WO2023061189A1 - 一种pdcch监听方法及装置 - Google Patents

一种pdcch监听方法及装置 Download PDF

Info

Publication number
WO2023061189A1
WO2023061189A1 PCT/CN2022/121099 CN2022121099W WO2023061189A1 WO 2023061189 A1 WO2023061189 A1 WO 2023061189A1 CN 2022121099 W CN2022121099 W CN 2022121099W WO 2023061189 A1 WO2023061189 A1 WO 2023061189A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time windows
period
time window
drx
Prior art date
Application number
PCT/CN2022/121099
Other languages
English (en)
French (fr)
Inventor
曹佑龙
陈二凯
廖树日
徐瑞
窦圣跃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023061189A1 publication Critical patent/WO2023061189A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular to a method and device for monitoring a physical downlink control channel (physical downlink control channel, PDCCH).
  • PDCCH physical downlink control channel
  • DRX Discontinuous reception
  • 5G Fifth Generation
  • the basic mechanism of DRX is to configure a DRX cycle (cycle) for a terminal device.
  • the terminal device normally monitors the PDCCH, and during other periods, the terminal device has the opportunity to enter a sleep state and not receive the PDCCH to reduce power consumption.
  • 5G communication system gradually penetrates into some multimedia services with strong real-time performance and large data capacity requirements, such as video transmission, cloud gaming (cloud gaming, CG) and extended reality (extended reality, XR), etc. media business.
  • multimedia services the arrival time of the service frame will be jittered, that is, the arrival time of the service frame will be earlier or later than the set ideal arrival time.
  • the DRX configuration method needs to set the duration of the DRX duration to cover the possible arrival time range of the entire service frame, which will cause the terminal device to monitor the PDCCH for too long and consume too much power.
  • Embodiments of the present application provide a communication method and device, which can reduce power consumption of terminal equipment.
  • the embodiment of the present application provides a communication method, which can be executed by a terminal device, or by a component of the terminal device (such as a processor, a chip, or a chip system, etc.), or by a device capable of implementing all or Logic module or software implementation of some terminal equipment functions.
  • the method includes: receiving configuration information from a network device; monitoring PDCCH in M1 first time windows among N1 first time windows in a first period according to the configuration information, the first period is a DRX duration period, and N1 is greater than or equal to An integer of 2, M1 is a positive integer smaller than N1.
  • the DRX duration period is divided into multiple (two or more) first time windows, and the terminal device monitors the PDCCH in part of the first time windows in the DRX duration period, and does not need to monitor during the DRX duration period
  • the first time window of the PDCCH can enter dormancy to save power consumption.
  • the configuration information includes time window bitmap information, and the time window bitmap information is used to configure M1 first time windows.
  • the configuration information is also used to configure the value of N1 or the duration of one first time window in the N1 first time windows.
  • the configuration information includes time window index information, and the time window index information is used to configure the M1 first time windows.
  • the first time window pattern corresponding to the M1 first time windows is one of multiple first time window patterns.
  • the cell overhead of configuring M1 first time windows for PDCCH monitoring by the network device to the terminal device is reduced, which can save wireless communication resources and improve the utilization rate of wireless communication resources.
  • the method further includes: sending DRX preference information to the network device, where the DRX preference information indicates a preference for power consumption and/or delay.
  • the network device it is beneficial for the network device to deliver configuration information to the terminal device according to the DRX preference information of the terminal device, so as to satisfy the performance requirements of the user in terms of power consumption and service delay, with the lowest possible power consumption Get a better experience level.
  • the DRX preference information may indicate a preference for power consumption, such as a power consumption saving ratio, so that the network device can save the power consumption saving ratio (such as 20%) according to the fact that the terminal device is used for PDCCH monitoring relative to the first period.
  • Power consumption requirements sending configuration information to the terminal device to configure M1 first time windows for PDCCH monitoring, so that the terminal device monitors PDCCH in M1 first time windows among the N1 first time windows in the first period, Meet the needs of terminal equipment in terms of power consumption.
  • the DRX preference information may indicate a preference for delay, such as an average scheduling delay, so that the network device can increase the scheduling delay not more than
  • configuration information is sent to the terminal equipment to configure M1 first time windows for PDCCH monitoring, so that the terminal equipment can perform M1 first time windows among the N1 first time windows in the first period
  • the PDCCH is monitored internally to meet the service delay requirements of the terminal equipment while saving the power consumption of the terminal equipment.
  • the DRX preference information may also indicate preferences for power consumption and delay at the same time, such as the power consumption saving ratio and the average scheduling delay, so that the network device can use PDCCH monitoring to save energy according to the terminal device relative to the first period.
  • the requirement that the average scheduling delay is not higher than the average scheduling delay is added, and the configuration information is sent to the terminal device to be configured for PDCCH M1 first time windows for monitoring, so that the terminal device monitors the PDCCH in the M1 first time windows of the N1 first time windows in the first period, and in the case of saving the power consumption of the terminal device, the terminal device is satisfied with the service Latency requirements.
  • the method further includes: monitoring the PDCCH in M2 second time windows out of N2 second time windows in the second period according to the configuration information, the first period being the DRX duration of the long DRX cycle , the second period is a DRX continuous period of a short DRX cycle, N2 is an integer greater than or equal to 2, and M2 is a positive integer smaller than N2.
  • the M1 first time windows and M2 second time windows used for PDCCH monitoring are respectively configured in the long DRX cycle
  • the DRX duration and the DRX duration of the short DRX cycle so as to better reduce the power consumption of the terminal equipment while meeting the delay requirements of different types of service frames.
  • the method further includes: obtaining M2 second time windows in the N2 second time windows of the second period according to the configuration information, the first period is the DRX duration of the long DRX cycle, and the second The period is a DRX duration period of a short DRX cycle, N2 is an integer greater than or equal to 2, and M2 is a positive integer less than N2; when the first period and the second period do not overlap in time, monitor in M2 second time windows PDCCH: monitoring the PDCCH in the M1 first time windows in the N1 first time windows of the first time period includes: when the first time period and the second time period overlap in time, monitoring the PDCCH in the M1 first time windows .
  • the M1 first time windows and M2 second time windows used for PDCCH monitoring are respectively configured in the long DRX cycle
  • the DRX duration and the DRX duration of the short DRX cycle so as to better reduce the power consumption of the terminal equipment while meeting the delay requirements of different types of service frames.
  • it also provides a solution to the conflict between the DRX duration of the long DRX cycle and the DRX duration of the short DRX cycle.
  • the embodiment of the present application provides a communication method, which can be executed by a terminal device, or by a component of the terminal device (such as a processor, a chip, or a chip system, etc.), or by a device capable of implementing all or Logic module or software implementation of some terminal equipment functions.
  • the method includes: receiving configuration information from a network device; monitoring PDCCH in M1 first time windows among N1 first time windows in a first period according to the configuration information, the duration of the first period is the DRX cycle, and N1 is greater than Integer equal to 3, M1 is an integer less than N1 and greater than or equal to 2.
  • the DRX cycle is divided into multiple (two or more) first time windows, the terminal device monitors the PDCCH in some of the first time windows in the DRX cycle, and does not need to monitor the first time window of the PDCCH in the DRX cycle
  • a time window can enter sleep mode to save power consumption.
  • the configuration information includes time window bitmap information, and the time window bitmap information is used to configure M1 first time windows.
  • the configuration information is also used to configure the value of N1 or the duration of one first time window in the N1 first time windows.
  • a flexible implementation method in which the network device configures M1 first time windows for PDCCH monitoring to the terminal device, which is beneficial to meet different communication requirements.
  • the configuration information includes time window index information, and the time window index information is used to configure the M1 first time windows.
  • the first time window pattern corresponding to the M1 first time windows is one of multiple first time window patterns.
  • the cell overhead of configuring M1 first time windows for PDCCH monitoring by the network device to the terminal device is reduced, which can save wireless communication resources and improve the utilization rate of wireless communication resources.
  • the method further includes: sending DRX preference information to the network device, where the DRX preference information indicates a preference for power consumption and/or delay.
  • the network device it is beneficial for the network device to deliver configuration information to the terminal device according to the DRX preference information of the terminal device, so as to satisfy the performance requirements of the user in terms of power consumption and service delay, with the lowest possible power consumption Get a better experience level.
  • the DRX preference information may indicate a preference for power consumption, such as a power consumption saving ratio, so that the network device can save the power consumption saving ratio (such as 20%) according to the fact that the terminal device is used for PDCCH monitoring relative to the first period.
  • Power consumption requirements sending configuration information to the terminal device to configure M1 first time windows for PDCCH monitoring, so that the terminal device monitors PDCCH in M1 first time windows among the N1 first time windows in the first period, Meet the needs of terminal equipment in terms of power consumption.
  • the DRX preference information may indicate a preference for delay, such as an average scheduling delay, so that the network device can increase the scheduling delay not more than
  • configuration information is sent to the terminal equipment to configure M1 first time windows for PDCCH monitoring, so that the terminal equipment can perform M1 first time windows among the N1 first time windows in the first period
  • the PDCCH is monitored internally to meet the service delay requirements of the terminal equipment while saving the power consumption of the terminal equipment.
  • the DRX preference information may also indicate preferences for power consumption and delay at the same time, such as the power consumption saving ratio and the average scheduling delay, so that the network device can use PDCCH monitoring to save energy according to the terminal device relative to the first period.
  • the requirement that the average scheduling delay is not higher than the average scheduling delay is added, and the configuration information is sent to the terminal device to be configured for PDCCH M1 first time windows for monitoring, so that the terminal device monitors the PDCCH in the M1 first time windows of the N1 first time windows in the first period, and in the case of saving the power consumption of the terminal device, the terminal device is satisfied with the service Latency requirements.
  • the embodiment of the present application provides a communication method, which can be executed by a network device, or by a component of the network device (such as a processor, a chip, or a chip system, etc.), or can be implemented by all or Logical modules or software implementations of some network device functions.
  • the method includes: generating configuration information, the configuration information is used to configure M1 first time windows in the N1 first time windows of the first period, the M1 first time windows are used for PDCCH monitoring, and the first period is DRX continuous Time period, N1 is an integer greater than or equal to 2, M1 is a positive integer less than N1; send configuration information to the terminal device.
  • the configuration information includes time window bitmap information, and the time window bitmap information is used to configure M1 first time windows.
  • the configuration information is also used to configure the value of N1 or the duration of one first time window in the N1 first time windows.
  • the configuration information includes time window index information, and the time window index information is used to configure the M1 first time windows.
  • the first time window pattern corresponding to the M1 first time windows is one of multiple first time window patterns.
  • the method further includes: receiving DRX preference information from the terminal device, where the DRX preference information indicates a preference for power consumption and/or delay.
  • the DRX preference information may indicate a preference for power consumption, such as a power consumption saving ratio, and the network device may save the power consumption saving ratio (such as 20%) according to the fact that the terminal device is used for PDCCH monitoring relative to the first period.
  • Consumption requirements send configuration information to the terminal device to configure M1 first time windows for PDCCH monitoring, so that the terminal device monitors the PDCCH in the M1 first time windows of the N1 first time windows in the first period, satisfying Terminal equipment requirements in terms of power consumption.
  • the DRX preference information may indicate a preference for delay, such as an average scheduling delay, and the network device may increase the scheduling delay not higher than this
  • configuration information is sent to the terminal device to configure M1 first time windows for PDCCH monitoring, so that the terminal device is within the M1 first time windows of the N1 first time windows in the first period Monitor the PDCCH to meet the service delay requirements of the terminal equipment while saving the power consumption of the terminal equipment.
  • the DRX preference information may also indicate preferences for power consumption and delay at the same time, such as the power consumption saving ratio and the average scheduling delay, and the network device may use the terminal device for PDCCH monitoring to save the time period relative to the first period.
  • the network device may use the terminal device for PDCCH monitoring to save the time period relative to the first period.
  • add the requirement that the average scheduling delay is not higher than the average scheduling delay and send configuration information to the terminal device for PDCCH monitoring M1 first time windows, so that the terminal device monitors the PDCCH in the M1 first time windows of the N1 first time windows in the first time period, and in the case of saving the power consumption of the terminal device, it meets the requirements of the terminal device during business hours. extension needs.
  • the configuration information is also used to configure M2 second time windows in the N2 second time windows of the second period, the M2 second time windows are used for PDCCH monitoring, and the first period is long
  • the DRX duration of the DRX cycle, the second period is the DRX duration of the short DRX cycle, N2 is an integer greater than or equal to 2, and M2 is a positive integer smaller than N2.
  • the embodiment of the present application provides a communication method, which can be executed by a network device, or by a component of the network device (such as a processor, a chip, or a chip system, etc.), or can be implemented by all or Logical modules or software implementations of some network device functions.
  • the method includes: generating configuration information, the configuration information is used to configure M1 first time windows in the N1 first time windows of the first period, and the M1 first time windows are used for PDCCH monitoring, and the duration of the first period is In the DRX cycle, N1 is an integer greater than or equal to 3, and M1 is an integer less than N1 and greater than or equal to 2; sending configuration information to the terminal device.
  • the configuration information includes time window bitmap information, and the time window bitmap information is used to configure M1 first time windows.
  • the configuration information is also used to configure the value of N1 or the duration of one first time window in the N1 first time windows.
  • the configuration information includes time window index information, and the time window index information is used to configure the M1 first time windows.
  • the first time window pattern corresponding to the M1 first time windows is one of multiple first time window patterns.
  • the method further includes: receiving DRX preference information from the terminal device, where the DRX preference information indicates a preference for power consumption and/or delay.
  • the DRX preference information may indicate a preference for power consumption, such as a power consumption saving ratio, and the network device may save the power consumption saving ratio (such as 20%) according to the fact that the terminal device is used for PDCCH monitoring relative to the first period.
  • Consumption requirements send configuration information to the terminal device to configure M1 first time windows for PDCCH monitoring, so that the terminal device monitors the PDCCH in the M1 first time windows of the N1 first time windows in the first period, satisfying Terminal equipment requirements in terms of power consumption.
  • the DRX preference information may indicate a preference for delay, such as an average scheduling delay, and the network device may increase the scheduling delay not higher than this
  • configuration information is sent to the terminal device to configure M1 first time windows for PDCCH monitoring, so that the terminal device is within the M1 first time windows of the N1 first time windows in the first period Monitor the PDCCH to meet the service delay requirements of the terminal equipment while saving the power consumption of the terminal equipment.
  • the DRX preference information may also indicate preferences for power consumption and delay at the same time, such as the power consumption saving ratio and the average scheduling delay, and the network device may use the terminal device for PDCCH monitoring to save the time period relative to the first period.
  • the network device may use the terminal device for PDCCH monitoring to save the time period relative to the first period.
  • add the requirement that the average scheduling delay is not higher than the average scheduling delay and send configuration information to the terminal device for PDCCH monitoring M1 first time windows, so that the terminal device monitors the PDCCH in the M1 first time windows of the N1 first time windows in the first time period, and in the case of saving the power consumption of the terminal device, it meets the requirements of the terminal device during business hours. extension needs.
  • the embodiment of the present application provides a communication device, which has a method to realize the above-mentioned first aspect or any one of the possible design methods of the first aspect, or realize the above-mentioned second aspect or any one of the second aspect
  • the function of the method in the possible design, the function of the device can be realized by hardware, and can also be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more modules (or units) corresponding to the above-mentioned functions, such as an interface unit and a processing unit.
  • the device may be a chip or an integrated circuit.
  • the device includes a memory and a processor, and the memory is used to store a program executed by the processor.
  • the program is executed by the processor, the device can perform any one of the above-mentioned first aspect or the first aspect.
  • the device may be a terminal device, or a component of a terminal device (such as a processor, a chip, or a chip system, etc.), or a logic module or software that can realize all or part of the functions of the terminal device .
  • the embodiment of the present application provides a communication device, which has a method in design to realize the above third aspect or any possible design of the third aspect, or realize the above fourth aspect or any one of the fourth aspect
  • the function of the method in the possible design, the function of the device can be realized by hardware, and can also be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more modules (or units) corresponding to the above-mentioned functions, such as an interface unit and a processing unit.
  • the device may be a chip or an integrated circuit.
  • the device includes a memory and a processor, and the memory is used to store a program executed by the processor.
  • the program is executed by the processor, the device can perform any one of the above-mentioned third aspect or the third aspect.
  • the device may be a network device, or a component of a network device (such as a processor, a chip, or a chip system, etc.), or a logic module or software that can realize all or part of the functions of a network device .
  • the embodiment of the present application provides a communication system, the communication system includes a terminal device and a network device, the terminal device can execute the method in the above first aspect or any possible design of the first aspect, and the network device can Execute the method in the above-mentioned third aspect or any possible design of the third aspect; or the terminal device may execute the method in the above-mentioned second aspect or any possible design of the second aspect, and the network device may execute the above-mentioned first aspect A method in any of the possible designs of the four sides or the fourth side.
  • the embodiments of the present application provide a computer-readable storage medium, in which computer programs or instructions are stored, and when the computer programs or instructions are executed, any one of the above-mentioned first aspect or the first aspect can be realized.
  • the embodiment of the present application also provides a computer program product, including computer programs or instructions, when the computer programs or instructions are executed, it can realize the above-mentioned first aspect or any possible design of the first aspect.
  • a computer program product including computer programs or instructions, when the computer programs or instructions are executed, it can realize the above-mentioned first aspect or any possible design of the first aspect.
  • method, or realize the above-mentioned second aspect or the method in any possible design of the second aspect or realize the above-mentioned third aspect or the method in any possible design of the third aspect, or realize the above-mentioned fourth aspect Or the method in any possible design of the fourth aspect.
  • the embodiment of the present application also provides a chip, the chip is coupled with the memory, and is used to read and execute the programs or instructions stored in the memory to realize the above-mentioned first aspect or any possible design of the first aspect method, or realize the above-mentioned second aspect or a method in any possible design of the second aspect, or realize the above-mentioned third aspect or a method in any possible design of the third aspect, or realize the above-mentioned fourth aspect A method in any possible design of the aspect or the fourth aspect.
  • FIG. 1 is a schematic diagram of a DRX cycle provided by the present application
  • FIG. 2 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3 is one of the applicable scene schematic diagrams provided by the embodiment of the present application.
  • Fig. 4 is the second schematic diagram of the applicable scene provided by the embodiment of the present application.
  • Fig. 5 is the third schematic diagram of the applicable scene provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the arrival of service frames provided by the embodiment of the present application.
  • FIG. 7 is one of the schematic diagrams of the communication method provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of another DRX cycle provided by the embodiment of the present application.
  • FIG. 9 is one of the structural schematic diagrams of the first time window provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of power consumption for switching from deep sleep state/light sleep state according to the embodiment of the present application.
  • FIG. 11 is a schematic diagram of the arrival probability distribution of service frames provided by the embodiment of the present application.
  • FIG. 12 is the second schematic diagram of the communication method provided by the embodiment of the present application.
  • FIG. 13 is a schematic diagram of the power consumption ratio and the average scheduling delay provided by the embodiment of the present application.
  • FIG. 14 is a schematic diagram of a long DRX cycle and a short DRX cycle provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a time window for monitoring a PDCCH provided by an embodiment of the present application.
  • FIG. 16 is the third schematic diagram of the communication method provided by the embodiment of the present application.
  • Figure 17 is the second schematic diagram of the structure of the first time window provided by the embodiment of the present application.
  • FIG. 18 is a schematic diagram of the DRX activation period provided by the embodiment of the present application.
  • FIG. 19 is a schematic diagram of a DRX command (command) media access control layer (media access control, MAC) control unit (control element, CE) provided by an embodiment of the present application;
  • FIG. 20 is one of the schematic diagrams of the communication device provided by the embodiment of the present application.
  • FIG. 21 is the second schematic diagram of the communication device provided by the embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a communication system applied by an embodiment of the present application.
  • the communication system includes a radio access network 100 and a core network 200 , and optionally, the communication system may also include the Internet 300 .
  • the radio access network 100 may include at least one network device, such as 110a and 110b in FIG. 2 , and may also include at least one terminal device, such as 120a-120j in FIG. 2 .
  • 110a is a base station
  • 110b is a micro station
  • 120a, 120e, 120f and 120j are mobile phones
  • 120b is a car
  • 120c is a fuel dispenser
  • 120d is a home access point (HAP) arranged indoors or outdoors
  • 120g is a laptop
  • 120h is a printer
  • 120i is a drone.
  • the same terminal device or network device may provide different functions in different application scenarios.
  • the mobile phones in FIG. 2 include 120a, 120e, 120f and 120j.
  • the mobile phone 120a can connect to the base station 110a, connect to the car 120b, communicate directly with the mobile phone 120e and access the HAP.
  • the mobile phone 120e can access the HAP and communicate with the mobile phone 120a.
  • the mobile phone 120f can be connected to the micro station 110b, connected to the laptop 120g, connected to the printer 120h, and the mobile phone 120j can control the drone 120i.
  • the terminal device is connected to the network device, and the network device is connected to the core network.
  • Core network equipment and network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the network equipment can be integrated on the same physical equipment, or a physical equipment can integrate part of the core network equipment.
  • device functions and functions of some network devices. Terminal devices and network devices may be connected to each other in a wired or wireless manner.
  • FIG. 2 is only a schematic diagram.
  • the communication system may also include other devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 2 .
  • Network equipment also known as wireless access network equipment, can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), a fifth generation (5th generation, 5G ) next generation NodeB (next generation NodeB, gNB) in the mobile communication system, base station in the sixth generation (6th generation, 6G) mobile communication system, base station in the future mobile communication system or access node in the WiFi system, etc.; It may also be a module or unit that completes some functions of the base station, for example, it may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and also completes the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the functions of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part of the physical layer or all of the physical layer.
  • 3rd generation partnership project, 3GPP third generation partnership project
  • the network device may be a macro base station (such as 110a in Figure 2), a micro base station or an indoor station (such as 110b in Figure 2), or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device. It can be understood that all or part of the functions of the network device in this application can also be realized by software functions running on hardware, or by virtualization functions instantiated on a platform (such as a cloud platform).
  • a terminal device may also be called a terminal, a user equipment (user equipment, UE), a mobile station, a mobile terminal, and the like.
  • Terminal devices can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things (internet of things, IOT), virtual reality, augmented reality, industrial control, automatic driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminal devices can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • Network equipment and terminal equipment can be fixed or mobile.
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • the terminal device 120i is a network device; but for the network device 110a, 120i is a terminal device, that is, communication between 110a and 120i is performed through a wireless air interface protocol. Of course, communication between 110a and 120i may also be performed through an interface protocol between network devices. In this case, compared to 110a, 120i is also a network device. Therefore, both network equipment and terminal equipment can be collectively referred to as communication devices, 110a and 110b in FIG. 2 can be referred to as communication devices with network device functions, and 120a-120j in FIG. 2 can be referred to as communication devices with terminal device functions .
  • Communication between network devices and terminal devices, between network devices and network devices, between terminal devices and terminal devices can be performed through licensed spectrum, or through license-free spectrum, or through licensed spectrum and license-free spectrum at the same time
  • Communication can be performed through a frequency spectrum below 6 gigahertz (GHz), or can be performed through a frequency spectrum above 6 GHz, and can also be performed using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • GHz gigahertz
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the network device may also be performed by modules (such as chips) in the network device, or may be performed by a control subsystem including the functions of the network device.
  • the control subsystem here including network equipment functions can be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal equipment may also be performed by a module (such as a chip or a modem) in the terminal equipment, or may be performed by a device including the functions of the terminal equipment.
  • the network device sends downlink signals or downlink information to the terminal device, and the downlink information is carried on the downlink channel; the terminal device sends uplink signals or uplink information to the network device, and the uplink information is carried on the uplink channel.
  • the terminal device needs to establish a wireless connection with the cell controlled by the network device.
  • a cell with which a terminal device has established a wireless connection is called the serving cell of the terminal device.
  • FIG. 3 shows a schematic diagram of a scenario where this embodiment of the present application is applicable.
  • FIG. 3 illustrates a system 300, including a server 310, a core network and an access network 320 (which may be referred to simply as a transport network 320, such as LTE, 5G or 6G network), and a terminal device 330.
  • the server 310 can be used to encode, decode and render the XR source data
  • the transmission network 320 can be used to transmit the XR data
  • the terminal device 330 can provide users with a variety of XR experiences by processing the XR data.
  • terminal equipment 330 may also be included between the transmission network 320 and the terminal equipment 330, for example, other terminal equipment (such as mobile phones, laptop computers, or vehicle terminal equipment, etc.) and/or network equipment (such as relay equipment) may also be included.
  • other terminal equipment such as mobile phones, laptop computers, or vehicle terminal equipment, etc.
  • network equipment such as relay equipment
  • integrated access backhaul integrated access backhaul, IAB
  • WiFi router or WiFi access point, etc.
  • FIG. 4 shows a schematic diagram of another applicable scenario of this embodiment of the present application.
