WO2017219825A1 - 无线通信方法和无线通信设备 - Google Patents

无线通信方法和无线通信设备 Download PDF

Info

Publication number
WO2017219825A1
WO2017219825A1 PCT/CN2017/086063 CN2017086063W WO2017219825A1 WO 2017219825 A1 WO2017219825 A1 WO 2017219825A1 CN 2017086063 W CN2017086063 W CN 2017086063W WO 2017219825 A1 WO2017219825 A1 WO 2017219825A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
antennas
signal
time period
Prior art date
Application number
PCT/CN2017/086063
Other languages
English (en)
French (fr)
Inventor
吴亮
张在琛
郑黎丽
秦伟微
党建
呂本舜
Original Assignee
索尼公司
吴亮
张在琛
郑黎丽
秦伟微
党建
呂本舜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 吴亮, 张在琛, 郑黎丽, 秦伟微, 党建, 呂本舜 filed Critical 索尼公司
Priority to KR1020197001946A priority Critical patent/KR20190022672A/ko
Priority to US16/310,486 priority patent/US10863519B2/en
Priority to CN201780023126.2A priority patent/CN109478907A/zh
Priority to EP17814563.7A priority patent/EP3477872A4/en
Publication of WO2017219825A1 publication Critical patent/WO2017219825A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0059Out-of-cell user aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0003Combination with other multiplexing techniques
    • H04J2011/0013Combination with other multiplexing techniques with TDM/TDMA

