WO2023207927A9 - 一种节能方法、装置及存储介质 - Google Patents

一种节能方法、装置及存储介质 Download PDF

Info

Publication number
WO2023207927A9
WO2023207927A9 PCT/CN2023/090419 CN2023090419W WO2023207927A9 WO 2023207927 A9 WO2023207927 A9 WO 2023207927A9 CN 2023090419 W CN2023090419 W CN 2023090419W WO 2023207927 A9 WO2023207927 A9 WO 2023207927A9
Authority
WO
WIPO (PCT)
Prior art keywords
duration
time
data
terminal device
indication information
Prior art date
Application number
PCT/CN2023/090419
Other languages
English (en)
French (fr)
Other versions
WO2023207927A1 (zh
Inventor
曹佑龙
黄雯雯
陈二凯
徐瑞
秦熠
米翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210962007.6A external-priority patent/CN117015016A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023207927A1 publication Critical patent/WO2023207927A1/zh
Publication of WO2023207927A9 publication Critical patent/WO2023207927A9/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present application relates to the field of communication technology, and in particular to an energy-saving method, device and storage medium.
  • XR extended reality
  • XR services need to generate and transmit data frames periodically according to a frame rate, such as 60 frames per second (FPS).
  • a frame rate such as 60 frames per second (FPS).
  • data frames need to be generated and transmitted according to a frame period.
  • the data frames of XR services may not strictly comply with the periodicity when they arrive at the base station. This also means that when the base station transmits the data frames of XR services to the terminal device, it may not be strictly transmitted according to the frame period, and the terminal device may not be able to receive the data frames strictly according to the frame period.
  • LTE long term evolution
  • NR new radio
  • technologies that make it unnecessary for terminal devices to continuously monitor the physical downlink control channel (PDCCH), such as PDCCH skipping technology and discontinuous reception (DRX) technology.
  • PDCCH skipping technology PDCCH skipping technology
  • DRX discontinuous reception
  • the embodiments of the present application provide a communication method, apparatus and system for controlling a terminal device to reasonably skip monitoring of a PDCCH, thereby solving the problem that the time when the terminal device monitors the PDCCH does not match the transmission time of a service.
  • a communication method which can be executed by a terminal device, or by a component of the terminal device (such as a processor, a chip, or a chip system, etc.), or by a logic module or software that can implement all or part of the functions of the terminal device.
  • the method includes: receiving first indication information from a network device. Then, according to the first indication information, skipping the monitoring of the PDCCH within a first duration; wherein the first duration is related to the period or frame rate of the data.
  • the terminal device can skip the monitoring of the PDCCH within the first duration related to the period or frame rate of the data according to the indication of the first indication information.
  • the communication method provided in the embodiment of the present application can control the duration of the terminal device skipping the PDCCH monitoring to be related to the period or frame rate of the data, so that in the scenario of periodic data transmission, the time when the terminal device monitors the PDCCH can be matched with the transmission time of the data.
  • the first duration is also related to at least one of the following: the time when the first indication information is received; or, a first reference time configured by the network device.
  • the embodiment of the present application provides a specific method for determining the first duration.
  • the first duration satisfies the following relationship: Wherein, X represents the first duration; c represents the time slot index of the first reference time; Int represents rounding up or rounding down; ceil represents rounding up; d represents the time slot index of the time when the first indication information is received; y represents the period of data; s represents the time slot length.
  • X represents the first duration
  • c represents the time slot index of the first reference time
  • Int represents rounding up or rounding down
  • ceil represents rounding up
  • d represents the time slot index of the time when the first indication information is received
  • y represents the period of data
  • s represents the time slot length.
  • the first duration satisfies the following relationship: Wherein, X represents the first duration; e represents the subframe index of the first reference time; Int represents rounding up or rounding down; ceil represents rounding up; f represents the subframe index of the time when the first indication information is received; p represents the period of data; q represents the subframe length.
  • X represents the first duration
  • e represents the subframe index of the first reference time
  • Int represents rounding up or rounding down
  • ceil represents rounding up
  • f represents the subframe index of the time when the first indication information is received
  • p represents the period of data
  • q represents the subframe length.
  • the method further includes: receiving first configuration information from a network device, wherein the first indication information indicates to skip monitoring of the PDCCH within a first duration according to the first configuration information.
  • the first configuration information and the first indication information can be combined to instruct the terminal device to skip monitoring of the PDCCH within the first duration, which can reduce the signaling that needs to be carried in the first indication information, thereby saving signaling resources.
  • the PDCCH carries information for scheduling data.
  • the period of data is z milliseconds, where z is a non-integer.
  • the communication method provided in the embodiment of the present application can be applied to scenarios where service data is transmitted in a non-integer period, such as XR services.
  • a communication method which can be executed by a network device, or by a component of the network device (such as a processor, a chip, or a chip system, etc.), or by a logic module or software that can implement all or part of the functions of the terminal device.
  • the method includes: sending first indication information to the terminal device, the first indication information indicating to skip the monitoring of the PDCCH within a first duration; wherein the first duration is related to the period or frame rate of the data.
  • the terminal device can skip the monitoring of the PDCCH within the first duration related to the period or frame rate of the data according to the indication of the first indication information.
  • the communication method provided in the embodiment of the present application can control the duration of the terminal device skipping the PDCCH monitoring to be related to the period or frame rate of the data, so that in the scenario of periodic data transmission, the time when the terminal device monitors the PDCCH can be matched with the transmission time of the data.
  • the first duration is also related to at least one of the following: the time when the first indication information is received; or, a first reference time configured by the network device.
  • the embodiment of the present application provides a specific method for determining the first duration.
  • the first duration satisfies the following relationship: Wherein, X represents the first duration; c represents the time slot index of the first reference time; Int represents rounding up or rounding down; ceil represents rounding up; d represents the time slot index of the time when the first indication information is received; y represents the period of data; s represents the time slot length.
  • X represents the first duration
  • c represents the time slot index of the first reference time
  • Int represents rounding up or rounding down
  • ceil represents rounding up
  • d represents the time slot index of the time when the first indication information is received
  • y represents the period of data
  • s represents the time slot length.
  • the first duration satisfies the following relationship: Wherein, X represents the first duration; e represents the subframe index of the first reference time; Int represents rounding up or rounding down; ceil represents rounding up; f represents the subframe index of the time when the first indication information is received; p represents the period of data; q represents the subframe length.
  • X represents the first duration
  • e represents the subframe index of the first reference time
  • Int represents rounding up or rounding down
  • ceil represents rounding up
  • f represents the subframe index of the time when the first indication information is received
  • p represents the period of data
  • q represents the subframe length.
  • the method further includes: sending first configuration information to the terminal device, wherein the first indication information indicates to skip monitoring of the PDCCH within a first duration according to the first configuration information.
  • the first configuration information and the first indication information can be combined to instruct the terminal device to skip monitoring of the PDCCH within the first duration, which can reduce the signaling that needs to be carried in the first indication information, thereby saving signaling resources.
  • the PDCCH carries information for scheduling data.
  • the period of data is z milliseconds, where z is a non-integer.
  • the communication method provided in the embodiment of the present application can be applied to scenarios where service data is transmitted in a non-integer period, such as XR services.
  • a communication device for implementing the above method.
  • the communication device includes a module, unit, or means corresponding to the above method, and the module, unit, or means can be implemented by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes: an interface module and a processing module.
  • the interface module is used to receive first indication information from a network device; the processing module is used to control the device to skip PDCCH monitoring within a first time period according to the first indication information; the first time period is related to the period or frame rate of the data.
  • the first duration is also related to at least one of the following: the time when the first indication information is received; or, a first reference time configured by the network device.
  • the first duration satisfies the following relationship: Among them, X represents the first duration; c represents the time slot index of the first reference time; Int represents rounding up or rounding down; ceil represents rounding up; d represents the time slot index of the time when the first indication information is received; y represents the period of data; and s represents the time slot length.
  • the first duration satisfies the following relationship: Among them, X represents the first duration; e represents the subframe index of the first reference time; Int represents rounding up or rounding down; ceil represents rounding up; f represents the subframe index of the time when the first indication information is received; p represents the period of data; and q represents the subframe length.
  • the interface module is also used to receive first configuration information from the network device, wherein the first indication information indicates to skip PDCCH monitoring within a first time length according to the first configuration information.
  • the PDCCH carries information for scheduling data.
  • a period of the data is z milliseconds, where z is a non-integer.
  • the technical effects brought about by any possible design in the third aspect can refer to the technical effects brought about by different designs in the above-mentioned first aspect, and will not be repeated here.
  • a communication device for implementing the above method.
  • the communication device includes a module, unit, or means corresponding to the above method, and the module, unit, or means can be implemented by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes: an interface module.
  • the interface module is used to send first indication information to the terminal device; wherein the first indication information indicates to skip monitoring of the PDCCH within a first time length; wherein the first time length is related to a period or frame rate of the data.
  • the first duration is also related to at least one of the following: the time when the first indication information is received; or, a first reference time configured by the communication device.
  • the first duration satisfies the following relationship: Among them, X represents the first duration; c represents the time slot index of the first reference time; Int represents rounding up or rounding down; ceil represents rounding up; d represents the time slot index of the time when the terminal device receives the first indication information; y represents the period of data; s represents the time slot length.
  • the first duration satisfies the following relationship: Among them, X represents the first duration; e represents the subframe index of the first reference time; Int represents rounding up or rounding down; ceil represents rounding up; f represents the subframe index of the time when the first indication information is received; p represents the period of data; and q represents the subframe length.
  • the interface module is also used to send first configuration information to the terminal device, wherein the first indication information indicates to skip PDCCH monitoring within a first time length according to the first configuration information.
  • the PDCCH carries information for scheduling data.
  • a period of the data is z milliseconds, where z is a non-integer.
  • the technical effects brought about by any possible design in the fourth aspect can refer to the technical effects brought about by different designs in the above-mentioned second aspect, and will not be repeated here.
  • a communication device comprising: a processor; the processor is coupled to a memory, the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the communication device executes the method described in any one of the above aspects.
  • the communication device also includes a memory.
  • the communication device further includes a communication interface; the communication interface is used for the communication device to communicate with other devices.
  • the communication interface can be a transceiver, an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc.
  • the communication device may be a chip or a chip system.
  • the communication device when the communication device is a chip system, the communication device may be composed of a chip, or may include a chip and other discrete devices.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or the chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a computer-readable storage medium wherein computer instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a computer, the computer can execute the method described in any one of the above aspects.
  • a computer program product comprising instructions, which, when executed on a computer, enables the computer to execute the method described in any one of the above aspects.
  • a communication system which includes a terminal device that executes the method described in the first aspect above, and a network device that executes the method described in the second aspect above.
  • FIG1 is a schematic diagram of the time when a data frame of an XR service arrives at a network device
  • FIG2 is a schematic diagram of a DRX cycle
  • FIG3 is a schematic diagram of a monitoring cycle
  • FIG4 is a schematic diagram of monitoring periods corresponding to sparse SSSG and dense SSSG respectively;
  • FIG5 is a schematic diagram of the arrival time of XR services and the on Duration time in the DRX cycle
  • FIG6 is a schematic diagram of the PDCCH skipping duration and the duration of skipping PDCCH monitoring required for XR services
  • FIG7 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of a network device and a terminal device provided in an embodiment of the present application.
  • FIG9 is another schematic diagram of the structure of a terminal device provided in an embodiment of the present application.
  • FIG10 is an interactive schematic diagram of an energy-saving method provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of determining a first duration provided by an embodiment of the present application.
  • FIG12 is an interactive schematic diagram of a specific example of an energy-saving method provided in an embodiment of the present application.
  • FIG13 is an interactive schematic diagram of a specific example of another energy-saving method provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of performing SSSG switching provided in an embodiment of the present application.
  • FIG15 is an interactive schematic diagram of another energy-saving method provided in an embodiment of the present application.
  • FIG16 is an interactive schematic diagram of a specific example of another energy-saving method provided in an embodiment of the present application.
  • FIG17 is a schematic diagram of the structure of a communication device provided in an embodiment of the application.
  • FIG. 18 is a schematic diagram of the structure of another communication device provided in an embodiment of the application.
  • the transmission process of XR service data frames is generally from the server to the fixed network/core network, then to the base station, and then transmitted to the terminal device by the base station.
  • the XR service is a video service
  • the data frame of the XR service can also be called a picture frame or a video frame.
  • XR services need to generate and transmit data frames periodically according to the frame rate.
  • data frames need to be generated and transmitted according to the frame period.
  • the frame period here can also be called the period of the XR service, or the period of the data.
  • the corresponding XR service period is generally a non-integer. For example, if the frame rate is 60FPS, the corresponding XR service period is 16.67ms, and the server generates and transmits a data frame every 16.67ms.
  • the data frames of XR services do not necessarily strictly adhere to periodicity when they arrive at the base station.
  • a picture frame arrives at the base station every 16.67 milliseconds.
  • the delay for each picture frame to arrive at the base station is not equal, and the frame interval is no longer strictly 16.67 milliseconds.
  • This situation can be called jitter at the arrival time of the frame.
  • the data frames of the XR service do not necessarily arrive at the base station strictly according to the periodicity, which also means that when the base station transmits the data frames of the XR service to the terminal device, it may not be transmitted strictly according to the frame period, and the terminal device may not be able to receive the data frames strictly according to the frame period.
  • DRX technology is a technology introduced to reduce the power consumption of terminal devices.
  • the basic mechanism of DRX technology is to configure the DRX cycle for the terminal device.
  • the DRX cycle includes an active time period and an inactive time period.
  • the terminal device normally monitors the PDCCH during the active time period and enters a dormant state during the inactive time period and does not monitor the PDCCH to reduce power consumption.
  • the active time period within the DRX cycle can also be called duration (on Duration/on Duration Timer).
  • duration on Duration/on Duration Timer
  • the terminal device can monitor PDCCH during the on Duration period. After the on Duration times out, the terminal device enters the inactive time period and stops monitoring PDCCH until entering the on Duration period of the next DRX cycle and then monitors PDCCH again.
  • the interval between two adjacent on Durations is the length of the DRX cycle.
  • a longer DRX cycle means that the terminal device sleeps longer, which is beneficial to reducing the power consumption of the terminal device.
  • a shorter DRX cycle helps the terminal device respond faster to receive data. Therefore, in order to meet different needs, the terminal device can be configured with two DRX cycles: a short DRX-Cycle and a long DRX-Cycle. The terminal device uses one of the DRX cycles at any time.
  • the DRX cycle is generally configured by the base station to the terminal device, and the DRX cycle is generally an integer value.
  • the base station will define one or more search space sets for the terminal device.
  • the search space set refers to a set of PDCCH monitoring occasions (MO).
  • the terminal device monitors the PDCCH on the MO within the search space set configured by the base station, and does not need to monitor the PDCCH on the MO not included in the search space set, thereby saving power consumption.
  • the terminal device can monitor the PDCCH according to the following information contained in the search space: monitoringSlotPeriodicityAndOffset, duration, and monitoringSymbolsWithinSlot.
  • monitoringSlotPeriodicityAndOffset defines the period of the search space and the starting offset time slot (offset) for PDCCH monitoring within the period.
  • Duration defines the number of consecutive time slots (slots) required to be monitored in a search space period. For example, duration is 2, which means that two consecutive time slots are required to be continuously monitored in a search space period.
  • MonitoringSymbolsWithinSlot can define which symbol (symbol) starts monitoring PDCCH in a time slot of the aforementioned duration time slots.
  • the method of monitoring PDCCH through the search space set may also be referred to as PDCCH monitoring (PDCCH monitoring), and the search space period may also be referred to as the period of PDCCH monitoring, or as the monitoring period.
  • PDCCH monitoring PDCCH monitoring
  • the search space period may also be referred to as the period of PDCCH monitoring, or as the monitoring period.
  • the period of PDCCH monitoring is generally an integer number of time slots.
  • the monitoring period includes k time slots
  • the starting offset time slot is O time slots
  • the duration is L
  • monitoringSymbolsWithinSlot indicates that the PDCCH is monitored starting from symbol 1 within duration time slots.
  • the terminal device continuously monitors L time slots, and monitors the PDCCH within the time slot according to the symbol indicated by monitoringSymbolsWithinSlot. The terminal device may not monitor the rest of the time until the next monitoring period.
  • the number of symbols corresponding to the monitored PDCCH represented by the shaded portion in FIG3 and the frequency domain range of the monitored PDCCH are defined by the control channel resource set (coreset) associated with the search space.
  • the search space set may belong to different search space set groups (SSSG).
  • the SSSG is configured by the base station to the terminal device, such as the information such as the search space included in the SSSG.
  • the base station will also configure the PDCCH monitoring related configuration corresponding to the SSSG for the terminal device, and the terminal device can monitor the PDCCH on the search space within the SSSG according to the PDCCH monitoring related configuration corresponding to the SSSG.
  • the base station can configure the SSSG for the terminal device through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the SSSG can be divided into a sparse SSSG and a dense SSSG.
  • the sparse SSSG monitors the PDCCH more sparsely. For example, assuming that SSSG 0 is configured to monitor the PDCCH every three time slots, and SSSG 1 is configured to monitor the PDCCH in every time slot, SSSG0 can be called a sparse SSSG, and SSSG1 can be called a dense SSSG.
  • the configuration of the sparse SSSG and the dense SSSG, and the PDCCH monitoring related configurations corresponding to the sparse SSSG and the dense SSSG respectively, may be determined based on the implementation of the base station.
  • the base station configures SSSG0 and SSSG1 for the terminal device, wherein SSSG 0 is configured to monitor PDCCH every other time slot, SSSG 1 is configured to monitor PDCCH every time slot, and the monitoring period of the search space set in SSSG 0 and SSSG1 is configured to be 2 time slots.
  • the first monitoring period includes time slot 0 and time slot 1
  • the second monitoring period includes time slot 3 and time slot 4, and other monitoring periods are analogous.
  • the first monitoring period includes time slot 0 and time slot 1
  • the second monitoring period includes time slot 2 and time slot 3
  • other monitoring periods are analogous.
  • the specific implementation of the terminal device monitoring PDCCH during the monitoring period can refer to the above introduction.
  • the time for monitoring PDCCH in SSSG0 is relatively sparse
  • the time for monitoring PDCCH in SSSG1 is relatively dense. Therefore, SSSG0 can be called a sparse SSSG, and SSSG1 can be called a dense SSSG.
  • the switching of the search space set group can be indicated based on the downlink control information (DCI).
  • DCI downlink control information
  • a PDCCH monitoring adaptation indication (PDCCH monitoring adaptation indication) field (including 1 or 2 bits) is added to the DCI, and the PDCCH monitoring adaptation indication field is used to indicate whether the terminal device performs the search space set group switching.
  • PDCCH monitoring adaptation indication field includes 1 bit and the base station configures two SSSGs for the terminal device
  • the user equipment behaviors (user equipment behaviors, UE behaviors) indicated by the PDCCH monitoring adaptation indication field can be as shown in Table 1 below:
  • the PDCCH monitoring adaptation indication field includes 2 bits and the base station configures three SSSGs for the terminal device
  • the user equipment behavior indicated by the PDCCH monitoring adaptation indication field can be as shown in Table 2 below:
  • SSSG switching can also be performed based on a timer.
  • the base station can configure a search space switch timer (search space switch timer) in the RRC signaling.
  • search space switch timer search space switch timer
  • the purpose of the search space switch timer can be understood as the terminal device switching from one SSSG to another SSSG after the timer times out.
  • the search space switch timer can also be called the SSSG switch timer.
  • the terminal device can support PDCCH skipping.
  • a PDCCH monitoring adaptation indication field (containing 1 or 2 bits) can be included in the DCI to indicate the duration for which the terminal device needs to skip PDCCH monitoring through the PDCCH monitoring adaptation indication field.
  • the user equipment behavior indicated by the PDCCH monitoring adaptation indication field can be as shown in Table 3 below:
  • the terminal device skips the monitoring of the PDCCH within the duration corresponding to the first value in the duration set after receiving the DCI.
  • the values in the duration set, or the candidate durations for which the terminal device can skip PDCCH monitoring are configured through the PDCCH Skipping Duration List-r17 (PDCCH Skipping DurationList-r17) field in the RRC signaling.
  • the PDCCH Skipping DurationList-r17 field can configure up to three candidate PDCCH skipping durations.
  • the duration of the candidate PDCCH skipping that can be configured by the PDCCH Skipping DurationList-r17 field is based on the granularity of time slots. In other words, the duration of the candidate PDCCH skipping that can be configured by the PDCCH Skipping DurationList-r17 field is generally an integer number of time slots.
  • the terminal device after receiving the DCI, the terminal device determines which PDCCH skipping duration value configured by the PDCCH Skipping DurationList-r17 field is indicated based on the PDCCH monitoring adaptation indication field in the DCI, thereby skipping the PDCCH monitoring within the corresponding duration.
  • the PDCCH monitoring adaptation indication field includes 2 bits and the base station configures two SSSGs and two candidate PDCCH skipping durations for the terminal device
  • the user equipment behavior indicated by the PDCCH monitoring adaptation indication field can be as shown in Table 4 below:
  • DRX technology enables the terminal device to monitor PDCCH periodically, but the DRX cycle is generally an integer value, which does not match the non-integer cycle value of the XR service. For example, assuming that the frame rate of the XR service is 60FPS, the corresponding cycle is 16.67ms, and the DRX cycle closest to the frame cycle is 16ms. As shown in Figure 5, the arrival time of the XR service is gradually staggered from the onDuration time in the DRX cycle. At the same time, there may be jitter in the arrival time of the data frame of the XR service. In order to enable the data frame to be scheduled in time after arriving at the base station, the length of onDuration needs to be set to cover the entire jitter range.
  • the possible value of jitter is -4ms ⁇ jitter ⁇ 4ms.
  • the data frame can arrive 4ms in advance at the earliest and 4ms late at the latest, so onDuration needs to be set to 8ms.
  • the DRX cycle closest to the data cycle is 16ms, so the terminal device needs to monitor PDCCH for nearly half of the time, resulting in excessive power consumption of the terminal device.
  • the PDCCH monitoring period is generally an integer number of time slots, and the XR service period is generally a non-integer number of time slots.
  • the PDCCH monitoring period value does not match the XR service period value.
  • the terminal device needs to monitor the PDCCH for a long time.
  • the duration of PDCCH skipping supports up to 3 values in time slots.
  • the actual duration of PDCCH skipping required by XR services varies widely, and the PDCCH skipping duration with a maximum of 3 values cannot meet the actual needs of XR services.
  • the range of the duration of PDCCH monitoring that the terminal device can skip is shown in Figure 6.
  • the terminal device needs to skip the PDCCH monitoring time range from 6 slots to 30 slots, with a total of 25 length ranges in time slots.
  • RRC signaling can configure a maximum of 3 candidate PDCCH skipping durations in time slots, which cannot meet the changes in the length of PDCCH monitoring skipping required by XR services.
  • an embodiment of the present application provides an energy-saving method, which can reasonably control the time for the terminal device to skip the monitoring of PDCCH so that the time for the terminal device to monitor PDCCH matches the transmission time of the data frame of the XR service.
  • At least one of the following or its similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • at least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • the words "first”, “second” and the like are used to distinguish the same items or similar items with substantially the same functions and effects.
  • the energy-saving method provided in the embodiment of the present application can be applied to various communication systems.
  • the energy-saving method provided in the embodiment of the present application can be applied to a long-term evolution (LTE) system, or a fifth-generation (5G) system, or other similar new systems facing the future, and the embodiment of the present application does not specifically limit this.
  • LTE long-term evolution
  • 5G fifth-generation
  • system can be interchangeably used with "network”.
  • a communication system 60 is provided in an embodiment of the present application.
  • the communication system 60 includes a network device 70 and one or more terminal devices 80 connected to the network device 70.
  • the terminal device 80 is connected to the network device 70 in a wireless manner.
  • different terminal devices 80 can communicate with each other.
  • the terminal device 80 can be fixed or movable.
  • FIG. 7 is only a schematic diagram.
  • the communication system 60 may also include other network devices, such as the communication system 60 may also include one or more of a core network device, a wireless relay device, and a wireless backhaul device, which are not specifically limited here.
  • the network device can be connected to the core network device wirelessly or wired.
  • the core network device and the network device 70 may be independent and different physical devices, or the functions of the core network device and the logical functions of the network device 70 may be integrated on the same physical device, or the functions of part of the core network device and part of the network device 70 may be integrated on one physical device, which is not specifically limited in the embodiment of the present application.
  • the network device 70 is used to send a first indication information to the terminal device 80; the terminal device 80 is used to skip the monitoring of the PDCCH within a first duration according to the first indication information; wherein the first duration is related to the period or frame rate of the data.
  • the network device 70 in the embodiment of the present application is a device that connects the terminal device 80 to the wireless network, which may be a base station, an evolved NodeB (eNodeB), a transmission reception point (TRP), a next generation NodeB (gNB) in a 5G mobile communication system, a base station in a future mobile communication system, or an access node in a wireless fidelity (Wi-Fi) system, etc.; it may also be a module or unit that completes part of the functions of a base station, for example, it may be a centralized unit (central).
  • the network device may be a wireless access network device (a wireless access network device or a wireless access network device). ...
  • the terminal device 80 in the embodiment of the present application may be a device for realizing wireless communication functions, such as a terminal or a chip that can be used in a terminal.
  • the terminal may also be referred to as user equipment (UE), a mobile station, a mobile terminal, etc.
  • the terminal may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality terminal device, an augmented reality terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in remote surgery, a wireless terminal in a smart grid, a wireless terminal in transportation safety, a wireless terminal in a smart city, a wireless terminal in a smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device. All or part of the functions of the terminal device may also be implemented by software functions running on hardware, or by virtualization functions instantiated on a platform (such as a cloud platform).
  • the network device 70 and the terminal device 80 in the embodiment of the present application can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; can also be deployed on the water surface; can also be deployed on an airplane, balloon, or artificial satellite in the air.
  • the embodiment of the present application does not limit the application scenarios of the network device 70 and the terminal device 80.
  • the network device 70 and the terminal device 80 in the embodiment of the present application can communicate through the authorized spectrum, can communicate through the unlicensed spectrum, or can communicate through the authorized spectrum and the unlicensed spectrum at the same time.
  • the network device 70 and the terminal device 80 can communicate through the spectrum below 6 gigahertz (GHz), can communicate through the spectrum above 6 GHz, and can also communicate using the spectrum below 6 GHz and the spectrum above 6 GHz at the same time.
