WO2024092830A1 - 检测能力确定方法、装置、设备及存储介质 - Google Patents

检测能力确定方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024092830A1
WO2024092830A1 PCT/CN2022/130138 CN2022130138W WO2024092830A1 WO 2024092830 A1 WO2024092830 A1 WO 2024092830A1 CN 2022130138 W CN2022130138 W CN 2022130138W WO 2024092830 A1 WO2024092830 A1 WO 2024092830A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
detection capability
capability parameter
parameter value
carriers
Prior art date
Application number
PCT/CN2022/130138
Other languages
English (en)
French (fr)
Inventor
梁彬
张轶
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/130138 priority Critical patent/WO2024092830A1/zh
Publication of WO2024092830A1 publication Critical patent/WO2024092830A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communication technology, and specifically to a detection capability determination method, apparatus, device, and storage medium.
  • one downlink control information (DCI)/physical downlink control channel (PDCCH) can schedule one carrier. If a large number of carriers are configured, or if a large number of DCI/PDCCHs need to be sent simultaneously, PDCCH resources will be in short supply. In order to reduce the PDCCH load, one DCI/PDCCH is usually used to schedule multiple carriers.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • Embodiments of the present application provide a detection capability determination method, apparatus, device, and storage medium.
  • an embodiment of the present application provides a method for determining a detection capability, the method comprising:
  • the first detection capability parameter value is a single carrier detection capability parameter threshold corresponding to the first carrier, and the first carrier is included in the first carrier set;
  • the second detection capability parameter value is a detection capability parameter threshold used to detect a DCI format that schedules a carrier in a second carrier set, where the second carrier set includes the first carrier set.
  • an embodiment of the present application provides a detection capability determination device, including:
  • a processing unit configured to determine, according to the first detection capability parameter value and the second detection capability parameter value, a detection capability parameter value for detecting a first DCI format, where the first DCI format is used for scheduling multiple carriers in a first carrier set;
  • the first detection capability parameter value is a single carrier detection capability parameter threshold corresponding to the first carrier, and the first carrier is included in the first carrier set;
  • the second detection capability is a detection capability parameter threshold for detecting a carrier DCI format in a second carrier set, where the second carrier set includes the first carrier set.
  • an embodiment of the present application provides a communication device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the detection capability determination method described in the first aspect above.
  • the chip provided in the embodiments of the present application is used to implement the above-mentioned detection capability determination method.
  • the chip includes: a processor, which is used to call and run a computer program from a memory, so that a device equipped with the chip executes the above-mentioned detection capability determination method.
  • the computer-readable storage medium provided in an embodiment of the present application is used to store a computer program, which enables a computer to execute the above-mentioned detection capability determination method.
  • the computer program product provided in an embodiment of the present application includes computer program instructions, which enable a computer to execute the above-mentioned detection capability determination method.
  • the computer program provided in the embodiment of the present application when running on a computer, enables the computer to execute the above-mentioned detection capability determination method.
  • An embodiment of the present application provides a detection capability determination method, which can determine a detection capability parameter value for detecting a first DCI format based on a first detection capability parameter value and a second detection capability parameter value, and the first DCI format can be used to schedule multiple carriers in a first carrier set.
  • the detection capability parameter value of the first DCI format that can schedule multiple carriers can be determined based on the first detection capability parameter value and the second detection capability parameter value.
  • clarifying the detection capability of the multi-carrier scheduling DCI format i.e., the first DCI format
  • the terminal device can use this method to determine the detection capability parameter value for detecting the first DCI format, such as the number of blind detections, the number of PDCCH candidates for blind detection, and the number of non-overlapping CCEs for channel estimation; the network device uses this method to determine the detection capability parameter value for the terminal device for detecting the first DCI format, which helps the network device to configure an appropriate number of PDCCH transmission resources, such as the number of control resource sets (CORESET), the number of search space sets (Search Space Set), or the number of PDCCH candidates (PDCCH candidate), so that the number of PDCCHs that can be transmitted does not exceed the detection capability of the terminal device, thereby avoiding the situation where some PDCCHs cannot be detected due to insufficient detection capability of the terminal device, thereby improving system performance.
  • the detection capability parameter value for detecting the first DCI format such as the number of blind detections, the number of PDCCH candidates for blind detection, and the number of non-overlapping CCEs for channel estimation
  • the network device uses this method to determine the detection
  • it can ensure that scheduling information is not lost, so that terminal devices can transmit data in time. It can ensure that channel feedback request indications are not lost, so that terminal devices can report channel status measurement results in time, so that network devices can adjust scheduling parameters in time according to channel change status.
  • FIG1 is a schematic diagram of an exemplary network architecture provided in an embodiment of the present application.
  • FIG2 is a flow chart of a method for determining detection capability provided in an embodiment of the present application.
  • FIG3 is a flow chart of another method for determining detection capability provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the structural composition of a detection capability determination device provided in an embodiment of the present application.
  • FIG5 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication system provided in an embodiment of the present application.
  • FIG1 is a schematic diagram of an exemplary network architecture provided in an embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120.
  • the network device 120 may communicate with the terminal device 110 via an air interface.
  • the terminal device 110 and the network device 120 support multi-service transmission.
  • LTE Long Term Evolution
  • TDD LTE Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • IoT Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • 5G communication system also known as New Radio (NR) communication system
  • NR New Radio
  • the network device 120 may be an access network device that communicates with the terminal device 110.
  • the access network device may provide communication coverage for a specific geographical area, and may communicate with the terminal device 110 (eg, UE) located in the coverage area.
  • the network device 120 can be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (LTE) system, or a Next Generation Radio Access Network (NG RAN) device, or a base station (gNB) in an NR system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device 120 can be a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, or a network device in a future evolved Public Land Mobile Network (PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • PLMN Public Land Mobile Network
  • the terminal device 110 may be any terminal device, including but not limited to a terminal device connected to the network device 120 or other terminal devices by wire or wireless connection.
  • the terminal device 110 may refer to an access terminal, a user equipment (UE), a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • UE user equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, an IoT device, a satellite handheld terminal, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in a 5G network, or a terminal device in a future evolution network, etc.
  • SIP Session Initiation Protocol
  • IoT IoT device
  • satellite handheld terminal a Wireless Local Loop (WLL) station
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • the terminal device 110 can be used for device to device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the various functional units in the communication system 100 can also establish connections and achieve communication through the next generation network (NG) interface.
  • NG next generation network
  • FIG1 shows a network device and two terminal devices.
  • the wireless communication system 100 may include multiple network devices and each network device may include other number of terminal devices within its coverage area, which is not limited in the embodiments of the present application.
  • FIG. 1 is only an example of a system to which the present application is applicable. Of course, the method shown in the embodiment of the present application can also be applied to other systems. In addition, the terms “system” and “network” are used interchangeably in this article.
  • predefined or “predefined rules” mentioned in the embodiments of the present application can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices), and the present application does not limit its specific implementation method.
  • predefined may refer to the definition in the protocol.
  • protocol may refer to a standard protocol in the field of communications, such as LTE protocols, NR protocols, and related protocols used in future communication systems, and the present application does not limit this.
  • the terminal device can determine the maximum physical downlink control channel (PDCCH) detection capability supported by each scheduled carrier in its corresponding scheduling carrier according to the carrier configured by the network device.
  • the PDCCH detection capability can be the number of PDCCH blind detections, the number of blind detection PDCCH candidates, or the number of non-overlapping control channel elements (CCE) used for channel estimation.
  • CCE non-overlapping control channel elements
  • the total detection capability parameter value of the scheduled carrier with the subcarrier spacing configured as ⁇ is recorded as M_total, and the calculation formula of M_total satisfies formula (1):
  • M_max is the single-carrier PDCCH detection capability parameter value
  • M_max is the single-carrier PDCCH detection capability parameter value
  • the number of carriers of the scheduled carriers whose subcarrier spacing of the scheduled carrier is configured as ⁇
  • the sum of the carrier quantities of the scheduled carriers whose subcarrier spacing is configured as j.
  • the maximum PDCCH detection capability parameter value supported by each scheduled carrier on its corresponding scheduling carrier that is, min(M_max, M_total), can be determined.
  • one downlink control information (DCI)/PDCCH can schedule one carrier. If the number of configured carriers is large, or if there are many DCI/PDCCHs that need to be sent at the same time, PDCCH resources will be scarce. In order to reduce the PDCCH load, it is usually necessary to use one DCI/PDCCH to schedule multiple carriers.
  • the combination of carriers scheduled by the same DCI/PDCCH is pre-configured or pre-defined.
  • the detection capability of a DCI/PDCCH that can schedule multiple carriers is attributed to one carrier among all carriers that can be scheduled by the DCI.
  • an embodiment of the present application provides a detection capability determination method, which can determine a detection capability parameter value for detecting a first DCI format based on a first detection capability parameter value and a second detection capability parameter value, and the first DCI format can be used to schedule multiple carriers in a first carrier set.
  • the detection capability parameter value of the first DCI format that can schedule multiple carriers can be determined based on the first detection capability parameter value and the second detection capability parameter value.
  • clarifying the detection capability of the multi-carrier scheduling DCI format i.e., the first DCI format
  • the terminal device can use the method to determine the detection capability parameter value for detecting the first DCI format, such as the number of blind detections, the number of PDCCH candidates for blind detection, and the number of non-overlapping CCEs for channel estimation; the network device uses the method to determine the detection capability parameter value for the terminal device for detecting the first DCI format, which helps the network device to configure an appropriate number of PDCCH transmission resources, such as the control resource set (CORESET), the search space set (Search Space Set), or the number of PDCCH candidates (PDCCH candidate), so that the number of PDCCHs that can be transmitted will not exceed the detection capability of the terminal device, thereby avoiding the situation where some PDCCHs cannot be detected due to insufficient detection capability of the terminal device, thereby improving system performance.
  • the detection capability parameter value for detecting the first DCI format such as the number of blind detections, the number of PDCCH candidates for blind detection, and the number of non-overlapping CCEs for channel estimation
  • the network device uses the method to determine the detection capability parameter value for
  • it can ensure that scheduling information is not lost, so that terminal devices can transmit data in time. It can ensure that channel feedback request indications are not lost, so that terminal devices can report channel status measurement results in time, so that network devices can adjust scheduling parameters in time according to channel change status.
  • the DCI format that can schedule multiple carriers is recorded as the first DCI format, such as DCI format 0_X and/or 1_X
  • the DCI format that can schedule one carrier is recorded as the second DCI format, such as DCI format 0_0/0_1/0_2/1_0/1_1/1_2.
  • the execution subject in the embodiments of the present application can be a network device or a terminal device, and the embodiments of the present application do not specifically limit the execution subject.
  • FIG2 is a flow chart of a method for determining detection capability provided in an embodiment of the present application. As shown in FIG2 , the method may include the following contents.
  • S210 determine a detection capability parameter value for detecting a first DCI format according to a first detection capability parameter value and a second detection capability parameter value, the first DCI format being used to schedule multiple carriers in a first carrier set; wherein the first detection capability parameter value is a single carrier detection capability parameter threshold corresponding to the first carrier; and the second detection capability parameter value is a detection capability parameter threshold of a DCI format used to detect and schedule carriers in a second carrier set.
  • the first carrier is one of the first carrier set.
  • the first carrier may be one of cell1, cell2, cell3, and cell4.
  • the first carrier is any one of the following in the first carrier set: a carrier whose identification information is a specified identifier, a carrier whose search space set (Searchspace Set) configuration number satisfies a first preset rule, a carrier whose number of Searchspace Sets supporting single carrier scheduling satisfies a second preset rule, a carrier configured for calculating the detection capability parameter value of the first DCI format, a carrier configured for the Searchspace Set supporting the first DCI format, a carrier for counting the DCI size of the first DCI format, and a protocol predefined.
  • the carrier whose identification information is a designated identifier may be the carrier with the smallest cell identifier (Identity Document, ID) in the first carrier set, or the carrier with the largest cell ID in the first carrier set, or the carrier with other cell identifiers in the first carrier set, and the embodiments of the present application do not limit this.
  • the first preset rule is that the number of Searchspace Set configurations is the least, or the first preset rule is that the number of Searchspace Set configurations is the largest.
  • the second preset rule is that the number of Searchspace Set configurations supporting single carrier scheduling is the least, or the second preset value is that the number of Searchspace Set configurations supporting single carrier scheduling is the largest, and the embodiments of the present application are not limited to this.
  • the carrier whose number of Searchspace Set configurations satisfies the first preset rule can be the carrier with the least number of Searchspace Set configurations, or it can be the carrier when the number of Searchspace Set configurations is other values, and the embodiments of the present application are not limited to this.
  • the carrier whose number of Searchspace Set configurations supporting single carrier scheduling meets the second preset rule can be the carrier with the least number of Searchspace Set configurations supporting single carrier scheduling, or it can be the carrier when the number of Searchspace Set configurations supporting single carrier scheduling is other values, and the embodiments of the present application are not limited to this.
  • the carrier configured for calculating the detection capability of the first DCI format may be the carrier configured by the network device through RRC signaling for calculating the detection capability of the first DCI format, or it may be the carrier configured by the network device through other signaling for calculating the detection capability of the first DCI format. This embodiment of the present application is not limited to this.