Definitions

  • the present invention relates to a wireless communication method and apparatus, and in particular to a communication method and related apparatus for performing interference cancellation (e.g., blind interference alignment) in an asymmetric channel scenario.
  • interference cancellation e.g., blind interference alignment
  • the interference alignment technique allows the interference signals to overlap at the receiving end by precoding at the transmitting end, thereby occupying a smaller signal subspace, whereby more signal space can be used to transmit useful data.
  • the traditional interference alignment technology usually requires the sender to grasp the channel state information, which is often difficult to meet in practical applications, and also brings additional overhead.
  • blind interference alignment (BIA) technology has been developed, which is an interference alignment technique in which the transmitting end does not need to know channel state information.
  • a BIA technique based on interleaved antenna selection is known in which a receiving end device utilizes reconfigurable antennas to receive signals.
  • a pattern reconfigurable antenna is an antenna that dynamically changes the electrical and radiative properties. It can be considered that when the pattern reconfigurable antenna operates in different antenna modes, the transmission channels experienced by the received signals are independently and identically distributed, that is, the channel coefficients follow the same distribution characteristics but are independent of each other.
  • the receiving end device uses the corresponding antenna mode to receive signals in each time slot, and each receiving end device does not simultaneously switch the working mode of the receiving antenna.
  • the asymmetric channel state refers to the asymmetric channel conditions of each terminal user.
  • the asymmetric channel state may refer to a state in which some terminal users are subjected to receiving downlink signals from the serving base station. Interference from neighboring base stations, while other end users receive no interference.
  • each receiving end device terminal
  • each receiving end device terminal
  • the present invention proposes a BIA technique suitable for an asymmetric channel scenario, and the technique has no limitation on the number of antennas of each terminal device, and thus the present invention has wider applicability.
  • an electronic device for facilitating interference cancellation including a processing circuit configured to: identify a location based on location information from one or more terminals served by a first base station a first terminal within coverage of a base station and adjacent to coverage of at least one second base station, wherein said first terminal served by said first base station is capable of receiving an interference signal from said at least one second base station.
  • an apparatus for facilitating interference cancellation comprising: a plurality of antennas configured to transmit and receive signals; and processing circuitry configured to: according to one or one served from the first base station The location information of the plurality of terminals identifies a first terminal located within a coverage of the first base station and adjacent to coverage of the at least one second base station, wherein the first terminal served by the first base station is capable of receiving the source An interference signal of at least one second base station, wherein a coverage area of each of the at least one second base station that is served by the corresponding second base station and away from the coverage of the first base station a second terminal; and controlling to cooperate with the at least one second base station to determine a downlink transmission mode for the first terminal such that the first terminal is capable of receiving a signal by performing interference cancellation.
  • a method for facilitating interference cancellation performed by a first base station comprising: receiving location information from one or more terminals served by the first base station; The location information identifies a first terminal located within a coverage of the first base station and adjacent to coverage of at least one second base station, wherein the first terminal served by the first base station is capable of receiving from the at least An interference signal of a second base station, wherein, in the coverage of each of the at least one second base station, there is a second coverage of the coverage of the first base station that is served by the corresponding second base station Terminal; and with said to One less second base station cooperates to determine a downlink transmission mode for the first terminal such that the first terminal can receive a signal by performing interference cancellation.
  • an electronic device for interference cancellation including a processing circuit configured to: control to report to a first base station serving a first terminal Determining the location information of the first terminal and the number of antennas; and determining, according to the indication information from the first base station, a receiving manner to be used by the first terminal, and controlling the first terminal to perform interference cancellation processing, where
  • the indication information is generated by the first base station according to at least the location information of the first terminal and the number of antennas, wherein the first terminal is located in a coverage of the first base station and adjacent to at least one second base station. Coverage, and capable of receiving interference signals from the at least one second base station, wherein within the coverage of each of the at least one second base station, there is, within the coverage of the second base station, a second terminal remote from the coverage of the first base station.
  • an apparatus for interference cancellation comprising: a plurality of antennas configured to be capable of transmitting and receiving signals in a plurality of antenna modes; and processing circuitry, the processing The circuit is configured to: control to report the location information of the first terminal and the number of antennas to the first base station serving the first terminal; and determine, according to the indication information from the first base station, that the first terminal is to be a receiving mode, and controlling the first terminal to perform interference cancellation processing, wherein the indication information is generated by the first base station according to at least the location information of the first terminal and the number of antennas, where the A terminal is located within a coverage of the first base station and adjacent to coverage of at least one second base station, and is capable of receiving an interference signal from the at least one second base station, wherein in the at least one second base station The coverage of each second base station has a second coverage of the coverage of the first base station served by the corresponding second base station End.
  • a method for interference cancellation performed by a first terminal comprising: reporting location information of the first terminal and a first base station serving the first terminal a number of antennas; receiving indication information from the first base station; and determining, according to the indication information, a reception mode to be adopted by the first terminal, and performing interference cancellation processing, wherein the indication information is used by the first base station Generating at least according to the location information of the first terminal and the number of antennas, wherein the first terminal is located within the coverage of the first base station and adjacent to the coverage of the at least one second base station, and is capable of receiving the source An interference signal of at least one second base station, wherein a coverage area of each of the at least one second base station that is served by the corresponding second base station and away from the coverage of the first base station The second terminal.
  • FIG. 1 is a schematic diagram showing an asymmetric channel scene.
  • FIG. 2 shows a schematic example of a transmission and reception scheme in a two-cell asymmetric channel scenario.
  • FIG. 3 shows an illustrative example of a transmission and reception scheme in a three-cell asymmetric channel scenario.
  • Figure 4 shows the flow of signaling interaction between the base station and the terminal device.
  • Figure 5 shows a functional block diagram of a base station in accordance with the present invention.
  • Fig. 6 shows a functional block diagram of a terminal device according to the present invention.
  • Fig. 7 shows a schematic configuration block diagram of a smartphone as an example of a terminal device.
  • FIG. 8 shows a schematic configuration block diagram of an eNB as an example of a base station.
  • Figure 9 shows a schematic configuration block diagram of computer hardware.
  • Fig. 1 shows a communication scenario of an asymmetric channel to which the present invention is applied.
  • three base stations eNB1, eNB2, eNB3, and terminal devices UE1, UE2, UE3 respectively served by respective base stations are schematically shown.
  • the base station eNB1 and the terminal equipment UE1 the terminal equipment UE1 is located at position 1 (shown by a circle) in the figure, that is, within the coverage of the base station eNB1 (hereinafter referred to as "cell 1"), and adjacent to the base station eNB2. Coverage (hereinafter referred to as "Cell 2").
  • the terminal device UE2 is located inside the cell 2, away from the cell 1.
  • the terminal devices UE1 and UE2 occupy the same time frequency resource
  • the downlink transmission between the terminal device UE1 and the base station eNB1 will be interfered by the downlink transmission between the terminal device UE2 and the base station eNB2, and conversely, the terminal device UE2 is far away.
  • the coverage of the base station eNB1 is thus not subject to interference from the base station eNB1.
  • cell 1 and small Zone 2 constitutes a two-cell asymmetric channel.
  • the terminal device UE1 when the terminal device UE1 is located at the location 2 in the figure, that is, near the boundary of the coverage of the three base stations, and the terminal devices UE2 and UE3 are located inside the cell 2 and the cell 3, respectively, away from the cell 1, if the terminal The devices UE1, UE2 and UE3 occupy the same time-frequency resource, and the terminal device UE1 will be interfered by the base stations eNB2 and eNB3, and the downlink transmission between the terminal devices UE2 and UE3 and its serving base station will not be interfered by the base station eNB1.
  • Cell 1, Cell 2 and Cell 3 constitute a three-cell asymmetric channel.
  • each pattern reconfigurable antenna of the terminal device UE1 has a preset antenna mode
  • each of the pattern reconfigurable antennas of the terminal device UE2 has a preset antenna mode
  • each of the pattern reconfigurable antennas of the terminal device UE3 has Preset antenna patterns. It should be noted that, in order to apply to the terminal device UE1 located inside the cell (for example, located at position 3 in FIG.
  • Each antenna of the device UE1 is configured to be capable of Working in antenna mode.
  • M 1 &gt ; N 1 , M 2 ⁇ 2N 2 , and M 3 ⁇ 2N 3 are specified .
  • the signals y 1 (t) and y 2 (t) received by the terminal devices UE1 and UE2 in the t-th time slot can be respectively expressed as:
  • m i (t) represents the antenna pattern of the i-th terminal device's pattern reconfigurable antenna
  • H 12 denotes a channel matrix from the second base station (base station eNB 2) to the first terminal device (UE1)
  • H 21 denotes a channel matrix from the first base station (base station eNB1) to the second terminal device (UE2). Therefore, it can be seen from the equation (1) that the received signal y 1 (t) of the terminal device UE1 includes the interference signal term H 12 (m 1 (t)) x 2 (t) from the base station eNB 2 , and the terminal device The interference signal from the base station eNB1 is not included in the received signal y 2 (t) of the UE 2 .
  • the signals y 1 (t), y 2 (t) and y 3 (t) received by the terminal devices UE1, UE2, and UE3 in the t-th time slot can be respectively expressed as:
  • m i (t) represents the antenna pattern of the i-th terminal device's pattern reconfigurable antenna
  • the received signal y 1 (t) of the terminal device UE1 includes interference signals from the base stations eNB2 and eNB3, and the received signals of the terminal devices UE2 and UE3 do not include interference from the base station eNB1. signal.
  • the present invention proposes a scheme capable of performing blind interference alignment, which jointly designes downlink transmission modes of multiple base stations, so that terminal devices located at the edge of the cell can be easily eliminated by signal processing when receiving signals. Interference from neighboring base stations.
  • the following describes the transmission scheme of the base station eNB1, eNB2 and the corresponding reception scheme of the terminal equipment UE1, UE2 in the two-cell asymmetric channel scenario according to the scheme of the present invention. Similar to the above description in connection with Fig. 1, it is continued to assume that the terminal device UE1 is interfered by the neighboring base station eNB2, and the terminal device UE2 is not interfered by the base station eNB1.
  • the overall transmission period is divided into two parts, the first part (“Part 1") including the time period from the 1st time slot to the r 1 n 1 time slot, and the second part (“Part 2" ) includes a time period from the r 1 n 1 +1 time slot to the r 1 n 1 + n 2 time slot.
  • each base station and terminal equipment “section 1" (first slot to the second slot r 1 n 1) is first described.
  • the base station eNB1 and the terminal equipment UE1 perform the following operations throughout “Part 1": the base station eNB1 transmits all n 1 signal vectors, and transmits each signal vector repeatedly for r 1 times before transmitting the next signal vector.
  • the terminal device using the antenna pattern 1 are sequentially UE1 to receive r 1, using the antenna pattern 1 and then to receive the next signal vector r 1.
  • the base station eNB2 and the terminal device UE2 performs the following operation in the previous part (the first slot to the (r 2 -2)n 2 slot) of "Part 1": the base station eNB2 transmits all n 2 signals Vector, each signal vector is sent once and then the next signal vector is sent. The completion of one transmission of all n 2 signal vectors is referred to as one round. A total of r 2 - 2 rounds are sent. For n 2 signal vectors transmitted per round, the terminal device UE2 receives using the same antenna pattern. The terminal device UE2 uses r 2 - 2 antenna patterns to respectively receive the signal vectors transmitted by the r 2 - 2 rounds.
  • the base station eNB2 and the terminal device UE2 perform the following operations in the latter part (the (r 2 - 2) n 2 +1 slot to the r 1 n 1 slot) of "Part 1": the base station eNB2 will all n 2
  • the signal vectors are transmitted in groups, and the interval of the signal vectors in each group is r 1 .
  • the individual signal vectors in each group are weighted and combined and transmitted, and the weighting coefficients are randomly generated from the continuous distribution interval to ensure that the receiving equation obtained by the terminal device UE2 is linearly independent.
  • the weighting coefficients employed in each group are different from each other.
  • n 2 For the next n 2 signal vectors transmitted next time, the same series of weighting coefficients as the current transmission can be used. Further, one round of transmission of all n 2 signal vectors can be completed in the (r 2 -2)n 2 +1 time slot to the (r 2 -2)n 2 +r 1 time slot. A total of rem (M 2 , N 2 ) rounds of packet transmissions are performed. (The symbol rem(x, y) represents the remainder of x divided by y).
  • the signal vector transmitted in the (r 2 -2)n 2 +1 time slot can be expressed as:
  • the signal vector transmitted in the (r 2 -2)n 2 +r 1 time slot can be expressed as:
  • the terminal device UE2 always receives using the antenna mode r 2 -1.
  • the operation in “Part 2" (the r 1 n 1 +1 slot to the r 1 n 1 + n 2 slot) is described below.
  • the base station eNB1 and the terminal device UE1 perform the following operations throughout “Part 2”: the base station eNB1 does not transmit.
  • the terminal device UE1 receives only the interference signal from the base station eNB2.
  • the terminal device UE1 performs reception using the same antenna pattern as that employed in the corresponding slot in the portion 1 receiving the same signal vector, thereby obtaining the same reception as that received in the portion 1.
  • the signal vector experiences interference signals of the same channel characteristics in order to achieve accurate interference cancellation.
  • the base station eNB2 and the terminal equipment UE2 perform the following operations throughout "Part 2": the base station eNB2 sequentially transmits all n 2 signal vectors one time. Terminal UE2 receives using an antenna pattern r 1 r 2 times, then the next antenna mode (i.e., mode r 2 + 1'd) receiving r 1 times, ..., using the antenna pattern until r + N 2 -1 2 times r 1 received.
  • the base station eNB2 sequentially transmits all n 2 signal vectors one time.
  • Terminal UE2 receives using an antenna pattern r 1 r 2 times, then the next antenna mode (i.e., mode r 2 + 1'd) receiving r 1 times, ..., using the antenna pattern until r + N 2 -1 2 times r 1 received.
  • the transmission slots are divided into two periods.
  • both the base stations eNB1 and eNB2 are transmitting signals, so the terminal device UE1 receives the signal from the serving base station eNB1 in addition to the signal.
  • the interference signal is a downlink transmission signal of the terminal device UE2 served by the base station eNB2.
  • the base station eNB1 stops transmitting signals, and the base station eNB2 keeps transmitting, so the terminal device UE1 only receives Interference signal from base station eNB2.
  • the terminal device UE1 can process the signal received in the "Part 1" using the "pure” interference signal received in "Part 2", for example, from "Part 1"
  • the received signal is cancelled (e.g., subtracted) from the interference signal received in "Part 2", so that a transmission signal from the base station eNB1 that does not contain the interference component can be obtained.
  • the terminal device UE1 at the cell edge location is able to cancel interference from the base station eNB2 when receiving the signal.
  • the terminal device UE2 For the terminal device UE2, it receives signals from the serving base station eNB2 using different antenna modes in "Part 1" and “Part 2", and thus can obtain received signals experiencing different channel characteristics, that is, a sufficient number of can be obtained Independent receive equations to decode the received signal.
  • Fig. 2 shows an illustrative example in a two-cell asymmetric channel scenario, which may be considered as a specific example of the above-described transmission and reception scheme.
  • the number of antennas M 1 and M 2 of the base stations eNB1 and eNB2 are 3 and 7, respectively, and the number of antennas N 1 and N 2 of the terminal devices UE1 and UE2 are both 2.
  • a total of 14 transmission slots are divided into two time segments, wherein the time period "Part 1" corresponds to the first time slot to the r 1 n 1 time slot in Table 1, and includes a total of 10 time slots.
  • the slot "part 2" corresponds to the r 1 n 1 +1 to r 1 n 1 + n 2 slots, and includes a total of 4 slots.
  • base station eNB1 For base station eNB1, it only transmits signals in "Part 1". According to the number of transmissions of the base station eNB1 described above It can be seen that the base station eNB1 transmits each signal vector u i twice. This can also be understood as: the terminal device UE1 has two antennas, so that it can obtain two independent reception equations in each time slot, in order to enable the terminal device UE1 to solve each 3 ⁇ 1 signal vector u i , The base station eNB1 needs to transmit at least twice each signal vector u i .
  • each signal vector v i is independently transmitted twice.
  • the signal vector v i is sent in groups. For example, as shown in FIG.
  • each signal vector v i is transmitted once.
  • portion 2 in the signal vector v 4 v. 1 to 4 again transmitted object is to make the terminal device UE1 can obtain "pure” interference signal.
  • the terminal device UE2 can recover the four signal vectors transmitted by the base station eNB2 by receiving in "Part 1" and "Part 2".
  • the terminal device UE1 For the terminal device UE1, since the base station eNB1 and the base station eNB2 both transmit signals in "Part 1", the terminal device UE1 receives a signal from the base station eNB2 in addition to the signal from the serving base station eNB1. In the "part 2", since the base station eNB1 stops the downlink transmission to the terminal device UE1, the terminal device UE1 receives only the interference from the base station eNB2. Subsequently, the terminal device UE1 can cancel (e.g., subtract) the interference signal received in the "part 2" from the signal received in the "part 1", so that a useful signal from the base station eNB1 that does not contain the interference component can be obtained. In this way, the base can be eliminated The interference of the station eNB2 to the terminal device UE1.
  • the antenna mode used by the terminal device UE1 in the respective slots of "Part 2" for receiving the signal vector and the antenna pattern employed in the corresponding slot for receiving the same signal vector in "Part 1" the interference signal is obtained under the condition that the channel characteristics are the same, so that the interference signal is maximally approximated to the interference signal included in the previously received signal, so that the interference can be eliminated more accurately.
  • the antenna mode in which the terminal device UE2 receives the signal in the "part 2" is different from the antenna mode employed in the "part 1", that is, the terminal device UE2 is different in the "part 2"
  • the signal from its serving base station eNB2 is received under channel characteristics to obtain an additional independent reception equation, so that the transmitted signal vector v i can be solved.
  • the signals received by the terminal device UE1 in the first, second, eleventh, and twelveth time slots can be expressed as:
  • the terminal device UE1 After the terminal device UE1 cancels the interference signal, it obtains:
  • the signal vector u 1 can be recovered by simple linear decoding.
  • the terminal device UE1 can recover the signal vectors u 2 , u 3 , u 4 transmitted by the base station eNB1.
  • the terminal device UE1 can solve the following formula:
  • the signal vectors v 1 , v 3 transmitted by the base station eNB 2 can be recovered by the following equation (6):
  • the terminal device UE2 can solve the signal vectors v 2 , v 4 .
  • the degree of freedom that can be achieved according to the solution of the present invention is In the conventional interference control technology, for example, in the case of a time division multiplexing (TDMA) system, the maximum degree of freedom is max[min(M 1 , N 1 ), min(M 2 , N 2 )], and the average degree of freedom is [min(M 1 , N 1 )+min(M 2 , N 2 )]/2.
  • TDMA time division multiplexing
  • the terminal device UE2 can obtain the same degree of freedom as the conventional TDMA system, and the terminal device UE1 acquires additional degrees of freedom, which enables the system using the solution of the present invention to obtain a system larger than the TDMA system.
  • Throughput the terminal device UE2 can obtain the same degree of freedom as the conventional TDMA system, and the terminal device UE1 acquires additional degrees of freedom, which enables the system using the solution of the present invention to obtain a system larger than the TDMA system. Throughput.
  • the overall transmission period is divided into three parts, the first part (“Part 1") including the time period from the 1st time slot to the r 1 n 1 time slot, the second part (“Part 2” ) includes a time period from the r 1 n 1 +1 time slot to the r 1 n 1 +n 2 time slot, and the third portion (“part 3") includes the time slot from the r 1 n 1 +n 2 +1 The period of time to the r 1 n 1 +n 2 +n 3 time slot.
  • Part 1 the first part
  • Part 2 includes a time period from the r 1 n 1 +1 time slot to the r 1 n 1 +n 2 time slot
  • the third portion includes the time slot from the r 1 n 1 +n 2 +1 The period of time to the r 1 n 1 +n 2 +n 3 time slot.
  • each base station and terminal equipment “section 1" (first slot to the second slot r 1 n 1) is first described.
  • the base station eNB1 and the terminal equipment UE1 perform the following operations throughout “Part 1”: the base station eNB1 transmits all n 1 signal vectors, and transmits each signal vector repeatedly for r 1 times before transmitting the next signal vector.
  • the terminal device using the antenna pattern 1 are sequentially UE1 to receive r 1, followed by using the antenna pattern 1 to the next received signal vector r 1.
  • the base station eNB2 and the terminal device UE2 performs the following operation in the previous part (the first slot to the (r 2 -2)n 2 slot) of "Part 1": the base station eNB2 transmits all n 2 signals Send each signal vector once and then send the next signal vector. The completion of one transmission of all n 2 signal vectors is referred to as one round. A total of r 2 - 2 rounds are sent. For n 2 signal vectors transmitted per round, the terminal device UE2 receives using the same antenna pattern. The terminal device UE2 uses r 2 - 2 antenna patterns (ie, antenna modes 1 to r 2 -2) to respectively receive the signal vectors transmitted by the r 2 - 2 rounds.
  • r 2 - 2 antenna patterns ie, antenna modes 1 to r 2 -2
  • the base station eNB2 and the terminal device UE2 perform the following operations in the latter part (the (r 2 - 2) n 2 +1 slot to the r 1 n 1 slot:) of "Part 1": the base station eNB2 will all n
  • Two signal vectors are transmitted in groups, and the interval of the signal vectors in each group is r 1 .
  • the individual signal vectors in each group are weighted and combined for transmission, and the weighting coefficients are randomly generated from the continuous distribution interval.
  • the weighting coefficients employed in each group are different from each other. However, for the next n 2 signal vectors transmitted next time, the same series of weighting coefficients as the current transmission can be used.
  • one round of transmission of all n 2 signal vectors can be completed in the (r 2 -2)n 2 +1 time slot to the (r 2 -2)n 2 +r 1 time slot.
  • a total of rem (M 2 , N 2 ) rounds of packet transmissions are performed.
  • the signal vector transmitted in the (r 2 -2)n 2 +1 time slot can be expressed as:
  • the signal vector transmitted in the (r 2 -2)n 2 +r 1 time slot can be expressed as:
  • the terminal device UE2 always receives using the antenna mode r2-1.
  • the base station eNB3 and the terminal device UE3 performs the following operations in the first part (the first time slot to the (r 3 -2) n 3 time slot) of "Part 1": the base station eNB3 transmits all n 3 signals Send each signal vector once and then send the next signal vector. Completing one transmission of all n 3 signal vectors is referred to as one round. A total of r 3 - 2 rounds are sent. For n 3 signal vectors transmitted per round, the terminal device UE3 receives using the same antenna pattern. The terminal device UE3 uses r 3 - 2 antenna patterns (ie, antenna modes 1 to r 3 -2) to respectively receive the signal vectors transmitted by the r 3 - 2 rounds.
  • r 3 - 2 antenna patterns ie, antenna modes 1 to r 3 -2
  • the base station eNB3 and the terminal device UE3 perform the following operations in the latter part (the (r 3 - 2) n 3 +1 slot to the r 1 n 1 slot) of "Part 1": the base station eNB3 will all n 3
  • the signals are transmitted in groups, and the interval of the signal vectors of each group is r 1 .
  • the individual signal vectors in each group are weighted and combined for transmission, and the weighting coefficients are randomly generated from the continuous distribution interval.
  • the weighting coefficients employed in each group are different from each other. However, for the next n 3 signal vectors transmitted next time, the same series of weighting coefficients as the current transmission can be used.
  • one round of transmission of all n 3 signal vectors can be completed in the (r 3 -2)n 3 +1 time slot to the (r 3 -2)n 3 +r 1 time slot.
  • a total of rem (M 3 , N 3 ) rounds of packet transmissions are performed.
  • the signal vector transmitted in the (r 3 -2)n 3 +1 time slot can be expressed as:
  • the signal vector transmitted in the (r 3 -2)n 3 +r 1 time slot can be expressed as:
  • the terminal device UE3 always receives using the antenna mode r3-1.
  • the base station eNB1 and the terminal device UE1 perform the following operations throughout “Part 2": the base station eNB1 does not transmit.
  • the terminal device UE1 receives only the interference signal from the base station eNB2.
  • the terminal device UE1 performs reception using the same antenna pattern as that employed in the corresponding slot in the portion 1 receiving the same signal vector, thereby obtaining an interference signal experiencing the same channel characteristics.
  • the base station eNB2 and the terminal equipment UE2 perform the following operations throughout "Part 2": the base station eNB2 sequentially transmits all n 2 signal vectors one time. Terminal UE2 receives using an antenna pattern r 1 r 2 times, then the next antenna mode (i.e., mode r 2 + 1'd) receiving r 1 times, ..., antenna mode until use r 2 + N 2 -1 receiving r 1 times. This is called a round of reception, and the terminal device UE2 performs a total of M 3 -N 3 rounds of reception.
  • the base station eNB2 sequentially transmits all n 2 signal vectors one time. Terminal UE2 receives using an antenna pattern r 1 r 2 times, then the next antenna mode (i.e., mode r 2 + 1'd) receiving r 1 times, ..., antenna mode until use r 2 + N 2 -1 receiving r 1 times. This is called a round of reception, and the terminal device UE2 performs a total of M 3
  • the base station eNB3 and the terminal device UE3 perform the following operations throughout "Part 2": the base station eNB3 does not transmit. The terminal device UE3 does not receive.
  • the base station eNB1 and the terminal device UE1 perform the following operations throughout “Part 3”: the base station eNB1 does not transmit.
  • the terminal device UE1 receives only the interference signal from the base station eNB3.
  • the terminal device UE1 performs reception using the same antenna pattern as that employed in the corresponding slot in the portion 1 receiving the same signal vector, thereby obtaining an interference signal experiencing the same channel characteristics.
  • the base station eNB2 and the terminal equipment UE2 perform the following operations throughout "Part 3": the base station eNB2 does not transmit. The terminal device UE2 does not receive.
  • the base station eNB3 and the terminal device UE3 perform the following operations throughout the "part 3": the base station eNB3 sequentially transmits all n 3 signal vectors one time.
  • the terminal device using the antenna pattern UE3 receives r 1 r 3 times, then the next antenna mode (i.e., mode r 3 + 1'd) receiving r 1 times, ..., antenna mode until use r 3 + N 3 -1 receiving r 1 times. This is called a round of reception, and the terminal device UE3 performs a total of M 2 -N 2 rounds of reception.
  • all the transmission slots are divided into three time segments.
  • the base stations eNB1, eNB2 and eNB3 are all transmitting signals, so the terminal device UE1 receives the signal from the serving base station eNB1 in addition to Interference signals from base stations eNB2 and eNB3 are also received.
  • the base stations eNB1 and eNB3 do not transmit signals, and the base station eNB2 keeps transmitting, so the terminal device UE1 only An interference signal from the base station eNB2 is received.
  • the period "part 3" (r r 1 n 1 + n 2 +1 slot to r 1 n 1 + n 2 + n 3 slot), base stations eNB1 and eNB2 do not transmit signals, and base station eNB3 transmits signals. Therefore, the terminal device UE1 receives only the interference signal from the base station eNB3.
  • the terminal device UE1 can process the signals received in the "Part 1" using the interference signals from the base stations eNB2 and eNB3 received in "Part 2" and "Part 3", For example, the interference signals received in "Part 2" and “Part 3” are eliminated (e.g., subtracted) from the signals received in "Part 1", so that a useful signal from base station eNB1 that does not contain interference components can be obtained. In this way, the terminal device UE1 at the cell edge location can cancel the interference of the base stations eNB2 and eNB3 when receiving the signal.
  • the terminal device UE2 receives signals from the serving base station eNB2 using different antenna modes in "Part 1" and “Part 2”, and thus can obtain a received signal that experiences different channel characteristics, that is, can A sufficient number of independent reception equations are obtained to solve the received signal.
  • the terminal device UE3 receives signals from the serving base station eNB3 using different antenna modes in "Part 1” and “Part 3”, so that a sufficient number of independent reception equations can be obtained to solve the received signal.
  • FIG. 3 shows an illustrative example in a three-cell asymmetric channel scenario, which may be considered as a specific example of the above-described transmission and reception scheme.
  • the number of antennas M 1 , M 2 , M 3 of the base stations eNB1, eNB2, and eNB3 are 7 , 5 , 8 , respectively, and the number of antennas N 1 , N 2 , N 3 of the UEs UE1, UE2, and UE3 They are 4, 2, and 3 respectively.
  • a total of 68 transmission slots are divided into three time segments, wherein the time period "Part 1" corresponds to the 1st time slot to the r 1 n 1 time slot, and includes 30 time slots in total; 2" corresponds to the r 1 n 1 +1 to r 1 n 1 + n 2 time slots, comprising a total of 20 time slots; “Part 3" corresponds to the r 1 n 1 + n 2 +1 to the r 1 n 1 + n 2 + n 3 time slots, comprising a total of 18 time slots.
  • base station eNB1 For base station eNB1, it only transmits signals in "Part 1". Since the terminal device UE1 has 4 antennas, it can obtain 4 independent reception equations in each time slot. In order for the terminal device UE1 to solve each 7 ⁇ 1 signal vector u i , the base station eNB1 needs to at least Each signal vector u i is sent twice.
  • the purpose of packet transmission is to reduce the time slot occupied by transmission, thereby improving the utilization of time resources.
  • the base station eNB2 sequentially transmits each signal vector v i one time in order to enable the terminal device UE1 to obtain a "pure" interference signal, and also to enable the terminal device UE2 to obtain a sufficient reception equation. Decode the signal.
  • the transmission mode of the base station eNB3 is similar to that of the base station eNB2.
  • the base station eNB3 transmits signals in "Part 1" and "Part 3", and stops transmission in "Part 2".
  • the base station eNB3 sequentially transmits each signal vector w i one time.
  • the terminal device UE1 can cancel (e.g., subtract) the interference signals from the base stations eNB2 and eNB3 received in "Part 2" and “Part 3" from the signals received in "Part 1", Thereby, a useful signal from the serving base station eNB1 that does not contain an interference component is obtained. In this way, interference of the base stations eNB2 and eNB3 with the terminal equipment UE1 at the cell edge location can be eliminated.
  • the terminal device UE1 receives signals in the respective slots of "Part 2" and "Part 3" using the same antenna pattern as that employed in the corresponding slot of "Part 1". Thereby, an interference signal that experiences the same channel condition can be obtained, so that interference can be eliminated more accurately.
  • the antenna modes used by the terminal devices UE2 and UE3 for receiving signals in “Part 2" and “Part 3” are different from the antenna modes employed in “Part 1", and thus the terminal devices UE2 and UE3 Additional independent reception equations can be obtained in “Part 2” and “Part 3", respectively, to resolve the signal vector v i or w i from its serving base station.
  • the degree of freedom that can be achieved according to the solution of the present invention is In the case of a conventional time division multiplexing (TDMA) system, the average degree of freedom is ⁇ min(M 1 , N 1 ) + [min(M 2 , N 2 ) + min(M 3 , N 3 )] ⁇ /2 .
  • TDMA time division multiplexing
  • the number of antennas M i of the respective base stations is not an integer multiple relationship with the number of antennas N i of the corresponding terminal devices.
  • the parameter r i is modified, accordingly, the number n i of signal vectors to be transmitted by the respective base stations also needs to be calculated using the modified parameter r i .
  • the pattern reconfigurable antennas of the respective terminal devices UE1, UE2, and UE3 respectively need to support the following number of antenna modes: M 1 /N 1 ,
  • the embodiments of the present invention are described above by taking a two-cell asymmetric channel and a three-cell asymmetric channel as an example. Those skilled in the art may also extend the present invention to a four-cell asymmetric channel (for example, a terminal in the same manner according to actual needs.
  • the device UE1 is located at the intersection of four cells and is subject to interference from three neighboring base stations. However, it should be noted that when applied to a scenario containing more neighboring cells, the time period during which each base station needs to stop transmitting signals will become more.
  • the base station eNB2 needs to be in two time The transmission is stopped in the segment, so that the terminal device UE1 receives only signals from the base stations eNB3 and eNB4 in the two time periods, and similarly, the base station eNB1 also needs to stop transmitting in three time periods. That is, in order to enable the terminal device UE1 to perform interference cancellation, normal communication between the neighboring base station and its serving terminal will be greatly affected, and the communication efficiency between the terminal device UE1 and the serving base station eNB1 will also decrease. This leads to a low overall efficiency of the system. Therefore, in practical applications, those skilled in the art need to make a compromise between interference cancellation and overall system efficiency.
  • the present invention is preferably applied to a scenario of a two-cell asymmetric channel and a three-cell asymmetric channel.
  • step S410 the terminal devices UE1, UE2, and UE3 report their own location information, the number of antennas, and the number of supported antenna modes to their serving base stations eNB1, eNB2, and eNB3, respectively.
  • the base station eNB1 is taken as an example, and other multiple terminal devices served by the base station eNB1 ( In addition to the terminal device UE1, it also reports its own position information, the number of antennas, and the number of antenna patterns to the base station eNB1. The same is true for the base stations eNB2 and eNB3.
  • Each base station determines, according to the received location information of the terminal device, whether the terminal device is located inside the cell or at the boundary with the neighboring cell, that is, determines whether the terminal device is interfered by the neighboring base station.
  • the base station eNB1 determines that the terminal device UE1 is located at a position of the coverage cell adjacent to the base stations eNB2 and eNB3 in the own cell, thereby determining that the terminal device UE1 is interfered by the neighboring base stations eNB2 and eNB3.
  • the base station eNB1 transmits a signal to the base stations eNB2 and eNB3 to inform them to join the BIA process in step S420, and notifies the base station of the number of antennas of the base station eNB1 and information about the terminal device UE1 (e.g., location information, number of antennas, frequency of use, etc.) to the base station. eNB2 and eNB3. It should be noted that, if the terminal device UE1 is located at the location of the coverage cell adjacent to the base station eNB2 in the own cell, and only receives interference from the base station eNB2 (two-cell asymmetric channel scenario), the base station eNB1 only notifies in step S420. The base station eNB2 joins the BIA procedure and transmits relevant information thereto without transmitting a notification signal to the base station eNB3.
  • the base stations eNB2 and eNB3 respectively select terminal devices in the own coverage cell that occupy the same time frequency resource as the terminal device UE1 and are not interfered by the base station eNB1 (away from the coverage cell of the base station eNB1), and the selected terminal device is assumed here. They are terminal devices UE2 and UE3, respectively.
  • the base stations eNB2 and eNB3 respectively send a response signal for confirming the joining of the BIA process to the base station eNB1, and the number of its own antennas and related terminals. Information about devices UE2 and UE3 (e.g., number of antennas).
  • the base stations eNB2 and eNB3 exchange the number of antennas of the base station with each other and the number of antennas of the terminal equipment UE2, UE3.
  • the base station eNB1 notifies the base station eNB2 and the eNB3 to join the BIA process in step S420, and simultaneously transmits the related information of the base station eNB1 and the terminal device UE1. Then, the base stations eNB2 and eNB3 respectively transmit a response signal to the base station eNB1 in step S430, and simultaneously transmit information about the base stations eNB2 and eNB3 and the terminal devices UE2 and UE3.
  • the base station eNB1 may only transmit a request signal for notifying the base station eNB2 and the eNB3 to join the BIA process in step S420, after receiving the response signals from the base stations eNB2 and eNB3 confirming participation in the BIA process,
  • the base station eNB1 and the base stations eNB2 and eNB3 re-interact respective related information and related information of the terminal devices served by each.
  • the base stations eNB1, eNB2 and eNB3 participating in the BIA process have already provided information such as the number of antennas of each base station and each terminal device, and thus the respective downlink transmission modes can be determined according to the transmission scheme described above, for example, the transmission mode is At least some of the following may be included: in which time period (which time slots) the signal is transmitted or not, what signal vector is transmitted in each time slot, the weighting coefficient of the packet transmission, and the number of repeated transmissions.
  • the base stations eNB1, eNB2 and eNB3 also determine the receiving manners of the terminal devices UE1, UE2 and UE3, and generate indication information for indicating the receiving mode, the indication information may, for example, indicate at least some of the following: regarding the time period (such as the above The information of "Part 1", “Part 2", etc.) is used for the antenna pattern of the signal received in each slot, and the weighting coefficient required for decoding the signal vector transmitted by the packet.
  • the time period such as the above The information of "Part 1", "Part 2", etc.
  • step S440 the base stations eNB1, eNB2 and eNB3 respectively transmit indication information for indicating the reception mode to the corresponding terminal devices UE1, UE2 and UE3, so that the terminal device receives the signal and performs according to the reception mode indicated by the indication information. Interference cancellation processing. It should be noted that, as shown in FIG. 3 and FIG. 4, since the base station eNB1 does not perform packet transmission, it is not necessary to notify the terminal device UE1 of the weighting coefficient.
  • the terminal devices UE1, UE2 and UE3 determine the reception mode to be used according to the received indication information, and then respectively send an acknowledgment signal to their serving base station in step S450, indicating that they are ready.
  • step S460 the base stations eNB1, eNB2 and eNB3 start downlink transmission in accordance with the determined transmission mode.
  • the terminal devices UE1, UE2 and UE3 set the antenna mode reception signal according to the reception manner notified by the base stations eNB1, eNB2 and eNB3 in step S440, decode the signal, and perform the process of canceling the interference according to the notified time period, as in step S470. Show.
  • FIG. 5 shows a functional block diagram of a base station in accordance with the present invention.
  • the base station 500 includes a processing unit 510 and a transceiver unit 520.
  • Transceiver unit 520 can be implemented as an antenna for receiving and transmitting signals.
  • the processing unit 510 includes a terminal determining module 5110, a time period determining module 5120, a sending control module 5130, and an indication generating module 5140.
  • the terminal determining module 5110 of the base station 500 is configured to determine, according to location information reported by each terminal device, a terminal device located at a cell edge (for example, the base station eNB1 determines the terminal device UE1), or is used to determine and other terminal devices in its own serving cell. A terminal device that occupies the same communication resource and is not interfered by other base stations (for example, base station eNB2, eNB3 determines terminal devices UE2 and UE3). After determining the terminal device, the terminal determining module 5110 also acquires the antenna number information of the corresponding terminal device.
  • the time period determining module 5120 determines the time period during which the downlink transmission is performed using the antenna number information of the respective base stations and terminal devices participating in the BIA process obtained through the interaction (for example, according to the transmission scheme described above). For example, the base station eNB1 determines a time period "Part 1" for transmitting a signal and a time period "Part 2" for stopping transmission of a signal.
  • the transmission control module 5130 controls the downlink transmission according to the time period determined by the time period determining module 5120. For example, for a time period in which transmission is required, the transmission control module 5130 can determine a signal vector to be transmitted in each time slot, a transmission mode (eg, whether to perform packet transmission), a number of transmissions, and the like.
  • the indication generation module 5140 determines the reception mode to be adopted by the terminal device, and generates indication information for indicating the reception mode to transmit to the terminal device.
  • Base station 500 can include more or fewer modules than those shown in FIG. 5, depending on the actual application and design requirements.
  • Fig. 6 shows a functional block diagram of a terminal device according to the present invention.
  • the terminal device 600 includes a processing unit 610 and a transceiver unit 620.
  • Transceiver unit 620 can be implemented as a pattern reconfigurable antenna having multiple modes of operation. When the pattern reconfigurable antenna operates in different modes, it can be considered that the transmission channels experienced by the received signals are independently and equally distributed.
  • the processing unit 610 includes a reporting module 6110, a receiving mode determining module 6120, and an interference cancellation module 6130.
  • the reporting module 6110 is configured to report information such as the location of the terminal device 600, the number of antennas, and the number of supported antenna modes to the base station.
  • the receiving mode determining module 6120 determines to receive according to the indication information sent by the base station. How the signal is received. For example, the reception mode determination module 6120 can determine an antenna mode used in each time slot according to the indication information, and determine a weighting coefficient for decoding the signal vector transmitted by the packet. In addition, the receiving mode determining module 6120 may determine, according to the indication information, in which time period, the mixed signal of the useful signal and the interference signal is received, and in which time period, the "pure" interference signal is received, and the determined time period is notified.
  • the interference cancellation module 6130 is provided.
  • the interference cancellation module 6130 performs a process of canceling the interference according to the time period determined by the reception mode determination module 6120. For example, as described above, the interference signal received in "Part 2" and “Part 3" is erased (e.g., subtracted) from the mixed signal received in "Part 1", thereby obtaining a useful signal from which the interference component is eliminated.
  • Terminal device 600 may include more or fewer modules than those shown in FIG. 6, depending on the actual application and design requirements.
  • the technical solution of the present invention can design a downlink transmission strategy at the base station side according to information such as the number of antennas of each base station and each terminal device in a communication scenario of an asymmetric channel, so as to achieve the cell edge at the cell edge.
  • the terminal device is capable of canceling the effect of interference from neighboring base stations when receiving signals.
  • the technical solution of the present invention has no limitation on the number of antennas of each base station and each terminal device.
  • the base station in each of the above embodiments may be implemented as a base station side base station device (base station device) that controls wireless communication or a fully assembled base station.
  • a base station can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • a body also referred to as a base station device
  • RRHs remote wireless headends
  • various types of terminal devices which will be described below can also operate as a base station by performing base station functions temporarily or semi-persistently.
  • the terminal device in each of the above embodiments may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device), or Vehicle terminal (such as car navigation equipment).
  • the terminal device can also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the terminal device may also be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above terminals. Piece).
  • processing units in the various embodiments described above may be implemented as a baseband processor or a combination of a baseband processor and a general purpose processor, such as a central processing unit (CPU) or a digital signal processor (DSP).
  • a general purpose processor such as a central processing unit (CPU) or a digital signal processor (DSP).
  • the implementation of the terminal device will be described below with reference to FIG. 7 with a smartphone as an example.
  • Fig. 7 shows a block diagram of a schematic configuration of a smartphone.
  • the smart phone 2500 includes a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, an imaging device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, and a wireless communication interface. 2512, one or more antenna switches 2515, one or more antennas 2516, a bus 2517, a battery 2518, and an auxiliary controller 2519.
  • the processor 2501 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 2500.
  • the memory 2502 includes a RAM and a ROM, and stores data and programs executed by the processor 2501.
  • the storage device 2503 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2504 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 2500.
  • USB universal serial bus
  • the image pickup device 2506 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 2507 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 2508 converts the sound input to the smartphone 2500 into an audio signal.
  • the input device 2509 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2510, and receives an operation or information input from a user.
  • the display device 2510 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2500.
  • the speaker 2511 converts the audio signal output from the smartphone 2500 into a sound.
  • the wireless communication interface 2512 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 2512 may generally include, for example, a baseband (BB) processor 2513 and radio frequency (RF) circuitry 2514.
  • the BB processor 2513 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2514 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2516.
  • the wireless communication interface 2512 may be a chip module on which the BB processor 2513 and the RF circuit 2514 are integrated. As shown in FIG. 7, the wireless communication interface 2512 can include a plurality of BB processors 2513 and a plurality of RF circuits 2514. However, the wireless communication interface 2512 can also include a single BB processor 2513 or a single RF circuit
  • the wireless communication interface 2512 can also support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2512 can include a BB processor 2513 and RF circuitry 2514 for each wireless communication scheme.
  • Each of the antenna switches 2515 switches the connection destination of the antenna 2516 between a plurality of circuits included in the wireless communication interface 2512, such as circuits for different wireless communication schemes.
  • Each of the antennas 2516 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2512 to transmit and receive wireless signals.