  • FIG. 4 illustrates a system 400, including a terminal device 410, a core network and an access network 420 (which may be referred to simply as a transport network 420, such as an LTE, 5G or 6G network), and other terminal devices 430.
  • Other terminal devices 430 are terminal devices other than the terminal device 410 .
  • the other terminal 430 can transmit the XR data to the terminal 410 by means of the transmission network 420 .
  • the terminal device 410 is the main domain tactile user interface with the artificial system
  • the other terminal device 430 is the remote control robot or teleoperator of the controlled domain.
  • the master domain receives audio/visual feedback signals from the controlled domain, and the master and controlled domains are connected through bi-directional communication links on the transmission network 420 with the help of various command and feedback signals, thereby forming a global control loop.
  • FIG. 5 shows another schematic diagram of a scene where this embodiment of the present application is applicable.
  • FIG. 5 illustrates a system 500 , including a server 510 , a fixed network 520 , a WiFi router or a WiFi access point 530 (which may be referred to as a WiFi device 530 for short), and a terminal device 540 .
  • the server 510 can be used to encode, decode and render the XR source data, and transmit the XR data to the terminal device 540 through the fixed network 520 and the WiFi device 530 .
  • the fixed network 520 is an operator network
  • the WiFi device 530 is a WiFi router, WiFi access point or set-top box
  • the server 510 transmits or projects XR data to the terminal device 540 by means of the operator network 520 and the WiFi device 530 .
  • FIG. 3 to FIG. 5 only provide schematic illustrations of several applicable scenarios of the embodiment of the present application, and do not limit the applicable scenarios of the embodiment of the present application.
  • the battery life of terminal equipment has become the focus of users' attention.
  • HMD head mounted display
  • smart glasses such as VR glasses, augmented reality (augmented reality, AR) glasses
  • VR glasses augmented reality
  • AR augmented reality
  • service frames usually arrive periodically according to the frame rate.
  • service frames due to factors such as server encoding processing, fixed network/core network transmission, etc., when service frames arrive at network devices, they may not strictly conform to periodicity.
  • the frame interval is 1/60s, that is, a service frame arrives every 16.67ms.
  • the delay of each service frame arriving at the network device varies, and the frame interval is no longer strictly 16.67ms, which means that there is jitter at the arrival time of the service frame (jitter ). For example, in FIG.
  • the value of jitter obeys the truncated Gaussian distribution with a mean value of 0, a standard deviation of 2ms, and a value range of [-4ms, 4ms].
  • it is necessary to set the DRX duration to the entire The possible arrival time range of service frames that is, set the DRX cycle to 16.67ms, and set the DRX duration to 8ms, so as to cover the possible arrival time range of the entire service frame [-4ms, 4ms].
  • the terminal device needs to be in a DRX
  • the PDCCH needs to be monitored for nearly half of the period, resulting in high power consumption.
  • the DRX duration needs to be set equal to the DRX cycle, that is to say, the terminal device needs to monitor the PDCCH all the time in one DRX cycle, and the power consumption is higher.
  • FIG. 7 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • the network device and the terminal device are used as an example to illustrate the method, but the present application does not limit the subject of the interaction.
  • the network device in FIG. 7 may also be a chip, a chip system, or a processor that supports the network device to implement the method, and may also be a logic module or software that can realize all or part of the functions of the wireless network device;
  • the terminal device may also be a chip, a chip system, or a processor that supports the terminal device to implement the method, and may also be a logic module or software that can realize all or part of the functions of the terminal device.
  • the method includes:
  • S701 The network device sends configuration information to the terminal device, and the terminal device receives the configuration information from the network device.
  • S702 The terminal device monitors the PDCCH in M1 first time windows among the N1 first time windows in the first time period according to the configuration information.
  • the configuration information may configure M1 first time windows for PDCCH monitoring among the N1 first time windows in the first period.
  • the first period of time may be a continuous period of time in the time domain.
  • the first period of time may be distributed periodically in time (also referred to as a time domain), or aperiodically distributed in time.
  • the first period may be a DRX on-duration (on duration), and is periodically distributed in time according to the DRX cycle.
  • the first period when the first period is a DRX continuous period, the first period may be periodically distributed in time according to the DRX cycle.
  • the first time period may also refer to a DRX cycle, that is to say, a DRX cycle may be used as a first time period, the duration of the first time period is equal to the DRX cycle, and the first time period is periodically distributed in time according to the DRX cycle.
  • the first period can also refer to the wake-up period of a wake up signal (WUS), etc., and the WUS can be used to indicate that the terminal device receives the DRX duration of the next DRX cycle in which the WUS is located (also called the wake-up period). period) to monitor the PDCCH.
  • WUS wake up signal
  • the configuration information may be sent from the network device to the terminal device through radio resource control (radio resource control, RRC) signaling, downlink control information (downlink control information, DCI) and the like.
  • radio resource control radio resource control, RRC
  • DCI downlink control information
  • DRX on-time period may also be called DRX on-time period, DRX on period, or DRX on time, etc.
  • the frame interval of the service frame of the XR service is 16.67ms.
  • 16.67ms is rounded to 16ms.
  • the DRX cycle needs to be set to 16ms.
  • the terminal device in order to adapt to the jitter, it is necessary to set the first period (DRX duration) to the possible arrival time range of the entire service frame, that is, it is necessary to set the DRX duration to is 8ms, so that it can cover the possible arrival time range [-4ms, 4ms] of the entire service frame.
  • the characteristics of the probability distribution of the jitter of the service frame in time can be used to set N1 first time windows in the first period of time through the configuration information, and configure the terminal device
  • the PDCCH is monitored in the M1 first time windows among the N1 first time windows, and the remaining N1-M1 first time window terminal devices may not monitor the PDCCH and enter a sleep state to save power consumption.
  • the above time window may also be called a time raster (raster) or a sub-time period, and the present application does not limit the name thereof.
  • the duration of the first time window may be determined according to the length of the time slot, for example, the duration of the first time window may be equal to the length of the time slot, or may be an integral multiple of the length of the time slot.
  • the first period of time in FIG. 9 taking the time slot length of 1 ms as an example, the first period of time in FIG.
  • the duration of the first time window is 1ms. If the configuration information configures the terminal device to monitor the PDCCH in the three first time windows corresponding to the 3-4ms and 6-8ms in the first period, then the terminal device will monitor the PDCCH in the 0-3ms, 4- In the 5 first time windows corresponding to 6ms, it can enter the dormant state and not monitor the PDCCH, thereby saving power consumption.
  • Table 1 shows an example of relative power consumption per unit time (for example, 1 ms) of a terminal device in different states.
  • the number of hardware in the deactivated state is the largest in the terminal device in the deep sleep state, and the power consumption of the terminal device is the smallest; the terminal device in the micro-sleep state is in the deactivated state
  • the number of hardware is the least, and the power consumption of the terminal device is the highest;
  • the number of hardware in the deactivated state in the terminal device in the light sleep state is less than the number of hardware in the deactivated state in the terminal device in the deep sleep state, and greater than the number of hardware in the micro sleep state
  • the amount of hardware in the terminal device is in the deactivated state, and the power consumption of the terminal device is greater than that of the terminal device in the deep sleep state, and smaller than that of the terminal device in the micro sleep state.
  • the power consumption per unit time of a terminal device in a deep sleep state is expressed as 1, as shown in Table 1, relative to the power consumption per unit time of a terminal device in a deep sleep state, the power consumption per unit time of a terminal device in a deep sleep state is
  • the relative power consumption value is 1, the relative power consumption value per unit time of the terminal device in the light sleep state is 20, the relative power consumption value per unit time of the terminal device in the micro sleep state is 45, and the unit time when the terminal device is monitoring the PDCCH
  • the relative power consumption value of time is 100, and the relative power consumption value per unit time is 300 when simultaneously monitoring the PDCCH and receiving the physical downlink shared channel (PDSCH). It should be understood that the relative power consumption values shown in Table 1 are just examples.
  • the terminal device takes time for the terminal device to switch from the monitoring state (such as monitoring PDCCH, or monitoring PDCCH and receiving PDSCH) to the sleep state, and then from the sleep state to the monitoring state, and the conversion to the sleep state with lower power consumption is required
  • the terminal device also consumes a certain amount of power consumption during the transition from the listening state to the sleeping state, and then from the sleeping state to the listening state.
  • Table 2 an example of the conversion time from the listening state to different sleep states, and then from different sleep states to the listening state and the corresponding relative power consumption values is given.
  • the conversion time required from the listening state to the monitoring state and the total relative power consumption of the conversion phase are 20ms and 450 ms respectively; the conversion time required from the monitoring state to the light sleep state, and then from the light sleep state to the monitoring state
  • the relative power consumption values are 60ms and 100, respectively; the conversion time required from the listening state to the micro-sleep state, and then from the micro-sleep state to the listening state, and the total relative power consumption values of the conversion phase are 0ms and 0, respectively.
  • Fig. 10 is the relative power consumption value required by listening state to deep sleep state/light sleep state, and then from deep sleep state/light sleep state to listening state (that is, the relative power consumption relative to the power consumption per unit time of deep sleep state value) schematic diagram, wherein, the duration of the deep sleep state/light sleep state includes the conversion time from the listening state to the deep sleep state/light sleep state, and then from the deep sleep state/light sleep state to the listening state, and ramp down )
  • the marked box represents the relative power consumption value of the conversion from the listening state (such as listening to PDCCH, or listening to PDCCH and receiving PDSCH) to deep sleep state/light sleep state, and the box marked by ramp up indicates that it is powered by deep sleep state/light sleep state to listening state transition relative power consumption value
  • deep sleep state/light sleep state marked long box represents the relative power consumption value in deep sleep state/light sleep state
  • the box marked slow down represents the The sum of the relative power consumption value of the transition from the listening state to the deep sleep state/light sleep state and the relative power consumption
  • the relative power consumption value of the transition from the listening state to the deep sleep state/light sleep state, and then from the deep sleep state/light sleep state to the listening state for a terminal device is deep sleep state/light sleep state
  • the duration of the first period is 8ms
  • there are 16 first time windows in the first period and the duration of each first time window is 0.5ms
  • the 16 first time windows are the first in the first period in sequence
  • Take the first time window, the second first time window, ..., the 16th first time window as an example, if the pattern of M1 first time windows among the 16 first time windows is configured as [0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1], that is, M1 is 6, the 4th first time window and the 6th time window in the 16 first time windows
  • the 1st time window, the 8th first time window, the 10th first time window, the 12th first time window, and the 16th first time window are used for monitoring the PDCCH.
  • the terminal device If the terminal device is in the light sleep state in the non-monitoring state, it takes 6ms for the terminal device to switch from the listening state to the light sleep state, and then from the light sleep state to the listening state, and the longest non-monitoring duration is only 1.5ms, so The terminal device cannot switch to the light sleep state even in the non-listening state.
  • the terminal device If the terminal device is in the micro-sleep state in the non-monitoring state, then the terminal device needs 0ms transition time from the monitoring state to the micro-sleep state, and then from the micro-sleep state to the monitoring state, that is, the terminal device changes from the monitoring state to the micro-sleep state, and then No transition time is required from the micro-sleep state to the listening state, so in the above scenario, the non-monitoring state of the terminal device can be converted to the micro-sleeping state.
  • the terminal device monitors the PDCCH in the M1 first time windows of the N1 first time windows, and the remaining N1-M1 first time window terminal devices can Entering the sleep state, the terminal device can save power consumption, but if the service frame arrives at the network device in one of the remaining N1-M1 first time windows, then the network device can only The first time window in which the nearest terminal device monitors the PDCCH schedules the terminal device to receive the service frame, which will bring scheduling delay to the transmission of the service frame.
  • the average scheduling delay caused by the first period is:
  • the value of the jitter of the service frame obeys a truncated Gaussian distribution with a mean value of 0, a standard deviation of 2ms, and a value range of [-4ms, 4ms].
  • the duration of each first time window is 0.5 Take ms as an example, the duration of the first period is 8ms, and there can be 16 first time windows in the first period, as shown in Figure 11, where the horizontal axis in Figure 11 represents the number of the first time window, that is, the first period The number of the first time window in , the vertical axis represents the probability that the business frame arrives in the first time window, and the probability that the business frame arrives in the first first time window to the sixteenth first time window is [p 1 , .
  • the pattern of M1 first time windows among the 16 first time windows is set to [0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1 ], that is, the terminal device is in the 4th first time window, the 6th first time window, the 8th first time window, the 10th first time window, and the 12th first time window in the 16 first time windows.
  • the network device can not only configure M1 first time windows for PDCCH monitoring among the N1 first time windows in the first period for the terminal device from the perspective of power consumption, but also consider the scheduling delay or comprehensive consideration of scheduling Factors such as time delay and power consumption configure the terminal device with M1 first time windows for PDCCH monitoring among the N1 first time windows in the first period.
  • scheduling delay or comprehensive consideration of scheduling Factors such as time delay and power consumption configure the terminal device with M1 first time windows for PDCCH monitoring among the N1 first time windows in the first period.
  • the first period is a DRX continuous period.
  • FIG. 12 is a schematic diagram of another communication method provided by the embodiment of the present application.
  • the method is illustrated by taking the network device and the terminal device as the execution subjects of the interaction demonstration as an example, but the present application does not limit the execution subjects of the interaction demonstration.
  • the network device in FIG. 12 may also be a chip, a chip system, or a processor that supports the network device to implement the method, and may also be a logic module or software that can realize all or part of the functions of the wireless network device;
  • the terminal device may also be a chip, a chip system, or a processor that supports the terminal device to implement the method, and may also be a logic module or software that can realize all or part of the functions of the terminal device.
  • the method shown in FIG. 12 may be understood as a specific implementation of the method shown in FIG. 7 .
  • the method includes:
  • S1201 The network device sends configuration information to the terminal device, and the terminal device receives the configuration information from the network device.
  • the terminal device monitors the PDCCH in M1 first time windows out of N1 first time windows in the first time period according to the configuration information, and the first time period is a DRX duration period.
  • the configuration information may configure M1 first time windows for PDCCH monitoring in the N1 first time windows of the first period, where N1 is an integer greater than or equal to 2, and M1 is a positive integer smaller than N1 .
  • the configuration information includes time window index information, and the time window index information is used to configure the above M1 first time windows, that is, the N1 first time windows in the first period are used for PDCCH monitoring
  • the M1 first time windows may be configured by time window index information from the network device.
  • one or more time window index tables can be configured in the network device and the terminal device through protocol predefinition, or network device configuration and unicast, multicast, broadcast, etc. to the terminal device, wherein the time window index table Each entry corresponds to a first time window pattern, and each entry corresponds to an index value.
  • one or more time window index tables can be configured for different service types, such as different service frame rates of 60FPS and 120FPS, different subcarrier spacing, etc., as well as the probability distribution and value range of jitter of service frames.
  • the value of jitter obeys the mean value of 0, the standard deviation is 2ms, and the value range [-4ms, 4ms] is a truncated Gaussian distribution service, and the time slot length is 0.5ms.
  • the first period can be set to 8ms, and the duration of each first time window can be set to 0.5ms.
  • the first period includes 16 first time windows, and the corresponding time window index table can be shown in Table 3.
  • each first time window pattern in Table 3 includes 16 indicator bits, corresponding to the 1st first time window to the 16th first time window in the first period, wherein the indicator bit can be 0 to indicate the corresponding The first time window is not used for PDCCH monitoring, and the indicator bit is 1 to indicate that the corresponding first time window is used for PDCCH monitoring, or the indicator bit is 0, indicating that the corresponding first time window is used for PDCCH monitoring, and the indicator bit If it is 1, it means that the corresponding first time window is not used for PDCCH monitoring.
  • each entry in Table 3 corresponds to a set of index value, relative power consumption value, average scheduling delay and first time window pattern, and the corresponding entry can be located through the index value.
  • index value 6 you can locate the entry with the index value 6, the relative power consumption value is 525, the average scheduling delay is 0.397, and the first time window pattern is [0, 0, 0, 1, 0, 0 , 1, 0, 1, 0, 1, 0, 1, 0, 0, 1].
  • the relative power consumption value and scheduling delay corresponding to the first time window pattern in each entry reference may be made to the above-mentioned introduction about the determination method of the relative power consumption value and the average scheduling delay, and no further description is given.
  • each first time window pattern is different, that is, the number of first time windows used to monitor the PDCCH is different, and for each of the first time windows that include a specific number of "1"
  • the above-mentioned method for determining the average scheduling delay can be used to determine the average scheduling delay of all possible first time window patterns including the specific number of first time windows used for PDCCH monitoring, and select among them
  • the first time window pattern with the lowest average scheduling delay is used as the first time window pattern corresponding to the specific number "1".
  • the value of jitter obeys a mean value of 0, a standard deviation of 2ms, and a service with a truncated Gaussian distribution with a value range of [-4ms, 4ms] and a time slot length of 1ms.
  • the first time period is set to 8 ms, and the duration of each first time window is set to 1 ms.
  • the first time period includes 8 first time windows, and the corresponding time window index table can be shown in Table 4.
  • each time window pattern in Table 4 includes 8 indicator bits, respectively corresponding to the first first time window to the eighth first time window in the first period, wherein a certain indicator bit is 0 to indicate the corresponding The first time window is not used for monitoring the PDCCH, and the indication bit being 1 indicates that the corresponding first time window is used for monitoring the PDCCH.
  • each entry in Table 4 corresponds to a set of index value, relative power consumption value, average scheduling delay and first time window pattern, and the corresponding entry can be located through the index value.
  • the value of jitter obeys the mean value of 0, the standard deviation is 3ms, and the value range [-6ms, 6ms] is a service with a truncated Gaussian distribution, and the time slot length is 0.25ms.
  • the first time period can be set to 12 ms, and the duration of each first time window can be set to 2 ms. At this time, the first time period includes 6 first time windows, and the corresponding time window index table can be shown in Table 5.
  • each time window pattern in Table 5 includes 6 indicator bits, corresponding to the first first time window to the sixth first time window in the first period, wherein a certain indicator bit is 0 to indicate the corresponding The first time window is not used for monitoring the PDCCH, and the indication bit being 1 indicates that the corresponding first time window is used for monitoring the PDCCH.
  • each entry in Table 5 corresponds to a set of index value, relative power consumption value, average scheduling delay and first time window pattern, and the corresponding entry can be located through the index value.
  • each first time window pattern in Table 4 or Table 5 is also different, that is, the number of first time windows used to monitor the PDCCH is different.
  • Each of the first time window patterns including a specific number of "1" can also use the above-mentioned method for determining the average scheduling delay to determine all possible first time windows that include the specific number of first time windows for monitoring the PDCCH.
  • the average scheduling delay of the time window patterns, and the first time window pattern with the lowest average scheduling delay is selected as the first time window pattern corresponding to the specific number "1".
  • the above Tables 3-5 all take the index value and the number of "1" in the first time window pattern corresponding to the index value as an example for introduction.
  • the index value and The number of "1" in the first time window pattern corresponding to the index value can also be different, or the number of "1" in the first time window pattern corresponding to some index values and index values is equal, and part of the index value corresponds to the index value
  • the number of "1"s in the first time window pattern varies, which is not limited in this application.
  • Tables 3 to 5 are only exemplary. It can be understood that for different business types, such as different jitter distribution parameters, the duration of the first time window, etc., can cause changes in the time window index table, that is, For different service types, different time window index tables may be configured in this embodiment of the application.
  • a new time window index table can also be formed by combining part or all of one or more time window index tables, which is suitable for one or more different service types. For example: some entries in Table 3 (such as row 2 to row 10) can be extracted to form a new time window index table; some entries in Table 3 and some entries in Table 4 can also be extracted, and for Each table item is re-assigned with a unique index value to form a new time window index table and so on.
  • an item of the relative power consumption value and the average scheduling delay may appear in the time window index table, or the relative power consumption value and the average scheduling delay may not appear in the time window index table delay.
  • the relative power consumption value and the average scheduling delay in the time window index table can also be replaced by a value.
  • the performance value can be used to comprehensively measure the relative power consumption value and the average scheduling delay
  • the performance value can be used to replace the relative power consumption value and the average scheduling delay in the time window index table, where the performance value can be the relative power consumption value and the average scheduling delay. Weighted average, product, etc. of average scheduling delay.
  • the network device may select an index value from the time window index table according to a certain strategy as the time window index information included in the configuration information. For example, a network device may randomly select an index value in the time window index table as the time window index information included in the configuration information, or may select an index value (such as index value 6) by default as the time window index information included in the configuration information.
  • an index value can also be selected as the configuration information according to the requirements of the terminal device on the power consumption saving ratio (relative to the relative power consumption value saved for PDCCH monitoring in the first period) or the average scheduling delay.
  • the included time window index information or comprehensively considering the requirements of the terminal device on the power consumption saving ratio and the average scheduling delay, select an index value as the time window index information included in the configuration information, etc.
  • the time window index information it can be carried (or configured) by setting a field (or information element) in the RRC signaling or DCI that sends the configuration information.
  • This application takes setting the field as an example for illustration.
  • a discontinuous reception on duration raster (DRX on duration raster, DODR) index (DODR-index) field and the like are set to carry.
  • the terminal device After the terminal device receives the configuration information from the network device, it can determine the first time window pattern according to the time window index information, monitor the PDCCH in the M1 first time windows in the first time window pattern, and the N1-M1 first time windows The PDCCH is not monitored in the window to save power consumption.
  • the configuration information includes time window bitmap (bitmap) information, and the time window bitmap information is used to configure the above-mentioned M1 first time windows, that is, the N1 first time windows in the first period
  • the M1 first time windows used for PDCCH monitoring in the windows may also be configured by time window bitmap information from the network device.
  • the time window bitmap information can be carried (or configured) by setting a field (or cell) in the RRC signaling or DCI that sends the configuration information, for example, the DODR bitmap (DODR-bitmap) can be set in the configuration information field to carry the time window bitmap information.
  • the DODR bitmap DODR-bitmap
  • the number of indication bits of the time window bitmap information can be equal to N1
  • the first indication bit of the time window bitmap information indicates whether the first first time window in the first period is used for monitoring of the PDCCH
  • the time window bitmap information The second indicator bit indicates whether the second first time window in the first period is used for monitoring the PDCCH
  • the third indicator bit of the time window bitmap information indicates whether the third first time window in the first period is used for monitoring the PDCCH , «,And so on.
  • the first time window may be used for PDCCH monitoring by indicating that the bit is 1, and the first time window is not used for PDCCH monitoring by indicating that the bit is 0; or the first time window is used for PDCCH monitoring by indicating that the bit is 0 , indicating that the first time window is not used for PDCCH monitoring by indicating that the bit is 1.
  • an example is used to illustrate that the first time window is used for PDCCH monitoring by indicating that the bit is 1, and that the first time window is not used for PDCCH monitoring by indicating that the bit is 0.
  • time window bitmap information indicates the third first time window among the eight first time windows in the first time period , the seventh first time window and the eighth first time window are used for monitoring the PDCCH, and the other first time windows are not used for monitoring the PDCCH.
  • a first time window pattern corresponding to an index value in the above Table 3 can be regarded as a candidate time window level Figure information.
  • the network device may select one of the candidate time window bitmap information as the time window bitmap information in the configuration information according to a certain strategy. For example, one of the candidate time window bitmap information may be randomly selected as the time window bitmap information in the configuration information. Or according to the minimum relative power consumption value or the minimum average scheduling delay priority, one of the candidate time window bitmap information is selected as the time window bitmap information in the configuration information, and the like.
  • the terminal device may determine M1 first time windows for PDCCH monitoring in the first period according to the time window bitmap information included in the configuration information.
  • the indication bit of the time window bitmap information If the number of digits is 8, then the number of first time windows in the first period is 8.
  • the terminal device determines to monitor the PDCCH in the 4th first time window, the 7th first time window and the 8th first time window at the first time according to the time window bitmap information.
  • the number of indicated bits in the DODR-bitmap field may be greater than the value of the first time window number N1 in the first period, and at this time the time window bitmap information actually occupies the DODR-bitmap field
  • the number of indicator bits in the DODR-bitmap field is 20, and the value of N1 is 8.
  • the time window bitmap information in the configuration information occupies 8 indicator bits in the DODR-bitmap field, and the other bits in the DODR-bitmap field
  • the indicator bits can be filled with 0.
  • the configuration information can also be used to configure the value of N1 or the duration of one of the N1 first time windows.
  • the value of N1 or one of the N1 first time windows can be carried (or configured) by setting a field (or information element) in RRC signaling or DCI that sends configuration information duration.
  • the network device can configure the value of N1 to be 8 through the DODR-num field.
  • the terminal device can determine which 8 indicator bits in the DODR-bitmap field the time window bitmap information occupies according to the protocol or the configuration of the network device, such as occupying the first 8 indicator bits or the last 8 indicator bits in the DODR-bitmap field indicator, etc.
  • DODR time granularity (DODR-timegranularity) field as an example to configure the duration of a first time window in N1 first time windows. If the duration of the first time period is 8ms, the number of first time windows in the first time period N1 is 8, the duration of a first time window is 1 ms, the number of indicator bits in the time window bitmap information is 8, and the number of indicator bits in the DODR-bitmap field is 20.
  • Network devices can be configured through the DODR-timegranularity field The duration of one first time window in the N1 first time windows is 1 ms.
  • the terminal device may determine that the number N1 of the first time windows in the first period is 8 according to the fact that the duration of the first period is 8 ms and the duration of one of the N1 first time windows is 1 ms, and the time window bitmap information The number of bits indicated is 8.
  • the terminal device can determine which 8 indicator bits in the DODR-bitmap field the time window bitmap information occupies according to the protocol or the configuration of the network device, such as occupying the first 8 indicator bits or the last 8 indicator bits in the DODR-bitmap field indicator, etc.
  • the terminal device may also send DRX preference information to the network device, and the network device receives the DRX preference information from the terminal device.
  • the DRX preference information indicates a preference for power consumption and/or latency.