  • the second carrier set includes the first carrier set.
  • the second carrier set may be configured by the network device to the terminal device.
  • the second carrier set is determined according to the carrier configured to the terminal device, the subcarrier spacing of the scheduled carrier corresponding to each carrier in the second carrier set is the same, and the second carrier set includes the first carrier set.
  • the DCI format for scheduling the carriers in the second carrier set may be a DCI format for scheduling multiple carriers or a DCI format for scheduling a single carrier.
  • the first detection capability parameter value may be the maximum detection capability parameter value supported by the first carrier when the subcarrier spacing is configured as ⁇ .
  • determining a detection capability parameter value for detecting a first DCI format based on a first detection capability parameter value and a second detection capability parameter value may include: determining a detection capability parameter value for detecting the first DCI format based on a minimum value of the first detection capability parameter value and the second detection capability parameter value.
  • the first detection capability parameter value is recorded as M_max
  • the second detection capability parameter value is recorded as M_total.
  • the detection capability parameter value used by the terminal device or network device to detect the first DCI format can be the minimum value of M_max and M_total, that is, min(M_max, M_total).
  • the subcarrier spacing of the scheduled carriers of each carrier in the second carrier set is the same.
  • the scheduling carrier is a carrier that can schedule other carriers, and the other carriers are called scheduled carriers.
  • the other carriers are called scheduled carriers.
  • cell1 is a scheduling carrier
  • cell1 can schedule itself, and cell1 can also schedule cell2
  • cell1 is both a scheduling carrier and a scheduled carrier
  • cell2 is a scheduled carrier.
  • scheduling carrier of the scheduled carrier there may be multiple scheduling carriers of the scheduled carrier; in the current scenario, the scheduling carrier of the scheduled carrier is unique.
  • the second carrier set is ⁇ cell1, cell2, cell3, cell4, cell5 ⁇ .
  • cell1 is a scheduled carrier
  • the scheduled carriers of cell1, cell2, cell3, cell4, and cell5 are all cell1.
  • the subcarrier spacing of the scheduled carrier (i.e., cell1) of cell1, cell2, cell3, cell4, and cell5 is the same, which is the subcarrier spacing of cell1.
  • the first detection capability parameter value may be a single carrier PDCCH detection capability parameter value corresponding to the first carrier.
  • the first detection capability parameter value may be determined based on the subcarrier spacing of the first carrier, or the first detection capability parameter value may be determined based on the subcarrier spacing of a scheduling carrier of the first carrier.
  • the subcarrier spacing of the first carrier has a corresponding relationship with the first detection capability parameter value.
  • the subcarrier spacing of the first carrier corresponds to the first detection capability parameter value one-to-one, and the first detection capability parameter value can be uniquely determined according to the subcarrier spacing of the first carrier.
  • the subcarrier spacing of the scheduling carrier of the first carrier has a corresponding relationship with the first detection capability parameter value.
  • the subcarrier spacing of the scheduling carrier of the first carrier corresponds to the first detection capability parameter value one by one, and the first detection capability parameter value can be uniquely determined according to the subcarrier spacing of the scheduling carrier of the first carrier.
  • the first detection capability parameter value can be determined according to the subcarrier spacing of the scheduling carrier, that is, the subcarrier spacing of the first carrier itself.
  • the first detection capability parameter value can be determined according to the subcarrier spacing of cell1.
  • the first detection capability parameter value can be determined based on the subcarrier spacing of the scheduled carrier, that is, the subcarrier spacing of the first carrier itself, or the first detection capability parameter value can be determined based on the subcarrier spacing of the scheduling carrier of the scheduled carrier.
  • the first detection capability parameter value can be determined according to the subcarrier spacing of cell1, or according to the subcarrier spacing of the scheduling carrier cell2 of cell1.
  • the second detection capability parameter value may be determined according to the number of supported detection carriers and the configured multiple carriers.
  • the number of detection carriers supported by the terminal device can be reported to the network device through signaling, and the network device can determine the number of detection carriers supported by the terminal device based on the reported value.
  • the second detection capability is determined according to the number of supported detection carriers, a single carrier detection capability parameter threshold, the first value, and the second value.
  • the first value is determined based on the number of carriers corresponding to the second carrier set, and the number of carriers corresponding to the second carrier set is determined according to the count value of each carrier;
  • the second value is determined based on the number of carriers of the configured multiple carriers, the number of carriers of the configured multiple carriers is determined according to the count value of each carrier, and the configured multiple carriers include a second carrier set.
  • the number of carriers is not necessarily the same as the number of carriers.
  • the count value of each carrier in the 3 carriers is 1, then according to the count value of each carrier in the 3 carriers, it can be determined that the number of carriers corresponding to the set is 3.
  • the count value of one of the 3 carriers is 2, and the count values of the remaining 2 carriers are 1, then the number of carriers corresponding to the set is 4.
  • the count value of one of the 3 carriers is 2, and the count values of the remaining 2 carriers are 1.5, then the number of carriers corresponding to the set is 5.
  • the second detection capability parameter value may be determined according to the number of supported detection carriers, the sum of count values of each carrier in the second carrier set, and the sum of count values of each carrier in the configured multiple carriers.
  • the second detection capability parameter value can be determined according to the number of supported detection carriers, the first detection capability, the sum of the count values of each carrier in the second carrier set, and the sum of the count values of each carrier in the configured multiple carriers.
  • the configured multiple carriers may include a second carrier set.
  • the sum of the count values of each carrier in the configured multiple carriers includes the sum of the count values of each carrier in the second carrier set.
  • is a subcarrier spacing configuration, it can take one of the values 0, 1, 2, and 3.
  • is only used to distinguish different subcarrier spacings and does not represent the actual subcarrier spacing. For example, when ⁇ is 0, it can correspond to a subcarrier spacing of 15KHz, when ⁇ is 1, it can correspond to a subcarrier spacing of 30KHz, when ⁇ is 2, it can correspond to a subcarrier spacing of 60KHz, and when ⁇ is 3, it can correspond to a subcarrier spacing of 120KHz.
  • the subcarrier spacing configuration of the scheduled carrier of each carrier in the second carrier set is 0, and the sum of the count values of each carrier in the second carrier set is recorded as Then the sum of the count values of each carrier in the configured multiple carriers can be The sum of
  • the count value of each carrier in the second carrier set may be the count value of the scheduled carrier whose subcarrier spacing of the scheduling carrier is configured as ⁇ .
  • the second carrier set is ⁇ cell1, cell2, cell3, cell4 ⁇
  • cell1 is the scheduled carrier
  • cell1, cell2, cell3, cell4 are all scheduled carriers
  • the scheduling carriers of cell1, cell2, cell3, cell4 are all cell1.
  • the subcarrier spacing of cell1 is configured as ⁇
  • the subcarrier spacing of the scheduling carriers (i.e., cell) of cell1, cell2, cell3, cell4 is all ⁇ .
  • the scheduled carriers whose subcarrier spacing of the scheduling carrier (i.e., cell1) is configured as ⁇ are cell1, cell2, cell3, cell4.
  • the count value of each carrier in ⁇ cell1, cell2, cell3, cell4 ⁇ is the count value of cell1, cell2, cell3, cell4.
  • the number of carriers supported for detection is the number of carriers supported for detection by the terminal device, which can be used to characterize the PDCCH carrier detection capability reported by the terminal device.
  • the terminal device can report the number of carriers supported for detection to the network device.
  • configured multiple carriers are multiple carriers configured by the network device, and the network device can configure multiple carriers for the terminal device.
  • the count value can also be understood as a weight value.
  • the count value of cell1 is 2, which means the weight value of cell1 is 2, and does not refer to the actual number of cells1.
  • the count value of each carrier in the configured multiple carriers can be used to characterize the influence of each carrier on the second detection capability. That is, the count value of each carrier in the configured multiple carriers is different, and the obtained second detection capability is also different.
  • the count value of each carrier in the configured multiple carriers may be determined in the following two possible implementations.
  • the count value of each carrier in the configured multiple carriers may be: the count value of the first carrier is 1+x, and the count values of other carriers in the configured multiple carriers except the first carrier are determined according to any one of the following:
  • the count values are all 1-y;
  • the count values are all 1-x/(M-1);
  • the count values are all 1-x/(N-1).
  • the count value of each carrier in the configured multiple carriers may also be determined according to any one of the following:
  • the detection capability parameter value used by the terminal device or network device to detect the first DCI format belongs to the first carrier and has no effect on other carriers.
  • the first carrier set is regarded as one carrier, and shares the detection capability parameter value with other carriers.
  • the first carrier set is regarded as one carrier, but the impact on the detection capability parameter values of other carriers is determined according to x.
  • the count value of the first carrier is 1+x, and the count values of the other carriers are all 1-y.
  • the first carrier set is regarded as one carrier, but the impact on the detection capability parameter values of other carriers is determined according to x and y.
  • the count value of the first carrier is 1+x, and the count values of the other carriers are all 1-x/(M-1).
  • the first carrier set is regarded as one carrier, but it only affects the detection capability parameter values of other carriers in the first carrier set, and has no effect on the detection capability parameter values of carriers outside the first carrier set.
  • the count value of the first carrier is 1+x, and the count values of the other carriers are all 1-x/(N-1).
  • the count value of each carrier in the configured multiple carriers may be: the count value of the first carrier set is x, and the count value of each carrier in the configured multiple carriers is determined according to any one of the following:
  • the count values are all 1-y;
  • the count values are all 1-x/M
  • the count values are all 1-x/N.
  • the count value of each carrier in the configured multiple carriers may also be determined according to any one of the following:
  • the count value of the first carrier set is x, and the count value of each carrier in the other carriers is 1.
  • the count value of the first carrier set is x, and the count value of each carrier in the other carriers is 1-y.
  • the count value of the first carrier set is x, and the count value of each carrier in the other carriers is 1-x/M.
  • x and y can be configured, or x and y can be pre-defined by the protocol; M and N can be configured, or M and N can be pre-defined by the protocol, or M can be the number of carriers in the first carrier set, and N can be the number of carriers in the configured multiple carriers.
  • x can be a positive number, a negative number, or 0.
  • x can be an integer or a non-integer.
  • the other carriers in (a) to (k) may be other carriers in the first carrier set except the first carrier, or may be carriers in the second carrier set except the first carrier, that is, other carriers in all carriers with the same subcarrier spacing configuration as the first carrier among the multiple carriers configured by the network device except the first carrier, or may be other carriers in the multiple carriers configured by the network device except the first carrier.
  • is the subcarrier spacing configuration, which can be one of 0, 1, 2, and 3; is the number of carriers supported for detection by the terminal device; M_max is the first detection capability parameter value; is the sum of the count values of each carrier in the second carrier set; The sum of the count values of each carrier in the multiple carriers configured for the network device.
  • Example 1 There are 4 carriers in the second carrier set configured by the network device for the terminal device, which are recorded as cell1, cell2, cell3, and cell4, and the first DCI format is configured to schedule multiple carriers in the set ⁇ cell1, cell2, cell3, cell4 ⁇ , that is, the first carrier set is ⁇ cell1, cell2, cell3, cell4 ⁇ , the scheduling carriers of cell1, cell2, cell3, and cell4 are all cell1, and the subcarrier spacing configurations of cell1, cell2, cell3, and cell4 are the same, and the subcarrier spacing is recorded as ⁇ .
  • the detection capability parameter value count used by the terminal device or network device to detect the first DCI format is counted on cell1, that is, the detection capability parameter value count used by the terminal device or network device to detect the set ⁇ cell1, cell2, cell3, cell4 ⁇ is counted on cell1.
  • the count values of cell1, cell2, cell3, and cell4 can be the following:
  • the count values of cell1, cell2, cell3, and cell4 are all 1, and the count value of the set ⁇ cell1, cell2, cell3, cell4 ⁇ is x.
  • the count value of cell1 is 1+x, and the count values of cell2, cell3, and cell4 are all 1-y.
  • Example 2 There are 4 carriers in the second carrier set configured by the network device for the terminal device, which are recorded as cell1, cell2, cell3, and cell4, and the first DCI format is configured to schedule multiple carriers in the set ⁇ cell1, cell2, cell3, cell4 ⁇ , that is, the first carrier set is ⁇ cell1, cell2, cell3, cell4 ⁇ , the scheduling carriers of cell1, cell2, cell3, and cell4 are all cell1, and the subcarrier spacing configurations of cell1, cell2, cell3, and cell4 are the same, and the subcarrier spacing is recorded as ⁇ .
  • the detection capability parameter value count used by the terminal device or network device to detect the first DCI format is counted on cell1, that is, the detection capability parameter value count used by the terminal device or network device to detect the set ⁇ cell1, cell2, cell3, cell4 ⁇ is counted on cell1.
  • the count values of cell1, cell2, cell3, and cell4 can be the following:
  • the count values of cell1, cell2, cell3, and cell4 are all 1-x/4, and the count value of ⁇ cell1, cell2, cell3, cell4 ⁇ is x.
  • the count values of cell1, cell2, cell3, and cell4 are all 1-y, and the count value of ⁇ cell1, cell2, cell3, cell4 ⁇ is x.