  • smart phone 2500 can include multiple antennas 2516.
  • smart phone 2500 can also include a single antenna 2516.
  • smart phone 2500 can include an antenna 2516 for each wireless communication scheme.
  • the antenna switch 2515 can be omitted from the configuration of the smartphone 2500.
  • the bus 2517 has a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, an imaging device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, a wireless communication interface 2512, and an auxiliary controller 2519. connection.
  • Battery 2518 provides power to various components of smart phone 2500 via feeders, which are shown partially as dashed lines in the figure.
  • the secondary controller 2519 operates the minimum required function of the smartphone 2500, for example, in a sleep mode.
  • the transceiver of the terminal device can be implemented by the wireless communication interface 2512. At least a portion of the functionality of the various components of the terminal device can also be implemented by the processor 2501 or the secondary controller 2519. For example, the power consumption of the battery 2518 can be reduced by performing a portion of the functions of the processor 2501 by the auxiliary controller 2519. Further, the processor 2501 or the auxiliary controller 2519 can perform at least a part of the functions of the components of the terminal device by executing the program stored in the memory 2502 or the storage device 2503.
  • the implementation of the base station will be described below with reference to FIG. 8 with the eNB as an example.
  • FIG. 8 shows a block diagram of a schematic configuration of an eNB.
  • the eNB 2300 includes one or more antennas 2310 and base station devices 2320.
  • the base station device 2320 and each antenna 2310 may be connected to each other via a radio frequency (RF) cable.
  • RF radio frequency
  • Each of the antennas 2310 includes a single or multiple antenna elements (such as included in multiple losses) Multiple antenna elements in a multiple output (MIMO) antenna) and used by base station device 2320 to transmit and receive wireless signals.
  • the eNB 2300 may include a plurality of antennas 2310.
  • multiple antennas 2310 can be compatible with multiple frequency bands used by eNB 2300.
  • FIG. 8 illustrates an example in which the eNB 2300 includes a plurality of antennas 2310, the eNB 2300 may also include a single antenna 2310.
  • the base station device 2320 includes a controller 2321, a memory 2322, a network interface 2323, and a wireless communication interface 2325.
  • the controller 2321 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 2320. For example, controller 2321 generates data packets based on data in signals processed by wireless communication interface 2325 and delivers the generated packets via network interface 2323. The controller 2321 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 2321 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 2322 includes a RAM and a ROM, and stores programs executed by the controller 2321 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 2323 is a communication interface for connecting the base station device 2320 to the core network 2324. Controller 2321 can communicate with a core network node or another eNB via network interface 2323. In this case, the eNB 2300 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface.
  • the network interface 2323 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If the network interface 2323 is a wireless communication interface, the network interface 2323 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2325.
  • the wireless communication interface 2325 supports any cellular communication schemes, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the eNB 2300 via the antenna 2310.
  • Wireless communication interface 2325 can typically include, for example, BB processor 2326 and RF circuitry 2327.
  • the BB processor 2326 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 2326 may have some or all of the above described logic functions.
  • the BB processor 2326 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the functionality of the BB processor 2326 to change.
  • the module can be a card or blade that is inserted into the slot of the base station device 2320. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 2327 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2310.
  • the wireless communication interface 2325 can include a plurality of BB processors 2326.
  • multiple BB processors 2326 can be compatible with multiple frequency bands used by eNB 2300.
  • the wireless communication interface 2325 can include a plurality of RF circuits 2327.
  • multiple RF circuits 2327 can be compatible with multiple antenna elements.
  • FIG. 8 illustrates an example in which the wireless communication interface 2325 includes a plurality of BB processors 2326 and a plurality of RF circuits 2327, the wireless communication interface 2325 may also include a single BB processor 2326 or a single RF circuit 2327.
  • the transceiver of the base station side device can be implemented by the wireless communication interface 2325. At least a portion of the functionality of the various components may also be performed by controller 2321.
  • the controller 2321 can perform at least a portion of the functions of the various components by executing a program stored in the memory 2322.
  • each device or module in the above embodiments may be implemented by software, hardware, or a combination of software and hardware.
  • the program included in the software can be stored in advance in a storage medium set inside or outside each device. As an example, during execution, these programs are written to random access memory (RAM) and executed by a processor (eg, a CPU).
  • Fig. 9 is a block diagram showing a schematic configuration of computer hardware that executes the above processing in accordance with a program.
  • a central processing unit (CPU) 901, a read only memory (ROM) 902, and a random access memory (RAM) 903 are connected to each other by a bus 904.
  • Input/output interface 905 is further coupled to bus 904.
  • the input/output interface 905 is connected to an input unit 906 formed by a keyboard, a mouse, a microphone, or the like; an output unit 907 formed of a display, a speaker, or the like; a storage unit 908 formed of a hard disk, a nonvolatile memory, or the like; a network interface card (such as a local area network (LAN) card, modem, etc.) a communication unit 909; and a drive 910 that drives the removable medium 911 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • LAN local area network
  • the CPU 901 loads the program stored in the storage unit 908 into the RAM 903 via the input/output interface 905 and the bus 904, and executes the program to execute the above processing.
  • a program to be executed by a computer may be recorded on a removable medium 911 as a package medium such as a magnetic disk (including a floppy disk), an optical disk (including a compact disk-read only memory (CD-ROM)), A digital versatile disc (DVD) or the like, a magneto-optical disc, or a semiconductor memory is formed.
  • a program to be executed by a computer can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 908 via the input/output interface 905.
  • the program can be received by the communication unit 909 via a wired or wireless transmission medium, and the program is installed in the storage unit 908.
  • the program may be pre-installed in the ROM 902 or the storage unit 908.
  • the program to be executed by the computer may be a program that performs processing in accordance with the order described in this specification, or may be a program that executes processing in parallel or performs processing when needed, such as when called.
  • the present invention can also be configured as follows.
  • An electronic device facilitating interference cancellation comprising a processing circuit, the processing circuit configured to: identify, within a coverage of the first base station and adjacent to at least based on location information from one or more terminals served by the first base station a first terminal of coverage of a second base station, wherein the first terminal served by the first base station is capable of receiving an interference signal from the at least one second base station, wherein in the at least one The coverage of each of the second base stations includes a second terminal served by the corresponding second base station away from the coverage of the first base station; and controlling to cooperate with the at least one second base station Determining a downlink transmission mode for the first terminal, so that the first terminal can perform interference by performing Eliminate to receive signals.
  • the number of antennas of the first base station is greater than the number of antennas of the first terminal, and the number of antennas of the second base station is greater than or equal to twice the number of antennas of the second terminal served by the second base station.
  • the number of the second base stations is one, and the processing circuit is further configured to: according to the number of antennas of the first base station, the number of antennas of the first terminal acquired from the first terminal, Determining, by the second base station, the number of antennas of the second base station and the number of antennas of the corresponding second terminal, determining a time period; and controlling downlink transmission of the first base station to the first terminal according to the time period, so that The first terminal receives only signals from the second base station during the time period.
  • the number of the second base stations is multiple, and the processing circuit is further configured to: according to the number of antennas of the first base station, the number of antennas of the first terminal acquired from the first terminal, and Determining, by the plurality of second base stations, the number of antennas of each second base station and the number of antennas of each second terminal, determining a plurality of time segments; controlling, by the plurality of time segments, the first base station to the first terminal Downlink transmission, such that the first terminal receives only signals from one of the plurality of second base stations in each of the plurality of time periods.
  • the processing circuit is further configured to: control to notify each second base station of the number of antennas of the first base station and the number of antennas of the first terminal, so that each second base station can determine Corresponding time period for transmitting a signal in a corresponding time period, wherein the signal received by the first terminal in each time period and the second base station transmitting the signal are another time before the time period
  • the signals transmitted to the second terminal it serves during the time period are at least partially identical.
  • the processing circuit is further configured to: generate indication information indicating a receiving manner of the first terminal, to notify the first terminal, where the receiving manner includes the determined time period and the At least one of the antenna modes that the first terminal will use.
  • the electronic device is implemented as a component of the first base station.
  • An apparatus for facilitating interference cancellation comprising: a plurality of antennas configured to transmit and receive signals; and processing circuitry configured to: identify that is located first based on location information from one or more terminals served by the first base station a first terminal within the coverage of the base station and adjacent to the coverage of the at least one second base station, wherein the first terminal served by the first base station is capable of receiving an interference signal from the at least one second base station, Wherein, in the coverage of each of the at least one second base station, there is a second terminal that is served by the corresponding second base station and is away from the coverage of the first base station; and performs control to At least one The two base stations cooperate to determine a downlink transmission mode for the first terminal such that the first terminal can receive a signal by performing interference cancellation.
  • the number of antennas of the first base station is greater than the number of antennas of the first terminal, and the number of antennas of the second base station is greater than or equal to twice the number of antennas of the corresponding second terminal.
  • the number of the second base stations is one, and the processing circuit is further configured to: control to acquire, by the multiple antennas, the number of antennas of the first terminal from the first terminal, and from the Obtaining, by the second base station, the number of antennas of the second base station and the number of antennas of the corresponding second terminal; according to the number of antennas of the first base station, the number of antennas of the first terminal, and the number of antennas of the second base station
  • the number of antennas of the second terminal is determined by a time period; and the downlink transmission of the first base station to the first terminal is controlled based on the time period, so that the first terminal only receives the received time from the time period.
  • the signal of the second base station is determined by a time period; and the downlink transmission of the first base station to the first terminal is controlled based on the time period, so that the first terminal only receives the received time from the time period.
  • the number of the second base stations is multiple, and the processing circuit is further configured to: perform control to acquire, by using the multiple antennas, the number of antennas of the first terminal from the first terminal, and Obtaining, by the plurality of second base stations, the number of antennas of each second base station and the number of antennas of each second terminal; according to the number of antennas of the first base station, the number of antennas of the first terminal, the number of antennas of each second base station, and Determining, by the number of antennas of each second terminal, a plurality of time segments; controlling downlink transmission of the first base station to the first terminal based on the multiple time segments, so that the first terminal is in the multiple time segments Only signals from one of the plurality of second base stations are received in each of the time periods.
  • the processing circuit is further configured to: control to notify each second base station of the number of antennas of the first base station and the number of antennas of the first terminal, so that each second base station can determine Corresponding time period for transmitting a signal in a corresponding time period, wherein the signal received by the first terminal in each time period and the second base station transmitting the signal are another time before the time period
  • the signals transmitted to the second terminal it serves during the time period are at least partially identical.
  • the processing circuit is further configured to: generate indication information indicating a receiving manner of the first terminal, to notify the first terminal, where the receiving manner includes the determined time period and the At least one of the antenna modes that the first terminal will use.
  • the device is implemented as the first base station.
  • a method for facilitating interference cancellation performed by a first base station comprising: receiving location information from one or more terminals served by the first base station; identifying, at the first base station, based on the received location information Within coverage and adjacent to the coverage of at least one second base station a first terminal, wherein the first terminal served by the first base station is capable of receiving an interference signal from the at least one second base station, wherein each of the at least one second base station is second
  • the coverage of the base station includes a second terminal served by the corresponding second base station away from the coverage of the first base station; and cooperates with the at least one second base station to determine the first terminal
  • the downlink transmission mode enables the first terminal to receive a signal by performing interference cancellation.
  • the number of antennas of the first base station is greater than the number of antennas of the first terminal, and the number of antennas of the second base station is greater than or equal to twice the number of antennas of the corresponding second terminal.
  • the method further includes: acquiring, from the first terminal, an antenna number of the first terminal; acquiring, by the at least one second base station, an antenna number of the at least one second base station and the at least one second terminal The number of antennas; determining at least one time period according to the number of antennas of the first base station, the number of antennas of the first terminal, the number of antennas of the at least one second base station, and the number of antennas of the at least one second terminal; Controlling downlink transmission to the first terminal based on the at least one time period such that the first terminal receives only from the at least one second base station in each of the at least one time period The signal of one.
  • An electronic device for interference cancellation comprising a processing circuit, the processing circuit configured to: control to report location information and an antenna of the first terminal to a first base station serving a first terminal And determining, according to the indication information from the first base station, a receiving manner to be adopted by the first terminal, and controlling the first terminal to perform interference cancellation processing, wherein the indication information is used by the first base station Generating at least according to the location information of the first terminal and the number of antennas, wherein the first terminal is located within the coverage of the first base station and adjacent to the coverage of the at least one second base station, and is capable of receiving the source An interference signal of at least one second base station, wherein a coverage area of each of the at least one second base station that is served by the corresponding second base station and away from the coverage of the first base station The second terminal.
  • the number of antennas of the first base station is greater than the number of antennas of the first terminal, and the number of antennas of the second base station is greater than or equal to twice the number of antennas of the second terminal served by the second base station.
  • the number of the second base stations is one, and the processing circuit is further configured to: control the first terminal to receive signals by switching different antenna modes in a first time period indicated by the indication information, where And receiving, in the first time period, a signal from the first base station and a signal from the second base station; controlling the first terminal to utilize in a second time period indicated by the indication information Receiving a signal in an antenna mode corresponding to the antenna mode employed in the first time period, wherein the signal received in the second time period is only included a signal from the second base station; processing a signal received during the first time period using a signal received during the second time period.
  • the number of the second base stations is multiple, and the processing circuit is further configured to: control the first terminal to receive signals by switching different antenna modes in a first time period indicated by the indication information,
  • the signal received in the first time period includes a signal from the first base station and a signal from the plurality of second base stations; and the first terminal is controlled to be instructed by the indication information.
  • the received signal includes only signals from one of the plurality of second base stations; the signals received during the first time period are processed using signals received during the plurality of second time periods.
  • processing circuit is further configured to: cancel the signal received in the second time period from the signal received in the first time period, and recover the data according to the obtained signal.
  • the signal received during each of the second time periods is at least partially identical to the signal transmitted by the second base station transmitting the signal to the second terminal it serves during the first time period.
  • the electronic device is implemented as a component of the first terminal.
  • An apparatus for interference cancellation comprising: a plurality of antennas configured to transmit and receive signals in a plurality of antenna modes; and processing circuitry configured to: perform control to serve Determining the location information and the number of antennas of the first terminal by the first base station of the first terminal; and determining, according to the indication information from the first base station, a receiving manner to be adopted by the first terminal, and controlling the A terminal performs interference cancellation processing, where the indication information is generated by the first base station according to at least the location information of the first terminal and the number of antennas, wherein the first terminal is located at the coverage of the first base station Within the range and adjacent to coverage of the at least one second base station, and capable of receiving interference signals from the at least one second base station, wherein coverage memory of each of the at least one second base station A second terminal that is served by a respective second base station that is remote from the coverage of the first base station.
  • the number of antennas of the first base station is greater than the number of antennas of the first terminal, and the number of antennas of the second base station is greater than or equal to twice the number of antennas of the second terminal served by the second base station.
  • the number of the second base stations is one, and the processing circuit is further configured to: control the first terminal to switch different antennas in a first time period indicated by the indication information. a mode to receive a signal, wherein the signal received during the first time period includes a signal from the first base station and a signal from the second base station; controlling the first terminal to indicate in the indication information Receiving a signal in an antenna pattern corresponding to an antenna mode employed in the first time period during a second time period, wherein the signal received during the second time period includes only signals from the second base station Processing the signals received during the first time period using signals received during the second time period.
  • the number of the second base stations is multiple, and the processing circuit is further configured to: control the first terminal to receive signals by switching different antenna modes in a first time period indicated by the indication information,
  • the signal received in the first time period includes a signal from the first base station and a signal from the plurality of second base stations; and the first terminal is controlled to be instructed by the indication information.
  • the received signal includes only signals from one of the plurality of second base stations; the signals received during the first time period are processed using signals received during the plurality of second time periods.
  • processing circuit is further configured to: cancel the signal received in the second time period from the signal received in the first time period, and recover the data according to the obtained signal.
  • the number of antennas of the first terminal is different from the number of antennas of the second terminal.
  • the first time period and the second time period are the number of antennas of the first base station, the number of antennas of the first terminal, and the antenna of the at least one second base station by the first base station.
  • the number is determined by the number of antennas of the at least one second terminal.
  • the device is implemented as the first terminal.
  • a method for interference cancellation performed by a first terminal comprising: reporting location information and an antenna number of the first terminal to a first base station serving the first terminal; receiving from the first base station Determining information; and determining, according to the indication information, a receiving manner to be adopted by the first terminal, and performing interference cancellation processing, wherein the indication information is determined by the first base station according to at least location information of the first terminal And generating, by the number of antennas, wherein the first terminal is located within a coverage of the first base station and adjacent to a coverage of the at least one second base station, and is capable of receiving an interference signal from the at least one second base station, The coverage of each of the at least one second base station includes a second terminal that is served by the corresponding second base station and is away from the coverage of the first base station.
  • the number of antennas of the first base station is greater than the number of antennas of the first terminal,
  • the number of antennas of the second base station is greater than or equal to twice the number of antennas of the second terminal it serves.
  • the method further includes receiving a signal by switching a different antenna mode during a first time period indicated by the indication information, wherein the signal received during the first time period includes a signal from the first base station And a signal from the at least one second base station; utilizing an antenna pattern corresponding to an antenna mode employed in the first time period in each of at least one second time period indicated by the indication information Receiving a signal, wherein the signal received during each of the at least one second time period includes only signals from one of the at least one second base station; utilized at the at least one second time The signals received within the segment process the signals received during the first time period.
  • the method also includes erasing signals received during the at least one second time period from signals received during the first time period and recovering data based on the resulting signals.
  • the number of antennas of the first terminal is different from the number of antennas of the second terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了无线通信方法和无线通信设备。该方法包括:从第一基站所服务的一个或多个终端接收位置信息;根据接收的位置信息识别位于第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围的第一终端,其中由第一基站服务的第一终端能够接收到来自至少一个第二基站的干扰信号,其中在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端;与至少一个第二基站进行协作,以确定用于第一终端的下行传输方式,使得第一终端能够通过执行干扰消除来接收信号。

