WO2023123438A1 - Pdcch检测方法、发送方法、装置、设备及存储介质 - Google Patents

Pdcch检测方法、发送方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023123438A1
WO2023123438A1 PCT/CN2021/143899 CN2021143899W WO2023123438A1 WO 2023123438 A1 WO2023123438 A1 WO 2023123438A1 CN 2021143899 W CN2021143899 W CN 2021143899W WO 2023123438 A1 WO2023123438 A1 WO 2023123438A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
pdcch
carrier combination
combination
parameter set
Prior art date
Application number
PCT/CN2021/143899
Other languages
English (en)
French (fr)
Inventor
徐婧
梁彬
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180103169.8A priority Critical patent/CN118056462A/zh
Priority to PCT/CN2021/143899 priority patent/WO2023123438A1/zh
Publication of WO2023123438A1 publication Critical patent/WO2023123438A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of mobile communications, and in particular to a physical downlink control channel (Physical Downlink Control Channel, PDCCH) detection method, transmission method, device, equipment and storage medium.
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • a user equipment User Equipment, UE
  • PDCCH Physical Downlink Control Information
  • resources scheduled by one DCI are limited to one carrier, and one serving cell (ServingCell) corresponds to one carrier (Carrier).
  • the embodiment of the present application provides a PDCCH detection method, transmission method, device, device, and storage medium, capable of scheduling the Physical Downlink Shared Channel (Physical Downlink Shared Channel, PDSCH) and/or physical uplink of multiple serving cells using one DCI
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • a PDCCH detection method is provided, which is applied to a terminal, and the method includes:
  • the PDCCH detection is performed based on a carrier combination, and the carrier combination includes one or more carriers.
  • a PDCCH sending method is provided, which is applied to a network device, and the method includes:
  • the PDCCH is sent based on a carrier combination that includes one or more carriers.
  • a PDCCH detection device which is applied to a terminal, and the device includes:
  • the detection module is configured to perform PDCCH detection based on carrier combinations, where the carrier combinations include one or more carriers.
  • a PDCCH detection device which is applied to a network device, and the device includes:
  • a sending module configured to send the PDCCH based on a carrier combination, where the carrier combination includes one or more carriers.
  • a terminal includes a processor
  • the processor is configured to perform PDCCH detection based on a carrier combination, where the carrier combination includes one or more carriers.
  • a network device includes a transmitter
  • the transmitter is configured to send the PDCCH based on a carrier combination, where the carrier combination includes one or more carriers.
  • a computer-readable storage medium is provided, and a computer program is stored in the storage medium, and the computer program is used for execution by a processor, so as to implement the above PDCCH detection method or PDCCH transmission method.
  • a chip includes a programmable logic circuit and/or program instructions, which are used to implement the above PDCCH detection method or PDCCH transmission method when the chip is running.
  • a computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and a processor reads from the The computer-readable storage medium reads and executes the computer instructions, so as to implement the above PDCCH detection method or PDCCH transmission method.
  • the PDCCH detection for scheduling one or more is all positioned on the carrier combination, avoiding different designs for different situations of "one DCI scheduling one carrier" and “one DCI scheduling multiple carriers", and reducing the complexity of the communication protocol.
  • FIG. 1 is a schematic diagram of a mobile communication system provided by an exemplary embodiment of the present application
  • FIG. 2 is a flowchart of a PDCCH detection method provided in an exemplary embodiment of the present application
  • FIG. 3 is a schematic diagram of multiple carrier combinations provided by an exemplary embodiment of the present application.
  • FIG. 4 is a flowchart of a PDCCH detection method provided in an exemplary embodiment of the present application.
  • FIG. 5 is a flowchart of a PDCCH detection method provided in an exemplary embodiment of the present application.
  • FIG. 6 is a flowchart of a PDCCH detection method provided in an exemplary embodiment of the present application.
  • FIG. 7 is a flowchart of a method for sending a PDCCH provided in an exemplary embodiment of the present application.
  • FIG. 8 is a flowchart of a method for sending a PDCCH provided in an exemplary embodiment of the present application.
  • FIG. 9 is a block diagram of a PDCCH detection device provided in an exemplary embodiment of the present application.
  • FIG. 10 is a block diagram of a PDCCH sending device provided by an exemplary embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal provided by an exemplary embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of a network device provided by an exemplary embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the evolution of the technology and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • resources scheduled by a DCI are limited to one carrier.
  • resources scheduled by one DCI may correspond to multiple carriers or cells.
  • multiple carriers correspond to one DCI.
  • Fig. 1 shows a schematic diagram of a mobile communication system provided by an embodiment of the present application.
  • the mobile communication system may include: a terminal 10 and an access network device 20 .
  • the number of terminals 10 is generally multiple, and one or more terminals 10 may be distributed in a cell managed by each access network device 20 .
  • the terminal 10 may include various handheld devices with mobile communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment (User Equipment, UE), mobile station ( Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • the access network device 20 is a device deployed in an access network for providing mobile communication functions for the terminal 10 .
  • the access network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, location management function entities (Location Management Function, LMF) and so on.
  • LMF Location Management Function
  • the names of devices with access network device functions may be different. Specifically, in 5G NR systems, they are called gNodeB or gNB.
  • the term "access network equipment" may change.
  • access network devices For the convenience of description, in the embodiment of the present application, the above-mentioned devices that provide mobile communication functions for the terminal 10 are collectively referred to as access network devices.
  • a connection may be established between the access network device 20 and the terminal 10 through an air interface, so as to perform communication through the connection, including signaling and data interaction.
  • the number of access network devices 20 may be multiple, and two adjacent access network devices 20 may also communicate in a wired or wireless manner.
  • the terminal 10 can switch between different access network devices 20 , that is, establish connections with different access network devices 20 .
  • the "5G NR system" in the embodiments of the present disclosure may also be called a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solution described in the embodiments of the present disclosure can be applied to the 5G NR system, and can also be applied to the subsequent evolution system of the 5G NR system.
  • the terminal 10 is under the coverage of multiple cells, for example, under the coverage of cell X and cell Y.
  • the access network device 20 can use one DCI to schedule resources on multiple carriers or cells. Since one serving cell corresponds to one carrier, "serving cell” and “carrier” can be regarded as the same concept in this application.
  • Fig. 2 shows a flowchart of a PDCCH detection method provided by an exemplary embodiment of the present application. This embodiment is described by taking the method applied to a terminal as an example. The method includes:
  • Step 202 Perform PDCCH detection based on carrier combination, where carrier combination includes one or more carriers.
  • the terminal performs PDCCH detection based on one (scheduled) carrier combination.
  • a carrier combination includes one or more carriers. Multiple carriers refers to at least two carriers. All or part of frequency domain resources on a scheduled carrier combination are implemented by one PDCCH (or one DCI) scheduling.
  • a carrier combination includes only one carrier, the carrier is treated as one carrier combination for processing.
  • the (scheduled) carrier combinations are preconfigured by higher layer signaling.
  • carriers belonging to the same (scheduled) carrier group are configured with the same subcarrier spacing.
  • carriers belonging to the same (scheduled) carrier combination are configured with the same PUCCH group.
  • carriers in different carrier combinations can use the same PUCCH resource to perform Hybrid Automatic Repeat Request (HARQ) feedback.
  • HARQ Hybrid Automatic Repeat Request
  • the scheduling cells include: serving cell 1 , serving cell 3 and serving cell 4 .
  • the scheduled cells include: serving cell 1 , serving cell 2 , serving cell 3 , serving cell 4 and serving cell 5 .
  • the scheduling cell is a serving cell that delivers a PDCCH
  • the scheduled cell is a serving cell that is scheduled by the PDCCH.
  • the serving cell with the same number in the scheduling cell and the scheduled cell refers to the same serving cell.
  • the arrows in FIG. 3 refer to the scheduling relationship.
  • the scheduling of serving cell 1 by serving cell 1 belongs to the current carrier scheduling
  • the scheduling of serving cell 2 by serving cell 1 belongs to cross-carrier scheduling.
  • the network device configures five serving cells for the terminal through high-level signaling, and the five serving cells belong to the same cell group.
  • the same cell group belongs to the same primary cell group (MasterCellGroup, MCG), or the same cell group belongs to the same secondary cell group (SecondaryCellGroup, SCG), or the same cell group belongs to the same primary PUCCH group (PrimaryPUCCHGroup ).
  • the scheduled carrier combinations include any of the following six carrier combinations:
  • Carrier combination 1 is: serving cell 1;
  • Carrier combination 2 is: serving cell 2;
  • Carrier combination 3 is: serving cell 3;
  • the carrier combination 4 is: serving cell 4;
  • Carrier combination 5 is: serving cell 5;
  • Carrier combination 6 is: serving cell 4+serving cell 5.
  • serving cell 1 is used as a scheduling cell, and can schedule serving cell 1, and can also schedule serving cell 2 across carriers; serving cell 3, as a scheduling cell, can schedule serving cell 3; serving cell 4, as a scheduling cell, can independently schedule serving cell 4 , serving cell 5 can also be scheduled separately, and serving cells 4 and 5 can also be scheduled simultaneously.
  • carrier combinations 1 to 5 the number of carriers in each carrier combination is 1; in carrier combination 6, the number of carriers is 2.
  • the method provided in this embodiment implements PDCCH detection on multiple carriers not only in the scenario where one DCI schedules the PDSCH and/or PUSCH of multiple serving cells by performing PDCCH detection in units of carrier combinations. , it is also possible to position the relevant design of the PDCCH detection process on the carrier combination, avoid different designs for different situations of "one DCI scheduling one carrier” and "one DCI scheduling multiple carriers", and reduce the complexity of the communication protocol.
  • the PDCCH detection process includes at least the following three parts:
  • the terminal receives the PDCCH configuration, and obtains at least one of information such as time-frequency region of PDCCH blind detection, mapping mode, DCI format and aggregation level.
  • PDCCH-Config configures a series of user-specific parameters required by the terminal when receiving user-specific control information and group common control information, and is independently configured for each bandwidth part (BWP) of each serving cell.
  • This parameter includes core resource set (CORESET) configuration, search space (SearchSpace) configuration, group common control information configuration, specific transmit power control (TransmitPowerControl, TPC) related configuration, downlink preemption (downlinkPreemption) configuration, uplink Path cancellation (uplinkCancellation) configuration, and search space switching (searchspace switching) related configuration.
  • the new air interface system supports the terminal to perform PDCCH blind detection in the search space set (SearchSpaceSets) configured on the network side.
  • PDCCH blind detection means that the terminal does not know the format information of the DCI delivered by the network device before detecting the DCI carried by the PDCCH. Therefore, it is necessary to use some fixed DCI size (DCIsize) to perform blind detection on the candidate PDCCH in the search space set. . In order to reduce the complexity of the terminal when blindly detecting the PDCCH, it is necessary to perform DCI size alignment.
  • the number of DCI sizes is kept at three through DCI size alignment.
  • the size of one of the DCI formats is supplemented or truncated so that it is different from that of one of the other three DCI formats. same size.
  • the terminal only needs to perform blind detection for three DCI sizes, and does not need to perform blind detection for each DCI format.
  • the terminal can distinguish different DCI formats of the same DCI size by reading the content in the DCI.
  • the communication protocol in the related art stipulates that, for a scheduled carrier or cell, the number of DCI sizes is not greater than 4; and the number of DCI sizes scrambled by C-RNTI is not greater than 3.
  • the NR protocol stipulates the PDCCH detection capability, which is intended to constrain the PDCCH configuration on the network side.
  • the terminal stops detecting the PDCCH on the remaining potential resources.
  • Fig. 4 shows a flowchart of a PDCCH detection method provided by an exemplary embodiment of the present application. This embodiment is described by taking the method applied to a terminal as an example. The method includes:
  • Step 402 The terminal receives the PDCCH configuration corresponding to the carrier combination sent by the network device;
  • the terminal receives PDCCH configurations in which the network equipment is configured in 6 combinations of serving cells 1 to 5 and serving cells 4 and 5 respectively.
  • the PDCCH configuration corresponding to the carrier combination is configured with at least one of information such as a time-frequency region for PDCCH blind detection, a mapping method, a DCI format, and an aggregation level.
  • the PDCCH configuration is for one carrier combination.
  • one or more PDCCH configurations may be configured.
  • the multiple PDCCH configurations correspond to the multiple BWPs of the carrier combination.
  • the PDCCH configuration includes at least one of the following information:
  • PDCCH configuration information (PDCCHConfig) corresponding to the carrier combination
  • ControlResourceSet (ControlResourceSet, or CORESET) corresponding to the carrier combination
  • searchSpaceSet SearchSpace
  • SearchSpace SearchSpace
  • the network device configures the first PDCCH for serving cell 1, the network device configures the second PDCCH for serving cell 2, the network device configures the third PDCCH for serving cell 3, and the network device configures the fourth PDCCH for For the serving cell 4, the network device configures the fifth PDCCH configuration for the serving cell 5, and the network device configures the sixth PDCCH configuration for the carrier combination of the serving cells 4 and 5.
  • the network device configures the first PDCCH-Config, the first SearchSpace and the first ControlResourceSet to the serving cell 1; configures the second PDCCH-Config, the second SearchSpace and the second ControlResourceSet to the serving cell 2, ..., the network device also configures the first The six PDCCH-Config, the sixth SearchSpace and the sixth ControlResourceSet give the carrier combinations of serving cells 4 and 5.
  • SearchSpace and ControlResourceSet are two information fields in PDCCH-Config.
  • the PDCCH configuration includes all information domains of PDCCHConfig; in some embodiments, the PDCCH configuration only includes Coreset and/or SearchSpace, that is, part of the information domain of PDCCHConfig; in some embodiments, the PDCCH configuration includes not only Coreset and SearchSpace also include some new information domains or information elements (Information Element), which are not limited in this embodiment of the present application.
  • the terminal further receives the cross-carrier configuration corresponding to the carrier combination sent by the network device, where the cross-carrier configuration includes: a carrier indicator field (Carrier Indicator field, CIF) value corresponding to the carrier combination.