  • the embodiment of the present application does not limit the spectrum resources used between the network device 70 and the terminal device 80.
  • the network device 70 and the terminal device 80 in the embodiment of the present application may also be referred to as a communication device, which may be a general device or a dedicated device, and the embodiment of the present application does not specifically limit this.
  • FIG8 it is a schematic diagram of the structure of a network device 70 and a terminal device 80 provided in an embodiment of the present application.
  • the terminal device 80 includes at least one processor 1001 and at least one transceiver 1003. Optionally, the terminal device 80 may also include at least one memory 1002, at least one output device 1004 or at least one input device 1005.
  • the processor 1001, the memory 1002 and the transceiver 1003 are connected via a communication line.
  • the communication line may include a path to transmit information between the above components.
  • Processor 1001 may be a general-purpose central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • processor 1001 may also include multiple CPUs, and processor 1001 may be a single-core processor or a multi-core processor.
  • the processor here may refer to one or more devices, circuits or processing cores for processing data.
  • the memory 1002 may be a device with a storage function.
  • it may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM), or a memory that can store static information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • the memory 1002 may be a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 1002 may exist independently and be connected to the processor 1001 through a communication line.
  • the memory 1002 may also be integrated with the processor 1001.
  • the memory 1002 is used to store computer-executable instructions for executing the solution of the present application, and the execution is controlled by the processor 1001. Specifically, the processor 1001 is used to execute the computer-executable instructions stored in the memory 1002, thereby realizing the energy-saving method described in the embodiment of the present application.
  • the processor 1001 may also perform processing-related functions in the energy-saving method provided in the following embodiments of the present application, and the transceiver 1003 is responsible for communicating with other devices or communication networks, which is not specifically limited in the embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application code or computer program code, which is not specifically limited in the embodiments of the present application.
  • the transceiver 1003 may use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), or wireless local area networks (WLAN).
  • the transceiver 1003 includes a transmitter (Tx) and a receiver (Rx).
  • the output device 1004 communicates with the processor 1001 and can display information in a variety of ways.
  • the output device 1004 can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • the input device 1005 communicates with the processor 1001 and can accept user input in various ways.
  • the input device 1005 can be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the network device 70 includes at least one processor 901, at least one transceiver 903 and at least one network interface 904.
  • the network device 70 may also include at least one memory 902.
  • the processor 901, the memory 902, the transceiver 903 and the network interface 904 are connected via a communication line.
  • the network interface 904 is used to connect to the core network device through a link (such as an S1 interface), or to connect to the network interface of other network devices through a wired or wireless link (such as an X2 interface) (not shown in Figure 8), and the embodiment of the present application does not specifically limit this.
  • the relevant description of the processor 901, the memory 902 and the transceiver 903 can refer to the description of the processor 1001, the memory 1002 and the transceiver 1003 in the terminal device 80, which will not be repeated here.
  • FIG9 is a specific structural form of the terminal device 80 provided in an embodiment of the present application.
  • the functionality of the processor 1001 in FIG. 8 may be implemented by the processor 110 in FIG. 9 .
  • the function of the transceiver 1003 in FIG. 8 can be implemented by the antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, etc. in FIG. 9.
  • the mobile communication module 150 can provide solutions for wireless communication technologies including LTE, NR or future mobile communication applied to the terminal device 80.
  • the wireless communication module 160 can provide solutions for wireless communication technologies including WLAN (such as Wi-Fi network), Bluetooth (blue tooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication (near field communication, NFC), infrared, etc. applied to the terminal device 80.
  • the antenna 1 of the terminal device 80 is coupled with the mobile communication module 150
  • the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 80 can communicate with the network and other devices through wireless communication technology.
  • the function of the memory 1002 in FIG. 8 may be implemented by the internal memory 121 in FIG. 9 or an external memory connected to the external memory interface 120 .
  • the functionality of the output device 1004 in FIG. 8 may be implemented via the display screen 194 in FIG. 9 .
  • the functionality of the input device 1005 in FIG. 8 may be implemented by a mouse, a keyboard, a touch screen device, or the sensor module 180 in FIG. 9 .
  • the terminal device 80 may also include one or more of an audio module 170, a camera 193, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, a power management module 141 and a battery 142.
  • the structure shown in FIG9 does not constitute a specific limitation on the terminal device 80.
  • the terminal device 80 may include more or fewer components than shown in the figure, or combine some components, or split some components, or arrange the components differently.
  • the components shown in the figure may be implemented in hardware, software, or a combination of software and hardware.
  • FIG. 10 takes a network device and a terminal device as an example to illustrate the method as the execution subject of the interaction diagram, but the present application does not limit the execution subject of the interaction diagram.
  • the network device in Figure 10 may also be a chip, a chip system, or a processor that supports the network device to implement the method, or a logic module or software that can implement all or part of the network device functions;
  • the terminal device in Figure 10 may also be a chip, a chip system, or a processor that supports the terminal device to implement the method, or a logic module or software that can implement all or part of the terminal device functions.
  • the energy-saving method includes S1001 and S1002:
  • the network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the terminal device skips monitoring of the PDCCH within a first duration according to the first indication information, wherein the first duration is related to a period or frame rate of the data.
  • the PDCCH carries information for scheduling the data.
  • the first indication information sent by the network device to the terminal device is used to instruct the terminal device to skip monitoring of the PDCCH.
  • skipping PDCCH monitoring may also be referred to as skipping PDCCH monitoring, not monitoring PDCCH, suspending PDCCH monitoring, avoiding PDCCH monitoring or stopping PDCCH monitoring.
  • monitoring PDCCH may involve mid-RF processing and baseband processing, and skipping at least one of the mid-RF processing or baseband processing can be understood as skipping PDCCH monitoring.
  • skipping mid-RF processing may include turning off RF hardware that receives signals.
  • Skipping baseband processing may include skipping at least one of the following:
  • CRC cyclic redundancy check
  • the CRC is successful, the corresponding information on the PDCCH is decoded; if the CRC fails, the PDCCH monitoring continues at the next PDCCH resource position.
  • the network device can determine whether to send the first indication information to the terminal device according to the transmission status of the data transmitted to the terminal device.
  • the network device may send a first indication message to the terminal device to instruct the terminal device to skip the monitoring of the PDCCH when it is determined that the data transmitted to the terminal device has been transmitted, or when it is determined that the data transmitted to the terminal device cannot be transmitted within a specified time, or after a period of time after it is determined that the data transmitted to the terminal device has been transmitted.
  • the specific implementation of the network device determining the transmission status of the data is related to the service type corresponding to the data.
  • the network device may send a first indication message to the terminal device when it is determined that the data of a certain data frame currently being transmitted has been completely transmitted, or when it is determined that a certain data frame currently being transmitted cannot be transmitted within a given time, such as within a packet delay budget (PDB), or after a period of time after it is determined that the data of a certain data frame currently being transmitted has been completely transmitted.
  • a packet delay budget PDB
  • the network device when the terminal device supports one service and the network device transmits data of the service to the terminal device, the network device may determine whether to send the first indication information according to the transmission status of the data of the service.
  • the network device may determine whether to send the first indication information according to the transmission status of the data of one of the services.
  • the service corresponding to the data used for the network device to determine whether to send the first indication information may be referred to as the first service.
  • the terminal device supports the XR service and the enhanced mobile broadband (eMBB) service, and the network device can determine whether it is necessary to send the first indication information to the terminal device according to the transmission status of the data frame of the XR service.
  • the XR service can be called the first service.
  • the first indication information may be carried in the DCI.
  • the terminal device determines the first duration related to the period or frame rate of the data according to the indication of the first indication information, and skips the monitoring of the PDCCH within the first duration. After the first duration ends, the terminal device can continue to monitor the PDCCH.
  • the frame rate of the data refers to the number of frames transmitted per unit time
  • the period of the data refers to the interval between two adjacent frames arriving at the network device
  • the value of the data period is the reciprocal of the value of the frame rate of the data.
  • the terminal device may skip monitoring the PDCCH starting from successfully decoding the first indication information.
  • the terminal device may start skipping monitoring the PDCCH after a period of time after successfully decoding the first indication information.
  • the duration between the time when the terminal device successfully decodes the first indication information and the start time when the terminal skips monitoring the PDCCH may depend on the capability of the terminal device.
  • the terminal device can skip the monitoring of the PDCCH within the first duration related to the period or frame rate of the data according to the indication of the first indication information.
  • the energy-saving method provided in the embodiment of the present application can control the duration of the terminal device skipping the PDCCH monitoring to be related to the period or frame rate of the data, so that in the scenario of periodic data transmission, the time for the terminal device to monitor the PDCCH can be matched with the transmission time of the data.
  • the technical solution of the embodiment of the present application can be applied to the scenario where the terminal device receives the data frame of the XR service, and correspondingly, the period of the data related to the first duration can be the period of the XR service, for example, it can be z milliseconds, where z is a non-integer.
  • the period of the data can be 33.33ms, 16.67ms or 8.33ms, etc.
  • the frame rate of the data related to the first duration can be the frame rate of the XR service, for example, the frame rate of the data can be 30FPS, 60FPS, 120FPS, etc.
  • the technical solution of the embodiment of the present application can still be applied when the period of the data is an integer value.
  • the first duration needs to be related to the period or frame rate of the data.
  • the period of the data can be the frame period of the XR service
  • the frame rate of the data can be the frame rate of the XR service.
  • the first duration is related to the period or frame rate of the data, so the terminal device needs to obtain the period or frame rate of the data to determine the first duration, or needs to obtain parameters related to the period or frame rate of the data.
  • the period or frame rate of the data, or the parameters related to the period or frame rate of the data can be configured by the network device to the terminal device.
  • the network device carries the period or frame rate of the data, or carries the parameters related to the period or frame rate of the data in the signaling sent to the terminal device.
  • the relevant parameters of the data frame rate can be carried in the RRC signaling to configure the data frame rates such as 30FPS, 60FPS, 90FPS, 120FPS, or the relevant parameters of the data period are used to configure the data period such as 1/30 seconds, 1/60 seconds, 1/90 seconds, 1/120 seconds, or the terminal device can obtain the period or frame rate of the data from its own application layer.
  • the terminal device can sense the characteristics of the service packet (the characteristics of the arrival of the service data packet) and obtain the period or frame rate of the data.
  • the terminal device can also obtain the period or frame rate of the data, or obtain the parameters related to the period or frame rate of the data in other ways.
  • the embodiment of the present application does not limit the specific implementation method of the terminal device obtaining the period or frame rate of the data, or obtaining the parameters related to the period or frame rate of the data.
  • the network device may also determine the first duration.
  • the network device In order to determine the first duration, the network device also needs to obtain the period or frame rate of the data, or needs to know the parameters related to the period or frame rate of the data.
  • the network device may receive information from the terminal device indicating the period or frame rate of the data.
  • the terminal device may send the period or frame rate of the data, or the parameters related to the period or frame rate of the data to the network device through user assistant information (UAI).
  • UAI user assistant information
  • the network device may perceive the characteristics of the service packet and obtain the period or frame rate of the data.
  • the core network device may also inform the network device of the period or frame rate of the data, or the parameters related to the period or frame rate of the data.
  • the network device may also obtain the value of the period or frame rate of the data in other ways, and the embodiment of the present application does not limit the specific implementation method of the network device obtaining the value of the period or frame rate of the data.
  • the terminal device After receiving the first indication information, the terminal device can determine the first duration according to the period or frame rate of the data and the predefined algorithm, model or calculation rule. Among them, the first duration determined according to the predefined algorithm, model or calculation rule can control the time when the terminal device starts to monitor the PDCCH after skipping the monitoring of the PDCCH, and match it with the transmission time of the data (or the time when the network device sends the data).
  • the matching of the two can be understood as the two are equal or the difference between the two is within a certain threshold.
  • the certain threshold can be predefined or set according to actual needs.
  • the transmitted data is a data frame of an XR service
  • the certain threshold can be the maximum absolute value of the jitter of the XR service.
  • the terminal device can receive it when it starts monitoring the PDCCH, or it can be received within a certain period of time after starting to monitor the PDCCH, so the terminal device does not waste power consumption.
  • the network device can determine the same duration as the first duration determined by the terminal device based on the same algorithm, model or calculation rule, and thus based on the period or frame rate of the data.
  • the first duration may also be related to at least one of the following:
  • the time when the first indication information is received, or the first reference time configured by the network device is received, or the first reference time configured by the network device.
  • the time when the first indication information is received may be the time when the network device sends the first indication information through air interface resources.
  • the time when the first indication information is received may be the time after a certain offset value has passed after the network device sends the first indication information through air interface resources, and the offset value is configured by the network device or obtained by a predefined method.
  • the network device may configure the offset duration between the time when the first indication information is sent and the time when the first indication information takes effect through the k0 value configured by the PDSCH-TimeDomainResourceAllocation information element in the RRC signaling.
  • the time when the first indication information is received may be the time domain position where the air interface resource of the first indication information is located.
  • the time when the first indication information is received may be the time when the time domain position where the air interface resource of the first indication information is located passes a certain offset value, and the offset value is configured by the network device or obtained by a predefined method.
  • the time when the first indication information is received may be the time when the first indication information takes effect.
  • the first reference time is a reference time used to determine the first duration in the embodiment of the present application.
  • the first reference time may be used to represent the start time of the first service, and may also be understood as the time when data transmission of the first service starts.
  • the first reference time may be the time when the first data frame of the XR service arrives at the network device.
  • the first reference time may be the time after a certain offset is accumulated from the estimated start transmission time of the data of the first service (which can also be understood as the time when the data frame of the first service arrives at the network device under ideal circumstances).
  • the value of the offset may be related to jitter.
  • the first reference time may be 4 milliseconds, 3 milliseconds, 2 milliseconds, or 1 millisecond before the estimated start transmission time of the first data frame of the first service, or the first reference time may also be 4 milliseconds, 3 milliseconds, 2 milliseconds, or 1 millisecond after the estimated start transmission time of the first data frame of the first service.
  • the first reference time may be the time when a certain data transmission of the first service starts, where the certain time is after the first time.
  • the first reference time may be the time when a certain data frame in the data frame after the first data frame of the first service arrives at the network device.
  • the first reference time may be the estimated start transmission time of a certain data of the first service plus a certain offset, where the certain time is after the first time.
  • the value of the offset may be related to jitter.
  • the first reference time may be the estimated start transmission time of a certain data frame in the data frame after the first data frame of the first service plus the possible value of jitter.
  • first reference times listed above are exemplary first reference times provided in the embodiments of the present application, and the embodiments of the present application do not limit the specific implementation method of setting the first reference time.
  • the first reference time is configured by a network device.
  • the network device may send information carrying parameters related to the first reference time to a terminal device.
  • the network device may send information carrying the first reference time to a terminal device.
  • the network device may send information carrying parameters related to the estimated start transmission time of the data of the first service and the offset value to the terminal device, and the terminal device determines the first reference time based on the estimated start transmission time of the data of the first service and the offset value.
  • the network device may configure the first reference time for the terminal device through RRC signaling.
  • the terminal device After receiving the first indication information, the terminal device can determine the first duration through a predefined algorithm, model or calculation rule based on the period or frame rate of the data, and at least one of the time when the first indication information is received and the first reference time.
  • X represents the first duration
  • a represents the first reference time
  • ceil represents rounding up
  • b represents the time when the first indication information is received
  • ⁇ t represents the period of data.
  • the first duration may also satisfy the following relationship:
  • X represents the first duration
  • a represents the first reference time
  • ceil represents rounding up
  • b represents the time when the first indication information is received
  • m represents the frame rate of the data, that is, the number of frames transmitted per unit time.
  • X represents the first duration
  • c represents the time slot index of the first reference time
  • Int represents rounding up or rounding down
  • ceil represents rounding up
  • d represents the time slot index of the time when the first indication information is received
  • y represents the period of data
  • s represents the time slot length.
  • the time units of y and s are the same, for example, y may be 5 ms, and s may be 0.577 ms.
  • the above formula (3) can be understood as formula (1) expressed with time slot as the granularity, and the time unit of the first duration determined by formula (3) is the time slot.
  • the first duration may also satisfy the following relationship:
  • X represents the first duration
  • c represents the time slot index of the first reference time
  • Int represents rounding up or rounding down
  • ceil represents rounding up
  • d represents the time slot index of the time when the first indication information is received
  • j represents the frame rate of the data, that is, the number of frames transmitted per unit time
  • s represents the time slot length.
  • Example 3 In this example, the first duration satisfies the following relationship:
  • X represents the first duration
  • e represents the subframe index of the first reference time
  • Int represents rounding up or rounding down
  • ceil represents rounding up
  • f represents the subframe index of the time when the first indication information is received
  • p represents the period of data
  • q represents the subframe length.
  • the time units of p and q are the same.
  • p can be 5 ms
  • s can be 1 ms.
  • the above formula (5) can be understood as the formula (1) expressed with subframe as the granularity.
  • the time unit of the first duration determined by formula (5) is the subframe.
  • the above formula (5) is also understood as the formula (1) expressed with millisecond as the granularity, and the time unit of the first duration determined by formula (5) is millisecond.
  • the first duration may also satisfy the following relationship:
  • X represents the first duration
  • e represents the subframe index of the first reference time
  • Int represents rounding up or rounding down
  • ceil represents rounding up
  • f represents the subframe index of the time when the first indication information is received
  • h represents the frame rate of the data, that is, the number of frames transmitted per unit time
  • q represents the subframe length.
  • the above formula (6) can be understood as the formula (2) expressed with subframe as the granularity.
  • the time unit of the first duration determined by the formula (6) is the subframe.
  • the above formula (6) is also understood as the formula (2) expressed with millisecond as the granularity, and the time unit of the first duration determined by the formula (6) is millisecond.
  • timeDomainOffset 2
  • SFN skipping indication represents the system frame number of the time when the first indication information is received; slot skipping indication represents the time when the first indication information is received relative to SFN skipping
  • numberOfSlotsPerFrame represents the number of time slots in a system frame; ArriveRate represents the frame rate of the data, that is, the number of data frames transmitted per second; N is an increasing integer, indicating the Nth
  • 100/ArriveRate ⁇ numberOfSlotsPerFrame can also be equivalently replaced by 1/ArriveRate ⁇ numberOfSlotsPerSecond; wherein numberOfSlotsPerSecond represents the number of time slots per second.
  • Int represents rounding up or rounding down
  • ArriveRate represents the frame rate of the data, that is, the number of data frames transmitted per second.
  • Example 2 For ease of understanding, the following is a description of how to determine the first duration in Example 2 in conjunction with the accompanying drawings.
  • c represents the time slot index of the first reference time. It can be seen that the configuration of the first reference time can take into account the jitter of the data frame, and the first reference time has a certain offset from the ideal arrival time of the first data frame.
  • y represents the period of the data frame (data period), and s represents the time slot length.
  • d1 represents the time slot index of the time when the terminal device first receives the first indication information. Among them, Used to determine the number of time slots included in a data cycle.
  • the second data frame is separated from the first data frame by a data cycle, so the terminal device can use c, and Estimate the time slot index of the possible arrival time of the second data frame:
  • the terminal device After receiving the first indication information, the terminal device starts to skip the monitoring of PDCCH. Therefore, the terminal device can use the time slot index d1 of the time when the first indication information is first received and the time slot index of the possible arrival time of the second data frame: It is determined that after the terminal device receives the first indication information for the first time, it needs to skip the first duration of PDCCH monitoring: X1.
  • d2 represents the time slot index of the time when the terminal device receives the first indication information for the second time.
  • the third data frame is separated from the first data frame by two data cycles.
  • the terminal device may use c, and Estimate the time slot index of the possible arrival time of the third data frame: Further, the terminal device may receive the first indication information for the second time based on the time slot index d2 and the time slot index of the possible arrival time of the third data frame: It is determined that after the terminal device receives the first indication information for the second time, it needs to skip the first duration of PDCCH monitoring: X2.
  • the above formulas (1) to (8) and (10) are nine exemplary calculation rules for determining the first duration provided in the embodiments of the present application, and the embodiments of the present application do not limit the form of the algorithm, model or calculation rule used to determine the first duration. It can be understood that the time granularity adaptability of the parameters in the above formulas (1) to (8) and (10) is replaced with other time granularities, such as symbols or sub-time slots, and can still be applied to determine the first duration under other types of time granularities.
  • Example 1 when the first duration is related to the period or frame rate of the data, the time when the first indication information is received and the first reference time, the first duration can be understood as a variable duration due to the change in the relative time position relationship.
  • the network device may further send a second indication message to the terminal device, and the second indication message is used to instruct the terminal device to skip monitoring of the PDCCH within a second duration.
  • the second duration is a fixed value configured by the network device, so the second duration can be understood as a fixed duration.
  • the network device may send the first indication message or the second indication message to the terminal device according to the data transmission conditions of the multiple services.
  • the energy saving method provided in the embodiment of the present application may further include S1003:
  • the network device sends first configuration information to the terminal device, and correspondingly, the terminal device receives the first configuration information from the network device, wherein the first indication information indicates to skip monitoring of the PDCCH within a first duration according to the first configuration information.
  • S1002 may be: after the network device sends the first indication information to the terminal device, the terminal device may determine the first duration according to the first configuration information under the instruction of the first indication information, and skip the monitoring of the PDCCH within the first duration. After the first duration ends, the terminal device may continue to monitor the PDCCH.
  • the first configuration information may be a parameter indicating a candidate duration for PDCCH skipping, which parameter represents the need to skip PDCCH monitoring with a first duration related to the period or frame rate of the data.
  • the network device may only configure the first configuration information to indicate the configured candidate duration for PDCCH skipping.
  • the network device may also configure one or more fixed values as candidate durations for PDCCH skipping, thereby instructing the terminal device to skip PDCCH monitoring within the first duration or within the configured fixed value duration according to the transmission conditions of different service data.
  • the first configuration information may be carried in RRC signaling.
  • the first configuration information may be configured through the PDCCH SkipDurationList-R17 field of the RRC signaling, or, for another example, may be configured through a newly defined field in the RRC signaling.
  • the first configuration information corresponds to a period or frame rate of the data, which can also be referred to as the first configuration information corresponding to a period or frame rate of the first service.
  • the terminal device when determining the first duration, can learn the period or frame rate of the data according to the first configuration information.
  • the first configuration information may also correspond to a sub-carrier space (SCS).
  • SCS sub-carrier space
  • the first configuration information is a parameter in the PDCCH SkipDurationList-R17 field
  • the data is a data frame of an XR service and its frame rate is 30FPS, 60FPS, 120FPS or 180FPS
  • the first configuration information may be tailored for periodic traffic of 30FPS, tailored for periodic traffic of 60FPS, tailored for periodic traffic of 120FPS or tailored for periodic traffic of 180FPS of the corresponding frame rate.
  • the data is a data frame of an XR service, the frame rate of which is 30 FPS
  • the SCS can be 15 kHz, 30 kHz, 60 kHz or 120 kHz
  • the three parameters indicating the candidate durations of PDCCH skipping carried by PDCCHSkipDurationList-R17 are 1, 100 and the first configuration information, respectively.
  • the PDCCHSkipDurationList-R17 field can be:
  • the PDCCHSkipDurationList-R17 field corresponds to 15kHz SCS.
  • the PDCCHSkipDurationList-R17 field corresponds to 30kHz SCS.
  • the PDCCHSkipDurationList-R17 field corresponds to the 60kHz SCS.
  • the PDCCHSkipDurationList-R17 field corresponds to the 120kHz SCS.
  • the first configuration information corresponding to the frame rate can also replace the frame rate with the corresponding period.
  • the first configuration information can be tailored for periodic traffic of 1/30s.
  • data with different periods or frame rates correspond to the same first configuration information.
  • the first configuration information may also correspond to the SCS.
  • the first configuration information is a parameter in the PDCCHSkipDurationList-R17 field
  • the data is a data frame of an XR service
  • the first configuration information may be tailored for periodic traffic.
  • the data is a data frame of an XR service
  • the SCS may be 15kHz, 30kHz, 60kHz SCS or 120kHz
  • the three parameters indicating the candidate durations of PDCCH skipping carried by PDCCHSkipDurationList-R17 are 1, 100 and the first configuration information, respectively, then the PDCCHSkipDurationList-R17 field may be:
  • the PDCCHSkipDurationList-R17 field corresponds to the 15kHz SCS.
  • ⁇ 1,100 tailored for periodic traffic ⁇ slots for 30kHz SCS; the PDCCHSkipDurationList-R17 field corresponds to 30kHz SCS.
  • ⁇ 1,100 tailored for periodic traffic ⁇ slots for 60kHz SCS; the PDCCHSkipDurationList-R17 field corresponds to the 60kHz SCS.
  • ⁇ 1,100 tailored for periodic traffic ⁇ slots for 120kHz SCS; the PDCCHSkipDurationList-R17 field corresponds to the 120kHz SCS.
  • the newly defined field can be PDCCH SkipDuration for periodic traffic-ENABLE: True/False. Wherein, when the field is configured as True, it can be used to represent the first configuration information.
  • the field can be effective for multiple SCSs.
  • the SCS can be a 15kHz, 30kHz, 60kHz SCS or 120kHz, then the newly defined field can be:
  • the above describes the specific implementation of the first configuration information.
  • how the terminal device skips monitoring of the PDCCH within the first duration according to the instruction of the first indication information and the first configuration information in the embodiment of the present application is described.
  • the terminal device can determine that the information corresponding to the first indication information is the first configuration information based on the first indication information and a predefined mapping relationship, thereby determining that it needs to determine the first duration based on the first configuration information, and skip monitoring of PDCCH within the first duration.
