WO2024093183A1 - 一种器件微功耗智能控制装置、方法、系统及介质 - Google Patents

一种器件微功耗智能控制装置、方法、系统及介质 Download PDF

Info

Publication number
WO2024093183A1
WO2024093183A1 PCT/CN2023/093532 CN2023093532W WO2024093183A1 WO 2024093183 A1 WO2024093183 A1 WO 2024093183A1 CN 2023093532 W CN2023093532 W CN 2023093532W WO 2024093183 A1 WO2024093183 A1 WO 2024093183A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
output
electrical signal
terminal
devices
Prior art date
Application number
PCT/CN2023/093532
Other languages
English (en)
French (fr)
Inventor
于红勇
Original Assignee
深圳市谷粒科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市谷粒科技有限公司 filed Critical 深圳市谷粒科技有限公司
Publication of WO2024093183A1 publication Critical patent/WO2024093183A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25257Microcontroller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the technical field of device micro-power consumption energy-saving control, and in particular to a device micro-power consumption intelligent control device, method, system and medium.
  • the traditional method uses a periodic timer to sleep/wake up the device microcontroller to control the working time of the device, or control the sending of pulse signals to control sleep/wake up. This method can reduce power consumption to a certain extent.
  • the functional characteristics of devices of different types, brands or batches are different. Even the functional characteristics of devices of the same type, brand and batch may be different.
  • the above method is used for power reduction control. This method has the problems of inaccurate control and limited power reduction effect, and sometimes fails to achieve the expected effect.
  • the present application proposes a device, method, system and medium for intelligent control of device micro-power consumption, so as to accurately realize intelligent control of device micro-power consumption and device operating frequency, and improve the power consumption reduction effect of the device.
  • this solution also aims to realize long-term stable operation of system equipment.
  • a device micro-power consumption intelligent control device characterized in that the control device comprises: one or more processing units, n output control terminals, n input detection terminals, where n is the number of control devices;
  • the i-th output control terminal of the controller is electrically connected to the power input terminal of the i-th control device;
  • the i-th input detection terminal of the controller is electrically connected to the output terminal of the corresponding i-th device;
  • the output end of the i-th device is electrically connected to one end of a MOS tube or a resistor; the data output end of the MOS tube or the other end of the resistor serves as an output end for inputting signals to a peripheral circuit;
  • the MOS tube is an NMOS tube; the S pole of the i-th NMOS tube connected to the i-th device is connected to the output end of the i-th device; the G pole of the i-th NMOS tube is connected to the i-th output control end of the controller; the D pole of the i-th NMOS tube is grounded after being connected through a capacitor, and the D pole of the i-th NMOS tube serves as the output end of the i-th device to input signals to the peripheral circuit.
  • control device also includes a comparison unit; the comparison unit is used to compare the electrical signal value with a preset electrical signal threshold based on the electrical signal information of the i-th input detection end; if the electrical signal value exceeds the preset electrical signal threshold, the i-th output control end is controlled to stop supplying power to the i-th device.
  • a device micro-power consumption intelligent control method is applied to the above control device, characterized in that the method comprises:
  • the method further includes: initially setting the preset control frequency fi of each device to the initial control frequency f, detecting the electrical signal change information ⁇ ui of each output electrical signal; and adjusting the control frequency fi of the i-th device according to the electrical signal change information ⁇ ui.
  • adjusting the control frequency fi of the i-th device according to the electrical signal change information ⁇ ui includes:
  • the adjustment method of the control frequency fi is determined:
  • Round is the rounding function
  • n is the number of devices
  • Ti1 and Ti2 are the first and second adjustment thresholds of the frequency of each i-th device, respectively
  • Ti1>Ti2 is the adjustment parameter
  • k is the adjustment parameter
  • k ⁇ N is the adjustment parameter
  • ⁇ ui is the change information of ui within the preset detection period.
  • a computer storage medium storing a computer program, the computer program being executed by a processor When the processor executes the above-mentioned method for intelligent control of micro-power consumption of the device.
  • a device micro-power consumption intelligent control system the system comprises the device micro-power consumption intelligent control apparatus as described above, so that the system executes the steps of the device micro-power consumption intelligent control method as described above.
  • the device micro-power consumption intelligent control device controls the output end to provide a preset power supply electrical signal to the power input end of the connected device at a preset frequency, it controls the corresponding input detection end in real time to detect the output electrical signal information of the device, and controls the on and off of the power supply of the output control end according to the information of the detection end, so that the system device can not only work at the preset frequency, but also accurately control the working time of the device, so that the device can control the power consumption close to the limit while meeting normal work, thereby achieving better power consumption reduction effect.
  • the present application scheme further adopts the above-mentioned scheme to control the power supply time and duration of each device through interval time-sharing, so that the system can achieve the effect of long-term stable operation of the power supply micro-system equipment while adopting different devices or high-power devices for micro-power consumption.
  • the present application scheme further adjusts the operating frequency of each device by detecting the changes in the output voltage, so that the system can simultaneously take into account the reduction of device power consumption and intelligently improve the real-time and accuracy of the output data of each device.
  • FIG1 is a circuit connection block diagram of a device micro-power consumption intelligent control device in one embodiment
  • FIG2 is a timing diagram of a device micro-power consumption intelligent control device in one embodiment
  • FIG. 3 is another connection block diagram of a circuit of a device micro-power consumption intelligent control device in one embodiment
  • FIG4 is a structural diagram of a device micro-power consumption intelligent control apparatus in one embodiment
  • FIG5 is a block diagram of a method for intelligently controlling device micro-power consumption in one embodiment.
  • a device micro-power consumption intelligent control device comprising: one or more processing units, a storage unit, n output control terminals, and n input detection terminals.
  • the intelligent control device can be a device comprising a processing unit, one or more input terminals, one or more A control device for each output terminal.
  • the control device is configured to perform output control on one or more devices to achieve the effect of micro-power consumption of the working device and long-term stable operation of the battery-powered micro-system equipment, and can adjust the working frequency of each device to intelligently improve the real-time and accuracy of the output data of each device.
  • the device can be various data acquisition devices, and also some relatively high-power passive devices, such as: optoelectronic devices, pressure sensors, linear Hall sensors and other devices.
  • the intelligent control device of the present application is configured as:
  • the i-th output control terminal of the controller is electrically connected to the power input terminal of the i-th control device;
  • the i-th input detection terminal of the controller is electrically connected to the output terminal of the corresponding i-th device;
  • the output end of the i-th device is electrically connected to one end of a MOS tube or a resistor; the data output end of the MOS tube or the other end of the resistor serves as an output end for inputting a signal to a peripheral circuit and is connected to a preset capacitor;