  • a carrier indicator field Carrier Indicator field, CIF
  • the network device configures serving cell 1 , serving cell 2 , serving cell 4 , serving cell 5 , serving cell 4 , and serving cell 5 in a cross-carrier configuration.
  • the cross-carrier configuration is CrossCarrierSchedulingConfig.
  • the network device configures the first cross-carrier configuration for serving cell 1, the network device configures the second cross-carrier configuration for serving cell 2, ..., and the network device configures the fifth cross-carrier configuration for the carrier combination of serving cells 4 and 5.
  • the network device configures the first CrossCarrierSchedulingConfig for serving cell 1, the network configures the second CrossCarrierSchedulingConfig for serving cell 2, ..., and the network configures the fifth CrossCarrierSchedulingConfig for the carrier combinations of serving cells 4 and 5.
  • the carrier combinations of serving cells 1, 2, 4, 5 and serving cells 4 and 5 are respectively configured with a CIF value, and a carrier combination corresponds to a CIF value. value.
  • the specific configuration results are:
  • the CIF values corresponding to the serving cell 1, the serving cell 2, the serving cell 4, and the serving cell 5 are all 1, and the CIF values corresponding to the serving cells 4 and 5 are 2.
  • Step 404 The terminal performs PDCCH blind detection based on the PDCCH configuration of the carrier combination by the network equipment;
  • the terminal PDCCH detection is performed on the time-frequency resource.
  • control resource set configures the frequency domain position and the time domain length of the candidate PDCCH.
  • the search resource set configures the time domain positions of candidate PDCCHs.
  • the scheduled carrier combination includes carrier combination 6 of serving cells 4 and 5
  • PDCCH blind detection is performed.
  • Step 406 When the PDCCH blind detection is passed, the scheduled carrier combination is determined by the value of the carrier indicator field CIF carried by the PDCCH.
  • the terminal detects the PDCCH on the serving cell 4 according to the PDCCH configuration corresponding to the carrier combination of the serving cell 4 and the serving cell 5
  • the cyclic redundancy check Cyclic Redundancy Check, CRC
  • the terminal further reads the CIF value to confirm whether the PDCCH (or DCI) has scheduled the carrier combination of serving cell 4 and serving cell 5.
  • the value of CIF is 2
  • the terminal further determines the scheduled carrier in the carrier combination, and the scheduled carrier may be all carriers in the carrier combination, or the scheduled carrier may be Some carriers in the carrier combination, or the scheduled carrier may be a carrier in the carrier combination.
  • the frequency domain resources indicated by the DCI used to schedule the carrier combination of serving cell 4 and serving cell 5 include part or all of the frequency domain resources of serving cell 4 and part or all of the frequency domain resources of serving cell 5 .
  • the frequency domain resources indicated by the DCI used to schedule the carrier combination of serving cell 4 and serving cell 5 may include part or all of serving cell 4 and part or all of serving cell 5's frequency domain resources, or may only include Part or all of the frequency domain resources of the serving cell 4 may also only include part or all of the frequency domain resources of the serving cell 5 .
  • the above two methods can be determined by network configuration, taking into account the influence of PDCCH detection capability division and DCI transmission efficiency.
  • the scheduling service cell 4 or the scheduling service cell 5 alone, and the carrier combination of the scheduling service cells 4 and 5 are used independently of each other, which can avoid redundant information in DCI and reduce DCI transmission efficiency.
  • the number of combinations can be reduced, and the division that affects the detection capability of the PDCCH can be performed.
  • the above method can also be limited by the agreement of the communication protocol, and the specific communication protocol will restrict that only case 1 is allowed to occur.
  • the method provided in this embodiment implements PDCCH detection in units of carrier combinations, not only in the scenario where one DCI schedules the PDSCHs and/or PUSCHs of multiple serving cells, but also realizes the scheduling of a or PDCCH detection of multiple carriers, and can also locate the relevant design of the PDCCH detection process on the carrier combination, avoiding different designs for different situations of "one DCI scheduling one carrier" and "one DCI scheduling multiple carriers", reducing The complexity of the communication protocol.
  • differentiated configurations can be performed according to actual scheduling conditions, which is beneficial to balancing PDCCH capability division under different carrier combinations and improving PDCCH transmission efficiency.
  • the time domain resource allocation in the same DCI can be efficiently shared (TimeDomain Resource Allocation, TDRA), the information field related to PUCCH resources.
  • TDRA TimeDomain Resource Allocation
  • Fig. 5 shows a flowchart of a PDCCH detection method provided by an exemplary embodiment of the present application. This embodiment is described by taking the method applied to a terminal as an example. The method includes:
  • Step 502 When the number of DCI formats corresponding to the carrier combination exceeds the number threshold, perform a DCI size alignment operation on the DCI formats corresponding to the carrier combination.
  • the number threshold is 3;
  • the number threshold is 4 for all DCIs.
  • the terminal performs a DCI size alignment operation on multiple DCI formats of the same scheduled carrier combination. Because the DCI formats used to schedule the serving cell 4, or the DCI used to schedule the serving cell 5, and the carrier combination used to schedule the serving cell 4 and the serving cell 5 belong to different carrier combinations, so different carrier combinations do not need to be configured. DCI size alignment operation.
  • DCI format 0_0, DCI format 0_1, DCI format 0_2, DCI format 1_0, DCI format 1_1, DCI format 1_2 are configured on the network side, and the number of DCI sizes exceeds the threshold 3 , the terminal performs the DCI size alignment operation until the number of DCI sizes is not greater than the number threshold 3.
  • the network side configures DCI format 0_x and DCI format 1_x, a positive integer of x>2, since the number of DCI sizes is 2, the number does not exceed Threshold 3, the terminal does not need to perform DCI size alignment operations on DCI format 0_x and DCI format 1_x, and does not need to perform DCI size alignment operations with other carrier combinations. Specifically, it does not need to perform DCI size alignment operations with the DCI format on carrier combination 1. .
  • the method provided in this embodiment performs the DCI size alignment operation in the unit of carrier combination, which can avoid the DCI size alignment operation between the "one adjustment to one" and “one adjustment to many” DCI formats, and simplify the terminal side operation.
  • Fig. 6 shows a flowchart of a PDCCH detection method provided by an exemplary embodiment of the present application. This embodiment is described by taking the method applied to a terminal as an example. The method includes:
  • Step 602 In the case of performing PDCCH detection on the scheduled carrier corresponding to the carrier combination, determine that the number of PDCCH blind detections is less than or equal to and/or determine that the number of non-overlapping Control Channel Elements (CCEs) for channel estimation is less than or equal to
  • CCEs Control Channel Elements
  • is the maximum number of candidate PDCCHs monitored by a carrier combination is the total number of monitored candidate PDCCHs of the specific parameter set of the scheduled carrier corresponding to a carrier combination.
  • the specific parameter set is the parameter set related to the subcarrier spacing parameter ⁇ .
  • min(A, B) means to take the minimum value of A and B.
  • PDCCH detection capability reported by the terminal is determined based on the number of carrier combinations whose parameter set is j based on the scheduled carrier, is determined based on the number of carrier combinations of ⁇ based on the parameter set of the scheduled carrier.
  • is the summation symbol.
  • the specific parameter set is the parameter set related to the subcarrier spacing parameter ⁇ .
  • PDCCH detection capability reported by the terminal is determined based on the number of carrier combinations whose parameter set is j based on the scheduled carrier, is determined based on the number of carrier combinations of ⁇ based on the parameter set of the scheduled carrier.
  • the terminal also needs to report the PDCCH detection capability to the network device before step 602
  • the number of carrier combinations is The number of carrier combinations based on the parameter set of 1 for the scheduled carrier is The number of carrier combinations based on the scheduling carrier parameter set of 2 is The number of carrier combinations with a parameter set of 3 based on the scheduled carrier is Then, when the count value of each carrier combination number is 1 (that is, there is no adjustment coefficient),
  • carrier combinations include: serving cells 1, 2, 3, 4, 5, 4+5, that is, 6 types of carrier combinations to be scheduled.
  • the number of PDCCH blind detection is less than or equal to
  • the maximum number of non-overlapping CCEs for channel estimation is less than or equal to
  • the count values of serving cells 1 to 3 are respectively 1 and the cumulative sum of the 3 serving cells Cumulative sum of 3 and 6 carrier combinations for 6.
  • serving cell 4 serving cell 5
  • the number of PDCCH blind detections is less than or equal to
  • the maximum number of non-overlapping CCEs for channel estimation is less than or equal to in, and See Tables 2 and 3 above, respectively. and It is determined as follows:
  • the count values of serving cells 4 to 6 are respectively 1, and the cumulative sum of 3 serving cells Cumulative sum of 3 and 6 carrier combinations for 6.
  • method 1 On the basis of method 1, an adjustment factor is introduced for a single carrier when the total capacity of multiple carriers is divided. That is, method 1 is calculating When the count value of each carrier combination is 1, in method 2, the calculation The count value of each carrier combination at this time is: 1*adjustment coefficient.
  • the adjustment factor is a non-negative number.
  • It is determined by the number of at least one carrier combination whose parameter set is j for the scheduled carrier and the adjustment coefficient corresponding to at least one carrier combination.
  • the adjustment coefficient is predefined by the communication protocol, or the adjustment coefficient is configured by the network device (high-level signaling).
  • the number of carrier combinations based on the scheduling carrier parameter set u is K, and the adjustment coefficient corresponding to the i-th carrier combination in the K carrier combinations is ⁇ i, then:
  • the adjustment coefficient of serving cell 4 is 0.8; the adjustment coefficient of serving cell 5 is 0.8; and the adjustment coefficient of serving cell 4+5 is 0.4.
  • the adjustment factor for serving cell 1 or 2 or 3 is 1.
  • serving cell 4 serving cell 5
  • the number of PDCCH blind detections is less than or equal to
  • the maximum number of non-overlapping CCEs for channel estimation is less than or equal to in, and See Tables 2 and 3 above, respectively. and It is determined as follows:
  • the method provided in this embodiment determines the PDCCH detection capability of the terminal in units of carrier combinations, so that the PDCCH detection capability can determine a more accurate PDCCH detection capability in a carrier combination scenario.
  • the method provided in this embodiment introduces an adjustment coefficient between multiple carrier combinations, so that when a carrier combination includes at least two carriers, a more accurate PDCCH detection capability can be determined through the adjustment coefficient without requiring The same serving cell unreasonably accumulates multiple times in the accumulation sum calculation of a carrier combination, resulting in an inaccurate judgment of the PDCCH detection capability.
  • Fig. 7 shows a flowchart of a PDCCH detection method provided by an exemplary embodiment of the present application. This embodiment is described by taking the method applied to a network device as an example. The method includes:
  • Step 702 Send the PDCCH based on the carrier combination, where the carrier combination includes one or more carriers.
  • the network equipment sends PDCCH based on one (scheduled) carrier combination.
  • a carrier combination includes one or more carriers. Multiple carriers refers to at least two carriers. All or part of frequency domain resources on a scheduled carrier combination are implemented by one PDCCH (or one DCI scheduling).
  • a carrier combination includes only one carrier, the carrier is treated as one carrier combination for processing.
  • the (scheduled) carrier combinations are preconfigured by higher layer signaling.
  • carriers belonging to the same (scheduled) carrier group are configured with the same subcarrier spacing.
  • carriers belonging to the same (scheduled) carrier combination are configured with the same PUCCH group.
  • the method further includes:
  • Step 701 Send the PDCCH configuration corresponding to the carrier combination to the terminal.
  • the PDCCH configuration corresponding to the carrier combination is configured with at least one of information such as a time-frequency region for PDCCH blind detection, a mapping method, a DCI format, and an aggregation level.
  • the PDCCH configuration is for one carrier combination or a single carrier combination.
  • one or more PDCCH configurations may be configured.
  • the multiple PDCCH configurations correspond to the multiple BWPs of the carrier combination.
  • the PDCCH configuration includes at least one of the following information:
  • PDCCH configuration information (PDCCHConfig) corresponding to the carrier combination
  • ControlResourceSet (ControlResourceSet, or Coreset) corresponding to the carrier combination
  • searchSpaceSet SearchSpace
  • SearchSpace SearchSpace
  • SearchSpace and ControlResourceSet are two information fields in PDCCH-Config.
  • the PDCCH configuration includes all information domains of PDCCHConfig; in some embodiments, the PDCCH configuration only includes Coreset and/or SearchSpace, that is, part of the information domain of PDCCHConfig; in some embodiments, the PDCCH configuration includes not only Coreset and SearchSpace also include some new information domains or information elements (Information Element), which are not limited in this embodiment of the present application.
  • the method also includes:
  • the method also includes:
  • the number threshold is 3; for all DCI formats, the number threshold is 4.
  • the network device determines that the number of PDCCH blind detections is less than or equal to the first value when performing PDCCH detection on the scheduled carrier corresponding to the carrier combination
  • the maximum number of candidate PDCCHs monitored by a carrier combination is the total number of monitored candidate PDCCHs of a specific parameter set of a scheduled carrier corresponding to a carrier combination, and the specific parameter set is a parameter set corresponding to the subcarrier spacing parameter ⁇ .
  • PDCCH detection capability reported by the terminal is the number of carrier combinations where the parameter set of the scheduled carrier is j, is determined based on the number of carrier combinations of ⁇ based on the parameter set of the scheduled carrier.
  • the network device determines that the maximum number of non-overlapping CCEs for channel estimation is less than or equal to
  • PDCCH detection capability reported by the terminal is the number of carrier combinations whose parameter set is j for the scheduled carrier.
  • the method further includes: the network device receives the PDCCH detection capability reported by the terminal
  • the adjustment coefficient is predefined by the communication protocol, or the adjustment coefficient is configured by high-layer signaling.
  • the adjustment factor is a non-negative number.
  • the number of carrier combinations is The number of carrier combinations based on the parameter set of 1 for the scheduled carrier is The number of carrier combinations based on the scheduling carrier parameter set of 2 is The number of carrier combinations with a parameter set of 3 based on the scheduled carrier is Then, when the count value of each carrier combination number is 1 (that is, there is no adjustment coefficient),
  • It is determined by the number of at least one carrier combination whose parameter set is j for the scheduled carrier and the adjustment coefficient corresponding to at least one carrier combination.