  • Example 3 There are 8 carriers in the second carrier set configured by the network device for the terminal device, which are recorded as cell1, cell2, cell3, cell4, cell5, cell6, cell7, and cell8, and the first DCI format is configured to schedule multiple carriers in the set ⁇ cell1, cell2, cell3, cell4 ⁇ , that is, the first carrier set is ⁇ cell1, cell2, cell3, cell4 ⁇ , the scheduling carriers of cell1, cell2, cell3, and cell4 are all cell1, and the subcarrier spacing configurations of cell1, cell2, cell3, cell4, cell5, cell6, cell7, and cell8 are the same, and the subcarrier spacing is recorded as ⁇ .
  • the detection capability parameter value count of the terminal device or network device for detecting the first DCI format is counted on cell1, that is, the detection capability parameter value count of the terminal device or network device for detecting the set ⁇ cell1, cell2, cell3, cell4 ⁇ is counted on cell1, and the count values of cell1 to cell8 can be the following:
  • the count value of cell1 is 2, and the count values of cell2, cell3, cell4, cell5, cell6, cell7, and cell8 are all 1.
  • the count value of cell1 is 1+x, and the count values of cell2, cell3, cell4, cell5, cell6, cell7, and cell8 are all 1.
  • the count value of cell1 is 1+x
  • the count values of cell2, cell3, and cell4 are all 1-y
  • the count values of cell5, cell6, cell7, and cell8 are all 1.
  • the count value of cell1 is 1+x, and the count values of cell2, cell3, cell4, cell5, cell6, cell7, and cell8 are all 1-y.
  • Example 4 There are 8 carriers in the second carrier set configured by the network device for the terminal device, which are recorded as cell1, cell2, cell3, cell4, cell5, cell6, cell7, and cell8 respectively.
  • Cell9 is a carrier other than the second carrier set configured by the network device for the terminal device, and the first DCI format is configured to schedule multiple carriers in the set ⁇ cell1, cell2, cell3, cell4 ⁇ , that is, the first carrier set is ⁇ cell1, cell2, cell3, cell4 ⁇ , and the scheduling carriers of cell1, cell2, cell3, and cell4 are all cell1, and the subcarrier spacing configuration of cell1, cell2, cell3, cell4, cell5, cell6, cell7, and cell8 is the same, and the subcarrier spacing configuration is recorded as ⁇ .
  • the subcarrier spacing configuration of cell9 is different from that of cell1 to cell8, and the subcarrier spacing is recorded as ⁇ 1.
  • the detection capability parameter value count of the terminal device or network device for detecting the first DCI format is counted on cell1, that is, the detection capability parameter value count of the terminal device or network device for detecting the set ⁇ cell1, cell2, cell3, cell4 ⁇ is counted on cell1.
  • the count values of cell1 to cell9 can be the following:
  • the count value of cell1 is 1+x
  • the count values of cell2, cell3, cell4, cell5, cell6, cell7, and cell8 are all 1-(x/8)
  • the count value of cell9 is 1-(x/8).
  • the count value of cell1 is 2, the count values of cell2, cell3, cell4, cell5, cell6, cell7, and cell8 are all 1, and the count value of cell9 is 1.
  • the count value of cell1 is 1+x
  • the count values of cell2, cell3, and cell4 are all 1-y
  • the count values of cell5, cell6, cell7, and cell8 are all 1
  • the count value of cell9 is 1.
  • the count value of cell1 is 1+x
  • the count values of cell2, cell3, cell4, cell5, cell6, cell7, and cell8 are all 1-y
  • the count value of cell9 is 1.
  • the count value of cell1 is 1+x
  • the count values of cell2, cell3, cell4, cell5, cell6, cell7, and cell8 are all 1-y
  • the count value of cell9 is 1-y.
  • an embodiment of the present application provides a detection capability determination method, which can determine the detection capability parameter value for detecting the first DCI format according to the first detection capability parameter value and the second detection capability parameter value, and the first DCI format can be used to schedule multiple carriers in the first carrier set.
  • the detection capability parameter value of the first DCI format that can schedule multiple carriers can be determined according to the first detection capability parameter value and the second detection capability parameter value.
  • the detection capability of the multi-carrier scheduling DCI format i.e., the first DCI format
  • the blind detection process of the terminal device can be further optimized.
  • the terminal device can use this method to determine the detection capability parameter value for detecting the first DCI format, such as the number of blind detections, the number of PDCCH candidates for blind detection, and the number of non-overlapping CCEs for channel estimation; the network device uses this method to determine the detection capability parameter value of the terminal device for detecting the first DCI format, which helps the network device to configure the appropriate number of PDCCH transmission resources, such as the number of control resource sets (CORESET) and the number of search space sets (Search Space Set), so that the number of PDCCHs that can be transmitted will not exceed the detection capability of the terminal device, thereby improving system performance.
  • the detection capability parameter value for detecting the first DCI format such as the number of blind detections, the number of PDCCH candidates for blind detection, and the number of non-overlapping CCEs for channel estimation
  • the network device uses this method to determine the detection capability parameter value of the terminal device for detecting the first DCI format, which helps the network device to configure the appropriate number of PDCCH transmission resources, such as the number of control
  • the terminal device can transmit data in time. It can ensure that the channel feedback request indication is not lost, so that the terminal device can report the channel status measurement results in time, so that the network device can adjust the scheduling parameters according to the channel change status in time.
  • the embodiment of the present application includes multiple ways to determine the detection capability parameter value for detecting the first DCI format according to the first detection capability parameter value and the second detection capability parameter value.
  • the detection capability parameter value for detecting the first DCI format may be determined according to the maximum value of the first detection capability parameter value and the second detection capability parameter value. That is, the detection capability parameter value for detecting the first DCI format may be max(M_max, M_total).
  • the detection capability parameter value for detecting the first DCI format may be determined according to the minimum value of the first detection capability parameter value and the second detection capability parameter value. That is, the detection capability parameter value for detecting the first DCI format may be min(M_max, M_total).
  • the method may include:
  • S310 determining a detection capability parameter value for detecting a first DCI format according to a first detection capability parameter value, a second detection capability parameter value, and a first proportionality coefficient, wherein the first proportionality coefficient is configured, or the first proportionality coefficient is predefined by a protocol.
  • the first proportionality coefficient may be used to determine the proportional relationship between the detection capabilities of the second DCI format and the first DCI format.
  • the second DCI format may be used to schedule the first carrier, that is, the second DCI format is a DCI format for scheduling one carrier.
  • a is a proportional coefficient for determining the detection capability of the first DCI format, and the remaining capability is used to determine the detection capability of the second DCI format.
  • the detection capability of the first DCI format and the detection capability of the second DCI format are allocated according to the configuration (i.e., the first proportional coefficient), so that the detection capability of the first DCI format and the detection capability of the second DCI format have clear capability allocation, which is conducive to the implementation and optimization of the terminal blind detection process.
  • the detection capability parameter value for detecting the first DCI format may be determined according to a minimum value of the first detection capability parameter value and the second detection capability parameter value, and a first proportionality coefficient.
  • the detection capability parameter value for detecting the first DCI format may be determined based on the product of the minimum value of the first detection capability parameter value and the second detection capability parameter value and the first proportionality coefficient.
  • the detection capability parameter value for detecting the first DCI format may also be determined based on the quotient of the minimum value of the first detection capability parameter value and the second detection capability parameter value and the first proportionality coefficient.
  • the detection capability parameter value for detecting the first DCI format may be determined based on a maximum value of the first detection capability parameter value and the second detection capability parameter value, and a first proportionality coefficient.
  • the detection capability parameter value for detecting the first DCI format may be determined based on the product of the maximum value of the first detection capability parameter value and the second detection capability parameter value and the first proportionality coefficient.
  • the detection capability parameter value for detecting the first DCI format may also be determined based on the quotient of the maximum value of the first detection capability parameter value and the second detection capability parameter value and the first proportionality coefficient.
  • a detection capability parameter value for detecting a second DCI format may be determined based on a first detection capability parameter value, a second detection capability parameter value, and a second proportional coefficient, wherein the sum of the second proportional coefficient and the first proportional coefficient is 1.
  • the first detection capability parameter value is recorded as M_max
  • the second detection capability parameter value is recorded as M_total
  • the first proportional coefficient is a
  • the second proportional coefficient is 1-a. Then the terminal device or network device can determine that the detection capability parameter value used to detect the first DCI format can be a part of the minimum value of M_max and M_total, that is, a*(min(M_max,M_total)). At this time, the terminal device or network device can determine that the detection capability parameter value used to detect the second DCI format can be (1-a)*min(M_max,M_total).
  • the detection capability parameter value for detecting the first DCI format can be determined based on the first detection capability parameter value, the second detection capability parameter value and the first proportionality coefficient, and the first DCI format can be used to schedule multiple carriers in the first carrier set.
  • the detection capability parameter value of the first DCI format that can schedule multiple carriers can be determined based on the first detection capability parameter value, the second detection capability parameter value and the first proportionality coefficient.
  • the detection capability of the multi-carrier scheduling DCI format i.e., the first DCI format
  • the detection capability of the single-carrier scheduling DCI format i.e., the second DCI format
  • the first DCI format that can schedule multiple carriers can be distinguished from the second DCI format that can schedule one carrier, which is beneficial to the implementation and optimization of the blind detection process of the terminal device.
  • the terminal device can use this method to determine the detection capability parameter value for detecting the first DCI format, such as the number of blind detections, the number of PDCCH candidates for blind detection, and the number of non-overlapping CCEs for channel estimation; the network device uses this method to determine the detection capability parameter value for detecting the first DCI format, which helps the network device to configure an appropriate number of PDCCH transmission resources, such as the number of control resource sets (CORESET), the number of search space sets (Search Space Set) or the number of PDCCH candidates (PDCCH candidate), so that the number of PDCCHs that can be transmitted does not exceed the detection capability of the terminal device, thereby avoiding the situation where some PDCCHs cannot be detected due to insufficient detection capability of the terminal device, thereby improving system performance.
  • the detection capability parameter value for detecting the first DCI format such as the number of blind detections, the number of PDCCH candidates for blind detection, and the number of non-overlapping CCEs for channel estimation
  • the network device uses this method to determine the detection capability parameter value for
  • the carrier scheduled by DCI format 0_X and/or 1_X at the same time can be at least one of a set of multiple carriers, and the set of multiple carriers can be the aforementioned first carrier set.
  • the carrier configurations scheduled simultaneously by DCI formats 0_X and/or 1_X may have the following two exemplary descriptions.
  • the first carrier set is ⁇ cell1, cell2, cell3, cell4, cell5, cell6, cell7, cell8 ⁇ , and the carrier configuration simultaneously scheduled by DCI format 0_X and/or 1_X is shown in Table 1.
  • the first carrier set is ⁇ cell1, cell2, cell3, cell4 ⁇
  • the carrier configurations scheduled simultaneously by DCI formats 0_X and/or 1_X are shown in Table 2.
  • the detection capability parameter value allocated to the detection of DCI/PDCCH for scheduling multiple carriers can be divided from the detection capability parameter value allocated to the detection of DCI/PDCCH for scheduling one carrier, that is, the single-carrier scheduling detection capability parameter value and the multi-carrier scheduling detection capability parameter value are divided; the number of blind detections corresponding to different DCI formats for the terminal device or the network device, the number of PDCCH candidates for blind detection, the number of non-overlapping CCEs for channel estimation, and the network device can also be clarified, so that the number of PDCCHs that can be transmitted does not exceed the detection capability of the terminal device.
  • the method of counting the value of each carrier in the multiple carriers configured by the network device when the terminal device or the network device determines the detection capability parameter threshold of the scheduled carrier with different subcarrier intervals includes the method of counting the value of the scheduled carrier.
  • different counting methods of the scheduled carrier have different effects on the detection capability parameter values of other carriers except the scheduled carrier. Therefore, clarifying the detection capability parameter value of the multi-carrier scheduling DCI format (i.e., the first DCI format) can also control the effect of the detection capability parameter value of the scheduled carrier on the detection capability of other carriers.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • FIG4 is a schematic diagram of the structure of a detection capability determination device provided in an embodiment of the present application, which is applied to a terminal device or a network device.
  • the detection capability determination device 400 includes:
  • the processing unit 410 is configured to determine, according to the first detection capability parameter value and the second detection capability parameter value, a detection capability parameter value for detecting a first DCI format, where the first DCI format is used for scheduling multiple carriers in a first carrier set;
  • the first detection capability parameter value is a single carrier detection capability parameter threshold corresponding to a first carrier, wherein the first carrier is included in the first carrier set;
  • the second detection capability parameter value is a detection capability parameter threshold used to detect a DCI format that schedules a carrier in a second carrier set, where the second carrier set includes the first carrier set.
  • the second detection capability is determined based on the number of supported detection carriers, the single carrier detection capability parameter threshold, the first value, and the second value;
  • the first value is determined based on the number of carriers corresponding to the second carrier set, and the number of carriers is determined according to the count value of each carrier;
  • the second value is determined based on the number of carriers of the configured multiple carriers, the number of carriers is determined according to the count value of each carrier, and the configured multiple carriers include a second carrier set.
  • the count value of the first carrier is 1+x.