  • the network device may consider the power consumption saving or the average scheduling delay brought by the M1 first time windows used for PDCCH monitoring in the N1 first time windows of the first time period configured by the configuration information, so as to meet DRX preference information reported by the terminal device.
  • the above-mentioned preference for power consumption and/or delay can be partial power saving, or low average scheduling delay, or it can be the power consumption level that the terminal device wants to achieve, such as saving 20% of power consumption; it can also be It is the average scheduling delay acceptable to the terminal equipment, for example, the maximum average scheduling delay is 0.3ms.
  • the terminal device can send DRX preference information to the network device through user assistance information (UE assistance information, UAI), for example, a DODR preference type (preferredDODR-type) field can be added to the UAI to indicate that the terminal device is partial to power saving , or low average scheduling delay.
  • UE assistance information UAI
  • a DODR preference type PreferredDODR-type
  • the preferredDODR-type field is 0, it means that the terminal device prefers power saving, and if it is 1, it means that the average scheduling delay is low.
  • the preferredDODR-type field is an enumeration value "power”, it means that the terminal device is partial to power saving, and if it is an enumeration value "delay”, it means that the average scheduling delay is low.
  • a DODR power consumption preference (preferredDODR-power-consumption) field may also be added to the UAI to represent the desired power consumption level.
  • a DODR average scheduling delay (preferredDODR-average-schedule-delay) field may also be added to the UAI to represent an acceptable average scheduling delay.
  • the network device selects the first time window pattern with lower power consumption (such as the relative power consumption value) and configures it to the terminal device through configuration information, such as the one with the lowest power consumption
  • a first time window pattern is selected from the X first time window patterns and configured to the terminal device through configuration information, where X is an integer greater than or equal to 1.
  • the value of X can be 4. If the preferredDODR-type field in the UAI sent by the terminal device is 0, the network device can select a first time window pattern among the four first time window patterns with the lowest power consumption to pass The configuration information is configured to the terminal device.
  • the network device selects the first time window pattern with the lowest average scheduling delay and configures it to the terminal device through configuration information, for example, the Yth window pattern with the lowest average scheduling delay
  • a first time window pattern is selected from one time window pattern and configured to the terminal device through configuration information
  • Y is an integer greater than or equal to 1.
  • the value of Y can be 3, if the preferredDODR-type field in the UAI sent by the terminal device is 1, the network device can select a first time window among the three first time window patterns with the lowest average scheduling delay The pattern is configured to the terminal device through the configuration information.
  • the network device can select the first time window pattern and configure it to the terminal device through configuration information according to the power consumption level indicated by the preferredDODR-power-consumption field. If there is a preferredDODR-average-schedule-delay field in the UAI, indicating that there is an indication of the average scheduling delay level, the network device can select the first time window pattern according to the average scheduling delay level indicated by the preferredDODR-average-schedule-delay field It is configured to the terminal device through the configuration information.
  • the network device can follow the preferredDODR-power-consumption field.
  • the indicated power consumption level and the average scheduling delay level indicated by the preferredDODR-average-schedule-delay field select the first time window pattern and configure it to the terminal device through configuration information.
  • the network device can start at the first time corresponding to index 1-index 10 Select a first time window pattern from the window pattern and configure it to the terminal device, wherein the first time window pattern corresponding to index 1-index 10 is relative to the pattern of the first time window corresponding to index 16 (that is, the first time window is all used for PDCCH monitoring) can save more than 20% power consumption.
  • each point in Figure 13 represents a first time window pattern
  • the horizontal axis represents the average scheduling delay
  • the vertical axis represents the ratio of the power consumption of the first time window pattern to the power consumption of continuously monitoring the PDCCH within the first period
  • Each point from left to right on the horizontal axis corresponds to the first time window pattern with index 16, the first time window pattern with index 15, . . . , the first time window pattern with index 1 in Table 3.
  • the selection of the DRX cycle needs to consider the balance between the battery life of the terminal equipment and the time delay. From one aspect, a long DRX cycle is beneficial to prolong the battery life of the terminal equipment, and from another aspect, a shorter DRX cycle is beneficial to a faster response when there is new data transmission.
  • the terminal device can be configured with two DRX cycles, that is, a long DRX cycle and a short DRX cycle, and at a certain moment, the terminal device uses one of the two DRX cycle configurations.
  • the network device can configure a long DRX cycle and a short DRX cycle for the terminal device, and the duration of the long DRX cycle is twice the duration of the short DRX cycle, and the duration of the long DRX cycle and the short DRX cycle The duration of the DRX duration can be the same.
  • one I frame (intra frame) and multiple P frames (predicted frames) may be included in a group of picture (GOP).
  • the I frame is an intra-frame reference frame, and the terminal device restores the image according to the data of this frame during decoding;
  • the P frame is a predictive coding frame, which represents the data different from the picture of the previous frame, and the terminal device needs to use the previously cached picture frame when decoding Overlay the difference defined by this frame to generate an image. Since the P frame needs to refer to the previous picture frame when decoding, the decoding time required by the terminal device is longer, so the air interface is required to complete the transmission in less time.
  • the air interface transmission delay budget of the P frame can be 8ms. However, only the data of this frame is needed when decoding an I frame, and the terminal device needs relatively short decoding time, so the air interface transmission delay requirement is relatively low.
  • the air interface transmission delay budget of an I frame can be 12ms. Therefore, when performing video services, a time window pattern for PDCCH monitoring with a shorter average scheduling delay can be configured for P frames, and a time window pattern for PDCCH monitoring with longer average scheduling delay can be configured for I frames.
  • a GOP can contain one I frame and multiple P frames, and the interval between two adjacent I frames is greater than the interval between two adjacent P frames.
  • the interval configures a short DRX cycle for the terminal device, configures a long DRX cycle for the terminal device according to the interval of the I frame, and configures time windows for PDCCH monitoring with different delays for the DRX duration of the long DRX cycle and the short DRX cycle. pattern.
  • the terminal device if the terminal device is configured with a long DRX cycle and a short DRX cycle, the above-mentioned first period is a DRX duration of the long DRX cycle.
  • the configuration information sent by the network device to the terminal device may also be used to configure M2 second time windows for monitoring the PDCCH in the N2 second time windows of the second period, wherein the second period is the DRX duration of the short DRX cycle , N2 is an integer greater than or equal to 2, and M2 is a positive integer smaller than N2.
  • the terminal device may also monitor the PDCCH within M2 second time windows of the N2 second time windows in the second period.
  • the network device configures the realization of M2 second time windows for monitoring PDCCH in the N2 second time windows of the second period through the configuration information, and can refer to the configuration information to configure the N1 first time windows of the first period Realization of M1 first time windows used for PDCCH monitoring in the window.
  • the DODR-index2 field is added to the configuration information to carry the time window index information of the M2 second time windows used for PDCCH monitoring in the N2 second time windows configured in the second period, or the DODR-bitmap2 field is added for It bears time window bitmap information of M2 second time windows used for PDCCH monitoring among the N2 second time windows configured in the second period.
  • the terminal device not only The PDCCH is monitored in the M1 first time windows, and the PDCCH is also monitored in the M2 second time windows of the second period.
  • the terminal device may monitor the PDCCH only in M1 first time windows of the first period.
  • the long DRX cycle is 30 ms
  • the short DRX cycle is 10 ms
  • the DRX duration of the long DRX cycle and the DRX duration of the short DRX cycle are both 5 ms
  • the duration of the first time window and the second time window are both 1 ms.
  • the first time window pattern of the DRX duration of the long DRX cycle is [1, 0, 1, 0, 1]
  • the second time window pattern of the DRX duration of the short DRX cycle is [0, 1] , 1, 1, 1].
  • Scenario 2 The duration of the first period is the DRX cycle.
  • FIG. 16 is a schematic diagram of another communication method provided by the embodiment of the present application.
  • the network device and the terminal device are used as an example to illustrate the method, but the present application does not limit the subject of the interaction.
  • the network device in FIG. 16 may also be a chip, a chip system, or a processor that supports the network device to implement the method, and may also be a logic module or software that can realize all or part of the functions of the wireless network device;
  • the terminal device may also be a chip, a chip system, or a processor that supports the terminal device to implement the method, and may also be a logic module or software that can realize all or part of the functions of the terminal device.
  • the method shown in FIG. 16 can be understood as a specific implementation of the method shown in FIG. 7 .
  • the method includes:
  • S1601 The network device sends configuration information to the terminal device, and the terminal device receives the configuration information from the network device.
  • the terminal device monitors the PDCCH in M1 first time windows among the N1 first time windows in the first time period according to the configuration information, and the duration of the first time period is a DRX cycle.
  • the configuration information can configure M1 first time windows for PDCCH monitoring in the N1 first time windows of the first period, where N1 is an integer greater than or equal to 3, and M1 is less than N1 and greater than or equal to Integer of 2.
  • the M1 first time windows used for PDCCH monitoring are distributed in the DRX cycle, that is, there are at least two first time windows discontinuous in time among the M1 first time windows. Taking the duration of the first period as 16ms, the pattern of the first time window is [0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0], the first In a time window pattern, 1 indicates that the first time window is used for PDCCH monitoring, and 0 indicates that the first time window is not used for PDCCH monitoring.
  • the first period is divided into 16 first time windows , the duration of a first time window is 1ms, the 4th first time window, the 7th first time window and the 8th first time window in the first period corresponding to 3-4ms, 6-8ms It is used to monitor the PDCCH, and other time windows are not used to monitor the PDCCH, wherein the 4th first time window and the 7th first time window are discontinuous in time.
  • the configuration information includes time window index information, and the time window index information is used to configure the above-mentioned M1 first time windows, that is, the N1 first time windows in the first period are used for PDCCH
  • the M1 first time windows to be monitored may be configured by time window index information from the network device.
  • one or more time window index tables can be configured in the network device and the terminal device through protocol predefinition, or network device configuration and unicast, multicast, broadcast, etc. to the terminal device, wherein the time window index table Each entry corresponds to a first time window pattern, and each entry corresponds to an index value. It can be understood that there is at least one first time window pattern in the time window index table, which satisfies that there are at least two of the M1 first time windows used for PDCCH monitoring in the N1 first time windows of the first period. Consecutive first time windows for this condition.
  • first time window patterns corresponding to index values 1, 7, and 8 in Table 4 which do not satisfy the N1th time window pattern in the first period.
  • the corresponding first time window patterns need not be the first time window patterns corresponding to the index values 1, 7, and 8.
  • entries with index values of 1, 7, and 8 in Table 4 can also be deleted, and the network device in the N1 first time windows of the first time period configured by the configuration information corresponds to the M1 first time windows.
  • a time window pattern is selected from the first time window pattern corresponding to the index value 2-6.
  • the time window index information it can be carried (or configured) by setting a field (or information element) in RRC signaling or DCI that sends configuration information, such as setting a discontinuous reception grid (DRX raster, DR) index (DR-index) field, etc. to bear.
  • the terminal device After the terminal device receives the configuration information from the network device, it can determine the first time window pattern according to the time window index information, monitor the PDCCH in the M1 first time windows in the first time window pattern, and the N1-M1 first time windows The PDCCH is not monitored in the window.
  • the M1 first time windows used for PDCCH monitoring in the N1 first time windows of the first period may also be configured by time window bitmap information from the network device. It should be understood that the first time window pattern configured by the time window bitmap information also satisfies that there are at least two of the M1 first time windows used for PDCCH monitoring in the N1 first time windows of the first period A first time window that is discontinuous in time.
  • the time window bitmap information can be carried (or configured) by setting a field (or information element) in the RRC signaling or DCI that sends the configuration information, for example, the DR bitmap (DR bitmap) can be set in the configuration information.
  • the number of indication bits of the time window bitmap information can be equal to N1
  • the first indication bit of the time window bitmap information indicates the first first time window in the first period Whether it is used for PDCCH monitoring
  • the second indication bit of the time window bitmap information indicates whether the second first time window in the first period is used for PDCCH monitoring
  • the third indication bit of the time window bitmap information indicates the first period Whether the third first time window is used to monitor the PDCCH, ..., and so on.
  • the first time window may be used for PDCCH monitoring by indicating that the bit is 1, and the first time window is not used for PDCCH monitoring by indicating that the bit is 0; or the first time window is used for PDCCH monitoring by indicating that the bit is 0 , indicating that the first time window is not used for PDCCH monitoring by indicating that the bit is 1.
  • an example is used to illustrate that the first time window is used for PDCCH monitoring by indicating that the bit is 1, and that the first time window is not used for PDCCH monitoring by indicating that the bit is 0.
  • the number of indicated bits in the DR-bitmap field may have a value greater than N1, and the time window bitmap information actually only occupies part of the indicated bits in the DR-bitmap field, such as the indicated bits in the DR-bitmap field The number is 20, and the value of N1 is 16.
  • the time window bitmap information in the configuration information occupies 16 indicator bits in the DR-bitmap field, and other indicator bits in the DR-bitmap field can be filled with 0.
  • the configuration information may also be used to configure the value of N1 or the duration of one of the N1 first time windows.
  • the value of N1 or one of the N1 first time windows can be carried (or configured) by setting a field (or information element) in RRC signaling or DCI that sends configuration information duration.
  • the network device can configure the value of N1 to be 16 through the DR-num field.
  • the terminal device can determine which 16 indicator bits in the DODR-bitmap field the time window bitmap information occupies according to the provisions of the protocol or the configuration of the network device, such as occupying the first 16 indicator bits or the last 16 indicator bits in the DR-bitmap field indicator, etc.
  • DR time granularity Take setting the DR time granularity (DR-timegranularity) field to configure the duration of a first time window in N1 first time windows as an example, if the duration of the first period is 16ms, the number of first time windows in the first period N1 is 16, the duration of a first time window is 1ms, the number of indicator bits in the time window bitmap information is 16, and the number of indicator bits in the DR-bitmap field is 20.
  • Network devices can be configured through the DR-timegranularity field The duration of one first time window in the N1 first time windows is 1 ms.
  • the terminal device may determine that the number N1 of the first time windows in the first period is 16 according to the fact that the duration of the first period is 16 ms and the duration of one first time window in the N1 first time windows is 1 ms, and that the time window bitmap information The number of bits indicated is 16.
  • the terminal device can determine which 16 indicator bits in the DODR-bitmap field the time window bitmap information occupies according to the provisions of the protocol or the configuration of the network device, such as occupying the first 16 indicator bits or the last 16 indicator bits in the DODR-bitmap field indicator, etc.
  • the terminal device may also send DRX preference information to the network device, and the network device receives the DRX preference information from the terminal device.
  • the DRX preference information indicates a preference for power consumption and/or latency.
  • the network device may consider the power consumption saving and/or the average scheduling delay brought by the M1 first time windows used for PDCCH monitoring in the N1 first time windows of the first time period configured by the configuration information, To satisfy the DRX preference information reported by the terminal equipment.
  • the realization that the terminal device sends DRX preference information to the network device, and how the network device selects a first time window pattern according to the DRX preference information, and configures it to the terminal device through the configuration information is similar to the implementation in the above-mentioned scenario 1. Let me repeat.
  • the terminal device when a terminal device is scheduled and receives or sends data in a time slot, it is likely to continue to be scheduled in the next few time slots. If it is necessary to wait until the next DRX cycle to receive or send these Data will incur additional latency.
  • the terminal device After the terminal device obtains the PDCCH scheduling in the DRX continuous period, it will configure an activation period and start the DRX inactivity timer (DRX inactivity timer).
  • DRX inactivity timer As shown in Figure 18, after obtaining the PDCCH scheduling in the DRX continuous period, the terminal device starts the DRX activation timer, and continuously monitors the PDCCH during the activation period until the DRX activation timer times out. Wherein, if there is a new PDCCH scheduling during the period of monitoring the PDCCH, the DRX activation timer is restarted.
  • the network device can send a DRX command (DRX command) to the terminal device through the MAC CE, when the terminal device receives After reaching the DRX command MAC CE (that is, the MAC CE carrying the DRX command), it will stop the DRX duration and DRX activation timer, and enter the dormant state.
  • DRX command a DRX command
  • MAC CE that is, the MAC CE carrying the DRX command
  • the terminal device starts the DRX activation timer after obtaining the PDCCH scheduling in a certain first time window for PDCCH monitoring, and continuously monitors the PDCCH during the activation period until the DRX activation timer times out. Wherein, if there is a new PDCCH scheduling during the period of monitoring the PDCCH, the DRX activation timer is restarted.
  • the terminal device When the terminal device monitors the PDCCH in the first time window or activation period of a certain DRX cycle, after receiving the DRX command MAC CE, it will stop the DRX activation timer and stop it in the remaining first time window of the DRX cycle Monitor PDCCH and enter sleep state.
  • a terminal device is scheduled to receive or transmit data with continuity.
  • the data is likely to be scheduled in the next few time slots. Scheduling complete. For example: a terminal device receives one or more data packets of a certain video frame in a certain time slot, and the remaining data packets of the video frame will be scheduled in the next several time slots. Therefore, in some implementations, the terminal device receives PDCCH scheduling in a certain first time window for PDCCH monitoring, and stops monitoring in the remaining first time window in the current DRX cycle after the activated DRX activation timer expires PDCCH.
  • the terminal device if the terminal device receives PDCCH scheduling in a certain first time window for PDCCH monitoring, after starting the DRX activation timer, the terminal device will only continue to perform the DRX activation timer in the current DRX cycle. Monitor the PDCCH. If the DRX activation timer expires, even if there is still the first time window available for PDCCH monitoring in the DRX cycle when the DRX activation timer is started, the terminal device will no longer monitor the PDCCH, but will enter the dormant state , thereby saving power consumption.
  • the first time window pattern is [0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]
  • the duration of a first time window is 1 ms
  • the timing duration of the DRX activation timer is 4 ms as an example.
  • the terminal device needs to monitor the PDCCH in the second first time window, the seventh first time window and the eighth first time window. If the terminal device monitors the PDCCH scheduling in the second first time window, and starts the DRX activation timer, the terminal device is within the activation period (the third first time window to the sixth first time window) during which the DRX activation timer has not expired.
  • this embodiment of the present application is not limited to expressing the first time window pattern in a binary form, that is, it is not limited to only 0 and 1 in the first time window pattern.
  • the first time window pattern may also be expressed in an octal format, a hexadecimal format, or the like.
  • a certain indicator bit in the first time window pattern can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, Any one value in A, B, C, D, E, F, can indicate that the first time window corresponding to this indicator bit is not used for the monitoring of PDCCH by a certain indicator bit being 0, and a certain indicator bit is non-zero (such as being 1-9 or any value of A-F) indicates that the first time window corresponding to the indication bit is used for PDCCH monitoring.
  • the network device and the terminal device include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 20 and FIG. 21 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication apparatuses may be used to realize the functions of the terminal device or the network device in the foregoing method embodiments, and thus also realize the beneficial effects of the foregoing method embodiments.
  • the communication device may be one of the terminal devices 120a-120j shown in FIG. 2, or the network device 110a or 110b shown in FIG. Or a module (such as a chip) of a network device.
  • the communication device 2000 includes a processing unit 2010 and an interface unit 2020 .
  • the communication apparatus 2000 is configured to realize the functions of the terminal device or the network device in the method embodiment shown in FIG. 12 or FIG. 16 above.
  • an interface unit 2020 configured to receive configuration information from the network device
  • the processing unit 2010 is configured to control the communication device 2000 to monitor the physical downlink control channel PDCCH in M1 first time windows among the N1 first time windows in the first period according to the configuration information, and the first period is discontinuous reception DRX Duration period, N1 is an integer greater than or equal to 2, and M1 is a positive integer smaller than N1.
  • the configuration information includes time window bitmap information, and the time window bitmap information is used to configure M1 first time windows.
  • the configuration information is also used to configure the value of N1 or the duration of one first time window in the N1 first time windows.
  • the configuration information includes time window index information, and the time window index information is used to configure the M1 first time windows.
  • the first time window pattern corresponding to the M1 first time windows is one of multiple first time window patterns.
  • the interface unit 2020 is further configured to send DRX preference information to the network device, where the DRX preference information indicates a preference for power consumption and/or delay.
  • the processing unit 2010 is further configured to control the communication device 2000 to monitor the PDCCH in M2 second time windows out of the N2 second time windows in the second time period according to the configuration information, the first time period is long The DRX duration of the DRX cycle, the second period is the DRX duration of the short DRX cycle, N2 is an integer greater than or equal to 2, and M2 is a positive integer smaller than N2.
  • the processing unit 2010 is further configured to obtain M2 second time windows in the N2 second time windows of the second period according to the configuration information, the first period is the DRX duration of the long DRX cycle, The second period is a DRX continuous period of a short DRX cycle, N2 is an integer greater than or equal to 2, and M2 is a positive integer smaller than N2;
  • the processing unit 2010 is further configured to control the communication device 2000 to monitor the PDCCH within M2 second time windows when the first time period and the second time period do not overlap in time;
  • the processing unit 2010 controlling the communication device 2000 to monitor the PDCCH in the M1 first time windows of the N1 first time windows in the first time period includes:
  • the communication device 2000 is controlled to monitor the PDCCH within M1 first time windows.
  • an interface unit 2020 configured to receive configuration information from the network device
  • the processing unit 2010 is configured to control the communication device 2000 to monitor the PDCCH in M1 first time windows among the N1 first time windows in the first time period according to the configuration information.
  • the duration of the first time period is a discontinuous reception DRX cycle
  • N1 is Integer greater than or equal to 3
  • M1 is an integer less than N1 and greater than or equal to 2.
  • the configuration information includes time window bitmap information, and the time window bitmap information is used to configure M1 first time windows.
  • the configuration information is also used to configure the value of N1 or the duration of one first time window in the N1 first time windows.
  • the configuration information includes time window index information, and the time window index information is used to configure the M1 first time windows.
  • the first time window pattern corresponding to the M1 first time windows is one of multiple first time window patterns.
  • the interface unit 2020 is further configured to send DRX preference information to the network device, where the DRX preference information indicates a preference for power consumption and/or delay.
  • the processing unit 2010 is configured to generate configuration information, the configuration information is used to configure M1 first time windows in the N1 first time windows of the first period, and the M1 first time windows are used for physical downlink control channel PDCCH Monitoring, the first period is the DRX continuous period for discontinuous reception, N1 is an integer greater than or equal to 2, and M1 is a positive integer less than N1;
  • the interface unit 2020 is configured to send configuration information to the terminal device.
  • the configuration information includes time window bitmap information, and the time window bitmap information is used to configure M1 first time windows.
  • the configuration information is also used to configure the value of N1 or the duration of one first time window in the N1 first time windows.
  • the configuration information includes time window index information, and the time window index information is used to configure the M1 first time windows.
  • the first time window pattern corresponding to the M1 first time windows is one of multiple first time window patterns.
  • the interface unit 2020 is further configured to receive DRX preference information from the terminal device, where the DRX preference information indicates a preference for power consumption and/or time delay.
  • the configuration information is also used to configure M2 second time windows in the N2 second time windows of the second period, the M2 second time windows are used for PDCCH monitoring, and the first period is long
  • the DRX duration of the DRX cycle, the second period is the DRX duration of the short DRX cycle, N2 is an integer greater than or equal to 2, and M2 is a positive integer smaller than N2.
  • the processing unit 2010 is configured to generate configuration information, the configuration information is used to configure M1 first time windows in the N1 first time windows of the first period, and the M1 first time windows are used for physical downlink control channel PDCCH Monitoring, the duration of the first period is the discontinuous reception DRX cycle, N1 is an integer greater than or equal to 3, and M1 is an integer less than N1 and greater than or equal to 2;
  • the interface unit 2020 is configured to send configuration information to the terminal device.
  • the configuration information includes time window bitmap information, and the time window bitmap information is used to configure M1 first time windows.
  • the configuration information is also used to configure the value of N1 or the duration of one first time window in the N1 first time windows.
  • the configuration information includes time window index information, and the time window index information is used to configure the M1 first time windows.
  • the first time window pattern corresponding to the M1 first time windows is one of multiple first time window patterns.
  • the interface unit 2020 is further configured to receive DRX preference information from the terminal device, where the DRX preference information indicates a preference for power consumption and/or time delay.
  • a communication device 2100 includes a processor 2110 and an interface circuit 2120 .
  • the processor 2110 and the interface circuit 2120 are coupled to each other.
  • the interface circuit 2120 may be a transceiver or an input/output interface.
  • the communication device 2100 may further include a memory 2130 for storing instructions executed by the processor 2110 or storing input data required by the processor 2110 to execute the instructions or storing data generated after the processor 2110 executes the instructions.
  • the processor 2110 is used to implement the functions of the above processing unit 2010
  • the interface circuit 2120 is used to implement the functions of the above interface unit 2020 .
  • the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as radio frequency modules or antennas), and the information is sent to the terminal device by the network device; or, the terminal device chip sends information to other modules in the terminal device (such as radio frequency modules or antenna) to send information, which is sent by the terminal device to the network device.
  • the network equipment module implements the functions of the network equipment in the above method embodiments.
  • the network equipment module receives information from other modules in the network equipment (such as radio frequency modules or antennas), and the information is sent to the network equipment by the terminal equipment; or, the network equipment module sends information to other modules in the network equipment (such as radio frequency modules or antenna) to send information, which is sent by the network device to the terminal device.
  • the network device module here may be a baseband chip of the network device, or a DU or other modules, and the DU here may be a DU under an open radio access network (O-RAN) architecture.
  • OF-RAN open radio access network
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device. Certainly, the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; and it may also be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • information, signal (signal), message (message), and channel (channel) can sometimes be used interchangeably.
  • signal signal
  • message messages
  • channel channel
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a “division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种物理下行链路控制信道PDCCH监听方法及装置,能够降低终端设备的功耗。该方法包括:接收来自网络设备的配置信息;根据配置信息在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,第一时段为非连续接收DRX持续时段,N1为大于等于2的整数,M1为小于N1的正整数。