  • the first indication information may be a PDCCH monitoring adaptation indication field.
  • the terminal device may determine the information corresponding to the bit value of the PDCCH monitoring adaptation indication field based on the bit value of the PDCCH monitoring adaptation indication field and a predefined mapping relationship. If the information corresponding to the bit value of the PDCCH monitoring adaptation indication field is the first configuration information, the terminal device determines the first duration based on the period or frame rate of the data, and skips monitoring of the PDCCH within the first duration.
  • the first indication information is the PDCCH monitoring adaptation indication field, and the PDCCHSkipDurationList-R17 field is ⁇ 1,100, tailored for periodic traffic of 30FPS ⁇ slots for 15kHz SCS; wherein, tailored for periodic traffic of 30FPS is the first configuration information, and the first configuration information is the third parameter of the three parameters indicating the candidate duration of PDCCH skipping configured in the PDCCHSkipDurationList-R17 field.
  • the first indication information and the indicated user equipment behavior can be shown in Table 5 below:
  • the terminal device can determine the duration corresponding to tailored for periodic traffic of 30FPS, that is, the first duration to skip the monitoring of PDCCH, according to the corresponding relationship shown in Table 5. After the terminal device determines that it is necessary to skip the monitoring of PDCCH within the first duration, it determines the first duration according to the frame rate of the data 30FPS. Similarly, when the bit value of the PDCCH monitoring adaptation indication field is "0" or "00", the terminal device can determine that it is not necessary to skip the monitoring of PDCCH and can continue to monitor PDCCH according to the corresponding relationship shown in Table 5.
  • the terminal device can determine that the duration for skipping the monitoring of PDCCH is 1 slot according to the corresponding relationship shown in Table 5.
  • the terminal device can determine that the duration of skipping PDCCH monitoring is 10 slots according to the corresponding relationship shown in Table 5.
  • Figure 12 uses a network device and a terminal device as an example to illustrate the method as the execution subject of the interaction diagram, but the present application does not limit the execution subject of the interaction diagram.
  • the network device in Figure 12 may also be a chip, a chip system, or a processor that supports the network device to implement the method, or a logic module or software that can implement all or part of the functions of the network device;
  • the terminal device in Figure 12 may also be a chip, a chip system, or a processor that supports the terminal device to implement the method, or a logic module or software that can implement all or part of the functions of the terminal device.
  • This embodiment includes: S1201-S1204:
  • the network device carries first configuration information for configuring candidate durations for PDCCH skipping in the RRC signaling sent to the terminal device, wherein the first configuration information indicates skipping a dynamic duration (first duration) that matches the cycle of the XR service.
  • S1201 can refer to the above introduction to S1003, which will not be repeated here.
  • the network device transmits data frames of the XR service to the terminal device.
  • the network device sends a DCI to the terminal device, which carries first indication information, where the first indication information instructs the terminal device to skip monitoring of the PDCCH according to the first configuration information.
  • the terminal device determines, based on the first indication information, that the duration of the PDCCH skipping to be skipped this time is the candidate duration indicated by the first configuration information, that is, the first duration.
  • the terminal device calculates the first duration based on a predefined calculation rule and the cycle of the XR service, and skips monitoring of the PDCCH within the first duration.
  • the first indication information when the first indication information indicates to skip the monitoring of PDCCH within the first duration according to the first configuration information, the first indication information may also indicate to perform SSSG switching.
  • the terminal device determines that the first duration needs to be determined according to the first configuration information under the instruction of the first indication information, then the terminal device also needs to perform SSSG switching under the instruction of the first indication information.
  • the network device configures multiple SSSGs for the terminal device.
  • the terminal device can determine that the information corresponding to the first indication information is the first configuration information based on the first indication information and a predefined mapping relationship, thereby determining that it needs to determine the first time duration and skip PDCCH monitoring within the first time duration based on the first configuration information, and determine to perform SSSG switching based on the first configuration information.
  • the terminal device may determine that the information corresponding to the first indication information is the first configuration information based on the first indication information and the predefined mapping relationship. If the terminal device determines that the information corresponding to the first indication information is the first configuration information, the terminal device may determine that SSSG switching is required based on another configuration information different from the first configuration information.
  • the configuration information used by the terminal device to determine that SSSG switching is required may be newly defined information or may reuse existing information, which is not limited in the embodiments of the present application.
  • the following explains how the first indication information instructs to skip PDCCH monitoring and perform SSSG switching within a first duration according to the first configuration information.
  • the network device configures SSSG0 and SSSG1 for the terminal device, and the first indication information is PDCCH monitoring
  • the PDCCHSkipDurationList-R17 field is ⁇ 1,100, tailored for periodic traffic of 30FPS ⁇ slots for 15kHz SCS; wherein, tailored for periodic traffic of 30FPS is the first configuration information, and the first configuration information is the third parameter of the three parameters indicating the candidate duration of PDCCH skipping configured in the PDCCHSkipDurationList-R17 field.
  • the first indication information and the indicated user equipment behavior may be shown in the following Table 6:
  • the terminal device can determine the duration corresponding to tailored for periodic traffic of 30FPS, that is, the first duration to skip monitoring of PDCCH according to the corresponding relationship shown in Table 6. In addition, the terminal device determines that it needs to switch to SSSG0 and monitor PDCCH in the search space in SSSG0 according to the corresponding relationship shown in Table 6. Similarly, when the bit value of the PDCCH monitoring adaptation indication field is "0", "00", “1", "01” or "10", the terminal device does not need to switch SSSG and can continue to monitor PDCCH in the current search space.
  • the following introduces two ways in which terminal devices perform SSSG switching according to the instructions of the first indication information.
  • Mode (a) after the terminal device skips the monitoring of PDCCH within the first duration, it switches to the SSSG indicated by the first indication information. It can be understood that this implementation method can also be implemented based on the search space switching timer. Specifically, after receiving the first indication information, the terminal device sets the search space switching timer to the first duration. After the timer expires, the terminal device switches to the SSSG indicated by the first indication information.
  • the first indication information indicates the switched SSSG, which may be a sparse SSSG.
  • the terminal device may switch from the dense SSSG to the sparse SSSG according to the instruction of the first indication information. In other words, before receiving the first indication information, the terminal device may monitor the PDCCH in the search space in the dense SSSG.
  • Figure 13 uses a network device and a terminal device as an example to illustrate the method as the execution subject of the interaction diagram, but the present application does not limit the execution subject of the interaction diagram.
  • the network device in Figure 13 may also be a chip, a chip system, or a processor that supports the network device to implement the method, or a logic module or software that can implement all or part of the functions of the network device;
  • the terminal device in Figure 13 may also be a chip, a chip system, or a processor that supports the terminal device to implement the method, or a logic module or software that can implement all or part of the functions of the terminal device.
  • This embodiment includes: S1301-S1306:
  • the network device carries configuration information for configuring dense SSSG and sparse SSSG and first configuration information in the RRC signaling sent to the terminal device, wherein the first configuration information indicates skipping a dynamic duration (first duration) that matches the cycle of the XR service, and indicates SSSG switching.
  • the sparse SSSG is SSSG0
  • the dense SSSG is SSSG1.
  • the terminal device monitors the PDCCH in the search space in the sparse SSSG.
  • the terminal device first monitors the PDCCH in the search space in SSSG0, which may be a protocol default or a network device configuration.
  • the network device transmits data frames of the XR service to the terminal device.
  • the network device When scheduling the first transport block (TB) of the XR service, the network device sends a DCI to instruct the terminal device to switch to the dense SSSG, that is, to instruct the terminal device to switch to SSSG1.
  • the terminal device After receiving the DCI sent by the network device in S1203, the terminal device switches to SSSG1 and monitors the PDCCH in the search space of SSSG1.
  • the network device sends a DCI to the terminal device, which carries first indication information, and the first indication information instructs the terminal device to skip PDCCH monitoring and perform SSSG switching according to the first configuration information.
  • the network device may determine whether to send the first indication information to the terminal device according to the transmission status of the data frame of the XR service to the terminal device. For details, please refer to the above introduction to S1001, which will not be repeated here.
  • the terminal device determines, based on the first indication information, that the duration of the PDCCH skipping to be skipped this time is the candidate duration indicated by the first configuration information, i.e., the first duration. Furthermore, the terminal device also determines that it needs to switch to the sparse SSSG.
  • the terminal device calculates the first duration according to the predefined calculation rule and the cycle of the XR service, and skips monitoring of the PDCCH during the first duration. On the other hand, the terminal device performs SSSG switching and switches to SSSG0.
  • S1306 can refer to the above introduction to S1003, which will not be repeated here.
  • the terminal device first monitors the PDCCH in the search space in the sparse SSSG (SSSG0).
  • the network device sends the first DCI to the terminal device, instructing the terminal device to switch to the dense SSSG (SSSG1).
  • the terminal device switches to SSSG1 according to the instruction of the DCI, and continues to monitor the PDCCH in the search space in SSSG1.
  • the network device Based on the transmission status of the XR service data frame, the network device sends a second DCI to the terminal device, which instructs the terminal device to skip PDCCH monitoring within the first time length and perform SSSG switching.
  • the terminal device After receiving the second DCI, the terminal device calculates the first duration.
  • the terminal device skips the monitoring of the PDCCH within the first duration and switches to the sparse SSSG0. Among them, if the terminal device performs SSSG switching according to the method (a) described above in accordance with the instructions of the first indication information, at the end of skipping the monitoring of the PDCCH, it switches to SSSG0, and the time point of switching to SSSG0 is shown by the black arrow in Figure 14.
  • the terminal device If the terminal device performs SSSG switching according to the instructions of the first indication information described above in accordance with the method (b), after receiving the second DCI, it switches to SSSG 0 and skips the monitoring of the PDCCH within the first duration, and the time point of switching to SSSG0 is shown by the white arrow in Figure 14.
  • the embodiment of the present application also provides another energy-saving method, as shown in Figure 15, which is an energy-saving method provided by the embodiment of the present application.
  • Figure 15 takes the network device and the terminal device as the execution subjects of the interaction diagram as an example to illustrate the method, but the present application does not limit the execution subjects of the interaction diagram.
  • the network device in Figure 15 can also be a chip, a chip system, or a processor that supports the network device to implement the method, and can also be a logic module or software that can implement all or part of the functions of the network device;
  • the terminal device in Figure 15 can also be a chip, a chip system, or a processor that supports the terminal device to implement the method, and can also be a logic module or software that can implement all or part of the functions of the terminal device.
  • the energy-saving method includes S1501 and S1502:
  • the network device sends third indication information to the terminal device, and correspondingly, the terminal device receives the third indication information from the network device.
  • the terminal device skips monitoring the PDCCH until the next PDCCH monitoring period starts; wherein the start time of the next PDCCH monitoring period matches the time when the terminal device receives data.
  • the terminal device is configured with a PDCCH monitoring period, and can periodically monitor the PDCCH according to the PDCCH monitoring period.
  • the start time of the PDCCH monitoring period of the terminal device matches the time when the terminal device receives data transmitted by the network. In other words, the period during which the network device transmits data to the terminal device matches the PDCCH monitoring period of the terminal device.
  • the third indication information is used to instruct the terminal device to skip monitoring the PDCCH until the next PDCCH monitoring period starts. Because the period of data transmission from the network device to the terminal device matches the PDCCH monitoring period of the terminal device, the terminal device can receive the data transmitted by the network device next time in the next PDCCH monitoring period, and no data will be transmitted during the time when the terminal device skips PDCCH monitoring, which can avoid unnecessary PDCCH monitoring time and save power consumption.
  • the PDCCH monitoring period may be an activation time period or a period of on Duration in the DRX technology.
  • the PDCCH monitoring period may also be a PDCCH monitoring period in the PDCCH monitoring technology, or may also be referred to as a period of Duration.
  • the network device can determine whether to send the third indication information to the terminal device according to the transmission status of the data transmitted to the terminal device.
  • the specific implementation of the network device determining whether to send the third message to the terminal device can refer to the above introduction of S1001, which will not be repeated here.
  • the third indication information may be carried in the DCI.
  • the terminal device After receiving the third indication information, the terminal device skips monitoring the PDCCH according to the instruction of the third indication information until the next PDCCH monitoring period starts. After the next PDCCH monitoring period starts, the terminal device can continue to monitor the PDCCH.
  • the terminal device when the terminal device receives the third indication information, if the terminal device is currently still in a PDCCH monitoring period, the terminal device can skip monitoring the PDCCH in the current PDCCH monitoring period according to the third indication information until the next PDCCH monitoring period begins.
  • the terminal device can still continue to skip monitoring the PDCCH according to the indication of the third indication information until the next PDCCH monitoring period begins.
  • the terminal device can skip monitoring the PDCCH according to the instruction of the third indication information until the next PDCCH monitoring period starts.
  • unnecessary PDCCH monitoring time can be avoided as much as possible, thereby saving power consumption.
  • the period of the data may be a non-integer value, for example, z milliseconds, where z is a non-integer.
  • the technical solution of the embodiment of the present application can still be applied when the period of the data is an integer value.
  • the terminal device when the terminal device skips PDCCH monitoring according to the third indication information, it is necessary to determine the start time of the next PDCCH monitoring period. Therefore, the terminal device needs to obtain the PDCCH monitoring period.
  • the PDCCH monitoring period, or parameters related to the PDCCH monitoring period can be configured by the network device to the terminal device.
  • the network device carries the PDCCH monitoring period, or parameters related to the PDCCH monitoring period, in the RRC signaling sent to the terminal device.
  • the terminal device can also obtain the PDCCH monitoring period in other ways, and the embodiment of the present application does not limit the specific implementation method of the terminal device obtaining the PDCCH monitoring period.
  • the energy saving method provided in the embodiment of the present application may further include S1503:
  • the network device sends second configuration information to the terminal device, and correspondingly, the terminal device receives the second configuration information from the network device.
  • the third indication information indicates to skip monitoring PDCCH according to the second configuration information until the next PDCCH monitoring period starts.
  • S1502 may be: after the network device sends the third indication information to the terminal device, the terminal device may determine the start time of the next PDCCH monitoring period according to the second configuration information under the instruction of the third indication information, and stop monitoring the PDCCH until the next PDCCH monitoring period starts. After the next PDCCH monitoring period starts, the terminal device continues to monitor the PDCCH.
  • the second configuration information may be a parameter that is configured to indicate a candidate duration of PDCCH skipping, which parameter represents skipping of PDCCH monitoring until the start of the next PDCCH monitoring period.
  • the network device may only configure the second configuration information to indicate the configured candidate duration of PDCCH skipping.
  • the network device may also configure one or more fixed values as candidate durations of PDCCH skipping, so that, according to the transmission conditions of different service data, the terminal device may be instructed to skip PDCCH monitoring according to the second configuration information until the start of the next PDCCH monitoring period, or the terminal device may be instructed to skip PDCCH monitoring within the configured fixed value duration.
  • the second configuration information may be carried in RRC signaling.
  • the second configuration information may be configured through the PDCCHSkipDurationList-R17 field of the RRC signaling.
  • the second configuration information may be skip to next Monitoring Occasion.
  • the second configuration information may be configured through a newly defined field in the RRC signaling.
  • the second configuration information may correspond to the SCS.
  • the second configuration information corresponds to SCS
  • SCS may be 15kHz, 30kHz, 60kHz or 120kHz
  • the three PDCCH skipping values carried by PDCCHSkipDurationList-R17 are 1, 100 and the second configuration information, respectively, then the PDCCHSkipDurationList-R17 field may be:
  • the PDCCHSkipDurationList-R17 field corresponds to the 15kHz SCS.
  • the PDCCHSkipDurationList-R17 field corresponds to the 30kHz SCS.
  • the PDCCHSkipDurationList-R17 field corresponds to the 60kHz SCS.
  • the PDCCHSkipDurationList-R17 field corresponds to the 120kHz SCS.
  • the fields that appear, or the names of the parameters in the fields, such as skip to next Monitoring Occasion are exemplary possible names provided by the embodiments of the present application, and the embodiments of the present application do not limit the specific name of the second configuration information.
  • the second configuration information is introduced above.
  • the following describes how the terminal device skips PDCCH monitoring according to the second configuration information according to the instruction of the third indication information until the next PDCCH monitoring period starts in the embodiment of the present application.
  • the terminal device can determine that the information corresponding to the third indication information is the second configuration information based on the third indication information and a predefined mapping relationship, and thereby determine that the PDCCH monitoring needs to be skipped according to the second configuration information until the next PDCCH monitoring cycle begins.
  • the third indication information may be a PDCCH monitoring adaptation indication field.
  • the terminal device may determine the information corresponding to the bit value of the PDCCH monitoring adaptation indication field based on the bit value of the PDCCH monitoring adaptation indication field and a predefined mapping relationship. If the information corresponding to the bit value of the PDCCH monitoring adaptation indication field is the second configuration information, the terminal device determines the start time of the next PDCCH monitoring period and skips the monitoring of the PDCCH until the start time of the next PDCCH monitoring period.
  • the third indication information is the PDCCH monitoring adaptation indication field, and the PDCCHSkipDurationList-R17 field is ⁇ 1,100, skip to next Monitoring Occasion ⁇ ; wherein skip to next Monitoring Occasion is the second configuration information, and the second configuration information is the third parameter of the three parameters indicating the candidate duration of PDCCH skipping configured in the PDCCHSkipDurationList-R17 field.
  • the third indication information and the indicated user equipment behavior may be as shown in Table 7 below:
  • the terminal device can determine to skip the PDCCH monitoring for the duration corresponding to skip to next Monitoring Occasion according to the corresponding relationship shown in Table 7, that is, skip the monitoring until the next PDCCH monitoring period starts.
  • the terminal device can determine that it does not need to skip monitoring PDCCH and can continue to monitor PDCCH according to the corresponding relationship shown in Table 7.
  • the terminal device can determine that the duration of PDCCH monitoring that needs to be skipped is 1 slot according to the corresponding relationship shown in Table 3.
  • the bit value of the PDCCH monitoring adaptation indication field is "10” the terminal device can determine that the duration of PDCCH monitoring that needs to be skipped is 10 slots according to the corresponding relationship shown in Table 7.
  • Figure 16 uses a network device and a terminal device as an example to illustrate the method as the execution subject of the interaction diagram, but the present application does not limit the execution subject of the interaction diagram.
  • the network device in Figure 16 may also be a chip, a chip system, or a processor that supports the network device to implement the method, or a logic module or software that can implement all or part of the functions of the network device;
  • the terminal device in Figure 16 may also be a chip, a chip system, or a processor that supports the terminal device to implement the method, or a logic module or software that can implement all or part of the functions of the terminal device.
  • This embodiment includes: S1601-S1604:
  • the network device carries second configuration information for configuring candidate durations for PDCCH skipping in the RRC signaling sent to the terminal device, wherein the second configuration information indicates skipping of PDCCH monitoring until the next PDCCH monitoring period begins.
  • the network device transmits data frames of the XR service to the terminal device.
  • the network device sends a DCI to the terminal device, which carries third indication information, and the third indication information instructs the terminal device to skip monitoring of the PDCCH according to the second configuration information.
  • the terminal device determines, based on the third indication information, that the duration of the PDCCH skipping to be skipped this time is the candidate duration indicated by the second configuration information. The terminal device skips monitoring of the PDCCH until the next PDCCH monitoring period begins.
  • the methods and/or steps implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used for the terminal device; the methods and/or steps implemented by the network device can also be implemented by components (such as chips or circuits) that can be used for the network device.
  • the embodiment of the present application also provides a communication device, which is used to implement the above various methods.
  • the communication device can be a terminal device in the above method embodiment, or a device including the above terminal device, or a component that can be used for a terminal device; or, the communication device can be a network device in the above method embodiment, or a device including the above network device, or a component that can be used for a network device.
  • the communication device includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the communication device according to the above method embodiment.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated module can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • FIG17 shows a schematic diagram of the structure of a communication device 170.
  • the communication device 170 includes an interface module 1701 and a processing module 1702.
  • the interface module 1701 may also be referred to as a transceiver module, and the transceiver unit is used to implement the transceiver function, for example, it may be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the interface module 1701 is used to receive first indication information from a network device; the processing module 1702 is used to control the device to skip PDCCH monitoring within a first time period according to the first indication information; wherein the first time period is related to a period or frame rate of the data.
  • the first duration is also related to at least one of the following: the time when the first indication information is received; or, a first reference time configured by the network device.
  • the first duration satisfies the following relationship: Among them, X represents the first duration; c represents the time slot index of the first reference time; Int represents rounding up or rounding down; ceil represents rounding up; d represents the time slot index of the time when the first indication information is received; y represents the period of data; and s represents the time slot length.
  • the first duration satisfies the following relationship: Among them, X represents the first duration; e represents the subframe index of the first reference time; Int represents rounding up or rounding down; ceil represents rounding up; f represents the subframe index of the time when the first indication information is received; p represents the period of data; and q represents the subframe length.
  • the interface module 1701 is also used to receive first configuration information from a network device, wherein the first indication information indicates to skip PDCCH monitoring within a first time length according to the first configuration information.
  • the PDCCH carries information for scheduling data.
  • the period of the data is z milliseconds, where z is a non-integer.
  • the communication device 170 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above functions.
  • the communication device 170 may take the form of the terminal device 80 shown in FIG. 8 .
  • the processor 1001 in the terminal device 80 shown in FIG8 can call the computer execution instructions stored in the memory 1002, so that the terminal device 80 executes the energy saving method in the above method embodiment.
  • the functions/implementation processes of the interface module 1701 and the processing module 1702 in FIG15 can be implemented by the processor 1001 in the terminal device 80 shown in FIG8 calling the computer execution instructions stored in the memory 1002.
  • the functions/implementation processes of the processing module 1702 in FIG15 can be implemented by the processor 1001 in the terminal device 80 shown in FIG8 calling the computer execution instructions stored in the memory 1002
  • the functions/implementation processes of the interface module 1701 in FIG15 can be implemented by the transceiver 1003 in the terminal device 80 shown in FIG8.
  • the communication device 170 provided in this embodiment can execute the above energy-saving method, the technical effects that can be obtained can refer to the above method embodiments and will not be repeated here.
  • FIG. 18 shows a schematic diagram of the structure of a communication device 180.
  • the communication device 180 includes an interface module 1801.
  • the interface module 1801 can also be called a transceiver module, and the transceiver unit is used to implement the transceiver function, for example, it can be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the interface module 1801 sends a first indication message to the terminal device; wherein the first indication message indicates to skip the monitoring of PDCCH within a first time length; wherein the first time length is related to a period or frame rate of the data.
  • the first duration is also related to at least one of the following: the time when the first indication information is received; or, a first reference time configured by the network device.
  • the first duration satisfies the following relationship: Among them, X represents the first duration; c represents the time slot index of the first reference time; Int represents rounding up or rounding down; ceil represents rounding up; d represents the time slot index of the time when the first indication information is received; y represents the period of data; and s represents the time slot length.
  • the first duration satisfies the following relationship: Among them, X represents the first duration; e represents the subframe index of the first reference time; Int represents rounding up or rounding down; ceil represents rounding up; f represents the subframe index of the time when the first indication information is received; p represents the period of data; and q represents the subframe length.
  • the interface module 1801 is also used to send first configuration information to the terminal device, wherein the first indication information indicates to skip PDCCH monitoring within a first time length according to the first configuration information.
  • the PDCCH carries information for scheduling data.
  • the period of data is z milliseconds, where z is a non-integer.
  • the communication device 180 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above functions.
  • the communication device 180 may take the form of the network device 90 shown in FIG. 8 .
  • the processor 901 in the network device 90 shown in FIG8 can make the network device 90 perform the energy saving method in the above method embodiment by calling the computer execution instruction stored in the memory 902.
  • the function/implementation process of the interface module 1801 in FIG18 can be implemented by the processor 901 in the network device 90 shown in FIG8 calling the computer execution instruction stored in the memory 902.
  • the function/implementation process of the interface module 1801 in FIG18 can be implemented by the transceiver 903 in the network device 90 shown in FIG8.
  • the communication device 180 provided in this embodiment can execute the above energy-saving method, the technical effects that can be obtained can refer to the above method embodiments and will not be repeated here.
  • one or more of the above modules or units can be implemented by software, hardware or a combination of the two.
  • the software exists in the form of computer program instructions and is stored in a memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built into an SoC (system on chip) or an ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • ASIC application specific integrated circuit
  • it can further include necessary hardware accelerators, such as field programmable gate arrays (FPGA), PLDs (programmable logic devices), or logic circuits that implement dedicated logic operations.
  • FPGA field programmable gate arrays
  • PLDs programmable logic devices
  • the hardware can be any one or any combination of a CPU, a microprocessor, a digital signal processing (DSP) chip, a microcontroller unit (MCU), an artificial intelligence processor, an ASIC, a SoC, an FPGA, a PLD, a dedicated digital circuit, a hardware accelerator or a non-integrated discrete device, which can run the necessary software or not rely on the software to execute the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • an artificial intelligence processor an ASIC
  • SoC SoC
  • FPGA field-programmable gate array
  • PLD programmable gate array
  • a dedicated digital circuit a hardware accelerator or a non-integrated discrete device
  • an embodiment of the present application further provides a chip system, comprising: at least one processor and an interface, wherein the at least one processor is coupled to a memory via the interface, and when the at least one processor executes a computer program or instruction in the memory, the method in any of the above method embodiments is executed.
  • the communication device also includes a memory.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • wired e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)
  • wireless e.g., infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that a computer can access or may contain one or more servers, data centers and other data storage devices that can be integrated with the medium.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a DVD
  • a semiconductor medium e.g., a solid state disk (SSD)