  • count values of other carriers except the first carrier in the configured multiple carriers are determined according to any one of the following:
  • the count values are all 1-y;
  • the count values are all 1-x/(M-1);
  • M is the number of carriers in the first carrier set, and N is the number of carriers in the configured multiple carriers.
  • the count value of the first carrier set is x.
  • the count value of each carrier in the configured multiple carriers is determined according to any one of the following:
  • the count values are all 1-y;
  • the count values are all 1-x/M
  • the count values are all 1-x/N;
  • M is the number of carriers corresponding to the first carrier set
  • N is the number of carriers of the configured multiple carriers.
  • the other carriers are any one of the following: carriers in the first carrier set except the first carrier; carriers in the second carrier set except the first carrier; and carriers in the configured multiple carriers except the first carrier.
  • the first detection capability parameter value is determined according to the subcarrier spacing of the first carrier, or the first detection capability parameter value is determined according to the subcarrier spacing of a scheduling carrier of the first carrier.
  • the first carrier is any one of the following in the first carrier set: a carrier whose identification information is a specified identifier, a carrier whose search space set configuration number satisfies a first preset rule, a carrier whose search space set number supporting single carrier scheduling satisfies a second preset rule, a carrier configured for calculating a detection capability parameter value of a first DCI format, a carrier configured for a search space set supporting a first DCI format, a carrier for counting a DCI size of a first DCI format, and a protocol predefined.
  • the subcarrier spacing of the scheduled carriers of each carrier in the second carrier set is the same.
  • the processing unit 210 is configured to determine a detection capability parameter value for detecting the first DCI format according to a minimum value between a first detection capability parameter value and a second detection capability parameter value.
  • the processing unit 210 is further configured to determine a detection capability parameter value for detecting a first DCI format based on a first detection capability parameter value, a second detection capability parameter value and a first proportional coefficient, wherein the first proportional coefficient is configured, or the first proportional coefficient is predefined by the protocol.
  • the processing unit 210 is further configured to determine a detection capability parameter value for detecting the first DCI format according to a minimum value of the first detection capability parameter value and the second detection capability parameter value, and a first proportionality coefficient.
  • the processing unit 210 is further configured to determine a detection capability parameter value for detecting the first DCI format based on a product of a minimum value of the first detection capability parameter value and the second detection capability parameter value and a first proportionality coefficient.
  • a detection capability determination device provided in an embodiment of the present application can determine a detection capability parameter value for detecting a first DCI format based on a first detection capability parameter value and a second detection capability parameter value, and the first DCI format can be used to schedule multiple carriers in a first carrier set.
  • the detection capability parameter value of the first DCI format that can schedule multiple carriers can be determined based on the first detection capability parameter value and the second detection capability parameter value.
  • clarifying the detection capability of the multi-carrier scheduling DCI format i.e., the first DCI format
  • the terminal device can use this method to determine the detection capability parameter value for detecting the first DCI format, such as the number of blind detections, the number of PDCCH candidates for blind detection, and the number of non-overlapping CCEs for channel estimation; the network device uses this method to determine the detection capability parameter value for detecting the first DCI format, which helps the network device to configure an appropriate number of PDCCH transmission resources, such as the number of control resource sets (CORESET), the number of search space sets (Search Space Set), and the number of PDCCH candidates (PDCCH candidate), so that the number of PDCCHs that can be transmitted does not exceed the detection capability of the terminal device, thereby avoiding the situation where some PDCCHs cannot be detected due to insufficient detection capability of the terminal device, thereby improving system performance.
  • the detection capability parameter value for detecting the first DCI format such as the number of blind detections, the number of PDCCH candidates for blind detection, and the number of non-overlapping CCEs for channel estimation
  • the network device uses this method to determine the detection capability parameter value for
  • FIG5 is a schematic structural diagram of a communication device 500 provided in an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 500 shown in FIG5 includes a processor 510, which may call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated into the processor 510.
  • the communication device 500 may further include a transceiver 530 , and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of the antennas may be one or more.
  • the communication device 500 may specifically be a network device of an embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which will not be described in detail here for the sake of brevity.
  • the communication device 500 may specifically be a terminal device of an embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which will not be described again for the sake of brevity.
  • Fig. 6 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 600 shown in Fig. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method according to the embodiment of the present application.
  • the chip 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated into the processor 610 .
  • the chip 600 may further include an input interface 630.
  • the processor 610 may control the input interface 630 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640.
  • the processor 610 may control the output interface 640 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the chip can be applied to the terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • FIG7 is a schematic block diagram of a communication system 700 provided in an embodiment of the present application.
  • the communication system 700 includes a terminal device 710 and a network device 720 .
  • the terminal device 710 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 720 can be used to implement the corresponding functions implemented by the network device in the above method. For the sake of brevity, they will not be described in detail here.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined to perform.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM Direct Rambus RAM
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchlink DRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Dynch Link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program runs on a computer, the computer executes the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the computer program can be applied to the terminal device in the embodiments of the present application.