  • the controller can set the control frequency fi and fi +1 according to the actual situation to supply power to the device i and the device i+1 respectively, so that each device can be controlled by the controller to collect data or work according to the above preset frequency.
  • fi and fi +1 can be the same or different, and can be set to the corresponding fixed working frequency by the controller, or the frequency can be automatically adjusted according to the data of the detection device, and the intelligent and precise control of the device working frequency is realized by the above method.
  • the MOS tube is an NMOS tube; the S pole of the NMOS tube connected to the i-th device is connected to the output terminal of the i-th device, so that the controller can output the control signal to the output terminal of the i-th device.
  • the first terminal provides a power supply signal to the device and controls the NMOS to start working; the G pole of the i-th NMOS tube is connected to the i-th output control terminal of the controller; the D pole of the i-th NMOS tube is grounded after being connected through a capacitor, and the D pole of the i-th NMOS tube serves as the output terminal of the i-th device to input signals to the peripheral circuit.
  • the above-mentioned NMOS tube is arranged at the output end of the device.
  • the controller supplies power through the output end, the corresponding NMOS tube is turned on and charges the corresponding capacitor.
  • the NMOS tube is not turned on, thereby preventing the capacitor from being discharged.
  • the voltage can also be maintained for peripheral equipment detection, and the controller MCU will not make misjudgments due to the charging and discharging of the capacitor during detection.
  • control device also includes a comparison unit; the comparison unit is used to compare the electrical signal value with a preset electrical signal threshold based on the electrical signal information of the i-th input detection end; if the electrical signal value exceeds the preset electrical signal threshold, the i-th output control end is controlled to stop supplying power to the i-th device.
  • control device controls the n devices in a time-sharing manner at intervals until the control of all the n devices is completed within a preset time interval.
  • the processing unit cyclically and intervally controls the n devices in time-sharing mode.
  • the processing unit cyclically controls the i-th output terminal to provide a preset power supply signal to the power input terminal of the i-th device at a preset control frequency fi, where fi is the control frequency of the i-th device.
  • the processing unit time-sharingly controls the i+ 1-th device at a frequency fi+1 after the corresponding interval, and cyclically and intervally controls the n devices in time-sharing mode until the control of all n devices is completed within a preset time interval.
  • FIG1 shows an implementation method in the implementation scheme of the present application.
  • U1 is a micro-power intelligent control device
  • U2 and U3 are electronic devices respectively.
  • U1 is a power chip control device
  • U2 and U3 are Hall sensors
  • U1 is configured to include a first input detection terminal, a first output control terminal, a second input detection terminal, a second output control terminal, a power supply terminal and a ground terminal.
  • the power supply end of U1 is electrically connected to the external power supply VCC, and the external power supply VCC is connected to the ground through the external capacitor C3 for filtering and voltage regulation control;
  • the first and second output control ends of the controller U1 are electrically connected to the power supply ends of the devices U2 and U3, respectively, and the first and second input detection ends of U1 are electrically connected to the output ends of the devices U2 and U3, respectively.
  • the data output ends of the devices U2 and U3 are also respectively provided with MOS tubes Q1 and Q2 connected thereto.
  • the MOS tubes are NMOS tubes, and the S poles (sources) of the MOS tubes Q1 and Q2 are respectively connected to the output ends of the devices U2 and U3; the G poles (gates) of the MOS tubes Q1 and Q2 are respectively connected to the first and second output control ends of the controller U1, so that when the controller U1 provides a power supply signal to U2/U3 through the first/second output control end, Q1/Q2 is controlled to start working; the D poles (drains) of the MOS tubes Q1 and Q2 are respectively connected to ground through capacitors C1 and C2, and the D poles (drains) of the MOS tubes Q1 and Q2 serve as output ends of U2 and U3 for signals to the peripheral circuit.
  • the working principle of the designed connection circuit is as follows: when the controller U1 provides a power supply signal to U2/U3 through the first/second output control terminal, it controls Q1/Q2 to start working and the D and S poles are turned on. At this time, the output voltage of the device charges C1/C2. When the controller stops supplying power, Q1/Q2 is not turned on, the D and S poles are cut off, C1/C2 can remain undischarged, and stably provide output data to the peripheral circuit. It can also prevent the detection end from being affected by the discharge of the capacitor during detection, causing the controller MCU to misjudge. When it is turned on next time, C1/C2 can be discharged instantly (using the execution cycle of the controller), so that C1/C2 can be recharged and maintained according to the output voltage of U2/U3.
  • processing unit of the controller U1 executes the following steps to implement control of the devices U2 and U3:
  • Step 1 Power supply VCC is powered on, capacitor C is charged, and power is supplied to controller U1, which starts working after self-check.
  • Step 2 The controller U1 controls the first input detection terminal AD1 interface to detect the output pin voltage of the Hall sensor U2. If the output pin voltage is lower than the set voltage value, the controller U1 controls the first output control terminal PA1 to power the Hall sensor U2. At this time, the controller U1 controls the first input detection terminal AD1 to detect the output voltage value of the Hall sensor U2 in real time. If the monitored output voltage exceeds the set voltage value, the controller U1 controls the PA1 port to stop powering the Hall sensor U2.
  • Step 3 The controller U1 controls the second input detection terminal AD2 interface to detect the output pin voltage of the Hall sensor U3. If the output pin voltage is lower than the set voltage value, the controller U1 controls the second output terminal PA2 to power the Hall sensor U3. At this time, the controller U1 controls the second input detection terminal AD2 to detect the voltage value of the Hall sensor U3 in real time. If the monitored output exceeds the set voltage value, U1 controls the second output terminal PA2 to stop powering the Hall sensor U3.
  • Step 4 Return to step 2 and execute control cyclically according to the preset control frequency of each device.
  • the monitored first output control terminal PA1 and the second output control terminal PA2 supply power to the first device and the second device.
  • the scheme of the present application allows the first device and the second device to work normally or collect data, so that the power supply time is controlled within a very short time, which greatly reduces the power consumption of the entire system and also improves the stable working time of the system including high-power devices or multiple devices.
  • FIG3 is another implementation method in the embodiment of the present application.
  • U1 is a micro-power intelligent control device, U2 and U3 are electronic devices.
  • U1 is a power chip control device, U2 and U3 are Hall sensors, and U1 is configured to include a first input detection terminal, a first output control terminal, a second input detection terminal, and a second output control terminal.
  • the external power supply VCC is electrically connected to the ground through an external capacitor C to perform filtering and voltage stabilization control.
  • the first output control terminal of the controller U1 is electrically connected to the power supply terminal of the device U2, and the data output terminal of U2 is connected to one end of the resistor R1 and the first input detection terminal of U1, and the other end of the resistor R1 is electrically connected to the capacitor C1 and then grounded;
  • the second output control terminal of the controller U1 is electrically connected to the power supply terminal of the device U3, and the data output terminal of U3 is connected to one end of the resistor R2 and the second input detection terminal of U1, and the other end of the resistor R2 is connected to the capacitor C2 and then grounded;
  • the processing unit of the controller U1 executes the above steps 1 to 4 to realize the control of the devices U2 and U3.