Abstract

一种节能方法、装置及存储介质,用于控制终端设备合理地跳过PDCCH的监听,使终端设备在监听物理下行控制信道PDCCH的时间与业务的数据的传输时间匹配的基础上获得节能的效果。方法包括:接收来自网络设备的第一指示信息,然后根据第一指示信息在第一时长内跳过PDCCH的监听。其中,第一时长与数据的周期或者帧率相关。

Description

一种节能方法、装置及存储介质
本申请要求于2022年04月28日提交国家知识产权局、申请号为202210462537.4、申请名称为“一种节能方法、装置及存储介质”的中国专利申请的优先权,以及于2022年08月11日提交国家知识产权局、申请号为202210962007.6、申请名称为“一种节能方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种节能方法、装置及存储介质。
背景技术
近年来,随着通信技术的发展,扩展现实(extended reality,XR)技术也在不断进步和完善。目前,XR业务的数据帧的传输流程一般为服务器到固网/核心网,再到基站,由基站传输给终端设备。
理想的情况中,XR业务需要按照帧率,例如60帧每秒(frame per second,FPS),周期性产生和传输数据帧,换言之,数据帧需要按照帧周期产生和传输。然而,出于服务器编码处理、固网/核心网传输等因素,XR业务的数据帧到达基站时,不一定严格遵守周期性。这也导致基站将XR业务的数据帧传输给终端设备时,不一定严格按照帧周期进行传输,终端设备可能无法严格按照帧周期接收数据帧。
另一方面,出于节能的考虑,长期演进(long term evolution,LTE)或者新空口(new radio,NR)系统中引入了使终端设备不需要持续监听物理下行控制信道(physical downlink control channel,PDCCH)的技术,例如PDCCH跳过(PDCCH skipping)技术和非连续接收(discontinuous reception,DRX)技术,这些技术可以使终端设备在一定时间内不监听PDCCH。但是,目前这些技术都不能满足终端设备接收XR业务的数据帧所需要的监听PDCCH的时间。
综上,如何控制终端设备合理地跳过PDCCH的监听,使终端设备在监听PDCCH的时间与XR业务的数据帧的传输时间匹配的基础上获得节能的效果,是目前亟待解决的问题。
发明内容
本申请实施例提供一种通信方法、装置及系统,用于控制终端设备合理地跳过PDCCH的监听,解决终端设备监听PDCCH的时间与业务的传输时间不匹配的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。该方法包括:接收来自网络设备的第一指示信息。然后根据第一指示信息,在第一时长内跳过PDCCH的监听;其中,第一时长与数据的周期或者帧率相关。
基于本申请实施例提供的通信方法,终端设备可以根据第一指示信息的指示,在与数据的周期或者帧率相关的第一时长内,跳过PDCCH的监听。不同于现有的跳过PDCCH监听的时长与数据的周期或者帧率无关的方案,本申请实施例提供的通信方法可以控制终端设备跳过PDCCH监听的时长与数据的周期或者帧率相关,因此可以在数据周期性传输的场景中,使终端设备监听PDCCH的时间与数据的传输时间相匹配。
结合上述第一方面,在一种可能的设计中,第一时长还与以下至少一项相关:接收到第一指示信息的时间;或者,由网络设备配置的第一参考时间。
结合上述第一方面,在一种可能的设计中,第一时长满足如下关系:X=a+ceil[(b-a)/Δt]*Δt-b;其中,X表示第一时长;a表示第一参考时间;ceil表示向上取整;b表示接收到第一指示信息的时间;Δt表示数据的周期。本申请实施例提供了一种确定第一时长的具体方式。
结合上述第一方面,在一种可能的设计中,第一时长满足如下关系:其中,X表示第一时长;c表示第一参考时间的时隙索引;Int表示向上取整或者向下取整;ceil表示向上取整;d表示接收到第一指示信息的时间的时隙索引;y表示数据的周期;s表示时隙长度。本申请实施例提供了一种以时隙为时间单位的第一时长的具体方式。
结合上述第一方面,在一种可能的设计中,第一时长满足如下关系:其中,X表示第一时长;e表示第一参考时间的子帧索引;Int表示向上取整或者向下取整;ceil表示向上取整;f表示接收到第一指示信息的时间的子帧索引;p表示数据的周期;q表示子帧长度。本申请实施例提供了一种确定以子帧为时间单位的第一时长的具体方式。
结合上述第一方面,在一种可能的设计中,该方法还包括:接收来自网络设备的第一配置信息,其中,第一指示信息指示根据第一配置信息在第一时长内跳过PDCCH的监听。基于本申请实施例提供的通信方法,可以结合第一配置信息和第一指示信息,指示终端设备在第一时长内跳过PDCCH的监听,可以减少第一指示信息中需要携带的信令,从而节省信令资源。
结合上述第一方面,在一种可能的设计中,PDCCH承载用于调度数据的信息。
结合上述第一方面,在一种可能的设计中,数据的周期为z毫秒,z为非整数。本申请实施例提供的通信方法,可以应用于业务数据以非整数的周期进行传输的场景中,例如XR业务。
第二方面,提供了一种通信方法,该方法可以由网络设备执行,也可以由网络设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。该方法包括:向终端设备发送第一指示信息,第一指示信息指示在第一时长内跳过PDCCH的监听;其中,第一时长与数据的周期或者帧率相关。
基于本申请实施例提供的通信方法,终端设备可以根据第一指示信息的指示,在与数据的周期或者帧率相关的第一时长内,跳过PDCCH的监听。不同于现有的跳过PDCCH监听的时长与数据的周期或者帧率无关的方案,本申请实施例提供的通信方法可以控制终端设备跳过PDCCH监听的时长与数据的周期或者帧率相关,因此可以在数据周期性传输的场景中,使终端设备监听PDCCH的时间与数据的传输时间相匹配。
结合上述第二方面,在一种可能的设计中,第一时长还与以下至少一项相关:接收到第一指示信息的时间;或者,由网络设备配置的第一参考时间。
结合上述第一方面,在一种可能的设计中,第一时长满足如下关系:X=a+ceil[(b-a)/Δt]*Δt-b;其中,X表示第一时长;a表示第一参考时间;ceil表示向上取整;b表示接收到第一指示信息的时间;Δt表示数据的周期。本申请实施例提供了一种确定第一时长的具体方式。
结合上述第二方面,在一种可能的设计中,第一时长满足如下关系:其中,X表示第一时长;c表示第一参考时间的时隙索引;Int表示向上取整或者向下取整;ceil表示向上取整;d表示接收到第一指示信息的时间的时隙索引;y表示数据的周期;s表示时隙长度。本申请实施例提供了一种以时隙为时间单位的第一时长的具体方式。
结合上述第二方面,在一种可能的设计中,第一时长满足如下关系:其中,X表示第一时长;e表示第一参考时间的子帧索引;Int表示向上取整或者向下取整;ceil表示向上取整;f表示接收到第一指示信息的时间的子帧索引;p表示数据的周期;q表示子帧长度。本申请实施例提供了一种以子帧为时间单位的第一时长的具体方式。
结合上述第二方面,在一种可能的设计中,该方法还包括:向终端设备发送第一配置信息,其中,第一指示信息指示根据第一配置信息在第一时长内跳过PDCCH的监听。基于本申请实施例提供的通信方法,可以结合第一配置信息和第一指示信息,指示终端设备在第一时长内跳过PDCCH的监听,可以减少第一指示信息中需要携带的信令,从而节省信令资源。
结合上述第二方面,在一种可能的设计中,PDCCH承载用于调度数据的信息。
结合上述第二方面,在一种可能的设计中,数据的周期为z毫秒,z为非整数。本申请实施例提供的通信方法,可以应用于业务数据以非整数的周期进行传输的场景中,例如XR业务。
第三方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第三方面,在一种可能的设计中,该通信装置包括:接口模块和处理模块。其中,接口模块,用于接收来自网络设备的第一指示信息;处理模块,用于根据第一指示信息控制该装置在第一时长内跳过PDCCH的监听;其中,第一时长与数据的周期或者帧率相关。
结合上述第三方面,在一种可能的设计中,第一时长还与以下至少一项相关:接收到第一指示信息的时间;或者,由网络设备配置的第一参考时间。
结合上述第三方面,在一种可能的设计中,第一时长满足如下关系:X=a+ceil[(b-a)/Δt)]*Δt-b;其中,X表示第一时长;a表示第一参考时间;ceil表示向上取整;b表示接收到第一指示信息的时间;Δt表示数据的周期。
结合上述第三方面,在一种可能的设计中,第一时长满足如下关系:其中,X表示第一时长;c表示第一参考时间的时隙索引;Int表示向上取整或者向下取整;ceil表示向上取整;d表示接收到第一指示信息的时间的时隙索引;y表示数据的周期;s表示时隙长度。
结合上述第三方面,在一种可能的设计中,第一时长满足如下关系:其中,X表示第一时长;e表示第一参考时间的子帧索引;Int表示向上取整或者向下取整;ceil表示向上取整;f表示接收到第一指示信息的时间的子帧索引;p表示数据的周期;q表示子帧长度。
结合上述第三方面,在一种可能的设计中,接口模块,还用于接收来自网络设备的第一配置信息,其中,第一指示信息指示根据第一配置信息在第一时长内跳过PDCCH的监听。
结合上述第三方面,在一种可能的设计中,PDCCH承载用于调度数据的信息。
结合上述第三方面,在一种可能的设计中,数据的周期为z毫秒,z为非整数。
其中,第三方面中任一种可能的设计所带来的技术效果可参见上述第一方面中不同设计所带来的技术效果,此处不再赘述。
第四方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第四方面,在一种可能的设计中,该通信装置包括:接口模块。接口模块,用于向终端设备发送第一指示信息;其中,第一指示信息指示在第一时长内跳过PDCCH的监听;其中,第一时长与数据的周期或者帧率相关。
结合上述第四方面,在一种可能的设计中,第一时长还与以下至少一项相关:接收到第一指示信息的时间;或者,由该通信装置配置的第一参考时间。
结合上述第四方面,在一种可能的设计中,第一时长满足如下关系:X=a+ceil[(b-a)/Δt)]*Δt-b;其中,X表示第一时长;a表示第一参考时间;ceil表示向上取整;b表示终端设备接收到第一指示信息的时间;Δt表示数据的周期。
结合上述第四方面,在一种可能的设计中,第一时长满足如下关系:其中,X表示第一时长;c表示第一参考时间的时隙索引;Int表示向上取整或者向下取整;ceil表示向上取整;d表示终端设备接收到第一指示信息的时间的时隙索引;y表示数据的周期;s表示时隙长度。
结合上述第四方面,在一种可能的设计中,第一时长满足如下关系:其中,X表示第一时长;e表示第一参考时间的子帧索引;Int表示向上取整或者向下取整;ceil表示向上取整;f表示接收到第一指示信息的时间的子帧索引;p表示数据的周期;q表示子帧长度。
结合上述第四方面,在一种可能的设计中,接口模块,还用于向终端设备发送第一配置信息,其中,第一指示信息指示根据第一配置信息在第一时长内跳过PDCCH的监听。
结合上述第四方面,在一种可能的设计中,PDCCH承载用于调度数据的信息。
结合上述第四方面,在一种可能的设计中,数据的周期为z毫秒,z为非整数。
其中,第四方面中任一种可能的设计所带来的技术效果可参见上述第二方面中不同设计所带来的技术效果,此处不再赘述。
第五方面,提供了一种通信装置,包括:处理器;该处理器与存储器耦合,该存储器用于存储程序或指令,当程序或指令被处理器执行时,使得通信装置执行上述任一方面所述的方法。
结合上述第五方面,在一种可能的设计中,通信装置还包括存储器。
结合上述第五方面,在一种可能的设计中,通信装置还包括通信接口;该通信接口用于该通信装置与其它设备进行通信。示例性的,该通信接口可以为收发器、输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
结合上述第五方面,在一种可能的设计中,该通信装置可以是芯片或芯片系统。其中,当该通信装置是芯片系统时,该通信装置可以由芯片构成,也可以包含芯片和其他分立器件。
结合上述第五方面,在一种可能的设计中,当通信装置为芯片或芯片系统时,上述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。上述处理器也可以体现为处理电路或逻辑电路。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
其中,第五方面至第七方面中任一种可能的设计所带来的技术效果可参见上述任一方面中不同实现方式所带来的技术效果,此处不再赘述。
第八方面,提供了一种通信系统,其包括执行上述第一方面所述的方法的终端设备,以及执行上述第二方面所述的方法的网络设备。
附图说明
图1为XR业务的数据帧到达网络设备的时间的示意图;
图2为DRX周期的示意图;
图3为监测周期的示意图;
图4为稀疏SSSG和密集SSSG分别对应的监测周期的示意图;
图5为XR业务的到达时间与DRX周期内的on Duration时间的示意图;
图6为PDCCH skipping时长与XR业务所需的跳过PDCCH监听的时长的示意图;
图7为本申请实施例提供的一种通信系统的架构示意图;
图8为本申请实施例提供的网络设备和终端设备的结构示意图;
图9为本申请实施例提供的终端设备的另一种结构示意图;
图10为本申请实施例提供的一种节能方法的交互示意图;
图11为本申请实施例提供的一种确定第一时长的示意图;
图12为本申请实施例提供的一种节能方法的具体示例的交互示意图;
图13为本申请实施例提供的另一种节能方法的具体示例的交互示意图;
图14为本申请实施例提供的一种进行SSSG切换的示意图;
图15为本申请实施例提供的又一种节能方法的交互示意图;
图16为本申请实施例提供的又一种节能方法的具体示例的交互示意图;
图17为申请实施例提供的一种通信装置的结构示意图;
图18为申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
1、XR业务:
目前,XR业务的数据帧的传输流程一般为服务器到固网/核心网,再到基站,由基站传输给终端设备。通常情况下,若XR业务为视频业务,XR业务的数据帧也可以称为画面帧或者视频帧。
理想的情况中,XR业务需要按照帧率,周期性产生和传输数据帧,换言之,数据帧需要按照帧周期产生和传输。其中,这里的帧周期也可以称为XR业务的周期,或者数据的周期。因为目前XR业务的帧率一般为60帧每秒(frame per second,FPS),90FPS、120FPS或者180FPS等,所以相对应的XR业务的周期一般为非整数。例如,若帧率为60FPS,则对应的XR业务的周期为16.67ms,每隔16.67ms服务器产生和传输一个数据帧。
然而,由于服务器编码处理、固网/核心网传输等因素,XR业务的数据帧到达基站时,不一定严格遵守周期性。如图1所示,帧率为60FPS的视频,理想情况下,基站处每隔16.67毫秒到达一个画面帧。然而实际上每个画面帧到达基站的延迟不等,帧间隔不再是严格的16.67毫秒,这种情况可以称为帧的到达时刻存在抖动(jitter)。示例性的,如图1所示,第二帧相比理想情况延后到达5毫秒,即jitter=5ms,第四帧相比理想情况提前到达了3毫秒,即jitter=-3ms。
可以理解的是,XR业务的数据帧不一定严格遵守周期性到达基站,也导致了基站将XR业务的数据帧传输给终端设备时,不一定严格按照帧周期进行传输,终端设备可能无法严格按照帧周期接收数据帧。
2、DRX技术:
DRX技术是为了降低终端设备功耗而引进的技术。DRX技术的基本机制是给终端设备配置DRX周期(DRX cycle),DRX周期包括激活时间段和非激活时间段,终端设备在激活时间段内正常监听PDCCH,在非激活时间段进入休眠状态,不监听PDCCH以减少功耗。
DRX周期内的激活时间段也可以被称为持续时间(on Duration/on Duration Timer),如图2所示,终端设备可以在on Duration期间监听PDCCH,on Duration超时后,终端设备进入非激活时间段,停止监听PDCCH,直至进入下一个DRX周期的on Duration再监听PDCCH。
从图2可以看出,相邻两次on Duration的间隔时长即为DRX周期的时长。时长较长的DRX周期,终端设备休眠的时间较久,有益于降低终端设备的功耗,时长较短的DRX周期,有益于终端设备更快地响应来接收数据。因此,为了满足不同的需求,终端设备可以被配置两种DRX周期:短DRX周期(shortDRX-Cycle)和长DRX周期(longDRX-Cycle),终端设备在任一时刻使用其中一种DRX周期。
需要说明的是,DRX周期一般是由基站配置给终端设备的,且DRX周期一般为整数值。
3、搜索空间集合(search space set,SS set)
为了降低终端设备频繁监听PDCCH带来的功耗,基站会为终端设备定义一个或多个搜索空间集合,搜索空间集合指的是一组PDCCH监听时机(monitor occasion,MO)的集合, 终端设备在基站配置好的搜索空间集合内的MO监听PDCCH,而无需在搜索空间集合没有包括的MO上进行PDCCH的监听,从而可以节省功耗。
终端设备可以根据搜索空间包含的如下信息,进行PDCCH的监听:monitoringSlotPeriodicityAndOffset、duration、monitoringSymbolsWithinSlot。
其中,monitoringSlotPeriodicityAndOffset定义该搜索空间的周期和在该周期内的进行PDCCH监听的起始偏移时隙(offset)。duration定义在一个搜索空间周期内,该搜索空间对应的要求监听的连续时隙(slot)的数量,例如duration为2,表示在一个搜索空间周期内,要求持续监听两个连续的时隙。monitoringSymbolsWithinSlot可以定义在前述duration个时隙的一个时隙内,在哪个符号(symbol)开始监听PDCCH。
本申请实施例中,这种通过搜索空间集合监听PDCCH的方法也可以被称为PDCCH监测(PDCCH monitoring),搜索空间周期也可以称为PDCCH monitoring的周期,或者称为监测周期。目前,PDCCH monitoring的周期一般为整数个时隙。
示例性的,如图3所示,假设监测周期包括k个时隙,起始偏移时隙为O个时隙,duration为L,monitoringSymbolsWithinSlot指示在duration个时隙内,从符号1开始监听PDCCH,在一个监测周期内,起始偏移时隙过后,终端设备持续监听L个时隙,并在时隙内按照monitoringSymbolsWithinSlot指示的符号监听PDCCH。其余时间终端设备可以不进行监听,直至下一个监测周期。此外,图3中阴影部分代表的监听PDCCH对应的符号数量,以及监听PDCCH的频域范围由搜索空间关联的控制信道资源集合(coreset)定义。
进一步地,搜索空间集合可以属于不同的搜索空间集合组(search space set group,SSSG)。SSSG是由基站配置给终端设备的,例如SSSG包括的搜索空间等信息。基站还会为终端设备配置与SSSG对应的PDCCH监听相关配置,终端设备可以根据与SSSG对应的PDCCH监听相关配置,在SSSG内的搜索空间上监听PDCCH。其中,基站可以通过无线资源控制(radio resource control,RRC)信令为终端设备配置SSSG。
基于基站为终端设备配置的SSSG对应的PDCCH监听相关配置,可以将SSSG分为稀疏SSSG(sparse SSSG)与密集SSSG(dense SSSG)。稀疏SSSG相较于密集SSSG,监听PDCCH的时间较为稀疏。示例性的,假设SSSG 0配置为每间隔三个时隙来监听PDCCH,SSSG 1配置为每一个时隙都需要监听PDCCH,可以将SSSG0称为稀疏SSSG,将SSSG1称为密集SSSG。
对于稀疏SSSG和密集SSSG的配置,以及稀疏SSSG和密集SSSG分别对应的PDCCH监听相关配置,可以是基于基站的实现确定的。
示例性的,为了便于理解,以下结合图4进行说明。假设基站为终端设备配置SSSG0和SSSG1,其中,SSSG 0配置为每间隔一个时隙来监听PDCCH,SSSG 1配置为每一个时隙都需要监听PDCCH,SSSG 0和SSSG1中的搜索空间集合的监测周期被配置为2个时隙。如图4所示,终端设备在SSSG0内的搜索空间集合上监听PDCCH时,第一次的监测周期包括时隙0和时隙1,第二次的监测周期包括时隙3和时隙4,其他监测周期以此类推。终端设备在SSSG1内的搜索空间集合上监听PDCCH时,第一次的监测周期包括时隙0和时隙1,第二次的监测周期包括时隙2和时隙3,其他监测周期以此类推。终端设备在监测周期内监听PDCCH的具体实现可以参考上文介绍。从图4可以看出,在SSSG0内监听PDCCH的时间较稀疏,在SSSG1内监听PDCCH的时间较密集,因此,SSSG0可以称为稀疏SSSG,SSSG1可以称为密集SSSG。
可以基于下行控制信息(downlink control information,DCI)指示搜索空间集合组的切换(SSSG switch)。例如,在DCI中增加PDCCH监测适应指示(PDCCH monitoring adaptation indication)域(包含1个或者2个比特),通过PDCCH monitoring adaptation indication域指示终端设备是否执行搜索空间集合组切换。在PDCCH monitoring adaptation indication域包括1比特,且基站为终端设备配置两个SSSG的情况下,PDCCH monitoring adaptation indication域指示的用户设备行为(user equipmentbehaviors,UE behaviors)可以如下表1所示:
表1
在PDCCH monitoring adaptation indication域包括2比特,且基站为终端设备配置三个SSSG的情况下,PDCCH monitoring adaptation indication域指示的用户设备行为可以如下表2所示:
表2
除了可以通过DCI指示SSSG切换之外,还可以基于定时器进行SSSG的切换。例如,基站可以在RRC信令中配置搜索空间切换定时器(search space switch timer),当该定时器超时后,用户从SSSG X(X=1,2)切换到SSSG 0。其中,搜索空间切换定时器的用途可以理解为在该定时器超时后,终端设备从一个SSSG切换至另一个SSSG,搜索空间切换定时器也可以称为SSSG切换定时器。
4、PDCCH跳过(skipping)
为了使终端设备可以跳过一些额外的不需要监听的PDCCH以进一步降低终端设备的功耗,终端设备可以支持PDCCH skipping。例如可以在DCI中包含PDCCH监测适应指示(PDCCH monitoring adaptation indication)域(包含1个或者2个比特),通过PDCCH monitoring adaptation indication域来指示终端设备需要跳过PDCCH监听的时长。
PDCCH monitoring adaptation indication域指示的用户设备行为可以如下表3所示:
表3
以上表3为例进行解释,示例性的,若PDCCH monitoring adaptation indication域为两个比特,且比特值为“01”,则终端设备在接收到DCI后,在持续时间集合中第一个值对应的时长内跳过PDCCH的监听。其中,持续时间集合中的值,或者说,终端设备可以跳过PDCCH监听的候选时长(候选PDCCH skipping的时长),是通过RRC信令中的PDCCH跳过时长列表-r17(PDCCH Skipping DurationList-r17)字段来配置的。如表3所示,PDCCH Skipping DurationList-r17字段最多可以配置三个候选PDCCH skipping的时长。
需要说明的是,目前PDCCH Skipping DurationList-r17字段可以配置的候选PDCCH skipping的时长是以时隙为粒度的,换言之,目前PDCCH Skipping DurationList-r17字段可以配置的候选PDCCH skipping的时长一般为整数个时隙。
综上,PDCCH skipping技术中,终端设备在接收到DCI后,根据DCI中PDCCH monitoring adaptation indication域确定指示的是PDCCH Skipping DurationList-r17字段配置的哪个PDCCH skipping的时长值,从而在对应的时长内跳过PDCCH的监听。
需要注意的是,在PDCCH monitoring adaptation indication域包括2比特,且基站为终端设备配置了两个SSSG以及两个候选PDCCH skipping的时长的情况下,PDCCH monitoring adaptation indication域指示的用户设备行为可以如下表4所示:
表4
在上文中,介绍了XR业务,以及出于节能的考虑,终端设备不需要持续监听PDCCH的技术:DRX、PDCCH monitoring和PDCCH skipping。但是,这些技术都不能满足终端设备接收XR业务的数据帧所需要的监听PDCCH的时间。以下进行具体介绍:
1、DRX技术使终端设备周期性地监听PDCCH,但是DRX周期一般为整数值,和XR业务的非整数的周期值不匹配。示例性的,假设XR业务的帧率为60FPS,则对应的周期为16.67ms,则最接近帧周期的DRX周期为16ms,如图5所示,XR业务的到达时间与DRX周期内的onDuration时间逐渐错开。与此同时,XR业务的数据帧的到达时间可能还存在jitter,为了使得数据帧到达基站后能够及时调度,需要将on Duration的长度设置为涵盖整个jitter的范围,例如jitter的可能数值为-4ms≤jitter≤4ms,相较于理想到达时间,数据帧最早可提前到达4ms,最晚可延迟到达4ms,则on Duration需要设置为8ms。而对于60FPS的XR业务来说,最接近数据的周期的DRX周期为16ms,则终端设备需要在接近一半的时间内监听PDCCH,导致终端设备的功耗过高。
2、与DRX技术不能满足终端设备接收XR业务的数据帧所需要的PDCCH监听时机的原因相似,以时隙为时间单位,PDCCH monitoring的周期一般为整数个时隙,XR业务的周期一般为非整数个时隙,PDCCH monitoring的周期值与XR业务的周期值不匹配。且因为XR业务的数据帧的到达时间可能存在jitter,导致终端设备需要在很长时间内监听PDCCH。
3、PDCCH skipping的时长最多支持3个以时隙为单位的数值,而对于XR业务而言,由于jitter、帧大小可变以及调度策略等原因,XR业务实际所需跳过PDCCH监听的时长的变化范围较广,最多3个数值的PDCCH skipping时长不能满足XR业务的实际需求。以下以一个具体的示例进行解释,如图6所示,假设终端设备配置为持续监听PDCCH,XR业务的帧率为60FPS,jitter的范围为-4ms≤jitter≤4ms,终端设备可以跳过PDCCH监听的时长的范围如图6所示。其中,可能的最长范围的情况为:数据帧比理想到达时间早到了4ms,该数据帧经过了3个slots完成传输,若以毫秒为粒度进行计算,此时终端设备需要跳过PDCCH监听的时长为16.67-1.5=15.17ms,换算成时隙单位则为30slots。而可能的最短范围的情况为:数据帧比理想到达时间晚到了4ms,由于帧大小的原因或者重传一共经过了7个slots完成传输,此时终端设备需要跳过PDCCH监听时间的长度为8.67-3.5=3.17ms,换算成时隙单位则为6slots。可以看出,终端设备需要跳过PDCCH监听的时长范围为6slots~30slots,以时隙为单位共有25个长度范围,而RRC信令最多能配置3个以时隙为单位的的候选PDCCH skipping时长,无法满足XR业务所需要的跳过PDCCH监听的时长的变化情况。
综上,如何控制终端设备跳过PDCCH的监听,使终端设备在监听PDCCH的时间与XR业务的数据帧的传输时间匹配的基础上获得节能的效果,是目前亟待解决的问题。基于此,本申请实施例提供一种节能方法,可以合理控制终端设备跳过PDCCH的监听的时间,使终端设备监听PDCCH的时间与XR业务的数据帧的传输时间相匹配。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
需要说明的是,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的节能方法可以适用于各种通信系统。例如,本申请实施例提供的节能方法可以应用于长期演进(long term evolution,LTE)系统,或者第五代(fifth-generation,5G)系统,或者其他面向未来的类似新系统,本申请实施例对此不作具体限定。此外,术语“系统”可以和“网络”相互替换。
如图7所示,为本申请实施例提供的一种通信系统60。该通信系统60包括网络设备70,以及与该网络设备70连接的一个或多个终端设备80。其中,终端设备80通过无线的方式与网络设备70相连。可选的,不同的终端设备80之间可以相互通信。终端设备80可以是固定位置的,也可以是可移动的。
需要说明的是,图7仅是示意图,虽然未示出,但是该通信系统60中还可以包括其它网络设备,如该通信系统60还可以包括核心网设备、无线中继设备和无线回传设备中的一个或多个,在此不做具体限定。其中,网络设备可以通过无线或有线方式与核心网设备连接。核心网设备与网络设备70可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备70的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备70的功能,本申请实施例对此不做具体限定。
以图7所示的网络设备70与任一终端设备80进行交互为例,本申请实施例提供的节能方法中,网络设备70,用于向终端设备80发送第一指示信息;终端设备80,用于根据第一指示信息在第一时长内跳过PDCCH的监听;其中,第一时长与数据的周期或者帧率相关。该方案的具体实现和技术效果将在后续方法实施例中详细描述,在此不予赘述。
可选的,本申请实施例中的网络设备70,是一种将终端设备80接入到无线网络的设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central  unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。网络设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。在本申请中,如果无特殊说明,网络设备指无线接入网设备。
可选的,本申请实施例中的终端设备80,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。终端也可以称为用户设备(user equipment,UE)、移动台、移动终端等。终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。终端设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
可选的,本申请实施例中的网络设备70和终端设备80可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备70和终端设备80的应用场景不做限定。
可选的,本申请实施例中的网络设备70和终端设备80之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备70和终端设备80之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备70和终端设备80之间所使用的频谱资源不做限定。
可选的,本申请实施例中的网络设备70与终端设备80也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图8所示,为本申请实施例提供的网络设备70和终端设备80的结构示意图。