  • the computer program runs on the computer, the computer executes the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种检测能力确定方法、装置、设备及存储介质,该方法包括:根据第一检测能力参数值和第二检测能力参数值,确定用于检测第一DCI格式的检测能力参数值,第一DCI格式用于调度第一载波集合中的多个载波;其中,第一检测能力参数值是第一载波对应的单载波检测能力参数阈值,第一载波包括在第一载波集合中;第二检测能力参数值是用于检测调度第二载波集合中的载波的DCI格式的检测能力参数阈值,第二载波集合包括第一载波集合。

Description

检测能力确定方法、装置、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,具体涉及一种检测能力确定方法、装置、设备及存储介质。
背景技术
在多载波场景中,一个下行链路控制信息(Downlink Control Information,DCI)/物理下行控制信道(Physical Downlink Control Channel,PDCCH)可以调度一个载波,如果配置的载波数较多,或者需要同时发送的DCI/PDCCH较多,会造成PDCCH资源紧缺的情况。为了减少PDCCH负载,通常需要使用一个DCI/PDCCH来调度多个载波。
基于此,如果支持一个DCI/PDCCH可以调度多个载波的情况,如何确定分配给调度多个载波DCI/PDCCH检测的检测能力是亟需解决的问题。
发明内容
本申请实施例提供一种检测能力确定方法、装置、设备及存储介质。
第一方面,本申请实施例提供一种检测能力确定方法,该方法包括:
根据第一检测能力参数值和第二检测能力参数值,确定用于检测第一DCI格式的检测能力参数值,第一DCI格式用于调度第一载波集合中的多个载波;
其中,第一检测能力参数值是第一载波对应的单载波检测能力参数阈值,第一载波包括在第一载波集合中;
第二检测能力参数值是用于检测调度第二载波集合中的载波的DCI格式的检测能力参数阈值,第二载波集合包括第一载波集合。
第二方面,本申请实施例提供一种检测能力确定装置,包括:
处理单元,配置为根据第一检测能力参数值和第二检测能力参数值,确定用于检测第一DCI格式的检测能力参数值,第一DCI格式用于调度第一载波集合中的多个载波;
其中,第一检测能力参数值是第一载波对应的单载波检测能力参数阈值,第一载波包括在第一载波集合中;
第二检测能力是用于检测调度第二载波集合中的载波DCI格式的检测能力参数阈值,第二载波集合包括第一载波集合。
第三方面,本申请实施例提供一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面所述的检测能力确定方法。
第四方面,本申请实施例提供的芯片,用于实现上述的检测能力确定方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的检测能力确定方法。
第五方面,本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的检测能力确定方法。
第六方面,本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的检测能力确定方法。
第七方面,本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的检测能力确定方法。
本申请实施例提供了一种检测能力确定方法,可以根据第一检测能力参数值和第二检测能力参数值,确定用于检测第一DCI格式的检测能力参数值,该第一DCI格式可以用于调度第一载波集合中的多个载波。这样,可以根据第一检测能力参数值和第二检测能力参数值,确定出可以调度多个载波的第一DCI格式的检测能力参数值。如此,明确多载波调度DCI格式(即第一DCI格式)的检测能力,能够进一步优化终端设备的盲检测过程。此外,终端设备可以使用该方法确定用于检测第一DCI格式时的检测能力参数值,例如,盲检测次数,盲检测的PDCCH候选个数,信道估计的不重叠的CCE个数;网络设备使用该方法确定终端设备用于检测第一DCI格式时的检测能力参数值,有助于网络设配配置合适的PDCCH传输资源数量,例如控制资源集(CORESET)数量,搜索空间集(Search Space Set)数量或PDCCH候选(PDCCH candidate)数量,进而使得可以传输的PDCCH数量不会超越终端设备的检测能力,避免终端设备因为检测能力不足而导致部分PDCCH无法被检测的情况,提高系统性能。
例如,可以保证调度信息不被丢失,使得终端设备可以及时进行数据传输。保证信道反馈请求指示不被丢失,终端设备可以及时进行信道状态测量结果上报,使得网络设备及时根据信道变化状态调整调度参数。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种示例性的网络架构的示意图。
图2是本申请实施例提供的一种检测能力确定方法的流程示意图。
图3是本申请实施例提供的又一种检测能力确定方法的流程示意图。
图4是本申请实施例提供的一种检测能力确定装置的结构组成示意图。
图5是本申请实施例提供的一种通信设备示意性结构图。
图6是本申请实施例的芯片的示意性结构图。
图7是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例提供的一个示例性的网络架构的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信 系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其他终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其他处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
图1示出了一个网络设备和两个终端设备,在一些实施例中,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其他数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其他系统。此外,本文中术语“系统”和“网络”在本文中可互换使用。
应理解,本申请实施例中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
5G通信系统中,终端设备可以根据网络设备配置的载波,确定每个被调度载波在其对应的调度载波中支持的最大物理下行控制信道(Physical Downlink Control Channel,PDCCH)检测能力。PDCCH检测能力可以是PDCCH盲检测次数,盲检测PDCCH候选个数,也可以是用于信道估计的不重叠的控制信道元素(Control Channel Element,CCE)个数。
在一些实施例中,将子载波间隔配置为μ的调度载波的检测总能力参数值记为M_total,则M_total的计算公式满足公式(1):
Figure PCTCN2022130138-appb-000001
其中,
Figure PCTCN2022130138-appb-000002
为终端设备支持检测的载波数;M_max为单载波PDCCH检测能力参数值;
Figure PCTCN2022130138-appb-000003
为调度载波的子载波间隔配置为μ的被调度载波的载波数量;
Figure PCTCN2022130138-appb-000004
为调度载波的子载波间隔配置为j的被调度载波的载波数量的和。
基于公式(1),可以确定每个被调度载波在其对应的调度载波上支持的最大PDCCH检测能力参数值,即min(M_max,M_total)。
在多载波场景中,一个下行链路控制信息(Downlink Control Information,DCI)/PDCCH可以调度一个载波,如果配置的载波的载波数量较多,或者需要同时发送的DCI/PDCCH较多,会造成PDCCH资源紧缺的情况。为了减少PDCCH负载,通常需要使用一个DCI/PDCCH来调度多个载波,被同一个DCI/PDCCH调度的载波组合是预配置或预定义的。
在一些实施例中,将可以调度多个载波的DCI/PDCCH的检测能力归属在可以被该DCI调度的所有载波中的一个载波上。
需要说明的是,如果支持一个DCI/PDCCH可以调度多个载波的情况,如何确定分配给调度多个载波DCI/PDCCH检测的检测能力是亟需解决的问题。
基于此,本申请实施例提供了一种检测能力确定方法,可以根据第一检测能力参数值和第二检测能力参数值,确定用于检测第一DCI格式的检测能力参数值,该第一DCI格式可以用于调度第一载波集合中的多个载波。这样,可以根据第一检测能力参数值和第二检测能力参数值,确定出可以调度多个载波的第一DCI格式的检测能力参数值。如此,明确多载波调度DCI格式(即第一DCI格式)的检测能力,能够进一步优化终端设备的盲检测过程。此外,终端设备可以使用该方法确定用于检测第一DCI格式时的检测能力参数值,例如,盲检测次数,盲检测的PDCCH候选个数,信道估计的不重叠的CCE个数;网络设备使用该方法确定终端设备用于检测第一DCI格式时的检测能力参数值,有助于网络设配配置合适的PDCCH传输资源数量,例如控制资源集(CORESET),搜索空间集(Search Space Set),或PDCCH候选(PDCCH candidate)数量,能够使得可以传输的PDCCH数量不会超越终端设备的检测能力,避免终端设备因为检测能力不足而导致部分PDCCH无法被检测的情况,提高系统性能。
例如,可以保证调度信息不被丢失,使得终端设备可以及时进行数据传输。保证信道反馈请求指示不被丢失,终端设备可以及时进行信道状态测量结果上报,使得网络设备及时根据信道变化状态调整调度参数。
需要说明的是,在下文实施例中多次提及第一DCI格式、第二DCI格式,将可以调度多个载波的DCI格式记为第一DCI格式,例如DCI格式0_X和/或1_X,将可以调度一个载波的DCI格式记为第二DCI格式,例如DCI格式0_0/0_1/0_2/1_0/1_1/1_2。
还需要说明的是,本申请实施例中的执行主体可以是网络设备,也可以是终端设备,本申请实施例对于执行主体并不作具体限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图2是本申请实施例提供的一种检测能力确定方法的流程示意图,如图2所示,该方法可以包括以下内容。
S210,根据第一检测能力参数值和第二检测能力参数值,确定用于检测第一DCI格式的检测能力参数值,第一DCI格式用于调度第一载波集合中的多个载波;其中,第 一检测能力参数值是第一载波对应的单载波检测能力参数阈值;第二检测能力参数值是用于检测调度第二载波集合中的载波的DCI格式的检测能力参数阈值。
其中,第一载波为第一载波集合中的其中之一。
例如,第一载波集合为{cell1,cell2,cell3,cell4},则第一载波可以是cell1、cell2、cell3、cell4中的其中之一。
示例性地,第一载波是第一载波集合中的以下任意一项:标识信息为指定标识的载波、搜索空间集(Searchspace Set)配置个数满足第一预设规则的载波、支持单载波调度的Searchspace Set个数满足第二预设规则的载波、配置的用于计算第一DCI格式的检测能力参数值的载波、配置的支持第一DCI格式的Searchspace Set的载波、计数第一DCI格式的DCI大小的载波、协议预定义。
需要说明的是,标识信息为指定标识的载波可以是第一载波集合中小区标识(Identity Document,ID)最小的载波,也可以是第一载波集合中小区ID最大的载波,也可以是第一载波集合中其他小区标识的载波,本申请实施例对此不作限定。
还需要说明的是,第一预设规则为Searchspace Set配置个数最少,或者,第一预设规则为Searchspace Set配置个数最多。第二预设规则为支持单载波调度的Searchspace Set配置个数最少,或者,第二预设值为支持单载波调度的Searchspace Set配置个数最多,本申请实施例对此不作限定。
还需要说明的是,Searchspace Set配置个数满足第一预设规则的载波,可以是Searchspace Set配置个数最少的载波,也可以是Searchspace Set配置个数为其他值时的载波,本申请实施例对此不作限定。
还需要说明的是,支持单载波调度的Searchspace Set个数满足第二预设规则的载波,可以是支持单载波调度的Searchspace Set配置个数最少的载波,也可以是支持单载波调度的Searchspace Set配置个数为其他值时的载波,本申请实施例对此不作限定。
还需要说明的是,配置的用于计算第一DCI格式的检测能力的载波,可以是网络设备通过RRC信令配置的用于计算第一DCI格式的检测能力的载波,也可以是网络设备通过其他信令配置的用于计算第一DCI格式的检测能力的载波,本申请实施例对此不作限定。
其中,第二载波集合包括第一载波集合。
应理解,对于终端设备来说,第二载波集合可以是网络设备配置给终端设备的。
应理解,对于终端设备来说,第二载波集合根据配置给终端设备的载波确定,第二载波集合中的各载波对应的调度载波的子载波间隔相同,第二载波集合中包括第一载波集合。
还应理解,调度第二载波集合中载波的DCI格式可以是用于调度多载波的DCI格式,也可以是用于调度单载波的DCI格式。
还应理解,第一检测能力参数值可以是子载波间隔配置为μ时,第一载波支持的最大检测能力参数值。
在一些实施例中,根据第一检测能力参数值和第二检测能力参数值,确定用于检测第一DCI格式的检测能力参数值,可以包括:根据第一检测能力参数值和第二检测能力参数值中的最小值,确定用于检测第一DCI格式的检测能力参数值。
示例性地,将第一检测能力参数值记为M_max,第二检测能力参数值记为M_total,则终端设备或网络设备用于检测第一DCI格式的检测能力参数值可以为M_max和M_total的最小值,即min(M_max,M_total)。
在一些实施例中,第二载波集合中各载波的调度载波的子载波间隔相同。
需要说明的是,调度载波是可以调度其他载波的载波,此时该其他载波即称为被调 度载波。例如,假设cell1为调度载波,cell1可以调度自身,cell1也可以调度cell2,则cell1既是调度载波,也是被调度载波,cell2为被调度载波。
还需要说明的是,对于多个场景,被调度载波的调度载波可能有多个;在当前场景下,被调度载波的调度载波是唯一的。
示例性地,第二载波集合为{cell1,cell2,cell3,cell4,cell5},假设cell1为调度载波,则cell1、cell2、cell3、cell4、cell5的调度载波均为cell1,此时cell1、cell2、cell3、cell4、cell5的调度载波(即cell1)的子载波间隔是相同的,均为cell1的子载波间隔。
在一些实施例中,第一检测能力参数值可以是第一载波对应的单载波PDCCH检测能力参数值。
在一些实施例中,第一检测能力参数值可以根据第一载波的子载波间隔确定,或者,第一检测能力参数值可以根据第一载波的调度载波的子载波间隔确定。
示例性地,根据协议预定义,第一载波的子载波间隔与第一检测能力参数值具有对应关系。例如,第一载波的子载波间隔与第一检测能力参数值是一一对应的,根据第一载波的子载波间隔,可以唯一确定第一检测能力参数值。
示例性地,根据协议预定义,第一载波的调度载波的子载波间隔与第一检测能力参数值具有对应关系。例如,第一载波的调度载波的子载波间隔与第一检测能力参数值是一一对应的,根据第一载波的调度载波的子载波间隔,可以唯一确定第一检测能力参数值。
应理解,当第一载波作为调度载波时,第一检测能力参数值可以根据调度载波的子载波间隔确定,即第一载波自身的子载波间隔确定。
示例性地,假设第一载波集合为{cell1,cell2,cell3,cell4},第一载波为cell1,且cell1为调度载波,则第一检测能力参数值可以根据cell1的子载波间隔确定。
还应理解,当第一载波作为被调度载波时,第一检测能力参数值可以根据该被调度载波的子载波间隔确定,即第一载波自身的子载波间隔确定,或者,第一检测能力参数值可以根据该被调度载波的调度载波的子载波间隔确定。
示例性地,假设第一载波集合为{cell1,cell2,cell3,cell4},第一载波为cell1,调度载波为cell2,则cell2既是调度载波,也是被调度载波,cell1为被调度载波。此时第一检测能力参数值可以根据cell1的子载波间隔确定,也可以根据cell1的调度载波cell2的子载波间隔确定。
在一些实施例中,第二检测能力参数值可以根据支持的检测载波数,以及配置的多个载波确定。
需要说明的是,终端设备支持的检测载波数,可以通过信令上报至网络设备,网络设备可以根据上报值确定终端设备支持的检测载波数。
进一步地,在一些实施例中,第二检测能力根据支持的检测载波数、单载波检测能力参数阈值、第一数值和第二数值确定。
其中,第一数值基于第二载波集合对应的载波数量确定的,第二载波集合对应的载波数量根据各载波的计数值确定;
其中,第二数值基于配置的多个载波的载波数量确定,配置的多个载波的载波数量根据各载波的计数值确定,配置的多个载波包括第二载波集合。
需要说明的是,在本申请实施例中,载波数量与载波个数不一定相同。
例如,假设载波集合(如第一载波集合,又如第二载波集合)中共有3个载波,在该3个载波中每个载波的计数值为1,则根据该3个载波中每个载波的计数值,可以确定该集合对应的载波数量为3。
再例如,假设载波集合中共有3个载波,该3个载波中的1个载波的计数值为2, 剩余2个载波的计数值为1,则该集合对应的载波数量为4。
再例如,假设载波集合中共有3个载波,该3个载波中的1个载波的计数值为2,剩余2个载波的计数值为1.5,则该集合对应的载波数量为5。
示例性地,第二检测能力参数值可以根据支持的检测载波数、第二载波集合中各载波的计数值的和、配置的多个载波中各载波的计数值的和确定。
进一步地,例如,第二检测能力参数值可以根据支持的检测载波数、第一检测能力、第二载波集合中各载波的计数值的和、配置的多个载波中各载波的计数值的和确定。
其中,配置的多个载波可以包括第二载波集合。
应理解,配置的多个载波中各载波的计数值的和包括第二载波集合中各载波的计数值的和。