  • the output terminal of the i-th device is connected to the resistor Ri, and the other end of the resistor is connected to the capacitor Ci and the i-th input detection terminal of the control device; so that the noise generated when the interval time-sharing control device is working or when the device is working for other reasons is filtered out.
  • the processing unit controls the i-th output control terminal to stop supplying power to the i-th device or in the next execution cycle, and controls the i-th input detection terminal to stop data detection.
  • the device can be controlled to collect data or work at a set frequency, and when the device successfully collects data or has data output, the corresponding output end is controlled to stop supplying power to the device in the first time, so that the power consumption of the device is controlled close to the limit.
  • the existing micro-power control it has a better power consumption reduction effect, and can also include multiple devices or high-power devices to ensure that the entire system can work stably for a long time.
  • the controller involved in this application can be implemented by using the structure shown in Figure 4.
  • the solution of this application has good applicability in various application scenarios.
  • the controller involved in this application may include but is not limited to: programmable control chip (such as power control chip), single-chip microcomputer, programmable logic control device, etc.
  • the storage unit can store the corresponding control computer program and control parameters so that the processing unit can control each device when executing the program.
  • the solution or logic implementation of this application can also realize the control of the device through or in combination with the corresponding hardware circuit.
  • the working or data collection frequency of each device is adjusted, so that the real-time and accuracy of data collection and output of each device can be intelligently improved while the device has good micro power consumption.
  • the control scheme of the control device of the present application can reduce the power consumption of multiple sensor devices to 1/20 or more of the original, and the whole detection work is not affected.
  • the high-power device system can also work stably for a long time.
  • the power supply frequency will be automatically adjusted in real time according to the speed of the sensor response time. It is suitable for occasions where multiple sensor models are used, different types of sensors are mixed, and individual differences of sensors are relatively large.
  • the present application further provides a device micro-power consumption intelligent control method, which is applied to the above-mentioned control device, and is characterized in that the method includes:
  • the initial control frequency f can be determined according to the working characteristics of each connecting device, and its selection and setting can meet the working characteristics of each device.
  • Cyclic control of the i- th output terminal to provide a preset power supply signal to the power input terminal of the i-th device at a preset control frequency fi, where fi is the control frequency of the i-th device.
  • the controller can control the power supply to device i in a cycle according to the preset control frequency fi by controlling the corresponding output end to trigger the power-on of the i-th device.
  • the i-th device starts to power on.
  • the working characteristics of each device are different. Even different devices of the same type and the same batch may have different power-on time and the time to enter normal operation. Therefore, the present application scheme continuously supplies power to the i-th device through the i-th output end, and starts controlling the i-th input detection end to execute step S3.
  • the step S3 may be to start controlling the i-th input detection to control the i-th input detection end to detect the output electrical signal information ui of the i-th device in real time while the controller controls the i-th output control end to supply power to the i-th device, or to start controlling the i-th input detection end to control the i-th input detection end to detect the output electrical signal information ui of the i-th device after the controller controls the i-th output control end to supply power to the i-th device.
  • the i-th input detection is started to control the i-th input detection end to detect the output electrical signal information ui of the i-th device in real time.
  • the present application determines whether the current i-th device has successfully obtained data output by real-time detection of the electrical signal information detected by the i-th input detection end. For example, for a sensor, when it successfully collects data, the sensor will output corresponding electrical signal information, such as a voltage signal. The output voltage signal will be higher than a certain voltage threshold (such as 0.3v). The voltage threshold of each sensor is different, and the size of its output data will be related to the size of its collected data. Therefore, the present application can know whether the current device has successfully obtained data by real-time detection of whether the data at its data output end is higher than the preset electrical signal threshold.
  • a certain voltage threshold such as 0.3v
  • the controller controls the i-th output control end to stop supplying power to the i-th device.
  • the controller can control the i-th output control end to stop supplying power to the i-th device after a certain time (such as 10-100 ⁇ s).
  • the comparison electrical signal threshold of each device can be set differently, which can be set according to the sensitivity and working parameters of the device.
  • step S4 when it is detected that the electrical signal exceeds a preset electrical signal value and the i-th output control terminal is controlled to stop supplying power to the i-th device, the i-th input detection terminal is also controlled to stop data detection.
  • the device can be controlled to collect data or work at a set frequency, and when the device successfully collects data or has data output, the corresponding output end is controlled to stop supplying power to the device in the first time, so that the power consumption of the device is controlled close to the limit, thereby achieving a better power consumption reduction effect.
  • the controller can determine whether the power supply time of the current device reaches the preset time interval ⁇ t. If reached, the corresponding output end is automatically controlled to stop supplying power to the current device, and then control the next device, so that each device can work in an orderly and stable manner.
  • the method further comprises: detecting electrical signal change information ⁇ ui of each output electrical signal; and adjusting the control frequency fi of the i-th device according to the electrical signal change information ⁇ ui.
  • adjusting the control frequency fi of the i-th device according to the electrical signal change information ⁇ ui includes:
  • the adjustment method of the control frequency fi is determined:
  • Round is the rounding function
  • n is the number of devices
  • Ti1 and Ti2 are the first and second adjustment thresholds of the frequency of each i-th device, respectively
  • Ti1>Ti2 k is the adjustment parameter, k ⁇ N
  • the present application scheme adjusts the operation or data acquisition of each device by detecting the change information of the electrical signal.
  • the integrated frequency can improve the real-time and accuracy of data acquisition and output of each device while ensuring the micro power consumption of the device. When multiple devices are working or collecting data, it ensures that the entire system can work stably for a long time.
  • the present application provides a computer storage medium storing a computer program.
  • the processor executes the method for intelligent control of micro-power consumption of the device.
  • the present application also provides a device micro-power consumption intelligent control system, the system comprising the device micro-power consumption intelligent control apparatus as described above, so that the system executes the steps of the device micro-power consumption intelligent control method described above.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM) or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM random access memory
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • Synchronization link synchronous link
  • SLDRAM RAMbus direct RAM
  • DRAM RAMbus direct dynamic RAM
  • DRAM RAMbus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Sources (AREA)

