WO2024093033A1 - 一种冷冻砂型多路径内部微孔高效制冷方法及装置 - Google Patents

一种冷冻砂型多路径内部微孔高效制冷方法及装置 Download PDF

Info

Publication number
WO2024093033A1
WO2024093033A1 PCT/CN2023/074059 CN2023074059W WO2024093033A1 WO 2024093033 A1 WO2024093033 A1 WO 2024093033A1 CN 2023074059 W CN2023074059 W CN 2023074059W WO 2024093033 A1 WO2024093033 A1 WO 2024093033A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand mold
frozen
frozen sand
low
temperature
Prior art date
Application number
PCT/CN2023/074059
Other languages
English (en)
French (fr)
Inventor
单忠德
施建培
杨浩秦
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Priority to US18/523,890 priority Critical patent/US11945026B1/en
Publication of WO2024093033A1 publication Critical patent/WO2024093033A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/10Compacting by jarring devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/08Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by sprinkling, cooling, or drying

Definitions

  • the invention belongs to the field of green casting of frozen sand molds, and in particular relates to a method and device for efficient refrigeration of multi-path internal micropores of frozen sand molds.
  • the traditional foundry industry consumes a lot of resources and needs to rely on wooden molds/metal molds to make sand molds to prepare castings.
  • Sand casting faces problems such as long manufacturing cycle, multiple production processes, high labor intensity, expensive development of finished products and poor working environment.
  • the traditional foundry industry urgently needs breakthroughs and changes in green technology to promote energy conservation and emission reduction and green and sustainable development in the manufacturing industry.
  • the use of green casting technology and equipment can reduce the waste of materials and energy in the casting process, reduce waste emissions, reduce the scrap rate of castings, improve the finished product rate of castings, achieve efficient, high-quality and precise forming of castings, and realize green casting production.
  • the digital frozen sand mold green casting technology uses water as a binder to achieve sand bonding and digital cutting/printing of sand molds under low temperature conditions, and can produce high-quality castings. Its principle is to use a print nozzle/milling cutter to directly form the frozen sand mold (core) for additive/subtractive material manufacturing under the drive of the sand mold 3D CAD model, and obtain the sand mold to be poured after surface treatment and assembly. Before the frozen sand mold is cut, it is crucial to determine whether the strength and hardness of the prepared frozen sand blank can meet the requirements of digital efficient cutting. The strength and hardness of the frozen sand blank depend on the water content, freezing temperature, sand grain size, etc.
  • the present invention discloses a method and device for high-efficiency refrigeration of multi-path internal micropores of frozen sand molds, which mainly solves the problems of low freezing efficiency, low compactness and difficulty in demoulding during the premixed wet sand molding process.
  • a multi-path internal microporous high-efficiency refrigeration device for frozen sand molds comprising a frozen sand mold molding chamber, an electric lifting platform, a frozen sand mold refrigeration device box, an ultrasonic generator and a low-temperature refrigeration system; the frozen sand mold molding chamber is located at the inner bottom of the frozen sand mold refrigeration device box and is arranged on the electric lifting platform; the frozen sand mold molding chamber is composed of the Teflon porous lining and the detachable porous aluminum plate; the ultrasonic piezoelectric sheet is located between the detachable porous aluminum plate and the Teflon porous lining.
  • the detachable porous aluminum plate is located outside the Teflon porous lining; the ultrasonic piezoelectric sheet is connected to an ultrasonic generator located outside the box of the freezing sand mold refrigeration device through a wire.
  • the low-temperature refrigeration system includes a U-shaped condenser, a liquid nitrogen tank, a nitrogen tank, a flow meter, a one-way valve and a low-temperature gas mixing chamber; the U-shaped condenser is located in the housing of the frozen sand mold refrigeration device; the liquid nitrogen tank is connected to the low-temperature gas mixing chamber through a first pipeline; a one-way valve is provided on the first pipeline; the nitrogen tank is connected to the low-temperature gas mixing chamber through a second pipeline; a flow meter and a one-way valve are provided on the second pipeline in sequence; the low-temperature gas mixing chamber is connected to the U-shaped condenser.
  • the external low-temperature gas is connected to the U-shaped condenser through a low-temperature resistant pipeline to achieve rapid refrigeration of the frozen sand mold molding chamber 1.
  • the Teflon porous lining and the detachable porous aluminum plate are provided with through holes of the same size and position, and after assembly, cold air can be ensured to enter the frozen sand mold through the through holes;
  • the dragon porous lining is made of four Teflon molds, and the interface of the Teflon mold is designed in a "J" shape.