示例性地,假设μ为子载波间隔配置,可以取值0、1、2、3中的其中之一。
应理解,μ的取值仅用于区分不同子载波间隔,并不代表实际的子载波间隔。例如,μ取值为0时可以对应15KHz的子载波间隔,μ取值为1时可以对应30KHz的子载波间隔,μ取值为2时可以对应60KHz的子载波间隔,μ取值为3时可以对应120KHz的子载波间隔。
示例性地,第二载波集合中各载波的调度载波的子载波间隔配置均为0,将第二载波集合中各载波的计数值的和记为
Figure PCTCN2022130138-appb-000005
则配置的多个载波中各载波的计数值的和可以为
Figure PCTCN2022130138-appb-000006
的和,即
Figure PCTCN2022130138-appb-000007
还需要说明的是,第二载波集合中各载波的计数值可以为调度载波的子载波间隔配置为μ的被调度载波的计数值。
示例性地,假设第二载波集合为{cell1,cell2,cell3,cell4},cell1为调度载波,则cell1、cell2、cell3、cell4均为被调度载波,且cell1、cell2、cell3、cell4的调度载波均为cell1,假设cell1的子载波间隔配置为μ,则cell1、cell2、cell3、cell4的调度载波(即cell)的子载波间隔均为μ,也就是说,调度载波(即cell1)的子载波间隔配置为μ的被调度载波为cell1、cell2、cell3、cell4,此时{cell1,cell2,cell3,cell4}中各载波的计数值即为cell1、cell2、cell3、cell4的计数值。
还应理解,支持检测的载波数即为终端设备支持检测的载波数,可以用于表征终端设备上报的PDCCH检测载波能力,终端设备可以向网络设备上报该支持检测的载波数。
还应理解,配置的多个载波即为网络设备配置的多个载波,网络设备可以为终端设备配置多个载波。
需要说明的是,在本申请实施例中,计数值也可以理解为权重值。例如,cell1的计数值为2是指cell1的权重值为2,而并非指代cell1的实际个数。
在一些实施例中,配置的多个载波中各载波的计数值可以用于表征各载波对第二检测能力的影响程度。也就是说,配置的多个载波中各载波的计数值不同,所得到的第二检测能力也不同。
在一些实施例中,配置的多个载波中各载波的计数值的确定可以有以下两种可能的实现方式。
一种可能的实现方式,配置的多个载波中各载波的计数值可以为:第一载波的计数值为1+x,配置的多个载波中除第一载波外的其他载波的计数值根据以下任意一项确定:
计数值均为1-y;
计数值均为1-x/(M-1);
计数值均为1-x/(N-1)。
具体地,在一些实施例中,配置的多个载波中各载波的计数值还可以根据以下任 意一项确定:
(a)第一载波的计数值为1,且其他载波中各载波的计数值均为1。
需要说明的是,在该项中将终端设备或网络设备用于检测第一DCI格式的检测能力参数值归属于第一载波,并对其他载波无影响。
(b)第一载波的计数值为2,且其他载波中各载波的计数值均为1。
需要说明的是,在该项中将第一载波集合视作一个载波,与其他载波共享检测能力参数值。
(c)第一载波的计数值为1+x,且其他载波的计数值均为1。
需要说明的是,在该项中将第一载波集合视作一个载波,但对其他载波检测能力参数值的影响根据x确定。
(d)第一载波的计数值为1+x,且其他载波的计数值均为1-y。
需要说明的是,在该项中将第一载波集合视作一个载波,但对其他载波检测能力参数值的影响根据x和y确定。
(e)第一载波的计数值为1+x,且其他载波的计数值均为1-x/(M-1)。
需要说明的是,在该项中将第一载波集合视作一个载波,但仅影响第一载波集合中其他载波的检测能力参数值,对第一载波集合之外的载波的检测能力参数值无影响。
(f)第一载波的计数值为1+x,且其他载波的计数值均为1-x/(N-1)。
另一种可能的实现方式,配置的多个载波中各载波的计数值可以为:第一载波集合的计数值为x,配置的多个载波中各载波的计数值根据以下任意一项确定:
计数值均为1-y;
计数值均为1-x/M;
计数值均为1-x/N。
具体地,在一些实施例中,配置的多个载波中各载波的计数值还可以根据以下任意一项确定:
(g)第一载波集合的计数值为1,其他载波中各载波的计数值均为1。
(h)第一载波集合的计数值为x,其他载波中各载波的计数值均为1。
(i)第一载波集合的计数值为x,其他载波中各载波的计数值均为1-y。
(j)第一载波集合的计数值为x,其他载波中各载波的计数值均为1-x/M。
(k)第一载波集合的计数值为x,其他载波中各载波的计数值均为1-x/N。
需要说明的是,在(a)~(k)中,x、y可以为配置的,或者,x、y可以为协议预定义的;M、N可以为配置的,或者,M、N可以为协议预定义的,或者,M可以为第一载波集合的载波数,N可以为配置的多个载波的载波数。
需要说明的是,本申请实施例对x,y的取值不作限定,x可以是正数、负数、0,x可以是整数,也可以是非整数。
示例性地,x的取值满足0<=x<=1,和/或,y的取值满足0<=y<=1。
应理解,(a)至(k)中确定网络设备配置的多个载波中各载波的计数值的方式为示例性说明,确定网络设备配置的多个载波中各载波的计数值还可以有其他方式,本申请实施例对此不作限定。
还应理解,(a)至(k)中的其他载波可以为第一载波集合中除第一载波外的其他载波,也可以为第二载波集合中除第一载波外的载波,即网络设备配置的多个载波中,与第一载波有相同子载波间隔配置的所有载波中除第一载波外的其他载波,也可以是网络设备配置的多个载波中,除第一载波外的其他载波。
示例性地,在本申请实施例中,第二检测能力参数值的计算公式满足公式(2):
Figure PCTCN2022130138-appb-000008
其中,μ为子载波间隔配置,可以取值0、1、2、3中的其中之一;
Figure PCTCN2022130138-appb-000009
为终端设备支持检测的载波数;M_max为第一检测能力参数值;
Figure PCTCN2022130138-appb-000010
为第二载波集合中各载波的计数值的和;
Figure PCTCN2022130138-appb-000011
为网络设备配置的多个载波中各载波的计数值的和。
需要说明的是,网络设备配置的多个载波中各载波的计数值可以有多种计数方法,下面通过示出的四个具体示例来进行说明。
示例一,网络设备配置给终端设备的第二载波集合中有4个载波,分别记为cell1、cell2、cell3、cell4,并且配置第一DCI格式可以调度{cell1,cell2,cell3,cell4}集合中的多个载波,也就是说,第一载波集合为{cell1,cell2,cell3,cell4},cell1、cell2、cell3、cell4的调度载波均为cell1,并且cell1、cell2、cell3、cell4的子载波间隔配置相同,将该子载波间隔记为μ。终端设备或网络设备用于检测第一DCI格式的检测能力参数值计数在cell1上,也就是说,终端设备或网络设备用于检测集合{cell1,cell2,cell3,cell4}的检测能力参数值计数在cell1上,此时cell1、cell2、cell3、cell4的计数值可以有以下几种:
(1)cell1、cell2、cell3、cell4的计数值均为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000012
且cell1、cell2、cell3、cell4的计数值的确定与前述(a)类似。
(2)cell1的计数值为1+x,cell2、cell3、cell4的计数值均为1-(x/3)。
需要说明的是,此时
Figure PCTCN2022130138-appb-000013
且cell1、cell2、cell3、cell4的计数值的确定与前述(e)类似。
(3)cell1的计数值为2,cell2、cell3、cell4的计数值均为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000014
且cell1、cell2、cell3、cell4的计数值的确定与前述(b)类似。
(4)cell1的计数值为1+x,cell2,cell3,cell4的计数值均为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000015
且cell1、cell2、cell3、cell4的计数值的确定与前述(c)类似。
(5)cell1、cell2、cell3、cell4的计数值均为1,集合{cell1,cell2,cell3,cell4}计数值为x。
需要说明的是,此时
Figure PCTCN2022130138-appb-000016
且cell1、cell2、cell3、cell4的计数值的确定与前述(h)类似。
(6)cell1的计数值为1+x,cell2,cell3,cell4的计数值均为1-y。
需要说明的是,此时
Figure PCTCN2022130138-appb-000017
且cell1、cell2、cell3、cell4的计数值的确定与前述(d)类似。
应理解,计算网络设备配置的多个载波中各载波的计数值的和,即计算
Figure PCTCN2022130138-appb-000018
时,当j取不同于μ的其他值时,
Figure PCTCN2022130138-appb-000019
的计算与
Figure PCTCN2022130138-appb-000020
类似,也可以通过上述(1)~(6)中的其中一种方法确定。例如,当μ=0时,
Figure PCTCN2022130138-appb-000021
的确定与
Figure PCTCN2022130138-appb-000022
类似,在此不再进行赘述。
示例二,网络设备配置给终端设备的第二载波集合中有4个载波,分别记为cell1、cell2、cell3、cell4,并且配置第一DCI格式可以调度{cell1,cell2,cell3,cell4}集合中的多个载波,也就是说,第一载波集合为{cell1,cell2,cell3,cell4},cell1、cell2、cell3、cell4的调度载波均为cell1,并且cell1、cell2、cell3、cell4的子载波间隔配置相同,将该子载波间隔记为μ。终端设备或网络设备用于检测第一DCI格式的检测能力参数值计数在cell1上,也就是说,终端设备或网络设备用于检测集合{cell1,cell2,cell3,cell4}的检测能力参数值计数在cell1上,此时cell1、cell2、cell3、cell4的计数值可以有以下几种:
(1)cell1、cell2、cell3、cell4的计数值均为1-x/4,且{cell1,cell2,cell3,cell4}的计 数值为x。
需要说明的是,此时
Figure PCTCN2022130138-appb-000023
且cell1、cell2、cell3、cell4的计数值的确定与前述(j)或(k)类似。
(2)cell1、cell2、cell3、cell4的计数值均为1,且{cell1,cell2,cell3,cell4}的计数值为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000024
且cell1、cell2、cell3、cell4的计数值的确定与前述(g)类似。
(3)cell1、cell2、cell3、cell4的计数值均为1,且{cell1,cell2,cell3,cell4}的计数值为x。
需要说明的是,此时
Figure PCTCN2022130138-appb-000025
且cell1、cell2、cell3、cell4的计数值的确定与前述(h)类似。
(4)cell1、cell2、cell3、cell4的计数值均为1-y,且{cell1,cell2,cell3,cell4}的计数值为x。
需要说明的是,此时
Figure PCTCN2022130138-appb-000026
且cell1、cell2、cell3、cell4的计数值的确定与前述(i)类似。
应理解,计算网络设备配置的多个载波中各载波的计数值的和,即计算
Figure PCTCN2022130138-appb-000027
时,当j取不同于μ的其他值时,
Figure PCTCN2022130138-appb-000028
的计算与
Figure PCTCN2022130138-appb-000029
类似,也可以通过上述(1)~(4)中的其中一种方法确定。例如,当μ=0时,
Figure PCTCN2022130138-appb-000030
的确定与
Figure PCTCN2022130138-appb-000031
类似,在此不再进行赘述。
示例三,网络设备配置给终端设备的第二载波集合中有8个载波,分别记为cell1、cell2、cell3、cell4、cell5、cell6、cell7、cell8,并且配置第一DCI格式可以调度{cell1,cell2,cell3,cell4}集合中的多个载波,也就是说,第一载波集合为{cell1,cell2,cell3,cell4},cell1、cell2、cell3、cell4的调度载波均为cell1,并且cell1、cell2、cell3、cell4、cell5、cell6、cell7、cell8的子载波间隔配置相同,将该子载波间隔记为μ。终端设备或网络设备用于检测第一DCI格式的检测能力参数值计数在cell1上,也就是说,终端设备或网络设备用于检测集合{cell1,cell2,cell3,cell4}的检测能力参数值计数在cell1上,此时cell1~cell8的计数值可以有以下几种:
(1)cell1、cell2、cell3、cell4、cell5、cell6、cell7、cell8的计数值均为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000032
且cell1~cell8的计数值的确定与前述(a)类似。
(2)cell1的计数值为1+x,cell2、cell3、cell4、cell5、cell6、cell7、cell8的计数值均为1-(x/7)。
需要说明的是,此时
Figure PCTCN2022130138-appb-000033
且cell1~cell8的计数值的确定与前述(e)类似。
(3)cell1的计数值为1+x,cell2、cell3、cell4的计数值均为1-(x/3),cell5、cell6、cell7、cell8的计数值均为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000034
且cell1~cell4的计数值的确定与前述(e)类似,cell5~cell8的计数值的确定与前述(a)类似。
(4)cell1的计数值为2,cell2、cell3、cell4、cell5、cell6、cell7、cell8的计数值均为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000035
且cell1~cell8的计数值的确定与前述(b)类似。
(5)cell1的计数值为1+x,cell2、cell3、cell4、cell5、cell6、cell7、cell8的计数值均为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000036
且cell1~cell8的计数值的确定与前述(c)类似。
(6)cell1的计数值为1+x,cell2、cell3、cell4的计数值均为1-y,cell5、cell6、cell7、cell8的计数值均为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000037
且cell1~cell4的计数值的确定与前述(d)类似,cell5~cell8的计数值的确定与前述(a)类似。
(7)cell1的计数值为1+x,cell2、cell3、cell4、cell5、cell6、cell7、cell8的计数值均为1-y。
需要说明的是,此时
Figure PCTCN2022130138-appb-000038
且cell1~cell8的计数值的确定与前述(d)类似。
应理解,计算网络设备配置的多个载波中各载波的计数值的和,即计算
Figure PCTCN2022130138-appb-000039
时,当j取不同于μ的其他值时,
Figure PCTCN2022130138-appb-000040
的计算与
Figure PCTCN2022130138-appb-000041
类似,也可以通过上述(1)~(7)中的其中一种方法确定。例如,当μ=0时,
Figure PCTCN2022130138-appb-000042
的确定与
Figure PCTCN2022130138-appb-000043
类似,在此不再进行赘述。
示例四,网络设备配置给终端设备的第二载波集合中有8个载波,分别记为cell1、cell2、cell3、cell4、cell5、cell6、cell7、cell8,cell9为网络设备配置给终端设备的除第二载波集合外的载波,并且配置第一DCI格式可以调度{cell1,cell2,cell3,cell4}集合中多个载波,也就是说,第一载波集合为{cell1,cell2,cell3,cell4},cell1、cell2、cell3、cell4的调度载波都为cell1,并且cell1、cell2、cell3、cell4、cell5、cell6、cell7、cell8子载波间隔配置相同,将该子载波间隔记为μ,cell9的子载波间隔配置与cell1~cell8不同,将该子载波间隔记为μ1。终端设备或网络设备用于检测第一DCI格式的检测能力参数值计数在cell1上,也就是说,终端设备或网络设备用于检测集合{cell1,cell2,cell3,cell4}的检测能力参数值计数在cell1上,此时cell1~cell9的计数值可以有以下几种:
(1)cell1、cell2、cell3、cell4、cell5、cell6、cell7、cell8的计数值均为1,cell9的计数值为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000044