Description

一种PDCCH监听方法及装置
相关申请的交叉引用
本申请要求在2021年10月13日提交中国专利局、申请号为202111194278.3、申请名称为“一种PDCCH监听方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种物理下行链路控制信道(physical downlink control channel,PDCCH)监听方法及装置。
背景技术
第五代(5th generation,5G)移动通信系统中引入了非连续接收(discontinuous reception,DRX)技术用于省电(power saving)。DRX的基本机制是给终端设备配置DRX周期(cycle)。如图1所示,对于一个DRX周期,在DRX持续时段(on duration),终端设备正常监听PDCCH,在其他时段,终端设备有机会(opportunity)进入休眠状态,不接收PDCCH以减少功耗。
伴随着5G移动通信系统的不断发展,5G通信系统逐渐渗入一些实时性强、数据容量要求大的多媒体业务,如视频传输、云游戏(cloud gaming,CG)和扩展现实(extended reality,XR)等媒体业务。对于这些多媒体业务,业务帧的到达时刻会发生抖动(jitter),也即业务帧的到达时刻相对于设定的理想到达时刻会提前或延后。为了适配业务帧的抖动,DRX配置方法需要将DRX持续时段的时长设置为可以涵盖整个业务帧可能到达的时间范围,这样会导致终端设备监听PDCCH的时间过长,功耗过高。
发明内容
本申请实施例提供一种通信方法及装置,能够降低终端设备的功耗。
第一方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。该方法包括:接收来自网络设备的配置信息;根据配置信息在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,第一时段为DRX持续时段,N1为大于等于2的整数,M1为小于N1的正整数。
采用上述方法,将DRX持续时段划分为多个(两个或两个以上)第一时间窗,终端设备在DRX持续时段中的部分第一时间窗内监听PDCCH,在DRX持续时段中不需要监听PDCCH的第一时间窗可以进入休眠,节省功耗。
在一种可能的设计中,配置信息包括时间窗位图信息,时间窗位图信息用于配置M1个第一时间窗。可选地,配置信息还用于配置N1的取值或N1个第一时间窗中一个第一时间窗的时长。
上述设计中,给出了网络设备向终端设备配置用于PDCCH监听的M1个第一时间窗 的灵活实现方式,有利于满足不同的通信需求。
在一种可能的设计中,配置信息包括时间窗索引信息,时间窗索引信息用于配置M1个第一时间窗。可选的,M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
上述设计中,降低了网络设备向终端设备配置用于PDCCH监听的M1个第一时间窗的信元开销,能够节约无线通信资源,提高无线通信资源的利用率。
在一种可能的设计中,该方法还包括:向网络设备发送DRX偏好信息,DRX偏好信息指示对功耗和/或时延的偏好。
上述设计中,有利于网络设备根据终端设备的DRX偏好信息向终端设备下发配置信息,从而在满足用户在功耗方面以及业务时延方面的性能需求的情况下,以尽可能低的功耗获取更好的体验水平。
作为一种示例,DRX偏好信息可以指示对功耗的偏好,例如功耗节省比例,使得网络设备可以按照终端设备相对第一时段均用于PDCCH监听节省该功耗节省比例(如20%)的功耗要求,向终端设备下发配置信息配置用于PDCCH监听的M1个第一时间窗,使得终端设备在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,满足终端设备在功耗方面的需求。
作为另一种示例,DRX偏好信息可以指示对时延的偏好,例如平均调度时延,使得网络设备可以按照终端设备相对第一时段均用于PDCCH监听的调度时延基础上,增加不高于该平均调度时延的要求,向终端设备下发配置信息配置用于PDCCH监听的M1个第一时间窗,使得终端设备在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,在节省终端设备功耗的情况下,满足终端设备在业务时延方面的需求。
作为又一种示例,DRX偏好信息还可以同时指示对功耗和时延的偏好,例如功耗节省比例和平均调度时延,使得网络设备可以按照终端设备相对第一时段均用于PDCCH监听节省该功耗节省比例的功耗要求,以及相对第一时段均用于PDCCH监听的调度时延基础上,增加不高于该平均调度时延的要求,向终端设备下发配置信息配置用于PDCCH监听的M1个第一时间窗,使得终端设备在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,在节省终端设备功耗的情况下,满足终端设备在业务时延方面的需求。
在一种可能的设计中,该方法还包括:根据配置信息在第二时段的N2个第二时间窗中的M2个第二时间窗内监听PDCCH,第一时段为长DRX周期的DRX持续时段,第二时段为短DRX周期的DRX持续时段,N2为大于等于2的整数,M2为小于N2的正整数。
上述设计中,可以解决不同类型的业务帧(如视频帧)对时延的不同要求的问题,用于PDCCH监听的M1个第一时间窗和M2个第二时间窗,分别配置在长DRX周期的DRX持续时段和短DRX周期的DRX持续时段,从而在满足不同类型业务帧的时延要求下,更好的降低终端设备的功耗。
在一种可能的设计中,该方法还包括:根据配置信息获得第二时段的N2个第二时间窗中的M2个第二时间窗,第一时段为长DRX周期的DRX持续时段,第二时段为短DRX周期的DRX持续时段,N2为大于等于2的整数,M2为小于N2的正整数;当第一时段和第二时段在时间上不重叠时,在M2个第二时间窗内监听PDCCH;在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH包括:当第一时段和第二时段在时间上重叠时,在M1个第一时间窗内监听PDCCH。
上述设计中,可以解决不同类型的业务帧(如视频帧)对时延的不同要求的问题,用于PDCCH监听的M1个第一时间窗和M2个第二时间窗,分别配置在长DRX周期的DRX持续时段和短DRX周期的DRX持续时段,从而在满足不同类型业务帧的时延要求下,更好的降低终端设备的功耗。同时,还为长DRX周期的DRX持续时段和短DRX周期的DRX持续时段的冲突提供了解决方案。
第二方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。该方法包括:接收来自网络设备的配置信息;根据配置信息在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,第一时段的时长为DRX周期,N1为大于等于3的整数,M1为小于N1且大于等于2的整数。
采用上述方法,将DRX周期划分为多个(两个或两个以上)第一时间窗,终端设备在DRX周期中的部分第一时间窗内监听PDCCH,在DRX周期中不需要监听PDCCH的第一时间窗可以进入休眠,节省功耗。
在一种可能的设计中,M1个第一时间窗中至少有两个在时间上不连续的第一时间窗。
上述设计中,用于监听PDCCH的M1个第一时间窗中至少有两个在时间上不连续的第一时间窗,有利于用于监听PDCCH的第一时间窗在DRX周期内分散部署,尽可能的降低业务时延。
在一种可能的设计中,配置信息包括时间窗位图信息,时间窗位图信息用于配置M1个第一时间窗。可选地,配置信息还用于配置N1的取值或N1个第一时间窗中一个第一时间窗的时长。
上述设计中,给出了网络设备向终端设备配置用于PDCCH监听的M1个第一时间窗的灵活实现方式,有利于满足不同的通信需求。
在一种可能的设计中,配置信息包括时间窗索引信息,时间窗索引信息用于配置M1个第一时间窗。可选的,M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
上述设计中,降低了网络设备向终端设备配置用于PDCCH监听的M1个第一时间窗的信元开销,能够节约无线通信资源,提高无线通信资源的利用率。
在一种可能的设计中,该方法还包括:向网络设备发送DRX偏好信息,DRX偏好信息指示对功耗和/或时延的偏好。
上述设计中,有利于网络设备根据终端设备的DRX偏好信息向终端设备下发配置信息,从而在满足用户在功耗方面以及业务时延方面的性能需求的情况下,以尽可能低的功耗获取更好的体验水平。
作为一种示例,DRX偏好信息可以指示对功耗的偏好,例如功耗节省比例,使得网络设备可以按照终端设备相对第一时段均用于PDCCH监听节省该功耗节省比例(如20%)的功耗要求,向终端设备下发配置信息配置用于PDCCH监听的M1个第一时间窗,使得终端设备在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,满足终端设备在功耗方面的需求。
作为另一种示例,DRX偏好信息可以指示对时延的偏好,例如平均调度时延,使得网络设备可以按照终端设备相对第一时段均用于PDCCH监听的调度时延基础上,增加不高于该平均调度时延的要求,向终端设备下发配置信息配置用于PDCCH监听的M1个第 一时间窗,使得终端设备在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,在节省终端设备功耗的情况下,满足终端设备在业务时延方面的需求。
作为又一种示例,DRX偏好信息还可以同时指示对功耗和时延的偏好,例如功耗节省比例和平均调度时延,使得网络设备可以按照终端设备相对第一时段均用于PDCCH监听节省该功耗节省比例的功耗要求,以及相对第一时段均用于PDCCH监听的调度时延基础上,增加不高于该平均调度时延的要求,向终端设备下发配置信息配置用于PDCCH监听的M1个第一时间窗,使得终端设备在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,在节省终端设备功耗的情况下,满足终端设备在业务时延方面的需求。
第三方面,本申请实施例提供一种通信方法,该方法可以由网络设备执行,也可以由网络设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:生成配置信息,配置信息用于配置第一时段的N1个第一时间窗中的M1个第一时间窗,M1个第一时间窗用于PDCCH的监听,第一时段为DRX持续时段,N1为大于等于2的整数,M1为小于N1的正整数;向终端设备发送配置信息。
在一种可能的设计中,配置信息包括时间窗位图信息,时间窗位图信息用于配置M1个第一时间窗。可选地,配置信息还用于配置N1的取值或N1个第一时间窗中一个第一时间窗的时长。
在一种可能的设计中,配置信息包括时间窗索引信息,时间窗索引信息用于配置M1个第一时间窗。可选的,M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
在一种可能的设计中,该方法还包括:接收来自终端设备的DRX偏好信息,DRX偏好信息指示对功耗和/或时延的偏好。
作为一种示例,DRX偏好信息可以指示对功耗的偏好,例如功耗节省比例,网络设备可以按照终端设备相对第一时段均用于PDCCH监听节省该功耗节省比例(如20%)的功耗要求,向终端设备下发配置信息配置用于PDCCH监听的M1个第一时间窗,使得终端设备在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,满足终端设备在功耗方面的需求。
作为另一种示例,DRX偏好信息可以指示对时延的偏好,例如平均调度时延,网络设备可以按照终端设备相对第一时段均用于PDCCH监听的调度时延基础上,增加不高于该平均调度时延的要求,向终端设备下发配置信息配置用于PDCCH监听的M1个第一时间窗,使得终端设备在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,在节省终端设备功耗的情况下,满足终端设备在业务时延方面的需求。
作为又一种示例,DRX偏好信息还可以同时指示对功耗和时延的偏好,例如功耗节省比例和平均调度时延,网络设备可以按照终端设备相对第一时段均用于PDCCH监听节省该功耗节省比例的功耗要求,以及相对第一时段均用于PDCCH监听的调度时延基础上,增加不高于该平均调度时延的要求,向终端设备下发配置信息配置用于PDCCH监听的M1个第一时间窗,使得终端设备在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,在节省终端设备功耗的情况下,满足终端设备在业务时延方面的需求。
在一种可能的设计中,配置信息还用于配置第二时段的N2个第二时间窗中的M2个第二时间窗,M2个第二时间窗用于PDCCH的监听,第一时段为长DRX周期的DRX持 续时段,第二时段为短DRX周期的DRX持续时段,N2为大于等于2的整数,M2为小于N2的正整数。
第四方面,本申请实施例提供一种通信方法,该方法可以由网络设备执行,也可以由网络设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:生成配置信息,配置信息用于配置第一时段的N1个第一时间窗中的M1个第一时间窗,M1个第一时间窗用于PDCCH的监听,第一时段的时长为DRX周期,N1为大于等于3的整数,M1为小于N1且大于等于2的整数;向终端设备发送配置信息。
在一种可能的设计中,M1个第一时间窗中至少有两个在时间上不连续的第一时间窗。
在一种可能的设计中,配置信息包括时间窗位图信息,时间窗位图信息用于配置M1个第一时间窗。可选地,配置信息还用于配置N1的取值或N1个第一时间窗中一个第一时间窗的时长。
在一种可能的设计中,配置信息包括时间窗索引信息,时间窗索引信息用于配置M1个第一时间窗。可选的,M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
在一种可能的设计中,该方法还包括:接收来自终端设备的DRX偏好信息,DRX偏好信息指示对功耗和/或时延的偏好。
作为一种示例,DRX偏好信息可以指示对功耗的偏好,例如功耗节省比例,网络设备可以按照终端设备相对第一时段均用于PDCCH监听节省该功耗节省比例(如20%)的功耗要求,向终端设备下发配置信息配置用于PDCCH监听的M1个第一时间窗,使得终端设备在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,满足终端设备在功耗方面的需求。
作为另一种示例,DRX偏好信息可以指示对时延的偏好,例如平均调度时延,网络设备可以按照终端设备相对第一时段均用于PDCCH监听的调度时延基础上,增加不高于该平均调度时延的要求,向终端设备下发配置信息配置用于PDCCH监听的M1个第一时间窗,使得终端设备在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,在节省终端设备功耗的情况下,满足终端设备在业务时延方面的需求。
作为又一种示例,DRX偏好信息还可以同时指示对功耗和时延的偏好,例如功耗节省比例和平均调度时延,网络设备可以按照终端设备相对第一时段均用于PDCCH监听节省该功耗节省比例的功耗要求,以及相对第一时段均用于PDCCH监听的调度时延基础上,增加不高于该平均调度时延的要求,向终端设备下发配置信息配置用于PDCCH监听的M1个第一时间窗,使得终端设备在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,在节省终端设备功耗的情况下,满足终端设备在业务时延方面的需求。
第五方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面或者第一方面的任一种可能的设计中方法,或实现上述第二方面或者第二方面的任一种可能的设计中方法的功能,该装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块(或单元),比如包括接口单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储处理器执行的程 序,当程序被处理器执行时,该装置可以执行上述第一方面或者第一方面的任一种可能的设计中的方法,或执行上述第二方面或者第二方面的任一种可能的设计中的方法。
在一个可能的设计中,该装置可以为终端设备,也可以为终端设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分终端设备功能的逻辑模块或软件。
第六方面,本申请实施例提供一种通信装置,该装置具有实现上述第三方面或者第三方面的任一种可能的设计中方法,或实现上述第四方面或者第四方面的任一种可能的设计中方法的功能,该装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块(或单元),比如包括接口单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储处理器执行的程序,当程序被处理器执行时,该装置可以执行上述第三方面或者第三方面的任一种可能的设计中的方法,或执行上述第四方面或者第四方面的任一种可能的设计中的方法。
在一个可能的设计中,该装置可以为网络设备,也可以为网络设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分网络设备功能的逻辑模块或软件。
第七方面,本申请实施例提供一种通信系统,该通信系统包括终端设备和网络设备,终端设备可以执行上述第一方面或者第一方面的任一种可能的设计中的方法,网络设备可以执行上述第三方面或者第三方面的任一种可能的设计中的方法;或终端设备可以执行上述第二方面或者第二方面的任一种可能的设计中的方法,网络设备可以执行上述第四面或者第四方面的任一种可能的设计中的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,在存储介质中存储有计算机程序或指令,当计算机程序或指令被执行时,可以实现上述第一方面或者第一方面的任一种可能的设计中的方法,或实现上述第二方面或者第二方面的任一种可能的设计中的方法,或实现上述第三方面或者第三方面的任一种可能的设计中的方法,或实现上述第四方面或者第四方面的任一种可能的设计中的方法。
第九方面,本申请实施例还提供一种计算机程序产品,包括计算机程序或指令,当计算机程序或指令被执行时,可以实现上述第一方面或者第一方面的任一种可能的设计中的方法,或实现上述第二方面或者第二方面的任一种可能的设计中的方法,或实现上述第三方面或者第三方面的任一种可能的设计中的方法,或实现上述第四方面或者第四方面的任一种可能的设计中的方法。
第十方面,本申请实施例还提供一种芯片,该芯片与存储器耦合,用于读取并执行存储器中存储的程序或指令实现上述第一方面或者第一方面的任一种可能的设计中的方法,或实现上述第二方面或者第二方面的任一种可能的设计中的方法,或实现上述第三方面或者第三方面的任一种可能的设计中的方法,或实现上述第四方面或者第四方面的任一种可能的设计中的方法。
上述第三方面至第十方面所能达到的技术效果请参照上述第一方面或第二方面所能达到的技术效果,这里不再重复赘述。
附图说明
图1为本申请提供的一种DRX周期示意图;
图2为本申请实施例提供的通信系统的架构示意图;
图3为本申请实施例提供的适用的场景示意图之一;
图4为本申请实施例提供的适用的场景示意图之二;
图5为本申请实施例提供的适用的场景示意图之三;
图6为本申请实施例提供的业务帧到达示意图;
图7为本申请实施例提供的通信方法示意图之一;
图8为本申请实施例提供的另一种DRX周期示意图;
图9为本申请实施例提供的第一时间窗结构示意图之一;
图10为本申请实施例提供的转换深睡眠态/轻睡眠态功耗示意图;
图11为本申请实施例提供的业务帧到达概率分布示意图;
图12为本申请实施例提供的通信方法示意图之二;
图13为本申请实施例提供的功耗比值和平均调度时延示意图;
图14为本申请实施例提供的长DRX周期和短DRX周期示意图;
图15为本申请实施例提供的监听PDCCH的时间窗示意图;
图16为本申请实施例提供的通信方法示意图之三;
图17为本申请实施例提供的第一时间窗结构示意图之二;
图18为本申请实施例提供的DRX激活期示意图;
图19为本申请实施例提供的DRX命令(command)媒体介入控制层(media access control,MAC)控制单元(control element,CE)示意图;
图20为本申请实施例提供的通信装置示意图之一;
图21为本申请实施例提供的通信装置示意图之二。
具体实施方式
图2是本申请的实施例应用的通信系统的架构示意图。如图2所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统还可以包括互联网300。其中,无线接入网100可以包括至少一个网络设备,如图2中的110a和110b,还可以包括至少一个终端设备,如图2中的120a-120j。其中,110a是基站,110b是微站,120a、120e、120f和120j是手机,120b是汽车,120c是加油机,120d是布置在室内或室外的家庭接入节点(home access point,HAP),120g是笔记本电脑,120h是打印机,120i是无人机。其中,同一个终端设备或网络设备,在不同应用场景中可以提供不同的功能。比如,图2中的手机有120a、120e、120f和120j,手机120a可以接入基站110a,连接汽车120b,与手机120e直连通信以及接入到HAP,手机120e可以接入HAP以及与手机120a直连通信,手机120f可以接入为微站110b,连接笔记本电脑120g,连接打印机120h,手机120j可以控制无人机120i。
终端设备与网络设备相连,网络设备与核心网连接。核心网设备与网络设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备的功能。终端设备和终端设备之间以及网络设备和网络设备之间可以通过有线或无线的方式相互连接。图2只是示意图,该通信系统中还可以包括其它设备,如还可以包括无线中继设备和无线回传设备,在图2中未画出。
网络设备,也可以称为无线接入网设备,可以是基站(base station)、演进型基站(evolved  NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。网络设备可以是宏基站(如图2中的110a),也可以是微基站或室内站(如图2中的110b),还可以是中继节点或施主节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。可以理解,本申请中的网络设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以是固定位置的,也可以是可移动的。网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备的角色可以是相对的,例如,图2中的直升机或无人机120i可以被配置成移动网络设备,对于那些通过120i接入到无线接入网100的终端设备120j来说,终端设备120i是网络设备;但对于网络设备110a来说,120i是终端设备,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过网络设备与网络设备之间的接口协议进行通信的,此时,相对于110a来说,120i也是网络设备。因此,网络设备和终端设备都可以统一称为通信装置,图2中的110a和110b可以称为具有网络设备功能的通信装置,图2中的120a-120j可以称为具有终端设备功能的通信装置。
网络设备和终端设备之间、网络设备和网络设备之间、终端设备和终端设备之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,网络设备的功能也可以由网络设备中的模块(如芯片)来执行,也可以由包含有网络设备功能的控制子系统来执行。这里的包含有网络设备功能的控制子 系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端设备的功能也可以由终端设备中的模块(如芯片或调制解调器)来执行,也可以由包含有终端设备功能的装置来执行。
在本申请中,网络设备向终端设备发送下行信号或下行信息,下行信息承载在下行信道上;终端设备向网络设备发送上行信号或上行信息,上行信息承载在上行信道上。终端设备为了与网络设备进行通信,需要与网络设备控制的小区建立无线连接。与终端设备建立了无线连接的小区称为该终端设备的服务小区。当终端设备与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