Description

无线通信方法和无线通信设备 技术领域
本发明涉及无线通信方法和设备,特别地,涉及一种在非对称信道场景下执行干扰消除(如盲干扰对齐)的通信方法以及相关设备。
背景技术
随着移动通信技术的不断发展,盲干扰对齐(BIA)技术作为一种干扰消除技术受到越来越多的关注。
干扰对齐技术通过在发送端进行预编码而使得干扰信号在接收端发生重叠,从而占据较小的信号子空间,由此更多的信号空间可用于传输有用数据。但是传统的干扰对齐技术通常需要发送端掌握信道状态信息,这在实际应用中往往难以满足,并且也会带来额外的开销。在此情况下,发展了盲干扰对齐(BIA)技术,其是一种发送端不需要了解信道状态信息的干扰对齐技术。
已知一种基于交错天线选择的BIA技术,在该技术中,接收端设备利用方向图可重构天线(reconfigurable antennas)来接收信号。方向图可重构天线是一种可以动态地改变电子和辐射特性的天线。可以认为,当方向图可重构天线工作在不同的天线模式下时,接收到的信号所经历的传输信道是独立同分布的,即,信道系数遵循相同的分布特性但相互独立。在基于交错天线选择的BIA技术中,接收端设备在各个时隙中采用相应的天线模式来接收信号,并且各个接收端设备并不是同时切换接收天线的工作模式。
然而,传统技术中还没有针对处于非对称信道中的小区边缘用户改善其通信性能的BIA方法。非对称信道状态是指各个终端用户的信道条件不对称,例如在存在干扰的信道场景下,非对称信道状态可以指的是以下状态:某些终端用户在接收来自服务基站的下行信号时会受到来自相邻基站的干扰,而另一些终端用户的接收过程则不会受到干扰。
此外,在传统的基于交错天线选择的BIA技术中,通常要求各个接收端设备(终端)具有相同的天线数量,这使得在实际应用中存在很大局 限性。
发明内容
为了解决上述问题,本发明提出了一种适用于非对称信道场景的BIA技术,并且该技术对各个终端设备的天线数量没有限制,因此本发明具有更广泛的适用性。
根据本发明的一个方面,提供了一种便利于干扰消除的电子装置,包括处理电路,所述处理电路被配置为:根据来自第一基站所服务的一个或多个终端的位置信息识别位于第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围的第一终端,其中,由所述第一基站服务的所述第一终端能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端;以及进行控制以便与所述至少一个第二基站进行协作,以确定用于所述第一终端的下行传输方式,使得所述第一终端能够通过执行干扰消除来接收信号。
根据本发明的另一个方面,提供了一种便利于干扰消除的设备,包括:多个天线,被配置为发送和接收信号;处理电路,被配置为:根据来自第一基站所服务的一个或多个终端的位置信息识别位于第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围的第一终端,其中,由所述第一基站服务的所述第一终端能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端;以及进行控制以便与所述至少一个第二基站进行协作,以确定用于所述第一终端的下行传输方式,使得所述第一终端能够通过执行干扰消除来接收信号。
根据本发明的另一个方面,提供了一种由第一基站执行的便利于干扰消除的方法,包括:从所述第一基站所服务的一个或多个终端接收位置信息;根据接收的所述位置信息识别位于所述第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围的第一终端,其中,由所述第一基站服务的所述第一终端能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端;以及与所述至 少一个第二基站进行协作,以确定用于所述第一终端的下行传输方式,使得所述第一终端能够通过执行干扰消除来接收信号。
根据本发明的另一个方面,提供了一种用于干扰消除的电子装置,所述电子装置包括处理电路,所述处理电路被配置为:进行控制以向服务于第一终端的第一基站报告所述第一终端的位置信息和天线数目;以及根据来自所述第一基站的指示信息,确定所述第一终端将要采用的接收方式,以及控制所述第一终端执行干扰消除处理,其中,所述指示信息由所述第一基站至少根据所述第一终端的位置信息和天线数目而生成,其中,所述第一终端位于所述第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围,并且能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端。
根据本发明的另一个方面,提供了一种用于干扰消除的设备,所述设备包括:多个天线,被配置为能够以多种天线模式来发送和接收信号;以及处理电路,所述处理电路被配置为:进行控制以向服务于第一终端的第一基站报告所述第一终端的位置信息和天线数目;以及根据来自所述第一基站的指示信息,确定所述第一终端将要采用的接收方式,以及控制所述第一终端执行干扰消除处理,其中,所述指示信息由所述第一基站至少根据所述第一终端的位置信息和天线数目而生成,其中,所述第一终端位于所述第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围,并且能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端。
根据本发明的另一个方面,提供了一种由第一终端执行的干扰消除的方法,所述方法包括:向服务于所述第一终端的第一基站报告所述第一终端的位置信息和天线数目;从所述第一基站接收指示信息;以及根据所述指示信息,确定所述第一终端将要采用的接收方式,以及执行干扰消除处理,其中,所述指示信息由所述第一基站至少根据所述第一终端的位置信息和天线数目而生成,其中,所述第一终端位于所述第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围,并且能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端。
附图说明
可以通过参考下文中结合附图所给出的描述来更好地理解本发明,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步说明本发明的优选实施例和解释本发明的原理和优点。在附图中:
图1是示出了非对称信道场景的示意图。
图2示出了在两小区非对称信道场景下的发送和接收方案的示意性示例。
图3示出了在三小区非对称信道场景下的发送和接收方案的示意性示例。
图4示出了在基站与终端设备之间的信令交互流程。
图5示出了根据本发明的基站的功能性框图。
图6示出了根据本发明的终端设备的功能性框图。
图7示出了作为终端设备的示例的智能电话的示意性配置框图。
图8示出了作为基站的示例的eNB的示意性配置框图。
图9示出了计算机硬件的示意性配置框图。
具体实施方式
图1示出了本发明所适用的非对称信道的通信场景。在图1中,示意性地示出了三个基站eNB1,eNB2,eNB3,以及分别由各个基站服务的终端设备UE1,UE2,UE3。以基站eNB1和终端设备UE1举例来说,终端设备UE1位于图中的位置1(由圆圈示出),即位于基站eNB1的覆盖范围(下文称为“小区1”)内,并且邻近于基站eNB2的覆盖范围(下文称为“小区2”)。另一方面,终端设备UE2位于小区2的内部,远离小区1。在终端设备UE1和UE2占用相同的时间频率资源的情况下,终端设备UE1与基站eNB1之间的下行传输将受到终端设备UE2与基站eNB2之间的下行传输的干扰,相反,终端设备UE2由于远离基站eNB1的覆盖范围,因而不会受到来自基站eNB1的干扰。在此情况下,小区1和小 区2构成了一个两小区非对称信道。类似地,当终端设备UE1位于图中的位置2,即位于三个基站的覆盖范围的交界处附近,并且终端设备UE2和UE3分别位于小区2和小区3的内部,远离小区1时,如果终端设备UE1、UE2和UE3占用相同的时间频率资源,则终端设备UE1将受到来自基站eNB2和eNB3的干扰,而终端设备UE2和UE3与其服务基站之间的下行传输则不会受到基站eNB1的干扰。在此情况下,小区1、小区2和小区3构成了一个三小区非对称信道。
在下文的描述中,将假设基站eNBi(i=1,2,3)配置有Mi根天线,终端设备UEi(i=1,2,3)配置有Ni根方向图可重构天线。为了更具普遍性,以上述三小区非对称信道为例,终端设备UE1的每个方向图可重构天线具有
Figure PCTCN2017086063-appb-000001
个预设的天线模式,终端设备UE2的每个方向图可重构天线具有
Figure PCTCN2017086063-appb-000002
个预设的天线模式,终端设备UE3的每个方向图可重构天线具有
Figure PCTCN2017086063-appb-000003
个预设的天线模式。需要说明的是,为了适用于终端设备UE1位于小区内部(例如位于图1中的位置3),而终端设备UE2或UE3位于多个小区交界处的非对称信道场景,更为通用的是将终端设备UE1的每个天线配置为能够在
Figure PCTCN2017086063-appb-000004
个天线模式下工作。在本发明中,规定M1>N1,M2≥2N2,M3≥2N3
在图1所示的两小区非对称信道场景下,终端设备UE1和UE2在第t个时隙接收到的信号y1(t)和y2(t)可分别表示为:
Figure PCTCN2017086063-appb-000005
其中,xj(t)是第j(j=1,2)个基站发送的Mj×1信号矢量,Hij表示从第j个基站到第i(i=1,2)个终端设备的Ni×Mj信道矩阵,mi(t)表示第i个终端设备的方向图可重构天线的天线模式,
Figure PCTCN2017086063-appb-000006
是复高斯噪声向量,其中
Figure PCTCN2017086063-appb-000007
表示秩为Ni的单位矩阵。
H12表示从第2个基站(基站eNB2)到第1个终端设备(UE1)的信道矩阵,H21表示从第1个基站(基站eNB1)到第2个终端设备(UE2)的信道矩阵。因此,由等式(1)可以看出,终端设备UE1的接收信号y1(t)中包含来自基站eNB2的干扰信号项H12(m1(t))x2(t),而终端设备UE2的接收信号y2(t)中则不包含来自基站eNB1的干扰信号。
在上述三小区非对称信道场景下,终端设备UE1、UE2和UE3在第t个时隙接收到的信号y1(t),y2(t)和y3(t)可分别表示为:
Figure PCTCN2017086063-appb-000008
其中,xj(t)表示第j(j=1,2,3)个基站发送的信号矢量,Hij表示从第j个基站到第i(i=1,2,3)个终端设备的Ni×Mj信道矩阵,mi(t)表示第i个终端设备的方向图可重构天线的天线模式,
Figure PCTCN2017086063-appb-000009
是复高斯噪声向量,其中
Figure PCTCN2017086063-appb-000010
表示秩为Ni的单位矩阵。
由等式(2)可以看出,终端设备UE1的接收信号y1(t)中包含来自基站eNB2和eNB3的干扰信号,而终端设备UE2和UE3的接收信号中则不包含来自基站eNB1的干扰信号。
针对上述非对称信道场景,本发明提出了能够执行盲干扰对齐的方案,其通过联合设计多个基站的下行传输方式,使得位于小区边缘的终端设备在接收信号时能够通过信号处理来容易地消除来自相邻基站的干扰。
以下描述了根据本发明的方案在两小区非对称信道场景下基站eNB1,eNB2的发送方案以及终端设备UE1,UE2的相应接收方案。与结合图1的上述描述类似地,继续假设终端设备UE1受到来自相邻基站eNB2的干扰,而终端设备UE2不受到基站eNB1的干扰。在本方案中,基站eNB1发送n1=(M2-N2)个信号矢量,每个信号矢量被重复发送
Figure PCTCN2017086063-appb-000011
次。基站eNB2发送n2=r1N2个信号矢量,每个信号矢量被重复发送
Figure PCTCN2017086063-appb-000012
次。此外,在本方案中,将整体发送时段分为两部分,第一部分(“部分1”)包括从第1时隙至第r1n1时隙的时间段,第二部分(“部分2”)包括从第r1n1+1时隙至第r1n1+n2时隙的时间段。
首先描述各个基站和终端设备在“部分1”(第1时隙至第r1n1时隙)中的操作。基站eNB1和终端设备UE1在整个“部分1”中执行以下操作:基站eNB1发送所有n1个信号矢量,将每个信号矢量重复发送r1次之后再发送下一个信号矢量。对于基站eNB1发送的一个信号矢量(发送r1次),终端设备UE1依次使用天线模式1至r1进行接收,然后再使用天线模式1至r1接收下一信号矢量。
对于基站eNB2和终端设备UE2来说,其在“部分1”的前一部分(第1时隙至第(r2-2)n2时隙)中执行以下操作:基站eNB2发送所有n2个信 号矢量,将每个信号矢量发送1次之后接着发送下一个信号矢量。完成对全部n2个信号矢量的一次发送被称为一轮。总共发送r2-2轮。对于每轮发送的n2个信号矢量,终端设备UE2使用相同的天线模式来接收。终端设备UE2使用r2-2种天线模式来分别接收r2-2轮发送的信号矢量。
此外,基站eNB2和终端设备UE2在“部分1”的后一部分(第(r2-2)n2+1时隙至第r1n1时隙)中执行以下操作:基站eNB2将所有n2个信号矢量进行分组发送,每组中的信号矢量的脚标的间隔为r1。每组中的各个信号矢量被加权合并后进行发送,加权系数从连续分布区间中随机产生,以保证终端设备UE2得到的接收方程是线性无关的。对于该n2个信号矢量的分组发送,各组中采用的加权系数彼此不同。然而,对于下一次发送的另外的n2个信号矢量,可以使用与本次发送相同的一系列加权系数。此外,在第(r2-2)n2+1时隙至第(r2-2)n2+r1时隙可完成对所有n2个信号矢量的一轮发送。总共进行rem(M2,N2)轮的分组发送。(符号rem(x,y)表示x除以y后的余数)。例如,在第(r2-2)n2+1时隙发送的信号矢量可表示为:
Figure PCTCN2017086063-appb-000013
在第(r2-2)n2+r1时隙发送的信号矢量可表示为:
Figure PCTCN2017086063-appb-000014
而终端设备UE2始终使用天线模式r2-1进行接收。
以下描述在“部分2”(第r1n1+1时隙至第r1n1+n2时隙)中的操作。基站eNB1和终端设备UE1在整个“部分2”中执行以下操作:基站eNB1不发送。终端设备UE1仅接收到来自基站eNB2的干扰信号。对于来自基站eNB2的每个信号矢量,终端设备UE1采用与部分1中接收相同信号矢量的对应时隙中所采用的天线模式相同的天线模式来进行接收,从而获得与部分1中所接收的同一信号矢量经历相同信道特性的干扰信号,以便实现准确的干扰消除。
基站eNB2和终端设备UE2在整个“部分2”中执行以下操作:基站eNB2将所有n2个信号矢量依次发送一遍。终端设备UE2使用天线模式r2接收r1次,然后使用下一天线模式(即模式r2+1)接收r1次,…,直 到使用天线模式r2+N2-1接收r1次。
如上所述,所有发送时隙(第1时隙至第r1n1+n2时隙)被分为两个时间段。在时间段“部分1”(第1时隙至第r1n1时隙)中,基站eNB1和eNB2都在发送信号,因此终端设备UE1除了接收到来自服务基站eNB1的信号之外,还接收到来自基站eNB2的干扰信号,该干扰信号是基站eNB2对其所服务的终端设备UE2的下行传输信号。在时间段“部分2”(第r1n1+1时隙至第r1n1+n2时隙)中,基站eNB1停止发送信号,而基站eNB2保持发送,因此终端设备UE1只接收到来自基站eNB2的干扰信号。
在完成所有时隙的接收之后,终端设备UE1可以利用在“部分2”中接收到的“纯”干扰信号来对“部分1”中所接收的信号进行处理,例如,从“部分1”中所接收的信号中消去(例如减去)在“部分2”中接收的干扰信号,从而可以得到不包含干扰成分的来自基站eNB1的发送信号。以此方式,处于小区边缘位置的终端设备UE1能够在接收信号时消除来自基站eNB2干扰。特别地,在“部分2”的每个时隙中,由于终端设备UE1采用与在“部分1”的对应时隙(即,接收相同信号的时隙)中所采用的天线模式相同的天线模式来接收基站eNB2发送的信号,因此在“部分2”中获得的干扰信号与在“部分1”中接收的信号中所包含的干扰信号经历相同的信道特性,因而更加接近于先前接收信号中所包含的干扰信号,从而能够实现更加准确的干扰消除。
对于终端设备UE2来说,其在“部分1”和“部分2”中使用不同的天线模式接收来自服务基站eNB2的信号,因此能够获得经历不同信道特性的接收信号,即,能够获得足够数量的独立的接收方程以解码接收信号。
图2示出了在两小区非对称信道场景下的一个示意性示例,该示例可认为是上述发送与接收方案的一个具体实例。在该示意性示例中,基站eNB1和eNB2的天线数量M1和M2分别为3和7,终端设备UE1和UE2的天线数量N1和N2都为2。根据上述发送方案,可以得出基站eNB1发送5个独立的3×1信号矢量(因为基站eNB1具有3根发送天线,所以是3×1信号矢量),记作ui(i=1,2,3,4,5),并且发送2次。基站eNB2发送4个独立的7×1信号矢量(因为基站eNB2具有7根发送天线),记作vi(i=1,2,3,4),并且发送4次。
在图2中,总共14个发送时隙被分为两个时间段,其中时间段“部分1”对应于表1中的第1时隙至第r1n1时隙,共包括10个时隙;时间段“部分2”对应于第r1n1+1至第r1n1+n2时隙,共包括4个时隙。
对于基站eNB1来说,其仅在“部分1”中发送信号。根据上述基站eNB1的发送次数
Figure PCTCN2017086063-appb-000015
可知基站eNB1将每个信号矢量u i发送两次。这也可以理解为:终端设备UE1具有两根天线,因此它在每个时隙内可获得两个独立的接收方程,为了使终端设备UE1能够解出每个3×1的信号矢量ui,基站eNB1需要至少将每个信号矢量ui发送两次。
对于基站eNB2来说,其在“部分1”和“部分2”中都发送信号。根据上述基站eNB2的发送次数
Figure PCTCN2017086063-appb-000016
可知基站eNB2将每个信号矢量vi发送4次。具体来说,在“部分1”的前8个时隙中(对应于第1时隙至第(r2-2)n2时隙),每个信号矢量vi被独立地发送2次,在“部分1”的后2个时隙中(对应于第(r2-2)n2+1时隙至第r1n1时隙),信号矢量vi(i=1,2,3,4)被分组发送。例如如图2所示,作为第一组,矢量v1和v3被加权合并后在时隙9中发送,并且作为第二组,矢量v2和v4被加权合并后在时隙10中发送。加权系数ki(i=1,2,3,4)可以随机地选自一个连续区间,例如(-10,10)。最后,在“部分2”中,每个信号矢量vi被发送1次。基站eNB2在“部分2”中将4个信号矢量v1至v4发送一遍的目的是为了使终端设备UE1能够获得“纯”干扰信号。同时,终端设备UE2通过在“部分1”和“部分2”中的接收能够恢复基站eNB2所发送的4个信号矢量。
需要说明的是,在“部分1”的后2个时隙中进行分组发送的目的在于最大限度地利用时间资源。如果不进行分组发送,那么基站eNB2将每个信号矢量vi(i=1,2,3,4)发送4次,则需要占用4×4=16个时隙进行发送。而采用分组发送的情况下,基站eNB2在“部分1”和“部分2”中共占用14个时隙发送信号。由于终端设备UE2的天线数量N2为2,其在每个时隙中可获得两个独立的接收方程,因此在14个时隙中终端设备UE2共获得28个独立的接收方程,而这28个接收方程足以解出基站eNB2所发送的4个7×1信号矢量。由此可见,采用分组发送的方案可减少占用两个时隙,由此可以节省时间资源。
对于终端设备UE1来说,由于基站eNB1和基站eNB2在“部分1”中都发送信号,因此终端设备UE1除了接收到来自服务基站eNB1的信号之外,还接收到来自基站eNB2的信号。而在“部分2”中,由于基站eNB1停止对终端设备UE1的下行传输,所以终端设备UE1只接收到来自基站eNB2的干扰。随后,终端设备UE1可以从“部分1”中接收到的信号中消去(例如减去)在“部分2”中接收到的干扰信号,从而可以得到不包含干扰成分的来自基站eNB1的有用信号。以此方式,可以消除基 站eNB2对于终端设备UE1的干扰。
此外,如图2所示,终端设备UE1在“部分2”的各个时隙中用于接收信号矢量的天线模式与在“部分1”中接收相同信号矢量的相应时隙中所采用的天线模式相同,这样是为了在信道特性相同的条件下获得干扰信号,以使得该干扰信号与包含在先前接收的信号中的干扰信号最大程度地近似,从而能够更加准确地消去干扰。与此不同的是,终端设备UE2在“部分2”中接收信号的天线模式不同于在“部分1”中所采用的天线模式,也就是说,终端设备UE2在“部分2”中在不同的信道特性下接收来自其服务基站eNB2的信号,以获得另外的独立的接收方程,从而能够解出发送的信号矢量vi
在图2所示的示例中,例如,终端设备UE1在第1,2,11,12时隙中接收到的信号可分别表示为:
Figure PCTCN2017086063-appb-000017
其中,Hij(m)表示从第j(j=1,2)个基站到第i(i=1,2)个终端设备的、在天线模式m(m=1,2)下的信道矩阵,zi(t)(i=1,2)是复高斯噪声向量。
在终端设备UE1消去干扰信号之后,得到:
Figure PCTCN2017086063-appb-000018
基于等式(4),可以通过简单的线性解码来恢复出信号矢量u1。以类似的方式,终端设备UE1可以恢复出基站eNB1所发送的信号矢量u2,u3,u4。而对于信号矢量u5,终端设备UE1可以通过下式来解出:
Figure PCTCN2017086063-appb-000019
对于终端设备UE2来说,可以通过以下等式(6)来恢复基站eNB2所发送的信号矢量v1,v3
Figure PCTCN2017086063-appb-000020
其中,O是2×7的零矩阵。以类似的方式,终端设备UE2可以解出信号矢量v2,v4
以下将从自由度的角度来比较本发明与传统技术的性能,自由度是指可发送的独立数据流的数目。
在两小区非对称信道的场景下,根据本发明的方案能够取得的自由度为
Figure PCTCN2017086063-appb-000021
在传统的干扰控制技术中,例如在时分复用(TDMA)系统的情况下,最大自由度为max[min(M1,N1),min(M2,N2)],平均自由度为[min(M1,N1)+min(M2,N2)]/2。
以图2所示的示例为例,在14个时隙中总共发送了5个3×1的信号矢量以及4个7×1的信号矢量,即,发送了5×3+4×7=43个独立符号。因此系统的自由度可计算为43/14≈3.07,其中终端设备UE1的自由度为5×3/14≈1.07,终端设备UE2的自由度为4×7/14=2。而TDMA系统的最大自由度为max[min(3,2),min(7,2)]=2,平均自由度为[min(3,2)+min(7,2)]/2=2。由此可见,根据本发明的方案,终端设备UE2可以取得与传统的TDMA系统相同的自由度,同时终端设备UE1又获取了额外的自由度,这使得采用本发明方案的系统能够获得大于TDMA系统的吞吐量。