  • the adjustment coefficient is predefined by the communication protocol, or the adjustment coefficient is configured by the network device (high-level signaling).
  • the number of carrier combinations based on the scheduling carrier parameter set u is K, and the adjustment coefficient corresponding to the i-th carrier combination in the K carrier combinations is ⁇ i, then:
  • the method provided in this embodiment by sending PDCCH in units of carrier combinations, not only realizes the delivery of PDCCH on multiple carriers in the scenario where one DCI schedules PDSCH and/or PUSCH of multiple serving cells , it is also possible to position the relevant design of the PDCCH detection process on the carrier combination, avoid different designs for different situations of "one DCI scheduling one carrier” and "one DCI scheduling multiple carriers", and reduce the complexity of the communication protocol.
  • differentiated configurations can be performed according to actual scheduling conditions, which is beneficial to balancing PDCCH capability division under different carrier combinations and improving PDCCH transmission efficiency.
  • the time domain resource allocation in the same DCI can be efficiently shared (TimeDomain Resource Allocation, TDRA), the information field related to PUCCH resources.
  • TDRA TimeDomain Resource Allocation
  • the DCI size alignment operation can also be performed by carrier combination, thereby avoiding the DCI size alignment operation between the "one to one" and “one to many” DCI formats, and simplifying operations on the terminal side.
  • the method provided in this embodiment determines the PDCCH detection capability of the terminal in units of carrier combinations, so that the PDCCH detection capability can determine a more accurate PDCCH detection capability in a carrier combination scenario.
  • the method provided in this embodiment introduces an adjustment coefficient between multiple carrier combinations, so that when a carrier combination includes at least two carriers, a more accurate PDCCH detection capability can be determined through the adjustment coefficient without requiring The same serving cell unreasonably accumulates multiple times in the accumulation sum calculation of a carrier combination, resulting in an inaccurate judgment of the PDCCH detection capability.
  • the concepts of "serving cell” and “carrier” can be regarded as the same concept and can be replaced with each other.
  • the carrier combination includes one or more carriers, and multiple carriers refer to at least two carriers.
  • Fig. 9 shows a block diagram of a PDCCH detection device shown in an exemplary embodiment of the present application.
  • the PDCCH detection device can be implemented as all or part of the terminal, and the device includes:
  • the detection module 920 is configured to perform PDCCH detection based on a carrier combination, where the carrier combination includes one or more carriers.
  • the carrier combination is pre-configured by high layer signaling.
  • the carriers belonging to the carrier combination are configured with the same subcarrier spacing.
  • carriers belonging to the carrier combination are configured with the same PUCCH group.
  • the detection module 920 is configured to perform PDCCH blind detection based on the PDCCH configuration of the carrier combination by the network device.
  • the device also includes:
  • the receiving module 940 is configured to receive the PDCCH configuration corresponding to the carrier combination sent by the network device.
  • the PDCCH configuration corresponding to the carrier combination includes at least one of the following information:
  • a set of search spaces corresponding to the combination of carriers is a set of search spaces corresponding to the combination of carriers.
  • the detection module 920 is further configured to determine the scheduled carrier combination through the CIF value carried by the PDCCH when the PDCCH blind detection passes.
  • the device also includes:
  • the receiving module 940 is configured to receive a cross-carrier configuration corresponding to the carrier combination sent by the network device, where the cross-carrier configuration includes: the CIF value corresponding to the carrier combination.
  • the detection module 920 is further configured to perform a DCI size alignment operation on the DCI formats corresponding to the carrier combination when the number of DCI formats corresponding to the carrier combination exceeds a threshold.
  • the number threshold is 3; for all DCIs, the number threshold is 4.
  • the detection module 920 is further configured to determine that the number of PDCCH blind detections is less than or equal to
  • the is the maximum number of candidate PDCCHs monitored by a carrier combination
  • the is the total number of monitored candidate PDCCHs of the specific parameter set of the scheduling carrier corresponding to the one carrier combination
  • the specific parameter set is the parameter set corresponding to the subcarrier spacing parameter ⁇ .
  • the PDCCH detection capability reported by the terminal is the number of carrier combinations where the parameter set of the scheduled carrier is j, is determined based on the number of carrier combinations of ⁇ based on the parameter set of the scheduled carrier.
  • the detection module 920 is further configured to determine that the maximum number of non-overlapping CCEs for channel estimation is less than or equal to
  • the is the maximum number of non-overlapping CCEs for channel estimation on one carrier combination
  • the is the total number of non-overlapping CCEs for channel estimation of a specific parameter set corresponding to the one carrier combination
  • the specific parameter set is a parameter set corresponding to the subcarrier spacing parameter ⁇ .
  • the PDCCH detection capability reported by the terminal is the number of carrier combinations where the parameter set of the scheduled carrier is j, is determined based on the number of carrier combinations of ⁇ based on the parameter set of the scheduled carrier.
  • the device also includes:
  • a sending module 960 configured to report the PDCCH detection capability to the network device
  • the It is determined by the number of carrier combinations whose parameter set of the scheduled carrier is j and the adjustment coefficient corresponding to the carrier combinations.
  • the adjustment coefficient is predefined by a communication protocol, or the adjustment coefficient is configured by high-level signaling.
  • the adjustment coefficient is a non-negative number.
  • the number of carrier combinations is The number of carrier combinations based on the parameter set of 1 for the scheduled carrier is The number of carrier combinations based on the scheduling carrier parameter set of 2 is The number of carrier combinations with a parameter set of 3 based on the scheduled carrier is Then, when the count value of each carrier combination number is 1 (that is, there is no adjustment coefficient),
  • It is determined by the number of at least one carrier combination whose parameter set is j for the scheduled carrier and the adjustment coefficient corresponding to at least one carrier combination.
  • the adjustment coefficient is predefined by the communication protocol, or the adjustment coefficient is configured by the network device (high-layer signaling).
  • the number of carrier combinations based on the scheduling carrier parameter set u is K, and the adjustment coefficient corresponding to the i-th carrier combination in the K carrier combinations is ⁇ i, then:
  • Fig. 10 shows a block diagram of a PDCCH detection device shown in an exemplary embodiment of the present application.
  • the PDCCH detection device can be implemented as all or part of network equipment, and the device includes:
  • the sending module 1020 is configured to send the PDCCH based on a carrier combination, where the carrier combination includes one or more carriers.
  • the sending module 1020 is configured to send the PDCCH configuration corresponding to the carrier combination.
  • the PDCCH configuration corresponding to the carrier combination includes at least one of the following information:
  • a set of search spaces corresponding to the combination of carriers is a set of search spaces corresponding to the combination of carriers.
  • the sending module is configured to send a cross-carrier configuration corresponding to the carrier combination, where the cross-carrier configuration includes: a CIF value corresponding to the carrier combination.
  • the device also includes:
  • the processing module 1040 is configured to perform a DCI alignment operation on the DCI formats corresponding to the carrier combination when the number of DCI formats corresponding to the carrier combination exceeds a quantity threshold.
  • the number threshold is 3; for all DCI formats, the number threshold is 4.
  • the processing module 1040 is configured to determine that the number of PDCCH blind detections is less than or equal to
  • the is the maximum number of candidate PDCCHs monitored by a carrier combination
  • the is the total number of monitored candidate PDCCHs of the specific parameter set of the scheduling carrier corresponding to the one carrier combination
  • the specific parameter set is the parameter set corresponding to the subcarrier spacing parameter ⁇ .
  • the PDCCH detection capability reported by the terminal is the number of carrier combinations where the parameter set of the scheduled carrier is j, is determined based on the number of carrier combinations of ⁇ based on the parameter set of the scheduled carrier.
  • the processing module 1040 is configured to determine that the maximum number of non-overlapping CCEs for channel estimation is less than or equal to
  • the is the maximum number of non-overlapping CCEs for channel estimation on one carrier combination
  • the is the total number of non-overlapping CCEs for channel estimation of a specific parameter set corresponding to the one carrier combination
  • the specific parameter set is a parameter set corresponding to the subcarrier spacing parameter ⁇ .
  • the PDCCH detection capability reported by the terminal is the number of carrier combinations where the parameter set of the scheduled carrier is j, is determined based on the number of carrier combinations of ⁇ based on the parameter set of the scheduled carrier.
  • the device also includes:
  • the receiving module 1060 is configured to receive the PDCCH detection capability reported by the terminal
  • the It is determined by the number of carrier combinations whose parameter set of the scheduled carrier is j and the adjustment coefficient corresponding to the carrier combinations.
  • the adjustment coefficient is predefined by a communication protocol, or the adjustment coefficient is configured by high-level signaling. In some embodiments, the adjustment coefficient is a non-negative number.
  • the number of carrier combinations is The number of carrier combinations based on the parameter set of 1 for the scheduled carrier is The number of carrier combinations based on the scheduling carrier parameter set of 2 is The number of carrier combinations with a parameter set of 3 based on the scheduled carrier is Then, when the count value of each carrier combination number is 1 (that is, there is no adjustment coefficient),
  • It is determined by the number of at least one carrier combination whose parameter set is j for the scheduled carrier and the adjustment coefficient corresponding to at least one carrier combination.
  • the adjustment coefficient is predefined by the communication protocol, or the adjustment coefficient is configured by the network device (high-level signaling).
  • the number of carrier combinations based on the scheduling carrier parameter set u is K, and the adjustment coefficient corresponding to the i-th carrier combination in the K carrier combinations is ⁇ i, then:
  • the device provided by the above embodiment realizes its functions, it only uses the division of the above-mentioned functional modules as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 11 shows a schematic structural diagram of a terminal 1100 provided by an embodiment of the present application.
  • the terminal 1100 may include: a processor 1101 , a transceiver 1102 and a memory 1103 .
  • the processor 1101 includes one or more processing cores, and the processor 1101 executes various functional applications and information processing by running software programs and modules.
  • the transceiver 1102 may include a receiver and a transmitter.
  • the receiver and the transmitter may be implemented as the same wireless communication component, and the wireless communication component may include a wireless communication chip and a radio frequency antenna.
  • the memory 1103 may be connected to the processor 1101 and the transceiver 1102 .
  • the memory 1103 may be used to store a computer program executed by the processor, and the processor 1101 is used to execute the computer program, so as to implement various steps in the PDCCH detection method performed by the terminal in the above method embodiments.
  • volatile or non-volatile storage device includes but not limited to: magnetic disk or optical disk, electrically erasable and programmable Read Only Memory, Erasable Programmable Read Only Memory, Static Anytime Access Memory, Read Only Memory, Magnetic Memory, Flash Memory, Programmable Read Only Memory.
  • FIG. 12 shows a schematic structural diagram of a network device 1200 provided by an embodiment of the present application.
  • the network device 1200 may include: a processor 1201 , a transceiver 1202 and a memory 1203 .
  • the processor 1201 includes one or more processing cores, and the processor 1201 executes various functional applications and information processing by running software programs and modules.
  • Transceiver 1202 may include a receiver and a transmitter.
  • the transceiver 1202 may include a wired communication component, and the wired communication component may include a wired communication chip and a wired interface (such as an optical fiber interface).
  • the transceiver 1202 may also include a wireless communication component, and the wireless communication component may include a wireless communication chip and a radio frequency antenna.
  • the memory 1203 may be connected to the processor 1201 and the transceiver 1202 .
  • the memory 1203 may be used to store a computer program executed by the processor, and the processor 1201 is used to execute the computer program, so as to implement each step in the PDCCH sending method performed by the network device in the above method embodiment.
  • volatile or non-volatile storage device includes but not limited to: magnetic disk or optical disk, electrically erasable and programmable Read Only Memory, Erasable Programmable Read Only Memory, Static Anytime Access Memory, Read Only Memory, Magnetic Memory, Flash Memory, Programmable Read Only Memory.
  • a computer-readable storage medium stores at least one instruction, at least one program, a code set or an instruction set, the at least one instruction, the At least one program, the code set or instruction set is loaded and executed by the processor to implement the PDCCH detection method performed by the terminal and/or the PDCCH transmission method performed by the network device provided in the above method embodiments.