本申请提供的实施例适用于多种不同的场景。图3-图5示出了本申请实施例适用的几种场景示意图。
图3示出了一种本申请实施例适用的场景示意图。图3示意了一个系统300,包含服务器310、核心网和接入网320(可简称为传输网络320,例如LTE、5G或6G网络)、以及终端设备330。其中,服务器310可用于对XR的源数据进行编解码和渲染,传输网络320可用于对XR数据的传输,终端设备330通过对XR数据的处理为用户提供多样化的XR体验。可以理解,传输网络320与终端设备330之间还可以包含其他的装置,例如还可以包含其他的终端设备(例如手机、笔记本电脑、或车载终端设备等)和/或网络设备(例如中继设备、一体化接入回传(integrated access backhaul,IAB)设备、WiFi路由器、或WiFi接入点等),终端设备330借助其他的终端设备和/或网络设备从传输网络320获得XR数据。
图4示出了另一种本申请实施例适用的场景示意图。图4示意了一个系统400,包括终端设备410、核心网和接入网420(可简称为传输网络420,例如LTE、5G或6G网络)、以及其它终端设备430。其他终端设备430是终端设备410之外的终端设备。其他终端设备430可以借助传输网络420向终端设备410传输XR数据。例如:终端设备410为主域触觉用户与人工系统接口,其它终端设备430为受控域的远程控制机器人或远程操作员。主域从受控域接收音频/视频反馈信号,主域和受控域在各种命令和反馈信号的帮助下,通过传输网络420上的双向通信链接进行连接,从而形成一个全局控制环。
图5示出了另一种本申请实施例适用的场景示意图。图5示意了一个系统500,包含服务器510、固网520、WiFi路由器或WiFi接入点530(可简称为WiFi装置530)、和终端设备540。服务器510可用于对XR的源数据进行编解码和渲染,并借助固网520和WiFi装置530向终端设备540传输XR数据。例如,固网520为运营商网络,WiFi装置530是WiFi路由器、WiFi接入点或机顶盒,服务器510借助运营商网络520和WiFi装置530将XR数据传输或投屏到终端设备540。
可以理解,图3-图5仅给出了本申请实施例可以适用的几种场景示意,并没有对本申请实施例的适用场景产生限定。
随着5G通信系统逐渐渗入一些实时性强、数据容量要求大的多媒体业务,以及终端设备越来越轻量化的设计,终端设备电池的续航时间成为了用户关注的重点。例如:对于XR业务,用户越来越希望通过头戴式显示器(head mounted display,HMD)或者智能眼镜(如VR眼镜、增强现实(augmented reality,AR)眼镜)这种头戴式的终端设备来提高体验,而对于头戴式的终端设备受限于外形尺寸的限制,电池的容量较低,并且预期需要长时间佩戴,那么对头戴式的终端设备的功耗控制,就成为头戴式的终端设备使用过程中 的重要环节。再例如,对于长时间的云游戏或者视频传输来说,用户也期望终端设备的电池有较长的续航时间,对终端设备的功耗控制也是终端设备使用过程中的重要环节。
目前,对于媒体业务,其业务帧通常是根据帧率周期性到达。然而,由于服务器编码处理、固网/核心网传输等因素,导致业务帧到达网络设备时,不一定是严格符合周期性。如图6所示,一个帧率为60帧每秒(frame per second,FPS)的视频,理想情况下,帧间隔为1/60s,也即每隔16.67ms到达一个业务帧。然而实际由于服务器编码处理、固网/核心网传输等因素,每个业务帧到达网络设备的延迟不等,帧间隔不再是严格的16.67ms,也就是说业务帧的到达时刻存在抖动(jitter)。例如在图6中,第二帧延后到达5ms,即jitter=5ms,第四帧提前到达了3ms,即jitter=-3ms。以60FPS的XR业务,jitter的取值服从均值为0,标准差为2ms,取值范围[-4ms,4ms]的截断高斯分布为例,为了适配jitter,就需要将DRX持续时段设置为整个业务帧可能到达的时间范围,即将DRX周期设置为16.67ms,将DRX持续时段设置为8ms,从而能够涵盖整个业务帧可能到达的时间范围[-4ms,4ms],这时需要终端设备在一个DRX周期内将近一半的时间内都需要监听PDCCH,导致功耗过高。另外,如果jitter的取值范围进一步增加至达到或超过DRX周期,则需将DRX持续时段设置为等于DRX周期,也就是说终端设备需要在一个DRX周期内一直监听PDCCH,功耗更高。
本申请主要考虑从高效应对业务帧抖动的角度出发,在保证用户体验的前提下,进一步降低终端设备的功耗。下面将结合附图,对本申请实施例进行详细描述。
图7为本申请实施例提供的一种通信方法示意图。图7中以网络设备和终端设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图7中的网络设备也可以是支持该网络设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分无线网络设备功能的逻辑模块或软件;图7中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端设备功能的逻辑模块或软件。该方法包括:
S701:网络设备向终端设备发送配置信息,终端设备接收来自网络设备的配置信息。
S702:终端设备根据配置信息在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH。
在本申请实施例中,配置信息可以配置第一时段的N1个第一时间窗中用于PDCCH监听的M1个第一时间窗。具体的,第一时段可以是时域上一段连续的时间。第一时段可以在时间(也可以称为时域)上周期分布,也可以在时间上非周期分布。举例来说,第一时段可以为DRX持续时段(on duration),并按照DRX周期在时间上周期分布。作为一种示例,如图1所示,在第一时段为DRX持续时段时,第一时段可以按照DRX周期在时间上周期分布。第一时段还可以是指DRX周期,也就是说一个DRX周期可作为一个第一时段,第一时段的时长等于DRX周期,第一时段按照DRX周期在时间上周期分布。第一时段还可以是指唤醒信号(wake up signal,WUS)的唤醒时段等,WUS可以用于指示终端设备在接收到WUS所在DRX周期的下一个DRX周期的DRX持续时段(也可称为唤醒时段)进行PDCCH的监听。
其中,配置信息可以通过无线资源控制(radio resource control,RRC)信令、下行链路控制信息(downlink control information,DCI)等由网络设备发送给终端设备。
另外,需要理解的是上述DRX持续时段,也可以称为DRX持续时间、DRX开启时 段、或DRX开启时间等。
以第一时段为DRX持续时段为例,对于帧率为60FPS,业务帧的jitter的取值服从均值为0,标准差为2ms,取值范围[-4ms,4ms]的截断高斯分布的XR业务,XR业务的业务帧帧间隔为16.67ms,为了方便描述在本申请实施例中将16.67ms取整为16ms。如图8所示,需要将DRX周期设置为16ms,同时为了适配jitter,就需要将第一时段(DRX持续时段)设置为整个业务帧可能到达的时间范围,也即需要将DRX持续时段设置为8ms,从而能够涵盖整个业务帧可能到达的时间范围[-4ms,4ms]。这就需要终端设备在第一时段一半的时间内都需要监听PDCCH,导致功耗过高。
为了降低终端设备的功耗,在本申请实施例中,可以利用业务帧的jitter在时间上的概率分布的特性,通过配置信息在第一时段中设置N1个第一时间窗,并配置终端设备在N1个第一时间窗中的M1个第一时间窗内监听PDCCH,剩余的N1-M1个第一时间窗终端设备可以不监听PDCCH,进入休眠状态以节省功耗。需要理解的是,上述时间窗还可以称为时间栅格(raster)或子时间段等,本申请对其名称不做限定。
在一种可能的实施中,第一时间窗的时长可以根据时隙长度来确定,如第一时间窗的时长可以等于时隙长度,也可以为时隙长度的整倍数等。
作为一种示例,如图9所示,以时隙长度是1ms为例,图8中时长为8ms的第一时段可包括8个第一时间窗,8个第一时间窗互不重叠,每个第一时间窗的时长为1ms。如果配置信息配置终端设备在第一时段内的第3-4ms、第6-8ms对应的3个第一时间窗内监听PDCCH,那么终端设备在第一时段内的第0-3ms、第4-6ms对应的5个第一时间窗内可以进入到休眠状态,不监听PDCCH,从而节省功耗。
参照表1,表1示出了一种终端设备在不同状态下,单位时间(例如1ms)的相对功耗值示例。如表1所示,对于处于睡眠态的终端设备,处于深睡眠态的终端设备中处于去激活态的硬件数量最多,终端设备的功耗最小;处于微睡眠态的终端设备中处于去激活态的硬件数量最少,终端设备的功耗最高;处于轻睡眠态的终端设备中处于去激活态的硬件数量小于处于深睡眠态的终端设备中处于去激活态的硬件数量、大于处于微睡眠态的终端设备中处于去激活态的硬件数量,终端设备的功耗大于处于深睡眠态的终端设备的功耗、小于处于微睡眠态的终端设备的功耗。如果处于深睡眠态的终端设备单位时间的功耗值表示为1,如表1所示,相对于处于深睡眠态的终端设备单位时间的功耗,处于深睡眠态的终端设备的单位时间的相对功耗值为1,处于轻睡眠态的终端设备的单位时间的相对功耗值为20,处于微睡眠态的终端设备的单位时间的相对功耗值为45,终端设备在监听PDCCH时单位时间的相对功耗值为100,在同时监听PDCCH和接收物理下行链路共享信道(physical downlink shared channel,PDSCH)时单位时间的相对功耗值为300。需要理解的是,表1中示出的相对功耗值的数值仅是一种示例。
表1
Figure PCTCN2022121099-appb-000001
另外,终端设备由监听态(如监听PDCCH,或监听PDCCH且接收PDSCH)转换到睡眠态、再由睡眠态转换到监听态需要转换时间,其中转换到功耗越低的睡眠态所需的转 换时间越长,并且终端设备在监听态转换到睡眠态、再由睡眠态转换到监听态的转换过程中也要消耗一定的功耗。如表2所示,给出了监听态到不同睡眠态、再由不同睡眠态转换到监听态的转换时间以及相应的相对功耗值示例,其中由监听态到深睡眠态、再由深睡眠态到监听态所需的转换时间和转换阶段的总相对功耗值分别为20ms和450;由监听态到轻睡眠态、再由轻睡眠态到监听态所需的转换时间和转换阶段的总相对功耗值分别为60ms和100;由监听态到微睡眠态、再由微睡眠态到监听态所需的转换时间和转换阶段的总相对功耗值分别为0ms和0。
表2
Figure PCTCN2022121099-appb-000002
图10为由监听态到深睡眠态/轻睡眠态、再由深睡眠态/轻睡眠态到监听态所需要的相对功耗值(即相对于深睡眠态的单位时间功耗的相对功耗值)示意图,其中,深睡眠态/轻睡眠态的持续时长包括由监听态到深睡眠态/轻睡眠态、再由深睡眠态/轻睡眠态到监听态的转换时长,缓降(ramp down)标注的方框代表由监听态(如监听PDCCH,或监听PDCCH且接收PDSCH)到深睡眠态/轻睡眠态的转换相对功耗值,斜升(ramp up)标注的方框表示由深睡眠态/轻睡眠态到监听态的转换相对功耗值,深睡眠态/轻睡眠态标注的长框代表处于深睡眠态/轻睡眠态的相对功耗值,其中缓降标注的方框代表的由监听态到深睡眠态/轻睡眠态的转换相对功耗值与斜升标注的方框表示的由深睡眠态/轻睡眠态到监听态的转换相对功耗值之和,为深睡眠态/轻睡眠态所对应的转换阶段的总相对功耗值(例如可以如表2示意)。由图10可知,对于终端设备的一次由监听态到深睡眠态/轻睡眠态,再由深睡眠态/轻睡眠态到监听态的转换带来的相对功耗值为深睡眠态/轻睡眠态所对应的转换阶段的总相对功耗值(例如表2所示意)与终端设备处于深睡眠态/轻睡眠态的相对功耗值(例如表1所示意)之和。
以第一时段的时长为8ms,第一时段中存在16个第一时间窗,每个第一时间窗的时长为0.5ms,16个第一时间窗在第一时段中依次为第1个第一时间窗、第2个第一时间窗、……、第16个第一时间窗为例,若配置16个第一时间窗中M1个第一时间窗的图样为[0,0,0,1,0,1,0,1,0,1,0,1,0,0,0,1],也即M1为6,16个第一时间窗中第4个第一时间窗、第6个第一时间窗、第8个第一时间窗、第10个第一时间窗、第12个第一时间窗、第16个第一时间窗用于PDCCH的监听。因为其最长有3个连续的第一时间窗不用于PDCCH的监听,最长的非监听时长为3*0.5=1.5ms。如果终端设备在非监听态(非监听PDCCH的状态)处于深睡眠态,那么终端设备由监听态到深睡眠态、再由深睡眠态到监听态需要20ms的转换时间,而最长的非监听时长为1.5ms,所以终端设备在非监听态无法转换到深睡眠态。如果终端设备在非监听态处于轻睡眠态,那么终端设备由监听态到轻睡眠态、再由轻睡眠态到监听态需要6ms的转换时间,而最长的非监听时长仅为1.5ms,所 以终端设备在非监听态也无法转换到轻睡眠态。如果终端设备在非监听态处于微睡眠态,那么终端设备由监听态到微睡眠态、再由微睡眠态到监听态需要0ms的转换时间,也即终端设备由监听态到微睡眠态、再由微睡眠态到监听态不需要转换时间,因此在上述场景中,终端设备的非监听态可以转换到微睡眠态。终端设备处于微睡眠态单位时间的相对功耗值(即相对于深睡眠态的单位时间功耗的相对功耗值)为45,监听PDCCH的单位时间的相对功耗值为100,则第一时段的总相对功耗值为0.5*(45*10+100*6)=525,其中10表示不用于PDCCH的监听的10个第一时间窗,6表示用于PDCCH的监听的6个第一时间窗,相对于8ms均监听PDCCH的总相对功耗值为0.5*100*16=800,节省的相对功耗值为275,降低了终端设备的功耗。由此可知,采用本申请实施例的方案可以节省终端设备的功耗。
另外,虽然在第一时段中包括N1个第一时间窗,终端设备在N1个第一时间窗中的M1个第一时间窗内监听PDCCH,剩余的N1-M1个第一时间窗终端设备可以进入休眠状态,终端设备可以节省功耗,但是如果业务帧在剩余的N1-M1个第一时间窗中的某一个第一时间窗到达网络设备,那么网络设备只能在距离该第一时间窗最近的一个终端设备监听PDCCH的第一时间窗调度终端设备接收该业务帧,会给业务帧的传输带来调度时延。
对于第一时段,以业务帧在第i个第一时间窗内的到达概率为p i,第一时间窗的个数为N1,每个第一时间窗所对应的时延为d i为例,那么该第一时段所造成的平均调度时延为:
Figure PCTCN2022121099-appb-000003
以第一时段为DRX持续时段,业务帧的jitter的取值服从均值为0,标准差为2ms,取值范围[-4ms,4ms]的截断高斯分布,每个第一时间窗的时长为0.5ms为例,第一时段的时长为8ms,第一时段中可以存在16个第一时间窗,如图11所示,其中图11的横轴表示第一时间窗的编号,也即第一时段中的第几个第一时间窗,纵轴表示业务帧在第一时间窗到达的概率,业务帧在第1个第一时间窗到第16个第一时间窗到达的概率分别为[p 1,…,p 16]=[0.0401,0.0267,0.0388,0.0531,0.0679,0.0819,0.0928,0.0987,0.0987,0.0928,0.0819,0.0679,0.0531,0.0388,0.0267,0.0401]。若设置16个第一时间窗中M1个第一时间窗的图样为[0,0,0,1,0,1,0,1,0,1,0,1,0,0,0,1],也即终端设备在16个第一时间窗中第4个第一时间窗、第6个第一时间窗、第8个第一时间窗、第10个第一时间窗、第12个第一时间窗、第16个第一时间窗监听PDCCH,则在16个第一时间窗中每个第一时间窗的调度时延为[d 1,…,d 16]=[3,2,1,0,1,0,1,0,1,0,1,0,3,2,1,0],其中调度时延中的3、2、1、0表示3个第一时间窗的时长、2个第一时间窗的时长、1个第一时间窗的时长、0个第一时间窗的时长,一个第一时间窗的时长为0.5ms。因此平均调度时延Average Delay=0.8174个第一时间窗的时长,第一时间窗的时长为0.5ms,即平均调度时延为0.8174*0.5=0.4087ms。
因此,网络设备不仅可以从功耗的角度出发为终端设备配置第一时段的N1个第一时间窗中用于PDCCH监听的M1个第一时间窗,还可以从调度时延,或综合考虑调度时延和功耗等因素为终端设备配置第一时段的N1个第一时间窗中用于PDCCH监听的M1个第一时间窗。下面结合具体场景进行说明。
场景一:第一时段为非连续接收DRX持续时段。
图12为本申请实施例提供的又一种通信方法示意图。图12中以网络设备和终端设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。 例如,图12中的网络设备也可以是支持该网络设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分无线网络设备功能的逻辑模块或软件;图12中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端设备功能的逻辑模块或软件。图12示意的方法可理解为图7示意方法的一种具体实现。该方法包括:
S1201:网络设备向终端设备发送配置信息,终端设备接收来自网络设备的配置信息。
S1202:终端设备根据配置信息在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,第一时段为DRX持续时段。
在本申请实施例中,配置信息可以配置第一时段的N1个第一时间窗中用于PDCCH监听的M1个第一时间窗,其中N1为大于等于2的整数,M1为小于N1的正整数。
在一种可能的实施中,配置信息包括时间窗索引信息,时间窗索引信息用于配置上述M1个第一时间窗,也就是说,第一时段的N1个第一时间窗中用于PDCCH监听的M1个第一时间窗可以由来自网络设备的时间窗索引信息配置。
具体的,可以通过协议预定义,或者网络设备配置并向终端设备单播、组播、广播等方式,在网络设备和终端设备中配置一个或多个时间窗索引表,其中时间窗索引表中每一个表项对应一个第一时间窗图样,并且每一个表项与一个索引值对应。例如,可以针对不同的业务类型,如不同的业务帧帧率60FPS、120FPS,不同的子载波间隔等,以及业务帧的jitter的概率分布,取值范围等配置一个或多个时间窗索引表。
作为一种示例,对于业务帧帧率为60FPS,jitter的取值服从均值为0,标准差为2ms,取值范围[-4ms,4ms]的截断高斯分布的业务,时隙长度为0.5ms,可以将第一时段设置为8ms,每个第一时间窗的时长设置为0.5ms,此时第一时段包括16个第一时间窗,对应的时间窗索引表可以如表3所示。
其中,表3中每个第一时间窗图样中包括16个指示位,分别对应第一时段的第1个第一时间窗至第16个第一时间窗,其中可以是指示位为0表示对应的第一时间窗不用于PDCCH的监听,指示位为1表示对应的第一时间窗用于PDCCH的监听,也可以是指示位为0表示对应的第一时间窗用于PDCCH的监听,指示位为1表示对应的第一时间窗不用于PDCCH的监听。在表3以及后续表4-表5中以指示位为0表示对应的第一时间窗不用于PDCCH的监听,指示位为1表示对应的第一时间窗用于PDCCH的监听为例进行说明。并且表3中每一个表项对应一套索引值、相对功耗值、平均调度时延和第一时间窗图样,通过索引值可以定位到相应的表项。例如:通过索引值6,可以定位到索引值为6的表项,相对功耗值为525、平均调度时延为0.397,第一时间窗图样为[0,0,0,1,0,0,1,0,1,0,1,0,1,0,0,1]。对于每个表项中第一时间窗图样对应的相对功耗值和调度时延的确定,可以参照上述关于相对功耗值和平均调度时延的确定方式的介绍,不再进行赘述。
另外,在表3中每个第一时间窗图样中包括的“1”的数量不同,也即用于监听PDCCH的第一时间窗的数量不同,对于每个包括特定数量的“1”的第一时间窗图样,可以利用上述平均调度时延的确定方式,确定包含该特定数量的用于PDCCH监听的第一时间窗的所有可能的第一时间窗图样的平均调度时延,并在其中选取平均调度时延最低的第一时间窗图样,作为该特定数量“1”对应的第一时间窗图样。
表3
Figure PCTCN2022121099-appb-000004
作为一种示例,对于业务帧帧率为60FPS,jitter的取值服从均值为0,标准差为2ms,取值范围[-4ms,4ms]的截断高斯分布的业务,时隙长度为1ms,可以将第一时段设置为8ms,每个第一时间窗的时长设置为1ms,此时第一时段包括8个第一时间窗,对应的时间窗索引表可以如表4所示。
其中,表4中每个时间窗图样中均包括8个指示位,分别对应第一时段的第1个第一时间窗至第8个第一时间窗,其中某一指示位为0表示对应的第一时间窗不用于PDCCH的监听,指示位为1表示对应的第一时间窗用于PDCCH的监听。并且表4中每一个表项对应一套索引值、相对功耗值、平均调度时延和第一时间窗图样,通过索引值可以定位到相应的表项。
表4
Figure PCTCN2022121099-appb-000005
作为一种示例,对于业务帧帧率为60FPS,jitter的取值服从均值为0,标准差为3ms,取值范围[-6ms,6ms]的截断高斯分布的业务,时隙长度为0.25ms,可以将第一时段设置为12ms,每个第一时间窗的时长设置为2ms,此时第一时段包括6个第一时间窗,对应的时间窗索引表可以如表5所示。
其中,表5中每个时间窗图样中均包括6个指示位,分别对应第一时段的第1个第一时间窗至第6个第一时间窗,其中某一指示位为0表示对应的第一时间窗不用于PDCCH的监听,指示位为1表示对应的第一时间窗用于PDCCH的监听。并且表5中每一个表项对应一套索引值、相对功耗值、平均调度时延和第一时间窗图样,通过索引值可以定位到相应的表项。
表5
Figure PCTCN2022121099-appb-000006
需要理解的是,表4或表5中每个第一时间窗图样中包括的“1”的数量也不同,也即用于监听PDCCH的第一时间窗的数量不同,对于表4或表5中每个包括特定数量的“1”的第一时间窗图样,也可以利用上述平均调度时延的确定方式,确定包含该特定数量的用于监听PDCCH的第一时间窗的所有可能的第一时间窗图样的平均调度时延,并在其中选取平均调度时延最低的第一时间窗图样,作为该特定数量“1”对应的第一时间窗图样。
另外,上述表3-表5均以索引值与索引值对应的第一时间窗图样中“1”的数量相等为例进行介绍,在一些实施中,在一个时间窗索引表中,索引值与索引值对应的第一时间窗图样中“1”的数量也可以不等,或部分索引值与索引值对应的第一时间窗图样中“1”的数量相等、部分索引值与索引值对应的第一时间窗图样中“1”的数量不等,本申请不进行限定。
上述表3-表5仅是示例性的,可以理解的是,针对不同的业务类型,如不同的jitter的分布参数、第一时间窗的时长等均可导致时间窗索引表发生变化,也即针对不同的业务类型,在本申请实施例中,可以配置不同的时间窗索引表。
当然,也可以通过对一个或多个时间窗索引表中的部分或全部进行组合,组成一个新的时间窗索引表,适用于一种或多种不同的业务类型。例如:可以抽取表3中部分表项(如第2行至第10行)组成一个新的时间窗索引表;还可以抽取表3中的部分表项和表4中的部分表项,并为各个表项重新赋予不重复的索引值,组成一个新的时间窗索引表等。
另外,对于相对功耗值和平均调度时延,时间窗索引表中可以出现相对功耗值和平均调度时延的一项,也可以在时间窗索引表中不出现相对功耗值和平均调度时延。此外,时间窗索引表中的相对功耗值和平均调度时延等还可以用一个值来替代。例如:可以用性能值来综合衡量相对功耗值和平均调度时延,使用性能值来替代时间窗索引表中的相对功耗值和平均调度时延,其中性能值可以为相对功耗值与平均调度时延的加权平均数、乘积等。
网络设备在生成配置信息时,可以按照一定策略在时间窗索引表中选取一个索引值作为配置信息中包括的时间窗索引信息。例如网络设备可以采用随机选取的方式在时间窗索引表中,选取一个索引值作为配置信息中包括的时间窗索引信息,也可以默认选择一个索引值(如索引值6)作为配置信息中包括的时间窗索引信息,还可以按照终端设备对功耗节省比例(相对第一时段均用于PDCCH监听节省的相对功耗值的比例)或平均调度时延的要求,选择一个索引值作为配置信息中包括的时间窗索引信息,或综合考虑终端设备对功耗节省比例和平均调度时延的要求,选择一个索引值作为配置信息中包括的时间窗索引信息等。
对于时间窗索引信息,可以通过在发送配置信息的RRC信令、或DCI中设置字段(或信元)来承载(或配置),本申请以设置字段为例进行说明。例如设置非连续接收开启时间栅格(DRX on duration raster,DODR)索引(DODR-index)字段等来承载。终端设备接收到来自网络设备的配置信息后,可根据时间窗索引信息确定第一时间窗图样,在第一时间窗图样中的M1个第一时间窗内监听PDCCH,N1-M1个第一时间窗内不监听PDCCH,以节省功耗。