以下将描述根据本发明的方案在三小区非对称信道场景下基站eNB1,eNB2,eNB3的发送方案以及终端设备UE1,UE2,UE3的相应接收方案。继续假设终端设备UE1受到来自相邻基站eNB2和eNB3的干扰,而终端设备UE2和UE3不受基站eNB1的干扰。在本方案中,基站 eNB1发送n1=(M2-N2)(M3-N3)个信号矢量,每个信号矢量被重复发送
Figure PCTCN2017086063-appb-000022
次。基站eNB2发送n2=r1N2(M3-N3)个信号矢量,每个信号矢量被重复发送
Figure PCTCN2017086063-appb-000023
次。基站eNB3发送n3=r1N3(M2-N2)个信号矢量,每个信号矢量被重复发送
Figure PCTCN2017086063-appb-000024
次。此外,在本方案中,将整体发送时段分为三部分,第一部分(“部分1”)包括从第1时隙至第r1n1时隙的时间段,第二部分(“部分2”)包括从第r1n1+1时隙至第r1n1+n2时隙的时间段,第三部分(“部分3”)包括从第r1n1+n2+1时隙至第r1n1+n2+n3时隙的时间段。
首先描述各个基站和终端设备在“部分1”(第1时隙至第r1n1时隙)中的操作。基站eNB1和终端设备UE1在整个“部分1”中执行以下操作:基站eNB1发送所有n1个信号矢量,将每个信号矢量重复发送r1次之后再发送下一个信号矢量。对于来自基站eNB1的一个信号矢量,终端设备UE1依次使用天线模式1至r1进行接收,然后依次使用天线模式1至r1接收下一信号矢量。
对于基站eNB2和终端设备UE2来说,其在“部分1”的前一部分(第1时隙至第(r2-2)n2时隙)中执行以下操作:基站eNB2发送所有n2个信号,将每个信号矢量发送1次之后接着发送下一个信号矢量。完成对全部n2个信号矢量的一次发送被称为一轮。总共发送r2-2轮。对于每轮发送的n2个信号矢量,终端设备UE2使用相同的天线模式来接收。终端设备UE2使用r2-2种天线模式(即天线模式1至r2-2)来分别接收r2-2轮发送的信号矢量。
此外,基站eNB2和终端设备UE2在“部分1”的后一部分(第(r2-2)n2+1时隙至第r1n1时隙:)中执行以下操作:基站eNB2将所有n2个信号矢量进行分组发送,每组中的信号矢量的脚标的间隔为r1。每组中的各个信号矢量被加权合并后进行发送,加权系数从连续分布区间中随机产生。对于该n2个信号矢量的分组发送,各组中采用的加权系数彼此不同。然而,对于下一次发送的另外的n2个信号矢量,可以使用与本次发送相同的一系列加权系数。此外,在第(r2-2)n2+1时隙至第(r2-2)n2+r1时隙可完成对所有n2个信号矢量的一轮发送。总共进行rem(M2,N2)轮的分组发送。例如,在第(r2-2)n2+1时隙发送的信号矢量可表示为:
Figure PCTCN2017086063-appb-000025
在第(r2-2)n2+r1时隙发送的信号矢量可表示为:
Figure PCTCN2017086063-appb-000026
而终端设备UE2始终使用天线模式r2-1进行接收。
对于基站eNB3和终端设备UE3来说,其在“部分1”的前一部分(第1时隙至第(r3-2)n3时隙)中执行以下操作:基站eNB3发送所有n3个信号,将每个信号矢量发送1次之后接着发送下一个信号矢量。完成对全部n3个信号矢量的一次发送被称为一轮。总共发送r3-2轮。对于每轮发送的n3个信号矢量,终端设备UE3使用相同的天线模式来接收。终端设备UE3使用r3-2种天线模式(即天线模式1至r3-2)来分别接收r3-2轮发送的信号矢量。
此外,基站eNB3和终端设备UE3在“部分1”的后一部分(第(r3-2)n3+1时隙至第r1n1时隙)中执行以下操作:基站eNB3将所有n3个信号进行分组发送,每组的信号矢量的脚标的间隔为r1。每组中的各个信号矢量被加权合并后进行发送,加权系数从连续分布区间中随机产生。对于该n3个信号矢量的分组发送,各组中采用的加权系数彼此不同。然而,对于下一次发送的另外的n3个信号矢量,可以使用与本次发送相同的一系列加权系数。此外,在第(r3-2)n3+1时隙至第(r3-2)n3+r1时隙可完成对所有n3个信号矢量的一轮发送。总共进行rem(M3,N3)轮的分组发送。例如,在第(r3-2)n3+1时隙发送的信号矢量可表示为:
Figure PCTCN2017086063-appb-000027
在第(r3-2)n3+r1时隙发送的信号矢量可表示为:
Figure PCTCN2017086063-appb-000028
而终端设备UE3始终使用天线模式r3-1进行接收。
接下来描述在“部分2”(第r1n1+1时隙至第r1n1+n2时隙)中的操作。基站eNB1和终端设备UE1在整个“部分2”中执行以下操作:基站eNB1不发送。终端设备UE1仅接收到来自基站eNB2的干扰信号。对于来自基站eNB2的每个信号矢量,终端设备UE1采用与部分1中接收相同信号矢量的对应时隙中所采用的天线模式相同的天线模式来进行接收,从而 获得经历相同信道特性的干扰信号。
基站eNB2和终端设备UE2在整个“部分2”中执行以下操作:基站eNB2将所有n2个信号矢量依次发送一遍。终端设备UE2使用天线模式r2接收r1次,然后使用下一个天线模式(即模式r2+1)接收r1次,…,直到使用天线模式r2+N2-1接收r1次。这称为一轮接收,终端设备UE2总共进行M3-N3轮接收。
基站eNB3和终端设备UE3在整个“部分2”中执行以下操作:基站eNB3不发送。终端设备UE3不接收。
接下来描述在“部分3”(第r1n1+n2+1时隙至第r1n1+n2+n3时隙)中的操作。基站eNB1和终端设备UE1在整个“部分3”中执行以下操作:基站eNB1不发送。终端设备UE1仅接收到来自基站eNB3的干扰信号。对于来自基站eNB3的每个信号矢量,终端设备UE1采用与部分1中接收相同信号矢量的对应时隙中所采用的天线模式相同的天线模式来进行接收,从而获得经历相同信道特性的干扰信号。
基站eNB2和终端设备UE2在整个“部分3”中执行以下操作:基站eNB2不发送。终端设备UE2不接收。
基站eNB3和终端设备UE3在整个“部分3”中执行以下操作:基站eNB3将所有n3个信号矢量依次发送一遍。终端设备UE3使用天线模式r3接收r1次,然后使用下一个天线模式(即模式r3+1)接收r1次,…,直到使用天线模式r3+N3-1接收r1次。这称为一轮接收,终端设备UE3总共进行M2-N2轮接收。
如上所述,所有发送时隙(第1时隙至第r1n1+n2+n3时隙)被分为三个时间段。在时间段“部分1”(第1时隙至第r1n1时隙)中,基站eNB1,eNB2和eNB3都在发送信号,因此终端设备UE1除了接收到来自服务基站eNB1的信号之外,还接收到来自基站eNB2和eNB3的干扰信号。在时间段“部分2”(第r1n1+1时隙至第r1n1+n2时隙)中,基站eNB1和eNB3不发送信号,而基站eNB2保持发送,因此终端设备UE1只接收到来自基站eNB2的干扰信号。在时间段“部分3”(第r1n1+n2+1时隙至第 r1n1+n2+n3时隙)中,基站eNB1和eNB2不发送信号,而基站eNB3发送信号,因此终端设备UE1只接收到来自基站eNB3的干扰信号。
在完成所有时隙的接收之后,终端设备UE1可以利用在“部分2”和“部分3”中接收到的来自基站eNB2和eNB3干扰信号来对在“部分1”中接收到的信号进行处理,例如,从“部分1”中接收的信号中消去(例如减去)在“部分2”和“部分3”中接收的干扰信号,从而可以得到不包含干扰成分的来自基站eNB1的有用信号。以此方式,处于小区边缘位置的终端设备UE1可以在接收信号时消除基站eNB2和eNB3的干扰。特别地,如表2中所示,在“部分2”和“部分3”的每个时隙中,由于终端设备UE1采用了在“部分1”的对应时隙(即,接收相同信号矢量的时隙)中所采用的天线模式来接收信号,因此在“部分2”和“部分3”中获得的干扰信号与先前接收的信号中所包含的干扰信号经历相同的信道特性,从而能够实现更加准确的干扰消除。
另一方面,对于终端设备UE2来说,其在“部分1”和“部分2”中使用不同的天线模式接收来自服务基站eNB2的信号,因此能够获得经历不同信道特性的接收信号,即,能够获得足够数量的独立的接收方程以解出接收的信号。类似地,对于终端设备UE3来说,其在“部分1”和“部分3”中使用不同的天线模式接收来自服务基站eNB3的信号,因此能够获得足够数量的独立的接收方程来解出接收的信号。
图3示出了在三小区非对称信道场景下的一个示意性示例,该示例可认为是上述发送和接收方案的一个具体实例。在该示意性示例中,基站eNB1,eNB2,eNB3的天线数量M1,M2,M3分别为7,5,8,终端设备UE1,UE2,UE3的天线数量N1,N2,N3分别为4,2,3。
根据上述发送方案,可以得出基站eNB1发送15个独立的7×1信号矢量(因为基站eNB1具有7根发送天线),记作ui(i=1,2,...,15),并且发送2次。基站eNB2发送20个独立的5×1信号矢量(因为基站eNB2具有5根发送天线),记作vi(i=1,2,...,20),并且发送3次。基站eNB3发送18个独立的8×1信号矢量(因为基站eNB3具有8根发送天线),记作wi(i=1,2,...,18),并且发送3次。
在图3中,总共68个发送时隙被分为三个时间段,其中时间段“部分1”对应于第1时隙至第r1n1时隙,共包括30个时隙;“部分2”对应于第r1n1+1至第r1n1+n2时隙,共包括20个时隙;“部分3”对应于第r1n1+n2+1至第r1n1+n2+n3时隙,共包括18个时隙。
对于基站eNB1来说,其仅在“部分1”中发送信号。由于终端设备UE1具有4根天线,因此它在每个时隙内可获得4个独立的接收方程,为了使终端设备UE1能够解出每个7×1的信号矢量ui,基站eNB1需要至少将每个信号矢量ui发送两次。
对于基站eNB2来说,其在“部分1”和“部分2”中发送信号,在“部分3”中停止发送。具体来说,在“部分1”的前20个时隙中(对应于表2中的第1时隙至第(r2-2)n2时隙),基站eNB2将每个信号矢量vi独立地发送1次,然后在“部分1”的后10个时隙中(对应于第(r2-2)n2+1时隙至第r1n1时隙),基站eNB2将信号矢量vi(i=1,2,...,20)分组发送。每组中的信号矢量被加权合并后在相应时隙中进行发送,加权系数pi(i=1,2,...,20)可以随机地选自一个连续区间。如前所述,进行分组发送的目的在于减少发送所占用的时隙,从而提高时间资源的利用率。然后在“部分2”中,基站eNB2将每个信号矢量vi依次发送一遍,目的是为了使终端设备UE1能够获得“纯”干扰信号,同时也为了使终端设备UE2能够获得足够的接收方程来解码信号。
基站eNB3的发送方式与基站eNB2类似。基站eNB3在“部分1”和“部分3”中发送信号,在“部分2”中停止发送。在“部分1”的前18个时隙中(对应于表2中的第1时隙至第(r3-2)n3时隙),基站eNB3将每个信号矢量wi独立地发送1次,在“部分1”的后12个时隙中(对应于第(r3-2)n3+1时隙至第r1n1时隙),基站eNB3将信号矢量wi(i=1,2,...,18)分组发送,加权系数ki(i=1,2,...,36)可以随机地选自一个连续区间。然后在“部分3”中,基站eNB3将每个信号矢量wi依次发送一遍。
如前所述,终端设备UE1可以从“部分1”中所接收到的信号中消去(例如减去)在“部分2”和“部分3”中接收到的来自基站eNB2和eNB3的干扰信号,从而得到不包含干扰成分的来自服务基站eNB1的有用信号。以此方式,可以消除基站eNB2和eNB3对处于小区边缘位置的终端设备UE1的干扰。
此外,如图3所示,终端设备UE1在“部分2”和“部分3”的各个时隙中采用与在“部分1”的相应时隙中所采用的天线模式相同的天线模式来接收信号,从而可以获得经历相同信道条件的干扰信号,以使得能够更加准确地消去干扰。
与此不同的是,终端设备UE2和UE3分别在“部分2”和“部分3”中用于接收信号的天线模式不同于在“部分1”中所采用的天线模式,因 此终端设备UE2和UE3分别在“部分2”和“部分3”中能够获得另外的独立的接收方程,从而解出来自其服务基站的信号矢量vi或wi
在三小区非对称信道的场景下,根据本发明的方案能够取得的自由度为
Figure PCTCN2017086063-appb-000029
在传统的时分复用(TDMA)系统的情况下,平均自由度为{min(M1,N1)+[min(M2,N2)+min(M3,N3)]}/2。
例如,在图3所示的示例中,根据本发明的BIA方法的自由度为(15×7+20×5+18×8)/68≈5.13,而在TDMA系统中,得到的平均自由度仅为{min(7,4)+[min(5,2)+min(8,3)]}/2=4.5。由此可见,本发明的方案能够获得更大的自由度,这意味着更大的系统吞吐量。
在上述实施例中,为了不失一般性,假设各个基站的天线数量Mi与相应的终端设备的天线数量Ni之间不是整数倍关系。然而,当基站的天线数量Mi是其所服务的终端设备的天线数量Ni的整数倍时,上文中用于确定各个基站发送信号的次数的公式需要被修改。例如,在两小区非对称信道场景下,基站eNB1发送n1个信号矢量,每个信号矢量需被重复发送r1=M1/N1次,而不是如上文所述的
Figure PCTCN2017086063-appb-000030
次。同样,基站eNB2将每个信号矢量重复发送r2=M2/N2次。类似地,在三小区非对称信道场景下,基站eNB1,eNB2和eNB3发送每个信号矢量的次数分别被修改为r1=M1/N1,r2=M2/N2,和r3=M3/N3。在参数ri被修改的情况下,相应地,各个基站所要发送的信号矢量的数量ni也需要使用修改后的参数ri来计算。此外,在基站的天线数量Mi是相应终端设备的天线数量Ni的整数倍的情况下,各个终端设备UE1,UE2,UE3的方向图可重构天线分别需要支持以下数量的天线模式:M1/N1
Figure PCTCN2017086063-appb-000031
以上以两小区非对称信道和三小区非对称信道为例描述了本发明的实施方式,本领域技术人员也可以根据实际需求以相同的方式将本发明扩展到四小区非对称信道(例如,终端设备UE1位于四个小区交界处,受到来自三个相邻基站的干扰)等场景。但是,需要指出的是,当应用于包含更多相邻小区的场景时,每个基站需要停止发送信号的时间段将会变得更多。例如,在四小区非对称信道的情况下,基站eNB2需要在两个时间 段中停止发送,以使得终端设备UE1在该两个时间段中分别只接收到来自基站eNB3和eNB4的信号,类似地,基站eNB1也需要在三个时间段中停止发送。也就是说,为了使终端设备UE1能够执行干扰消除,相邻基站与其服务终端之间的正常通信将会受到较大影响,并且终端设备UE1与服务基站eNB1之间的通信效率也会下降,由此导致系统的整体效率低下。因此,在实际应用中,本领域技术人员需要在干扰消除和系统整体效率之间进行折衷。本发明优选的是应用于两小区非对称信道和三小区非对称信道的场景。
图4是示出了在各个基站与各个终端设备之间的信令交互图。如图4所示,在步骤S410,终端设备UE1,UE2,UE3分别向其服务基站eNB1,eNB2,eNB3报告其自身的位置信息、天线数量以及所支持的天线模式的数量。需要说明的是,虽然图4中只示出了终端设备UE1,UE2,UE3的报告过程,但本领域技术人员易于理解的是,以基站eNB1为例,其所服务的其它多个终端设备(除了终端设备UE1以外)也向基站eNB1报告自身的位置信息、天线数量以及天线模式的数量。对于基站eNB2和eNB3也是如此。
各个基站根据接收到的终端设备的位置信息来确定该终端设备是位于小区内部还是与相邻小区的交界处,即,确定该终端设备是否受到来自相邻基站的干扰。下文中,假设基站eNB1确定终端设备UE1位于本小区内的邻近于基站eNB2和eNB3的覆盖小区的位置处,由此确定终端设备UE1受到来自相邻基站eNB2和eNB3的干扰。随后,在步骤S420基站eNB1向基站eNB2和eNB3发送信号以通知它们加入BIA过程,并且将基站eNB1的天线数量以及有关终端设备UE1的信息(例如位置信息、天线数量、使用频率等)通知给基站eNB2和eNB3。需要说明的是,如果终端设备UE1位于本小区内的邻近于基站eNB2的覆盖小区的位置处,仅受到来自基站eNB2的干扰(两小区非对称信道场景),则基站eNB1在步骤S420中仅通知基站eNB2加入BIA过程并向其发送有关信息,而不向基站eNB3发送通知信号。
随后,基站eNB2和eNB3分别在自己的覆盖小区内部选择与终端设备UE1占用相同时间频率资源、且不受到基站eNB1的干扰(远离基站eNB1的覆盖小区)的终端设备,此处假设选择的终端设备分别为终端设备UE2和UE3。在步骤S430,基站eNB2和eNB3分别向基站eNB1发送用于确认加入BIA过程的响应信号,以及自身的天线数量和有关终端 设备UE2和UE3的信息(例如天线数量)。此外,在步骤S430,基站eNB2和eNB3相互之间交互基站的天线数量和终端设备UE2,UE3的天线数量。
如上所述,基站eNB1在步骤S420通知基站eNB2和eNB3加入BIA过程,并同时发送基站eNB1和终端设备UE1的相关信息。然后,基站eNB2和eNB3在步骤S430分别向基站eNB1发送响应信号,并同时发送基站eNB2和eNB3以及终端设备UE2和UE3的相关信息。可替选地,作为另一示例,基站eNB1可以在步骤S420仅发送用于通知基站eNB2和eNB3加入BIA过程的请求信号,待接收到来自基站eNB2和eNB3的确认参加BIA过程的响应信号之后,基站eNB1与基站eNB2和eNB3之间再交互各自的相关信息以及各自所服务的终端设备的相关信息。
至此,参与BIA过程的基站eNB1,eNB2和eNB3都已具备了各个基站和各个终端设备的天线数量等信息,因此可以根据上文所描述的发送方案来确定各自的下行传输方式,该传输方式例如可以包括以下中的至少一些:在哪个时间段(哪些时隙)中发送或不发送信号,在各个时隙中发送什么信号矢量,分组发送的加权系数、以及重复发送次数。
此外,基站eNB1,eNB2和eNB3还确定终端设备UE1,UE2和UE3的接收方式,并生成用于指示接收方式的指示信息,该指示信息例如可以指示以下中的至少一些:关于时间段(诸如上述的“部分1”,“部分2”等)的信息,用于在各个时隙中接收信号的天线模式,对分组发送的信号矢量进行解码所需的加权系数。随后在步骤S440,基站eNB1,eNB2和eNB3将用于指示接收方式的指示信息分别发送至相应的终端设备UE1,UE2和UE3,以便终端设备根据该指示信息所指示的接收方式来接收信号以及执行干扰消除处理。需要说明的是,如图3和图4所示,由于基站eNB1没有进行分组发送,因此无需向终端设备UE1通知加权系数。
终端设备UE1,UE2和UE3根据接收到的指示信息确定将要采用的接收方式,然后在步骤S450分别向其服务基站发送确认信号,表示已准备就绪。
然后在步骤S460,基站eNB1,eNB2和eNB3按照确定的传输方式开始进行下行传输。
终端设备UE1,UE2和UE3按照基站eNB1,eNB2和eNB3在步骤S440所通知的接收方式来设置天线模式接收信号,解码信号,以及根据所通知的时间段来执行消除干扰的处理,如步骤S470所示。
图5示出了根据本发明的基站的功能性框图。如图5所示,基站500包括处理单元510和收发单元520。收发单元520可以被实现为天线,用于接收和发送信号。处理单元510包括终端确定模块5110、时间段确定模块5120、发送控制模块5130以及指示生成模块5140。
基站500的终端确定模块5110用于根据由各个终端设备报告的位置信息来确定位于小区边缘的终端设备(例如基站eNB1确定终端设备UE1),或者用于在自身的服务小区内确定与其它终端设备占用相同通信资源、且不受其它基站干扰的终端设备(例如基站eNB2,eNB3确定终端设备UE2和UE3)。在确定终端设备之后,终端确定模块5110还获取相应终端设备的天线数量信息。
时间段确定模块5120使用通过交互所获得的参与BIA过程的各个基站和终端设备的天线数量信息,确定进行下行传输的时间段(例如根据上文描述的发送方案)。例如,基站eNB1确定用于发送信号的时间段“部分1”以及停止发送信号的时间段“部分2”。
发送控制模块5130根据时间段确定模块5120所确定的时间段来控制进行下行传输。例如,对于需要进行传输的时间段,发送控制模块5130可以确定在每个时隙中要发送的信号矢量,发送方式(例如,是否进行分组发送)、发送次数等等。
指示生成模块5140确定终端设备所要采用的接收方式,并且生成用于指示接收方式的指示信息,以发送给终端设备。
需要说明的是,虽然图5中示出了基站500的上述功能模块,但本发明不限于此。根据实际应用和设计要求,基站500可以包括比图5所示出的更多或更少的模块。
图6示出了根据本发明的终端设备的功能性框图。如图6所示,终端设备600包括处理单元610和收发单元620。收发单元620可以被实现为具有多种工作模式的方向图可重构天线。当方向图可重构天线工作在不同的模式下时,可以认为接收到的信号所经历的传输信道是独立同分布的。处理单元610包括报告模块6110、接收方式确定模块6120、以及干扰消除模块6130。
报告模块6110用于向基站报告终端设备600的位置、天线数量以及所支持的天线模式的数量等信息。
接收方式确定模块6120根据由基站发送的指示信息来确定用于接收 信号的接收方式。例如,接收方式确定模块6120可以根据指示信息来确定在各个时隙中使用的天线模式,以及确定用于解码被分组发送的信号矢量的加权系数。此外,接收方式确定模块6120可以根据该指示信息确定在哪个时间段中接收到有用信号与干扰信号的混合信号,以及在哪个时间段中接收到“纯”干扰信号,并将确定的时间段通知给干扰消除模块6130。
干扰消除模块6130根据由接收方式确定模块6120确定的时间段来执行消除干扰的处理。例如如上所述,从“部分1”中接收到的混合信号中消去(例如减去)在“部分2”和“部分3”中接收到的干扰信号,从而得到消除了干扰成分的有用信号。
需要说明的是,虽然图6中示出了终端设备600的上述功能模块,但本发明不限于此。根据实际应用和设计要求,终端设备600可以包括比图6所示出的更多或更少的模块。
如以上结合实施例所描述的,本发明的技术方案能够在非对称信道的通信场景下,根据各个基站和各个终端设备的天线数量等信息来设计基站侧的下行传输策略,以实现位于小区边缘的终端设备能够在接收信号时消除来自相邻基站的干扰的效果。此外,本发明的技术方案对各个基站和各个终端设备的天线数量没有限制。
本发明的技术能够应用于各种产品。例如,上述各个实施例中的基站可以被实现为基站侧的控制无线通信的主体设备(基站设备)或者完整装配的基站。基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端设备也可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,上述各个实施例中的终端设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置),或者车载终端(诸如汽车导航设备)。终端设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,终端设备也可以是安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模 块)。
此外,上述各个实施例中的处理单元可以被实现为基带处理器或者基带处理器与通用处理器的组合,例如实现为中央处理单元(CPU)或数字信号处理器(DSP)。