  • a computer program product or computer program comprising computer instructions
  • the computer instructions are stored in a computer-readable storage medium
  • the processor of the communication device can read from the computer
  • the computer instruction is read by reading the storage medium
  • the processor executes the computer instruction, so that the communication device performs the PDCCH detection method performed by the terminal and/or the PDCCH transmission method performed by the network device provided in the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种PDCCH检测方法、发送方法、装置、设备及存储介质,涉及移动通信技术领域。所述方法包括:基于载波组合进行PDCCH检测,载波组合包括一个或多个载波(202)。本申请能够在一个DCI调度多个服务小区的PDSCH和/或PUSCH的场景中,实现对多个载波上的PDCCH检测。

Description

PDCCH检测方法、发送方法、装置、设备及存储介质 技术领域
本申请实施例涉及移动通信领域,特别涉及一种物理下行控制信道(Physical Downlink Control Channel,PDCCH)检测方法、发送方法、装置、设备及存储介质。
背景技术
在第5代移动通信系统(5G)的演进中,下行控制信息(Downlink ControlInformation,DCI)承载在PDCCH中。用户设备(User Equipment,UE)在接收DCI时需要对PDCCH检测。
相关技术中,一个DCI调度的资源被限制在一个载波上,一个服务小区(ServingCell)对应1个载波(Carrier)。
发明内容
本申请实施例提供了一种PDCCH检测方法、发送方法、装置、设备及存储介质,能够在使用1个DCI调度多个服务小区的物理下行共享信道(Physical Downlink SharedChannel,PDSCH)和/或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的场景中,实现以载波组合为单位对调度一个或多个载波的PDCCH检测。所述技术方案如下:
根据本申请实施例的一个方面,提供了一种PDCCH检测方法,应用于终端中,所述方法包括:
基于载波组合进行PDCCH检测,所述载波组合包括一个或多个载波。
根据本申请实施例的一个方面,提供了一种PDCCH发送方法,应用于网络设备中,所述方法包括:
基于载波组合发送PDCCH,所述载波组合包括一个或多个载波。
根据本申请实施例的一个方面,提供了一种PDCCH检测装置,应用于终端中,所述装置包括:
检测模块,用于基于载波组合进行PDCCH检测,所述载波组合包括一个或多个载波。
根据本申请实施例的一个方面,提供了一种PDCCH检测装置,应用于网络设备中,所述装置包括:
发送模块,用于基于载波组合发送PDCCH,所述载波组合包括一个或多个载波。
根据本申请实施例的一个方面,提供了一种终端,所述终端包括处理器;
所述处理器,用于基于载波组合进行PDCCH检测,所述载波组合包括一个或多个载波。
根据本申请实施例的一个方面,提供了一种网络设备,所述网络设备包括发射机;
所述发射机,用于基于载波组合发送PDCCH,所述载波组合包括一个或多个载波。
根据本申请实施例的一个方面,提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于处理器执行,以实现上述PDCCH检测方法或PDCCH发送方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述PDCCH检测方法或PDCCH发送方法。
根据本申请实施例的一个方面,提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述PDCCH检测方法或PDCCH发送方法。
本申请实施例提供的技术方案可以带来如下有益效果:
通过以载波组合为单位进行PDCCH检测,不仅在一个DCI调度多个服务小区的PDSCH和/或PUSCH的场景中,实现以载波组合为单位对调度一个或多个载波的PDCCH检测,还 能够将PDCCH检测过程的相关设计均定位在载波组合上,避免区分“一个DCI调度一个载波”和“一个DCI调度多个载波”的不同情况进行不同设计,降低通信协议的复杂性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的移动通信系统的示意图;
图2是本申请一个示例性实施例提供的PDCCH检测方法的流程图;
图3是本申请一个示例性实施例提供的多个载波组合的示意图;
图4是本申请一个示例性实施例提供的PDCCH检测方法的流程图;
图5是本申请一个示例性实施例提供的PDCCH检测方法的流程图;
图6是本申请一个示例性实施例提供的PDCCH检测方法的流程图;
图7是本申请一个示例性实施例提供的PDCCH发送方法的流程图;
图8是本申请一个示例性实施例提供的PDCCH发送方法的流程图;
图9是本申请一个示例性实施例提供的PDCCH检测装置的框图;
图10是本申请一个示例性实施例提供的PDCCH发送装置的框图;
图11是本申请一个示例性实施例提供的终端的结构示意图;
图12是本申请一个示例性实施例提供的网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在介绍本申请技术方案之前,先对本申请涉及的一些技术知识进行介绍说明。
在大部分场景下,一个DCI调度的资源限制在一个载波上。当引入一个DCI调度多个服务小区的PDSCH/PUSCH的方案时,会出现一个DCI调度的资源对应在多个载波或小区上。反之,多个载波对应了一个DCI。本申请提供了在这种“多个载波对应一个DCI”的情况下,如何实现PDCCH检测的技术方案。
图1示出了本申请一个实施例提供的移动通信系统的示意图。该移动通信系统可以包括:终端10和接入网设备20。
终端10的数量通常为多个,每一个接入网设备20所管理的小区内可以分布一个或多个终端10。终端10可以包括各种具有移动通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE)、移动台(Mobile Station,MS)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端。
接入网设备20是一种部署在接入网中用于为终端10提供移动通信功能的装置。接入网设备20可以包括各种形式的宏基站,微基站,中继站,接入点,定位管理功能实体(Location Management Function,LMF)等等。在采用不同的无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同,具体的在5G NR系统中,称为gNodeB或者gNB。随着 通信技术的演进,“接入网设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端10提供移动通信功能的装置统称为接入网设备。接入网设备20与终端10之间可以通过空口建立连接,从而通过该连接进行通信,包括信令和数据的交互。接入网设备20的数量可以有多个,两个邻近的接入网设备20之间也可以通过有线或者无线的方式进行通信。终端10可以在不同的接入网设备20之间进行切换,也即与不同的接入网设备20建立连接。
本公开实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统。
终端10处于多个小区的覆盖下,比如小区X和小区Y的覆盖下。接入网设备20可以使用一个DCI调度多个载波或小区上的资源。由于一个服务小区对应一个载波,在本申请中“服务小区”和“载波”可以视为相同的概念。
图2示出了本申请一个示例性实施例提供的PDCCH检测方法的流程图。本实施例以该方法应用于终端来举例说明。该方法包括:
步骤202:基于载波组合进行PDCCH检测,载波组合包括一个或多个载波。
终端基于一个(被调度的)载波组合进行PDCCH检测。一个载波组合包括一个或多个载波。多个载波是指至少两个载波。一个被调度的载波组合上的全部或部分频域资源是由一个PDCCH(或一个DCI)调度实现的。
即便在一个载波组合仅包括一个载波的情况下,该载波也是视为一个载波组合来进行处理。载波组合可以为一个或多个。
在一些实施例中,(被调度的)载波组合是由高层信令预配置的。
在一些实施例中,属于同一个(被调度的)载波组合的载波配置有相同的子载波间隔。
在一些实施例中,属于同一个(被调度的)载波组合的载波配置有同一个PUCCH组。在属于同一个PUCCH组的情况下,不同一个载波组合中的各个载波可以使用相同的PUCCH资源进行混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)反馈。
参考图3,假设调度小区包括:服务小区1、服务小区3和服务小区4。被调度小区包括:服务小区1、服务小区2、服务小区3、服务小区4和服务小区5。其中,调度小区是下发PDCCH的服务小区,被调度小区是PDCCH调度的服务小区。调度小区和被调度小区中相同编号的服务小区是指同一个服务小区。图3中的箭头是指调度关系,服务小区1调度服务小区1属于当前载波调度,服务小区1调度服务小区2属于跨载波调度。
网络设备通过高层信令为终端配置5个服务小区,5个服务小区属于相同的小区组。比如,相同的小区组是属于同一个主小区组(MasterCellGroup,MCG),或者相同的小区组是属于同一个辅小区组(SecondaryCellGroup,SCG),或者相同的小区组属于同一个主PUCCH组(PrimaryPUCCHGroup)。
参考图3,被调度的载波组合包括如下6种载波组合中的任意一种载波组合:
载波组合1即为:服务小区1;
载波组合2即为:服务小区2;
载波组合3即为:服务小区3;
载波组合4即为:服务小区4;
载波组合5即为:服务小区5;
载波组合6即为:服务小区4+服务小区5。
其中,服务小区1作为调度小区,可以调度服务小区1,也可以跨载波调度服务小区2;服务小区3作为调度小区,可以调度服务小区3;服务小区4作为调度小区,可以单独调度服务小区4,也可以单独调度服务小区5,还可以同时调度服务小区4和5。在载波组合1至5中,每个载波组合中的载波数量为1;在载波组合6中,载波数量为2。
综上所述,本实施例提供的方法,通过以载波组合为单位进行PDCCH检测,不仅在一个DCI调度多个服务小区的PDSCH和/或PUSCH的场景中,实现对多个载波上的PDCCH检测,还能够将PDCCH检测过程的相关设计均定位在载波组合上,避免区分“一个DCI调度一个载波”和“一个DCI调度多个载波”的不同情况进行不同设计,降低通信协议的复杂性。
PDCCH检测过程至少包括如下三个部分:
·PDCCH配置;
终端接收PDCCH配置,获得PDCCH盲检测的时频区域,映射方式,DCI格式和聚合等级等信息中至少一种。具体地,PDCCH-Config配置了终端在接收用户专属控制信息和组公共控制信息时所需要的一系列用户专属参数,并且是针对每个服务小区的每个带宽部分(BandwidthPart,BWP)独立配置。该参数包含了核心资源集(CORESET)配置,搜索空间(SearchSpace)配置,组公共控制信息的配置,具体的发射功率控制(TransmitPowerControl,TPC)相关配置,下行链路抢占(downlinkPreemption)配置,上行链路取消(uplinkCancellation)配置,以及搜索空间切换(searchspace switching)相关的配置。
·DCI大小对齐;
新空口系统(NewRadio,NR)支持终端在网络侧配置的搜索空间集合(SearchSpaceSets)中进行PDCCH盲检测。PDCCH盲检测是指终端在检测到PDCCH承载的DCI之前,并不知道网络设备下发的DCI的格式信息,因此需要使用一些固定的DCI大小(DCIsize)对搜索空间集合中的候选PDCCH进行盲检。为了降低终端在盲检PDCCH时的复杂度,需要进行DCI大小对齐。
具体的,当终端被配置了多于3种的采用C-RNTI加扰的DCI格式,通过DCI大小对齐,使得DCI大小的数目保持在3个。比如,在存在4种采用C-RNTI加扰的DCI格式的情况下,将其中一种DCI格式的大小进行补长或截短,使之与另外三种DCI格式中的某一种DCI格式的大小相同。
这样终端在盲检测时,仅需针对3种DCI大小进行盲检,无需针对每一种DCI格式进行盲检测。终端可以通过读取DCI中的内容区别同一个DCI大小的不同DCI格式。
相关技术中的通信协议约定,对于一个被调度的载波或小区,DCI大小的数目不大于4;以及,采用C-RNTI加扰的DCI大小的数目不大于3。
·确定终端的PDCCH检测能力。
为了保证网络侧配置的PDCCH的检测次数在终端实现的能力范围内,NR协议还约定了PDCCH的检测能力,意在约束网络侧的PDCCH配置。当网络侧配置的待检测PDCCH所需的盲检测或信道估计超过终端的PDCCH检测能力,则终端停止在剩余的潜在资源上检测PDCCH。
针对PDCCH配置:
图4示出了本申请一个示例性实施例提供的PDCCH检测方法的流程图。本实施例以该方法应用于终端来举例说明。该方法包括:
步骤402:终端接收网络设备发送的与载波组合对应的PDCCH配置;
继续参考图3,终端接收网络设备为服务小区1~5,以及服务小区4和5共6种组合分别配置的PDCCH配置。与载波组合对应的PDCCH配置,配置有PDCCH盲检测的时频区域,映射方式,DCI格式和聚合等级等信息中至少一种。PDCCH配置针对一个载波组合。针对一个载波组合,PDCCH配置可以配置有一个或多个,在配置有多个PDCCH配置的情况下,多个PDCCH配置与该载波组合的多个BWP一一对应。
在一个示例中,PDCCH配置包括如下信息中的至少一种:
·与载波组合对应的PDCCH配置信息(PDCCHConfig);
·与载波组合对应的控制资源集(ControlResourceSet,或CORESET);
·与载波组合对应的搜索空间集(SearchSpaceSet,或,SearchSpace)。
在该实施例中,网络设备配置第一PDCCH配置给服务小区1,网络设备配置第二PDCCH配置给服务小区2,网络设备配置第三PDCCH配置给服务小区3,网络设备配置第四PDCCH配置给服务小区4,网络设备配置第五PDCCH配置给服务小区5,网络设备配置第六PDCCH配置给服务小区4和5的载波组合。
具体的,网络设备配置第一PDCCH-Config,第一SearchSpace和第一ControlResourceSet给服务小区1;配置第二PDCCH-Config,第二SearchSpace和第二ControlResourceSet给服务小区2,…,网络设备还配置第六PDCCH-Config,第六SearchSpace和第六ControlResourceSet给服务小区4和5的载波组合。
在一些实施例中,SearchSpace和ControlResourceSet是PDCCH-Config中的两个信息域。在一些实施例中,PDCCH配置包括PDCCHConfig的全部信息域;在一些实施例中,PDCCH配置仅包括Coreset和/或SearchSpace,也即PDCCHConfig的部分信息域;在一些实施例中,PDCCH配置不仅包括Coreset和SearchSpace,还包括一些新增信息域或信息元素(Information Element),本申请实施例对此不加以限定。
在一些实施例中,终端还接收网络设备发送的与载波组合对应的跨载波配置,跨载波配置包括:与载波组合对应的载波指示域(CarrierIndicatorfield,CIF)取值。
在图3所示的例子中,网络设备配置服务小区1、服务小区2、服务小区4、服务小区5、服务小区4和服务小区5的载波组合配置跨载波配置。比如,该跨载波配置为CrossCarrierSchedulingConfig。网络设备配置第一跨载波配置给服务小区1,网络设备配置第二跨载波配置给服务小区2,…,网络设备配置第五跨载波配置给服务小区4和5的载波组合。
具体地,网络设备配置第一CrossCarrierSchedulingConfig给服务小区1,网络配置第二CrossCarrierSchedulingConfig给服务小区2,…,网络配置第五CrossCarrierSchedulingConfig给服务小区4和5的载波组合。
在跨载波配置,(在一些实施例中可以表示为CrossCarrierSchedulingConfig)中,服务小区1,2,4,5以及服务小区4和5的载波组合分别配置一个CIF取值,一个载波组合对应一个CIF取值。如图3所示的示例,具体的配置结果为:
表一跨载波配置示例
Figure PCTCN2021143899-appb-000001
其中,服务小区1、服务小区2、服务小区4、服务小区5对应的CIF取值均为1,服务小区4和5对应的CIF取值为2。
步骤404:终端基于网络设备对载波组合的PDCCH配置,进行PDCCH盲检测;
在该实施例中,终端根据被调度小区:服务小区1、服务小区2、服务小区3、服务小区4、服务小区5以及服务小区4和5的六种载波组合分别对应的PDCCH配置,在相应的时频资源上进行PDCCH检测。