Abstract

一种器件微功耗智能控制装置U1,通过控制装置U1按预设频率控制输出控制端PA1-2向连接器件U2-3的电源输入端VDD提供预设供电电信号后,实时控制对应输入检测端AD1-2检测器件U2-3的输出电信号信息,进而控制输出控制端PA1-2的供电的通断,使得器件U2-3不仅能按照预设的频率进行工作,还能精准控制器件U2-3的工作时长,使得器件U2-3在满足正常工作的同时,功耗控制在接近极限附近,进而达到更好的降功耗效果;通过间隔分时控制各个器件U2-3的供电,并通过检测输出电压的变化情况,来调节各个器件U2-3的工作频率,实现电池供电微型系统设备长时间稳定工作的效果。

Description

一种器件微功耗智能控制装置、方法、系统及介质 技术领域
本申请涉及器件微功耗节能控制技术领域,具体而言,涉及一种器件微功耗智能控制装置、方法、系统及介质。
背景技术
在电子电路系统及嵌入式应用系统中,降低器件的功耗是关键问题之一,在满足实现正常、稳定系统功能的前提下,如何使得系统的电子器件微功耗化,已成为行业日益关切的问题。传统的方法中采用周期定时休眠/唤醒器件器件微控制器来器件的工作时间,或控制发送脉冲信号,控制休眠/唤醒,这种方式可以在一定程度上降低功耗,然而,不同类型不同品牌或者不同批次的器件的功能特性有所差异,即使同一类型同一品牌同一批次的器件的功能特性也有可能表现不同,采用上述的方法进行降功耗控制,该方法存在控制不精准、降功耗效果有限的问题,有时达不到预期的效果。
此外,对于器件特别是功率相对大的被动器件(比如:光电器件、压力传感器、线性霍尔传感器等器件),其一个或多个器件接入电路系统工作时,由于其功率相对较大,工作一段时间后往往可能使得整个系统设备没法进行长时间稳定工作,因此在进行微功耗化时,也面临着如何精准控制及如何实现电池供电微型系统设备长时间稳定工作的问题。
发明内容
基于此,针对现有的电子电路系统中存在的上述问题,本申请提出了一种器件微功耗智能控制装置、方法、系统及介质,以精准实现器件微功耗及器件工作频率的智能控制,提升器件的降功耗效果,此外,本方案还旨在实现系统设备长时间稳定工作。
本申请的目的是通过以下技术方案实现的:
一种器件微功耗智能控制装置,其特征在于,所述控制装置包括:一个或多个处理单元、n个输出控制端、n个输入检测端,n为控制器件的数量;
所述控制器的第i输出控制端与第i控制器件的电源输入端电性连接;
所述控制器的第i输入检测端与对应第i器件的输出端电性连接;
所述第i器件的输出端与MOS管或电阻的一极电性连接;所述MOS管的数据输出极或电阻的另一端作为向外围电路输入信号的输出端;
所述处理单元按预设控制频率控制第i输出端向所述第i器件的电源输入端提供预设供电电信号后,控制第i输入检测端实时检测第i所述器件的输出端的电信号信息,并根据所述第i输入检测端的电信号信息,控制所述第i输出控制端的输出供电的通断;其中,i=1…n,n≥1。
进一步地,所述MOS管为NMOS管;与所述第i器件连接的第i NMOS管的S极与所述第i器件的输出端连接;所述第i NMOS管的G极与所述控制器的第i输出控制端连接;所述第i NMOS管的D极通过电容连接后接地,且所述第i NMOS管的D极端作为第i器件向外围电路输入信号的输出端。
进一步地,所述控制装置还包括比较单元;所述比较单元用于根据所述第i输入检测端的电信号信息,并将所述电信号值与预设电信号阈值进行比较;若所述电信号值超过预设电信号阈值,则控制所述第i输出控制端停止向所述第i器件供电。
一种器件微功耗智能控制方法,所述方法应用于上述控制装置中,其特征在于,所述方法包括:
S1、确定初始控制频率f;
S2、按预设控制频率fi循环控制所述第i输出端向所述第i器件的电源输入端提供预设供电电信号,所述fi为第i器件的控制频率;
S3、实时控制所述第i输入检测端检测所述第i器件的输出电信号信息ui;
S4、判断所述输出信号信息ui是否超过预设阈值,若是,则控制所述第i输出控制端停止向所述第i器件供电;
S5、重复所述步骤S2-S4按预设间隔△t分时控制i+1器件,直到一个时间间隔内1/f执行完对所有n个器件的控制;其中i=1…n,n≥1。
进一步地,所述预设时间间隔△t=1/nf,且所述各器件的供电时间小于Δt。
进一步地,所述步骤S4之后,所述方法还包括:将所述各器件的预设控制频率fi初始设置为所述初始控制频率f,检测各输出电信号的电信号变化信息△ui;根据所述电信号变化信息△ui,调整所述第i器件器件的控制频率fi
具体地,所述根据所述电信号变化信息△ui,调整所述第i器件器件的控制频率fi,包括:
根据所述电信号变化信息△ui与预设阈值的比较结果,并结合当前控制频率fi与初始控制频率f的关系,确定所述控制频率fi的调整方式:
若所述fi=f,则:
若所述fi<f,则:
若所述fi>f,则:
其中,Round为四舍五入取整函数,n为器件的数量,Ti1、Ti2分别为第i各器件频率第一、第二调整阈值,且Ti1>Ti2,k为调节参数,k∈N,△ui为预设检测周期内ui的变化信息。
一种计算机存储介质,存储有计算机程序,所述计算机程序被处理器执行 时,使得所述处理器执行上述器件微功耗智能控制的方法。
一种器件微功耗智能控制系统,所述系统包括如上述的器件微功耗智能控制装置,使得所述系统执行上述器件微功耗智能控制方法的步骤。
本申请方案中,器件微功耗智能控制装置按预设频率控制输出端向连接器件的电源输入端提供预设供电电信号后,实时控制对应输入检测端检测所述器件的输出电信号信息,并根据所述检测端的信息,控制所述输出控制端的供电的通断,使得系统器件不仅能按照预设的频率进行工作,还能精准控制器件的工作时长,使得器件在满足正常工作的同时,功耗控制在接近极限附近,进而达到更好的降功耗效果。
更进一步地,本申请方案进一步采用上述方案通过间隔分时控制各个器件的供电时间及时长,使得系统在采用不同器件或大功率器件进行微功耗化的同时,实现供电微型系统设备长时间稳定工作的效果,此外,本申请方案进一步通过检测输出电压的变化情况,来调节各个器件的工作频率,使得系统能同时兼顾降低器件功耗,并智能提升各个器件输出数据的实时性和精准性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为一个实施例中的器件微功耗智能控制装置电路连接框图;
图2为一个实施例中的器件微功耗智能控制器件的时序图;
图3为一个实施例中的器件微功耗智能控制装置电路另一连接框图
图4为一个实施例中的器件微功耗智能控制装置结构图;
