或处理器等,还可以为能实现全部或部分终端功能的逻辑模块或软件。
附图说明
图1为本申请提供的实施例应用的通信系统的示意图;
图2-图5示出了本申请实施例适用的几种系统框架示意图;
图6示出了一种周期性数据的示意图;
图7和图8示出了几种DRX的示意图;
图9示出了周期性数据与DRX周期不匹配的示意图;
图10示出了本申请实施例提供的一种DRX配置方法的示意图;
图11示出了本申请实施例提供的一种DRX配置的示意图;
图12示出了周期性数据与持续时段匹配的示意图;
图13示出了本申请实施例提供的另一种DRX配置方法的示意图;
图14为本申请实施例提供的一种终端的结构示意图;
图15为本申请实施例提供的一种装置的结构示意图;
图16为本申请实施例提供的另一种装置的示意图。
具体实施方式
图1是本申请的实施例应用的通信系统的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网130,可选的,通信系统1000还可以包括互联网140。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个设备上,还可以是一个设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括中继设备和回传设备,在图1中未画出。
本申请实施例提供的方法及装置可用于各种通信系统,例如第四代(4th generation,4G)通信系统,4.5G通信系统,5G通信系统,5.5G通信系统,6G通信系统,多种通信系统融合的系统,或者未来演进的通信系统。例如长期演进(long term evolution,LTE)系统,新空口(new radio,NR)系统,无线保真(wireless-fidelity,WiFi)系统,以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的通信系统等,以及其他此类通信系统。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、6G移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。可以理解,本申请中的无线接入网设备的全部或部分功能也可以通过在 硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备为例进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IoT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
本申请中的终端还可以是VR终端、AR终端、或MR终端。VR终端、AR终端、和MR终端都可称为XR终端。XR终端例如可以是头戴式设备(例如头盔或眼镜),也可以是一体机,还可以是电视、显示器、汽车、车载设备、平板或智慧屏等。XR终端能够将XR数据呈现给用户,用户通过佩戴或使用XR终端能够体验多样化的XR业务。XR终端可以通过无线或有线的方式接入网络,例如通过WiFi、5G或其他系统接入网络。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的飞机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述终端的应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上;终端向终端发送边链路(sidelink)信号或边链路信息,边链路信息承载在边链路信道上。
XR技术具有多视角、交互性强等优点,能够为用户提供一种全新的体验,具有极大的应用价值和商业潜力。XR包含VR、AR和MR等技术,能够广泛应用于娱乐、游戏、医疗、广告、工业、在线教育、以及工程等诸多领域。VR技术主要是指对视觉和音频场景的渲染以尽可能地模拟现实世界中的视觉和音频对用户的感官刺激,VR技术中通常用户会佩戴XR终端(例如头戴式设备)进而向用户模拟视觉和/或听觉。VR技术还可以对用户进行动作跟踪, 从而及时更新模拟的视觉和/或听觉内容。AR技术主要是指在用户感知的现实环境中提供视觉和/或听觉的附加信息或人工生成内容,其中,用户对现实环境的获取可以是直接的(例如不进行感测、处理和渲染),也可以是间接的(例如通过传感器等方式进行传递),并进行进一步的增强处理。MR技术是将一些虚拟元素插入到物理场景中,目的是为用户提供一种这些元素是真实场景一部分的沉浸体验。
接收XR数据的终端一般对电量比较敏感,因此如何使得终端能够在更低的功耗下接收XR数据是一个亟待解决的问题。
本申请中提供了一种非连续接收(discontinuous reception,DRX)方法,在该方法中通过进行与XR数据周期匹配的DRX配置,能够使得终端在匹配XR数据接收的同时降低不必要的功耗,从而提升终端在接收XR数据过程中的续航能力。可以理解,本申请提供的方法并不限制其应用的数据业务类型,XR数据之外的数据业务类型也同样适用。
本申请提供的实施例适用于多种不同的场景。图2-图5示出了本申请实施例适用的几种系统框架示意图。
图2示出了一种本申请实施例适用的场景示意图。图2示意了一个系统200,包含服务器210、核心网和接入网220(可简称为传输网络220,例如LTE、5G或6G网络)、以及终端230。其中,服务器210可用于对XR的源数据进行编解码和渲染,传输网络220可用于对XR数据的传输,终端230通过对XR数据的处理为用户提供多样化的XR体验。可以理解,传输网络220与终端230之间还可以包含其他的装置,例如还可以包含其他的终端(例如手机、笔记本电脑、或车载终端等)和/或网络设备(例如中继设备、一体化接入回传(integrated access backhaul,IAB)设备、WiFi路由器、或WiFi接入点等),终端230借助其他的终端和/或网络设备从传输网络220获得XR数据。
图3示出了另一种本申请实施例适用的场景示意图。图3示意了一个系统300,包含终端320和其他终端310。其他终端310是终端320之外的终端。其他终端310可以向终端320传输XR数据。例如,其他终端310可将XR数据投屏至终端320。又例如,其他终端310和终端320为车载终端,车载终端之间可进行XR数据的交互。可以理解,其他终端310还可以与传输网络(例如LTE、5G或6G网络)相连,以获得来自传输网络的XR数据,或者向传输网络发送数据。
图4示出了另一种本申请实施例适用的场景示意图。图4示意了一个系统400,包含终端430、WiFi路由器或WiFi接入点420(可简称为WiFi装置420)、和其他终端410。其他终端410是终端430以外的终端。其他终端410可借助WiFi装置420向终端430传输XR数据。例如,其他终端410是手机设备,WiFi装置420是WiFi路由器、WiFi接入点或机顶盒,终端430是电视设备、智慧屏设备或电子平板设备,手机设备可通过WiFi路由器、WiFi接入点或机顶盒将XR数据投屏至电视设备、智慧屏设备或电子平板设备上呈现给用户。
图5示出了另一种本申请实施例适用的场景示意图。图5示意了一个系统500,包含服务器510、固网520、WiFi路由器或WiFi接入点530(可简称为WiFi装置530)、和终端540。服务器510可用于对XR的源数据进行编解码和渲染,并借助固网520和WiFi装置530向终端540传输XR数据。例如,固网520为运营商网络,WiFi装置530是WiFi路由器、WiFi接入点或机顶盒,服务器510借助运营商网络520和WiFi装置530将XR数据传输或投屏到终端540。
可以理解,图2-图5仅给出了本申请实施例可以适用的几种场景示意,并没有对本申请实施例的适用场景产生限定。
下面结合附图对本申请的技术方案进行说明。
为易于理解本申请中的实施例,首先在下表中对本申请所涉及的一些术语和数学符号作简要说明。
Figure PCTCN2022089271-appb-000009
可以理解的是,本申请表达式中的向上取整和向下取整,对于被取整的参数而言,如果被取整的参数本身就是整数,那么对该参数可以不进行向上或向下取整,或者可以对该整数参数进行向上取整,或者可以对该整数参数进行向下取整,其最终结果都相同。
另外为便于理解本申请的技术方案,首先对XR或者视频业务的特点以及DRX机制进行简要介绍。