其中,控制资源集配置了候选PDCCH的频域位置和时域长度。搜索资源集配置了候选PDCCH的时域位置。
在被调度的载波组合包括服务小区4和5的载波组合6情况下,基于载波组合6的PDCCH配置,进行PDCCH盲检测。
步骤406:在PDCCH盲检测通过的情况下,通过PDCCH携带的载波指示域CIF取值确定被调度的载波组合。
在一些实施例中,对于服务小区1,2,3,4,5的5个载波组合、以及服务小区4和5的载波组合中的任意一个载波组合,根据与被调度的载波组合对应的PDCCH配置进行PDCCH检测,并通过读取CIF取值确定被调度的载波组合。以表一的跨载波配置为例,假设终端在服务小区4上根据服务小区4和服务小区5的载波组合对应的PDCCH配置检测PDCCH,当PDCCH盲检测通过,即循环冗余校验(Cyclic Redundancy Check,CRC)校验通过,则终端进一步通过读取CIF取值,确实该PDCCH(或DCI)是否调度了服务小区4和服务小区5的载波组合。当CIF取值为2时,表示该PDCCH调度了服务小区4和服务小区5的载波组合。
示意性的,在载波组合中的载波数量为至少两个的情况下,终端还进一步确定该载波组合中的调度载波,该调度载波可以是载波组合中的所有载波,或者,该调度载波可以是载波组合中的部分载波,或者,该调度载波可以是载波组合中的一个载波。
■情况1,用于调度服务小区4和服务小区5的载波组合的DCI所指示的频域资源包含服务小区4的部分或全部频域资源,和服务小区5的部分或全部频域资源。
■情况2,用于调度服务小区4和服务小区5的载波组合的DCI所指示的频域资源可以包含服务小区4的部分或全部和服务小区5的部分或全部频域资源,也可以仅包含服务小区4的部分或全部频域资源,也可以仅包含服务小区5的部分或全部频域资源。
上述两种方式可以由网络配置决定,兼顾PDCCH检测能力划分与DCI传输效率的影响。情况1,单独调度服务小区4,或者调度服务小区5,与调度服务小区4和5的载波组合三种方式互相独立使用,可以避免DCI存在冗余信息,降低DCI传输效率。情况2,允许调度服务小区4和5的载波组合的PDCCH,也可以单独调度服务小区4或者5,即允许在无需配置的情况下单独调度服务小区4和服务小区5的PDCCH,这样被调度载波组合的数目可以减少,进行影响PDCCH检测能力的划分。
上述方式也可以通过通信协议的约定限制,具体的通信协议会约束仅允许情况1出现。
综上所述,本实施例提供的方法,通过以载波组合为单位进行PDCCH检测,不仅在一个DCI调度多个服务小区的PDSCH和/或PUSCH的场景中,实现以载波组合为单位对调度一个或多个载波的PDCCH检测,还能够将PDCCH检测过程的相关设计均定位在载波组合上,避免区分“一个DCI调度一个载波”和“一个DCI调度多个载波”的不同情况进行不同设计,降低通信协议的复杂性。
本实施例提供的方法,通过以载波组合为单位进行PDCCH配置,可以根据实际的调度情况来进行区别化配置,有利于平衡不同载波组合情况下的PDCCH能力划分,提升PDCCH传输效率。
本实施例提供的方法,通过设置属于同一个载波组合的载波配置有相同的子载波间隔,属于同一个载波组合的载波配置有同一个PUCCH组,能够高效共用同一个DCI中的时域资 源分配(TimeDomain Resource Allocation,TDRA),PUCCH资源相关的信息域。
针对DCI大小对齐:
图5示出了本申请一个示例性实施例提供的PDCCH检测方法的流程图。本实施例以该方法应用于终端来举例说明。该方法包括:
步骤502:在载波组合对应的DCI格式的数量超过数量阈值的情况下,对载波组合对应的DCI格式进行DCI大小对齐操作。
在一些实施例中:
·对于C-RNTI加扰的DCI,数量阈值为3;
·对于所有DCI,数量阈值为4。
终端对同一个被调度的载波组合的多个DCI格式进行DCI大小对齐操作。因为用于调度服务小区4的DCI、或者用于调度服务小区5的DCI、用于调度服务小区4和服务小区5的载波组合的DCI格式属于不同的载波组合,所以,不同的载波组合无需进行DCI大小对齐操作。
具体的,对于被调度的载波组合1:服务小区4,网络侧配置了DCI format 0_0,DCI format 0_1,DCI format 0_2,DCI format 1_0,DCI format 1_1,DCI format 1_2,DCI大小数目超过数量阈值3,则终端进行DCI大小对齐操作,直到DCI大小的数目不大于数量阈值3。
又比如,对于被调度的载波组合6,服务小区4和5的载波组合,网络侧配置了DCI format 0_x和DCI format 1_x,x>2的正整数,由于DCI大小的数目为2,未超过数量阈值3,则终端无需对DCI format 0_x和DCI format 1_x进行DCI大小的对齐操作,无需与其他载波组合进行DCI大小的对齐操作,具体的,无需与载波组合1上的DCI格式进行DCI大小对齐操作。
综上所述,本实施例提供的方法,以载波组合为单位进行DCI大小对齐操作,可以避免在“一调一”和“一调多”的DCI格式之间进行DCI大小对齐操作,简化终端侧的操作。
针对终端的PDCCH检测能力:
图6示出了本申请一个示例性实施例提供的PDCCH检测方法的流程图。本实施例以该方法应用于终端来举例说明。该方法包括:
步骤602:在载波组合对应的调度载波上进行PDCCH检测的情况下,确定PDCCH盲检测数目小于或等于
Figure PCTCN2021143899-appb-000002
和/或确定信道估计的非重叠控制信道元素(Control Channel Element,CCE)数目小于或等于
Figure PCTCN2021143899-appb-000003
在一些实施例中,
Figure PCTCN2021143899-appb-000004
是一个载波组合的监测的候选PDCCH的最大次数,
Figure PCTCN2021143899-appb-000005
是一个载波组合所对应的调度载波的特定参数集的监测的候选PDCCH的总次数。特定参数集是与子载波间隔参数μ相关的参数集。
在上述第一数值和第二数值中,min(A,B)代表取A和B中的最小值。
在一些实施例中,
Figure PCTCN2021143899-appb-000006
的取值如表二所示:
表二
Figure PCTCN2021143899-appb-000007
在一些实施例中,
Figure PCTCN2021143899-appb-000008
等于:
Figure PCTCN2021143899-appb-000009
其中,
Figure PCTCN2021143899-appb-000010
为终端上报的PDCCH检测能力,
Figure PCTCN2021143899-appb-000011
为基于调度载波的参数集为j的载波组合数目确定的,
Figure PCTCN2021143899-appb-000012
为基于所述调度载波的参数集为μ的载波组合数目确定的。∑为求和符号。
在一些实施例中,
Figure PCTCN2021143899-appb-000013
是终端在一个载波组合上的信道估计的非重叠CCE的最大数目,
Figure PCTCN2021143899-appb-000014
是一个载波组合所对应的特定参数集的信道估计的非重叠CCE的总数目。特定参数集是与子载波间隔参数μ相关的参数集。
在该实施例中,
Figure PCTCN2021143899-appb-000015
的取值如表三所示:
表三
Figure PCTCN2021143899-appb-000016
在该实施例中,
Figure PCTCN2021143899-appb-000017
等于:
Figure PCTCN2021143899-appb-000018
其中,
Figure PCTCN2021143899-appb-000019
为终端上报的PDCCH检测能力,
Figure PCTCN2021143899-appb-000020
为基于调度载波的参数集为j的载波组合数目确定的,
Figure PCTCN2021143899-appb-000021
为基于所述调度载波的参数集为μ的载波组合数目确定的。
在一些实施例中,终端还需要在步骤602之前,向网络设备上报PDCCH检测能力
Figure PCTCN2021143899-appb-000022
方法1(无调整系数):
在一些实施例中,假设基于调度载波的参数集为0(μ=0)的载波组合数目是
Figure PCTCN2021143899-appb-000023
基于调度载波的参数集为1的载波组合数目是
Figure PCTCN2021143899-appb-000024
基于调度载波的参数集为2的载波组合数目是
Figure PCTCN2021143899-appb-000025
基于调度载波的参数集为3的载波组合数目是
Figure PCTCN2021143899-appb-000026
则每个载波组合数目的计数值为1(也即无调整系数)的情况下,
Figure PCTCN2021143899-appb-000027
如图3所示,假设载波组合包括:服务小区1,2,3,4,5,4+5,即6种被调度的载波组合。结合PDCCH检测能力的划分规则,以图3为例,服务小区1,2,3上激活BWP配置的u=0,服务小区4,5上激活BWP配置的u=1,且终端上报的PDCCH检测能力
Figure PCTCN2021143899-appb-000028
则根据对于服务小区1,2,3,PDCCH盲检测数目小于或等于
Figure PCTCN2021143899-appb-000029
信道估计的非重叠CCE的最大数目小于或等于
Figure PCTCN2021143899-appb-000030
对于u=0的服务小区1、服务小区2和服务小区3(3种载波组合),
Figure PCTCN2021143899-appb-000031
Figure PCTCN2021143899-appb-000032
分别参见上述表二和表三。
Figure PCTCN2021143899-appb-000033
Figure PCTCN2021143899-appb-000034
确定方式如下:
Figure PCTCN2021143899-appb-000035
Figure PCTCN2021143899-appb-000036
其中,服务小区1至3的计数值分别为1,3个服务小区的累积和
Figure PCTCN2021143899-appb-000037
为3,6种载波组合的累积和
Figure PCTCN2021143899-appb-000038
为6。
对于u=1的服务小区4、服务小区5、服务小区4+5(3种载波组合),PDCCH盲检测数目小于或等于
Figure PCTCN2021143899-appb-000039
信道估计的非重叠CCE的最大数目小于或等于
Figure PCTCN2021143899-appb-000040
其中,
Figure PCTCN2021143899-appb-000041
Figure PCTCN2021143899-appb-000042
分别参见上述表二和表三。
Figure PCTCN2021143899-appb-000043
Figure PCTCN2021143899-appb-000044
确定方式如下:
Figure PCTCN2021143899-appb-000045
Figure PCTCN2021143899-appb-000046
其中,服务小区4至6的计数值分别为1,3个服务小区的累积和
Figure PCTCN2021143899-appb-000047
为3,6种载波组合的累积和
Figure PCTCN2021143899-appb-000048
为6。
方法2(有调整系数):
在方法1的基础上,在对多个载波进行总能力划分时,为单个载波引入调整系数。也即,方法1中在计算
Figure PCTCN2021143899-appb-000049
时每个载波组合的计数值为1,方法2中在计算
Figure PCTCN2021143899-appb-000050
时每个载波组合的计数值为:1*调整系数。该调整系数是非负数。
在一些实施例中,
Figure PCTCN2021143899-appb-000051
由调度载波的参数集为j的至少一个载波组合数目以及至少一个载波组合对应的调整系数确定。该调整系数是通信协议预定义的,或者,该调整系数是网络设备(高层信令)配置的。
在有调整系数的情况下,假设基于调度载波的参数集为0至3的载波组合数目为N个,第i个载波组合对应的调整系数为αi,则:
Figure PCTCN2021143899-appb-000052
基于调度载波的参数集为u的载波组合数目为K个,K个载波组合中第i个载波组合对应的调整系数为αi,则:
Figure PCTCN2021143899-appb-000053
具体的,考虑服务小区4的调整系数为0.8;服务小区5的调整系数为0.8;服务小区4+5的调整系数为0.4。服务小区1或2或3的调整系数为1。
如图3所示,假设服务小区1,2,3上激活BWP配置的u=0,服务小区4,5上激活BWP配置的u=1,且终端上报的PDCCH检测能力
Figure PCTCN2021143899-appb-000054
根据对于服务小区1,2,3,PDCCH盲检测数目小于或等于
Figure PCTCN2021143899-appb-000055
信道估计的非重叠CCE的最大数目小于或等于
Figure PCTCN2021143899-appb-000056
对于u=0的服务小区1、服务小区2和服务小区3(3种载波组合),
Figure PCTCN2021143899-appb-000057
Figure PCTCN2021143899-appb-000058
分别参见上述表二和表三。
Figure PCTCN2021143899-appb-000059
Figure PCTCN2021143899-appb-000060
确定方式如下:
Figure PCTCN2021143899-appb-000061
Figure PCTCN2021143899-appb-000062
其中,服务小区1至3的计数值分别为1,服务小区4的计数值为0.8,服务小区5的计数值为0.8,服务小区4和5的计数值为0.4。因此,服务小区1至3的累积和
Figure PCTCN2021143899-appb-000063
为3,也即(1+1+1)=3。6种载波组合的累积和
Figure PCTCN2021143899-appb-000064
为(1+1+1+0.8+0.8+0.4)=5。
对于u=1的服务小区4、服务小区5、服务小区4+5(3种载波组合),PDCCH盲检测数目小于或等于
Figure PCTCN2021143899-appb-000065
信道估计的非重叠CCE的最大数目小于或等于
Figure PCTCN2021143899-appb-000066
其中,
Figure PCTCN2021143899-appb-000067
Figure PCTCN2021143899-appb-000068
分别参见上述表二和表三。
Figure PCTCN2021143899-appb-000069
Figure PCTCN2021143899-appb-000070
确定方式如下:
Figure PCTCN2021143899-appb-000071
Figure PCTCN2021143899-appb-000072
其中,服务小区1至3的计数值分别为1,服务小区4的计数值为0.8,服务小区5的计数值为0.8,服务小区4和5的计数值为0.4,。因此,服务小区4、服务小区5、服务小区4+5(3种载波组合)的累积和
Figure PCTCN2021143899-appb-000073
为2,也即(0.8+0.8+0.4)=2。6种载波组合的累积和
Figure PCTCN2021143899-appb-000074
为(1+1+1+0.8+0.8+0.4)=5。
综上所述,本实施例提供的方法,以载波组合为单位确定终端的PDCCH检测能力,使得PDCCH检测能力能够在载波组合的场景下,实现确定出更为准确的PDCCH检测能力。
本实施例提供的方法,在多个载波组合之间引入调整系数,使得在一个载波组合中包括至少两个载波的情况下,通过该调整系数确定出更为准确的PDCCH检测能力,而无需对同一个服务小区在一个载波组合的累积和计算中不合理地进行累加多次,产生不准确的PDCCH检测能力的判断。
图7示出了本申请一个示例性实施例提供的PDCCH检测方法的流程图。本实施例以该方法应用于网络设备来举例说明。该方法包括:
步骤702:基于载波组合发送PDCCH,载波组合包括一个或多个载波。
网络设备基于一个(被调度的)载波组合发送PDCCH。一个载波组合包括一个或多个载波。多个载波是指至少两个载波。一个被调度的载波组合上的全部或部分频域资源是由一个PDCCH(或一个DCI调度)实现的。
即便在一个载波组合仅包括一个载波的情况下,该载波也是视为一个载波组合来进行处理。
在一些实施例中,(被调度的)载波组合是由高层信令预配置的。
在一些实施例中,属于同一个(被调度的)载波组合的载波配置有相同的子载波间隔。
在一些实施例中,属于同一个(被调度的)载波组合的载波配置有同一个PUCCH组。
在一些实施例中,如图8所示,所述方法还包括:
步骤701:向终端发送与载波组合对应的PDCCH配置。
与载波组合对应的PDCCH配置,配置有PDCCH盲检测的时频区域,映射方式,DCI格式和聚合等级等信息中至少一种。PDCCH配置针对一个载波组合或单个载波组合。针对一个载波组合,PDCCH配置可以配置有一个或多个,在配置有多个PDCCH配置的情况下,多个PDCCH配置与该载波组合的多个BWP一一对应。
在一些实施例中,PDCCH配置包括如下信息中的至少一种:
·与载波组合对应的PDCCH配置信息(PDCCHConfig);