图5为一个实施例中的器件微功耗智能控制方法框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“包括”、“包含”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。在本申请的权利要求书、说明书以及说明书附图中的术语,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体/操作/对象与另一个实体/操作/对象区分开来,而不一定要求或者暗示这些实体/操作/对象之间存在任何这种实际的关系或者顺序。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其他实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其他实施例相结合。
在一个实施方案中,提供了一种器件微功耗智能控制装置,所述控制装置包括:一个或多个处理单元、存储单元、n个输出控制端、n个输入检测端。具体地,所述智能控制装置可以为包含处理单元、一个或多个输入端、一个或多 个输出端端的控制装置。
本申请实施方案中,将所述控制装置配置为对一个或多个器件进行输出控制,以实现工作器件的微功耗化及电池供电微型系统设备长时间稳定工作的效果,并且能够调节各个器件的工作频率,智能提升各个器件输出数据的实时性和精准性。所述器件可以为各种数据采集器件,也为一些功率相对较大的被动器件,例如:光电器件、压力传感器、线性霍尔传感器等器件。具体地,本申请的智能控制装置配置为:
所述控制器的第i输出控制端与第i控制器件的电源输入端电性连接;
所述控制器的第i输入检测端与对应第i器件的输出端电性连接;
所述第i器件的输出端与MOS管或电阻的一极电性连接;所述MOS管的数据输出极或电阻的另一端作为向外围电路输入信号的输出端,并且与预设电容连接;
所述处理单元按预设控制频率控制第i输出端向所述第i器件的电源输入端提供预设供电电信号后,控制第i输入检测端实时检测第i所述器件的输出端的电信号信息,并根据所述第i输入检测端的电信号信息,控制所述第i输出控制端的输出供电的通断;其中,i=1…n,n≥1。
通过上述方案,控制器可以根据实际情况设置控制频率fi和fi+1分别给器件i及器件i+1进行供电,使得使得各器件均能通过控制器控制,以按照上述预设的频率进行数据采集或工作。其中fi和fi+1可以相同也可以不同,其可以通过控制器设置为相应的固定工作频率,也可以根据检测器件的数据来自动调节该频率,通过上述方式实现了器件工作频率的智能精确控制。
进一步地,在一个实施例中,所述MOS管为NMOS管;所述第i器件连接的NMOS管的S极与所述第i器件的输出端连接,以在控制器通过输出控制 端向器件提供供电电信号的同时,控制NMOS启动工作;所述第i NMOS管的G极与所述控制器的第i输出控制端连接;所述第i NMOS管的D极通过电容连接后接地,且所述第i NMOS管的D极端作为第i器件向外围电路输入信号的输出端。
本实施例通过在器件输出端设置上述NMOS管,在控制器通过输出端供电时,相应NMOS管导通并给相应电容充电,不供电时,NMOS管不导通,进而防止电容放掉,也可以保持住电压给外围设备检测,并且还可以使得在检测的时候不会因为电容充的放电,造成控制器MCU误判。
进一步地,所述控制装置还包括比较单元;所述比较单元用于根据所述第i输入检测端的电信号信息,并将所述电信号值与预设电信号阈值进行比较;若所述电信号值超过预设电信号阈值,则控制所述第i输出控制端停止向所述第i器件供电。
进一步地,所述n≥2;所述控制装置间隔分时控制所述n个器件,直到一个预设时间间隔内执行完对所有n个器件的控制。
具体地,在一个时间间隔内,处理单元循环间隔分时控制所述n个器件,所述处理单元按预设控制频率fi循环控制所述第i输出端向所述第i器件的电源输入端提供预设供电电信号,fi为第i器件的控制频率,当执行完对i个器件控制后,所述处理单元在对应的间隔后按频率fi+1分时控制第i+1个器件,如此循环执行间隔分时控制所述n个器件,直到一个预设时间间隔内执行完对所有n个器件的控制。
图1所示为本申请实施方案中的一个实施方式,下面以本申请实施方案中n=2的一个具体实施例对本申请方案进行阐述说明,可以理解,本申请方案也可以基于n>2的其他实施例进行实施。
U1为微功耗智能控制装置,U2、U3分别为电子器件,本实施例中U1为电源芯片控制装置,U2、U3均为霍尔传感器,U1被配置为包括第一输入检测端、第一输出控制端、第二输入检测端、第二输出控制端、电源端及接地端。
其中,U1的电源端与外部电源VCC电性连接,外部电源VCC通过外接电容C3与地连接,以进行滤波和稳压控制;控制器U1的第一、第二输出控制端分别与器件U2、U3的电源供电端电性连接,并且U1的第一、第二输入检测端分别与器件U2、U3的输出端电性连接。
器件U2、U3的数据输出端还分别设置连接有MOS管Q1、Q2,优选地,所述MOS管为NMOS管,所述MOS管Q1、Q2的S极(源极)分别与器件的U2、U3的输出端连接;所述MOS管Q1、Q2的G极(栅极)分别与控制器U1的第一、第二输出控制端连接,以在控制器U1通过第一/第二输出控制端向U2/U3提供供电电信号的同时,控制Q1/Q2启动工作;所述MOS管Q1、Q2的D极(漏极)分别通过电容C1、C2连接后接地,并且所述MOS管Q1、Q2的D极(漏极)端作为U2、U3向外围电路信号的输出端。
所述设计连接电路工作原理如下:控制器U1通过第一/第二输出控制端向U2/U3提供供电电信号时,控制Q1/Q2启动工作并D、S极导通,此时器件的输出电压给C1/C2充电,当控制器停止供电时,Q1/Q2不导通,D、S极截止,C1/C2能保持不放电,并稳定向外围电路提供输出数据,还可以使得在检测的时候不会因为电容放电影响到检测端,造成控制器MCU误判,下次导通时,C1/C2可以瞬间(利用控制器的执行周期)放电,进而使得C1/C2能重新根据U2/U3输出电压进行充电保持。
进一步地,控制器U1处理单元执行以下步骤来实现针对器件U2、U3的控制:
步骤1:电源VCC上电,此时电容C充电,同时给控制器U1供电,U1自检后开始工作。
步骤2:控制器U1控制第一输入检测端AD1接口检测霍尔传感器U2的输出脚电压,若输出脚电压低于设定电压值,控制器U1控制第一输出控制端PA1给霍尔传感器U2供电,此时控制器U1控制第一输入检测端AD1实时检测霍尔传感器U2的输出电压值,若所述监测的输出电压超过设定电压值,则控制器U1控制PA1口停止对霍尔传感器U2供电。