其中,终端设备80包括至少一个处理器1001和至少一个收发器1003。可选的,终端设备80还可以包括至少一个存储器1002、至少一个输出设备1004或至少一个输入设备1005。
处理器1001、存储器1002和收发器1003通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器1001可以是通用中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。在具体实现中,作为一种实施例,处理器1001也可以包括多个CPU,并且处理器1001可以是单核处理器或多核处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据的处理核。
存储器1002可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random  access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1002可以是独立存在,通过通信线路与处理器1001相连接。存储器1002也可以和处理器1001集成在一起。
其中,存储器1002用于存储执行本申请方案的计算机执行指令,并由处理器1001来控制执行。具体的,处理器1001用于执行存储器1002中存储的计算机执行指令,从而实现本申请实施例中所述的节能方法。
或者,可选的,本申请实施例中,也可以是处理器1001执行本申请下述实施例提供的节能方法中的处理相关的功能,收发器1003负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器1003可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器1003包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备1004和处理器1001通信,可以以多种方式来显示信息。例如,输出设备1004可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备1005和处理器1001通信,可以以多种方式接受用户的输入。例如,输入设备1005可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备70包括至少一个处理器901、至少一个收发器903和至少一个网络接口904。可选的,网络设备70还可以包括至少一个存储器902。其中,处理器901、存储器902、收发器903和网络接口904通过通信线路相连接。网络接口904用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图8中未示出),本申请实施例对此不作具体限定。另外,处理器901、存储器902和收发器903的相关描述可参考终端设备80中处理器1001、存储器1002和收发器1003的描述,在此不再赘述。
结合图8所示的终端设备80的结构示意图,示例性的,图9为本申请实施例提供的终端设备80的一种具体结构形式。
其中,在一些实施例中,图8中的处理器1001的功能可以通过图9中的处理器110实现。
在一些实施例中,图8中的收发器1003的功能可以通过图9中的天线1,天线2,移动通信模块150,无线通信模块160等实现。移动通信模块150可以提供应用在终端设备80上的包括LTE、NR或者未来移动通信等无线通信技术的解决方案。无线通信模块160可以提供应用在终端设备80上的包括WLAN(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外等无线通信技术的解决方案。在一些实施例中,终端设备80的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备80可以通过无线通信技术与网络以及其他设备通信。
在一些实施例中,图8中的存储器1002的功能可以通过图9中的内部存储器121或者外部存储器接口120连接的外部存储器等实现。
在一些实施例中,图8中的输出设备1004的功能可以通过图9中的显示屏194实现。
在一些实施例中,图8中的输入设备1005的功能可以通过鼠标、键盘、触摸屏设备或图9中的传感器模块180来实现。
在一些实施例中,如图9所示,该终端设备80还可以包括音频模块170、摄像头193、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个。
可以理解的是,图9所示的结构并不构成对终端设备80的具体限定。比如,在本申请另一些实施例中,终端设备80可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图1至图9,以图7所示的网络设备70与任一终端设备80进行交互为例,对本申请实施例提供的节能方法进行展开说明。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
如图10所示,为本申请实施例提供的一种节能方法。图10中以网络设备和终端设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图10中的网络设备也可以是支持该网络设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分网络设备功能的逻辑模块或软件;图10中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端设备功能的逻辑模块或软件。该节能方法包括S1001和S1002:
S1001、网络设备向终端设备发送第一指示信息,相对应的,终端设备接收来自网络设备的第一指示信息。
S1002、终端设备根据第一指示信息在第一时长内跳过PDCCH的监听;其中,第一时长与数据的周期或者帧率相关。可选地,PDCCH承载用于调度该数据的信息。
S1001中,网络设备给终端设备发送的第一指示信息用于指示终端设备跳过PDCCH的监听。
需要说明的是,本申请实施例中,跳过PDCCH的监听,也可以称为跳过监听PDCCH,不监听PDCCH,暂停监听PDCCH,避免监听PDCCH或者停止监听PDCCH。
需要说明的是,本申请实施例中,监听PDCCH可以涉及中射频处理和基带处理,跳过中射频处理或基带处理中的至少一项处理就可以理解为跳过PDCCH的监听。示例性的,跳过中射频处理可以包括关闭接收信号的射频硬件。跳过基带处理可以包括跳过以下至少一项:
获得PDCCH资源位置。
根据无线网络临时标识(radio network temporary identifier,RNTI)进行循环冗余码校验(cyclic redundancy check,CRC)。
在CRC成功的情况下,解码PDCCH上的相应信息;在CRC失败的情况下,继续在下一个PDCCH资源位置上进行PDCCH的监听。
本申请实施例中,网络设备可以根据向终端设备传输数据的传输情况,判断是否向终端设备发送第一指示信息。
一种可能的实现方式中,网络设备可以在确定传输给终端设备的数据已经传输完毕时,或者,在确定传输给终端设备的数据来不及在规定时间内传输完毕时,或者,在确定传输给终端设备的数据已经传输完毕后经过一段时间后,向终端设备发送第一指示信息,指示终端设备跳过PDCCH的监听。其中,网络设备确定数据的传输情况的具体实现与该数据对应的业务类型相关。例如,若网络设备向终端设备传输XR业务的数据帧,网络设备可以在确定当前传输的某一数据帧的数据已经全部完成传输时,或者在确定当前传输的某一数据帧无法在给定时间内,例如无法在包时延预算(packet delay buget,PDB)内传输完毕时,或者在确定当前传输的某一数据帧的数据已经全部完成传输时再经过一段时间,向终端设备发送第一指示信息。
可选的,本申请实施例中,在终端设备支持一种业务,网络设备向终端设备传输该业务的数据的情况下,网络设备可以根据该业务的数据的传输情况,判断是否发送第一指示信息。在终端设备支持多种业务,网络设备向终端设备传输多种业务分别对应的数据的情况下,网络设备可以根据其中一种业务的数据的传输情况,判断是否需要发送第一指示信息。以下为了简要介绍,可以将用于网络设备判断是否发送第一指示信息的数据对应的业务,称为第一业务。
示例性的,终端设备支持XR业务和增强移动宽带(enhanced mobile broadband,eMBB)业务,网络设备可以根据XR业务的数据帧的传输情况,判断是否需要向终端设备发送第一指示信息。该场景下,XR业务可以称为第一业务。
可选的,本申请实施例中,第一指示信息可以携带在DCI中。
对于S1002,终端设备接收到第一指示信息后,根据第一指示信息的指示,确定与数据的周期或者帧率相关的第一时长,在第一时长内跳过PDCCH的监听。在第一时长结束后,终端设备可以继续监听PDCCH。其中,在数据以帧的形式进行传输时,数据的帧率指单位时间内传输的帧的数量,数据的周期指相邻两帧到达网络设备的间隔时长,数据的周期的值为数据的帧率的值的倒数。
本申请实施例中,终端设备可以从成功解码第一指示信息开始,跳过PDCCH的监听。或者,终端设备可以在成功解码第一指示信息一段时间后,开始跳过监听PDCCH。其中,终端设备成功解码第一指示信息的时间,与终端跳过监听PDCCH的开始时间之间的时长,可以取决于终端设备的能力。
基于本申请实施例提供的节能方法,终端设备可以根据第一指示信息的指示,在与数据的周期或者帧率相关的第一时长内,跳过PDCCH的监听。不同于现有的跳过PDCCH监听的时长与数据的周期或者帧率无关的方案,本申请实施例提供的节能方法可以控制终端设备跳过PDCCH监听的时长与数据的周期或者帧率相关,因此可以在数据周期性传输的场景中,使终端设备监听PDCCH的时间与数据的传输时间相匹配。
可选的,针对上文介绍的,因为XR业务的周期为非整数值,以整数值的周期监听PDCCH的方法不能满足终端设备接收XR业务的数据帧所需要的监听PDCCH的时间的问题,本申请实施例的技术方案可以应用于终端设备接收XR业务的数据帧的场景,相对应的,与第一时长相关的数据的周期可以为XR业务的周期,例如可以为z毫秒,其中,z为非整数。示例性的,数据的周期可以为33.33ms、16.67ms或者8.33ms等。与第一时长相关的数据的帧率可以为XR业务的帧率,例如数据的帧率可以为30FPS、60FPS、120FPS等。当然,本申请实施例的技术方案在数据的周期为整数值的情况下,依然可以应用。
以下展开介绍本申请实施例中第一时长的确定。
本申请实施例中,为了使得终端设备监听PDCCH的时间与数据的传输时间匹配,第一时长需要与数据的周期或者帧率相关。示例性的,数据的周期可以为XR业务的帧周期,数据的帧率可以为XR业务的帧率。
本申请实施例中,第一时长与数据的周期或者帧率相关,因此终端设备要确定第一时长需要获取数据的周期或者帧率,或者需要获取与数据的周期或帧率相关的参数。以下介绍几种示例性的方式。
一种可能的实现方式中,数据的周期或者帧率、或者与数据的周期或帧率相关的参数可以是由网络设备配置给终端设备的。例如,网络设备在发送给终端设备的信令中,携带数据的周期或者帧率、或者携带与数据的周期或者帧率相关的参数,例如,可以在RRC信令中,携带数据帧率的相关参数用来配置30FPS,60FPS,90FPS,120FPS等数据帧率,或者携带数据周期的相关参数用来配置1/30秒,1/60秒,1/90秒,1/120秒等数据周期,或者,终端设备可以从自身的应用层获取数据的周期或者帧率。或者,终端设备可以根据业务来包特征(业务数据包到达的特征)进行感知,获得数据的周期或者帧率。当然,终端设备还可以通过其他方式获取数据的周期或者帧率,或者获取与数据的周期或帧率相关的参数,本申请实施例并不限制终端设备获取数据的周期或者帧率,或者获取与数据的周期或帧率相关的参数的具体实现方式。
可选的,本申请实施例中,为了终端设备侧和网络设备侧对第一时长具有统一的理解,网络设备也可以确定第一时长。为了确定第一时长,网络设备也需要获取数据的周期或者帧率,或者需要获知与数据的周期或帧率相关的参数。一种可能的方式中,网络设备可以接收来自终端设备的用于指示数据的周期或者帧率的信息。例如,终端设备可以通过用户辅助信息(user assistant information,UAI)将数据的周期或者帧率、或者与数据的周期或帧率相关的参数发送给网络设备。或者,网络设备可以根据业务来包特征进行感知,获得数据的周期或者帧率。或者,还可以由核心网设备告知网络设备数据的周期或者帧率,或者与数据的周期或帧率相关的参数。当然,网络设备还可以通过其他方式获取数据的周期或者帧率的数值,本申请实施例并不限制网络设备获取数据的周期或者帧率的数值的具体实现方式。
以上介绍了终端设备如何获取数据的周期或者帧率。终端设备在接收到第一指示信息后,可以根据数据的周期或者帧率,以及预定义的算法、模型或者计算规则,确定第一时长。其中,根据预定义的算法、模型或者计算规则确定的第一时长,可以控制终端设备在跳过PDCCH的监听后开始监听PDCCH的时间,与数据的传输时间(或者说网络设备发送数据的时间)相匹配。
需要说明的是,本申请实施例中,两者匹配可以理解为两者相等或者两者之间的差距在一定阈值之内。其中,一定阈值可以是预定义的,也可以根据实际需求设置。例如,如果传输的数据为XR业务的数据帧,则一定阈值可以为XR业务的jitter的最大绝对值。换言之,终端设备开始监听PDCCH的时间与数据的传输时间匹配可以理解为,网络设备传输的数据,终端设备可以在开始监听PDCCH时接收到,或者可以在开始监听PDCCH后的一定时长内接收到,因此终端设备不会浪费功耗。
可选的,若网络设备也需要确定第一时长,则网络设备可以根据相同的算法、模型或者计算规则,从而根据数据的周期或者帧率,确定与终端设备确定的第一时长相同的时长。
可选的,本申请实施例中,第一时长还可以与以下至少一项相关:
接收到第一指示信息的时间,或者,由网络设备配置的第一参考时间。
可选的,本申请实施例中,接收到第一指示信息的时间可以是网络设备通过空口资源发送第一指示信息的时间。或者,接收到第一指示信息的时间可以是网络设备通过空口资源发送第一指示信息后经过一定偏移值的时间,该偏移值是由网络设备配置或者通过预定义的方式得到的。例如,网络设备可以通过RRC信令中的PDSCH-TimeDomainResourceAllocation信元配置的k0值,来配置发送第一指示信息的时间与第一指示信息开始生效的时间之间的偏移时长。或者,接收到第一指示信息的时间可以是第一指示信息的空口资源所在的时域位置。或者,接收到第一指示信息的时间可以是第一指示信息的空口资源所在的时域位置经过一定偏移值的时间,该偏移值是由网络设备配置或者通过预定义的方式得到的。或者,接收到第一指示信息的时间可以是第一指示信息开始生效的时间。
第一参考时间,是本申请实施例中的一个用于确定第一时长的参考时间。
可选的,第一参考时间可以用于表征第一业务的开始时间,也可以理解为第一业务的数据开始传输的时间。例如,若第一业务为XR业务,则第一参考时间可以为XR业务的第一个数据帧到达网络设备的时间。
或者,第一参考时间可以为第一业务的数据预估开始传输的时间(也可以理解为理想情况下第一业务的数据帧到达网络设备的时间)累加一定偏移后的时间。可选的,若第一业务为XR业务,该偏移的值可以与jitter相关。例如,若第一业务为XR业务,且第一业务的jitter的范围为-4ms≤jitter≤4ms,则第一参考时间可以为第一业务的第一个数据帧预估的开始传输时间之前4毫秒、3毫秒、2毫秒或者1毫秒的时间,或者第一参考时间也可以为第一业务的第一个数据帧预估的开始传输时间之后4毫秒、3毫秒、2毫秒或者1毫秒的时间。
或者,第一参考时间可以为第一业务的某一次数据的开始传输的时间,其中,某一次在第一次之后。例如,若第一业务为XR业务,则第一参考时间可以为第一业务的第一个数据帧之后的数据帧中,某一个数据帧到达网络设备的时间。
或者,第一参考时间可以为第一业务的某一次数据的预估开始传输的时间累加一定偏移后的时间,其中,某一次在第一次之后。可选的,若第一业务为XR业务,该偏移的值可以与jitter相关。例如,若第一业务为XR业务,则第一参考时间可以为第一业务的第一个数据帧之后的数据帧中,某一个数据帧预估的开始传输时间加上jitter的可能取值之后的时间。
需要说明的是,上述列举的四种可能的第一参考时间,是本申请实施例提供的示例性的第一参考时间,本申请实施例并不限制设置第一参考时间的具体实现方式。
本申请实施例中,第一参考时间由网络设备配置。网络设备可以将承载第一参考时间相关参数的信息发送给终端设备。其中,可选的,网络设备可以将承载第一参考时间的信息发送给终端设备。或者,在第一参考时间为第一业务的数据预估开始传输的时间累加一定偏移后的时间的情况下,网络设备可以将承载第一业务的数据预估开始传输的时间和偏移值的相关参数的信息发送给终端设备,由终端设备根据第一业务的数据预估开始传输的时间和偏移值,确定第一参考时间。示例性的,网络设备可以通过RRC信令为终端设备配置第一参考时间。
终端设备在接收到第一指示信息后,可以根据数据的周期或者帧率,以及接收到第一指示信息的时间和第一参考时间中的至少一项,通过预定义的算法、模型或者计算规则,确定第一时长。
以下结合具体示例,介绍本申请实施例提供的第一时长的确定方法。
示例一:该示例中,第一时长可以满足如下关系:
X=a+ceil[(b-a)/Δt]*Δt-b;           公式(1)
其中,X表示第一时长;a表示第一参考时间;ceil表示向上取整;b表示接收到第一指示信息的时间;Δt表示数据的周期。
需要说明的是,上述公式(1)包括的参数中,a、b、Δt的时间单位相同。
或者,该示例中,第一时长还可以满足如下关系:
其中,X表示第一时长;a表示第一参考时间;ceil表示向上取整;b表示接收到第一指示信息的时间;m表示数据的帧率,即单位时间内传输的帧的数量。
需要说明的是,上述公式(2)包括的参数中,a、b、m的时间单位相同。上述公式(1)或者公式(2)可以理解为数学意义上,第一时长满足的关系式。
示例二:该示例中,第一时长可以满足如下关系:
其中,X表示第一时长;c表示第一参考时间的时隙索引;Int表示向上取整或者向下取整;ceil表示向上取整;d表示接收到第一指示信息的时间的时隙索引;y表示数据的周期;s表示时隙长度。
需要说明的是,上述公式(3)包括的参数中,y和s的时间单位相同,例如y可以为5ms,s可以为0.577ms。上述公式(3)可以理解为以时隙为粒度表示的公式(1),通过公式(3)确定的第一时长的时间单位是时隙。
或者,该示例中,第一时长还可以满足如下关系:
其中,X表示第一时长;c表示第一参考时间的时隙索引;Int表示向上取整或者向下取整;ceil表示向上取整;d表示接收到第一指示信息的时间的时隙索引;j表示数据的帧率,即单位时间内传输的帧的数量;s表示时隙长度。
需要说明的是,上述公式(4)包括的参数中,j和s的时间单位相同。上述公式(4)可以理解为以时隙为粒度表示的公式(2),通过公式(4)确定的第一时长的时间单位是时隙。
示例三:该示例中,第一时长满足如下关系:
其中,X表示第一时长;e表示第一参考时间的子帧索引;Int表示向上取整或者向下取整;ceil表示向上取整;f表示接收到第一指示信息的时间的子帧索引;p表示数据的周期;q表示子帧长度。
需要说明的是,上述公式(5)包括的参数中,p和q的时间单位相同。例如p可以为5ms,s可以为1ms。上述公式(5)可以理解为以子帧为粒度表示的公式(1)。通过公式(5)确定的第一时长的时间单位是子帧。其中,在1个子帧的时长为1毫秒的情况下,上述公式(5)也理解为以毫秒为粒度表示的公式(1),通过公式(5)确定的第一时长的时间单位是毫秒。
或者,该示例中,第一时长还可以满足如下关系:
其中,X表示第一时长;e表示第一参考时间的子帧索引;Int表示向上取整或者向下取整;ceil表示向上取整;f表示接收到第一指示信息的时间的子帧索引;h表示数据的帧率,即单位时间内传输的帧的数量;q表示子帧长度。
需要说明的是,上述公式(6)包括的参数中,h和q的时间单位相同。上述公式(6)可以理解为以子帧为粒度表示的公式(2)。通过公式(6)确定的第一时长的时间单位是子帧。其中,在1个子帧的时长为1毫秒的情况下,上述公式(6)也理解为以毫秒为粒度表示的公式(2),通过公式(6)确定的第一时长的时间单位是毫秒。
示例四:该示例中,如果timeReferenceSFN<=SFNskipping indication,,第一时长满足如下关系:
Duration=(M×1024+timeReferenceSFN)×numberOfSlotsPerFrame+timeDomainOffset
+floor[N×100/ArriveRate×numberOfSlotsPerFrame]–((M×1024+SFNskipping indication)×numberOfSlotsPerFrame+slotskipping indication);           公式(7)
如果timeReferenceSFN>SFNskipping indication,第一时长满足如下关系:
Duration=((M+1)×1024+timeReferenceSFN)×numberOfSlotsPerFrame+
timeDomainOffset+floor[N×100/ArriveRate×numberOfSlotsPerFrame]–((M×1024+SFNskipping indication)×numberOfSlotsPerFrame+slotskipping indication);       公式(8)
上述公式(7)或者公式(8)中,Duration表示第一时长;floor表示向下取整;timeReferenceSFN表示第一参考时间的系统帧号,timeDomainOffset表示第一参考时间相对于timeReferenceSFN的时隙偏移值,例如,假设第一参考时间所在的时隙为第一参考时间所在的系统帧中的第2个时隙,则timeDomainOffset=2;SFNskipping indication表示接收到第一指示信息的时间的系统帧号;slotskipping indication表示接收到第一指示信息的时间相对于SFNskipping indication的时隙偏移值,例如,假设接收到第一指示信息的时间所在的时隙为接收到第一指示信息的时间所在的系统帧中的第3个时隙,则timeDomainOffset=3;numberOfSlotsPerFrame表示一个系统帧内的时隙数量;ArriveRate表示数据的帧率,即每秒内传输的数据帧的数量;N是递增的整数,表示接收到第一指示信息时,数据的第N个周期,例如,假设接收到第一指示信息时,业务的数据帧为第4个周期的数据帧,则N=4;M是递增的整数,表示系统帧号的反转(wraparound)次数,M满足如下关系:
M=floor(N×100/ArriveRate)modulo(1024);        公式
(9)
上述公式(9)中,floor表示向下取整;modulo表示取模;N、ArriveRate的含义与上述公式(7)或者公式(8)中的N、ArriveRate的含义相同。
需要说明的是,上述公式(7)或者公式(8)中,100/ArriveRate×numberOfSlotsPerFrame也可以等价替换为1/ArriveRate×numberOfSlotsPerSecond;其中,numberOfSlotsPerSecond表示每秒内的时隙数量。
示例五:该示例中,第一时长可以是,接收到第一指示信息的时间所在的时隙的结束时刻,与满足下述关系并且离接收到第一指示信息的时间最近的时隙的起始时刻之间的间隔时长:
[(SFN×numberOfSlotsPerFrame)+slot number in the frame]=(timeReferenceSFN×
numberOfSlotsPerFrame+timeDomainOffset+M)modulo(1024×numberOfSlotsPerFrame)     公式(10)
上述公式(10)中,SFN是时隙的系统帧号;slot number in the frame表示时隙在所在的系统帧内的索引,例如,假设时隙在所在的系统帧内是第2个时隙,则slot number in the frame=2;modulo表示取模;numberOfSlotsPerFrame、timeReferenceSFN、timeDomainOffset含义与上述公式(7)或者公式(8)中的numberOfSlotsPerFrame、timeReferenceSFN、timeDomainOffset的含义相同;M是递增的整数,且M满足如下关系:
Int[M×ArriveRate/1000]+1=Int[(M+1)×ArriveRate/1000];        公式(11)
上述公式(11)中,Int表示向上取整或者向下取整;ArriveRate表示数据的帧率,即每秒内传输的数据帧的数量。
为了便于理解,以下结合附图,对示例二中如何确定第一时长进行说明。如图11所示,以数据为XR业务的数据帧,c表示第一参考时间的时隙索引为例,可以看出,第一参考时间的配置可以考虑数据帧的jitter,第一参考时间较第一个数据帧的理想到达时间有一定偏移。y表示数据帧的周期(数据周期),s表示时隙长度。d1表示终端设备第一次接收到第一指示信息的时间的时隙索引。其中,用于确定一个数据周期包括的时隙的数量。第二个数据帧与第一个数据帧之间间隔一个数据周期,因此,终端设备可以根据c,以及推测出第二个数据帧的可能到达时间的时隙索引:终端设备从接收到第一指示信息后,开始跳过PDCCH的监听,因此终端设备可以根据第一次接收到第一指示信息的时间的时隙索引d1,以及第二个数据帧的可能到达时间的时隙索引: 确定出终端设备第一次接收到第一指示信息后,需要跳过PDCCH监听的第一时长:X1。d2表示终端设备第二次接收到第一指示信息的时间的时隙索引。第三个数据帧与第一个数据帧之间间隔两个数据周期,同理可得,用于确定两个数据周期包括的时隙的数量,终端设备可以根据c,以及推测出第三个数据帧的可能到达时间的时隙索引:进一步地,终端设备可以根据第二次接收到第一指示信息的时间的时隙索引d2,以及第三个数据帧的可能到达时间的时隙索引:确定出终端设备第二次接收到第一指示信息后,需要跳过PDCCH监听的第一时长:X2。
需要说明的是,上述公式(1)-公式(8)以及公式(10)为本申请实施例提供的九种示例性的用于确定第一时长的计算规则,本申请实施例并不限制用于确定第一时长的算法、模型或者计算规则的形式。可以理解的是,将上述公式(1)-公式(8)以及公式(10)中参数的时间粒度适应性替换为其余时间粒度,例如符号或子时隙等,依然可以应用于确定其他种类时间粒度下的第一时长。
从上文对上述示例一、示例二、示例三和示例四的说明可以看出,在第一时长与数据的周期或者帧率,以及接收到第一指示信息的时间和第一参考时间相关的情况下,因为相对时间位置关系的改变,第一时长可以理解为可变时长。
可选的,考虑到多种业务混合的场景,本申请实施例中,网络设备还可以向终端设备发送第二指示信息,第二指示信息用于指示终端设备在第二时长内跳过PDCCH的监听。其中,第二时长是由网络设备配置的固定值,因此第二时长可以理解为固定时长。网络设备可以根据多种业务的数据传输情况,向终端设备发送第一指示信息或者第二指示信息。
可选的,本申请实施例提供的节能方法还可以包括S1003:
S1003、网络设备向终端设备发送第一配置信息,相对应的,终端设备接收来自网络设备的第一配置信息。其中,前述的第一指示信息指示根据第一配置信息在第一时长内跳过PDCCH的监听。
在本申请实施例提供的节能方法包括S1003的情况下,S1002可以为:网络设备向终端设备发送第一指示信息后,终端设备可以在第一指示信息的指示下,根据第一配置信息确定第一时长,在第一时长内跳过PDCCH的监听。在第一时长结束后,终端设备可以继续监听PDCCH。
可选的,本申请实施例中,第一配置信息可以为指示PDCCH skipping的候选时长的参数,该参数表征需要以与数据的周期或者帧率相关的第一时长跳过PDCCH的监听。其中,网络设备可以仅配置第一配置信息来指示配置的PDCCH skipping的候选时长。或者,考虑到多种业务混合的场景,除配置第一配置信息来针对第一业务外,网络设备还可以配置一个或多个固定值作为候选的PDCCH skipping的时长,从而可以根据不同的业务数据的传输情况,指示终端设备在第一时长内,或者在配置的固定值的时长内,跳过PDCCH的监听。
示例性的,第一配置信息可以携带在RRC信令中。例如,可以通过RRC信令的PDCCHSkipDurationList-R17字段配置第一配置信息,又例如,也可以通过RRC信令中一个新定义的字段来配置第一配置信息。
以下结合示例,对本申请实施例中第一配置信息的多种可能的实现进行展开介绍。
一种可能的实现方式中,第一配置信息与数据的周期或者帧率相对应,也可以称为第一配置信息与第一业务的周期或者帧率相对应。该实现方式中,终端设备在确定第一时长时,可以根据第一配置信息获知数据的周期或者帧率。
可选的,该实现方式中,第一配置信息还可以与子载波间隔(sub-carrier space,SCS)相对应。
示例性的,在第一配置信息为PDCCHSkipDurationList-R17字段中的参数的情况下,若数据为XR业务的数据帧,其帧率为30FPS、60FPS、120FPS或者180FPS,第一配置信息可以为对应帧率的tailored for periodic traffic of 30FPS,tailored for periodic traffic of 60FPS,tailored for periodic traffic of 120FPS或者tailored for periodic traffic of 180FPS。
假设第一配置信息与SCS对应,数据为XR业务的数据帧,其帧率为30FPS,SCS可以为15kHz、30kHz、60kHz或者120kHz,PDCCHSkipDurationList-R17携带的三个指示PDCCH skipping的候选时长的参数分别为1、100和第一配置信息,则PDCCHSkipDurationList-R17字段可以为:
{1,100,tailored for periodic traffic of 30FPS}slots for 15kHz SCS;该PDCCHSkipDurationList-R17字段与15kHz的SCS对应。
或者,{1,100,tailored for periodic traffic of 30FPS}slots for 30kHz SCS;该PDCCHSkipDurationList-R17字段与30kHz的SCS对应。
或者,{1,100,tailored for periodic traffic of 30FPS}slots for 60kHz SCS;该PDCCHSkipDurationList-R17字段与60kHz的SCS对应。
或者,{1,100,tailored for periodic traffic of 30FPS}slots for 120kHz SCS;该PDCCHSkipDurationList-R17字段与120kHz的SCS对应。
可以理解的是,若第一配置信息与数据的周期对应,上述示例中与帧率,例如30FPS对应的第一配置信息,也可以将帧率替换为对应的周期,例如第一配置信息可以为tailored for periodic traffic of 1/30s。
另一种可能的实现方式中,不同周期或者帧率的数据对应同一第一配置信息。
可选的,该实现方式中,第一配置信息还可以与SCS相对应。
示例性的,在第一配置信息为PDCCHSkipDurationList-R17字段中的参数的情况下,若数据为XR业务的数据帧,第一配置信息可以为tailored for periodic traffic。
假设第一配置信息与SCS对应,数据为XR业务的数据帧,SCS可以为15kHz、30kHz、60kHz SCS或者120kHz,PDCCHSkipDurationList-R17携带的三个指示PDCCH skipping的候选时长的参数分别为1、100和第一配置信息,则PDCCHSkipDurationList-R17字段可以为:
{1,100,tailored for periodic traffic}slots for 15kHz SCS;该PDCCHSkipDurationList-R17字段与15kHz的SCS对应。
或者,{1,100,tailored for periodic traffic}slots for 30kHz SCS;该PDCCHSkipDurationList-R17字段与30kHz的SCS对应。
或者,{1,100,tailored for periodic traffic}slots for 60kHz SCS;该PDCCHSkipDurationList-R17字段与60kHz的SCS对应。
或者,{1,100,tailored for periodic traffic}slots for 120kHz SCS;该PDCCHSkipDurationList-R17字段与120kHz的SCS对应。
又示例性的,在第一配置信息为RRC信令中一个新定义的字段的参数的情况下,若该新定义的字段可以对不同的SCS生效,该新定义的字段可以为PDCCHSkipDuration for periodic traffic-ENABLE:True/False。其中,该字段配置为True时,可以用于表示第一配置信息。该字段可以对多个SCS生效。或者,若该新定义的字段与SCS对应,SCS可以为15kHz、30kHz、60kHz SCS或者120kHz,则该新定义的字段可以为:
{PDCCHSkipDuration for periodic traffic-ENABLE:True/False}for 15kHz SCS;该字段与15kHz的SCS对应。
或者,{PDCCHSkipDuration for periodic traffic-ENABLE:True/False}for 30kHz SCS;该字段与30kHz的SCS对应。
或者,{PDCCHSkipDuration for periodic traffic-ENABLE:True/False}for 15kHz  SCS;该字段与60kHz的SCS对应。
或者,{PDCCHSkipDuration for periodic traffic-ENABLE:True/False}for 120kHz SCS;该字段与120kHz的SCS对应。
需要说明的是,本文在对出现的字段,或者字段中的参数的名称,例如tailored for periodic traffic of 30FPS,PDCCHSkipDuration for periodic traffic-ENABLE:True/False以及后文出现的名称,进行介绍时,是本申请实施例提供的示例性的可能名称,本申请实施例并不限制它们的具体名称。
以上介绍了第一配置信息的具体实现。以下对本申请实施例中,终端设备如何根据第一指示信息的指示,根据第一配置信息在第一时长内跳过PDCCH的监听进行展开介绍。
可选的,终端设备可以根据第一指示信息以及预定义的映射关系,确定与第一指示信息对应的信息为第一配置信息,从而根据第一配置信息确定自身需要确定第一时长,并在第一时长内跳过PDCCH的监听。
一种可能的实现方式中,第一指示信息可以为PDCCH monitoring adaptation indication域,终端设备可以根据PDCCH monitoring adaptation indication域的比特值,以及预定义的映射关系,确定与PDCCH monitoring adaptation indication域的比特值对应的信息,若与PDCCH monitoring adaptation indication域的比特值对应的信息为第一配置信息,则终端设备根据数据的周期或者帧率,确定第一时长,并在第一时长内跳过PDCCH的监听。
以下结合具体示例进行解释,假设第一指示信息为PDCCH monitoring adaptation indication域,PDCCHSkipDurationList-R17字段为{1,100,tailored for periodic traffic of 30FPS}slots for 15kHz SCS;其中,tailored for periodic traffic of 30FPS为第一配置信息,且第一配置信息是PDCCHSkipDurationList-R17字段配置的三个指示PDCCH skipping的候选时长的参数中的第三个参数。第一指示信息和指示的用户设备行为可以如下表5所示:
表5
如上表5所示,当PDCCH monitoring adaptation indication域的比特值为“11”时,终端设备可以根据表5所示的对应关系,确定以tailored for periodic traffic of 30FPS对应的时长,即第一时长跳过PDCCH的监听。终端设备确定需要在第一时长内跳过PDCCH的监听后,根据数据的帧率30FPS,确定第一时长。同理,当PDCCH monitoring adaptation indication域的比特值为“0”或者“00”时,终端设备可以根据表5所示的对应关系,确定无需跳过监听PDCCH,可以继续监听PDCCH。当PDCCH monitoring adaptation indication域的比特值为“1”或者“01”时,终端设备可以根据表5所示的对应关系,确定需要跳过PDCCH监听的时长为1slot。当PDCCH monitoring adaptation indication域的比特值为“10”时,终端设备可以根据表5所示的对应关系,确定需要跳过PDCCH监听的时长为10slot。
以下对本申请提供的节能方法中的一个示例性的具体实施例进行介绍。假设数据为XR业务的数据帧,图12中以网络设备和终端设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图12中的网络设备也可以是支持该网络设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分网络设备功能的逻辑模块或软件;图12中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端设备功能的逻辑模块或软件。该实施例包括:S1201-S1204:
S1201、网络设备在向终端设备发送的RRC信令中,携带用于配置PDCCH skipping的候选时长的第一配置信息,其中,第一配置信息指示跳过与XR业务的周期相匹配的动态时长(第一时长)。
S1201的具体实现可以参考上文对S1003的介绍,在此不再赘述。
S1202、网络设备向终端设备传输XR业务的数据帧。
S1203、网络设备向终端设备发送DCI,其中携带第一指示信息,第一指示信息指示终端设备根据第一配置信息跳过PDCCH的监听。
S1203的具体实现可以参考上文对S1001和S1003的介绍,在此不再赘述。
S1204、终端设备根据第一指示信息,确定本次需要跳过的PDCCH skipping的时长为第一配置信息指示的候选时长,即第一时长。终端设备根据预定义的计算规则以及XR业务的周期计算第一时长,并在第一时长内跳过PDCCH的监听。
S1204的具体实现可以参考上文对S1001和S1003的介绍,在此不再赘述。
可选的,在第一指示信息指示根据第一配置信息在第一时长内跳过PDCCH的监听的情况下,第一指示信息还可以指示进行SSSG切换。换言之,如果终端设备在第一指示信息的指示下,确定需要根据第一配置信息确定第一时长,那么终端设备还需要在第一指示信息的指示下,进行SSSG切换。在该场景中,网络设备为终端设备配置多个SSSG。
一种可能的实现方式中,终端设备可以根据第一指示信息以及预定义的映射关系,确定与第一指示信息对应的信息为第一配置信息,从而根据第一配置信息确定自身需要确定第一时长并在第一时长内跳过PDCCH的监听,以及根据第一配置信息确定进行SSSG切换。
另一种可能的实现方式中,终端设备可以根据第一指示信息以及预定义的映射关系,确定与第一指示信息对应的信息为第一配置信息,若终端设备确定与第一指示信息对应的信息为第一配置信息,则终端设备可以根据与第一配置信息不同的另一配置信息,确定需要进行SSSG切换。其中,用于终端设备确定需要进行SSSG切换的配置信息,可以为新定义的信息,也可以复用现有的信息,本申请实施例对此不做限制。
以下结合具体示例,对第一指示信息指示根据第一配置信息在第一时长内跳过PDCCH的监听以及进行SSSG切换进行解释。
假设网络设备为终端设备配置了SSSG0和SSSG1,第一指示信息为PDCCH monitoring  adaptation indication域,PDCCHSkipDurationList-R17字段为{1,100,tailored for periodic traffic of 30FPS}slots for 15kHz SCS;其中,tailored for periodic traffic of 30FPS为第一配置信息,且第一配置信息是PDCCHSkipDurationList-R17字段配置的三个指示PDCCH skipping的候选时长的参数中的第三个参数。第一指示信息和指示的用户设备行为可以如下表6所示:
表6
如上表6所示,假设终端设备当前在SSSG1中的搜索空间监听PDCCH,当终端设备接收到DCI,且DCI中的PDCCH monitoring adaptation indication域的比特值为“11”时,终端设备可以根据表6所示的对应关系,确定需要以tailored for periodic traffic of 30FPS对应的时长,即第一时长跳过PDCCH的监听。并且,终端设备根据表6所示的对应关系,确定需要切换到SSSG0,在SSSG0中的搜索空间监听PDCCH。同理,当PDCCH monitoring adaptation indication域的比特值为“0”、“00”、“1”、“01”或者“10”时,终端设备无需切换SSSG,可以继续在当前的搜索空间监听PDCCH。
以下介绍两种终端设备根据第一指示信息的指示进行SSSG切换的方式。
方式(a)、终端设备在第一时长内跳过PDCCH的监听后,切换到第一指示信息指示的SSSG。可以理解的是,该实现方式也可以基于搜索空间切换定时器实现,具体地,终端设备在接收到第一指示信息后,将搜索空间切换定时器设置为第一时长,在该定时器超时后,终端设备切换到第一指示信息指示的SSSG。
方式(b)、终端设备在接收到第一指示信息后,切换到第一指示信息指示的SSSG,同时在第一时长内跳过PDCCH的监听。
可选的,第一指示信息指示切换的SSSG,可以是稀疏SSSG。
进一步地,终端设备可以根据第一指示信息的指示,从密集SSSG切换到稀疏SSSG。换言之,终端设备在接收到第一指示信息之前,可以在密集SSSG中的搜索空间上监听PDCCH。
以下对本申请提供的节能方法中的一个示例性的具体实施例进行介绍。假设数据为XR业务的数据帧,图13中以网络设备和终端设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图13中的网络设备也可以是支持该网络设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分网络设备功能的逻辑模块或软件;图13中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端设备功能的逻辑模块或软件。该实施例包括:S1301-S1306:
S1301、网络设备在向终端设备发送的RRC信令中,携带用于配置密集SSSG和稀疏SSSG的配置信息以及第一配置信息,其中,第一配置信息指示跳过与XR业务的周期相匹配的动态时长(第一时长),以及指示进行SSSG切换。
S1301中,稀疏SSSG为SSSG0,密集SSSG为SSSG1。
S1302、终端设备在稀疏SSSG中的搜索空间上监听PDCCH。其中,终端设备先在SSSG0中的搜索空间上监听PDCCH可以是协议默认的,也可以是网络设备配置的。
S1303、网络设备向终端设备传输XR业务的数据帧,其中,网络设备在调度XR业务的第一个传输块(transport block,TB)时,下发DCI指示终端设备切换到密集SSSG,即指示终端设备切换到SSSG1。
S1304、终端设备接收到S1203中网络设备下发的DCI后,切换到SSSG1,在SSSG1中的搜索空间监听PDCCH。
S1305、网络设备向终端设备发送DCI,其中携带第一指示信息,第一指示信息指示终端设备根据第一配置信息跳过PDCCH的监听以及进行SSSG切换。
S1305中,网络设备可以根据向终端设备传输XR业务的数据帧的传输情况,判断是否向终端设备发送第一指示信息,具体可以参考上文对S1001的介绍,在此不再赘述。
S1306、终端设备根据第一指示信息,确定本次需要跳过的PDCCH skipping的时长为第一配置信息指示的候选时长,即第一时长,进一步地,终端设备还确定需要切换到稀疏SSSG。
S1306中,终端设备在第一指示信息的指示下,一方面根据预定义的计算规则以及XR业务的周期计算第一时长,并在第一时长内跳过PDCCH的监听。另一方面,终端设备进行SSSG切换,切换到SSSG0。
S1306的具体实现可以参考上文对S1003的介绍,在此不再赘述。
上文从终端设备与网络设备之间交互的角度,对S1301-S1306进行说明,为了便于理解,以下结合图14,对S1301-S1306中,终端设备如何根据网络设备下发的DCI进行SSSG切换进行说明。
如图14所示,终端设备首先在稀疏SSSG(SSSG0)中的搜索空间监听PDCCH。网络设备在调度XR业务数据帧的第一个TB时,向终端设备发送第一个DCI,指示终端设备切换到密集SSSG(SSSG1)。终端设备根据该DCI的指示,切换至SSSG1,继续在SSSG1中的搜索空间监听PDCCH。网络设备根据XR业务数据帧的传输情况,向终端设备发送第二个DCI,该DCI指示终端设备在第一时长内跳过PDCCH的监听并进行SSSG切换。
终端设备接收到第二个DCI后,计算出第一时长。终端设备在第一时长内跳过PDCCH的监听,并切换到稀疏SSSG0。其中,若终端设备按照上文介绍的根据第一指示信息的指示进行SSSG切换的方式中的方式(a),在跳过PDCCH的监听的结束时刻,切换到SSSG0,其切换到SSSG0的时间点如图14中的黑色箭头所示。若终端设备按照上文介绍的根据第一指示信息的指示进行SSSG切换的方式中的方式(b),在接收到第二个DCI后,切换到SSSG 0,同时在第一时长内跳过PDCCH的监听,其切换至SSSG0的时间点如图14中的白色箭头所示。
本申请实施例还提供另一种节能方法,如图15所示,为本申请实施例提供的一种节能方法。图15中以网络设备和终端设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图15中的网络设备也可以是支持该网络设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分网络设备功能的逻辑模块或软件;图15中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端设备功能的逻辑模块或软件。该节能方法包括S1501和S1502:
S1501、网络设备向终端设备发送第三指示信息,相对应的,终端设备接收来自网络设备的第三指示信息。
S1502、终端设备跳过监听PDCCH,直至下一PDCCH监听周期开始;其中,下一PDCCH监听周期的开始时间与终端设备接收数据的时间相匹配。
需要说明的是,本申请实施例中,终端设备配置有PDCCH监听周期,可以按照PDCCH监听周期,周期性地监听PDCCH。且终端设备的PDCCH监听周期的开始时间与终端设备接收网络传输的数据的时间相匹配。换言之,网络设备向终端设备传输数据的周期,与终端设备的PDCCH监听周期相匹配。
S1501中,第三指示信息用于指示终端设备跳过监听PDCCH,直至下一PDCCH监听周期开始。因为网络设备向终端设备传输数据的周期,与终端设备的PDCCH监听周期相匹配,所以终端设备可以在下一PDCCH监听周期及时接收到网络设备下一次传输的数据,且不会有数据在终端设备跳过PDCCH监听的时间内进行传输,可以避免多余的PDCCH监听时间,从而节省功耗。
示例性的,本申请实施例中,PDCCH监听周期可以为DRX技术中,激活时间段或者on Duration的周期。或者,PDCCH监听周期还可以为PDCCH monitoring技术中的PDCCH monitoring周期,或者也可以称为Duration的周期。
本申请实施例中,网络设备可以根据向终端设备传输数据的传输情况,判断是否向终端设备发送第三指示信息。网络设备判断是否向终端设备发送第三消息的具体实现可以参考上文对S1001的介绍,在此不再赘述。
可选的,本申请实施例中,第三指示信息可以携带在DCI中。
对于S1502,终端设备接收到第三指示信息后,根据第三指示信息的指示,跳过监听PDCCH,直至下一PDCCH监听周期开始。下一PDCCH监听周期开始后,终端设备可以继续监听PDCCH。
可选的,终端设备接收到第三指示信息时,若终端设备当前还处于PDCCH监听周期,终端设备可以根据第三指示信息,跳过当前PDCCH监听周期中对PDCCH的监听,直至下一PDCCH监听周期开始。当然,若终端设备接收到第三指示信息时,终端设备当前没有在监听PDCCH,终端设备依然可以根据第三指示信息的指示,持续跳过PDCCH的监听,直至下一PDCCH监听周期开始。
基于本申请实施例提供的节能方法,终端设备可以根据第三指示信息的指示,跳过监听PDCCH,直至下一PDCCH监听周期开始。从而在数据的传输周期,与终端设备的PDCCH监听周期相匹配的场景中,尽可能地避免多余的PDCCH监听时间,从而节省功耗。
可选的,本申请实施例中,数据的周期可以为非整数值,例如可以为z毫秒,其中,z为非整数。当然,本申请实施例的技术方案在数据的周期为整数值的情况下,依然可以应用。
本申请实施例中,终端设备根据第三指示信息跳过PDCCH的监听时,需要确定下一次PDCCH监听周期的开始时间。因此,终端设备需要获取PDCCH监听周期。一种可能的实现方式中,PDCCH监听周期、或者与PDCCH监听周期相关的参数可以是由网络设备配置给终端设备的。例如,网络设备在发送给终端设备的RRC信令中,携带PDCCH监听周期、或者与PDCCH监听周期相关的参数。当然,终端设备还可以通过其他方式获取PDCCH监听周期,本申请实施例并不限制终端设备获取PDCCH监听周期的具体实现方式。
可选的,本申请实施例提供的节能方法还可以包括S1503:
S1503、网络设备向终端设备发送第二配置信息,相对应的,终端设备接收来自网络设备的第二配置信息。其中,前述的第三指示信息指示根据第二配置信息,跳过监听PDCCH,直至下一PDCCH监听周期开始。
在本申请实施例提供的节能方法包括S1503的情况下,S1502可以为:网络设备向终端设备发送第三指示信息后,终端设备可以在第三指示信息的指示下,根据第二配置信息确定下一次PDCCH监听周期的开始时间,并停止监听PDCCH,直至下一PDCCH监听周期开始。在下一PDCCH监听周期开始后,终端设备继续监听PDCCH。
可选的,本申请实施例中,第二配置信息可以为配置的,指示PDCCH skipping的候选时长的参数,该参数表征跳过PDCCH的监听直至下一PDCCH监听周期开始。其中,网络设备可以仅配置第二配置信息来指示配置的PDCCH skipping的候选时长。或者,考虑到多种业务混合的场景,除配置第二配置信息外,网络设备还可以配置一个或多个固定值作为候选的PDCCH skipping的时长,从而可以根据不同的业务数据的传输情况,指示终端设备根据第二配置信息跳过PDCCH的监听直至下一PDCCH监听周期开始,或者指示终端设备在配置的固定值的时长内,跳过PDCCH的监听。
示例性的,第二配置信息可以携带在RRC信令中。例如,可以通过RRC信令的PDCCHSkipDurationList-R17字段配置第二配置信息,示例性的,在第二配置信息为PDCCHSkipDurationList-R17字段中的参数的情况下,第二配置信息可以为skip to next Monitoring Occasion。又例如,可以通过RRC信令中一个新定义的字段来配置第二配置信息。
可选的,本申请实施例中,第二配置信息可以与SCS相对应。
示例性的,假设第二配置信息与SCS对应,SCS可以为15kHz、30kHz、60kHz或者120kHz,PDCCHSkipDurationList-R17携带的三个PDCCH skipping的值分别为1、100和第二配置信息,则PDCCHSkipDurationList-R17字段可以为:
{1,100,skip to next Monitoring Occasion}slots for 15kHz SCS;该PDCCHSkipDurationList-R17字段与15kHz的SCS对应。
或者,{1,100,skip to next Monitoring Occasion}slots for 30kHz SCS;该PDCCHSkipDurationList-R17字段与30kHz的SCS对应。
或者,{1,100,skip to next Monitoring Occasion}slots for 60kHz SCS;该PDCCHSkipDurationList-R17字段与60kHz的SCS对应。
或者,{1,100,skip to next Monitoring Occasion}slots for 120kHz SCS;该PDCCHSkipDurationList-R17字段与120kHz的SCS对应。
需要说明的是,上文在对第二配置信息的可能实现进行介绍时,出现的字段,或者字段中的参数的名称,例如skip to next Monitoring Occasion,是本申请实施例提供的示例性的可能名称,本申请实施例并不限制第二配置信息的具体名称。
以上介绍了第二配置信息。以下对本申请实施例中,终端设备如何根据第三指示信息的指示,根据第二配置信息跳过PDCCH的监听,直至下一PDCCH监听周期开始进行展开介绍。
可选的,终端设备可以根据第三指示信息以及预定义的映射关系,确定与第三指示信息对应的信息为第二配置信息,从而根据第二配置信息确定需要跳过PDCCH的监听,直至下一PDCCH监听周期开始。
一种可能的实现方式中,第三指示信息可以为PDCCH monitoring adaptation indication域,终端设备可以根据PDCCH monitoring adaptation indication域的比特值,以及预定义的映射关系,确定与PDCCH monitoring adaptation indication域的比特值对应的信息,若与PDCCH monitoring adaptation indication域的比特值对应的信息为第二配置信息,则终端设备确定下一PDCCH监听周期的开始时间,并跳过PDCCH的监听直至下一PDCCH监听周期的开始时间。
以下结合具体示例进行解释,假设第三指示信息为PDCCH monitoring adaptation indication域,PDCCHSkipDurationList-R17字段为{1,100,skip to next Monitoring Occasion};其中,skip to next Monitoring Occasion为第二配置信息,且第二配置信息为PDCCHSkipDurationList-R17字段配置的三个指示PDCCH skipping的候选时长的参数中的第三个参数。第三指示信息和指示的用户设备行为可以如下表7所示:
表7
如上表7所示,当PDCCH monitoring adaptation indication域的比特值为“11”时,终端设备可以根据表7所示的对应关系,确定以skip to next Monitoring Occasion对应的时长跳过PDCCH的监听,即跳过监听,直至下一PDCCH监听周期开始。同理,当PDCCH  monitoring adaptation indication域的比特值为“0”或者“00”时,终端设备可以根据表7所示的对应关系,确定无需跳过监听PDCCH,可以继续监听PDCCH。当PDCCH monitoring adaptation indication域的比特值为“1”或者“01”时,终端设备可以根据表3所示的对应关系,确定需要跳过PDCCH监听的时长为1slot。当PDCCH monitoring adaptation indication域的比特值为“10”时,终端设备可以根据表7所示的对应关系,确定需要跳过PDCCH监听的时长为10slot。
以下对本申请提供的节能方法中的另一个示例性的具体实施例进行介绍。假设数据为XR业务的数据帧,图16中以网络设备和终端设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图16中的网络设备也可以是支持该网络设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分网络设备功能的逻辑模块或软件;图16中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端设备功能的逻辑模块或软件。该实施例包括:S1601-S1604:
S1601、网络设备在向终端设备发送的RRC信令中,携带用于配置PDCCH skipping的候选时长的第二配置信息,其中,第二配置信息指示跳过PDCCH的监听直至下一PDCCH监听周期开始。
S1601的具体实现可以参考上文对S1503的介绍,在此不再赘述。
S1602、网络设备向终端设备传输XR业务的数据帧。
S1603、网络设备向终端设备发送DCI,其中携带第三指示信息,第三指示信息指示终端设备根据第二配置信息跳过PDCCH的监听。
S1603的具体实现可以参考上文对S1501和S1503的介绍,在此不再赘述。
S1604、终端设备根据第三指示信息,确定本次需要跳过的PDCCH skipping的时长为第二配置信息指示的候选时长。终端设备跳过PDCCH的监听,直至下一PDCCH监听周期开始。
S1604的具体实现可以参考上文对S1501和S1503的介绍,在此不再赘述。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现;由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个设备之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
以通信装置为上述方法实施例中的终端设备为例,图17示出了一种通信装置170的结构示意图。该通信装置170包括接口模块1701和处理模块1702。所述接口模块1701,也可以称为收发模块,收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
在一种可能的设计中,接口模块1701,用于接收来自网络设备的第一指示信息;处理模块1702,用于根据第一指示信息控制该装置在第一时长内跳过PDCCH的监听;其中,第一时长与数据的周期或者帧率相关。
在一种可能的设计中,第一时长还与以下至少一项相关:接收到第一指示信息的时间;或者,由网络设备配置的第一参考时间。
在一种可能的设计中,第一时长满足如下关系:X=a+ceil[(b-a)/Δt)]*Δt-b;其中,X表示第一时长;a表示第一参考时间;ceil表示向上取整;b表示接收到第一指示信息的时间;Δt表示数据的周期。
在一种可能的设计中,第一时长满足如下关系:其中,X表示第一时长;c表示第一参考时间的时隙索引;Int表示向上取整或者向下取整;ceil表示向上取整;d表示接收到第一指示信息的时间的时隙索引;y表示数据的周期;s表示时隙长度。
在一种可能的设计中,第一时长满足如下关系:其中,X表示第一时长;e表示第一参考时间的子帧索引;Int表示向上取整或者向下取整;ceil表示向上取整;f表示接收到第一指示信息的时间的子帧索引;p表示数据的周期;q表示子帧长度。
在一种可能的设计中,接口模块1701,还用于接收来自网络设备的第一配置信息,其中,第一指示信息指示根据第一配置信息在第一时长内跳过PDCCH的监听。
在一种可能的设计中,PDCCH承载用于调度数据的信息。
在一种可能的设计中,数据的周期为z毫秒,z为非整数。
在本实施例中,该通信装置170以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到该通信装置170可以采用图8所示的终端设备80的形式。
比如,图8所示的终端设备80中的处理器1001可以通过调用存储器1002中存储的计算机执行指令,使得终端设备80执行上述方法实施例中的节能方法。具体的,图15中的接口模块1701和处理模块1702的功能/实现过程可以通过图8所示的终端设备80中的处理器1001调用存储器1002中存储的计算机执行指令来实现。或者,图15中的处理模块1702的功能/实现过程可以通过图8所示的终端设备80中的处理器1001调用存储器1002中存储的计算机执行指令来实现,图15中的接口模块1701的功能/实现过程可以通过图8所示的终端设备80中的收发器1003来实现。
由于本实施例提供的通信装置170可执行上述节能方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
以通信装置为上述方法实施例中的网络设备为例,图18示出了一种通信装置180的结构示意图。该通信装置180包括接口模块1801。所述接口模块1801,也可以称为收发模块,收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
在一种可能的设计中,接口模块1801,向终端设备发送第一指示信息;其中,第一指示信息指示在第一时长内跳过PDCCH的监听;其中,第一时长与数据的周期或者帧率相关。
在一种可能的设计中,第一时长还与以下至少一项相关:接收到第一指示信息的时间;或者,由网络设备配置的第一参考时间。
在一种可能的设计中,第一时长满足如下关系:X=a+ceil[(b-a)/Δt)]*Δt-b;其中,X表示第一时长;a表示第一参考时间;ceil表示向上取整;b表示接收到第一指示信息的时间;Δt表示数据的周期。
在一种可能的设计中,第一时长满足如下关系:其中,X表示第一时长;c表示第一参考时间的时隙索引;Int表示向上取整或者向下取整;ceil表示向上取整;d表示接收到第一指示信息的时间的时隙索引;y表示数据的周期;s表示时隙长度。
在一种可能的设计中,第一时长满足如下关系:其中,X表示第一时长;e表示第一参考时间的子帧索引;Int表示向上取整或者向下取整;ceil表示向上取整;f表示接收到第一指示信息的时间的子帧索引;p表示数据的周期;q表示子帧长度。
在一种可能的设计中,接口模块1801,还用于向终端设备发送第一配置信息,其中,第一指示信息指示根据第一配置信息在第一时长内跳过PDCCH的监听。
在一种可能的设计中,PDCCH承载用于调度数据的信息。
在一种可能的设计中,数据的周期为z毫秒,z为非整数。
在本实施例中,该通信装置180以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到该通信装置180可以采用图8所示的网络设备90的形式。
比如,图8所示的网络设备90中的处理器901可以通过调用存储器902中存储的计算机执行指令,使得网络设备90执行上述方法实施例中的节能方法。具体的,图18中的接口模块1801的功能/实现过程可以通过图8所示的网络设备90中的处理器901调用存储器902中存储的计算机执行指令来实现。或者,图18中的接口模块1801的功能/实现过程可以通过图8所示的网络设备90中的收发器903来实现。
由于本实施例提供的通信装置180可执行上述节能方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种芯片系统,包括:至少一个处理器和接口,该至少一个处理器通过接口与存储器耦合,当该至少一个处理器执行存储器中的计算机程序或指令时,使得上述任一方法实施例中的方法被执行。在一种可能的实现方式中,该通信装置还包括存储器。可选的,该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (34)