对于XR或者视频业务数据,其通常具有一定的帧率和周期性。以图6为例,给出了帧率为60帧每秒(frame per second,FPS)的情况下,XR业务的画面帧在时间上的分布示意图。从图6中可以看出,在60FPS的情况下,每隔1000/60≈16.67ms会出现或到达一个画面帧。
其他可能的帧率还包括30FPS、90FPS以及120FPS。无线接入网设备可以通过多种不同的方式获得XR或视频业务数据的帧率。
例如,无线接入网设备可以通过与数据对应的服务质量(quality of service,QoS)流的配置信息,例如QoS模板(QoS profile),获得XR或视频业务数据的帧率。又例如,无线接入网设备可以通过检测QoS流中数据包的到达时间间隔来获得XR或视频业务数据的帧率。又例如,终端可以通过辅助信息,例如信元UEAssistanceInformation,将上行数据的帧率或者是与帧率有关的信息上报给无线接入网设备。
DRX机制可以降低终端的功耗,可以通过配置DRX周期的持续时段来实现DRX机制。以图7为例,在DRX周期中包括持续时段和睡眠时段。持续时段(on duration)也可以称为唤醒时段、激活时段、活动时段或开持续时段等,本申请对其名称不做限定。终端在持续时段中可以监听物理下行控制信道(physical downlink control channel,PDCCH)。睡眠时段也可以称为休眠时段、非激活时段、非活动时段或闭持续时段等,本申请对其名称不做限定。终端在睡眠时段不监听PDCCH,以降低功耗开销。
DRX的配置一般会考虑节能和延迟之间的平衡。设置较长的DRX周期有利于节省终端的功耗,但不利于对数据收发的快速响应。设置较短的DRX周期更有利于快速响应对数据的收发,但不利于终端功耗的节省。因此,可以根据实际需要,配置不同的DRX周期长度。以图8为例,可以为终端配置两个DRX周期,即DRX长周期和DRX短周期,DRX长周期的配置更益于终端的省电,DRX短周期的配置更益于终端对数据收发的快速响应。在某一时刻,终端可以依据需要,采用两种DRX配置中的一种。可以理解,本申请中提到的DRX周期可以是DRX长周期,也可以是DRX短周期,本申请对此不做限定。
DRX周期的周期时长一般为整数毫秒ms,然而,针对XR或者视频业务数据,由于其到达的周期一般不是整数毫秒,因此会导致DRX周期的周期时长与XR数据的到达周期不匹配的问题。
以图9为例进行说明。图9中以XR数据的帧率为60FPS(周期为16.67ms)、DRX周期的周期时长为整数16ms为例。从图9中可以看出,由于16.67ms和16ms之间存在差异,因 此XR数据到达的时刻可能无法与DRX周期中的持续时段匹配上,导致终端漏检XR数据的PDCCH,从而使得数据收发的性能下降。
本申请中提供了几种DRX配置方法,通过这些方法可以在不引入非整数毫秒的DRX周期时长的前提下解决上述DRX周期与XR数据到达周期不匹配的问题。可以理解,本申请提供的方法并不限制其应用的数据业务类型,XR数据之外的数据业务类型也同样适用。
图10为本申请实施例提供的一种DRX配置方法1000的交互示意图。图10中以无线接入网设备和终端作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图10中的无线接入网设备也可以是支持该无线接入网设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分无线接入网设备功能的逻辑模块或软件;图10中的终端也可以是支持该终端实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端功能的逻辑模块或软件。如图10所示,该实施例的方法1000可包括1010部分、1020部分和1030部分。
1010部分:无线接入网设备向终端发送第一DRX配置信息,终端获得该第一DRX配置信息。可以理解,该第一DRX配置信息用于DRX的配置。该第一DRX配置信息中包含第一DRX周期的第一周期时长T1的信息、第一DRX周期中第一持续时段的数量N1的信息、以及第一DRX周期中第一持续时段的时长的信息,其中T1>0,N1>0。
可选地,该第一DRX配置信息由无线资源控制(radio resource control,RRC)消息承载。可以理解,本申请中RRC消息也可以称为RRC信令或RRC信息,本申请对此不做限定。
可选地,第一周期时长T1为25ms、50ms、100ms、25ms的整数倍、50ms的整数倍、或者100ms的整数倍等。
可选地,第一持续时段的数量N1为3的整数倍。例如,N1可以为3、6或9等。
1020部分:终端基于第一DRX配置信息获得第一DRX周期的第一周期时长T1以及第一DRX周期中第一持续时段的数量N1和时长。
以图11为例说明上述第一DRX配置信息包含的几种DRX配置参数。图11中,在第一DRX周期的第一周期时长T1内,有三个第一持续时段,即第一DRX周期中第一持续时段的数量N1=3。示例性地,第一DRX周期中的N1个第一持续时段可尽可能均匀地分布在第一周期时长T1内。第一DRX周期中每个第一持续时段的时长可以相同,也可以不同,本申请对此不做限定。此外,图11中也示意出了第一持续时段的起始时间。
1030部分:终端基于第一周期时长T1、以及第一持续时段的数量N1和时长,在第一DRX周期中的一个或多个第一持续时段上监听PDCCH。
通过方法1000能够在不引入非整数毫秒的DRX周期时长的前提下,使得DRX周期中的持续时段能够匹配于XR数据的到达周期,从而可以降低终端对PDCCH的漏检概率,提升终端对数据收发的性能。
以图12为例,来说明方法1000是如何解决DRX周期中的持续时段与XR数据的到达周期不匹配的问题的。图12中,以帧率为60FPS的业务的画面帧为例,每隔1000/60≈16.67ms会出现或到达一个画面帧。虽然一个帧间隔16.67ms不是整数,但是连续三个帧间隔可以形成一个整数50ms。因此,可以配置第一DRX周期的第一周期时长T1为50ms,并配置第一DRX周期中第一持续时段的数量N1为3。这三个第一持续时段在第一周期时长50ms内尽可能均匀分布,例如为图12中所示的,三个第一持续时段间隔分别为16ms、17ms和17ms。这样可以使得DRX周期中的持续时段能够匹配于XR数据的到达周期。也可以配置第一DRX周期的第一周期时长T1为G1*50ms,并配置第一DRX周期中第一持续时段的数量N1为G1*3, 其中G1为大于等于1的整数。
在其他帧率的场景下,本申请提供的上述方法1000也可以使得DRX周期中的持续时段能够匹配于XR数据的到达周期。
例如,以帧率为30FPS的业务的画面帧为例,每隔1000/30≈33.33ms会出现或到达一个画面帧。虽然一个帧间隔33.33ms不是整数,但是连续三个帧间隔可以形成一个整数100ms。因此,可以配置第一DRX周期的第一周期时长T1为100ms,并配置第一DRX周期中第一持续时段的数量N1为3。也可以配置第一DRX周期的第一周期时长T1为G2*100ms,并配置第一DRX周期中第一持续时段的数量N1为G2*3,其中G2为大于等于1的整数。
又例如,以帧率为90FPS的业务的画面帧为例,每隔1000/90≈11.11ms会出现或到达一个画面帧。虽然一个帧间隔11.11ms不是整数,但是连续九个帧间隔可以形成一个整数100ms。因此,可以配置第一DRX周期的第一周期时长T1为100ms,并配置第一DRX周期中第一持续时段的数量N1为9。也可以配置第一DRX周期的第一周期时长T1为G3*100ms,并配置第一DRX周期中第一持续时段的数量N1为G3*9,其中G3为大于等于1的整数。
例如,以帧率为120FPS的业务的画面帧为例,每隔1000/120≈8.33ms会出现或到达一个画面帧。虽然一个帧间隔8.33ms不是整数,但是连续三个帧间隔可以形成一个整数25ms。因此,可以配置第一DRX周期的第一周期时长T1为25ms,并配置第一DRX周期中第一持续时段的数量N1为3。也可以配置第一DRX周期的第一周期时长T1为G4*25ms,并配置第一DRX周期中第一持续时段的数量N1为G4*3,其中G4为大于等于1的整数。
下表1中示意性的给出了几种帧率下T1和N1的配置,其中,G1、G2、G3和G4为大于或等于1的整数。
表1
帧率 T1 N1
30FPS G2*100ms G2*3
60FPS G1*50ms G1*3
90FPS G3*100ms G3*9
120FPS G4*25ms G4*3