以下结合图7以智能电话作为一个示例来描述终端设备的实现。
图7示出了智能电话的示意性配置的框图。如图7所示,智能电话2500包括处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512、一个或多个天线开关2515、一个或多个天线2516、总线2517、电池2518以及辅助控制器2519。
处理器2501可以为例如CPU或片上系统(SoC),并且控制智能电话2500的应用层和另外层的功能。存储器2502包括RAM和ROM,并且存储数据和由处理器2501执行的程序。存储装置2503可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2504为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2500的接口。
摄像装置2506包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2507可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2508将输入到智能电话2500的声音转换为音频信号。输入装置2509包括例如被配置为检测显示装置2510的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2510包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2500的输出图像。扬声器2511将从智能电话2500输出的音频信号转换为声音。
无线通信接口2512支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2512通常可以包括例如基带(BB)处理器2513和射频(RF)电路2514。BB处理器2513可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2514可以包括例如混频器、滤波器和放大器,并且经由天线2516来传送和接收无线信号。无线通信接口2512可以是其上集成有BB处理器2513和RF电路2514的一个芯片模块。如图7所示,无线通信接口2512可以包括多个BB处理器2513和多个RF电路2514。 但是,无线通信接口2512也可以包括单个BB处理器2513或单个RF电路2514。
此外,除了蜂窝通信方案之外,无线通信接口2512还可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2512可以包括针对每种无线通信方案的BB处理器2513和RF电路2514。
天线开关2515中的每一个在包括在无线通信接口2512中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2516的连接目的地。
天线2516中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2512传送和接收无线信号。如图7所示,智能电话2500可以包括多个天线2516。但是,智能电话2500也可以包括单个天线2516。
此外,智能电话2500可以包括针对每种无线通信方案的天线2516。在此情况下,可以从智能电话2500的配置中省略天线开关2515。
总线2517将处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512以及辅助控制器2519彼此连接。电池2518经由馈线向智能电话2500的各个部件提供电力,馈线在图中被部分地示为虚线。辅助控制器2519例如在睡眠模式下操作智能电话2500的最小必需功能。
在图7所示的智能电话2500中,终端设备的收发装置可以由无线通信接口2512实现。终端设备的各部件的功能的至少一部分也可以由处理器2501或辅助控制器2519实现。例如,可以通过由辅助控制器2519执行处理器2501的部分功能而减少电池2518的电力消耗。此外,处理器2501或辅助控制器2519可以通过执行存储器2502或存储装置2503中存储的程序而执行终端设备的各部件的功能的至少一部分。
以下结合图8以eNB作为一个示例来描述基站的实现。
图8示出了eNB的示意性配置的框图。如图8所示,eNB 2300包括一个或多个天线2310以及基站设备2320。基站设备2320和每个天线2310可以经由射频(RF)线缆彼此连接。
天线2310中的每一个均包括单个或多个天线元件(诸如包括在多输 入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2320发送和接收无线信号。如图8所示,eNB 2300可以包括多个天线2310。例如,多个天线2310可以与eNB 2300使用的多个频带兼容。虽然图8示出eNB 2300包括多个天线2310的示例,但是eNB 2300也可以包括单个天线2310。
基站设备2320包括控制器2321、存储器2322、网络接口2323以及无线通信接口2325。
控制器2321可以为例如CPU或DSP,并且操作基站设备2320的较高层的各种功能。例如,控制器2321根据由无线通信接口2325处理的信号中的数据来生成数据分组,并经由网络接口2323来传递所生成的分组。控制器2321可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器2321可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器2322包括RAM和ROM,并且存储由控制器2321执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2323为用于将基站设备2320连接至核心网2324的通信接口。控制器2321可以经由网络接口2323与核心网节点或另外的eNB进行通信。在此情况下,eNB 2300与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2323还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2323为无线通信接口,则与无线通信接口2325所使用的频带相比,网络接口2323可以使用较高频带以用于无线通信。
无线通信接口2325支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线2310来提供到位于eNB 2300的小区中的终端的无线连接。无线通信接口2325通常可以包括例如BB处理器2326和RF电路2327。BB处理器2326可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2321,BB处理器2326可以具有上述逻辑功能的一部分或全部。BB处理器2326可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2326的功能改变。该模块可以为插入到基站设备2320的槽中的卡或刀片。 可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2327可以包括例如混频器、滤波器和放大器,并且经由天线2310来传送和接收无线信号。
如图8所示,无线通信接口2325可以包括多个BB处理器2326。例如,多个BB处理器2326可以与eNB 2300使用的多个频带兼容。如图8所示,无线通信接口2325可以包括多个RF电路2327。例如,多个RF电路2327可以与多个天线元件兼容。虽然图8示出无线通信接口2325包括多个BB处理器2326和多个RF电路2327的示例,但是无线通信接口2325也可以包括单个BB处理器2326或单个RF电路2327。
在图8所示的eNB 2300中,基站侧设备的收发装置可以由无线通信接口2325实现。各部件的功能的至少一部分也可以由控制器2321执行。例如,控制器2321可以通过执行存储在存储器2322中的程序而执行各部件的功能的至少一部分。
本文中所描述的各个设备或模块仅是逻辑意义上的,并不严格对应于物理设备或实体。例如,本文所描述的每个模块的功能可能由多个物理实体来实现,或者,本文所描述的多个模块的功能可能由单个物理实体来实现。此外需要说明的是,在一个实施例中描述的特征、部件、元素、步骤等并不局限于该实施例,而是也可应用于其它实施例,例如替代其它实施例中的特定特征、部件、元素、步骤等,或者与其相结合。
在上述实施例中由每个设备或模块执行的一系列处理可以由软件、硬件或者软件和硬件的组合来实现。包括在软件中的程序可以事先存储在每个设备的内部或外部所设置的存储介质中。作为一个示例,在执行期间,这些程序被写入随机存取存储器(RAM)并且由处理器(例如CPU)来执行。
图9是示出了根据程序执行上述处理的计算机硬件的示意性配置框图。
在计算机900中,中央处理单元(CPU)901、只读存储器(ROM)902以及随机存取存储器(RAM)903通过总线904彼此连接。
输入/输出接口905进一步与总线904连接。输入/输出接口905连接有以下组件:以键盘、鼠标、麦克风等形成的输入单元906;以显示器、扬声器等形成的输出单元907;以硬盘、非易失性存储器等形成的存储单元908;以网络接口卡(诸如局域网(LAN)卡、调制解调器等)形成的 通信单元909;以及驱动移动介质911的驱动器910,该移动介质911诸如是磁盘、光盘、磁光盘或半导体存储器。
在具有上述结构的计算机中,CPU 901将存储在存储单元908中的程序经由输入/输出接口905和总线904加载到RAM 903中,并且执行该程序,以便执行上述处理。
要由计算机(CPU 901)执行的程序可以被记录在作为封装介质的移动介质911上,该封装介质以例如磁盘(包括软盘)、光盘(包括压缩光盘-只读存储器(CD-ROM))、数字多功能光盘(DVD)等)、磁光盘、或半导体存储器来形成。此外,要由计算机(CPU 901)执行的程序也可以经由诸如局域网、因特网、或数字卫星广播的有线或无线传输介质来提供。
当移动介质911安装在驱动器910中时,可以将程序经由输入/输出接口905安装在存储单元908中。另外,可以经由有线或无线传输介质由通信单元909来接收程序,并且将程序安装在存储单元908中。可替选地,可以将程序预先安装在ROM 902或存储单元908中。
要由计算机执行的程序可以是根据本说明书中描述的顺序来执行处理的程序,或者可以是并行地执行处理或当需要时(诸如,当调用时)执行处理的程序。
以上已经结合附图详细描述了本发明的实施例以及技术效果,但是本发明的范围不限于此。本领域普通技术人员应该理解的是,取决于设计要求和其他因素,在不偏离本发明的原理和精神的情况下,可以对本文中所讨论的实施方式进行各种修改或变化。本发明的范围由所附权利要求或其等同方案来限定。
此外,本发明也可以被配置如下。
一种便利于干扰消除的电子装置,包括处理电路,所述处理电路被配置为:根据来自第一基站所服务的一个或多个终端的位置信息识别位于第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围的第一终端,其中,由所述第一基站服务的所述第一终端能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端;以及进行控制以便与所述至少一个第二基站进行协作,以确定用于所述第一终端的下行传输方式,使得所述第一终端能够通过执行干扰 消除来接收信号。
其中,所述第一基站的天线数目大于所述第一终端的天线数目,所述第二基站的天线数目大于或等于其所服务的第二终端的天线数目的二倍。
其中,所述第二基站的数目为一个,所述处理电路还被配置为:根据所述第一基站的天线数目、从所述第一终端获取的所述第一终端的天线数目、从所述第二基站获取的所述第二基站的天线数目和相应的第二终端的天线数目,确定时间段;基于所述时间段控制所述第一基站向所述第一终端的下行传输,使得所述第一终端在所述时间段内仅接收到来自所述第二基站的信号。
其中,所述第二基站的数目为多个,所述处理电路还被配置为:根据所述第一基站的天线数目、从所述第一终端获取的所述第一终端的天线数目、从所述多个第二基站获取的各个第二基站的天线数目和各个第二终端的天线数目,确定多个时间段;基于所述多个时间段控制所述第一基站向所述第一终端的下行传输,使得所述第一终端在所述多个时间段中的每个时间段内仅接收到来自所述多个第二基站中的一个的信号。
其中,所述处理电路还被配置为:进行控制以将所述第一基站的天线数目和所述第一终端的天线数目通知给每个第二基站,以使得每个第二基站能够确定与其对应的时间段,以在对应的时间段中发送信号,其中,所述第一终端在每个时间段内接收到的信号与发送所述信号的第二基站在所述时间段之前的另一时间段内向其所服务的第二终端发送的信号至少部分地相同。
其中,所述处理电路还被配置为:生成用于指示所述第一终端的接收方式的指示信息,以通知给所述第一终端,其中所述接收方式包括所确定的时间段和所述第一终端将使用的天线模式中的至少一个。
其中,所述电子装置被实现为所述第一基站的部件。
一种便利于干扰消除的设备,包括:多个天线,被配置为发送和接收信号;处理电路,被配置为:根据来自第一基站所服务的一个或多个终端的位置信息识别位于第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围的第一终端,其中,由所述第一基站服务的所述第一终端能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端;以及进行控制以便与所述至少一个第 二基站进行协作,以确定用于所述第一终端的下行传输方式,使得所述第一终端能够通过执行干扰消除来接收信号。
其中,所述第一基站的天线数目大于所述第一终端的天线数目,所述第二基站的天线数目大于或等于相应的第二终端的天线数目的二倍。
其中,所述第二基站的数目为一个,所述处理电路还被配置为:进行控制以经由所述多个天线从所述第一终端获取所述第一终端的天线数目,以及从所述第二基站获取所述第二基站的天线数目和相应的第二终端的天线数目;根据所述第一基站的天线数目、所述第一终端的天线数目、所述第二基站的天线数目和所述第二终端的天线数目,确定时间段;基于所述时间段控制所述第一基站向所述第一终端的下行传输,使得所述第一终端在所述时间段内仅接收到来自所述第二基站的信号。
其中,所述第二基站的数目为多个,所述处理电路还被配置为:进行控制以经由所述多个天线从所述第一终端获取所述第一终端的天线数目,以及从所述多个第二基站获取各个第二基站的天线数目和各个第二终端的天线数目;根据所述第一基站的天线数目、所述第一终端的天线数目、各个第二基站的天线数目和各个第二终端的天线数目,确定多个时间段;基于所述多个时间段控制所述第一基站向所述第一终端的下行传输,使得所述第一终端在所述多个时间段中的每个时间段内仅接收到来自所述多个第二基站中的一个的信号。
其中,所述处理电路还被配置为:进行控制以将所述第一基站的天线数目和所述第一终端的天线数目通知给每个第二基站,以使得每个第二基站能够确定与其对应的时间段,以在对应的时间段中发送信号,其中,所述第一终端在每个时间段内接收到的信号与发送所述信号的第二基站在所述时间段之前的另一时间段内向其所服务的第二终端发送的信号至少部分地相同。
其中,所述处理电路还被配置为:生成用于指示所述第一终端的接收方式的指示信息,以通知给所述第一终端,其中所述接收方式包括所确定的时间段和所述第一终端将使用的天线模式中的至少一个。
其中,所述设备被实现为所述第一基站。
一种由第一基站执行的便利于干扰消除的方法,包括:从所述第一基站所服务的一个或多个终端接收位置信息;根据接收的所述位置信息识别位于所述第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围的 第一终端,其中,由所述第一基站服务的所述第一终端能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端;以及与所述至少一个第二基站进行协作,以确定用于所述第一终端的下行传输方式,使得所述第一终端能够通过执行干扰消除来接收信号。
其中,所述第一基站的天线数目大于所述第一终端的天线数目,所述第二基站的天线数目大于或等于相应的第二终端的天线数目的二倍。
所述方法还包括:从所述第一终端获取所述第一终端的天线数目;从所述至少一个第二基站获取所述至少一个第二基站的天线数目和所述至少一个第二终端的天线数目;根据所述第一基站的天线数目、所述第一终端的天线数目、所述至少一个第二基站的天线数目和所述至少一个第二终端的天线数目,确定至少一个时间段;基于所述至少一个时间段控制向所述第一终端的下行传输,使得所述第一终端在所述至少一个时间段中的每个时间段内仅接收到来自所述至少一个第二基站中的一个的信号。
一种用于干扰消除的电子装置,所述电子装置包括处理电路,所述处理电路被配置为:进行控制以向服务于第一终端的第一基站报告所述第一终端的位置信息和天线数目;以及根据来自所述第一基站的指示信息,确定所述第一终端将要采用的接收方式,以及控制所述第一终端执行干扰消除处理,其中,所述指示信息由所述第一基站至少根据所述第一终端的位置信息和天线数目而生成,其中,所述第一终端位于所述第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围,并且能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端。
其中,所述第一基站的天线数目大于所述第一终端的天线数目,所述第二基站的天线数目大于或等于其所服务的第二终端的天线数目的二倍。
其中,所述第二基站的数目为一个,所述处理电路还被配置为:控制所述第一终端在所述指示信息指示的第一时间段内通过切换不同的天线模式来接收信号,其中,在所述第一时间段内接收的信号包括来自所述第一基站的信号以及来自所述第二基站的信号;控制所述第一终端在所述指示信息指示的第二时间段内利用与所述第一时间段内所采用的天线模式对应的天线模式来接收信号,其中,在所述第二时间段内接收的信号仅包 括来自所述第二基站的信号;利用在所述第二时间段内接收的信号对在所述第一时间段内接收的信号进行处理。
其中,所述第二基站的数目为多个,所述处理电路还被配置为:控制所述第一终端在所述指示信息指示的第一时间段内通过切换不同的天线模式来接收信号,其中,在所述第一时间段内接收的信号包括来自所述第一基站的信号以及来自所述多个第二基站的信号;控制所述第一终端在所述指示信息指示的多个第二时间段中的每个时间段内利用与所述第一时间段内所采用的天线模式对应的天线模式来接收信号,其中,在所述多个第二时间段中的每个时间段内接收的信号仅包括来自所述多个第二基站中的一个的信号;利用在所述多个第二时间段内接收的信号对在所述第一时间段内接收的信号进行处理。
其中,所述处理电路还被配置为:从所述第一时间段内接收的信号中消去在所述第二时间段内接收的信号,并根据所得的信号来恢复数据。
其中,在每个所述第二时间段内接收的信号与发送所述信号的第二基站在所述第一时间段内向其所服务的第二终端发送的信号至少部分地相同。
其中,所述电子装置被实现为所述第一终端的部件。
一种用于干扰消除的设备,所述设备包括:多个天线,被配置为能够以多种天线模式来发送和接收信号;以及处理电路,所述处理电路被配置为:进行控制以向服务于第一终端的第一基站报告所述第一终端的位置信息和天线数目;以及根据来自所述第一基站的指示信息,确定所述第一终端将要采用的接收方式,以及控制所述第一终端执行干扰消除处理,其中,所述指示信息由所述第一基站至少根据所述第一终端的位置信息和天线数目而生成,其中,所述第一终端位于所述第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围,并且能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端。
其中,所述第一基站的天线数目大于所述第一终端的天线数目,所述第二基站的天线数目大于或等于其所服务的第二终端的天线数目的二倍。
其中,所述第二基站的数目为一个,所述处理电路还被配置为:控制所述第一终端在所述指示信息指示的第一时间段内通过切换不同的天线 模式来接收信号,其中,在所述第一时间段内接收的信号包括来自所述第一基站的信号以及来自所述第二基站的信号;控制所述第一终端在所述指示信息指示的第二时间段内利用与所述第一时间段内所采用的天线模式对应的天线模式来接收信号,其中,在所述第二时间段内接收的信号仅包括来自所述第二基站的信号;利用在所述第二时间段内接收的信号对在所述第一时间段内接收的信号进行处理。
其中,所述第二基站的数目为多个,所述处理电路还被配置为:控制所述第一终端在所述指示信息指示的第一时间段内通过切换不同的天线模式来接收信号,其中,在所述第一时间段内接收的信号包括来自所述第一基站的信号以及来自所述多个第二基站的信号;控制所述第一终端在所述指示信息指示的多个第二时间段中的每个时间段内利用与所述第一时间段内所采用的天线模式对应的天线模式来接收信号,其中,在所述多个第二时间段中的每个时间段内接收的信号仅包括来自所述多个第二基站中的一个的信号;利用在所述多个第二时间段内接收的信号对在所述第一时间段内接收的信号进行处理。
其中,所述处理电路还被配置为:从所述第一时间段内接收的信号中消去在所述第二时间段内接收的信号,并根据所得的信号来恢复数据。
其中,所述第一终端的天线数目与所述第二终端的天线数目不同。
其中,所述第一时间段和所述第二时间段是由所述第一基站基于所述第一基站的天线数目、所述第一终端的天线数目、所述至少一个第二基站的天线数目和所述至少一个第二终端的天线数目来确定的。
其中,所述设备被实现为所述第一终端。
一种由第一终端执行的干扰消除的方法,所述方法包括:向服务于所述第一终端的第一基站报告所述第一终端的位置信息和天线数目;从所述第一基站接收指示信息;以及根据所述指示信息,确定所述第一终端将要采用的接收方式,以及执行干扰消除处理,其中,所述指示信息由所述第一基站至少根据所述第一终端的位置信息和天线数目而生成,其中,所述第一终端位于所述第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围,并且能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端。
其中,所述第一基站的天线数目大于所述第一终端的天线数目,所述 第二基站的天线数目大于或等于其所服务的第二终端的天线数目的二倍。
所述方法还包括:在所述指示信息指示的第一时间段内通过切换不同的天线模式来接收信号,其中,在所述第一时间段内接收的信号包括来自所述第一基站的信号以及来自所述至少一个第二基站的信号;在所述指示信息指示的至少一个第二时间段中的每个时间段内利用与所述第一时间段内所采用的天线模式对应的天线模式来接收信号,其中,在所述至少一个第二时间段中的每个时间段内接收的信号仅包括来自所述至少一个第二基站中的一个的信号;利用在所述至少一个第二时间段内接收的信号对在所述第一时间段内接收的信号进行处理。
所述方法还包括:从所述第一时间段内接收的信号中消去在所述至少一个第二时间段内接收的信号,并根据所得的信号来恢复数据。
其中,所述第一终端的天线数目与所述第二终端的天线数目不同。