在另一种可能的实施中,配置信息包括时间窗位图(bitmap)信息,时间窗位图信息用于配上述M1个第一时间窗,也就是说,第一时段的N1个第一时间窗中的用于PDCCH监听的M1个第一时间窗也可以由来自网络设备的时间窗位图信息配置。
其中,可以通过在发送配置信息的RRC信令、或DCI中设置字段(或信元)来承载(或配置)时间窗位图信息,例如可以在配置信息中设置DODR位图(DODR-bitmap)字段,来承载时间窗位图信息。时间窗位图信息的指示位位数可以与N1相等,时间窗位图信息的第一指示位指示第一时段中第一个第一时间窗是否用于PDCCH的监听,时间窗位图信息的第二指示位指示第一时段中第二个第一时间窗是否用于PDCCH的监听,时间窗位图信息的第三指示位指示第一时段中第三个第一时间窗是否用于监听PDCCH,……,依次类推。具体可以通过指示位为1指示第一时间窗用于PDCCH的监听,通过指示位为0指示第一时间窗不用于PDCCH的监听;或者通过指示位为0指示第一时间窗用于PDCCH的监听,通过指示位为1指示第一时间窗不用于PDCCH的监听。在本申请实施例中以通过指示位为1指示第一时间窗用于PDCCH的监听,通过指示位为0指示第一时间窗不用于PDCCH的监听为例进行说明。
以时间窗位图信息为“[0,0,0,1,0,0,1,1]”为例,则指示第一时段中8个第一时间窗中的第3个第一时间窗、第7个第一时间窗和第8个第一时间窗用于PDCCH的监听,其它第一时间窗不用于PDCCH的监听。
以上述表3、表4或表5中的第一时间窗图样为例,上述表3、表4或表5中一个索引值对应的一个第一时间窗图样可以看作是一个候选时间窗位图信息。网络设备在生成配置信息时,可以按照一定策略在候选时间窗位图信息中选择一个作为配置信息中的时间窗位图信息。例如可以在候选时间窗位图信息中随机选择一个作为配置信息中的时间窗位图信息。或者按照相对功耗值最小或平均调度时延最小优先,在候选时间窗位图信息中选择一个作为配置信息中的时间窗位图信息等。
终端设备接收到来自网络设备的配置信息后,可以根据配置信息中包括的时间窗位图信息,确定第一时段中用于PDCCH监听的M1个第一时间窗。
作为一种示例,以时间窗位图信息为“[0,0,0,1,0,0,1,1]”,第一时段的时 长为8ms为例,时间窗位图信息的指示位位数为8,则第一时段中第一时间窗的数量为8。终端设备根据该时间窗位图信息确定在第一时间的第4个第一时间窗,第7个第一时间窗和第8个第一时间窗内监听PDCCH。
另外,在一些实施中,DODR-bitmap字段的指示位的位数可能存在大于第一时段中第一时间窗数量N1的取值的情况,此时时间窗位图信息实际上占用DODR-bitmap字段中的部分指示位。例如DODR-bitmap字段的指示位的位数为20,N1的取值为8,此时配置信息中的时间窗位图信息占DODR-bitmap字段中的8个指示位,DODR-bitmap字段的其它指示位可以被填充为0。此时为了便于终端设备对DODR-bitmap字段中承载的时间窗位图信息的确定,配置信息还可以用于配置N1的取值或N1个第一时间窗中一个第一时间窗的时长。
作为一种示例,可以通过在发送配置信息的RRC信令、或DCI中设置字段(或信元),来承载(或配置)N1的取值或N1个第一时间窗中一个第一时间窗的时长。
以设置DODR值(DODR-num)字段用来配置N1的取值为例,如果第一时段的时长为8ms,时间窗位图信息的指示位的位数为8,DODR-bitmap字段的指示位的位数为20,网络设备可以通过DODR-num字段配置N1的取值为8。终端设备可以按照协议的规定或网络设备的配置等方式确定时间窗位图信息占DODR-bitmap字段中的哪8个指示位,如占用DODR-bitmap字段中的前8个指示位或后8个指示位等。
以设置DODR时长粒度(DODR-timegranularity)字段用来配置N1个第一时间窗中一个第一时间窗的时长为例,如果第一时段的时长为8ms,第一时段中第一时间窗的数量N1为8,一个第一时间窗的时长为1ms,时间窗位图信息的指示位的位数为8,DODR-bitmap字段的指示位的位数为20,网络设备可以通过DODR-timegranularity字段配置N1个第一时间窗中一个第一时间窗的时长为1ms。终端设备可以根据第一时段的时长为8ms、N1个第一时间窗中一个第一时间窗的时长为1ms,确定第一时段中第一时间窗的数量N1为8,时间窗位图信息的指示位的位数为8。终端设备可以按照协议的规定或网络设备的配置等方式确定时间窗位图信息占DODR-bitmap字段中的哪8个指示位,如占用DODR-bitmap字段中的前8个指示位或后8个指示位等。
另外,为了进一步满足用户的个性化需求,终端设备还可以向网络设备发送DRX偏好信息,网络设备接收来自终端设备的DRX偏好信息。DRX偏好信息指示对功耗和/或时延的偏好。网络设备在生成配置信息时,可以考虑配置信息所配置第一时段的N1个第一时间窗中用于PDCCH监听的M1个第一时间窗带来的功耗节省或平均调度时延,以满足终端设备上报的DRX偏好信息。
其中,上述对功耗和/或时延的偏好可以为偏功耗节省,或者偏低平均调度时延,也可以为终端设备想要达到的功耗水平,比如功耗节省20%;还可以为终端设备所能接受的平均调度时延,比如平均调度时延最大为0.3ms。
作为一种示例,终端设备可以通过用户辅助信息(UE assistance information,UAI)向网络设备发送DRX偏好信息,例如可以在UAI中添加DODR偏好类型(preferedDODR-type)字段表征终端设备是偏功耗节省,还是偏低平均调度时延。如preferedDODR-type字段为0表示终端设备偏功耗节省,为1表示偏低平均调度时延。又如preferedDODR-type字段为枚举值“power”表示终端设备偏功耗节省,为枚举值“delay”表示偏低平均调度时延。
可选地,还可以在UAI中添加DODR功耗偏好(preferedDODR-power-consumption) 字段表征想要达到的功耗水平。可选地,还可以在UAI中添加DODR平均调度时延(preferedDODR-average-schedule-delay)字段表征所能接受的平均调度时延。
例如,终端设备发送的UAI中preferedDODR-type字段为0,则网络设备选择功耗(如相对功耗值)较低的第一时间窗图样通过配置信息配置给终端设备,如在功耗最低的X个第一时间窗图样中选择一个第一时间窗图样通过配置信息配置给终端设备,X为大于等于1的整数。作为一种示例,X的值可以为4,如果终端设备发送的UAI中preferedDODR-type字段为0,网络设备可以在功耗最低的4个第一时间窗图样中选择一个第一时间窗图样通过配置信息配置给终端设备。
例如,终端设备发送的UAI中preferedDODR-type字段为1,则网络设备选择平均调度时延较低的第一时间窗图样通过配置信息配置给终端设备,如在平均调度时延最低的Y个第一时间窗图样中选择一个第一时间窗图样通过配置信息配置给终端设备,Y为大于等于1的整数。作为一种示例,Y的值可以为3,如果终端设备发送的UAI中preferedDODR-type字段为1,网络设备可以在平均调度时延最低的3个第一时间窗图样中选择一个第一时间窗图样通过配置信息配置给终端设备。
如果UAI中存在preferedDODR-power-consumption字段,说明存在功耗水平指示,则网络设备可以按照preferedDODR-power-consumption字段所指示的功耗水平,选择第一时间窗图样通过配置信息配置给终端设备。如果UAI中存在preferedDODR-average-schedule-delay字段,说明存在平均调度时延水平指示,则网络设备可以按照preferedDODR-average-schedule-delay字段所指示的平均调度时延水平,选择第一时间窗图样通过配置信息配置给终端设备。当然,如果UAI中同时存在preferedDODR-power-consumption字段和preferedDODR-average-schedule-delay字段,说明同时存在功耗水平指示和平均调度时延水平指示,则网络设备可以按照preferedDODR-power-consumption字段所指示的功耗水平、preferedDODR-average-schedule-delay字段所指示的平均调度时延水平,选择第一时间窗图样通过配置信息配置给终端设备。
作为一种示例:UAI中存在preferedDODR-power-consumption字段,所指示的功耗水平为功耗节省20%,以上述表3为例,则网络设备可以在索引1-索引10对应的第一时间窗图样中选择一个第一时间窗图样配置给终端设备,其中索引1-索引10对应的第一时间窗图样相对于索引16对应的第一时间窗的图样(即第一时间窗全用于PDCCH的监听)可以节省20%以上的功耗。
如图13所示,表3所示的每个第一时间窗图样的功耗相比于在第一时段内持续监听PDCCH的功耗的比值,以及每个第一时间窗图样的平均调度时延。其中图13每个点表示一个第一时间窗图样,横轴表示平均调度时延,纵轴表示第一时间窗图样的功耗相比于在第一时段内持续监听PDCCH的功耗的比值,在横轴上从左到右每个点依次对应表3中索引为16的第一时间窗图样、索引为15的第一时间窗图样、……、索引为1的第一时间窗图样。从图13中可以看出,通过设置第一时间窗,在略微增加平均调度时延的情况下可以大幅地降低功耗。比如,设置索引值为6的第一时间窗图样,即可实现降低(800-525)/800=34.38%的功耗,同时平均调度时延仅增加0.397ms。
目前,DRX周期的选择需要考虑终端设备的电池寿命与时延之间的平衡。从一个方面 讲,长DRX周期有益于延长终端设备的电池寿命,从另一个方面讲,当有新的数据传输时,一个更短的DRX周期有益于更快的响应。为了满足上述需求,在一些实施中,终端设备可以配置两种DRX周期,即一个长DRX周期和一个短DRX周期,在某时刻,终端设备使用两种DRX周期中的一种DRX周期配置。作为一种示例,如图14所示,网络设备可以为终端设备配置一个长DRX周期和一个短DRX周期,并且长DRX周期的时长为短DRX时长的2倍,长DRX周期和短DRX周期的DRX持续时段的时长可以相同。
作为一种示例,对于XR业务中的视频业务,一个图像组(group of picture,GOP)内可以包含一个I帧(intra frame)和多个P帧(predicted frame)。其中I帧为帧内参考帧,在解码时终端设备根据本帧数据恢复图像;P帧为预测编码帧,表示与前一帧的画面差别的数据,解码时终端设备需要用之前缓存的画面帧叠加上本帧定义的差别生成图像。由于P帧在解码时需要参考前面的画面帧,因此终端设备需要的解码时间更长,所以要求空口应该在更少的时间内完成传输,例如P帧的空口传输时延预算可为8ms。而I帧在解码时仅需要本帧数据,终端设备需要解码时间相对较短,所以空口的传输延时要求相对较低,例如I帧的空口传输时延预算可为12ms。因此在进行视频业务时,可以为P帧配置平均调度时延较短的用于PDCCH监听的时间窗图样,为I帧配置平均调度时延较长的用于PDCCH监听的时间窗图样。
具体的,对于XR业务中的视频业务,一个GOP内可以包含一个I帧和多个P帧,两个相邻I帧的间隔大于两个相邻P帧的间隔,网络设备可以根据P帧的间隔为终端设备配置一个短DRX周期,根据I帧的间隔为终端设备配置一个长DRX周期,并为长DRX周期和短DRX周期的DRX持续时段分别配置时延不同的用于PDCCH监听的时间窗图样。
在一些实施中,如果终端设备配置有一个长DRX周期和一个短DRX周期,上述第一时段为长DRX周期的DRX持续时段。网络设备发送给终端设备的配置信息,还可以用于配置第二时段的N2个第二时间窗中用于监听PDCCH的M2个第二时间窗,其中第二时段为短DRX周期的DRX持续时段,N2为大于等于2的整数,M2为小于N2的正整数。终端设备根据配置信息还可以在第二时段的N2个第二时间窗中的M2个第二时间窗内监听PDCCH。
需要理解的是,网络设备通过配置信息配置第二时段的N2个第二时间窗中用于监听PDCCH的M2个第二时间窗的实现,可以参照配置信息配置第一时段的N1个第一时间窗中用于PDCCH监听的M1个第一时间窗的实现。如在配置信息中添加DODR-index2字段用于承载配置第二时段的N2个第二时间窗中用于PDCCH监听的M2个第二时间窗的时间窗索引信息,或添加DODR-bitmap2字段用于承载配置第二时段的N2个第二时间窗中用于PDCCH监听的M2个第二时间窗的时间窗位图信息。
可以理解的是,在一些实施例中,对于不重叠的第一时段和第二时段,也即在时间上不存在重叠的第一时间段和第二时间段,终端设备不仅在第一时段的M1个第一时间窗内监听PDCCH,也在第二时段的M2个第二时间窗内监听PDCCH。对于重叠的第一时段和第二时段,也即在时间上存在重叠的第一时间段和第二时间段,因网络设备在调度长DRX周期对应的业务帧的传输时,不会同时再调度短DRX周期对应的业务帧的传输,终端设备可以仅在第一时段的M1个第一时间窗内监听PDCCH。
以长DRX周期为30ms,短DRX周期为10ms,长DRX周期的DRX持续时段和短DRX周期的DRX持续时段均为5ms,第一时间窗和第二时间窗的时长均为1ms为例。如 图15所示,长DRX周期的DRX持续时段的第一时间窗图样为[1,0,1,0,1],短DRX周期的DRX持续时段的第二时间窗图样为[0,1,1,1,1]。当长DRX周期的DRX持续时段与短DRX周期的DRX持续时段重叠时,终端设备按照长DRX周期的DRX持续时段的第一时间窗监听PDCCH。
场景二:第一时段的时长为DRX周期。
图16为本申请实施例提供的又一种通信方法示意图。图16中以网络设备和终端设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图16中的网络设备也可以是支持该网络设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分无线网络设备功能的逻辑模块或软件;图16中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端设备功能的逻辑模块或软件。图16示意的方法可理解为图7示意方法的一种具体实现。该方法包括:
S1601:网络设备向终端设备发送配置信息,终端设备接收来自网络设备的配置信息。
S1602:终端设备根据配置信息在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,第一时段的时长为DRX周期。
在本申请实施例中,配置信息可以配置第一时段的N1个第一时间窗中用于PDCCH监听的M1个第一时间窗,其中N1为大于等于3的整数,M1为小于N1且大于等于2的整数。
在一种可能的实施中,用于PDCCH监听的M1个第一时间窗在DRX周期内分散部署,也即M1个第一时间窗中至少有两个在时间上不连续的第一时间窗。以第一时段的时长为16ms,第一时间窗图样为[0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0],第一时间窗图样中1指示第一时间窗用于PDCCH的监听,0指示第一时间窗不用于PDCCH的监听为例,如图17所示,则第一时段被划分为16个第一时间窗,一个第一时间窗的时长为1ms,第3-4ms,第6-8ms对应的第一时段内的第4个第一时间窗、第7个第一时间窗和第8个第一时间窗用于监听PDCCH,其它时间窗不用于监听PDCCH,其中第4个第一时间窗、第7个第一时间窗在时间上不连续。
在一种可能的实施中,配置信息包括时间窗索引信息,时间窗索引信息用于配置上述M1个第一时间窗,也就是说,第一时段的N1个第一时间窗中的用于PDCCH监听的M1个第一时间窗可以由来自网络设备的时间窗索引信息配置。
具体的,可以通过协议预定义,或者网络设备配置并向终端设备单播、组播、广播等方式,在网络设备和终端设备中配置一个或多个时间窗索引表,其中时间窗索引表中每一个表项对应一个第一时间窗图样,并且每一个表项与一个索引值对应。可以理解,时间窗索引表中存在至少一个第一时间窗图样满足在第一时段的N1个第一时间窗中用于PDCCH监听的M1个第一时间窗中存在至少有两个在时间上不连续的第一时间窗这一条件。
以表4示意的时间窗索引表中的第一时间窗图样为例,在表4中存在索引值为1、7、8对应的第一时间窗图样,不满足在第一时段的N1个第一时间窗中用于PDCCH监听的M1个第一时间窗中存在至少有两个在时间上不连续的第一时间窗这一条件,但只要网络设备在配置信息配置的第一时段的N1个第一时间窗中的M1个第一时间窗,所对应的第一时间窗图样不为索引值为1、7、8对应的第一时间窗图样即可。当然也可以将表4中索 引值为1、7、8的表项删除,网络设备在配置信息配置的第一时段的N1个第一时间窗中的M1个第一时间窗,所对应的第一时间窗图样在索引值为2-6所对应的第一时间窗图样中选取。
具体的,关于如何根据业务类型进行时间窗索引表的配置,以及如何由来自网络设备的时间窗索引信息配置终端设备在第一时段的N1个第一时间窗中用于PDCCH监听的M1个第一时间窗的实现,可以参照上述场景一中的实现,不在进行赘述。
作为一种示例,对于时间窗索引信息,可以通过在发送配置信息的RRC信令、或DCI中设置字段(或信元)来承载(或配置),例如设置非连续接收栅格(DRX raster,DR)索引(DR-index)字段等来承载。终端设备接收到来自网络设备的配置信息后,可根据时间窗索引信息确定第一时间窗图样,在第一时间窗图样中的M1个第一时间窗内监听PDCCH,N1-M1个第一时间窗内不监听PDCCH。
在另一种可能的实施中,第一时段的N1个第一时间窗中的用于PDCCH监听的M1个第一时间窗还可以由来自网络设备的时间窗位图信息配置。需要理解的是,通过时间窗位图信息配置的第一时间窗图样,同样满足在第一时段的N1个第一时间窗中用于PDCCH监听的M1个第一时间窗中存在至少有两个在时间上不连续的第一时间窗。
作为一种示例,可以通过在发送配置信息的RRC信令、或DCI中设置字段(或信元)来承载(或配置)时间窗位图信息,例如可以在配置信息中设置DR位图(DR-bitmap)字段,来承载时间窗位图信息,时间窗位图信息的指示位位数可以与N1相等,时间窗位图信息的第一指示位指示第一时段中第一个第一时间窗是否用于PDCCH的监听,时间窗位图信息的第二指示位指示第一时段中第二个第一时间窗是否用于PDCCH的监听,时间窗位图信息的第三指示位指示第一时段中第三个第一时间窗是否用于监听PDCCH,……,依次类推。具体可以通过指示位为1指示第一时间窗用于PDCCH的监听,通过指示位为0指示第一时间窗不用于PDCCH的监听;或者通过指示位为0指示第一时间窗用于PDCCH的监听,通过指示位为1指示第一时间窗不用于PDCCH的监听。在本申请实施例中以通过指示位为1指示第一时间窗用于PDCCH的监听,通过指示位为0指示第一时间窗不用于PDCCH的监听为例进行说明。
另外,在一些实施中,DR-bitmap字段的指示位数可能存在大于N1的取值,时间窗位图信息实际上仅占用DR-bitmap字段部分指示位的情况,例如DR-bitmap字段的指示位数为20,N1的取值为16,此时配置信息中的时间窗位图信息占DR-bitmap字段的16个指示位,DR-bitmap字段的其它指示位可以被填充为0。为了便于终端设备对DODR-bitmap字段中承载的时间窗位图信息的确定,配置信息还可以用于配置N1的取值或N1个第一时间窗中一个第一时间窗的时长。
作为一种示例,可以通过在发送配置信息的RRC信令、或DCI中设置字段(或信元),来承载(或配置)N1的取值或N1个第一时间窗中一个第一时间窗的时长。
以设置DR值(DR-num)字段用来配置N1的取值为例,如果第一时段的时长为16ms,时间窗位图信息的指示位的位数为16,DR-bitmap字段的指示位的位数为20,网络设备可以通过DR-num字段配置N1的取值为16。终端设备可以按照协议的规定或网络设备的配置等方式确定时间窗位图信息占DODR-bitmap字段中的哪16个指示位,如占用DR-bitmap字段中的前16个指示位或后16个指示位等。
以设置DR时长粒度(DR-timegranularity)字段用来配置N1个第一时间窗中一个第 一时间窗的时长为例,如果第一时段的时长为16ms,第一时段中第一时间窗的数量N1为16,一个第一时间窗的时长为1ms,时间窗位图信息的指示位的位数为16,DR-bitmap字段的指示位的位数为20,网络设备可以通过DR-timegranularity字段配置N1个第一时间窗中一个第一时间窗的时长为1ms。终端设备可以根据第一时段的时长为16ms、N1个第一时间窗中一个第一时间窗的时长为1ms,确定第一时段中第一时间窗的数量N1为16,时间窗位图信息的指示位的位数为16。终端设备可以按照协议的规定或网络设备的配置等方式确定时间窗位图信息占DODR-bitmap字段中的哪16个指示位,如占用DODR-bitmap字段中的前16个指示位或后16个指示位等。
此外,与上述场景一类似,为了进一步满足用户的个性化需求,终端设备还可以向网络设备发送DRX偏好信息,网络设备接收来自终端设备的DRX偏好信息。DRX偏好信息指示对功耗和/或时延的偏好。网络设备在生成配置信息时,可以考虑配置信息所配置第一时段的N1个第一时间窗中用于PDCCH监听的M1个第一时间窗带来的功耗节省和/或平均调度时延,以满足终端设备上报的DRX偏好信息。具体的,终端设备向网络设备发送DRX偏好信息,以及网络设备如何根据DRX偏好信息选择一个第一时间窗图样,并通过配置信息配置给终端设备的实现,与上述场景一中的实现类似,不再进行赘述。
此外,在DRX机制中,当终端设备在一个时隙被调度并接收或发送数据后,很可能在接下来的几个时隙内继续被调度,如果要等到下一个DRX周期再来接收或发送这些数据将会带来额外的延迟。为了降低调度时延,终端设备在DRX持续时段获得PDCCH调度后,会配置一个激活期,并启动DRX激活定时器(DRX inactivity timer)。如图18所示,终端设备在DRX持续时段获得PDCCH调度后,启动DRX激活定时器,在激活期内持续监听PDCCH,直至DRX激活定时器超时。其中在监听PDCCH期间如果有新的PDCCH调度,则重启DRX激活定时器。
为了防止DRX持续时段和DRX激活定时器的时长过长,终端设备无法及时进入休眠态,如图19所示,网络设备可以通过MAC CE向终端设备发送DRX命令(DRX command),当终端设备收到DRX command MAC CE(即携带DRX command的MAC CE)后,将停止DRX持续时段和DRX激活定时器,并进入休眠态。
需要理解的是,上述配置一个激活期以及接收到网络设备的DRX command MAC CE后,停止监听PDCCH进入休眠态的机制同样适用于本申请实施例中。
作为一种示例,终端设备在某一个用于PDCCH监听的第一时间窗获得PDCCH调度后,启动DRX激活定时器,在激活期内持续监听PDCCH,直至DRX激活定时器超时。其中在监听PDCCH期间如果有新的PDCCH调度,则重启DRX激活定时器。
终端设备在某一个DRX周期内的第一时间窗或激活期监听PDCCH时,在接收到DRX command MAC CE后,将停止DRX激活定时器,并且在该DRX周期内的剩余第一时间窗内停止监听PDCCH,进入休眠态。
如上所述,在DRX机制中,终端设备被调度接收或发送数据具有连续性,当终端设备在一个时隙被调度并接收或发送数据后,数据很可能在接下来的几个时隙内被调度完成。例如:终端设备在某一个时隙接收到某一个视频帧的一个或多个数据包,该视频帧剩余的数据包会在接下来的几个时隙内被调度。因此,在一些实施中,终端设备在某一个用于PDCCH监听的第一时间窗接收到PDCCH调度,在启动的DRX激活定时器超时后,在当前DRX周期内的剩余第一时间窗内停止监听PDCCH。也就是说,如果终端设备在某一个 用于PDCCH监听的第一时间窗接收到PDCCH调度,启动DRX激活定时器后,终端设备仅在当前DRX周期内DRX激活定时器未超时的激活期内继续监听PDCCH,如果DRX激活定时器超时后,即使在启动DRX激活定时器的DRX周期内还有可以用于PDCCH监听的第一时间窗,终端设备也不再进行PDCCH的监听,而是进入休眠状态,从而节省功耗。