在方法1000中,可选地,还可以包括:终端基于第一DRX配置信息获得第一DRX周期对应的第一起始偏移A1和第一时隙偏移,其中A1≥0。此时,在1030部分的一种可能的实施方式中,终端基于第一周期时长T1、第一持续时段的数量N1和时长、以及第一起始偏移A1和第一时隙偏移,在第一DRX周期中的一个或多个第一持续时段上监听PDCCH。
在终端基于第一周期时长T1、第一持续时段的数量N1和时长、以及第一起始偏移A1和第一时隙偏移,在第一DRX周期中的一个或多个第一持续时段上监听PDCCH的一种可能的实施方式中,终端基于第一周期时长T1、第一持续时段的数量N1、以及第一起始偏移A1和第一时隙偏移,获得第一DRX周期中的一个或多个第一持续时段的起始时间,并基于一个或多个第一持续时段的起始时间以及第一持续时段的时长,在第一DRX周期中的一个或多个第一持续时段上监听PDCCH。
示例性地,上述第一起始偏移A1可以理解为第一DRX周期中的第一个持续时段的起始子帧相对第一参考点的偏移。该第一参考点可以是系统帧,子帧,时隙或者符号。该第一起始偏移A1的单位可以是ms,也可以是子帧,还可以是时隙或者以小于时隙的粒度(例如一个或多个符号)。该第一起始偏移A1的取值为大于或等于0的整数。可以理解,当第一起始 偏移A1的取值为0时,也可以理解为第一DRX周期中的第一个持续时段的起始子帧相对上述第一参考点没有偏移。第一起始偏移也可以称为第一起始子帧偏移或者第一子帧偏移,本申请对第一起始偏移的名称不做限定。
示例性地,上述第一时隙偏移可以理解为第一DRX周期中一个持续时段的起始时间相对于该持续时段的起始子帧的起始时间的偏移。该第一时隙偏移也可以被理解为第一DRX周期中一个持续时段在该持续时段的起始子帧内的偏移。该第一时隙偏移可以以一个或多个时隙为单位,也可以以小于时隙的粒度(例如一个或多个符号)为单位,还可以是毫秒或其他的时间单位。该第一时隙偏移的取值为大于或等于0的整数。可以理解,当第一时隙偏移的取值为0时,也可以理解为第一DRX周期中一个持续时段的起始时间相对于该持续时段的起始子帧的起始时间没有偏移。第一时隙偏移也可以称为第一子帧内偏移或者第一子帧内时隙偏移或者第一起始子帧内时隙偏移,本申请对第一时隙偏移的名称不做限定。
上述第一DRX周期中第一持续时段的数量为N1,其中,可选地,第一DRX周期中的第i个第一持续时段的起始子帧SF1满足:
Figure PCTCN2022089271-appb-000010
或者
Figure PCTCN2022089271-appb-000011
或者
Figure PCTCN2022089271-appb-000012
或者
Figure PCTCN2022089271-appb-000013
其中,SF1表示该起始子帧的编号,SFN1表示该起始子帧所在的系统帧的编号,SF1和SFN1为大于等于0的整数,1≤i≤N1。第一DRX周期中的第i个第一持续时段的起始时间是基于该起始子帧和上述第一时隙偏移获得的。例如,第一DRX周期中的第i个第一持续时段的起始时间与起始子帧SF1的起始时间之间存在上述第一时隙偏移。
可以理解的是,满足[(SFN1 ref×10)+SF1 ref]modulo(T1)=0的子帧SF1 ref可以理解为上述的第一参考点。其中SF1 ref表示该子帧的编号,SFN1 ref表示该子帧所在的系统帧的编号,SF1 ref和SFN1 ref为大于等于0的整数。
本申请中,一个系统帧包含若干个子帧,一个子帧包含一个或多个时隙,一个时隙包含一个或多个符号。
通过该实施方式可以让持续时段尽可能均匀地分布在DRX周期中,使得DRX周期中的持续时段能够匹配于周期到达的数据(例如XR数据),从而可以降低终端对PDCCH的漏检概率,提升终端对数据收发的性能。
下面示例性的给出一种配置参数的信元实现形式,如下表2所示。
表2
Figure PCTCN2022089271-appb-000014
Figure PCTCN2022089271-appb-000015
表2中,信元DRX-Config可理解为第一DRX配置信息,其中包含用于DRX配置的信息。信元drx-onDurationTimer可理解为第一DRX周期中第一持续时段的时长的信息。其中的subMilliSeconds取值范围为整数1至31,表示1/32ms的整倍数。即当subMilliSeconds取值为1时,drx-onDurationTimer为1/32ms,当subMilliSeconds取值为2时,drx-onDurationTimer为2/32ms,以此类推。milliSeconds的取值范围包含一个集合,其中ms1表示drx-onDurationTimer为1ms,ms2表示drx-onDurationTimer为2ms,以此类推。spare1~spare8表示8个预留值,暂不使用,用于后续版本的扩展。drx-onDurationTimer的取值是subMilliSeconds或者milliSeconds中的一个。
信元drx-LongCycleStartOffset用来配置DRX长周期,其中包含两部分内容。一部分是第一DRX周期的第一周期时长T1的信息:ms10、ms20…ms10240,分别表示第一周期时长T1为10ms、20ms…或10240ms。另一部分是第一起始偏移A1的信息:INTEGER(0..9)、INTEGER(0..19)…INTEGER(0..10239),分别表示在第一周期时长T1为10ms、20ms…或10240ms时第一起始偏移A1可能的取值。
信元drx-SlotOffset可理解为第一时隙偏移的信息,第一时隙偏移可能的取值例如可以为表2中示意的0至31。
信元drx-OnDurationNumber可理解为第一DRX周期中第一持续时段的数量N1的信息,N1可能的取值例如可以为表2中示意的1至16。
在另一种实施方式中,可以为第一DRX周期中的每一个第一持续时段分别配置起始子帧的偏移。例如,可以在表2中新增一个drx-OnDurationOffset信元,用于配置第一DRX周期中每个第一持续时段的起始子帧的偏移。这种配置方式能够更加灵活的调整一个DRX周期中持续时段的位置。
图13为本申请实施例提供的另一种DRX配置方法1300的交互示意图。图13中以无线 接入网设备和终端作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图13中的无线接入网设备也可以是支持该无线接入网设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分无线接入网设备功能的逻辑模块或软件;图13中的终端也可以是支持该终端实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端功能的逻辑模块或软件。如图13所示,该实施例的方法1300可包括1310部分、1320部分和1330部分。
1310部分:无线接入网设备向终端发送第二DRX配置信息,终端获得该第二DRX配置信息。可以理解,该第二DRX配置信息用于DRX的配置。该第二DRX配置信息中包含第二DRX周期的第二周期时长T2的信息、第二DRX周期对应的第二起始偏移A2的信息、第二DRX周期对应的偏移调整量Q的信息、以及第二DRX周期中第二持续时段的时长信息,其中T2>0,A2≥0,Q≥0。
可选地,该第二DRX配置信息由RRC消息承载。
可选地,第二周期时长T2为8ms,10ms,11ms,16ms,32ms,33ms,8ms的整数倍,10ms的整数倍,11ms的整数倍,16ms的整数倍,32ms的整数倍或者33ms的整数倍等。
示例性地,上述第二起始偏移A2可以理解为第二DRX周期的起始子帧相对第二参考点的偏移。该第二参考点可以是系统帧,子帧,时隙或者符号。该第二起始偏移A2的单位可以是ms,也可以是子帧,还可以是时隙或者以小于时隙的粒度(例如一个或多个符号)。该第二起始偏移A2的取值为大于或等于0的整数。可以理解,当第二起始偏移A2的取值为0时,也可以理解为第二DRX周期的起始子帧相对上述第二参考点没有偏移。第二起始偏移也可以称为第二起始子帧偏移或者第二子帧偏移,本申请对第二起始偏移的名称不做限定。
示例性地,上述第二DRX周期对应的偏移调整量Q可以理解为第二DRX周期中第二持续时段的起始时间相对于该第二DRX周期的起始时间的参考偏移量。例如,该偏移调整量Q可以理解为第二DRX周期中第二持续时段的起始时间相对于该第二DRX周期中第一个子帧的起始时间的参考偏移量。该偏移调整量Q的单位可以是ms,也可以是子帧,还可以是时隙或者以小于时隙的粒度(例如一个或多个符号)。该偏移调整量Q的取值为大于或等于0的实数。可以理解,当偏移调整量Q的取值为0时,也可以理解为第二DRX周期中第二持续时段相对于第二DRX周期中第一个子帧没有偏移。该偏移调整量也可以称为起始子帧偏移调整量或者子帧偏移调整量,本申请对偏移调整量的名称不做限定。