步骤3:控制器U1控制第二输入检测端AD2接口检测霍尔传感器U3的输出脚电压,若输出脚电压低于设定电压值,控制器U1控制第二输出端PA2给霍尔传感器U3供电,此时控制器U1控制第二输入检测端AD2实时检测检测霍尔传感器U3电压值,若监测的输出超过设定电压值,U1控制第二输出端PA2口停止对霍尔传感器U3供电。
步骤4:返回步骤2,按各器件预设的控制频率循环执行控制。
如图2所示为通过本申请上述方案的控制后,监测到的第一输出控制端PA1及第二输出控制PA2向第一器件、第二器件供电时序图。从图2可以看出,本申请方案可以让第一器件、第二器件正常工作或数据采集时,使得供电时间控制在很短的时间内,极大的降低了整个系统的功率消耗,也提升了包含大功率器件或多个器件系统稳定工作时间。
图3为本申请实施方案中的另一个实施方式,下面同样以本申请实施方案中n=2的一个具体实施例对本申请方案进行阐述说明:
U1为微功耗智能控制装置,U2、U3分别为电子器件,本实施例中U1为电源芯片控制装置,U2、U3均为霍尔传感器,U1被配置为包括第一输入检测端、第一输出控制端、第二输入检测端、第二输出控制端。其中,U1的电源端与外 部电源VCC电性连接,外部电源VCC通过外接电容C与地连接,以进行滤波和稳压控制,控制器U1的第一输出控制端与器件U2的电源供电端电性连接,同时U2的数据输出端连接电阻R1一端及U1的第一输入检测端,电阻R1的另一端与电容C1进行电性连接后接地;控制器U1的第二输出控制端与器件U3的电源供电端电性连接,同时U3的数据输出端连接电阻R2一端及及U1的第二输入检测端,电阻R2的另一端与电容C2连接后接地;控制器U1处理单元执行上述步骤1-步骤4来实现针对器件U2、U3的控制。通过上述所述第i器件的输出端连接电阻Ri,电阻的另一端连接电容Ci及所述控制装置的第i输入检测端;以使间隔分时控制器件工作时或器件其他原因工作时产生的噪声滤除。
此外,控制器在检测到电信号超过预设电信号值,处理单元控制所述第i输出控制端停止向所述第i器件供电时或下一个执行周期时,控制所述第i输入检测端停止数据检测。
通过本申请方案的控制,可以控制器件在设定频率下数据采集或工作,并且在器件成功采集数据或有数据输出时,第一时间控制相应输出端停止给器件供电,使得器件功耗控制在接近极限附近,相对于现有的微功耗控制放啊具有更好的降功耗效果,并且还能包含多个器件或者大功率器件工作时确保整个系统能进行长时间稳定工作。
本申请涉及的控制器采用包含如图4所示的结构涉及均可以实施,本申请的方案在各应用场景具有较好的适用性,本申请所涉及控制器可以包括但不限于:可编程控制芯片(如电源控制芯片)、单片机、可编程逻辑控制装置等。存储单元可以存储相应的控制计算机程序及控制参数,以被处理单元执行所述程序时,对各器件进行控制,同时,本申请的方案或逻辑实现也可以通过或结合相应的硬件电路实现对器件的控制。
通过上述检测到电信号变化信息来调整各器件的工作或数据采集频率,使得在器件微功耗好的同时,智能提升各个器件数据采集及输出的实时性和精准性。
本申请上述控制装置控制方案,可以让多颗传感器器件功耗降低到原来1/20或者更多,并且整个检测工作正常不受影响,针对大功率器件系统也能长时间稳定工作。供电频率会根据传感器响应时间的快慢,实时自动调节,适合传感器使用多型号、混用不同类型传感器和传感器个体差异比较大的场合。
如图5所示,在一个实施例中,本申请还提供一种器件微功耗智能控制方法,所述方法应用于上述控制装置中,其特征在于,所述方法包括:
S1、确定初始控制频率f。
具体地,初始控制频率f可以根据各个连接器件的工作特性而定,其选择与设定可以满足各个器件的工作特性。
S2、按预设控制频率fi循环控制所述第i输出端向所述第i器件的电源输入端提供预设供电电信号,所述fi为第i器件的控制频率。
具体地,针对每个器件i,控制器可以通过控制相应输出端按照预设控制频率fi循环向器件i进行供电控制,以触发第i器件通电,此时,第i器件开始上电工作,各个器件的工作特性有所不同,即使同一类型同一批次的不同器件的上电时间及进入正常工作的时间有可能存在差异,因此,本申请方案在通过第i输出端向第i器件持续供电,并启动控制第i输入检测端执行步骤S3。
S3、实时控制所述第i输入检测端检测所述第i器件的输出电信号信息ui。
具体地,所述步骤S3,可以在控制器控制第i输出控制端向第i器件供电的同时,启动控制第i输入检测实时控制所述第i输入检测端检测所述第i器件的输出电信号信息ui,也可以在控制器控制第i输出控制端向第i器件供电之后的 预设时间内ti(如:10-50μs,该预设时间ti可以根据各个器件的情况进行确定,如根据各个器件的上电时间参数进行调节),启动控制第i输入检测实时控制所述第i输入检测端检测所述第i器件的输出电信号信息ui。
S4、判断所述输出信号信息ui是否超过预设阈值,若是,则控制所述第i输出控制端停止向所述第i器件供电。
具体地,本申请方案通过实时检测第i输入检测端检测的电信号信息,来确定当前第i器件是否已成功获取数据输出,如针对传感器而言,当其成功采集数据后,传感器会输出相应的电信号信息,如电压信号,该输出电压信号会高于某个电压阈值(如0.3v),各个传感器的电压阈值有所不同,其输出数据的大小会与其采集数据的大小相关。因此,本申请通过实时检测其数据输出端的数据是否高于预设的电信号阈值,便可以获知当前器件是否成功数据,当检测其输出电信号信息大于预设电信号阈值时,控制器便控制控制所述第i输出控制端停止向所述第i器件供电,也可以在检测到输出电信号信息大于预设电信号阈值时,控制器延后一定时间(如10-100μs)控制控制所述第i输出控制端停止向所述第i器件供电。其中,各个器件的比较电信号阈值可以设置不同,其可以根据器件的灵敏度和工作参数进行设定。
进一步地,所述步骤S4中,在检测到电信号超过预设电信号值,控制所述第i输出控制端停止向所述第i器件供电时,还控制所述第i输入检测端停止停止数据检测。
通过上述方法,可以控制器件在设定频率下数据采集或工作,并且在器件成功采集数据或有数据输出时,第一时间控制相应输出端停止给器件供电,使得器件功耗控制在接近极限附近,进而达到更好的降功耗效果。
S5、重复所述步骤S2-S4按预设间隔△t分时控制所述n个器件,直到一个 时间间隔1/f执行完对所有n个器件的控制;其中i=1…n,n≥1。
进一步地,所述预设时间间隔△t=1/nf,且所述各器件的供电时间小于Δt。
