WO2024022385A1 - 边链路信道接入方式的确定方法、电子设备和存储介质 - Google Patents

边链路信道接入方式的确定方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2024022385A1
WO2024022385A1 PCT/CN2023/109323 CN2023109323W WO2024022385A1 WO 2024022385 A1 WO2024022385 A1 WO 2024022385A1 CN 2023109323 W CN2023109323 W CN 2023109323W WO 2024022385 A1 WO2024022385 A1 WO 2024022385A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel access
node
channel
access mode
Prior art date
Application number
PCT/CN2023/109323
Other languages
English (en)
French (fr)
Inventor
陈杰
卢有雄
苗婷
邢卫民
贺海港
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024022385A1 publication Critical patent/WO2024022385A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of wireless communication technology, and in particular, to a method for determining a side link channel access mode, electronic equipment and storage media.
  • SL-U side link
  • NR-U New Radio in Unlicensed Spectrum
  • WIFI Wireless Fidelity
  • Bluetooth Bluetooth system equipment
  • LBT channel Listen Before Talk
  • the LBT methods of 3GPP systems on unlicensed spectrum include two types, namely Load Based Equipment (Load Based Equipment) and Frame Based Equipment (Frame Based Equipment, FBE).
  • the channel access methods commonly used by LBE include two types: the first channel access method (type1) and the second channel access method (type2). Among them, the first channel access method needs to complete a period of channel monitoring before transmission. When the channel continues to be idle during this period of time, the first channel access method can be considered successful, and the device can next transmit the channel/signal; and
  • the second channel access method is suitable for some special signal transmission, or signal transmission within the Channel Occupancy Time (COT).
  • COT Channel Occupancy Time
  • COT means that after the device successfully accesses the channel using the first channel access method, it is considered
  • the device has initialized a COT, and the transmission within the COT can no longer use the first channel access method with a relatively long channel monitoring time.
  • the SL-U system can use the first channel access method and the second channel access party for channel access.
  • UE User Equipment
  • the main purpose of the embodiments of this application is to provide a method, electronic device, and storage medium for determining a side link channel access method, so as to determine the side link channel access method and improve the channel access success rate.
  • Embodiments of the present application provide a method for determining a side link channel access mode, where the method includes:
  • the first node obtains the first information
  • the channel access mode of the first signal of the first node is determined according to the first information.
  • An embodiment of the present application also provides an electronic device, wherein the electronic device includes:
  • memory for storing at least one program
  • the at least one processor When the at least one program is configured by the at least one processor, the at least one processor is caused to implement the method for determining the side link channel access mode as described in any one of the embodiments of the present application.
  • Embodiments of the present application also provide a computer-readable storage medium, wherein the computer-readable storage medium stores at least one program, and the at least one program is executed by the at least one processor to implement the embodiments of the present application.
  • Figure 1 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application
  • Figure 2 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application
  • Figure 3 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application
  • Figure 4 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application
  • Figure 5 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application
  • Figure 6 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application
  • Figure 7 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application.
  • Figure 8 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application.
  • Figure 9 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application.
  • Figure 10 is an example diagram of a method for determining a side link channel access method provided by an embodiment of the present application.
  • Figure 11 is an example diagram of a method for determining a side link channel access method provided by an embodiment of the present application.
  • Figure 12 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application
  • Figure 13 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application
  • Figure 14 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application. picture;
  • Figure 15 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application.
  • Figure 16 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application.
  • Figure 17 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application.
  • Figure 18 is an example diagram of a method for determining a side link channel access method provided by an embodiment of the present application.
  • Figure 19 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application.
  • Figure 20 is a schematic structural diagram of a device for determining a side link channel access method provided by an embodiment of the present application.
  • Figure 21 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 1 is a flow chart of a method for determining a side-link channel access method provided by an embodiment of the present application.
  • the embodiment of the present application can be applied to the situation of determining a channel access method in side-link wireless communications. This method can be performed by the present application.
  • the device for determining the side link channel access mode in the embodiment of the application is executed. This device can be implemented by software and/or hardware, and is generally integrated in the terminal. See Figure 1.
  • the method provided by the embodiment of the application is detailed. Includes the following steps:
  • Step 110 The first node obtains the first information.
  • the first node may be a user equipment that executes the method of the embodiment of the present application, and the first information may be information obtained by the first node for determining the channel to be transmitted or the signal to be transmitted, and may include the transmission status of the first signal and The transmission situation of the second signal.
  • the first node may obtain first information used to determine the channel access mode of the first signal.
  • Step 120 Determine the channel access mode of the first signal of the first node according to the first information.
  • the channel access mode of the first signal access channel may be determined according to the first information.
  • the channel access mode may include a first channel access mode and a second channel access mode, where the first channel access mode A period of channel listening needs to be completed before transmission.
  • the channel listening time is usually the same as the time to be transmitted. It is related to the Channel Access Priority Class (CAPC) of the signal or service. Generally speaking, the higher the priority of the service or signal, the shorter the channel monitoring time is required, and the easier it is to successfully access the channel to transmit data. .
  • CAC Channel Access Priority Class
  • the second channel access method is suitable for some special signal transmission, or signal transmission within the COT.
  • COT means that after the device successfully accesses the channel using type1, the device is considered to have initialized a COT, and the transmission within the COT can no longer be used.
  • the type1 method has a relatively long channel monitoring time.
  • the type2 channel access method includes type 2A, type2B, and type2C. Among them, type2A requires the gap between the current transmission and the previous transmission to be 25us, type2B requires the gap between the current transmission and the previous transmission to be 16us, and type2C requires the gap between the current transmission and the previous transmission to be no more than 16us. , type 2A/type2B/type2C respectively correspond to three situations where LBT before transmission only needs to monitor 25us, 16us or not monitor the channel respectively.