作为一种示例,以第一时段的时长为DRX周期,第一时间窗图样为[0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0],一个第一时间窗的时长为1ms、DRX激活定时器的定时时长为4ms为例。根据第一时间窗图样,终端设备需要在第2个第一时间窗、第7个第一时间窗和第8个第一时间窗监听PDCCH。如果终端设备在第2个第一时间窗监听到PDCCH调度,启动DRX激活定时器,终端设备在DRX激活定时器未超时的激活期内(第3个第一时间窗到第6个第一时间窗内)继续监听PDCCH,如果激活期内终端设备没有再接收到PDCCH调度,在DRX激活定时器超时后,在第7个第一时间窗到第16个第一时间窗内终端设备不再监听PDCCH。
此外,需要理解的是,本申请实施例不局限于采用二进制的形式表示第一时间窗图样,即不限于第一时间窗图样中仅存在0和1。在一些实施中还可以通过八进制的形式、十六进制的形式等表示第一时间窗图样。例如:在采用十六进制的形式表示第一时间窗图样时,第一时间窗图样中某一指示位可以为0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F中的任一个值,可以通过某一指示位为0指示该指示位对应的第一时间窗不用于PDCCH的监听,某一指示位非0(如为1-9或A-F中的任一值)指示该指示位对应的第一时间窗用于PDCCH的监听。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图20和图21为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图2所示的终端设备120a-120j中的一个,也可以是如图2所示的网络设备110a或110b,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图20所示,通信装置2000包括处理单元2010和接口单元2020。通信装置2000用于实现上述图12或图16中所示的方法实施例中终端设备或网络设备的功能。
当通信装置2000用于实现图12所示的方法实施例中终端设备的功能时:
接口单元2020,用于接收来自网络设备的配置信息;
处理单元2010,用于根据配置信息控制通信装置2000在第一时段的N1个第一时间窗中的M1个第一时间窗内监听物理下行链路控制信道PDCCH,第一时段为非连续接收DRX持续时段,N1为大于等于2的整数,M1为小于N1的正整数。
在一种可能的设计中,配置信息包括时间窗位图信息,时间窗位图信息用于配置M1个第一时间窗。
在一种可能的设计中,配置信息还用于配置N1的取值或N1个第一时间窗中一个第一时间窗的时长。
在一种可能的设计中,配置信息包括时间窗索引信息,时间窗索引信息用于配置M1个第一时间窗。
在一种可能的设计中,M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
在一种可能的设计中,接口单元2020,还用于向网络设备发送DRX偏好信息,DRX偏好信息指示对功耗和/或时延的偏好。
在一种可能的设计中,处理单元2010,还用于根据配置信息控制通信装置2000在第二时段的N2个第二时间窗中的M2个第二时间窗内监听PDCCH,第一时段为长DRX周期的DRX持续时段,第二时段为短DRX周期的DRX持续时段,N2为大于等于2的整数,M2为小于N2的正整数。
在一种可能的设计中,处理单元2010,还用于根据配置信息获得第二时段的N2个第二时间窗中的M2个第二时间窗,第一时段为长DRX周期的DRX持续时段,第二时段为短DRX周期的DRX持续时段,N2为大于等于2的整数,M2为小于N2的正整数;
处理单元2010,还用于当第一时段和第二时段在时间上不重叠时,控制通信装置2000在M2个第二时间窗内监听PDCCH;
处理单元2010控制通信装置2000在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH包括:
当第一时段和第二时段在时间上重叠时,控制通信装置2000在M1个第一时间窗内监听PDCCH。
当通信装置2000用于实现图16所示的方法实施例中终端设备的功能时:
接口单元2020,用于接收来自网络设备的配置信息;
处理单元2010,用于根据配置信息控制通信装置2000在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH,第一时段的时长为非连续接收DRX周期,N1为大于等于3的整数,M1为小于N1且大于等于2的整数。
在一种可能的设计中,M1个第一时间窗中至少有两个在时间上不连续的第一时间窗。
在一种可能的设计中,配置信息包括时间窗位图信息,时间窗位图信息用于配置M1个第一时间窗。
在一种可能的设计中,配置信息还用于配置N1的取值或N1个第一时间窗中一个第一时间窗的时长。
在一种可能的设计中,配置信息包括时间窗索引信息,时间窗索引信息用于配置M1个第一时间窗。
在一种可能的设计中,M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
在一种可能的设计中,接口单元2020,还用于向网络设备发送DRX偏好信息,DRX偏好信息指示对功耗和/或时延的偏好。
当通信装置2000用于实现图12所示的方法实施例中网络设备的功能时:
处理单元2010,用于生成配置信息,配置信息用于配置第一时段的N1个第一时间窗中的M1个第一时间窗,M1个第一时间窗用于物理下行链路控制信道PDCCH的监听,第 一时段为非连续接收DRX持续时段,N1为大于等于2的整数,M1为小于N1的正整数;
接口单元2020,用于向终端设备发送配置信息。
在一种可能的设计中,配置信息包括时间窗位图信息,时间窗位图信息用于配置M1个第一时间窗。
在一种可能的设计中,配置信息还用于配置N1的取值或N1个第一时间窗中一个第一时间窗的时长。
在一种可能的设计中,配置信息包括时间窗索引信息,时间窗索引信息用于配置M1个第一时间窗。
在一种可能的设计中,M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
在一种可能的设计中,接口单元2020,还用于接收来自终端设备的DRX偏好信息,DRX偏好信息指示对功耗和/或时延的偏好。
在一种可能的设计中,配置信息还用于配置第二时段的N2个第二时间窗中的M2个第二时间窗,M2个第二时间窗用于PDCCH的监听,第一时段为长DRX周期的DRX持续时段,第二时段为短DRX周期的DRX持续时段,N2为大于等于2的整数,M2为小于N2的正整数。
当通信装置2000用于实现图16所示的方法实施例中网络设备的功能时:
处理单元2010,用于生成配置信息,配置信息用于配置第一时段的N1个第一时间窗中的M1个第一时间窗,M1个第一时间窗用于物理下行链路控制信道PDCCH的监听,第一时段的时长为非连续接收DRX周期,N1为大于等于3的整数,M1为小于N1且大于等于2的整数;
接口单元2020,用于向终端设备发送配置信息。
在一种可能的设计中,M1个第一时间窗中至少有两个在时间上不连续的第一时间窗。
在一种可能的设计中,配置信息包括时间窗位图信息,时间窗位图信息用于配置M1个第一时间窗。
在一种可能的设计中,配置信息还用于配置N1的取值或N1个第一时间窗中一个第一时间窗的时长。
在一种可能的设计中,配置信息包括时间窗索引信息,时间窗索引信息用于配置M1个第一时间窗。
在一种可能的设计中,M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
在一种可能的设计中,接口单元2020,还用于接收来自终端设备的DRX偏好信息,DRX偏好信息指示对功耗和/或时延的偏好。
如图21所示,通信装置2100包括处理器2110和接口电路2120。处理器2110和接口电路2120之间相互耦合。可以理解的是,接口电路2120可以为收发器或输入输出接口。可选的,通信装置2100还可以包括存储器2130,用于存储处理器2110执行的指令或存储处理器2110运行指令所需要的输入数据或存储处理器2110运行指令后产生的数据。
当通信装置2100用于实现图12或图16所示的方法时,处理器2110用于实现上述处理单元2010的功能,接口电路2120用于实现上述接口单元2020的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中 终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的模块时,该网络设备模块实现上述方法实施例中网络设备的功能。该网络设备模块从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备模块向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。这里的网络设备模块可以是网络设备的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
另外,需要理解,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方 案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
此外,本申请实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (66)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的配置信息;
    根据所述配置信息在第一时段的N1个第一时间窗中的M1个第一时间窗内监听物理下行链路控制信道PDCCH,所述第一时段为非连续接收DRX持续时段,N1为大于等于2的整数,M1为小于N1的正整数。
  2. 如权利要求1所述的方法,其特征在于,所述配置信息包括时间窗位图信息,所述时间窗位图信息用于配置所述M1个第一时间窗。
  3. 如权利要求2所述的方法,其特征在于,所述配置信息还用于配置所述N1的取值或所述N1个第一时间窗中一个第一时间窗的时长。
  4. 如权利要求1所述的方法,其特征在于,所述配置信息包括时间窗索引信息,所述时间窗索引信息用于配置所述M1个第一时间窗。
  5. 如权利要求4所述的方法,其特征在于,所述M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    向网络设备发送DRX偏好信息,所述DRX偏好信息指示对功耗和/或时延的偏好。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述配置信息在第二时段的N2个第二时间窗中的M2个第二时间窗内监听PDCCH,所述第一时段为长DRX周期的DRX持续时段,所述第二时段为短DRX周期的DRX持续时段,N2为大于等于2的整数,M2为小于N2的正整数。
  8. 如权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述配置信息获得第二时段的N2个第二时间窗中的M2个第二时间窗,所述第一时段为长DRX周期的DRX持续时段,所述第二时段为短DRX周期的DRX持续时段,N2为大于等于2的整数,M2为小于N2的正整数;
    当所述第一时段和所述第二时段在时间上不重叠时,在所述M2个第二时间窗内监听PDCCH;
    所述在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH包括:
    当所述第一时段和所述第二时段在时间上重叠时,在所述M1个第一时间窗内监听PDCCH。
  9. 如权利要求1-8中任一项所述的方法,其特征在于,所述方法还包括:
    在所述M1个第一时间窗内的任一个第一时间窗接收到PDCCH调度后,启动DRX激活定时器,在所述DRX激活定时器对应的激活期内监听PDCCH。
  10. 一种通信方法,其特征在于,包括:
    接收来自网络设备的配置信息;
    根据所述配置信息在第一时段的N1个第一时间窗中的M1个第一时间窗内监听物理下行链路控制信道PDCCH,所述第一时段的时长为非连续接收DRX周期,N1为大于等于3的整数,M1为小于N1且大于等于2的整数。
  11. 如权利要求10所述的方法,其特征在于,所述M1个第一时间窗中至少有两个在时间上不连续的第一时间窗。
  12. 如权利要求10或11所述的方法,其特征在于,所述配置信息包括时间窗位图信息,所述时间窗位图信息用于配置所述M1个第一时间窗。
  13. 如权利要求12所述的方法,其特征在于,所述配置信息还用于配置所述N1的取值或所述N1个第一时间窗中一个第一时间窗的时长。
  14. 如权利要求10所述的方法,其特征在于,所述配置信息包括时间窗索引信息,所述时间窗索引信息用于配置所述M1个第一时间窗。
  15. 如权利要求14所述的方法,其特征在于,所述M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
  16. 如权利要求10-15中任一项所述的方法,其特征在于,所述方法还包括:
    向网络设备发送DRX偏好信息,所述DRX偏好信息指示对功耗和/或时延的偏好。
  17. 如权利要求10-16中任一项所述的方法,其特征在于,所述方法还包括:
    在所述M1个第一时间窗内的任一个第一时间窗接收到PDCCH调度后,启动DRX激活定时器,在所述DRX激活定时器对应的激活期内监听PDCCH。
  18. 一种通信方法,其特征在于,包括:
    生成配置信息,所述配置信息用于配置第一时段的N1个第一时间窗中的M1个第一时间窗,所述M1个第一时间窗用于物理下行链路控制信道PDCCH的监听,所述第一时段为非连续接收DRX持续时段,N1为大于等于2的整数,M1为小于N1的正整数;
    向终端设备发送所述配置信息。
  19. 如权利要求18所述的方法,其特征在于,所述配置信息包括时间窗位图信息,所述时间窗位图信息用于配置所述M1个第一时间窗。
  20. 如权利要求19所述的方法,其特征在于,所述配置信息还用于配置所述N1的取值或所述N1个第一时间窗中一个第一时间窗的时长。
  21. 如权利要求18所述的方法,其特征在于,所述配置信息包括时间窗索引信息,所述时间窗索引信息用于配置所述M1个第一时间窗。
  22. 如权利要求21所述的方法,其特征在于,所述M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
  23. 如权利要求18-22中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的DRX偏好信息,所述DRX偏好信息指示对功耗和/或时延的偏好。
  24. 如权利要求18-23中任一项所述的方法,其特征在于,所述配置信息还用于配置第二时段的N2个第二时间窗中的M2个第二时间窗,所述M2个第二时间窗用于PDCCH的监听,所述第一时段为长DRX周期的DRX持续时段,所述第二时段为短DRX周期的DRX持续时段,N2为大于等于2的整数,M2为小于N2的正整数。
  25. 一种通信方法,其特征在于,包括:
    生成配置信息,所述配置信息用于配置第一时段的N1个第一时间窗中的M1个第一时间窗,所述M1个第一时间窗用于物理下行链路控制信道PDCCH的监听,所述第一时段的时长为非连续接收DRX周期,N1为大于等于3的整数,M1为小于N1且大于等于2的整数;
    向终端设备发送所述配置信息。
  26. 如权利要求25所述的方法,其特征在于,所述M1个第一时间窗中至少有两个在 时间上不连续的第一时间窗。
  27. 如权利要求25或26所述的方法,其特征在于,所述配置信息包括时间窗位图信息,所述时间窗位图信息用于配置所述M1个第一时间窗。
  28. 如权利要求27所述的方法,其特征在于,所述配置信息还用于配置所述N1的取值或所述N1个第一时间窗中一个第一时间窗的时长。
  29. 如权利要求25所述的方法,其特征在于,所述配置信息包括时间窗索引信息,所述时间窗索引信息用于配置所述M1个第一时间窗。
  30. 如权利要求29所述的方法,其特征在于,所述M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
  31. 如权利要求25-30中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的DRX偏好信息,所述DRX偏好信息指示对功耗和/或时延的偏好。
  32. 一种通信装置,其特征在于,包括接口单元和处理单元;
    所述接口单元,用于接收来自网络设备的配置信息;
    所述处理单元,用于根据所述配置信息控制所述装置在第一时段的N1个第一时间窗中的M1个第一时间窗内监听物理下行链路控制信道PDCCH,所述第一时段为非连续接收DRX持续时段,N1为大于等于2的整数,M1为小于N1的正整数。
  33. 如权利要求32所述的装置,其特征在于,所述配置信息包括时间窗位图信息,所述时间窗位图信息用于配置所述M1个第一时间窗。
  34. 如权利要求33所述的装置,其特征在于,所述配置信息还用于配置所述N1的取值或所述N1个第一时间窗中一个第一时间窗的时长。
  35. 如权利要求32所述的装置,其特征在于,所述配置信息包括时间窗索引信息,所述时间窗索引信息用于配置所述M1个第一时间窗。
  36. 如权利要求35所述的装置,其特征在于,所述M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
  37. 如权利要求32-36中任一项所述的装置,其特征在于,所述接口单元,还用于向网络设备发送DRX偏好信息,所述DRX偏好信息指示对功耗和/或时延的偏好。
  38. 如权利要求32-37中任一项所述的装置,其特征在于,所述处理单元,还用于根据所述配置信息控制所述装置在第二时段的N2个第二时间窗中的M2个第二时间窗内监听PDCCH,所述第一时段为长DRX周期的DRX持续时段,所述第二时段为短DRX周期的DRX持续时段,N2为大于等于2的整数,M2为小于N2的正整数。
  39. 如权利要求32-37中任一项所述的装置,其特征在于,所述处理单元,还用于根据所述配置信息获得第二时段的N2个第二时间窗中的M2个第二时间窗,所述第一时段为长DRX周期的DRX持续时段,所述第二时段为短DRX周期的DRX持续时段,N2为大于等于2的整数,M2为小于N2的正整数;
    所述处理单元,还用于当所述第一时段和所述第二时段在时间上不重叠时,控制所述装置在所述M2个第二时间窗内监听PDCCH;
    所述处理单元控制所述装置在第一时段的N1个第一时间窗中的M1个第一时间窗内监听PDCCH包括:
    当所述第一时段和所述第二时段在时间上重叠时,控制所述装置在所述M1个第一时 间窗内监听PDCCH。
  40. 如权利要求32-39中任一项所述的装置,其特征在于,所述处理单元,还用于在所述M1个第一时间窗内的任一个第一时间窗接收到PDCCH调度后,启动DRX激活定时器,在所述DRX激活定时器对应的激活期内监听PDCCH。
  41. 一种通信装置,其特征在于,包括接口单元和处理单元;
    所述接口单元,用于接收来自网络设备的配置信息;
    所述处理单元,用于根据配置信息控制通信装置在第一时段的N1个第一时间窗中的M1个第一时间窗内监听物理下行链路控制信道PDCCH,所述第一时段的时长为非连续接收DRX周期,N1为大于等于3的整数,M1为小于N1且大于等于2的整数。
  42. 如权利要求41所述的装置,其特征在于,所述M1个第一时间窗中至少有两个在时间上不连续的第一时间窗。
  43. 如权利要求41或42所述的装置,其特征在于,所述配置信息包括时间窗位图信息,所述时间窗位图信息用于配置所述M1个第一时间窗。
  44. 如权利要求43所述的装置,其特征在于,所述配置信息还用于配置N1的取值或N1个第一时间窗中一个第一时间窗的时长。
  45. 如权利要求41所述的装置,其特征在于,所述配置信息包括时间窗索引信息,所述时间窗索引信息用于配置M1个第一时间窗。
  46. 如权利要求45所述的装置,其特征在于,所述M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
  47. 如权利要求41-46中任一项所述的装置,其特征在于,所述接口单元,还用于向网络设备发送DRX偏好信息,所述DRX偏好信息指示对功耗和/或时延的偏好。
  48. 如权利要求41-47中任一项所述的装置,其特征在于,所述处理单元,还用于在所述M1个第一时间窗内的任一个第一时间窗接收到PDCCH调度后,启动DRX激活定时器,在所述DRX激活定时器对应的激活期内监听PDCCH。
  49. 一种通信装置,其特征在于,包括接口单元和处理单元;
    所述处理单元,用于生成配置信息,所述配置信息用于配置第一时段的N1个第一时间窗中的M1个第一时间窗,所述M1个第一时间窗用于物理下行链路控制信道PDCCH的监听,所述第一时段为非连续接收DRX持续时段,N1为大于等于2的整数,M1为小于N1的正整数;
    所述接口单元,用于向终端设备发送配置信息。
  50. 如权利要求49所述的装置,其特征在于,所述配置信息包括时间窗位图信息,时间窗位图信息用于配置所述M1个第一时间窗。
  51. 如权利要求50所述的装置,其特征在于,所述配置信息还用于配置所述N1的取值或所述N1个第一时间窗中一个第一时间窗的时长。
  52. 如权利要求49所述的装置,其特征在于,所述配置信息包括时间窗索引信息,所述时间窗索引信息用于配置所述M1个第一时间窗。
  53. 如权利要求52所述的装置,其特征在于,所述M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
  54. 如权利要求49-53中任一项所述的装置,其特征在于,所述接口单元,还用于接收来自终端设备的DRX偏好信息,所述DRX偏好信息指示对功耗和/或时延的偏好。
  55. 如权利要求49-54中任一项所述的装置,其特征在于,所述配置信息还用于配置第二时段的N2个第二时间窗中的M2个第二时间窗,M2个第二时间窗用于PDCCH的监听,所述第一时段为长DRX周期的DRX持续时段,所述第二时段为短DRX周期的DRX持续时段,N2为大于等于2的整数,M2为小于N2的正整数。
  56. 一种通信装置,其特征在于,包括接口单元和处理单元;
    所述处理单元,用于生成配置信息,所述配置信息用于配置第一时段的N1个第一时间窗中的M1个第一时间窗,M1个第一时间窗用于物理下行链路控制信道PDCCH的监听,所述第一时段的时长为非连续接收DRX周期,N1为大于等于3的整数,M1为小于N1且大于等于2的整数;
    所述接口单元,用于向终端设备发送所述配置信息。
  57. 如权利要求56所述的装置,其特征在于,所述M1个第一时间窗中至少有两个在时间上不连续的第一时间窗。
  58. 如权利要求56或57所述的装置,其特征在于,所述配置信息包括时间窗位图信息,所述时间窗位图信息用于配置所述M1个第一时间窗。
  59. 如权利要求58所述的装置,其特征在于,所述配置信息还用于配置所述N1的取值或所述N1个第一时间窗中一个第一时间窗的时长。
  60. 如权利要求56所述的装置,其特征在于,所述配置信息包括时间窗索引信息,缩水时间窗索引信息用于配置所述M1个第一时间窗。
  61. 如权利要求60所述的装置,其特征在于,所述M1个第一时间窗对应的第一时间窗图样为多个第一时间窗图样中的一个。
  62. 如权利要求56-61中任一项所述的装置,其特征在于,所述接口单元,还用于接收来自终端设备的DRX偏好信息,所述DRX偏好信息指示对功耗和/或时延的偏好。
  63. 一种通信装置,其特征在于,包括处理器,所述处理器用于执行如权利要求1-31中任一项所述的方法。
  64. 一种通信装置,其特征在于,包括处理器,所述处理器用于执行存储在存储器中的指令,以使得如权利要求1-31中任一项所述的方法被实现。
  65. 一种计算机程序产品,其特征在于,包括程序代码,当所述程序代码被执行,使得如权利要求1-31中任一项所述的方法被实现。
  66. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,使得如权利要求1-31中任一项所述的方法被实现。
PCT/CN2022/121099 2021-10-13 2022-09-23 一种pdcch监听方法及装置 WO2023061189A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111194278.3A CN115967975A (zh) 2021-10-13 2021-10-13 一种pdcch监听方法及装置
CN202111194278.3 2021-10-13