  1. 一种通信方法,其特征在于,所述方法包括:
    接收来自网络设备的第一指示信息;
    根据所述第一指示信息在第一时长内跳过物理下行控制信道PDCCH的监听;其中,所述第一时长与数据的周期或者帧率相关。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时长还与以下至少一项相关:
    接收到所述第一指示信息的时间;
    或者,由所述网络设备配置的第一参考时间。
  3. 根据权利要求2所述的方法,其特征在于,所述第一时长满足如下关系:
    X=a+ceil[(b-a)/Δt]*Δt-b;
    其中,X表示所述第一时长;a表示所述第一参考时间;ceil表示向上取整;b表示所述接收到所述第一指示信息的时间;Δt表示所述数据的周期。
  4. 根据权利要求2所述的方法,其特征在于,所述第一时长满足如下关系:
    其中,X表示所述第一时长;c表示所述第一参考时间的时隙索引;Int表示向上取整或者向下取整;ceil表示向上取整;d表示所述接收到所述第一指示信息的时间的时隙索引;y表示所述数据的周期;s表示时隙长度。
  5. 根据权利要求2所述的方法,其特征在于,所述第一时长满足如下关系:
    其中,X表示所述第一时长;e表示所述第一参考时间的子帧索引;Int表示向上取整或者向下取整;ceil表示向上取整;f表示所述接收到第一指示信息的时间的子帧索引;p表示所述数据的周期;q表示子帧长度。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第一配置信息,其中,所述第一指示信息指示根据所述第一配置信息在所述第一时长内跳过所述PDCCH的监听。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述PDCCH承载用于调度所述数据的信息。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述数据的周期为z毫秒,所述z为非整数。
  9. 一种通信方法,其特征在于,所述方法包括:
    向终端设备发送第一指示信息;
    其中,所述第一指示信息指示在第一时长内跳过物理下行控制信道PDCCH的监听;其中,所述第一时长与数据的周期或者帧率相关。
  10. 根据权利要求9所述的方法,其特征在于,所述第一时长还与以下至少一项相关:
    接收到所述第一指示信息的时间;
    或者,由所述网络设备配置的第一参考时间。
  11. 根据权利要求10所述的方法,其特征在于,所述第一时长满足如下关系:
    X=a+ceil[(b-a)/Δt]*Δt-b;
    其中,X表示所述第一时长;a表示所述第一参考时间;ceil表示向上取整;b表示所述终端设备接收到所述第一指示信息的时间;Δt表示所述数据的周期。
  12. 根据权利要求10所述的方法,其特征在于,所述第一时长满足如下关系:
    其中,X表示所述第一时长;c表示所述第一参考时间的时隙索引;Int表示向上取整或者向下取整;ceil表示向上取整;d表示所述终端设备接收到所述第一指示信息的时间的时隙索引;y表示所述数据的周期;s表示时隙长度。
  13. 根据权利要求10所述的方法,其特征在于,所述第一时长满足如下关系:
    其中,X表示所述第一时长;e表示所述第一参考时间的子帧索引;Int表示向上取整或者向下取整;ceil表示向上取整;f表示所述接收到第一指示信息的时间的子帧索引;p表示所述数据的周期;q表示子帧长度。
  14. 根据权利要求9-13任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一配置信息,其中,所述第一指示信息指示根据所述第一配置信息在所述第一时长内跳过所述PDCCH的监听。
  15. 根据权利要求9-14任一项所述的方法,其特征在于,所述PDCCH承载用于调度所述数据的信息。
  16. 根据权利要求9-15任一项所述的方法,其特征在于,所述数据的周期为z毫秒,所述z为非整数。
  17. 一种通信装置,其特征在于,所述通信装置包括:接口模块和处理模块;
    所述接口模块,用于接收来自网络设备的第一指示信息;
    所述处理模块,用于根据所述第一指示信息控制所述装置在第一时长内跳过物理下行控制信道PDCCH的监听;其中,所述第一时长与数据的周期或者帧率相关。
  18. 根据权利要求17所述的装置,其特征在于,所述第一时长还与以下至少一项相关:
    接收到所述第一指示信息的时间;
    或者,由所述网络设备配置的第一参考时间。
  19. 根据权利要求18所述的装置,其特征在于,所述第一时长满足如下关系:
    X=a+ceil[(b-a)/Δt)]*Δt-b;
    其中,X表示所述第一时长;a表示所述第一参考时间;ceil表示向上取整;b表示所述接收到所述第一指示信息的时间;Δt表示所述数据的周期。
  20. 根据权利要求18所述的装置,其特征在于,所述第一时长满足如下关系:
    其中,X表示所述第一时长;c表示所述第一参考时间的时隙索引;Int表示向上取整或者向下取整;ceil表示向上取整;d表示所述接收到所述第一指示信息的时间的时隙索引;y表示所述数据的周期;s表示时隙长度。
  21. 根据权利要求18所述的装置,其特征在于,所述第一时长满足如下关系:
    其中,X表示所述第一时长;e表示所述第一参考时间的子帧索引;Int表示向上取整或者向下取整;ceil表示向上取整;f表示所述接收到第一指示信息的时间的子帧索引;p表示所述数据的周期;q表示子帧长度。
  22. 根据权利要求17-21任一项所述的装置,其特征在于,
    所述接口模块,还用于接收来自所述网络设备的第一配置信息,其中,所述第一指示信息指示根据所述第一配置信息在所述第一时长内跳过所述PDCCH的监听。
  23. 根据权利要求17-22任一项所述的装置,其特征在于,所述PDCCH承载用于调度所述数据的信息。
  24. 根据权利要求17-23任一项所述的装置,其特征在于,所述数据的周期为z毫秒,所述z为非整数。
  25. 一种通信装置,其特征在于,所述装置包括:接口模块;
    所述接口模块,用于向终端设备发送第一指示信息;
    其中,所述第一指示信息指示在第一时长内跳过物理下行控制信道PDCCH的监听;其中,所述第一时长与数据的周期或者帧率相关。
  26. 根据权利要求25所述的装置,其特征在于,所述第一时长还与以下至少一项相关:
    接收到所述第一指示信息的时间;
    或者,由所述通信装置配置的第一参考时间。
  27. 根据权利要求26所述的装置,其特征在于,所述第一时长满足如下关系:
    X=a+ceil[(b-a)/Δt)]*Δt-b;
    其中,X表示所述第一时长;a表示所述第一参考时间;ceil表示向上取整;b表示所述终端设备接收到所述第一指示信息的时间;Δt表示所述数据的周期。
  28. 根据权利要求26所述的装置,其特征在于,所述第一时长满足如下关系:
    其中,X表示所述第一时长;c表示所述第一参考时间的时隙索引;Int表示向上取整或者向下取整;ceil表示向上取整;d表示所述终端设备接收到所述第一指示信息的时间的时隙索引;y表示所述数据的周期;s表示时隙长度。
  29. 根据权利要求26所述的装置,其特征在于,所述第一时长满足如下关系:
    其中,X表示所述第一时长;e表示所述第一参考时间的子帧索引;Int表示向上取整或者向下取整;ceil表示向上取整;f表示所述接收到第一指示信息的时间的子帧索引;p表示所述数据的周期;q表示子帧长度。
  30. 根据权利要求25-29任一项所述的装置,其特征在于,
    所述接口模块,还用于向所述终端设备发送第一配置信息,其中,所述第一指示信息指示根据所述第一配置信息在所述第一时长内跳过所述PDCCH的监听。
  31. 根据权利要求25-30任一项所述的装置,其特征在于,所述PDCCH承载用于调度所述数据的信息。
  32. 根据权利要求25-31任一项所述的装置,其特征在于,所述数据的周期为z毫秒,所述z为非整数。
  33. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至8中任一项所述的方法,或者,使得所述装置执行如权利要求9至16中任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,其上存储有计算机指令,当所述计算机指令被计算机执行时使得所述计算机执行权利要求1-8中任一项所述的方法,或者,使得所述计算机执行权利要求9-16中任一项所述的方法。
PCT/CN2023/090419 2022-04-28 2023-04-24 一种节能方法、装置及存储介质 WO2023207927A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210462537.4 2022-04-28
CN202210462537 2022-04-28
CN202210962007.6A CN117015016A (zh) 2022-04-28 2022-08-11 一种节能方法、装置及存储介质
CN202210962007.6 2022-08-11