且cell1~cell8的计数值的确定与前述(a)类似,cell9的计数值的确定也与前述(a)类似。
(2)cell1的计数值为1+x,cell2、cell3、cell4、cell5、cell6、cell7、cell8的计数值均为1-(x/7),cell9的计数值为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000045
且cell1~cell8的计数值的确定与前述(e)类似,cell9的计数值的确定与前述(a)类似。
(3)cell1的计数值为1+x,cell2、cell3、cell4的计数值均为1-(x/3),cell5、cell6、cell7、cell8的计数值均为1,cell9的计数值为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000046
且cell1~cell4的计数值的确定与前述(e)类似,cell5~cell8的计数值的确定与前述(a)类似,cell9的计数值的确定也与前述(a)类似。
(4)cell1的计数值为1+x,cell2、cell3、cell4、cell5、cell6、cell7、cell8的计数值均为1-(x/8),cell9的计数值为1-(x/8)。
需要说明的是,此时
Figure PCTCN2022130138-appb-000047
且cell1~cell8的计数值的确定与前述(f)类似,cell9的计数值的确定也与前述(f)类似。
(5)cell1的计数值为2,cell2、cell3、cell4、cell5、cell6、cell7、cell8的计数值均为1,cell9的计数值为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000048
且cell1~cell8的计数值的确定与前述(b)类似,cell9的计数值的确定也与前述(a)类似。
(6)cell1的计数值为1+x,cell2、cell3、cell4、cell5、cell6、cell7、cell8的计数 值均为1,cell9的计数值为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000049
且cell1~cell8的计数值的确定与前述(c)类似,cell9的计数值的确定与前述(a)类似。
(7)cell1的计数值为1+x,cell2、cell3、cell4的计数值均为1-y,cell5、cell6、cell7、cell8的计数值均为1,cell9的计数值为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000050
且cell1~cell4的计数值的确定与前述(d)类似,cell5~cell8的计数值的确定与前述(a)类似,cell9的计数值的确定也与前述(a)类似。
(8)cell1的计数值为1+x,cell2、cell3、cell4、cell5、cell6、cell7、cell8的计数值均为1-y,cell9的计数值为1。
需要说明的是,此时
Figure PCTCN2022130138-appb-000051
且cell1~cell8的计数值的确定与前述(d)类似,cell9的计数值的确定与前述(a)类似。
(9)cell1的计数值为1+x,cell2、cell3、cell4、cell5、cell6、cell7、cell8的计数值均为1-y,cell9的计数值为1-y。
需要说明的是,此时
Figure PCTCN2022130138-appb-000052
且cell1~cell8的计数值的确定与前述(d)类似,cell9的计数值的确定也与前述(d)类似。
应理解,计算网络设备配置的多个载波中各载波的计数值的和,即计算
Figure PCTCN2022130138-appb-000053
时,当j取不同于μ、μ1的其他值时,
Figure PCTCN2022130138-appb-000054
的计算与
Figure PCTCN2022130138-appb-000055
类似,也可以通过上述(1)~(9)中的其中一种方法确定。例如,当μ=0、μ1=1时,
Figure PCTCN2022130138-appb-000056
的确定与
Figure PCTCN2022130138-appb-000057
类似,在此不再进行赘述。
基于此,本申请实施例提供了一种检测能力确定方法,可以根据第一检测能力参数值和第二检测能力参数值,确定用于检测第一DCI格式的检测能力参数值,该第一DCI格式可以用于调度第一载波集合中的多个载波。这样,可以根据第一检测能力参数值和第二检测能力参数值,确定出可以调度多个载波的第一DCI格式的检测能力参数值。如此,明确多载波调度DCI格式(即第一DCI格式)的检测能力,能够进一步优化终端设备的盲检测过程。此外,终端设备可以使用该方法确定用于检测第一DCI格式时的检测能力参数值,例如,盲检测次数,盲检测的PDCCH候选个数,信道估计的不重叠的CCE个数;网络设备使用该方法确定终端设备用于检测第一DCI格式时的检测能力参数值,有助于网络设配配置合适的PDCCH传输资源数量,例如控制资源集(CORESET)数量,搜索空间集(Search Space Set)数量,能够使得可以传输的PDCCH数量不会超越终端设备的检测能力,提高系统性能。
例如,可以保证调度信息不被丢失,使得终端设备可以及时进行数据传输。保证信道反馈请求指示不被丢失,终端设备可以及时进行信道状态测量结果上报,使得网络设备及时根据信道变化状态调整调度参数。
在本申请的另一实施例中,基于前述实施例所述的检测能力确定方法,本申请实施例根据第一检测能力参数值和第二检测能力参数值,确定用于检测第一DCI格式的检测能力参数值的方式包括多种。
在一些实施例中,可以根据第一检测能力参数值和第二检测能力参数值中的最大值确定用于检测第一DCI格式的检测能力参数值。也就是说,用于检测第一DCI格式的检测能力参数值可以为max(M_max,M_total)。
在一些实施例中,可以根据第一检测能力参数值和第二检测能力参数值中的最小值确定用于检测第一DCI格式的检测能力参数值。也就是说,用于检测第一DCI格式的检测能力参数值可以为min(M_max,M_total)。
在一些实施例中,如图3所示,该方法可以包括:
S310,根据第一检测能力参数值、第二检测能力参数值和第一比例系数,确定用于检测第一DCI格式的检测能力参数值,其中,第一比例系数为配置的,或者,第一比例系数为协议预定义的。
需要说明的是,第一比例系数可以用于确定对于第二DCI格式和第一DCI格式的检测能力的比例关系。
其中,第二DCI格式可以用于调度第一载波,也就是说,第二DCI格式为调度一个载波的DCI格式。
其中,第一比例系数的取值可以满足0<=第一比例系数<=1。
其中,a为用于确定第一DCI格式的检测能力的比例系数,剩余能力用于确定第二DCI格式的检测能力。按照配置(即第一比例系数)分配第一DCI格式的检测能力和第二DCI格式的检测能力,可以使得第一DCI格式的检测能力和第二DCI格式的检测能力有明确的能力分配,有利于终端盲检测过程的实现与优化。
在一种可能的实现方式中,可以根据第一检测能力参数值和第二检测能力参数值中的最小值,以及第一比例系数,确定用于检测第一DCI格式的检测能力参数值。
例如,可以根据第一检测能力参数值和第二检测能力参数值中的最小值,与第一比例系数之间的乘积,确定用于检测第一DCI格式的检测能力参数值。也可以根据第一检测能力参数值和第二检测能力参数值中的最小值,与第一比例系数之间的商,确定用于检测第一DCI格式的检测能力参数值。
在另一种可能的实现方式中,可以根据第一检测能力参数值和第二检测能力参数值中的最大值,以及第一比例系数,确定用于检测第一DCI格式的检测能力参数值。
例如,可以根据第一检测能力参数值和第二检测能力参数值中的最大值,与第一比例系数之间的乘积,确定用于检测第一DCI格式的检测能力参数值。也可以根据第一检测能力参数值和第二检测能力参数值中的最大值,与第一比例系数之间的商,确定用于检测第一DCI格式的检测能力参数值。
进一步地,在本申请实施例中,还可以根据第一检测能力参数值、第二检测能力参数值和第二比例系数,确定用于检测第二DCI格式的检测能力参数值,其中,第二比例系数与第一比例系数的和为1。
示例性地,将第一检测能力参数值记为M_max,第二检测能力参数值记为M_total,第一比例系数为a,第二比例系数即为1-a。则终端设备或网络设备可以确定用于检测第一DCI格式的检测能力参数值可以为M_max和M_total的最小值的一部分,即a*(min(M_max,M_total)),此时终端设备或网络设备可以确定用于检测第二DCI格式的检测能力参数值可以为(1-a)*min(M_max,M_total)。
本申请实施例提供的检测能力确定方法中,可以根据第一检测能力参数值、第二检测能力参数值和第一比例系数,确定用于检测第一DCI格式的检测能力参数值,该第一DCI格式可以用于调度第一载波集合中的多个载波。这样,可以根据第一检测能力参数值、第二检测能力参数值和第一比例系数,确定出可以调度多个载波的第一DCI格式的检测能力参数值。如此,明确多载波调度DCI格式(即第一DCI格式)的检测能力的同时,也可以明确单载波调度DCI格式(即第二DCI格式)的检测能力,从而能够使得可以调度多个载波的第一DCI格式与可以调度一个载波的第二DCI格式有所区分,有利于终端设备盲检测过程的实现与优化。此外,终端设备可以使用该方法确定用于检测第一DCI格式时的检测能力参数值,例如,盲检测次数,盲检测的PDCCH候选个数,信道估计的不重叠的CCE个数;网络设备使用该方法确定用于检测第一DCI格式时的检测能力参数值,有助于网络设配配置合适的PDCCH传输资源数量,例如控制资源集 (CORESET)数量,搜索空间集(Search Space Set)数量或PDCCH候选(PDCCH candidate)数量,进而使得可以传输的PDCCH数量不会超越终端设备的检测能力,避免终端设备因为检测能力不足而导致部分PDCCH无法被检测的情况,提高系统性能。
例如,可以保证调度信息不被丢失,使得终端设备可以及时进行数据传输。保证信道反馈请求指示不被丢失,终端设备可以及时进行信道状态测量结果上报,使得网络设备及时根据信道变化状态调整调度参数。在本申请实施例中,被DCI格式0_X和/或1_X同时调度的载波可以是多个载波组成的集合中的至少一个,该多个载波组成的集合可以是前述第一载波集合。
示例性地,被DCI格式0_X和/或1_X同时调度的载波配置可以有如下两个示例性说明。
一示例,第一载波集合为{cell1、cell2、cell3、cell4、cell5、cell6、cell7、cell8},被DCI格式0_X和/或1_X同时调度的载波配置如表1所示。
表1
索引序号 载波配置
1 cell1+cell2
2 cell3+cell4
3 cell1+cell2+cell3
4 cell2+cell3+cell4
5 cell5+cell6
6 cell6+cell7
7 cell7+cell8
8 cell5+cell8
9 cell5+cell7
10 cell6+cell8
11 cell5+cell6+cell7
12 cell6+cell7+cell8
另一示例,第一载波集合为{cell1、cell2、cell3、cell4},被DCI格式0_X和/或1_X同时调度的载波配置如表2所示。
表2
索引序号 载波配置
1 cell1+cell2
2 cell3+cell4
3 cell1+cell2+cell3
4 cell2+cell3+cell4
在本申请实施例中,终端设备或网络设备将用于调度多个载波的DCI/PDCCH的盲检测能力计数在一个载波时,可以将分配给调度多个载波DCI/PDCCH检测的检测能力参数值与分配给调度一个载波DCI/PDCCH检测的检测能力参数值进行划分,即将单载波调度检测能力参数值和多载波调度检测能力参数值进行划分;还可以明确终端设备或网络设备对于不同DCI格式对应的盲检测次数、盲检测的PDCCH候选个数、信道估计的不重叠CCE个数,以及,网络设备配置合适的PDCCH传输资源数量,使得可以传输的PDCCH数量不会超过终端设备的检测能力。
除此之外,还可以明确终端设备或网络设备在确定不同子载波间隔的调度载波的检 测能力参数阈值时,网络设备配置的多个载波中各载波的计数值的方法,该多个载波中各载波的计数值的方法包括调度载波的计数值的方法。基于本申请实施例中的方法,调度载波的计数值方法不同对除调度载波外的其他载波的检测能力参数值影响不同,因此,明确多载波调度DCI格式(即第一DCI格式)的检测能力参数值,也能够控制调度载波的检测能力参数值对其他载波检测能力的影响。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图4是本申请实施例提供的检测能力确定装置的结构组成示意图,应用于终端设备或网络设备,如图4所示,检测能力确定装置400包括:
处理单元410,配置为根据第一检测能力参数值和第二检测能力参数值,确定用于检测第一DCI格式的检测能力参数值,第一DCI格式用于调度第一载波集合中的多个载波;
其中,第一检测能力参数值是第一载波对应的单载波检测能力参数阈值,其中,第一载波包括在第一载波集合中;
第二检测能力参数值是用于检测调度第二载波集合中的载波的DCI格式的检测能力参数阈值,第二载波集合包括第一载波集合。
在一些实施例中,第二检测能力根据支持的检测载波数、所述单载波检测能力参数阈值、第一数值和第二数值确定;
第一数值基于第二载波集合对应的载波数量确定,载波数量根据各载波的计数值确定;
第二数值基于配置的多个载波的载波数量确定,载波数量根据各载波的计数值确定,配置的多个载波包括第二载波集合。
在一些实施例中,第一载波的计数值为1+x。
在一些实施例中,配置的多个载波中除第一载波外的其他载波的计数值根据以下任意一项确定:
计数值均为1-y;
计数值均为1-x/(M-1);
1-x/(N-1);
M为第一载波集合的载波数,N为配置的多个载波的载波数。
在一些实施例中,第一载波集合的计数值为x。
在一些实施例中,配置的多个载波中各载波的计数值根据以下任意一项确定:
计数值均为1-y;
计数值均为1-x/M;
计数值均为1-x/N;
其中,M为第一载波集合对应的载波数量,N为配置的多个载波的载波数量。
在一些实施例中,x的取值满足0<=x<=1,和/或,y的取值满足0<=x<=1。
在一些实施例中,其他载波为以下任意一项:第一载波集合中除第一载波外的载波;第二载波集合中除第一载波外的载波;以及,配置的多个载波中除第一载波外的载波。
在一些实施例中,第一检测能力参数值根据第一载波的子载波间隔确定,或者,第一检测能力参数值根据第一载波的调度载波的子载波间隔确定。
在一些实施例中,第一载波是第一载波集合中的以下任意一项:标识信息为指定标识的载波、搜索空间集配置个数满足第一预设规则的载波、支持单载波调度的搜索空间集个数满足第二预设规则的载波、配置的用于计算第一DCI格式的检测能力参数值的载波、配置的支持第一DCI格式的搜索空间集的载波、计数第一DCI格式的DCI大小的载波、协议预定义。
在一些实施例中,第二载波集合中各载波的调度载波的子载波间隔相同。
在一些实施例中,处理单元210,配置为根据第一检测能力参数值和第二检测能力参数值中的最小值,确定用于检测所述第一DCI格式的检测能力参数值。
在一些实施例中,处理单元210,还配置为根据第一检测能力参数值、第二检测能力参数值和第一比例系数,确定用于检测第一DCI格式的检测能力参数值,其中,第一比例系数为配置的,或者,第一比例系数为协议预定义的。
在一些实施例中,处理单元210,还配置为根据第一检测能力参数值和第二检测能力参数值中的最小值,以及第一比例系数,确定用于检测第一DCI格式的检测能力参数值。
在一些实施例中,处理单元210,还配置为根据第一检测能力参数值和第二检测能力参数值中的最小值,与第一比例系数的乘积,确定用于检测第一DCI格式的检测能力参数值。
在一些实施例中,第一比例系数的取值满足0<=第一比例系数<=1。
本申请实施例提供的一种检测能力确定装置,可以根据第一检测能力参数值和第二检测能力参数值,确定用于检测第一DCI格式的检测能力参数值,该第一DCI格式可以用于调度第一载波集合中的多个载波。这样,可以根据第一检测能力参数值和第二检测能力参数值,确定出可以调度多个载波的第一DCI格式的检测能力参数值。如此,明确多载波调度DCI格式(即第一DCI格式)的检测能力,能够进一步优化终端设备的盲检测过程。此外,终端设备可以使用该方法确定用于检测第一DCI格式时的检测能力参数值,例如,盲检测次数,盲检测的PDCCH候选个数,信道估计的不重叠的CCE个数;网络设备使用该方法确定用于检测第一DCI格式时的检测能力参数值,有助于网络设配配置合适的PDCCH传输资源数量,例如控制资源集(CORESET)数量,搜索空间集(Search Space Set)数量,以及PDCCH候选(PDCCH candidate)数量,进而使得可以传输的PDCCH数量不会超越终端设备的检测能力,避免终端设备因为检测能力不足而导致部分PDCCH无法被检测的情况,提高系统性能。
本领域技术人员应当理解,本申请实施例的上述检测能力确定装置的相关描述可以参照本申请实施例的检测能力确定方法的相关描述进行理解。
图5是本申请实施例提供的一种通信设备500示意性结构图。该通信设备可以终端设备,也可以是网络设备。图5所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图5所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理 器510中。
在一些实施例中,如图5所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图6是本申请实施例的芯片的示意性结构图。图6所示的芯片600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图6所示,芯片600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,该芯片600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该芯片600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图7是本申请实施例提供的一种通信系统700的示意性框图。如图7所示,该通信系统700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