可选地,偏移调整量Q为1/9ms(0.11ms),1/3ms(0.33ms),2/3ms(0.67ms),4/3ms(1.33ms),10/9ms(1.11ms),1/9ms的整数倍,1/3ms的整数倍,2/3ms的整数倍,4/3ms的整数倍或者10/9ms的整数倍等。
1320部分:终端基于第二DRX配置信息获得第二DRX周期的第二周期时长T2、第二DRX周期对应的第二起始偏移A2和偏移调整量Q、以及第二DRX周期中第二持续时段的时长。
1330部分:终端基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、以及第二持续时段的时长,在第二DRX周期中的第二持续时段上监听PDCCH。
通过方法1300能够使得DRX周期中的持续时段能够匹配于XR数据的到达周期,从而可以降低终端对PDCCH的漏检概率,提升终端对数据收发的性能。
在方法1300中,可选地,还可以包括:终端基于第二DRX配置信息获得第二DRX周期对应的第二时隙偏移。此时,在1330部分的一种可能的实施方式中,终端基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、第二时隙偏移、以及第二持续时段的时长,在第 二DRX周期中的第二持续时段上监听PDCCH。
在终端基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、第二时隙偏移、以及第二持续时段的时长,在第二DRX周期中的第二持续时段上监听PDCCH的一种可能的实施方式中,终端基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、以及第二时隙偏移,获得第二DRX周期中第二持续时段的起始时间,并基于第二持续时段的起始时间以及第二持续时段的时长,在第二持续时段上监听PDCCH。
示例性地,上述第二时隙偏移可以理解为第二DRX周期中第二持续时段的起始时间相对于该第二持续时段的起始子帧的起始时间的偏移。该第二时隙偏移也可以被理解为第而DRX周期中第二持续时段在该第二持续时段的起始子帧内的偏移。该第二时隙偏移可以以一个或多个时隙为单位,也可以以小于时隙的粒度(例如一个或多个符号)为单位,还可以是毫秒或其他的时间单位。该第二时隙偏移的取值为大于或等于0的整数。可以理解,当第二时隙偏移的取值为0时,也可以理解为第二DRX周期中第二持续时段的起始时间相对于该第二持续时段的起始子帧的起始时间没有偏移。第二时隙偏移也可以称为第二子帧内偏移或者第二子帧内时隙偏移或者第二起始子帧内时隙偏移,本申请对第二时隙偏移的名称不做限定。
在方法1300中,可选地,第二DRX周期由正整数j标识,该第二DRX周期中的第二持续时段的起始子帧满足:
Figure PCTCN2022089271-appb-000016
或者
Figure PCTCN2022089271-appb-000017
或者
Figure PCTCN2022089271-appb-000018
或者
Figure PCTCN2022089271-appb-000019
其中,SF2表示该起始子帧的编号,SFN2表示该起始子帧所在的系统帧的编号,SF2和SFN2为大于等于0的整数。该第二DRX周期中第二持续时段的起始时间是基于该起始子帧和上述第二时隙偏移获得的。例如,该第二DRX周期中第二持续时段的起始时间与起始子帧SF2的起始时间之间存在上述第二时隙偏移。
可以理解的是,满足[(SFN2 ref×10)+SF2 ref]modulo(T2)=0的子帧SF2 ref可以理解为上述的第二参考点。其中SF2 ref表示该子帧的编号,SFN2 ref表示该子帧所在的系统帧的编号,SF2 ref和SFN2 ref为大于等于0的整数。
通过上述实施方式可以让持续时段尽可能均匀地分布在DRX周期中,使得DRX周期中的持续时段能够匹配于周期到达的数据(例如XR数据),从而可以降低终端对PDCCH的漏检概率,提升终端对数据收发的性能。
针对不同的帧率,通过上述实施方式,并为DRX配置合适的参数,可以让DRX周期的持续时段尽可能均匀地分布在DRX周期中,使得DRX周期中的持续时段能够匹配于周期到达的数据(例如XR数据)。下面示例性的给出几种帧率下可能的配置方式。
例如,以帧率为60FPS的业务的画面帧为例,每隔1000/60≈16.67ms会出现或到达一个画面帧,一个帧间隔16.67ms不是整数。一种可能的配置方式是,因为小于16.67的最大整数为16,因此可以配置第二DRX周期的第二周期时长T2为16ms;由于帧间隔与第二周期时长T2相差2/3ms(0.67ms),可以配置上述偏移调整量Q为2/3ms(0.67ms)。
又例如,以帧率为30FPS的业务的画面帧为例,每隔1000/30≈33.33ms会出现或到达一 个画面帧,一个帧间隔33.33ms不是整数。一种可能的配置方式是,因为小于33.33的最大整数为33,因此可以配置第二DRX周期的第二周期时长T2为33ms;由于帧间隔与第二周期时长T2相差1/3ms(0.33ms),可以配置上述偏移调整量Q为1/3ms(0.33ms)。另一种可能的配置方式是,可以配置第二DRX周期的第二周期时长T2为32ms(即小于33.33的最大整数再减1),配置上述偏移调整量Q为4/3ms(1.33ms)。
又例如,以帧率为90FPS的业务的画面帧为例,每隔1000/90≈11.11ms会出现或到达一个画面帧,一个帧间隔11.11ms不是整数。一种可能的配置方式是,因为小于11.11的最大整数为11,因此可以配置第二DRX周期的第二周期时长T2为11ms;由于帧间隔与第二周期时长T2相差1/9ms(0.11ms),可以配置上述偏移调整量Q为1/9ms(0.11ms)。另一种可能的配置方式是,可以配置第二DRX周期的第二周期时长T2为10ms(即小于11.11的最大整数再减1),配置上述偏移调整量Q为10/9ms(1.11ms)。
又例如,以帧率为120FPS的业务的画面帧为例,每隔1000/120≈8.33ms会出现或到达一个画面帧,一个帧间隔8.33ms不是整数。一种可能的配置方式是,因为小于8.33的最大整数为8,因此可以配置第二DRX周期的第二周期时长T2为8ms;由于帧间隔与第二周期时长T2相差1/3ms(0.33ms),可以配置上述偏移调整量Q为1/3ms(0.33ms)。
下表3中示意性的给出了几种帧率下T2和Q的配置。
表3
Figure PCTCN2022089271-appb-000020
下面示例性的给出一种配置参数的信元实现形式,如下表4所示。
表4
Figure PCTCN2022089271-appb-000021
Figure PCTCN2022089271-appb-000022
表4中,信元DRX-Config可理解为第二DRX配置信息,其中包含用于DRX配置的信息。信元drx-onDurationTimer可理解为第二DRX周期中第二持续时段的时长信息,其中参数的含义可参考表2中的介绍。
信元drx-LongCycleStartOffset用来配置DRX长周期,其中包含两部分内容。一部分是第二DRX周期的第二周期时长T2的信息:ms8、ms10…ms10240,分别表示第二周期时长T2为8ms、10ms…或10240ms。另一部分是第二起始偏移A2的信息:INTEGER(0..7)、INTEGER(0..9)…INTEGER(0..10239),分别表示在第二周期时长T2为8ms、10ms…或10240ms时第二起始偏移A2可能的取值。
信元shortDRX用来配置DRX短周期,其中包含信元drx-ShortCycle和drx-ShortCycleTimer。信元drx-ShortCycle用于配置DRX短周期的周期时长,其也可作为第二DRX周期的第二周期时长T2的信息。信元drx-ShortCycleTimer用于配置DRX短周期的个数,可能的取值例如可以为表4中示意的1至16。
信元drx-SlotOffset可理解为第二时隙偏移的信息,第二时隙偏移可能的取值例如可以为表4中示意的0至31。
信元drx-SubframeOffset可理解为上述偏移调整量Q的信息,Q可能的取值例如可以为表4中示意的1/9ms,1/3ms,2/3ms,4/3ms或10/9ms。