·与载波组合对应的控制资源集(ControlResourceSet,或Coreset);
·与载波组合对应的搜索空间集(SearchSpaceSet,或,SearchSpace)。
在一些实施例中,SearchSpace和ControlResourceSet是PDCCH-Config中的两个信息域。在一些实施例中,PDCCH配置包括PDCCHConfig的全部信息域;在一些实施例中,PDCCH配置仅包括Coreset和/或SearchSpace,也即PDCCHConfig的部分信息域;在一些实施例中,PDCCH配置不仅包括Coreset和SearchSpace,还包括一些新增信息域或信息元素(Information Element),本申请实施例对此不加以限定。
在一些实施例中,所述方法还包括:
发送与载波组合对应的跨载波配置,跨载波配置包括:与载波组合对应的CIF取值。
在一些实施例中,所述方法还包括:
在载波组合对应的DCI格式的数量超过数量阈值的情况下,对载波组合对应的DCI格式进行DCI对齐操作。在一些实施例中,对于C-RNTI加扰的DCI格式,数量阈值为3;对于所有的DCI格式,数量阈值为4。
在一些实施例中,网络设备在载波组合对应的调度载波上进行PDCCH检测的情况下,确定PDCCH盲检测数目小于或等于第一数值
Figure PCTCN2021143899-appb-000075
其中,
Figure PCTCN2021143899-appb-000076
是一个载波组合的监测的候选PDCCH的最大次数,
Figure PCTCN2021143899-appb-000077
是一个载波组合所对应的调度载波的特定参数集的监测的候选PDCCH的总次数,特定参数集是与子载波间隔参数μ对应的参数集。
在该实施例中,
Figure PCTCN2021143899-appb-000078
等于:
Figure PCTCN2021143899-appb-000079
其中,
Figure PCTCN2021143899-appb-000080
为终端上报的PDCCH检测能力,
Figure PCTCN2021143899-appb-000081
为调度载波的参数集为j的载波组合数目,
Figure PCTCN2021143899-appb-000082
为基于所述调度载波的参数集为μ的载波组合数目确定的。
在一些实施例中,网络设备在载波组合对应的调度载波上进行PDCCH检测的情况下,确定信道估计的非重叠CCE的最大数目小于或等于
Figure PCTCN2021143899-appb-000083
其中,
Figure PCTCN2021143899-appb-000084
是在一个载波组合上的信道估计的非重叠CCE的最大数目,
Figure PCTCN2021143899-appb-000085
是一个载波组合所对应的特定参数集的信道估计的非重叠CCE的总数目,特定参数集是与子载波间隔参数μ对应的参数集。
在该实施例中,
Figure PCTCN2021143899-appb-000086
等于:
Figure PCTCN2021143899-appb-000087
其中,
Figure PCTCN2021143899-appb-000088
为终端上报的PDCCH检测能力,
Figure PCTCN2021143899-appb-000089
为调度载波的参数集为j的载波组合数目。
在一些实施例中,所述方法还包括:网络设备接收终端上报的PDCCH检测能力
Figure PCTCN2021143899-appb-000090
在一些实施例中,
Figure PCTCN2021143899-appb-000091
由调度载波的参数集为j的载波组合数目确定,或,
Figure PCTCN2021143899-appb-000092
由调度载波的参数集为j的载波组合数目以及载波组合对应的调整系数确定。其中,调整系数是通信协议预定义的,或,调整系数是高层信令配置的。在一些实施例中,调整系数为非负数。
在一些实施例中,假设基于调度载波的参数集为0(μ=0)的载波组合数目是
Figure PCTCN2021143899-appb-000093
基于调度载波的参数集为1的载波组合数目是
Figure PCTCN2021143899-appb-000094
基于调度载波的参数集为2的载波组合数目是
Figure PCTCN2021143899-appb-000095
基于调度载波的参数集为3的载波组合数目是
Figure PCTCN2021143899-appb-000096
则每个载波组合数目的计数值为1(也即无调整系数)的情况下,
Figure PCTCN2021143899-appb-000097
在一些实施例中,
Figure PCTCN2021143899-appb-000098
由调度载波的参数集为j的至少一个载波组合数目以及至少一个载波组合对应的调整系数确定。该调整系数是通信协议预定义的,或者,该调整系数是网络设备(高层信令)配置的。
在有调整系数的情况下,假设基于调度载波的参数集为0至3的载波组合数目为N个,第i个载波组合对应的调整系数为αi,则:
Figure PCTCN2021143899-appb-000099
基于调度载波的参数集为u的载波组合数目为K个,K个载波组合中第i个载波组合对应的调整系数为αi,则:
Figure PCTCN2021143899-appb-000100
综上所述,本实施例提供的方法,通过以载波组合为单位发送PDCCH,不仅在一个DCI调度多个服务小区的PDSCH和/或PUSCH的场景中,实现对多个载波上的PDCCH下发,还能够将PDCCH检测过程的相关设计均定位在载波组合上,避免区分“一个DCI调度一个载波”和“一个DCI调度多个载波”的不同情况进行不同设计,降低通信协议的复杂性。
本实施例提供的方法,通过以载波组合为单位进行PDCCH配置,可以根据实际的调度情况来进行区别化配置,有利于平衡不同载波组合情况下的PDCCH能力划分,提升PDCCH传输效率。
本实施例提供的方法,通过设置属于同一个载波组合的载波配置有相同的子载波间隔,属于同一个载波组合的载波配置有同一个PUCCH组,能够高效共用同一个DCI中的时域资源分配(TimeDomain Resource Allocation,TDRA),PUCCH资源相关的信息域。
本实施例提供的方法,还通过以载波组合进行DCI大小对齐操作,可以避免在“一调一” 和“一调多”的DCI格式之间进行DCI大小对齐操作,简化终端侧的操作。
本实施例提供的方法,以载波组合为单位确定终端的PDCCH检测能力,使得PDCCH检测能力能够在载波组合的场景下,实现确定出更为准确的PDCCH检测能力。
本实施例提供的方法,在多个载波组合之间引入调整系数,使得在一个载波组合中包括至少两个载波的情况下,通过该调整系数确定出更为准确的PDCCH检测能力,而无需对同一个服务小区在一个载波组合的累积和计算中不合理地进行累加多次,产生不准确的PDCCH检测能力的判断。
需要说明的是,在本申请实施例中,“服务小区”和“载波”的概念可以视为相同概念,可以互相替换。本申请实施例中,载波组合中包括一个或多个载波,多个载波是指至少两个载波。
需要说明的是,上述公式中的各个变量,在保持含义不变的情况下,可以采用其它字符来表示,本申请对变量的表征方式不加以限定。
图9示出了本申请一个示例性实施例示出的PDCCH检测装置的框图。该PDCCH检测装置可以实现成为终端的全部或一部分,所述装置包括:
检测模块920,用于基于载波组合进行PDCCH检测,所述载波组合包括一个或多个载波。
在一些实施例中,所述载波组合是由高层信令预配置的。
在一些实施例中,属于所述载波组合的载波配置有相同的子载波间隔。
在一些实施例中,属于所述载波组合的载波配置有同一个PUCCH组。
在一些实施例中,所述检测模块920,用于基于网络设备对所述载波组合的PDCCH配置,进行PDCCH盲检测。
在一些实施例中,所述装置还包括:
接收模块940,用于接收所述网络设备发送的与所述载波组合对应的所述PDCCH配置。
在一些实施例中,与所述载波组合对应的所述PDCCH配置,包括如下信息中的至少一种:
与所述载波组合对应的PDCCH配置信息;
与所述载波组合对应的控制资源集;
与所述载波组合对应的搜索空间集。
在一些实施例中,所述检测模块920,还用于在所述PDCCH盲检测通过的情况下,通过所述PDCCH携带的CIF取值确定被调度的载波组合。
在一些实施例中,所述装置还包括:
接收模块940,用于接收所述网络设备发送的与所述载波组合对应的跨载波配置,所述跨载波配置包括:与所述载波组合对应的所述CIF取值。
在一些实施例中,所述检测模块920,还用于在所述载波组合对应的DCI格式的数量超过数量阈值的情况下,对所述载波组合对应的DCI格式进行DCI大小对齐操作。在该实施例中,对于C-RNTI加扰的DCI,所述数量阈值为3;对于所有DCI,所述数量阈值为4。
在一些实施例中,所述检测模块920,还用于在所述载波组合对应的调度载波上进行PDCCH检测的情况下,确定PDCCH盲检测数目小于或等于
Figure PCTCN2021143899-appb-000101
其中,所述
Figure PCTCN2021143899-appb-000102
是一个载波组合的监测的候选PDCCH的最大次数,所述
Figure PCTCN2021143899-appb-000103
是所述一个载波组合所对应的调度载波的特定参数集的监测的候选PDCCH的总次数,所述特定参数集是与子载波间隔参数μ对应的参数集。
在一些实施例中,所述
Figure PCTCN2021143899-appb-000104
等于:
Figure PCTCN2021143899-appb-000105
其中,
Figure PCTCN2021143899-appb-000106
为所述终端上报的PDCCH检测能力,
Figure PCTCN2021143899-appb-000107
为所述调度载波的参数集为j的载波组合数目,
Figure PCTCN2021143899-appb-000108
为基于所述调度载波的参数集为μ的载波组合数目确定的。
在一些实施例中,所述检测模块920,还用于在所述载波组合对应的调度载波上进行PDCCH检测的情况下,确定信道估计的非重叠CCE的最大数目小于或等于
Figure PCTCN2021143899-appb-000109
其中,所述
Figure PCTCN2021143899-appb-000110
是在一个载波组合上的信道估计的非重叠CCE的最大数目,所述
Figure PCTCN2021143899-appb-000111
是所述一个载波组合所对应的特定参数集的信道估计的非重叠CCE的总数目,所述特定参数集是与子载波间隔参数μ对应的参数集。
在一些实施例中,所述
Figure PCTCN2021143899-appb-000112
等于:
Figure PCTCN2021143899-appb-000113
其中,
Figure PCTCN2021143899-appb-000114
为所述终端上报的PDCCH检测能力,
Figure PCTCN2021143899-appb-000115
为所述调度载波的参数集为j的载波组合数目,
Figure PCTCN2021143899-appb-000116
为基于所述调度载波的参数集为μ的载波组合数目确定的。
在一些实施例中,所述装置还包括:
发送模块960,用于向网络设备上报所述PDCCH检测能力
Figure PCTCN2021143899-appb-000117
在一些实施例中,所述
Figure PCTCN2021143899-appb-000118
由所述调度载波的参数集为j的载波组合数目以及所述载波组合对应的调整系数确定。
在一些实施例中,所述调整系数是通信协议预定义的,或,所述调整系数是高层信令配置的。
在一些实施例中,所述调整系数为非负数。
在一些实施例中,假设基于调度载波的参数集为0(μ=0)的载波组合数目是
Figure PCTCN2021143899-appb-000119
基于调度载波的参数集为1的载波组合数目是
Figure PCTCN2021143899-appb-000120
基于调度载波的参数集为2的载波组合数目是
Figure PCTCN2021143899-appb-000121
基于调度载波的参数集为3的载波组合数目是
Figure PCTCN2021143899-appb-000122
则每个载波组合数目的计数值为1(也即无调整系数)的情况下,
Figure PCTCN2021143899-appb-000123
在一些实施例中,
Figure PCTCN2021143899-appb-000124
由调度载波的参数集为j的至少一个载波组合数目以及至少一个载波组合对应的调整系数确定。该调整系数是通信协议预定义的,或者,该调整系数是网络设备(高层信令)配置的。
在有调整系数的情况下,假设基于调度载波的参数集为0至3的载波组合数目为N个,第i个载波组合对应的调整系数为αi,则:
Figure PCTCN2021143899-appb-000125
基于调度载波的参数集为u的载波组合数目为K个,K个载波组合中第i个载波组合对应的调整系数为αi,则:
Figure PCTCN2021143899-appb-000126
图10示出了本申请一个示例性实施例示出的PDCCH检测装置的框图。该PDCCH检测装置可以实现成为网络设备的全部或一部分,所述装置包括:
发送模块1020,用于基于载波组合发送PDCCH,所述载波组合包括一个或多个载波。
在一些实施例中,所述发送模块1020,用于发送与所述载波组合对应的所述PDCCH配置。
在一些实施例中,与所述载波组合对应的所述PDCCH配置,包括如下信息中的至少一 种:
与所述载波组合对应的PDCCH配置信息;
与所述载波组合对应的控制资源集;
与所述载波组合对应的搜索空间集。
在一些实施例中,所述发送模块,用于发送与所述载波组合对应的跨载波配置,所述跨载波配置包括:与所述载波组合对应的CIF取值。
在一些实施例中,所述装置还包括:
处理模块1040,用于在所述载波组合对应的DCI格式的数量超过数量阈值的情况下,对所述载波组合对应的DCI格式进行DCI对齐操作。
在一些实施例中,对于C-RNTI加扰的DCI格式,所述数量阈值为3;对于所有的DCI格式,所述数量阈值为4。
在一些实施例中,所述处理模块1040,用于在所述载波组合对应的调度载波上进行PDCCH检测的情况下,确定PDCCH盲检测数目小于或等于
Figure PCTCN2021143899-appb-000127
其中,所述
Figure PCTCN2021143899-appb-000128
是一个载波组合的监测的候选PDCCH的最大次数,所述
Figure PCTCN2021143899-appb-000129
是所述一个载波组合所对应的调度载波的特定参数集的监测的候选PDCCH的总次数,所述特定参数集是与子载波间隔参数μ对应的参数集。
在一些实施例中,所述
Figure PCTCN2021143899-appb-000130
等于:
Figure PCTCN2021143899-appb-000131
其中,
Figure PCTCN2021143899-appb-000132
为所述终端上报的PDCCH检测能力,
Figure PCTCN2021143899-appb-000133
为所述调度载波的参数集为j的载波组合数目,
Figure PCTCN2021143899-appb-000134
为基于所述调度载波的参数集为μ的载波组合数目确定的。
在一些实施例中,所述处理模块1040,用于在所述载波组合对应的调度载波上进行PDCCH检测的情况下,确定信道估计的非重叠CCE的最大数目小于或等于
Figure PCTCN2021143899-appb-000135
其中,所述
Figure PCTCN2021143899-appb-000136
是在一个载波组合上的信道估计的非重叠CCE的最大数目,所述
Figure PCTCN2021143899-appb-000137
是所述一个载波组合所对应的特定参数集的信道估计的非重叠CCE的总数目,所述特定参数集是与子载波间隔参数μ对应的参数集。
在一些实施例中,所述
Figure PCTCN2021143899-appb-000138
等于:
Figure PCTCN2021143899-appb-000139
其中,
Figure PCTCN2021143899-appb-000140
为所述终端上报的PDCCH检测能力,
Figure PCTCN2021143899-appb-000141
为所述调度载波的参数集为j的载波组合数目,
Figure PCTCN2021143899-appb-000142
为基于所述调度载波的参数集为μ的载波组合数目确定的。
在一些实施例中,所述装置还包括:
接收模块1060,用于接收终端上报的所述PDCCH检测能力
Figure PCTCN2021143899-appb-000143
在一些实施例中,所述
Figure PCTCN2021143899-appb-000144
由所述调度载波的参数集为j的载波组合数目以及所述载波组合对应的调整系数确定。
在一些实施例中,所述调整系数是通信协议预定义的,或,所述调整系数是高层信令配置的。在一些实施例中,所述调整系数为非负数。
在一些实施例中,假设基于调度载波的参数集为0(μ=0)的载波组合数目是
Figure PCTCN2021143899-appb-000145
基于调度载波的参数集为1的载波组合数目是
Figure PCTCN2021143899-appb-000146
基于调度载波的参数集为2的载波组合数目是
Figure PCTCN2021143899-appb-000147
基于调度载波的参数集为3的载波组合数目是
Figure PCTCN2021143899-appb-000148
则每个载波组合数目的计数值为1(也即无调整系数)的情况下,