Claims (37)

  1. 一种便利于干扰消除的电子装置,包括处理电路,所述处理电路被配置为:
    根据来自第一基站所服务的一个或多个终端的位置信息识别位于第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围的第一终端,其中,由所述第一基站服务的所述第一终端能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端;以及
    进行控制以便与所述至少一个第二基站进行协作,以确定用于所述第一终端的下行传输方式,使得所述第一终端能够通过执行干扰消除来接收信号。
  2. 根据权利要求1所述的电子装置,其中,所述第一基站的天线数目大于所述第一终端的天线数目,所述第二基站的天线数目大于或等于其所服务的第二终端的天线数目的二倍。
  3. 根据权利要求1所述的电子装置,其中,所述第二基站的数目为一个,所述处理电路还被配置为:
    根据所述第一基站的天线数目、从所述第一终端获取的所述第一终端的天线数目、从所述第二基站获取的所述第二基站的天线数目和相应的第二终端的天线数目,确定时间段;
    基于所述时间段控制所述第一基站向所述第一终端的下行传输,使得所述第一终端在所述时间段内仅接收到来自所述第二基站的信号。
  4. 根据权利要求1所述的电子装置,其中,所述第二基站的数目为多个,所述处理电路还被配置为:
    根据所述第一基站的天线数目、从所述第一终端获取的所述第一终端的天线数目、从所述多个第二基站获取的各个第二基站的天线数目和各个第二终端的天线数目,确定多个时间段;
    基于所述多个时间段控制所述第一基站向所述第一终端的下行传输,使得所述第一终端在所述多个时间段中的每个时间段内仅接收到来自所 述多个第二基站中的一个的信号。
  5. 根据权利要求3或4所述的电子装置,其中,所述处理电路还被配置为:进行控制以将所述第一基站的天线数目和所述第一终端的天线数目通知给每个第二基站,以使得每个第二基站能够确定与其对应的时间段,以在对应的时间段中发送信号,
    其中,所述第一终端在每个时间段内接收到的信号与发送所述信号的第二基站在所述时间段之前的另一时间段内向其所服务的第二终端发送的信号至少部分地相同。
  6. 根据权利要求3或4所述的电子装置,其中,所述处理电路还被配置为:生成用于指示所述第一终端的接收方式的指示信息,以通知给所述第一终端,其中所述接收方式包括所确定的时间段和所述第一终端将使用的天线模式中的至少一个。
  7. 根据权利要求1所述的电子装置,其中,所述电子装置被实现为所述第一基站的部件。
  8. 一种便利于干扰消除的设备,包括:
    多个天线,被配置为发送和接收信号;
    处理电路,被配置为:
    根据来自第一基站所服务的一个或多个终端的位置信息识别位于第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围的第一终端,其中,由所述第一基站服务的所述第一终端能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端;以及
    进行控制以便与所述至少一个第二基站进行协作,以确定用于所述第一终端的下行传输方式,使得所述第一终端能够通过执行干扰消除来接收信号。
  9. 根据权利要求8所述的设备,其中,所述第一基站的天线数目大于所述第一终端的天线数目,所述第二基站的天线数目大于或等于相应的第二终端的天线数目的二倍。
  10. 根据权利要求8所述的设备,其中,所述第二基站的数目为一个,所述处理电路还被配置为:
    进行控制以经由所述多个天线从所述第一终端获取所述第一终端的天线数目,以及从所述第二基站获取所述第二基站的天线数目和相应的第二终端的天线数目;
    根据所述第一基站的天线数目、所述第一终端的天线数目、所述第二基站的天线数目和所述第二终端的天线数目,确定时间段;
    基于所述时间段控制所述第一基站向所述第一终端的下行传输,使得所述第一终端在所述时间段内仅接收到来自所述第二基站的信号。
  11. 根据权利要求8所述的设备,其中,所述第二基站的数目为多个,所述处理电路还被配置为:
    进行控制以经由所述多个天线从所述第一终端获取所述第一终端的天线数目,以及从所述多个第二基站获取各个第二基站的天线数目和各个第二终端的天线数目;
    根据所述第一基站的天线数目、所述第一终端的天线数目、各个第二基站的天线数目和各个第二终端的天线数目,确定多个时间段;
    基于所述多个时间段控制所述第一基站向所述第一终端的下行传输,使得所述第一终端在所述多个时间段中的每个时间段内仅接收到来自所述多个第二基站中的一个的信号。
  12. 根据权利要求10或11所述的设备,其中,所述处理电路还被配置为:进行控制以将所述第一基站的天线数目和所述第一终端的天线数目通知给每个第二基站,以使得每个第二基站能够确定与其对应的时间段,以在对应的时间段中发送信号,
    其中,所述第一终端在每个时间段内接收到的信号与发送所述信号的第二基站在所述时间段之前的另一时间段内向其所服务的第二终端发送的信号至少部分地相同。
  13. 根据权利要求10或11所述的设备,其中,所述处理电路还被配置为:生成用于指示所述第一终端的接收方式的指示信息,以通知给所述第一终端,其中所述接收方式包括所确定的时间段和所述第一终端将使用的天线模式中的至少一个。
  14. 根据权利要求8所述的设备,其中,所述设备被实现为所述第一基站。
  15. 一种由第一基站执行的便利于干扰消除的方法,包括:
    从所述第一基站所服务的一个或多个终端接收位置信息;
    根据接收的所述位置信息识别位于所述第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围的第一终端,其中,由所述第一基站服务的所述第一终端能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端;以及
    与所述至少一个第二基站进行协作,以确定用于所述第一终端的下行传输方式,使得所述第一终端能够通过执行干扰消除来接收信号。
  16. 根据权利要求15所述的方法,其中,所述第一基站的天线数目大于所述第一终端的天线数目,所述第二基站的天线数目大于或等于相应的第二终端的天线数目的二倍。
  17. 根据权利要求15所述的方法,还包括:
    从所述第一终端获取所述第一终端的天线数目;
    从所述至少一个第二基站获取所述至少一个第二基站的天线数目和所述至少一个第二终端的天线数目;
    根据所述第一基站的天线数目、所述第一终端的天线数目、所述至少一个第二基站的天线数目和所述至少一个第二终端的天线数目,确定至少一个时间段;
    基于所述至少一个时间段控制向所述第一终端的下行传输,使得所述第一终端在所述至少一个时间段中的每个时间段内仅接收到来自所述至少一个第二基站中的一个的信号。
  18. 一种用于干扰消除的电子装置,所述电子装置包括处理电路,所述处理电路被配置为:
    进行控制以向服务于第一终端的第一基站报告所述第一终端的位置信息和天线数目;以及
    根据来自所述第一基站的指示信息,确定所述第一终端将要采用的接收方式,以及控制所述第一终端执行干扰消除处理,
    其中,所述指示信息由所述第一基站至少根据所述第一终端的位置信息和天线数目而生成,
    其中,所述第一终端位于所述第一基站的覆盖范围内且邻近至少一个 第二基站的覆盖范围,并且能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端。
  19. 根据权利要求18所述的电子装置,其中,所述第一基站的天线数目大于所述第一终端的天线数目,所述第二基站的天线数目大于或等于其所服务的第二终端的天线数目的二倍。
  20. 根据权利要求18所述的电子装置,其中,所述第二基站的数目为一个,所述处理电路还被配置为:
    控制所述第一终端在所述指示信息指示的第一时间段内通过切换不同的天线模式来接收信号,其中,在所述第一时间段内接收的信号包括来自所述第一基站的信号以及来自所述第二基站的信号;
    控制所述第一终端在所述指示信息指示的第二时间段内利用与所述第一时间段内所采用的天线模式对应的天线模式来接收信号,其中,在所述第二时间段内接收的信号仅包括来自所述第二基站的信号;
    利用在所述第二时间段内接收的信号对在所述第一时间段内接收的信号进行处理。
  21. 根据权利要求18所述的电子装置,其中,所述第二基站的数目为多个,所述处理电路还被配置为:
    控制所述第一终端在所述指示信息指示的第一时间段内通过切换不同的天线模式来接收信号,其中,在所述第一时间段内接收的信号包括来自所述第一基站的信号以及来自所述多个第二基站的信号;
    控制所述第一终端在所述指示信息指示的多个第二时间段中的每个时间段内利用与所述第一时间段内所采用的天线模式对应的天线模式来接收信号,其中,在所述多个第二时间段中的每个时间段内接收的信号仅包括来自所述多个第二基站中的一个的信号;
    利用在所述多个第二时间段内接收的信号对在所述第一时间段内接收的信号进行处理。
  22. 根据权利要求20或21所述的电子装置,其中,所述处理电路还被配置为:从所述第一时间段内接收的信号中消去在所述第二时间段内接收的信号,并根据所得的信号来恢复数据。
  23. 根据权利要求20或21所述的电子装置,其中,在每个所述第 二时间段内接收的信号与发送所述信号的第二基站在所述第一时间段内向其所服务的第二终端发送的信号至少部分地相同。
  24. 根据权利要求18所述的电子装置,其中,所述电子装置被实现为所述第一终端的部件。
  25. 一种用于干扰消除的设备,所述设备包括:
    多个天线,被配置为能够以多种天线模式来发送和接收信号;以及
    处理电路,所述处理电路被配置为:
    进行控制以向服务于第一终端的第一基站报告所述第一终端的位置信息和天线数目;以及
    根据来自所述第一基站的指示信息,确定所述第一终端将要采用的接收方式,以及控制所述第一终端执行干扰消除处理,
    其中,所述指示信息由所述第一基站至少根据所述第一终端的位置信息和天线数目而生成,
    其中,所述第一终端位于所述第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围,并且能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端。
  26. 根据权利要求25所述的设备,其中,所述第一基站的天线数目大于所述第一终端的天线数目,所述第二基站的天线数目大于或等于其所服务的第二终端的天线数目的二倍。
  27. 根据权利要求25所述的设备,其中,所述第二基站的数目为一个,所述处理电路还被配置为:
    控制所述第一终端在所述指示信息指示的第一时间段内通过切换不同的天线模式来接收信号,其中,在所述第一时间段内接收的信号包括来自所述第一基站的信号以及来自所述第二基站的信号;
    控制所述第一终端在所述指示信息指示的第二时间段内利用与所述第一时间段内所采用的天线模式对应的天线模式来接收信号,其中,在所述第二时间段内接收的信号仅包括来自所述第二基站的信号;
    利用在所述第二时间段内接收的信号对在所述第一时间段内接收的信号进行处理。
  28. 根据权利要求25所述的设备,其中,所述第二基站的数目为多个,所述处理电路还被配置为:
    控制所述第一终端在所述指示信息指示的第一时间段内通过切换不同的天线模式来接收信号,其中,在所述第一时间段内接收的信号包括来自所述第一基站的信号以及来自所述多个第二基站的信号;
    控制所述第一终端在所述指示信息指示的多个第二时间段中的每个时间段内利用与所述第一时间段内所采用的天线模式对应的天线模式来接收信号,其中,在所述多个第二时间段中的每个时间段内接收的信号仅包括来自所述多个第二基站中的一个的信号;
    利用在所述多个第二时间段内接收的信号对在所述第一时间段内接收的信号进行处理。
  29. 根据权利要求27或28所述的设备,其中,所述处理电路还被配置为:从所述第一时间段内接收的信号中消去在所述第二时间段内接收的信号,并根据所得的信号来恢复数据。
  30. 根据权利要求25所述的设备,其中,所述第一终端的天线数目与所述第二终端的天线数目不同。
  31. 根据权利要求27或28所述的设备,其中,所述第一时间段和所述第二时间段是由所述第一基站基于所述第一基站的天线数目、所述第一终端的天线数目、所述至少一个第二基站的天线数目和所述至少一个第二终端的天线数目来确定的。
  32. 根据权利要求25所述的设备,其中,所述设备被实现为所述第一终端。
  33. 一种由第一终端执行的干扰消除的方法,所述方法包括:
    向服务于所述第一终端的第一基站报告所述第一终端的位置信息和天线数目;
    从所述第一基站接收指示信息;以及
    根据所述指示信息,确定所述第一终端将要采用的接收方式,以及执行干扰消除处理,
    其中,所述指示信息由所述第一基站至少根据所述第一终端的位置信息和天线数目而生成,
    其中,所述第一终端位于所述第一基站的覆盖范围内且邻近至少一个第二基站的覆盖范围,并且能够接收到来自所述至少一个第二基站的干扰信号,其中,在所述至少一个第二基站中的每个第二基站的覆盖范围内存在由相应第二基站服务的、远离所述第一基站的覆盖范围的第二终端。
  34. 根据权利要求33所述的方法,其中,所述第一基站的天线数目大于所述第一终端的天线数目,所述第二基站的天线数目大于或等于其所服务的第二终端的天线数目的二倍。
  35. 根据权利要求33所述的方法,还包括:
    在所述指示信息指示的第一时间段内通过切换不同的天线模式来接收信号,其中,在所述第一时间段内接收的信号包括来自所述第一基站的信号以及来自所述至少一个第二基站的信号;
    在所述指示信息指示的至少一个第二时间段中的每个时间段内利用与所述第一时间段内所采用的天线模式对应的天线模式来接收信号,其中,在所述至少一个第二时间段中的每个时间段内接收的信号仅包括来自所述至少一个第二基站中的一个的信号;
    利用在所述至少一个第二时间段内接收的信号对在所述第一时间段内接收的信号进行处理。
  36. 根据权利要求35所述的方法,还包括:从所述第一时间段内接收的信号中消去在所述至少一个第二时间段内接收的信号,并根据所得的信号来恢复数据。
  37. 根据权利要求33所述的方法,其中,所述第一终端的天线数目与所述第二终端的天线数目不同。
PCT/CN2017/086063 2016-06-24 2017-05-26 无线通信方法和无线通信设备 WO2017219825A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197001946A KR20190022672A (ko) 2016-06-24 2017-05-26 무선 통신 방법 및 무선 통신 디바이스
US16/310,486 US10863519B2 (en) 2016-06-24 2017-05-26 Wireless communication method and wireless communication device
CN201780023126.2A CN109478907A (zh) 2016-06-24 2017-05-26 无线通信方法和无线通信设备
EP17814563.7A EP3477872A4 (en) 2016-06-24 2017-05-26 WIRELESS COMMUNICATION METHOD AND WIRELESS COMMUNICATION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610474664.0A CN107547120A (zh) 2016-06-24 2016-06-24 无线通信方法和无线通信设备
CN201610474664.0 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017219825A1 true WO2017219825A1 (zh) 2017-12-28

Family

ID=60783763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086063 WO2017219825A1 (zh) 2016-06-24 2017-05-26 无线通信方法和无线通信设备

Country Status (5)

Country Link
US (1) US10863519B2 (zh)
EP (1) EP3477872A4 (zh)
KR (1) KR20190022672A (zh)
CN (2) CN107547120A (zh)
WO (1) WO2017219825A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019128579A1 (zh) * 2017-12-29 2019-07-04 维沃移动通信有限公司 干扰处理方法、用户终端和网络侧设备
WO2021000777A1 (zh) * 2019-07-04 2021-01-07 维沃移动通信有限公司 上行发送处理方法、信息配置方法和相关设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814137B (zh) * 2019-02-26 2023-07-14 腾讯科技(深圳)有限公司 定位方法、装置和计算设备
US10862558B1 (en) * 2019-10-25 2020-12-08 GM Global Technology Operations LLC Vehicle telematics systems with MIMO antenna selection based on channel state information
CN113692046B (zh) * 2021-07-15 2023-03-24 上海闻泰信息技术有限公司 标签定位方法、装置、计算机设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104703212A (zh) * 2013-12-06 2015-06-10 索尼公司 无线通信系统中的装置、无线通信系统和方法
CN104811946A (zh) * 2014-01-29 2015-07-29 北京三星通信技术研究有限公司 处理干扰信号的方法及设备
CN104956610A (zh) * 2013-01-30 2015-09-30 瑞典爱立信有限公司 网络节点、无线终端以及其中的方法
CN105264800A (zh) * 2013-06-13 2016-01-20 三星电子株式会社 控制无线通信系统中的干扰的方法和装置
CN105407474A (zh) * 2014-09-04 2016-03-16 北京三星通信技术研究有限公司 一种资源管理方法及基站
CN105592552A (zh) * 2014-10-21 2016-05-18 中兴通讯股份有限公司 联合干扰抑制方法及装置、实现上行CoMP方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531583A (ja) * 2007-06-21 2010-09-24 クゥアルコム・インコーポレイテッド セルラ通信ネットワークにおいて基地局の位置を判定する方法及び装置
CN102075294B (zh) * 2011-01-12 2018-05-01 中兴通讯股份有限公司 一种协作预编码方法及系统
US8781400B2 (en) * 2011-06-30 2014-07-15 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for reducing co-channel interference
US9749935B2 (en) * 2012-03-09 2017-08-29 Samsung Electronics Co., Ltd. Methods and apparatus for cell scanning in system with large number of antennas
US9078276B2 (en) * 2012-11-13 2015-07-07 Telefonaktiebolaget L M Ericsson (Publ) Scheduling and rate control coordination accounting for interference cancellation at a mobile terminal
US9106280B2 (en) * 2013-04-15 2015-08-11 Broadcom Corporation Pilot design for massive MIMO communication
AU2014371774B2 (en) * 2013-12-24 2017-05-11 Sony Corporation Wireless communication apparatus, communication control apparatus, wireless communication method, and communication control method
US9596014B2 (en) * 2014-01-28 2017-03-14 Lg Electronics Inc. Method and apparatus for cancelling interference
US10117261B2 (en) * 2014-10-13 2018-10-30 Futurewei Technologies, Inc. Device, network, and method for communications with carrier sensing and coexistence
US10389509B2 (en) * 2015-07-30 2019-08-20 Futurewei Technologies, Inc. Multi-user, full duplex in-band communication in wireless networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104956610A (zh) * 2013-01-30 2015-09-30 瑞典爱立信有限公司 网络节点、无线终端以及其中的方法
CN105264800A (zh) * 2013-06-13 2016-01-20 三星电子株式会社 控制无线通信系统中的干扰的方法和装置
CN104703212A (zh) * 2013-12-06 2015-06-10 索尼公司 无线通信系统中的装置、无线通信系统和方法
CN104811946A (zh) * 2014-01-29 2015-07-29 北京三星通信技术研究有限公司 处理干扰信号的方法及设备
CN105407474A (zh) * 2014-09-04 2016-03-16 北京三星通信技术研究有限公司 一种资源管理方法及基站
CN105592552A (zh) * 2014-10-21 2016-05-18 中兴通讯股份有限公司 联合干扰抑制方法及装置、实现上行CoMP方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3477872A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019128579A1 (zh) * 2017-12-29 2019-07-04 维沃移动通信有限公司 干扰处理方法、用户终端和网络侧设备
WO2021000777A1 (zh) * 2019-07-04 2021-01-07 维沃移动通信有限公司 上行发送处理方法、信息配置方法和相关设备

Also Published As

Publication number Publication date
CN109478907A (zh) 2019-03-15
US10863519B2 (en) 2020-12-08
KR20190022672A (ko) 2019-03-06
EP3477872A1 (en) 2019-05-01
EP3477872A4 (en) 2019-05-29
US20190335472A1 (en) 2019-10-31
CN107547120A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
EP3927062A1 (en) Electronic apparatus, wireless communication method and computer-readable medium
KR101537632B1 (ko) 단일 캐리어 셀 애그리게이션을 이용한 공동 전송 CoMP
JP6589977B2 (ja) 無線通信システムにおける装置及び方法
WO2017219825A1 (zh) 无线通信方法和无线通信设备
EP3637918B1 (en) Electronic apparatus, wireless communication device, and wireless communication method
US11664944B2 (en) Electronic apparatus, radio communication method and computer-readable medium for discovery reference signal operations
WO2019096239A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
JP7131549B2 (ja) 無線通信システムにおける電子機器、及び方法
US11750345B2 (en) Electronic device, wireless communication method and computer readable medium
WO2014183660A1 (zh) 干扰协调的参数传输方法及装置、干扰协调方法及装置
CN110521240B (zh) 无线通信方法和无线通信设备
WO2021027802A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2019019964A1 (zh) 电子装置、信息处理设备和信息处理方法
US12041004B2 (en) Electronic device, wireless communication method and computer readable medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197001946

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017814563

Country of ref document: EP

Effective date: 20190124