相应于上述方法实施例给出的方法,本申请实施例还提供了相应的装置,包括用于执行上述实施例相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
图14提供了一种终端的结构示意图。该终端可适用于图1、图2、图3、图4或图5所示出的场景中。该终端或该终端中的部件可以执行前述的方法1000以及各种可能的实施方式,也可以执行前述的方法1300以及各种可能的实施方式。为了便于说明,图14仅示出了终端的主要部件。如图14所示,终端1400包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行 软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图14仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图14中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端1400的收发单元1411,将具有处理功能的处理器视为终端1400的处理单元1412。如图14所示,终端1400包括收发单元1411和处理单元1412。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1411中用于实现接收功能的器件视为接收单元,将收发单元1411中用于实现发送功能的器件视为发送单元,即收发单元1411包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
如图15所示,本申请又一实施例提供了一种装置1500。该装置可以是终端,也可以是终端的部件(例如,集成电路,芯片等等)。或者,该装置可以是无线接入网设备,也可以是网络设备的部件(例如,集成电路,芯片等等),还可以是能实现全部或部分无线接入网设备功能的逻辑模块或软件。该装置也可以是其他通信模块。例如,该装置1500可以实现方法1000或方法1300中无线接入网设备的功能,或者,该装置1500可以实现方法1000或方法1300中终端的功能。该装置1500可以包括:处理模块1502(或称为处理单元)。可选的,还可以包括接口模块1501(或称为接口单元)和存储模块1503(或称为存储单元)。
在一种可能的设计中,如图15中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、 存储器、收发器可以单独设置,也可以集成。
所述装置具备实现本申请实施例描述的终端的功能,比如,所述装置包括终端执行本申请实施例描述的终端涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。或者,所述装置具备实现本申请实施例描述的无线接入网设备的功能,比如,所述装置包括无线接入网设备执行本申请实施例描述的无线接入网设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
在一种可能的设计中,装置1500包括:处理模块1502和接口模块1501。接口模块1501用于获得第一DRX配置信息。处理模块1502用于基于第一DRX配置信息获得第一DRX周期的第一周期时长T1以及第一DRX周期中第一持续时段的数量N1和时长,其中T1>0,N1>0。处理模块1502还用于基于第一周期时长T1、以及第一持续时段的数量N1和时长,控制该装置1500在第一DRX周期中的一个或多个第一持续时段上监听PDCCH。
可选地,该第一DRX配置信息由无线资源控制RRC消息承载。
可选地,第一周期时长T1为25ms、50ms、100ms、25ms的整数倍、50ms的整数倍、或者100ms的整数倍等。
可选地,第一持续时段的数量N1为3的整数倍。例如,N1可以为3、6或9等。
在装置1500某些可能的实施方式中,处理模块1502还用于基于第一DRX配置信息获得第一DRX周期对应的第一起始偏移A1和第一时隙偏移,其中A1≥0。上述处理模块1502用于基于第一周期时长T1、以及第一持续时段的数量N1和时长,控制装置1500在第一DRX周期中的一个或多个第一持续时段上监听PDCCH,包括:处理模块1502用于基于第一周期时长T1、第一持续时段的数量N1和时长、以及第一起始偏移A1和第一时隙偏移,控制装置1500在第一DRX周期中的一个或多个第一持续时段上监听PDCCH。
在装置1500某些可能的实施方式中,上述处理模块1502用于基于第一周期时长T1、第一持续时段的数量N1和时长、以及第一起始偏移A1和第一时隙偏移,控制装置1500在第一DRX周期中的一个或多个第一持续时段上监听PDCCH,包括:处理模块1502用于基于第一周期时长T1、第一持续时段的数量N1、以及第一起始偏移A1和第一时隙偏移,获得第一DRX周期中的一个或多个第一持续时段的起始时间,并基于该一个或多个第一持续时段的起始时间以及第一持续时段的时长,控制装置1500在第一DRX周期中的一个或多个第一持续时段上监听PDCCH。
可选地,上述第一DRX周期中的第i个第一持续时段的起始子帧满足:
Figure PCTCN2022089271-appb-000023
或者
Figure PCTCN2022089271-appb-000024
或者
Figure PCTCN2022089271-appb-000025
或者
Figure PCTCN2022089271-appb-000026
其中,SF1表示该起始子帧的编号,SFN1表示该起始子帧所在的系统帧的编号,SF1和 SFN1为大于等于0的整数,1≤i≤N1。第一DRX周期中的第i个第一持续时段的起始时间是基于该起始子帧和上述第一时隙偏移获得的。例如,第一DRX周期中的第i个第一持续时段的起始时间与起始子帧SF1的起始时间之间存在上述第一时隙偏移。
在另一种可能的设计中,装置1500包括:处理模块1502和接口模块1501。接口模块1501用于获得第二非连续接收DRX配置信息。处理模块1502用于基于第二DRX配置信息获得第二DRX周期的第二周期时长T2、第二DRX周期对应的第二起始偏移A2和偏移调整量Q、以及第二DRX周期中第二持续时段的时长,其中T2>0,A2≥0,Q≥0。处理模块1502还用于基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、以及第二持续时段的时长,控制装置1500在第二DRX周期中的第二持续时段上监听PDCCH。
可选地,该第二DRX配置信息由RRC消息承载。
可选地,第二周期时长T2为8ms,10ms,11ms,16ms,32ms,33ms,8ms的整数倍,10ms的整数倍,11ms的整数倍,16ms的整数倍,32ms的整数倍或者33ms的整数倍等。
可选地,偏移调整量Q为1/9ms(0.11ms),1/3ms(0.33ms),2/3ms(0.67ms),4/3ms(1.33ms),10/9ms(1.11ms),1/9ms的整数倍,1/3ms的整数倍,2/3ms的整数倍,4/3ms的整数倍或者10/9ms的整数倍等。
在装置1500某些可能的实施方式中,处理模块1502还用于基于第二DRX配置信息获得第二DRX周期对应的第二时隙偏移。上述处理模块1502用于基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、以及第二持续时段的时长,控制装置1500在第二DRX周期中的第二持续时段上监听PDCCH,包括:处理模块1502用于基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、第二时隙偏移、以及第二持续时段的时长,控制装置1500在第二DRX周期中的第二持续时段上监听PDCCH。
在装置1500某些可能的实施方式中,上述处理模块1502用于基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、第二时隙偏移、以及第二持续时段的时长,控制装置1500在第二DRX周期中的第二持续时段上监听PDCCH,包括:处理模块1502用于基于第二周期时长T2、第二起始偏移A2和偏移调整量Q、以及第二时隙偏移,获得第二DRX周期中的第二持续时段的起始时间,并基于第二持续时段的起始时间以及第二持续时段的时长,控制装置1500在第二DRX周期中的第二持续时段上监听PDCCH。
可选地,上述第二DRX周期由正整数j标识,该第二DRX周期中的第二持续时段的起始子帧满足:
Figure PCTCN2022089271-appb-000027
或者
Figure PCTCN2022089271-appb-000028
或者
Figure PCTCN2022089271-appb-000029
或者
Figure PCTCN2022089271-appb-000030
其中,SF2表示该起始子帧的编号,SFN2表示该起始子帧所在的系统帧的编号,SF2和SFN2为大于等于0的整数。该第二DRX周期中第二持续时段的起始时间是基于该起始子帧和上述第二时隙偏移获得的。例如,该第二DRX周期中第二持续时段的起始时间与起始子帧SF2的起始时间之间存在上述第二时隙偏移。
可以理解的是,上述装置1500以及各种可能的实施方式所对应的有益效果,可参考前述 方法实施例中的描述,此处不再赘述。
可选地,上述装置1500还可以包括存储模块1503,用于存储数据或者指令(也可以称为代码或者程序),上述其他模块可以和存储模块交互或者耦合,以实现对应的方法或者功能。例如,处理模块1502可以读取存储模块1503中的数据或者指令,使得装置1500实现上述实施例中的方法。
在一个例子中,上述装置中的模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的模块可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
参考图16,为本申请实施例提供的一种装置示意图,可用于实现上述方法1000以及各种可能的实施方式,也可用于实现上述方法1300以及各种可能的实施方式。如图16所示,该装置包括:处理器1610和接口1630,处理器1610与接口1630耦合。接口1630用于实现与其他模块或设备进行通信。接口1630可以为收发器或输入输出接口。接口1630例如可以是接口电路。可选地,该装置还包括存储器1620,用于存储处理器1610执行的指令或存储处理器1610运行指令所需要的输入数据或存储处理器1610运行指令后产生的数据。
上述方法1000、方法1300以及各种可能的实施方式可以通过处理器1610调用存储器1620中存储的程序或指令来实现。存储器1620可以在该装置的内部,也可以在该装置的外部,本申请对此不做限定。
可选地,图15中的接口模块1501和处理模块1502的功能/实现过程可以通过图16所示的装置中的处理器1610来实现。或者,图15中的处理模块1502的功能/实现过程可以通过图16所示的装置中的处理器1610来实现,图15中的接口模块1501的功能/实现过程可以通过图16中所示的装置中的接口1630来实现,示例性的,接口模块1501的功能/实现过程可以通过处理器调用存储器中的程序指令以驱动接口1630来实现。
当上述装置为应用于终端的芯片时,该终端的芯片实现上述方法实施例中终端的功能。该芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是来自其他终端或无线接入网设备的;或者,该芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给其他终端或无线接入网设备的。
当上述装置为应用于无线接入网设备的芯片时,该芯片实现上述方法实施例中无线接入网设备的功能。该芯片从无线接入网设备中的其它模块(如射频模块或天线)接收信息,该信息是来自其他无线接入网设备或终端的;或者,该芯片向无线接入网设备中的其它模块(如射频模块或天线)发送信息,该信息是无线接入网设备发送给其他无线接入网设备或终端的。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可 以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的方法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、寄存器、硬盘、可移动磁盘或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    获得第一非连续接收DRX配置信息;
    基于所述第一DRX配置信息获得第一DRX周期的第一周期时长T1以及所述第一DRX周期中第一持续时段的数量N1和时长,其中T1>0,N1>0;
    基于所述第一周期时长T1、以及所述第一持续时段的数量N1和时长,在所述第一DRX周期中的一个或多个所述第一持续时段上监听物理下行控制信道PDCCH。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于所述第一DRX配置信息获得所述第一DRX周期对应的第一起始偏移A1和第一时隙偏移,其中A1≥0;
    所述基于所述第一周期时长T1、以及所述第一持续时段的数量N1和时长,在所述第一DRX周期中的所述一个或多个第一持续时段上监听所述PDCCH,包括:
    基于所述第一周期时长T1、所述第一持续时段的数量N1和时长、以及所述第一起始偏移A1和所述第一时隙偏移,在所述第一DRX周期中的所述一个或多个第一持续时段上监听所述PDCCH。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述第一周期时长T1、所述第一持续时段的数量N1和时长、以及所述第一起始偏移A1和所述第一时隙偏移,在所述第一DRX周期中的所述一个或多个第一持续时段上监听所述PDCCH,包括:
    基于所述第一周期时长T1、所述第一持续时段的数量N1、以及所述第一起始偏移A1和所述第一时隙偏移,获得所述第一DRX周期中的所述一个或多个第一持续时段的起始时间;以及
    基于所述一个或多个第一持续时段的起始时间以及所述第一持续时段的时长,在所述第一DRX周期中的所述一个或多个第一持续时段上监听所述PDCCH。
  4. 根据权利要求3所述的方法,其特征在于,所述第一DRX周期中的第i个第一持续时段的起始子帧满足:
    Figure PCTCN2022089271-appb-100001
    其中,SF1表示所述起始子帧的编号,SFN1表示所述起始子帧所在的系统帧的编号,SF1和SFN1为大于等于0的整数,1≤i≤N1,mod表示取模,
    Figure PCTCN2022089271-appb-100002
    表示下取整;
    所述第一DRX周期中的所述第i个第一持续时段的起始时间是基于所述起始子帧和所述第一时隙偏移获得的。
  5. 根据权利要求3所述的方法,其特征在于,所述第一DRX周期中的第i个第一持续时段的起始子帧满足:
    Figure PCTCN2022089271-appb-100003
    其中,SF1表示所述起始子帧的编号,SFN1表示所述起始子帧所在的系统帧的编号,SF1和SFN1为大于等于0的整数,1≤i≤N1,mod表示取模,
    Figure PCTCN2022089271-appb-100004
    表示下取整;
    所述第一DRX周期中的所述第i个第一持续时段的起始时间是基于所述起始子帧和所述第一时隙偏移获得的。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第一周期时长T1为25毫秒ms,50ms或100ms。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,N1为3的整数倍。
  8. 一种通信方法,其特征在于,包括:
    获得第二非连续接收DRX配置信息;
    基于所述第二DRX配置信息获得第二DRX周期的第二周期时长T2、所述第二DRX周期对应的第二起始偏移A2和偏移调整量Q、以及所述第二DRX周期中第二持续时段的时长,其中T2>0,A2≥0,Q≥0;
    基于所述第二周期时长T2、所述第二起始偏移A2和所述偏移调整量Q、以及所述第二持续时段的时长,在所述第二DRX周期中的所述第二持续时段上监听物理下行控制信道PDCCH。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    基于所述第二DRX配置信息获得所述第二DRX周期对应的第二时隙偏移;
    所述基于所述第二周期时长T2、所述第二起始偏移A2和所述偏移调整量Q、以及所述第二持续时段的时长,在所述第二DRX周期中的所述第二持续时段上监听所述PDCCH,包括:
    基于所述第二周期时长T2、所述第二起始偏移A2和所述偏移调整量Q、所述第二时隙偏移、以及所述第二持续时段的时长,在所述第二DRX周期中的所述第二持续时段上监听所述PDCCH。
  10. 根据权利要求9所述的方法,其特征在于,所述基于所述第二周期时长T2、所述第二起始偏移A2和所述偏移调整量Q、所述第二时隙偏移、以及所述第二持续时段的时长,在所述第二DRX周期中的所述第二持续时段上监听所述PDCCH,包括:
    基于所述第二周期时长T2、所述第二起始偏移A2和所述偏移调整量Q、以及所述第二时隙偏移,获得所述第二DRX周期中的所述第二持续时段的起始时间;以及
    基于所述第二持续时段的起始时间以及所述第二持续时段的时长,在所述第二DRX周期中的所述第二持续时段上监听所述PDCCH。
  11. 根据权利要求10所述的方法,其特征在于,所述第二DRX周期由正整数j标识,所述第二DRX周期中的所述第二持续时段的起始子帧满足:
    Figure PCTCN2022089271-appb-100005
    其中,SF2表示所述起始子帧的编号,SFN2表示所述起始子帧所在的系统帧的编号,SF2和SFN2为大于等于0的整数,mod表示取模,
    Figure PCTCN2022089271-appb-100006
    表示下取整;
    所述第二DRX周期中的所述第二持续时段的起始时间是基于所述起始子帧和所述第二时隙偏移获得的。
  12. 根据权利要求10所述的方法,其特征在于,所述第二DRX周期由正整数j标识,所述第二DRX周期中的所述第二持续时段的起始子帧满足:
    Figure PCTCN2022089271-appb-100007
    其中,SF2表示所述起始子帧的编号,SFN2表示所述起始子帧所在的系统帧的编号,SF2和SFN2为大于等于0的整数,mod表示取模,
    Figure PCTCN2022089271-appb-100008
    表示下取整;
    所述第二DRX周期中的所述第二持续时段的起始时间是基于所述起始子帧和所述第二时隙偏移获得的。
  13. 根据权利要求8-12中任一项所述的方法,其特征在于,所述第二周期时长T2为8毫秒ms,10ms,11ms,16ms,32ms或33ms。
  14. 根据权利要求8-13中任一项所述的方法,其特征在于,Q为1/9ms,1/3ms,2/3ms,4/3ms或10/9ms。
  15. 一种通信装置,其特征在于,包括:处理模块和接口模块;
    所述接口模块用于获得第一非连续接收DRX配置信息;
    所述处理模块用于:
    基于所述第一DRX配置信息获得第一DRX周期的第一周期时长T1以及所述第一DRX周期中第一持续时段的数量N1和时长,其中T1>0,N1>0;
    基于所述第一周期时长T1、以及所述第一持续时段的数量N1和时长,控制所述装置在所述第一DRX周期中的一个或多个所述第一持续时段上监听物理下行控制信道PDCCH。
  16. 根据权利要求15所述的装置,其特征在于:
    所述处理模块还用于基于所述第一DRX配置信息获得所述第一DRX周期对应的第一起始偏移A1和第一时隙偏移,其中A1≥0;
    所述处理模块用于基于所述第一周期时长T1、以及所述第一持续时段的数量N1和时长,控制所述装置在所述第一DRX周期中的一个或多个所述第一持续时段上监听所述PDCCH,包括:
    所述处理模块用于基于所述第一周期时长T1、所述第一持续时段的数量N1和时长、以及所述第一起始偏移A1和所述第一时隙偏移,控制所述装置在所述第一DRX周期中的所述一个或多个第一持续时段上监听所述PDCCH。
  17. 根据权利要求16所述的装置,其特征在于,所述处理模块用于基于所述第一周期时长T1、所述第一持续时段的数量N1和时长、以及所述第一起始偏移A1和所述第一时隙偏移,控制所述装置在所述第一DRX周期中的所述一个或多个第一持续时段上监听所述PDCCH,包括:
    所述处理模块用于:
    基于所述第一周期时长T1、所述第一持续时段的数量N1、以及所述第一起始偏移A1和所述第一时隙偏移,获得所述第一DRX周期中的所述一个或多个第一持续时段的起始时间;
    基于所述一个或多个第一持续时段的起始时间以及所述第一持续时段的时长,控制所述装置在所述第一DRX周期中的所述一个或多个第一持续时段上监听所述PDCCH。
  18. 根据权利要求17所述的装置,其特征在于,所述第一DRX周期中的第i个第一持续时段的起始子帧满足:
    Figure PCTCN2022089271-appb-100009
    其中,SF1表示所述起始子帧的编号,SFN1表示所述起始子帧所在的系统帧的编号,SF1和SFN1为大于等于0的整数,1≤i≤N1,mod表示取模,
    Figure PCTCN2022089271-appb-100010
    表示下取整;
    所述第一DRX周期中的所述第i个第一持续时段的起始时间是基于所述起始子帧和所述第一时隙偏移获得的。
  19. 根据权利要求17所述的装置,其特征在于,所述第一DRX周期中的第i个第一持续时段的起始子帧满足:
    Figure PCTCN2022089271-appb-100011
    其中,SF1表示所述起始子帧的编号,SFN1表示所述起始子帧所在的系统帧的编号,SF1和SFN1为大于等于0的整数,1≤i≤N1,mod表示取模,
    Figure PCTCN2022089271-appb-100012
    表示下取整;
    所述第一DRX周期中的所述第i个第一持续时段的起始时间是基于所述起始子帧和所述第一时隙偏移获得的。
  20. 根据权利要求15-19中任一项所述的装置,其特征在于,所述第一周期时长T1为25 毫秒ms,50ms或100ms。
  21. 根据权利要求15-20中任一项所述的装置,其特征在于,N1为3的整数倍。
  22. 一种通信装置,其特征在于,包括:处理模块和接口模块;
    所述接口模块用于获得第二非连续接收DRX配置信息;
    所述处理模块用于:
    基于所述第二DRX配置信息获得第二DRX周期的第二周期时长T2、所述第二DRX周期对应的第二起始偏移A2和偏移调整量Q、以及所述第二DRX周期中第二持续时段的时长,其中T2>0,A2≥0,Q≥0;
    基于所述第二周期时长T2、所述第二起始偏移A2和所述偏移调整量Q、以及所述第二持续时段的时长,控制所述装置在所述第二DRX周期中的所述第二持续时段上监听物理下行控制信道PDCCH。
  23. 根据权利要求22所述的装置,其特征在于:
    所述处理模块还用于基于所述第二DRX配置信息获得所述第二DRX周期对应的第二时隙偏移;
    所述处理模块用于基于所述第二周期时长T2、所述第二起始偏移A2和所述偏移调整量Q、以及所述第二持续时段的时长,控制所述装置在所述第二DRX周期中的所述第二持续时段上监听所述PDCCH,包括:
    所述处理模块用于基于所述第二周期时长T2、所述第二起始偏移A2和所述偏移调整量Q、所述第二时隙偏移、以及所述第二持续时段的时长,控制所述装置在所述第二DRX周期中的所述第二持续时段上监听所述PDCCH。
  24. 根据权利要求23所述的装置,其特征在于,所述处理模块用于基于所述第二周期时长T2、所述第二起始偏移A2和所述偏移调整量Q、所述第二时隙偏移、以及所述第二持续时段的时长,控制所述装置在所述第二DRX周期中的所述第二持续时段上监听所述PDCCH,包括:
    所述处理模块用于:
    基于所述第二周期时长T2、所述第二起始偏移A2和所述偏移调整量Q、以及所述第二时隙偏移,获得所述第二DRX周期中的所述第二持续时段的起始时间;以及
    基于所述第二持续时段的起始时间以及所述第二持续时段的时长,控制所述装置在所述第二DRX周期中的所述第二持续时段上监听所述PDCCH。
  25. 根据权利要求24所述的装置,其特征在于,所述第二DRX周期由正整数j标识,所述第二DRX周期中的所述第二持续时段的起始子帧满足:
    Figure PCTCN2022089271-appb-100013
    其中,SF2表示所述起始子帧的编号,SFN2表示所述起始子帧所在的系统帧的编号,SF2和SFN2为大于等于0的整数,mod表示取模,
    Figure PCTCN2022089271-appb-100014
    表示下取整;
    所述第二DRX周期中的所述第二持续时段的起始时间是基于所述起始子帧和所述第二时隙偏移获得的。