  • a multi-path internal micropore high-efficiency refrigeration method for frozen sand molds which is applicable to the rapid freezing and auxiliary cutting process of frozen sand molds of various materials (quartz sand, zircon sand, chromite sand, etc.), and the specific implementation steps are as follows:
  • the frozen sand mold molding chamber is located at the upper limit position; the prepared wet sand particles are spread and filled in the frozen sand mold molding chamber, the ultrasonic generator is turned on and the low frequency gear is selected to vibrate and compact the sand mold; iron wires are inserted along the through holes of the Teflon porous lining to form air outlet holes with a certain arrangement pattern on the frozen sand blank; the electric lifting platform is turned on again, and the frozen sand mold molding chamber is located at the lower limit position;
  • the low-temperature gas forms a low-temperature mixed gas with nitrogen through a one-way valve, and is transported to the condenser circuit through a pressure regulating valve for circulating refrigeration, and the through holes of the Teflon porous lining and the detachable porous aluminum plate quickly enter the sand mold core to freeze the frozen sand blank;
  • the through holes on the fluoroporous lining and the detachable porous aluminum plate are designed to be arranged in a regular pattern of "square”, “hexagonal lattice", “M-shaped” and “circular” according to the FLUENT flow field simulation, so as to accelerate the convective heat transfer of the low-temperature gas and improve the refrigeration efficiency of the sand mold.
  • a sealing cover is arranged above the frozen sand mold refrigeration device box and the frozen sand mold molding chamber for heat insulation; a film is attached to the inner wall of the sealing cover, and the film is made of one of EVA plastic film, LDPE (low-density polyethylene film) or polyester amine fiber for moisturizing the frozen sand mold.
  • EVA plastic film low-density polyethylene film
  • LDPE low-density polyethylene film
  • the ultrasonic generator is provided with two modes, low frequency and high frequency.
  • the high frequency mode the ultrasonic piezoelectric sheet transmits vibration for compacting the frozen sand mold during the molding process to prevent defects inside the frozen sand mold.
  • the low frequency mode the entire frozen sand mold is placed on a digital forming machine to realize the ultrasonic milling function of the frozen sand mold.
  • the liquid nitrogen tank is first opened to expel the air inside the pipeline.
  • the temperature of the space in the pipeline drops after a period of time, and the liquid nitrogen is transported in the pipeline in liquid form; then the nitrogen tank is opened, and the nitrogen flow meter is adjusted to allow the nitrogen to enter the gas-liquid mixing chamber at a certain flow rate and mix with the liquid nitrogen.
  • the nitrogen and liquid nitrogen undergo heat exchange to eventually form low-temperature nitrogen, which is finally transported to the condenser inside the device through an insulation pipeline to cool the frozen sand mold.
  • the liquid nitrogen tank is replaced with compressed cryogenic air or cryogenic CO2 gas.
  • Different cryogenic gases have different temperature ranges, so that molding sands with different thermal conductivity coefficients have higher freezing efficiency.
  • This solution achieves the purpose of rapid refrigeration of the frozen sand mold by using built-in vents in the frozen sand mold and an external low-temperature refrigeration system to freeze the premixed wet sand at low temperatures, thereby saving energy consumption and improving economic benefits.
  • the ultrasonic piezoelectric sheet can not only vibrate and compact the sand mold during the molding process, but also provide ultrasonic-assisted cutting during the digital forming process, effectively reducing the cutting temperature, improving the processing quality, and extending the use time of the cutter head, thereby reducing some costs.
  • FIG1 is a schematic diagram of a multi-path internal microporous high-efficiency refrigeration device for frozen sand molds
  • 1-frozen sand mold molding room 2-electric lifting platform, 3-Teflon lining, 4-detachable porous aluminum plate, 5-frozen sand mold refrigeration device box, 6-sealing cover plate, 7-ultrasonic piezoelectric sheet, 8-U-shaped condenser, 9-ultrasonic generator, 10-low-temperature refrigeration system.
  • FIG. 2 is a schematic structural diagram of a Teflon liner according to the present invention.
  • FIG. 3 is a schematic diagram of the structure of the vent hole of the present invention
  • FIG. 3 (a) is a square
  • FIG. 3 (b) is a hexagonal lattice
  • FIG. 3 (c) is a cross-shaped vent hole
  • FIG. 3 (d) is a circle.
  • FIG. 4 is a schematic structural diagram of a low-temperature refrigeration system according to the present invention.
  • 11 is a liquid nitrogen tank
  • 12 is a nitrogen tank
  • 13 is a flow meter
  • 14 is a one-way valve
  • 15 is a low-temperature gas mixing chamber.
  • Figure 5 is a partial enlarged view of A in Figure 2.