具体地,当某个器件因特殊情况造成的输出有误或者控制器检测端未能检测到输出电信号信息时,控制器可以判断当前器件供电时间是否达到预设时间间隔△t,若达到,则自动控制对应输出端停止向当前器件供电,进而控制下一个器件,从而控制各器件能有序稳定工作。
进一步地,所述步骤S4之后,所述方法还包括:检测各输出电信号的电信号变化信息△ui;根据所述电信号变化信息△ui,调整所述第i器件器件的控制频率fi。
具体地,所述根据所述电信号变化信息△ui,调整所述第i器件器件的控制频率fi,包括:
根据所述电信号变化信息△ui与预设阈值的比较结果,并结合当前控制频率fi与初始控制频率f的关系,确定所述控制频率fi的调整方式:
若所述fi=f,则:
若所述fi<f,则:
若所述fi>f,则:
其中,Round为四舍五入取整函数,n为器件的数量,Ti1、Ti2分别为第i各器件频率第一、第二调整阈值,且Ti1>Ti2,k为调节参数,k∈N,k可以为检测电压的变化函数:k=Int(f(Δui)),△ui为预设检测周期内ui的变化信息。
本申请方案通过上述检测到电信号变化信息来调整各器件的工作或数据采 集频率,使得在器件微功耗好的同时,智能提升各个器件数据采集及输出的实时性和精准性,同时包含多个器件工作或数据采集时,确保整个系统能进行长时间稳定工作。
在一个实施例中,本申请方案提供一种计算机存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行上述器件微功耗智能控制的方法。
在一个实施例中,本申请方案还提供一种器件微功耗智能控制系统,所述系统包括如上述的器件微功耗智能控制装置,使得所述系统执行上述器件微功耗智能控制方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)
DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述 实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种器件微功耗智能控制装置,其特征在于,所述控制装置包括:一个或多个处理单元、n个输出控制端、n个输入检测端,n为控制器件的数量;
    所述控制器的第i输出控制端与第i控制器件的电源输入端电性连接;
    所述控制器的第i输入检测端与对应第i器件的输出端电性连接;
    所述第i器件的输出端与MOS管或电阻的一极电性连接;所述MOS管的数据输出极或电阻的另一端作为向外围电路输入信号的输出端;
    所述处理单元按预设控制频率控制第i输出端向所述第i器件的电源输入端提供预设供电电信号后,控制第i输入检测端实时检测第i所述器件的输出端的电信号信息,并根据所述第i输入检测端的电信号信息,控制所述第i输出控制端的输出供电的通断;
    其中,i=1…n,n≥1。
  2. 根据权利要求1所述的装置,其特征在于,所述MOS管为NMOS管;
    与所述第i器件连接的第i NMOS管的S极与所述第i器件的输出端连接;
    所述第i NMOS管的G极与所述控制器的第i输出控制端连接;
    所述第i NMOS管的D极通过电容连接后接地,且所述第i NMOS管的D极端作为第i器件向外围电路输入信号的输出端。
  3. 根据权利要求1所述的装置,其特征在于,所述控制装置还包括比较单元;
    所述比较单元用于根据所述第i输入检测端的电信号信息,并将所述电信号值与预设电信号阈值进行比较;
    若所述电信号值超过预设电信号阈值,则控制所述第i输出控制端停止向所述第i器件供电。
  4. 根据权利要求1-3任一项所述的装置,其特征在于,所述n≥2;
    所述控制装置间隔分时控制所述n个器件,直到一个预设时间间隔内执行 完对所有n个器件的控制。
  5. 一种器件微功耗智能控制方法,所述方法应用于如权利要求1-4任一项的控制装置,其特征在于,所述方法包括:
    S1、确定初始频率f;
    S2、按预设控制频率fi循环控制所述第i输出端向所述第i器件的电源输入端提供预设供电电信号,所述fi为第i器件的控制频率;
    S3、实时控制所述第i输入检测端检测所述第i器件的输出电信号信息ui;
    S4、判断所述输出信号信息ui是否超过预设电信号阈值,若是,则控制所述第i输出控制端停止向所述第i器件供电;
    S5、重复所述步骤S2-S4按预设间隔△t分时控制所述n个器件,直到一个时间间隔内1/f执行完对所有n个器件的控制;
    其中,i=1…n,n≥1。
  6. 根据权利要求5所述的方法,其特征在于,所述预设时间间隔△t=1/nf,且所述各器件的供电时间小于Δt。
  7. 根据权利要求5所述的方法,其特征在于,所述步骤S4之后,所述方法还包括:
    将所述各器件的频率fi初始设置为所述初始控制频率f;
    检测各输出电信号的电信号变化信息△ui;
    根据所述电信号变化信息△ui,调整所述第i器件器件的控制频率fi
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述电信号变化信息Δui,调整所述第i器件器件的控制频率fi,包括:
    根据所述电信号变化信息△ui与预设阈值的比较结果,并结合当前控制频率fi与初始控制频率f的关系,确定所述控制频率fi的调整方式:
    若所述fi=f,则:
    若所述fi<f,则:
    若所述fi>f,则:
    其中,Round为四舍五入取整函数,n为器件的数量,Ti1、Ti2分别为第i各器件频率第一、第二调整阈值,且Ti1>Ti2,k为调节参数,k∈N,△ui为预设检测周期内ui的变化信息。
  9. 一种器件微功耗智能控制系统,所述系统包括如权利要求1-4任一项所述装置,使得所述系统执行如权利要求5至8任一项所述方法的步骤。
  10. 一种计算机存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行如权利要求5至8中任一项所述的方法。
PCT/CN2023/093532 2022-11-01 2023-05-11 一种器件微功耗智能控制装置、方法、系统及介质 WO2024093183A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211356953.2 2022-11-01
CN202211356953.2A CN116088362B (zh) 2022-11-01 2022-11-01 一种器件微功耗智能控制装置、方法、系统及介质