可以理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机 存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
还可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
还可以理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Dynch Link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的 相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (37)

  1. 一种检测能力确定方法,所述方法包括:
    根据第一检测能力参数值和第二检测能力参数值,确定用于检测第一DCI格式的检测能力参数值,所述第一DCI格式用于调度第一载波集合中的多个载波;
    其中,所述第一检测能力参数值是第一载波对应的单载波检测能力参数阈值,所述第一载波包括在所述第一载波集合中;
    所述第二检测能力参数值是用于检测调度第二载波集合中的载波的DCI格式的检测能力参数阈值,所述第二载波集合包括所述第一载波集合。
  2. 根据权利要求1所述的方法,其中,所述第二检测能力参数值根据支持的检测载波数、所述单载波检测能力参数阈值、第一数值和第二数值确定;
    所述第一数值基于所述第二载波集合对应的载波数量确定的,所述第二载波集合对应的载波数量根据各载波的计数值确定;
    所述第二数值基于配置的多个载波的载波数量确定,所述配置的多个载波的载波数量根据各载波的计数值确定,所述配置的多个载波包括所述第二载波集合。
  3. 根据权利要求2所述的方法,其中,所述第一载波的计数值为1+x。
  4. 根据权利要求3所述的方法,其中,所述配置的多个载波中除所述第一载波外的其他载波的计数值根据以下任意一项确定:
    计数值均为1-y;
    计数值均为1-x/(M-1);
    计数值均为1-x/(N-1);
    其中,M为所述第一载波集合对应的载波数量,N为所述配置的多个载波的载波数量。
  5. 根据权利要求2所述的方法,其中,所述第一载波集合的计数值为x。
  6. 根据权利要求5所述的方法,所述配置的多个载波中各载波的计数值根据以下任意一项确定:
    计数值均为1-y;
    计数值均为1-x/M;
    计数值均为1-x/N;
    其中,M为所述第一载波集合对应的载波数量,N为所述配置的多个载波的载波数量。
  7. 根据权利要求3至6中任一项所述的方法,其中,x的取值满足0<=x<=1,和/或,y的取值满足0<=x<=1。
  8. 根据权利要求4所述的方法,其中,所述其他载波为以下任意一项:
    所述第一载波集合中除所述第一载波外的载波;
    所述第二载波集合中除所述第一载波外的载波;以及,
    所述配置的多个载波中除所述第一载波外的载波。
  9. 根据权利要求1至8中任一项所述的方法,其中,所述第一检测能力参数值根据所述第一载波的子载波间隔确定,或者,所述第一检测能力参数值根据所述第一载波的调度载波的子载波间隔确定。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述第一载波是所述第一载波集合中的以下任意一项:
    标识信息为指定标识的载波、搜索空间集配置个数满足第一预设规则的载波、支 持单载波调度的搜索空间集个数满足第二预设规则的载波、配置的用于计算所述第一DCI格式的检测能力参数值的载波、配置的支持所述第一DCI格式的搜索空间集的载波、计数所述第一DCI格式的DCI大小的载波、协议预定义。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述第二载波集合中各载波的调度载波的子载波间隔相同。
  12. 根据权利要求1至11中任一项所述的方法,其中,所述根据所述第一检测能力参数值和所述第二检测能力参数值,确定用于检测所述第一DCI格式的检测能力参数值,包括:
    根据所述第一检测能力参数值和所述第二检测能力参数值中的最小值,确定用于检测所述第一DCI格式的检测能力参数值。
  13. 根据权利要求1至11中任一项所述的方法,其中,所述根据所述第一检测能力参数值和所述第二检测能力参数值,确定用于检测所述第一DCI格式的检测能力参数值,包括:
    根据所述第一检测能力参数值、所述第二检测能力参数值和第一比例系数,确定用于检测所述第一DCI格式的检测能力参数值,其中,所述第一比例系数为配置的,或者,所述第一比例系数为协议预定义的。
  14. 根据权利要求13所述的方法,其中,所述根据所述第一检测能力、所述第二检测能力和第一比例系数,确定用于检测所述第一DCI格式的检测能力参数值,包括:
    根据所述第一检测能力参数值和所述第二检测能力参数值中最小值,以及所述第一比例系数,确定用于检测所述第一DCI格式的检测能力参数值。
  15. 根据权利要求14所述的方法,其中,所述根据所述第一检测能力参数值和所述第二检测能力参数值中最小值,以及所述第一比例系数,确定用于检测所述第一DCI格式的检测能力参数值,包括:
    根据第一检测能力参数值和所述第二检测能力参数值中最小值,与第一比例系数的乘积,确定用于检测所述第一DCI格式的检测能力参数值。
  16. 根据权利要求13至15中任一项所述的方法,其中,所述第一比例系数的取值满足0<=第一比例系数<=1。
  17. 一种检测能力确定装置,包括:
    处理单元,配置为根据第一检测能力参数值和第二检测能力参数值,确定用于检测第一DCI格式的检测能力参数值,所述第一DCI格式用于调度第一载波集合中的多个载波;
    其中,所述第一检测能力参数值是第一载波对应的单载波检测能力参数阈值,其中,所述第一载波包括在所述第一载波集合中;
    所述第二检测能力参数值是用于检测调度第二载波集合中的载波的DCI格式的检测能力参数阈值,所述第二载波集合包括所述第一载波集合。
  18. 根据权利要求17所述的装置,其中,所述第二检测能力参数值根据支持的检测载波数、所述单载波检测能力参数阈值、第一数值和第二数值确定;
    所述第一数值基于所述第二载波集合对应的载波数量确定的,所述第二载波集合对应的载波数量根据各载波的计数值确定;
    所述第二数值基于配置的多个载波的载波数量确定,所述配置的多个载波的载波数量根据各载波的计数值确定,所述配置的多个载波包括所述第二载波集合。
  19. 根据权利要求18所述的装置,其中,所述第一载波的计数值为1+x。
  20. 根据权利要求19所述的装置,其中,所述配置的多个载波中除所述第一载 波外的其他载波的计数值根据以下任意一项确定:
    计数值均为1-y;
    计数值均为1-x/(M-1);
    计数值均为1-x/(N-1);
    其中,M为所述第一载波集合对应的载波数量,N为所述配置的多个载波的载波数量。
  21. 根据权利要求18所述的装置,其中,所述第一载波集合的计数值为x。
  22. 根据权利要求21所述的装置,其中,所述配置的多个载波中各载波的计数值根据以下任意一项确定:
    计数值均为1-y;
    计数值均为1-x/M;
    计数值均为1-x/N;
    其中,M为所述第一载波集合对应的载波数量,N为所述配置的多个载波的载波数量。
  23. 根据权利要求19至22任一项所述的装置,其中,x的取值满足0<=x<=1,和/或,y的取值满足0<=x<=1。
  24. 根据权利要求19所述的装置,其中,所述其他载波为以下任意一项:
    所述第一载波集合中除所述第一载波外的载波;
    所述第二载波集合中除所述第一载波外的载波;以及,
    所述配置的多个载波中除所述第一载波外的载波。
  25. 根据权利要求17至24中任一项所述的装置,其中,所述第一检测能力参数值根据所述第一载波的子载波间隔确定,或者,所述第一检测能力参数值根据所述第一载波的调度载波的子载波间隔确定。
  26. 根据权利要求17至25中任一项所述的装置,其中,所述第一载波是所述第一载波集合中的以下任意一项:
    标识信息为指定标识的载波、搜索空间集配置个数满足第一预设规则的载波、支持单载波调度的搜索空间集个数满足第二预设规则的载波、配置的用于计算所述第一DCI格式的检测能力的载波、配置的支持所述第一DCI格式的搜索空间集的载波、计数所述第一DCI格式的DCI大小的载波、协议预定义。
  27. 根据权利要求17至26中任一项所述的装置,其中,所述第二载波集合中各载波的调度载波的子载波间隔相同。
  28. 根据权利要求17至27中任一项所述的装置,其中,所述处理单元,还配置为根据所述第一检测能力参数值和所述第二检测能力参数值中的最小值,确定用于检测所述第一DCI格式的检测能力参数值。
  29. 根据权利要求17至27中任一项所述的装置,其中,所述处理单元,还配置为根据所述第一检测能力参数值、所述第二检测能力参数值和第一比例系数,确定用于检测所述第一DCI格式的检测能力参数值,其中,所述第一比例系数为配置的,或者,所述第一比例系数为协议预定义的。
  30. 根据权利要求29所述的装置,其中,所述处理单元,还配置为根据所述第一检测能力参数值和所述第二检测能力参数值中最小值,以及第一比例系数,确定用于检测所述第一DCI格式的检测能力参数值。
  31. 根据权利要求30所述的装置,其中,所述处理单元,还配置为根据第一检测能力参数值和所述第二检测能力参数值中最小值,与第一比例系数的乘积,确定用于检测所述第一DCI格式的检测能力参数值。
  32. 根据权利要求29或31所述的装置,其中,所述第一比例系数的取值满足0<=第一比例系数<=1。
  33. 一种通信设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至16中任一项所述的方法。
  34. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至16中任一项所述的方法。
  35. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
  36. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至16中任一项所述的方法。
  37. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
PCT/CN2022/130138 2022-11-04 2022-11-04 检测能力确定方法、装置、设备及存储介质 WO2024092830A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130138 WO2024092830A1 (zh) 2022-11-04 2022-11-04 检测能力确定方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130138 WO2024092830A1 (zh) 2022-11-04 2022-11-04 检测能力确定方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024092830A1 true WO2024092830A1 (zh) 2024-05-10

Family

ID=90929475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130138 WO2024092830A1 (zh) 2022-11-04 2022-11-04 检测能力确定方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024092830A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475266A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 通信方法、终端设备和网络设备
CN111182636A (zh) * 2019-01-11 2020-05-19 维沃移动通信有限公司 下行控制信息检测方法、网络侧设备及终端设备
US20210058189A1 (en) * 2018-05-11 2021-02-25 Huawei Technologies Co., Ltd. Parameter determining method, monitoring method, and communications apparatus
WO2021206446A1 (ko) * 2020-04-07 2021-10-14 엘지전자 주식회사 무선 통신 시스템에서 블라인드 디코딩 기반 하향링크 채널 송수신 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475266A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 通信方法、终端设备和网络设备
US20210058189A1 (en) * 2018-05-11 2021-02-25 Huawei Technologies Co., Ltd. Parameter determining method, monitoring method, and communications apparatus
CN111182636A (zh) * 2019-01-11 2020-05-19 维沃移动通信有限公司 下行控制信息检测方法、网络侧设备及终端设备
WO2021206446A1 (ko) * 2020-04-07 2021-10-14 엘지전자 주식회사 무선 통신 시스템에서 블라인드 디코딩 기반 하향링크 채널 송수신 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "On PDCCH transmission with high reliability", 3GPP DRAFT; R1-1802576 (R15 NR WI AI 723 URLLC DCI TRANSMISSION), 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180302, 16 February 2018 (2018-02-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051397485 *

Similar Documents

Publication Publication Date Title
WO2020191769A1 (zh) 传输侧行信道的方法和终端设备
US11147047B2 (en) Uplink transmission method, terminal, and network side device
WO2018171651A1 (zh) 资源调度的方法和装置
KR102687538B1 (ko) 멀티캐스트 피드백 구성 방법 및 디바이스
US11902185B2 (en) Sidelink information transmission method, communications device, and network device
WO2020220359A1 (zh) 确定harq码本的方法和设备
WO2020142897A1 (zh) 调度方法、装置、存储介质及通信系统
US20180145736A1 (en) Method for Transmitting Channel State Information and Transmission Device
WO2020228542A1 (zh) 一种发送和接收harq-ack消息的方法及装置
US11528714B2 (en) Data transmission method and apparatus
WO2013178177A2 (zh) Ue类型上报、资源分配方法及装置、ue、基站
WO2020087545A1 (zh) 一种上行控制信息确定方法和通信设备
WO2024022385A1 (zh) 边链路信道接入方式的确定方法、电子设备和存储介质
EP3661286A1 (en) Communication method, terminal device and network device
CN111277376B (zh) 混合自动重传请求应答传输方法及设备
WO2021088026A1 (zh) 一种确定数据传输反馈时延的方法及装置
WO2020199609A1 (zh) 一种通信方法及设备
WO2024092830A1 (zh) 检测能力确定方法、装置、设备及存储介质
WO2020155180A1 (zh) 无线通信的方法、终端设备和网络设备
CN114223165A (zh) 一种确定重复传输资源的方法及装置
CN112996114B (zh) 资源调度方法、装置、设备及存储介质
JP7066864B2 (ja) Harq情報の伝送方法、装置及びコンピュータ記憶媒体
WO2022236609A1 (zh) 信息报告方法、装置、设备及存储介质
WO2023123438A1 (zh) Pdcch检测方法、发送方法、装置、设备及存储介质
WO2024093649A1 (zh) 一种侧行通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964131

Country of ref document: EP

Kind code of ref document: A1