  • a frozen sand mold multi-path internal microporous high-efficiency refrigeration device is characterized in that it includes a frozen sand mold molding chamber 1, an electric lifting platform 2, a frozen sand mold refrigeration device box 5, an ultrasonic generator 9 and a low-temperature refrigeration system 10; the frozen sand mold molding chamber 1 is located at the bottom of the frozen sand mold refrigeration device box 5 and is arranged on the electric lifting platform 2; the frozen sand mold molding chamber 1 is composed of the Teflon porous lining 3 and the detachable porous aluminum plate 4; the ultrasonic piezoelectric sheet 7 is located between the Teflon porous lining 3 and the detachable porous aluminum plate 4 and is fixed to the bottom of the Teflon porous lining 3.
  • the detachable porous aluminum plate 4 is located outside the Teflon porous liner 3; the ultrasonic piezoelectric sheet 7 is connected to the ultrasonic generator 9 located outside the freezing sand mold refrigeration device box 5 through a wire.
  • the low-temperature refrigeration system 10 includes a U-shaped condenser 8, a liquid nitrogen tank 11, a nitrogen tank 12, a flow meter 13, a one-way valve 14 and a low-temperature gas mixing chamber 15; the U-shaped condenser 8 is located in the freezing sand refrigeration device box 5; the liquid nitrogen tank 11 is connected to the low-temperature gas mixing chamber 15 through a first pipeline; a one-way valve 14 is provided on the first pipeline; the nitrogen tank 12 is connected to the low-temperature gas mixing chamber 15 through a second pipeline; the second pipeline is sequentially provided with a flow meter 13 and a one-way valve 14; the low-temperature gas mixing chamber 15 is sequentially connected to the U-shaped condenser 8 through a pressure regulating valve and a low-temperature pipeline.
  • Teflon porous liner 3 and the detachable porous aluminum plate 4 are provided with size, position The same through holes ensure that cold air can enter the frozen sand mold through the through holes after assembly;
  • the Teflon porous liner 3 is formed by splicing four Teflon molds, and the interface of the Teflon molds is designed to be in a “ ⁇ ” shape.
  • a multi-path internal micropore high-efficiency refrigeration method for frozen sand molds which is suitable for the rapid freezing and auxiliary cutting process of frozen sand molds, and the specific implementation steps are:
  • the frozen sand mold molding chamber is located at the upper limit position; the prepared wet sand particles are spread and filled in the frozen sand mold molding chamber, and the ultrasonic generator is turned on and the low frequency gear is selected to vibrate and compact the sand mold; the ultrasonic generator is set with two modes of low frequency and high frequency; in the high frequency mode, the ultrasonic piezoelectric sheet transmits vibration for compaction during the frozen sand mold molding process to prevent defects inside the frozen sand mold; in the low frequency mode, the entire frozen sand mold molding mold is placed on the digital forming machine to realize the ultrasonic milling function of the frozen sand mold;
  • the low-temperature gas forms a low-temperature mixed gas with nitrogen through a one-way valve, and is transported to the condenser circuit through a pressure regulating valve for circulating refrigeration, and the through holes of the Teflon porous lining and the detachable porous aluminum plate quickly enter the sand mold core to freeze the frozen sand blank;
  • the cryogenic refrigeration system When the cryogenic refrigeration system is working, first open the liquid nitrogen tank to remove the air inside the pipeline. After a period of time, the temperature in the pipeline space drops, and the liquid nitrogen is transported in the pipeline in liquid form. Then open the nitrogen tank and adjust the nitrogen flow meter so that the nitrogen enters the gas-liquid mixing system at a certain flow rate. The cavity is mixed with liquid nitrogen, and the low temperature characteristics of liquid nitrogen are used to exchange heat with nitrogen, eventually forming low-temperature nitrogen at a certain temperature, which is finally transported to the condenser inside the device through the insulation pipeline to cool the frozen sand mold.
  • the liquid nitrogen tank is replaced with compressed cryogenic air or cryogenic CO2 gas.
  • Different cryogenic gases have different temperature ranges, so that molding sands with different thermal conductivity coefficients have higher freezing efficiency.
  • the through holes on the fluoroporous lining and the removable porous aluminum plate are designed to be arranged in a regular pattern of “square”, “hexagonal lattice”, “M-shaped” and “circular” according to the FLUENT flow field simulation, so as to accelerate the convective heat transfer of the low-temperature gas and improve the refrigeration efficiency of the sand mold.
  • a sealing cover plate 6 is arranged above the frozen sand mold refrigeration device box and the frozen sand mold molding chamber for heat insulation; a film is attached to the inner wall of the sealing cover plate, and the film is made of one of EVA plastic film, LDPE (low-density polyethylene film) or polyester amine fiber for moisturizing the frozen sand mold.
  • EVA plastic film low-density polyethylene film
  • LDPE low-density polyethylene film
  • the technical means disclosed in the scheme of the present invention are not limited to the technical means disclosed in the above-mentioned implementation mode, but also include technical schemes composed of any combination of the above technical features.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