Publications (1)

Publication Number Publication Date
WO2023061189A1 true WO2023061189A1 (zh) 2023-04-20

Family

ID=85888356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121099 WO2023061189A1 (zh) 2021-10-13 2022-09-23 一种pdcch监听方法及装置

Country Status (2)

Country Link
CN (1) CN115967975A (zh)
WO (1) WO2023061189A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923914A (zh) * 2017-03-24 2019-06-21 Lg 电子株式会社 用于接收寻呼消息的方法和无线设备
WO2020204488A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 무선 통신 시스템에서 물리 하향링크 제어채널 모니터링
WO2021062792A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种唤醒信号的检测方法及装置
US20210153127A1 (en) * 2019-11-19 2021-05-20 Qualcomm Incorporated Wakeup signal monitoring window

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923914A (zh) * 2017-03-24 2019-06-21 Lg 电子株式会社 用于接收寻呼消息的方法和无线设备
WO2020204488A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 무선 통신 시스템에서 물리 하향링크 제어채널 모니터링
WO2021062792A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种唤醒信号的检测方法及装置
US20210153127A1 (en) * 2019-11-19 2021-05-20 Qualcomm Incorporated Wakeup signal monitoring window

Also Published As

Publication number Publication date
CN115967975A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
JP5658260B2 (ja) 無線ネットワークの省電力動作のための遊休タイムアウトの報知時間のための方法及びシステム
JP2022517311A (ja) Ue支援情報を送信することに関するユーザ装置
CN115884402A (zh) 辅助信息上报方法、业务配置方法、终端及网络侧设备
CN113994740B (zh) 用于处理pdcch跳过和唤醒信令的机制
JP7239718B2 (ja) リソース管理の方法及び装置
WO2023061189A1 (zh) 一种pdcch监听方法及装置
Kim et al. Ue power saving techniques for extended reality (xr) services in 5g nr systems
CN115734320A (zh) 终端节能方法、装置及系统
CN115802422A (zh) 通信方法及装置
EP2786619B1 (en) Facilitating power conservation for local area transmissions
WO2021030987A1 (zh) 一种冲突解决方法及装置
CN109302736B (zh) 无线局域网的睡眠控制方法及装置、存储介质、工作站、终端
WO2023207927A9 (zh) 一种节能方法、装置及存储介质
US20180035376A1 (en) NAN Frame Buffering Indications
WO2024012231A1 (zh) 通信方法及装置
WO2023231636A1 (zh) 一种通信方法及相关装置
WO2024093892A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2024066908A1 (zh) 基于drx配置的通信方法、通信装置及通信系统
WO2024113283A1 (zh) Harq进程管理方法、装置及系统
WO2023010905A1 (zh) 非连续接收的方法及装置
US20240188180A1 (en) Communication method and device
WO2023016287A1 (zh) 一种通信方法和设备
WO2024113145A1 (en) Connected mode discontinuous reception for unicast bidirectional traffic
WO2023207405A1 (zh) 基于drx配置的通信方法、通信装置及通信系统
WO2024021980A1 (zh) 非连续接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880129

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022880129

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022880129

Country of ref document: EP

Effective date: 20240411