Figure PCTCN2021143899-appb-000149
在一些实施例中,
Figure PCTCN2021143899-appb-000150
由调度载波的参数集为j的至少一个载波组合数目以及至少一个载波组合对应的调整系数确定。该调整系数是通信协议预定义的,或者,该调整系数是网络设备(高层信令)配置的。
在有调整系数的情况下,假设基于调度载波的参数集为0至3的载波组合数目为N个,第i个载波组合对应的调整系数为αi,则:
Figure PCTCN2021143899-appb-000151
基于调度载波的参数集为u的载波组合数目为K个,K个载波组合中第i个载波组合对应的调整系数为αi,则:
Figure PCTCN2021143899-appb-000152
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图11示出了本申请一个实施例提供的终端1100的结构示意图。该终端1100可以包括:处理器1101、收发器1102以及存储器1103。
处理器1101包括一个或者一个以上处理核心,处理器1101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器1102可以包括接收器和发射器,比如,该接收器和发射器可以实现为同一个无线通信组件,该无线通信组件可以包括一块无线通信芯片以及射频天线。
存储器1103可以与处理器1101以及收发器1102相连。
存储器1103可用于存储处理器执行的计算机程序,处理器1101用于执行该计算机程序,以实现上述方法实施例中的终端执行的PDCCH检测方法中的各个步骤。
此外,存储器1103可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器,可擦除可编程只读存储器,静态随时存取存储器,只读存储器,磁存储器,快闪存储器,可编程只读存储器。
图12示出了本申请一个实施例提供的网络设备1200的结构示意图。该网络设备1200可以包括:处理器1201、收发器1202以及存储器1203。
处理器1201包括一个或者一个以上处理核心,处理器1201通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器1202可以包括接收器和发射器。比如,该收发器1202可以包括一个有线通信组件,该有线通信组件可以包括一块有线通信芯片以及有线接口(比如光纤接口)。可选的,该收发器1202还可以包括一个无线通信组件,该无线通信组件可以包括一块无线通信芯片以及射频天线。
存储器1203可以与处理器1201以及收发器1202相连。
存储器1203可用于存储处理器执行的计算机程序,处理器1201用于执行该计算机程序,以实现上述方法实施例中的网络设备执行的PDCCH发送方法中的各个步骤。
此外,存储器1203可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器,可擦除可编程只读存储器,静态随时存取存储器,只读存储器,磁存储器,快闪存储器,可编程只读存储器。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程 序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由终端执行的PDCCH检测方法,和/或,由网络设备执行的PDCCH发送方法。
在示例性实施例中,还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中,通信设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该通信设备执行上述各个方法实施例提供的由终端执行的PDCCH检测方法,和/或,由网络设备执行的PDCCH发送方法。

Claims (71)

  1. 一种物理下行控制信道PDCCH检测方法,其特征在于,所述方法包括:
    基于载波组合进行PDCCH检测,所述载波组合包括一个或多个载波。
  2. 根据权利要求1所述的方法,其特征在于,所述载波组合是由高层信令预配置的。
  3. 根据权利要求1所述的方法,其特征在于,属于所述载波组合的载波配置有相同的子载波间隔。
  4. 根据权利要求1所述的方法,其特征在于,属于所述载波组合的载波配置有同一个物理上行控制信道PUCCH组。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述基于载波组合进行PDCCH检测,包括:
    基于网络设备对所述载波组合的PDCCH配置,进行PDCCH盲检测。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的与所述载波组合对应的所述PDCCH配置。
  7. 根据权利要求6所述的方法,其特征在于,与所述载波组合对应的所述PDCCH配置,包括如下信息中的至少一种:
    与所述载波组合对应的PDCCH配置信息;
    与所述载波组合对应的控制资源集;
    与所述载波组合对应的搜索空间集。
  8. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    在所述PDCCH盲检测通过的情况下,通过所述PDCCH携带的载波指示域CIF取值确定被调度的载波组合。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的与所述载波组合对应的跨载波配置,所述跨载波配置包括:与所述载波组合对应的所述CIF取值。
  10. 根据权利要求1至4任一所述的方法,其特征在于,所述基于载波组合进行PDCCH检测,包括:
    在所述载波组合对应的下行控制信息DCI格式的数量超过数量阈值的情况下,对所述载波组合对应的DCI格式进行DCI大小对齐操作。
  11. 根据权利要求10所述的方法,其特征在于,所述数量阈值为3或4。
  12. 根据权利要求1至4任一所述的方法,其特征在于,所述基于载波组合进行PDCCH检测,包括:
    在所述载波组合对应的调度载波上进行PDCCH检测的情况下,确定PDCCH盲检测数目小于或等于
    Figure PCTCN2021143899-appb-100001
    其中,所述
    Figure PCTCN2021143899-appb-100002
    是一个载波组合的监测的候选PDCCH的最大次数,所述
    Figure PCTCN2021143899-appb-100003
    是所述一个载波组合所对应的调度载波的特定参数集的监测的候选PDCCH的总次数,所述特定参数集是与子载波间隔参数μ对应的参数集。
  13. 根据权利要求12所述的方法,其特征在于,所述
    Figure PCTCN2021143899-appb-100004
    等于:
    Figure PCTCN2021143899-appb-100005
    其中,
    Figure PCTCN2021143899-appb-100006
    为所述终端上报的PDCCH检测能力,
    Figure PCTCN2021143899-appb-100007
    为基于所述调度载波的参数集为j的载波组合数目确定的,
    Figure PCTCN2021143899-appb-100008
    为基于所述调度载波的参数集为μ的载波组合数目确定的。
  14. 根据权利要求1至4任一所述的方法,其特征在于,所述基于载波组合进行PDCCH检测,包括:
    在所述载波组合对应的调度载波上进行PDCCH检测的情况下,确定信道估计的非重叠控制信道元素CCE的最大数目小于或等于
    Figure PCTCN2021143899-appb-100009
    其中,所述
    Figure PCTCN2021143899-appb-100010
    是在一个载波组合上的信道估计的非重叠CCE的最大数目,所述
    Figure PCTCN2021143899-appb-100011
    是所述一个载波组合所对应的特定参数集的信道估计的非重叠CCE的总数目,所述特定参数集是与子载波间隔参数μ对应的参数集。
  15. 根据权利要求14所述的方法,其特征在于,所述
    Figure PCTCN2021143899-appb-100012
    等于:
    Figure PCTCN2021143899-appb-100013
    其中,
    Figure PCTCN2021143899-appb-100014
    为所述终端上报的PDCCH检测能力,
    Figure PCTCN2021143899-appb-100015
    为基于所述调度载波的参数集为j的载波组合数目确定的,
    Figure PCTCN2021143899-appb-100016
    为基于所述调度载波的参数集为μ的载波组合数目确定的。
  16. 根据权利要求13或15所述的方法,其特征在于,所述方法还包括:
    向网络设备上报所述PDCCH检测能力
    Figure PCTCN2021143899-appb-100017
  17. 根据权利要求13或15所述的方法,其特征在于,所述
    Figure PCTCN2021143899-appb-100018
    由所述调度载波的参数集为j的至少一个载波组合以及所述至少一个载波组合中的每一个载波组合对应的调整系数确定。
  18. 根据权利要求17所述的方法,其特征在于,
    所述调整系数是通信协议预定义的,或,所述调整系数是高层信令配置的。
  19. 根据权利要求17所述的方法,其特征在于,所述调整系数为非负数。
  20. 一种物理下行控制信道PDCCH发送方法,其特征在于,应用于网络设备,所述方法包括:
    基于载波组合发送PDCCH,所述载波组合包括一个或多个载波。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    发送与所述载波组合对应的所述PDCCH配置。
  22. 根据权利要求21所述的方法,其特征在于,与所述载波组合对应的所述PDCCH配置,包括如下信息中的至少一种:
    与所述载波组合对应的PDCCH配置信息;
    与所述载波组合对应的控制资源集;
    与所述载波组合对应的搜索空间集。
  23. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    发送与所述载波组合对应的跨载波配置,所述跨载波配置包括:与所述载波组合对应的载波指示域CIF取值。
  24. 根据权利要求20至23任一所述的方法,其特征在于,所述方法还包括:
    在所述载波组合对应的下行控制信道DCI格式的数量超过数量阈值的情况下,对所述载波组合对应的DCI格式进行DCI对齐操作。
  25. 根据权利要求24所述的方法,其特征在于,所述数量阈值为3或4。
  26. 根据权利要求20至23任一所述的方法,其特征在于,所述基于载波组合发送PDCCH,包括:
    在所述载波组合对应的调度载波上进行PDCCH检测的情况下,确定PDCCH盲检测数目小于或等于
    Figure PCTCN2021143899-appb-100019
    其中,所述
    Figure PCTCN2021143899-appb-100020
    是一个载波组合的监测的候选PDCCH的最大次数,所述
    Figure PCTCN2021143899-appb-100021
    是所述一个载波组合所对应的调度载波的特定参数集的监测的候选PDCCH的总次数,所述特定参数集是与子载波间隔参数μ对应的参数集。
  27. 根据权利要求26所述的方法,其特征在于,所述
    Figure PCTCN2021143899-appb-100022
    等于:
    Figure PCTCN2021143899-appb-100023
    其中,
    Figure PCTCN2021143899-appb-100024
    为所述终端上报的PDCCH检测能力,
    Figure PCTCN2021143899-appb-100025
    为基于所述调度载波的参数集为j的载波组合数目确定的,
    Figure PCTCN2021143899-appb-100026
    为基于所述调度载波的参数集为μ的载波组合数目确定的。
  28. 根据权利要求20至23任一所述的方法,其特征在于,所述基于载波组合发送PDCCH,包括:
    在所述载波组合对应的调度载波上进行PDCCH检测的情况下,确定信道估计的非重叠控制信道元素CCE的最大数目小于或等于
    Figure PCTCN2021143899-appb-100027
    其中,所述
    Figure PCTCN2021143899-appb-100028
    是在一个载波组合上的信道估计的非重叠CCE的最大数目,所述
    Figure PCTCN2021143899-appb-100029
    是所述一个载波组合所对应的特定参数集的信道估计的非重叠CCE的总数目,所述特定参数集是与子载波间隔参数μ对应的参数集。
  29. 根据权利要求28所述的方法,其特征在于,所述
    Figure PCTCN2021143899-appb-100030
    等于:
    Figure PCTCN2021143899-appb-100031
    其中,
    Figure PCTCN2021143899-appb-100032
    为所述终端上报的PDCCH检测能力,
    Figure PCTCN2021143899-appb-100033
    为基于所述调度载波的参数集为j的载波组合数目确定的,
    Figure PCTCN2021143899-appb-100034
    为基于所述调度载波的参数集为μ的载波组合数目确定的。
  30. 根据权利要求27或29所述的方法,其特征在于,所述方法还包括:
    接收终端上报的所述PDCCH检测能力
    Figure PCTCN2021143899-appb-100035
  31. 根据权利要求27或29所述的方法,其特征在于,所述
    Figure PCTCN2021143899-appb-100036
    由所述调度载波的参数集为j的至少一个载波组合以及所述至少一个载波组合中的每一个载波组合对应的调整系数确定。
  32. 根据权利要求31所述的方法,其特征在于,
    所述调整系数是通信协议预定义的,或,所述调整系数是高层信令配置的。
  33. 根据权利要求31所述的方法,其特征在于,所述调整系数为非负数。
  34. 一种下行物理控制信道PDCCH检测装置,其特征在于,所述装置包括:
    检测模块,用于基于载波组合进行PDCCH检测,所述载波组合包括一个或多个载波。
  35. 根据权利要求34所述的装置,其特征在于,所述载波组合是由高层信令预配置的。
  36. 根据权利要求34所述的装置,其特征在于,属于所述载波组合的载波配置有相同的子载波间隔。
  37. 根据权利要求34所述的装置,其特征在于,属于所述载波组合的载波配置有同一个物理上行控制信道PUCCH组。
  38. 根据权利要求34至37任一所述的装置,其特征在于,所述检测模块,用于基于网络设备对所述载波组合的PDCCH配置,进行PDCCH盲检测。
  39. 根据权利要求38所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述网络设备发送的与所述载波组合对应的所述PDCCH配置。
  40. 根据权利要求39所述的装置,其特征在于,与所述载波组合对应的所述PDCCH配置,包括如下信息中的至少一种:
    与所述载波组合对应的PDCCH配置信息;
    与所述载波组合对应的控制资源集;
    与所述载波组合对应的搜索空间集。
  41. 根据权利要求38所述的装置,其特征在于,
    所述检测模块,还用于在所述PDCCH盲检测通过的情况下,通过所述PDCCH携带的 载波指示域CIF取值确定被调度的载波组合。
  42. 根据权利要求41所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述网络设备发送的与所述载波组合对应的跨载波配置,所述跨载波配置包括:与所述载波组合对应的所述CIF取值。
  43. 根据权利要求34至37任一所述的装置,其特征在于,
    所述检测模块,还用于在所述载波组合对应的下行控制信息DCI格式的数量超过数量阈值的情况下,对所述载波组合对应的DCI格式进行DCI大小对齐操作。
  44. 根据权利要求43所述的装置,其特征在于,所述数量阈值为3或4。
  45. 根据权利要求34至37任一所述的装置,其特征在于,
    所述检测模块,还用于在所述载波组合对应的调度载波上进行PDCCH检测的情况下,确定PDCCH盲检测数目小于或等于
    Figure PCTCN2021143899-appb-100037
    其中,所述
    Figure PCTCN2021143899-appb-100038
    是一个载波组合的监测的候选PDCCH的最大次数,所述
    Figure PCTCN2021143899-appb-100039
    是所述一个载波组合所对应的调度载波的特定参数集的监测的候选PDCCH的总次数,所述特定参数集是与子载波间隔参数μ对应的参数集。
  46. 根据权利要求45所述的装置,其特征在于,所述
    Figure PCTCN2021143899-appb-100040
    等于:
    Figure PCTCN2021143899-appb-100041
    其中,
    Figure PCTCN2021143899-appb-100042
    为所述终端上报的PDCCH检测能力,
    Figure PCTCN2021143899-appb-100043
    为基于所述调度载波的参数集为j的载波组合数目确定的,
    Figure PCTCN2021143899-appb-100044
    为基于所述调度载波的参数集为μ的载波组合数目确定的。
  47. 根据权利要求34至37任一所述的装置,其特征在于,
    所述检测模块,还用于在所述载波组合对应的调度载波上进行PDCCH检测的情况下,确定信道估计的非重叠控制信道元素CCE的最大数目小于或等于
    Figure PCTCN2021143899-appb-100045
    其中,所述
    Figure PCTCN2021143899-appb-100046
    是在一个载波组合上的信道估计的非重叠CCE的最大数目,所述
    Figure PCTCN2021143899-appb-100047
    是所述一个载波组合所对应的特定参数集的信道估计的非重叠CCE的总数目,所述特定参数集是与子载波间隔参数μ对应的参数集。
  48. 根据权利要求47所述的装置,其特征在于,所述
    Figure PCTCN2021143899-appb-100048
    等于:
    Figure PCTCN2021143899-appb-100049
    其中,
    Figure PCTCN2021143899-appb-100050
    为所述终端上报的PDCCH检测能力,
    Figure PCTCN2021143899-appb-100051
    为基于所述调度载波的参数集为j的载波组合数目确定的,
    Figure PCTCN2021143899-appb-100052
    为基于所述调度载波的参数集为μ的载波组合数目确定的。
  49. 根据权利要求46或48所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向网络设备上报所述PDCCH检测能力
    Figure PCTCN2021143899-appb-100053
  50. 根据权利要求46或48所述的装置,其特征在于,所述
    Figure PCTCN2021143899-appb-100054
    由所述调度载波的参数集为j的至少一个载波组合以及所述至少一个载波组合中的每一个载波组合对应的调整系数确定。
  51. 根据权利要求50所述的装置,其特征在于,
    所述调整系数是通信协议预定义的,或,所述调整系数是高层信令配置的。
  52. 根据权利要求50所述的装置,其特征在于,所述调整系数为非负数。
  53. 一种物理下行控制信道PDCCH发送装置,其特征在于,所述装置包括:
    发送模块,用于基于载波组合发送PDCCH,所述载波组合包括一个或多个载波。
  54. 根据权利要求53所述的装置,其特征在于,所述发送模块,用于发送与所述载波组合对应的所述PDCCH配置。
  55. 根据权利要求54所述的装置,其特征在于,与所述载波组合对应的所述PDCCH配置,包括如下信息中的至少一种:
    与所述载波组合对应的PDCCH配置信息;
    与所述载波组合对应的控制资源集;
    与所述载波组合对应的搜索空间集。
  56. 根据权利要求53所述的装置,其特征在于,所述发送模块,用于发送与所述载波组合对应的跨载波配置,所述跨载波配置包括:与所述载波组合对应的载波指示域CIF取值。
  57. 根据权利要求53至56任一所述的装置,其特征在于,所述装置还包括:
    处理模块,用于在所述载波组合对应的DCI格式的数量超过数量阈值的情况下,对所述载波组合对应的DCI格式进行DCI对齐操作。
  58. 根据权利要求57所述的装置,其特征在于,所述数量阈值为3或4。
  59. 根据权利要求53至56任一所述的装置,其特征在于,所述装置还包括:
    处理模块,用于在所述载波组合对应的调度载波上进行PDCCH检测的情况下,确定PDCCH盲检测数目小于或等于
    Figure PCTCN2021143899-appb-100055
    其中,所述
    Figure PCTCN2021143899-appb-100056
    是一个载波组合的监测的候选PDCCH的最大次数,所述
    Figure PCTCN2021143899-appb-100057
    是所述一个载波组合所对应的调度载波的特定参数集的监测的候选PDCCH的总次数,所述特定参数集是与子载波间隔参数μ对应的参数集。
  60. 根据权利要求59所述的装置,其特征在于,所述
    Figure PCTCN2021143899-appb-100058
    等于:
    Figure PCTCN2021143899-appb-100059
    其中,
    Figure PCTCN2021143899-appb-100060
    为所述终端上报的PDCCH检测能力,
    Figure PCTCN2021143899-appb-100061
    为基于所述调度载波的参数集为j的载波组合数目确定的,
    Figure PCTCN2021143899-appb-100062
    为基于所述调度载波的参数集为μ的载波组合数目确定的。
  61. 根据权利要求53至56任一所述的装置,其特征在于,所述装置还包括:
    处理模块,用于在所述载波组合对应的调度载波上进行PDCCH检测的情况下,确定信道估计的非重叠控制信道元素CCE的最大数目小于或等于
    Figure PCTCN2021143899-appb-100063
    其中,所述
    Figure PCTCN2021143899-appb-100064
    是在一个载波组合上的信道估计的非重叠CCE的最大数目,所述
    Figure PCTCN2021143899-appb-100065
    是所述一个载波组合所对应的特定参数集的信道估计的非重叠CCE的总数目,所述特定参数集是与子载波间隔参数μ对应的参数集。
  62. 根据权利要求61所述的装置,其特征在于,所述
    Figure PCTCN2021143899-appb-100066
    等于:
    Figure PCTCN2021143899-appb-100067
    其中,
    Figure PCTCN2021143899-appb-100068
    为所述终端上报的PDCCH检测能力,
    Figure PCTCN2021143899-appb-100069
    为基于所述调度载波的参数集为j的载波组合数目确定的,
    Figure PCTCN2021143899-appb-100070
    为基于所述调度载波的参数集为μ的载波组合数目确定的。
  63. 根据权利要求60或62所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收终端上报的所述PDCCH检测能力
    Figure PCTCN2021143899-appb-100071
  64. 根据权利要求60或62所述的装置,其特征在于,所述
    Figure PCTCN2021143899-appb-100072
    由所述调度载波的参数集为j的至少一个载波组合以及所述至少一个载波组合中的每一个载波组合对应的调整系数确定。
  65. 根据权利要求64所述的装置,其特征在于,所述装置还包括:
    所述调整系数是通信协议预定义的,或,所述调整系数是高层信令配置的。
  66. 根据权利要求64所述的装置,其特征在于,所述调整系数为非负数。
  67. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至19任一所述的PDCCH检测方法。
  68. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求20至33任一所述的PDCCH发送方法。
  69. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至19任一所述的PDCCH检测方法,和/或权利要求20至33任一所述的PDCCH发送方法。
  70. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如权利要求1至19任一所述的PDCCH检测方法,和/或权利要求20至33任一所述的PDCCH发送方法。
  71. 一种计算机程序产品或计算机程序,其特征在于,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现如权利要求1至19任一所述的PDCCH检测方法,和/或权利要求20至33任一所述的PDCCH发送方法。
PCT/CN2021/143899 2021-12-31 2021-12-31 Pdcch检测方法、发送方法、装置、设备及存储介质 WO2023123438A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180103169.8A CN118056462A (zh) 2021-12-31 2021-12-31 Pdcch检测方法、发送方法、装置、设备及存储介质
PCT/CN2021/143899 WO2023123438A1 (zh) 2021-12-31 2021-12-31 Pdcch检测方法、发送方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143899 WO2023123438A1 (zh) 2021-12-31 2021-12-31 Pdcch检测方法、发送方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023123438A1 true WO2023123438A1 (zh) 2023-07-06

Family

ID=86997140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143899 WO2023123438A1 (zh) 2021-12-31 2021-12-31 Pdcch检测方法、发送方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN118056462A (zh)
WO (1) WO2023123438A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109089316A (zh) * 2017-06-14 2018-12-25 华为技术有限公司 调度方法及相关装置
CN111865484A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种无线通信的方法、终端设备、网络设备及网络系统
US20210092760A1 (en) * 2019-09-20 2021-03-25 Qualcomm Incorporated Carrier-group based cross-slot scheduling adaptation
WO2021203276A1 (en) * 2020-04-08 2021-10-14 Apple Inc. System and method for determining pdcch monitoring capability per component carriers in a carrier aggregation for span based pdcch monitoring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109089316A (zh) * 2017-06-14 2018-12-25 华为技术有限公司 调度方法及相关装置
CN111865484A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种无线通信的方法、终端设备、网络设备及网络系统
US20210092760A1 (en) * 2019-09-20 2021-03-25 Qualcomm Incorporated Carrier-group based cross-slot scheduling adaptation
WO2021203276A1 (en) * 2020-04-08 2021-10-14 Apple Inc. System and method for determining pdcch monitoring capability per component carriers in a carrier aggregation for span based pdcch monitoring

Also Published As

Publication number Publication date
CN118056462A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
KR102508791B1 (ko) 통신 방법 및 디바이스
EP3457608A1 (en) Method for transmitting harq feedback information, ue unit, base station, and system
CN111585727B (zh) 一种harq-ack信息的传输方法、装置、终端及网络设备
US20190053195A1 (en) Method And Apparatus
US11012220B2 (en) Allocation of communication resources for control signals in the uplink
WO2019223719A1 (en) Method and apparatus for reporting hybrid automatic repeat request-acknowledgement information for different service types in mobile communications
US9986543B2 (en) Allocation of communication resources
US20220272733A1 (en) Information counting method and apparatus, base station, and computer storage medium
CN105763307B (zh) 下行数据的传输方法及装置、下行数据的获取装置
US11595964B2 (en) Method and device for determining information domain value in DCI
EP3907916A1 (en) Information transmission method, apparatus and device
CN113225751B (zh) 搜索空间的监听方法和设备
WO2017075787A1 (zh) 用户设备、接入网设备、上行控制信息的收发方法及装置
US11452087B2 (en) Data transmission sending method, receiving method and apparatus
US20220264340A1 (en) Method and device for determining dynamic harq-ack codebook
US20230047144A1 (en) Physical downlink control channel monitoring method and apparatus
WO2023123438A1 (zh) Pdcch检测方法、发送方法、装置、设备及存储介质
WO2016116165A1 (en) Method, apparatus and system for the configuration of an uplink control channel
US11949630B2 (en) Information processing method, device, equipment, and computer readable storage medium
US20210307053A1 (en) Scheduling method, apparatus, base station, terminal and computer readable storage medium
EP2635081B1 (en) Allocation of communication resources
US20240032032A1 (en) Type-2 HARQ-ACK Codebook for Multi-Cell Scheduling DCI
US20240023137A1 (en) Downlink Control Information (DCI) Transmission and Reception
WO2024092830A1 (zh) 检测能力确定方法、装置、设备及存储介质
WO2023004718A1 (zh) 信息反馈方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969783

Country of ref document: EP

Kind code of ref document: A1