一种冷冻砂型多路径内部微孔高效制冷方法及装置,包括冷冻砂型造型室(1)、电动升降平台(2)、特氟龙多孔内衬(3)、可拆卸多孔铝板(4)、冷冻砂型制冷装置箱体(5)、密封盖板(6)、超声压电片(7)、U型冷凝管(8)、超声波发生器(9)和低温制冷系统(10),特氟龙多孔内衬(3)和可拆卸多孔铝板(4)设置有大小、形状相同的通孔结构,用于型砂表面至芯部的快速冷却。开启电动升降平台(2),特氟龙多孔内衬(3)上升至最高点,易脱模。超声压电片(7)高低频双模式既可以用来振动紧实冷冻砂型,也可以辅助切削成形。采用本装置可实现冷冻砂型快速冻结、方便脱模和低成本数字化成形。

Description

一种冷冻砂型多路径内部微孔高效制冷方法及装置 技术领域
本发明属于冷冻砂型绿色铸造领域,尤其涉及一种冷冻砂型多路径内部微孔高效制冷方法及装置。
背景技术
传统铸造行业资源消耗大,需要依靠木模/金属模翻制砂模制备铸型。砂型铸造面临制造周期长、生产工序多、劳动强度大、开发成品昂贵和工作环境恶劣等问题。传统铸造行业亟需工艺绿色化突破与变革,促进制造业节能减排和绿色可持续发展。采用绿色铸造工艺与装备,可减少铸造过程中的材料及能源浪费,减少废平物排放,降低铸件废品率,提高铸件成品率,实现铸件高效高质量精确成形,实现绿色铸造生产。
数字化冷冻砂型绿色铸造成形技术以水为粘结剂,在低温条件下实现型砂粘结和砂型数字化切削/打印成形,可制造出高质量铸件。其原理是在砂型三维CAD模型驱动下,利用打印喷头/铣刀直接成形冷冻砂型(芯)的增/减材制造,经表面处理及组装后获得待浇注的砂型。在冷冻砂型切削之前,制备的冷冻砂坯强度和硬度能否满足数字化高效切削至关重要。冷冻砂坯的强度与硬度取决于含水量、冷冻温度、砂粒目数等。在现有设备的条件下,大尺寸冷冻砂坯面临冻结时间长、成本高、脱模难等问题,亟需开发新方法、新装置实现冷冻砂型快速冻结、方便脱模,低成本成形。
发明内容
为解决上述问题,本发明公开了一种冷冻砂型多路径内部微孔高效制冷方法及装置,该装置主要解决预混湿型砂制坯过程中冻结效率低、紧实度低和脱模难等问题。
一种冷冻砂型多路径内部微孔高效制冷装置,包括冷冻砂型造型室、电动升降平台、冷冻砂型制冷装置箱体、超声波发生器和低温制冷系统;所述冷冻砂型造型室位于冷冻砂型制冷装置箱体内底部设置在所述电动升降平台上;所述冷冻砂型造成室由所述特氟龙多孔内衬和所述可拆卸多孔铝板组成;超声压电片位于可拆卸多孔铝板和所述特氟龙多孔内衬之间。
所述可拆卸多孔铝板位于所述特氟龙多孔内衬外侧;所述超声波压电片与位于冷冻砂型制冷装置箱体外部的超声波发生器通过导线连接。
所述低温制冷系统包括U型冷凝管、液氮罐、氮气罐、流量计、单向阀和低温气体混合腔室;U型冷凝管位于所述冷冻砂型制冷装置箱体内;液氮罐通过第一管道与低温气体混合腔室连接;第一管道上设有单向阀;所述氮气罐的通过第二管道与低温气体混合腔室连接;第二管道上依次设有流量计和单向阀;低温气体混合腔室与U型冷凝管连接。外部低温气体通过耐低温管路连接U型冷凝管,实现对冷冻砂型造型室1的快速制冷。
所述特氟龙多孔内衬和可拆卸多孔铝板上设置有大小、位置相同的通孔,组装后可确保冷气通过通孔进入冷冻砂型内部;所述特氟 龙多孔内衬由四块特氟龙模具拼接而成,所述特氟龙模具接口处设计成“几”字型。当冷冻砂型芯部达到预设温度后,启动升降平台,可方便冷冻砂型脱模,取出冷冻砂型后可置于数字化成形机上进行铣削。
一种冷冻砂型多路径内部微孔高效制冷方法,该方法适用于各种材质(石英砂、锆英砂和铬铁矿砂等)冷冻砂型快速冻结及辅助切削过程,具体实施步骤为:
S1、根据铸件特点选择合适型砂,量取质量份数3%~8%的水置于混砂机中均匀搅拌2~10分钟,制备含水湿型砂;