Publications (1)

Publication Number Publication Date
WO2024093183A1 true WO2024093183A1 (zh) 2024-05-10

Family

ID=86203238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093532 WO2024093183A1 (zh) 2022-11-01 2023-05-11 一种器件微功耗智能控制装置、方法、系统及介质

Country Status (2)

Country Link
CN (1) CN116088362B (zh)
WO (1) WO2024093183A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116088362B (zh) * 2022-11-01 2023-09-01 深圳市谷粒科技有限公司 一种器件微功耗智能控制装置、方法、系统及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107172690A (zh) * 2016-03-08 2017-09-15 电信科学技术研究院 降低终端芯片mimo检测器功耗的方法及装置
CN110264694A (zh) * 2019-07-09 2019-09-20 杭州博联智能科技股份有限公司 低功耗实现电路、方法、wifi模块以及遥控器
US20210135037A1 (en) * 2019-11-01 2021-05-06 Dell Products L.P. Automatically limiting power consumption by devices using infrared or radio communications
CN114036895A (zh) * 2021-11-08 2022-02-11 南方电网数字电网研究院有限公司 自适应调压SoC系统及控制方法
CN116088362A (zh) * 2022-11-01 2023-05-09 深圳市谷粒科技有限公司 一种器件微功耗智能控制装置、方法、系统及介质

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103742A (ja) * 1999-09-29 2001-04-13 Matsushita Electric Ind Co Ltd スイッチング電源装置
KR100657899B1 (ko) * 2004-09-13 2006-12-14 삼성전기주식회사 휴대용 단말기의 rfid 모듈 동작전원 제어 방법 및 장치
JP2006238603A (ja) * 2005-02-25 2006-09-07 Matsushita Electric Ind Co Ltd スイッチングレギュレータ装置
US7839201B2 (en) * 2005-04-01 2010-11-23 Raytheon Company Integrated smart power switch
KR100685104B1 (ko) * 2005-07-21 2007-02-22 주식회사 케이이씨 정전류 출력 특성을 갖는 스위칭 모드 파워 서플라이
CN102495576B (zh) * 2011-12-27 2014-01-01 重庆智能水表集团有限公司 一种超低功耗电路控制系统及方法
WO2014129126A1 (ja) * 2013-02-20 2014-08-28 パナソニック株式会社 スイッチング電源装置
CN203747652U (zh) * 2014-01-26 2014-07-30 广东美的制冷设备有限公司 功耗控制电路和智能功率模块、变频家电
JP6267536B2 (ja) * 2014-02-19 2018-01-24 パナソニック株式会社 電源電圧調整装置
CN104301643B (zh) * 2014-09-22 2018-03-16 青岛歌尔声学科技有限公司 一种电视机llc拓扑直接待机低功耗电路
US9960664B2 (en) * 2014-12-07 2018-05-01 Alpha And Omega Semiconductor Incorporated Voltage converter
CN207181719U (zh) * 2017-08-22 2018-04-03 上海科勒电子科技有限公司 低能耗自动感应装置
CN108055730B (zh) * 2017-12-28 2023-07-11 富满微电子集团股份有限公司 恒流开关电源控制电路、芯片及led驱动电路
CN108964284A (zh) * 2018-07-12 2018-12-07 深圳市谷粒科技有限公司 一种供电设备及方法
CN110535666B (zh) * 2019-09-03 2021-12-31 普联技术有限公司 一种非标准PoE电源管理装置
CN110581650A (zh) * 2019-10-11 2019-12-17 珠海格力电器股份有限公司 一种电源控制电路及电器设备
CN114152796A (zh) * 2020-09-07 2022-03-08 上海南芯半导体科技股份有限公司 一种分时检测电路及控制方法
US11689103B2 (en) * 2021-03-25 2023-06-27 Infineon Technologies Austria Ag Power supply monitoring and switching frequency control
CN113890489A (zh) * 2021-10-09 2022-01-04 深圳市创成微电子有限公司 音频功率放大器供电电压控制方法、装置和音频设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107172690A (zh) * 2016-03-08 2017-09-15 电信科学技术研究院 降低终端芯片mimo检测器功耗的方法及装置
CN110264694A (zh) * 2019-07-09 2019-09-20 杭州博联智能科技股份有限公司 低功耗实现电路、方法、wifi模块以及遥控器
US20210135037A1 (en) * 2019-11-01 2021-05-06 Dell Products L.P. Automatically limiting power consumption by devices using infrared or radio communications
CN114036895A (zh) * 2021-11-08 2022-02-11 南方电网数字电网研究院有限公司 自适应调压SoC系统及控制方法
CN116088362A (zh) * 2022-11-01 2023-05-09 深圳市谷粒科技有限公司 一种器件微功耗智能控制装置、方法、系统及介质

Also Published As

Publication number Publication date
CN116088362A (zh) 2023-05-09
CN116088362B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2024093183A1 (zh) 一种器件微功耗智能控制装置、方法、系统及介质
US5726554A (en) Charging a battery having a nominal critical terminal voltage
US10389364B2 (en) Oscillator with dynamic gain control
US20210080491A1 (en) Detection circuit for an active discharge circuit of an x-capacitor, related active discharge circuit, integrated circuit and method
US9806612B2 (en) Systems and methods of energy saving in a battery charging system
US10447157B2 (en) Synchronous sensing of inductor current in a buck converter control circuit
CN103580000A (zh) 开关电源输出过压保护方法及电路及带该电路的开关电源
JP2008072786A (ja) スイッチングレギュレータ、スイッチングレギュレータの制御回路及びスイッチングレギュレータの動作制御方法
CN101216788A (zh) 复位监控芯片及方法
CN103208987B (zh) 音频设备外接终端的开机唤醒方法
US20080258686A1 (en) Method for Detecting Removal of a Battery from a Battery Charger
CN110829540A (zh) 一种负载接入识别方法、充电控制方法及装置
EP3205024B1 (en) Integrated circuit with external resistance detection
US7506180B2 (en) System and method for determining the power drawn from a switching power supply by counting the number of times a switching power supply switch is enabled
US7315198B2 (en) Voltage regulator
CN101488041B (zh) 电脑状态控制电路及方法
CN107367700B (zh) 一种led开关电源的检测电路及检测方法
US10790704B2 (en) Power feeding system and power receiving device
JP2658592B2 (ja) 発振停止検出回路
CN212063521U (zh) 一种负载接入识别装置及充电装置
CN112636308A (zh) 电池短路保护方法、装置、系统、电池和存储介质
CN210639605U (zh) 用于多串锂电池bms的外部看门狗复位电路
CN110531818A (zh) 时序控制方法及电路
WO2021129211A1 (zh) 吹风机控制方法、装置及存储介质
JP6988426B2 (ja) ピエゾインジェクタ駆動装置