Publications (2)

Publication Number Publication Date
WO2023207927A1 WO2023207927A1 (zh) 2023-11-02
WO2023207927A9 true WO2023207927A9 (zh) 2024-04-04

Family

ID=88517862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090419 WO2023207927A1 (zh) 2022-04-28 2023-04-24 一种节能方法、装置及存储介质

Country Status (1)

Country Link
WO (1) WO2023207927A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110839286B (zh) * 2018-08-16 2022-09-06 大唐移动通信设备有限公司 数据传输方法、装置、基站、终端及计算机可读存储介质
AU2018436721A1 (en) * 2018-08-17 2021-03-25 Guangdong Oppo Mobile Telecommunications Corp.,Ltd. Discontinuous transmission method and device
CN111867021B (zh) * 2019-04-30 2023-04-18 大唐移动通信设备有限公司 一种物理下行控制信道的监听方法、装置及设备
EP3972351B1 (en) * 2019-06-11 2023-10-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power saving method, terminal device and network device
WO2021016766A1 (zh) * 2019-07-26 2021-02-04 北京小米移动软件有限公司 省电方法、装置、终端、接入网设备及可读存储介质
CN113453322B (zh) * 2020-03-27 2022-08-12 展讯通信(上海)有限公司 物理下行控制信道监听方法、用户终端及可读存储介质
CN114080033A (zh) * 2020-08-14 2022-02-22 展讯通信(上海)有限公司 降低物理下行控制信道监听的方法及用户设备、存储介质

Also Published As

Publication number Publication date
WO2023207927A1 (zh) 2023-11-02

Similar Documents

Publication Publication Date Title
CN109219116B (zh) 一种终端设备的休眠方法及装置
US20210120528A1 (en) Communication Method, Apparatus, And Storage Medium
US20210266223A1 (en) Switching method, base station and terminal
CN111865536B (zh) 搜索空间的监测、配置方法及装置
WO2020259254A1 (zh) 搜索空间的监测方法及装置
CN110087216A (zh) 一种用于获取系统信息的方法和用户设备
WO2020052536A1 (zh) 一种通信方法及装置
WO2023046196A1 (zh) 辅助信息上报方法、业务配置方法、终端及网络侧设备
US20210160742A1 (en) Selective multi-link operation in wlan
CN114286310A (zh) 一种通信方法、装置及系统
US20230262835A1 (en) Sidelink communication method and apparatus
CN109525967A (zh) 设备到设备通信中的控制和共享信道
JP2022539694A (ja) ダウンリンク制御チャネルのモニタリングに関するユーザ装置
WO2021232944A1 (zh) 一种通信传输的方法、装置及系统
JP7239718B2 (ja) リソース管理の方法及び装置
WO2023131331A1 (zh) 上行数据传输方法、网络设备、终端设备及通信系统
WO2023207927A9 (zh) 一种节能方法、装置及存储介质
WO2021239064A1 (zh) 通信方法及装置
CN115734320A (zh) 终端节能方法、装置及系统
WO2019041261A1 (zh) 一种通信方法及设备
CN117242801A (zh) 用于配置侧链路drx的方法、设备和系统
CN117015016A (zh) 一种节能方法、装置及存储介质
WO2024093892A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023207685A1 (zh) 一种信息传输方法及装置
WO2023174041A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795360

Country of ref document: EP

Kind code of ref document: A1