S2、开启电动升降平台,冷冻砂型造型室位于上极限位置;将制备好的湿型砂颗粒铺放填满在冷冻砂型造型室内,开启超声波发生器并选择低频档,进行振动紧实砂型;沿着特氟龙多孔内衬的通孔插入铁丝,在冷冻砂坯上成形一定排列规律的出气孔;再次开启电动升降平台,冷冻砂型造型室位于下极限位置;
S3、开启低温制冷系统,低温气体经单向阀与氮气形成低温混合气体,经调压阀输送至冷凝管回路中循环制冷,特氟龙多孔内衬和所述可拆卸多孔铝板的通孔快速进入砂型芯部,冻结冷冻砂坯;
S4、待冷冻砂型内部温度达到预设温度时,打开密封盖板,选择开启电动升降平台,取出冻结砂型;或采用将整个冷冻砂型造型装置置于数字化成形机平台上,进行数字化切削成形,保证冷冻砂型强度和硬度满足高效切削成形;当冷冻砂型芯部达到预设温度后,启动升降平台,可方便冷冻砂型脱模,取出冷冻砂型后可置于数字化成形机 上进行铣削。
进一步的,所述氟龙多孔内衬和所述可拆卸多孔铝板上的通孔根据fluent流场模拟设计成“正方形”、“六方晶格”、“米字型”和“圆形”规律排列,加速低温气体对流换热,提高砂型的制冷效率。
进一步的,所述冷冻砂型制冷装置箱体和所述冷冻砂型造型室上方设置有密封盖板,用于隔热保温;密封盖板内壁附有薄膜,所述薄膜采用EVA塑料薄膜、LDPE(低密度聚乙烯薄膜)或聚酯胺纤维中的一种,用于冷冻砂型的保湿。
进一步的,所述超声波发生器设置有低频和高频两种模式;在高频模式下,超声压电片传递振动用于冷冻砂型造型过程的紧实,防止冷冻砂型内部有缺陷;在低频模式下,将整个冷冻砂型造型模具置于数字化成形机上,实现冷冻砂型超声铣削功能。
进一步的,低温制冷系统工作时,首先打开液氮罐排除管道内部空气,持续一段时间管道内空间温度下降,液氮以液态形式运送在管道内;接着开启氮气罐,调节氮气流量表,使得氮气以一定的流量进入气液混合腔与液氮混合,利用液氮低温特性,氮气与液氮进行热交换,最终形成低温氮气,最后经保温管路输送至装置内部冷凝管对冷冻砂型降温。
所述液氮罐更换为压缩的低温空气或者低温CO2气体,不同的低温气体具有不同的温度区间,使得导热系数不同的型砂均具有较高的冷冻效率。
本发明的有益效果:
(1)本方案通过在冷冻砂型内置通气孔和外部低温制冷系统对预混湿型砂进行低温冻结,达到冷冻砂型快速制冷的目的,节约能源消耗,提高经济效益。
(2)超声压电片既能够在造型过程中对砂型进行振动紧实,也可以在数字化成形过程中超声辅助切削,有效降低了切削温度,提高了加工质量,并且可以延长刀头使用时间从而降低部分成本。
附图说明
图1为冷冻砂型多路径内部微孔高效制冷装置的原理图;
图中,1-冷冻砂型造型室,2-电动升降平台,3-特氟龙内衬,4-可拆卸多孔铝板,5-冷冻砂型制冷装置箱体,6-密封盖板,7-超声压电片,8-U型冷凝管,9-超声波发生器,10-低温制冷系统。
图2为本发明特氟龙内衬的结构示意图。
图3为本发明通气孔的结构示意图,图3(a)正方形、图3(b)六方晶格、图3(c)米字型和图3(d)圆形。
图4为本发明低温制冷系统的结构示意图。
图中,11-液氮罐,12-氮气罐,13-流量计,14-单向阀,15-低温气体混合腔室。
图5、图2中A的局部放大图。
具体实施方式
下面结合附图和具体实施方式,进一步阐明本发明,应理解下述 具体实施方式仅用于说明本发明而不用于限制本发明的范围。需要说明的是,下面描述中使用的词语“前”、“后”、“左”、“右”、“上”和“下”指的是附图中的方向,词语“内”和“外”分别指的是朝向或远离特定部件几何中心的方向。