  26. 根据权利要求24所述的装置,其特征在于,所述第二DRX周期由正整数j标识,所述第二DRX周期中的所述第二持续时段的起始子帧满足:
    Figure PCTCN2022089271-appb-100015
    其中,SF2表示所述起始子帧的编号,SFN2表示所述起始子帧所在的系统帧的编号,SF2和SFN2为大于等于0的整数,mod表示取模,
    Figure PCTCN2022089271-appb-100016
    表示下取整;
    所述第二DRX周期中的所述第二持续时段的起始时间是基于所述起始子帧和所述第二时隙偏移获得的。
  27. 根据权利要求22-26中任一项所述的装置,其特征在于,所述第二周期时长T2为8毫秒ms,10ms,11ms,16ms,32ms或33ms。
  28. 根据权利要求22-27中任一项所述的装置,其特征在于,Q为1/9ms,1/3ms,2/3ms,4/3ms或10/9ms。
  29. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至7中任一项所述的方法,或者使得所述装置执行如权利要求8至14中任一项所述的方法。
  30. 一种计算机可读存储介质,其上存储有指令,其特征在于,所述指令被执行时使得计算机执行如权利要求1至7中任一项所述的方法,或者使得计算机执行如权利要求7至14中任一项所述的方法。
PCT/CN2022/089271 2021-08-04 2022-04-26 非连续接收的方法及装置 WO2023010905A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22851626.6A EP4373179A1 (en) 2021-08-04 2022-04-26 Discontinuous reception method and device
US18/430,836 US20240172322A1 (en) 2021-08-04 2024-02-02 Discontinuous reception method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110892022.3 2021-08-04
CN202110892022.3A CN115915343A (zh) 2021-08-04 2021-08-04 非连续接收的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/430,836 Continuation US20240172322A1 (en) 2021-08-04 2024-02-02 Discontinuous reception method and apparatus

Publications (1)

Publication Number Publication Date
WO2023010905A1 true WO2023010905A1 (zh) 2023-02-09

Family

ID=85155125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089271 WO2023010905A1 (zh) 2021-08-04 2022-04-26 非连续接收的方法及装置

Country Status (4)

Country Link
US (1) US20240172322A1 (zh)
EP (1) EP4373179A1 (zh)
CN (1) CN115915343A (zh)
WO (1) WO2023010905A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140211679A1 (en) * 2011-07-01 2014-07-31 Maruti Gupta Communication state transitioning control
CN109155970A (zh) * 2016-05-24 2019-01-04 瑞典爱立信有限公司 用于配置无线网络中的不连续接收模式的方法和装置
CN111615179A (zh) * 2019-06-17 2020-09-01 维沃移动通信有限公司 Pdcch监听方法和终端
CN112911718A (zh) * 2019-12-03 2021-06-04 普天信息技术有限公司 Drx资源调整方法、基站及用户终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140211679A1 (en) * 2011-07-01 2014-07-31 Maruti Gupta Communication state transitioning control
CN109155970A (zh) * 2016-05-24 2019-01-04 瑞典爱立信有限公司 用于配置无线网络中的不连续接收模式的方法和装置
CN111615179A (zh) * 2019-06-17 2020-09-01 维沃移动通信有限公司 Pdcch监听方法和终端
CN112911718A (zh) * 2019-12-03 2021-06-04 普天信息技术有限公司 Drx资源调整方法、基站及用户终端

Also Published As

Publication number Publication date
EP4373179A1 (en) 2024-05-22
CN115915343A (zh) 2023-04-04
US20240172322A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
KR20120094918A (ko) 무선 네트워크의 전력 절약 동작들을 위한 유휴 타임아웃의 알림 시간을 위한 방법 및 시스템
WO2021208802A1 (zh) 系统信息传输方法、设备及系统
WO2019029497A1 (zh) 免授权资源配置方法及装置
KR102298616B1 (ko) 비-트리거-기반 레인징을 위한 절전
WO2023010905A1 (zh) 非连续接收的方法及装置
WO2022237527A1 (zh) 一种非连续接收的通信方法及装置
CN115734320A (zh) 终端节能方法、装置及系统
EP3413635A1 (en) Synchronizing connectivity in wireless communication networks
WO2024066876A1 (zh) 数据传输方法及装置
CN111867018B (zh) 通信方法、装置及系统
WO2023035909A1 (zh) 数据传输方法及装置
WO2024021980A1 (zh) 非连续接收方法及装置
WO2024012140A1 (zh) 一种数据传输方法及装置
WO2023010951A1 (zh) 资源配置方法和通信装置
WO2023207405A1 (zh) 基于drx配置的通信方法、通信装置及通信系统
WO2024066908A1 (zh) 基于drx配置的通信方法、通信装置及通信系统
WO2023125339A1 (zh) 参考信号的传输方法及装置
WO2023160043A1 (zh) 数据传输方法及装置
WO2023231636A1 (zh) 一种通信方法及相关装置
WO2023109431A1 (zh) 数据传输方法及装置
WO2023061189A1 (zh) 一种pdcch监听方法及装置
CN117042147A (zh) 基于drx配置的通信方法、通信装置及通信系统
WO2024011581A1 (zh) 一种通信方法及装置
WO2023185975A1 (zh) 通信方法及装置
WO2023045714A1 (zh) 一种调度方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022851626

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022851626

Country of ref document: EP

Effective date: 20240215

NENP Non-entry into the national phase

Ref country code: DE