如图1所示,一种冷冻砂型多路径内部微孔高效制冷装置,其特征在于,包括冷冻砂型造型室1、电动升降平台2、冷冻砂型制冷装置箱体5、超声波发生器9和低温制冷系统10;所述冷冻砂型造型室1位于冷冻砂型制冷装置箱体5内底部设置在所述电动升降平台2上;所述冷冻砂型造成室1由所述特氟龙多孔内衬3和所述可拆卸多孔铝板4组成;超声压电片7位于所述特氟龙多孔内衬3和所述可拆卸多孔铝板4之间且固定在特氟龙多孔内衬3的底部。
所述可拆卸多孔铝板4位于所述特氟龙多孔内衬3外侧;所述超声波压电片7与位于冷冻砂型制冷装置箱体5外部的超声波发生器9通过导线连接。
所述低温制冷系统10包括U型冷凝管8、液氮罐11、氮气罐12、流量计13、单向阀14和低温气体混合腔室15;U型冷凝管8位于所述冷冻砂型制冷装置箱体5内;液氮罐11通过第一管道与低温气体混合腔室15连接;第一管道上设有单向阀14;所述氮气罐12的通过第二管道与低温气体混合腔室15连接;第二管道上依次设有流量计13和单向阀14;低温气体混合腔室15依次通过调压阀和低温管道与U型冷凝管8连接。
所述特氟龙多孔内衬3和可拆卸多孔铝板4上设置有大小、位置 相同的通孔,组装后可确保冷气通过通孔进入冷冻砂型内部;
如图2和5所示,所述特氟龙多孔内衬3由四块特氟龙模具拼接而成,所述特氟龙模具接口处设计成“几”字型。
一种冷冻砂型多路径内部微孔高效制冷方法,该方法适用于冷冻砂型快速冻结及辅助切削过程,具体实施步骤为:
S1、根据铸件特点选择合适型砂,量取质量份数3%~8%的水置于混砂机中均匀搅拌2~10分钟,制备含水湿型砂;
S2、开启电动升降平台,冷冻砂型造型室位于上极限位置;将制备好的湿型砂颗粒铺放填满在冷冻砂型造型室内,开启超声波发生器并选择低频档,进行振动紧实砂型;超声波发生器设置有低频和高频两种模式;在高频模式下,超声压电片传递振动用于冷冻砂型造型过程的紧实,防止冷冻砂型内部有缺陷;在低频模式下,将整个冷冻砂型造型模具置于数字化成形机上,实现冷冻砂型超声铣削功能;
沿着特氟龙多孔内衬的通孔插入铁丝,在冷冻砂坯上成形一定排列规律的出气孔;再次开启电动升降平台,冷冻砂型造型室位于下极限位置;
S3、开启低温制冷系统,低温气体经单向阀与氮气形成低温混合气体,经调压阀输送至冷凝管回路中循环制冷,特氟龙多孔内衬和所述可拆卸多孔铝板的通孔快速进入砂型芯部,冻结冷冻砂坯;
低温制冷系统工作时,首先打开液氮罐排除管道内部空气,持续一段时间管道内空间温度下降,液氮以液态形式运送在管道内;接着开启氮气罐,调节氮气流量表,使得氮气以一定的流量进入气液混合 腔与液氮混合,利用液氮低温特性,氮气与液氮进行热交换,最终形成一定温度的低温氮气,最后经保温管路输送至装置内部冷凝管对冷冻砂型降温。
所述液氮罐更换为压缩的低温空气或者低温CO2气体,不同的低温气体具有不同的温度区间,使得导热系数不同的型砂均具有较高的冷冻效率。
S4、待冷冻砂型内部温度达到预设温度时,打开密封盖板,选择开启电动升降平台,取出冻结砂型;或采用将整个冷冻砂型造型装置置于数字化成形机平台上,进行数字化切削成形,保证冷冻砂型强度和硬度满足高效切削成形;当冷冻砂型芯部达到预设温度后,启动升降平台,可方便冷冻砂型脱模,取出冷冻砂型后可置于数字化成形机上进行铣削。
如图3所示,所述氟龙多孔内衬和所述可拆卸多孔铝板上的通孔根据fluent流场模拟设计成“正方形”、“六方晶格”、“米字型”和“圆形”规律排列,加速低温气体对流换热,提高砂型的制冷效率。
所述冷冻砂型制冷装置箱体和所述冷冻砂型造型室上方设置有密封盖板6,用于隔热保温;密封盖板内壁附有薄膜,所述薄膜采用EVA塑料薄膜、LDPE(低密度聚乙烯薄膜)或聚酯胺纤维中的一种,用于冷冻砂型的保湿。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。

Claims (10)

  1. 一种冷冻砂型多路径内部微孔高效制冷装置,其特征在于,包括冷冻砂型造型室(1)、电动升降平台(2)、冷冻砂型制冷装置箱体(5)、超声波发生器(9)和低温制冷系统(10);所述冷冻砂型造型室(1)位于冷冻砂型制冷装置箱体(5)内底部设置在所述电动升降平台(2)上;所述冷冻砂型造成室(1)由所述特氟龙多孔内衬(3)和所述可拆卸多孔铝板(4)组成;超声压电片(7)位于所述特氟龙多孔内衬(3)和所述可拆卸多孔铝板(4)之间且固定在特氟龙多孔内衬(3)的底部。
  2. 如权利要求1所述的一种冷冻砂型多路径内部微孔高效制冷装置,其特征在于,所述可拆卸多孔铝板(4)位于所述特氟龙多孔内衬(3)外侧;所述超声波压电片(7)与位于冷冻砂型制冷装置箱体(5)外部的超声波发生器(9)通过导线连接。
  3. 如权利要求1所述的一种冷冻砂型多路径内部微孔高效制冷装置,其特征在于,所述低温制冷系统(10)包括U型冷凝管(8)、液氮罐(11)、氮气罐(12)、流量计(13)、单向阀(14)和低温气体混合腔室(15);U型冷凝管(8)位于所述冷冻砂型制冷装置箱体(5)内;液氮罐(11)通过第一管道与低温气体混合腔室(15)连接;第一管道上设有单向阀(14);所述氮气罐(12)的通过第二管道与低温气体混合腔室(15)连接;第二管道上依次设有流量计(13)和单向阀(14);低温气体混合腔室(15)依次通过调压阀和低温管路与U型冷凝管(8)连接。
  4. 如权利要求1所述的一种冷冻砂型多路径内部微孔高效制冷装 置,其特征在于,所述特氟龙多孔内衬(3)和可拆卸多孔铝板(4)上设置有大小、位置相同的通孔,组装后可确保冷气通过通孔进入冷冻砂型内部;所述特氟龙多孔内衬(3)由四块特氟龙模具拼接而成,所述特氟龙模具接口处设计成“几”字型。
  5. 一种冷冻砂型多路径内部微孔高效制冷方法,其特征在于,通过权利要求1所述的装置进行制备,该方法适用于冷冻砂型快速冻结及辅助切削过程,具体实施步骤为:
    S1、根据铸件特点选择合适型砂,量取质量份数3%~8%的水置于混砂机中均匀搅拌2~10分钟,制备含水湿型砂;
    S2、开启电动升降平台,冷冻砂型造型室位于上极限位置;将制备好的湿型砂颗粒铺放填满在冷冻砂型造型室内,开启超声波发生器并选择低频档,进行振动紧实砂型;沿着特氟龙多孔内衬的通孔插入铁丝,在冷冻砂坯上成形一定排列规律的出气孔;再次开启电动升降平台,冷冻砂型造型室位于下极限位置;
    S3、开启低温制冷系统,低温气体经单向阀与氮气形成低温混合气体,经调压阀输送至冷凝管回路中循环制冷,特氟龙多孔内衬和所述可拆卸多孔铝板的通孔快速进入砂型芯部,冻结冷冻砂坯;
    S4、待冷冻砂型内部温度达到预设温度时,打开密封盖板,选择开启电动升降平台,取出冻结砂型;或采用将整个冷冻砂型造型装置置于数字化成形机平台上,进行数字化切削成形,保证冷冻砂型强度和硬度满足高效切削成形;当冷冻砂型芯部达到预设温度后,启动升降平台,可方便冷冻砂型脱模,取出冷冻砂型后可置于数字化成形机 上进行铣削。
  6. 如权利要求5所述的一种冷冻砂型多路径内部微孔高效制冷方法,其特征在于,所述氟龙多孔内衬和所述可拆卸多孔铝板上的通孔根据fluent流场模拟设计成“正方形”、“六方晶格”、“米字型”和“圆形”规律排列,加速低温气体对流换热,提高砂型的制冷效率。
  7. 如权利要求5所述的一种冷冻砂型多路径内部微孔高效制冷方法,其特征在于,所述冷冻砂型制冷装置箱体(5)和所述冷冻砂型造型室上方设置有密封盖板(6),用于隔热保温;密封盖板内壁附有薄膜,所述薄膜采用EVA塑料薄膜、LDPE(低密度聚乙烯薄膜)或聚酯胺纤维中的一种,用于冷冻砂型的保湿。
  8. 如权利要求5所述的一种冷冻砂型多路径内部微孔高效制冷方法,其特征在于,所述超声波发生器设置有低频和高频两种模式;在高频模式下,超声压电片传递振动用于冷冻砂型造型过程的紧实,防止冷冻砂型内部有缺陷;在低频模式下,将整个冷冻砂型造型模具置于数字化成形机上,实现冷冻砂型超声铣削功能。
  9. 如权利要求5所述的一种冷冻砂型多路径内部微孔高效制冷方法,其特征在于,低温制冷系统工作时,首先打开液氮罐排除管道内部空气,持续一段时间管道内空间温度下降,液氮以液态形式运送在管道内;接着开启氮气罐,调节氮气流量表,使得氮气进入气液混合腔与液氮混合,利用液氮低温特性,氮气与液氮进行热交换,最终形成低温氮气,最后经保温管路输送至装置内部冷凝管对冷冻砂型降温。
  10. 如权利要求9所述的一种冷冻砂型多路径内部微孔高效制冷方法,其特征在于,所述液氮罐更换为压缩的低温空气或者低温CO2气体,不同的低温气体具有不同的温度区间,使得导热系数不同的型砂均具有较高的冷冻效率。
PCT/CN2023/074059 2022-11-04 2023-02-01 一种冷冻砂型多路径内部微孔高效制冷方法及装置 WO2024093033A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/523,890 US11945026B1 (en) 2022-11-04 2023-11-30 Multi-path internal microporous efficient refrigeration method and device for frozen sand mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211377138.4 2022-11-04
CN202211377138.4A CN115625290B (zh) 2022-11-04 2022-11-04 一种冷冻砂型多路径内部微孔高效制冷方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/523,890 Continuation US11945026B1 (en) 2022-11-04 2023-11-30 Multi-path internal microporous efficient refrigeration method and device for frozen sand mold

Publications (1)

Publication Number Publication Date
WO2024093033A1 true WO2024093033A1 (zh) 2024-05-10

Family

ID=84908880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074059 WO2024093033A1 (zh) 2022-11-04 2023-02-01 一种冷冻砂型多路径内部微孔高效制冷方法及装置

Country Status (2)

Country Link
CN (1) CN115625290B (zh)
WO (1) WO2024093033A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115625290B (zh) * 2022-11-04 2023-06-13 南京航空航天大学 一种冷冻砂型多路径内部微孔高效制冷方法及装置
US11945026B1 (en) 2022-11-04 2024-04-02 Nanjing University Of Aeronautics And Astronautics Multi-path internal microporous efficient refrigeration method and device for frozen sand mold
CN116571794B (zh) * 2023-05-31 2024-04-19 南京航空航天大学 柔性装夹制冷一体化的多工位冷冻砂型卧式加工中心

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066640A (ja) * 2007-09-14 2009-04-02 National Institute Of Advanced Industrial & Technology 鋳造用凍結鋳型およびその製造方法
JP2012040569A (ja) * 2010-08-12 2012-03-01 Sankyo Gokin Chuzosho:Kk 凍結鋳造用模型及びこの模型を用いた凍結鋳型の製造方法
CN112077262A (zh) * 2020-09-03 2020-12-15 北京机科国创轻量化科学研究院有限公司 一种冷冻复合铸型3d打印成形方法及装置
CN112872294A (zh) * 2021-01-08 2021-06-01 兰州理工大学 一种铸型的增材制造方法
CN114535498A (zh) * 2022-03-03 2022-05-27 南京航空航天大学 一种冷冻砂型增减材复合制造方法
CN114558990A (zh) * 2022-03-03 2022-05-31 南京航空航天大学 冷冻打印液滴超声辅助渗透及均质化成形装置及方法
CN114799057A (zh) * 2022-05-23 2022-07-29 南京航空航天大学 一种用于冷冻砂型数控成形的温度反馈控制装置及方法
CN114850449A (zh) * 2022-04-22 2022-08-05 南京航空航天大学 一种复杂金属产品的负压式冷冻砂型铸造装置及方法
CN114888265A (zh) * 2022-05-17 2022-08-12 南京航空航天大学 一种负压覆膜冷冻砂型制备方法
CN115625290A (zh) * 2022-11-04 2023-01-20 南京航空航天大学 一种冷冻砂型多路径内部微孔高效制冷方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425527B2 (ja) * 1994-05-24 2003-07-14 株式会社木村鋳造所 凍結鋳型の製造法、及びその保管法
JP3643095B2 (ja) * 2002-07-31 2005-04-27 株式会社前川製作所 鋳型冷凍装置
CN104985116B (zh) * 2015-05-29 2017-10-10 机械科学研究总院先进制造技术研究中心 一种3d打印冰型铸造砂型的成形方法及装置
CN107234212A (zh) * 2017-06-07 2017-10-10 上海航天精密机械研究所 适合于无模砂型铸造技术的多孔砂坯的制备方法
CN113579161B (zh) * 2021-07-28 2022-11-01 南京航空航天大学 大型复杂冷冻砂型低温成形及超过冷控性协同制造方法
CN114042861B (zh) * 2021-11-12 2024-05-28 洛阳理工学院 一种冰冻铸型的制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066640A (ja) * 2007-09-14 2009-04-02 National Institute Of Advanced Industrial & Technology 鋳造用凍結鋳型およびその製造方法
JP2012040569A (ja) * 2010-08-12 2012-03-01 Sankyo Gokin Chuzosho:Kk 凍結鋳造用模型及びこの模型を用いた凍結鋳型の製造方法
CN112077262A (zh) * 2020-09-03 2020-12-15 北京机科国创轻量化科学研究院有限公司 一种冷冻复合铸型3d打印成形方法及装置
CN112872294A (zh) * 2021-01-08 2021-06-01 兰州理工大学 一种铸型的增材制造方法
CN114535498A (zh) * 2022-03-03 2022-05-27 南京航空航天大学 一种冷冻砂型增减材复合制造方法
CN114558990A (zh) * 2022-03-03 2022-05-31 南京航空航天大学 冷冻打印液滴超声辅助渗透及均质化成形装置及方法
CN114850449A (zh) * 2022-04-22 2022-08-05 南京航空航天大学 一种复杂金属产品的负压式冷冻砂型铸造装置及方法
CN114888265A (zh) * 2022-05-17 2022-08-12 南京航空航天大学 一种负压覆膜冷冻砂型制备方法
CN114799057A (zh) * 2022-05-23 2022-07-29 南京航空航天大学 一种用于冷冻砂型数控成形的温度反馈控制装置及方法
CN115625290A (zh) * 2022-11-04 2023-01-20 南京航空航天大学 一种冷冻砂型多路径内部微孔高效制冷方法及装置

Also Published As

Publication number Publication date
CN115625290A (zh) 2023-01-20
CN115625290B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2024093033A1 (zh) 一种冷冻砂型多路径内部微孔高效制冷方法及装置
CN102218505B (zh) 一种湿型砂真空密封造型的精密铸造工艺
CN103658525B (zh) 一种铸造家电模具铸坯的v法模具
CN104128561B (zh) 一种耐热钢带孔篦板消失模铸造方法
CN105499504A (zh) 一种消失模铸造刮刀或侧叶片或中叶片耐磨件的工艺
CN108907095A (zh) 基于3d打印技术快速铸造大型精密铸件的铸造方法
CN101823122A (zh) 熔铸耐火材料制品的负压造型工艺
CN102366821A (zh) 绿色消失模铸造工艺
CN106799469A (zh) 一种金属型铸造用复合砂芯及其制备方法
CN103273007A (zh) V12型发动机缸体的铸造技术
WO2012022261A1 (zh) 单缸柴油机机体铸造模具与水平分型的多缸机体和铸件用铸造外模及其节能低碳铸造工艺
CN206550323U (zh) 一种铝合金锅的压制成型装置
CN201998306U (zh) 一种石英陶瓷坩埚模具
US11945026B1 (en) Multi-path internal microporous efficient refrigeration method and device for frozen sand mold
KR20240068656A (ko) 내부 미세다공을 이용한 냉동 사형의 여러 경로를 통한 고효율 냉동방법 및 장치
CN103223465B (zh) 一种低熔点锌合金消失模的铸造方法
JPH10249484A (ja) 消失模型鋳造法
CN216031460U (zh) 一种可翻转自带养护功能模台
CN207026445U (zh) 一种具有氮化钛铝涂层的压铸模具
CN101130262A (zh) 复合砌块预埋模框及复合砌块的浇注成型方法
CN204934515U (zh) 大型船用螺旋桨铸造内孔用砂芯
CN2659590Y (zh) 一种炼钢用渣盆的随形砂箱
CN203664620U (zh) 一种铝合金风机叶轮压铸模具
CN220837836U (zh) 一种异型桥壳专用砂箱
CN111842833A (zh) 一种具有快速冷却降温功能的铝合金压铸模具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20247009826

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023866637

Country of ref document: EP

Effective date: 20240327

WWE Wipo information: entry into national phase

Ref document number: AU2023370591

Country of ref document: AU