  • the first information is obtained through the first node, and the channel access method of the first signal is determined based on the first information, thereby accurately determining the channel access method of the side link and improving the channel access success rate.
  • the first information includes at least one of the following: a first signal transmission situation, a second signal transmission situation, and a probability that the first signal corresponding to the first signal transmission situation uses the second channel access method; wherein, The first signal includes a to-be-transmitted channel/signal of the first node, and the second signal includes a transmitted channel/signal of the first node and a transmitted channel/signal of the second node.
  • the first signal transmission situation includes at least one of the following:
  • the signal type of the first signal of the first node includes Physical Sidelink Control Channel (PSCCH)/Physical Sidelink Shared Channel (PSSCH), side link synchronization Signal block (Sidelink Synchronization Signal Block, S-SSB), Physical Sidelink Feedback Channel (PSFCH), Channel State Information Reference Signal (Channel State Information-Reference Signal, CSI-RS), Positioning reference signal ( At least one of Positioning Reference Signal, PRS);
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • S-SSB Sidelink Synchronization Signal Block
  • S-SSB Sidelink Synchronization Signal Block
  • PSFCH Physical Sidelink Feedback Channel
  • CSI-RS Channel State Information Reference Signal
  • Positioning reference signal At least one of Positioning Reference Signal, PRS
  • the channel access priority level of the first signal of the first node is the channel access priority level of the first signal of the first node
  • the channel access priority level of the service channel associated with the first signal of the first node is the channel access priority level of the service channel associated with the first signal of the first node
  • the number of retransmissions of the traffic channel associated with the first signal of the first node is the number of retransmissions of the traffic channel associated with the first signal of the first node
  • the feedback timing of the first signal of the first node is the feedback timing of the first signal of the first node.
  • FIG. 2 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application, so that the signal type of the first signal of the first node is included in the first signal transmission situation.
  • the method provided by the embodiment of this application specifically includes the following steps:
  • Step 210 The first node obtains the first information.
  • Step 220 Determine the probability that the first signal uses the second channel access method according to the first information.
  • the probability corresponds to the signal type of the first signal of the first node; the corresponding relationship between the signal type of the first signal and the probability is based on the system Configuration, preconfiguration, or predefined rule determination.
  • the second channel access method can be suitable for the transmission of special signals or signal transmission within the COT.
  • the second type of channel access method includes type 2A, type 2B, and type 2C.
  • type2A requires the gap between the current transmission and the previous transmission to be 25us
  • type2B requires the gap between the current transmission and the previous transmission to be 16us
  • type2C requires the gap between the current transmission and the previous transmission to be no more than 16us
  • the three methods /type2B/type2C respectively correspond to the three situations where LBT before transmission only needs to monitor 25us, 16us or not monitor the channel respectively.
  • the signal type of the first signal may include at least one of PSCCH/PSSCH, S-SSB, PSFCH, PRS, and CSI-RS.
  • the first information includes the signal type of the first signal of the first node, and the first node determines the probability of the second type channel access mode through the signal type of the first signal, and the probability is the same as the first signal
  • the correspondence can be determined by system configuration, preconfiguration, or predefined rules. Furthermore, in the corresponding relationship, the more urgent the signal transmission corresponding to the signal type, the higher the probability of the second type channel access method corresponding to the signal type.
  • FIG. 3 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application, so as to include the channel of the first signal of the first node through the transmission situation of the first signal. Taking the access priority level as an example, see Figure 3.
  • the method provided by the embodiment of this application specifically includes the following steps:
  • Step 310 The first node obtains the first information.
  • Step 320 Determine the probability that the first signal uses the second channel access method according to the first information.
  • the probability corresponds to the channel access priority level of the first signal of the first node in the first information; the channel of the first signal
  • the corresponding relationship between access priority levels and probabilities is determined based on system configuration, preconfiguration, or predefined rules.
  • the first information includes the channel access priority of the first signal of the first node, and the first node uses the channel access priority level to determine the one-to-one corresponding first signal to use the second type of signal.
  • the probability of access mode The corresponding relationship between this probability and the channel access priority level can be configured by the system. settings, preconfigurations, or predefined rules.
  • the higher the channel access priority level the higher the probability that the first signal uses the second type of access method.
  • FIG. 4 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application, so as to include the first signal associated with the first node through the transmission situation of the first signal. Taking the channel access priority level of the service channel as an example, see Figure 4.
  • the method provided by the embodiment of this application specifically includes the following steps:
  • Step 410 The first node obtains the first information.
  • Step 420 Determine the probability that the first signal uses the second channel access method according to the first information.
  • the probability corresponds one-to-one to the channel access priority level of the service channel associated with the first signal of the first node;
  • the corresponding relationship between the channel access priority level and probability of the service channel is determined based on system configuration, preconfiguration, or predefined rules.
  • the first information includes the channel access priority level of the service channel associated with the first signal, and the first node determines the one-to-one corresponding first signal through the channel access priority level of the service channel associated with the first signal.
  • the probability of using the second type of signal access method, and the corresponding relationship between the probability and the channel access priority level of the service channel associated with the first signal can be determined by system configuration, preconfiguration, or predefined rules. Further, in some embodiments, the higher the channel access priority level of the service channel associated with the first signal, the higher the probability that the first signal uses the second type of access method.
  • FIG. 5 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application, so that the transmission situation of the first signal includes the repetition of the first signal of the first node. Taking the number of transmissions as an example, see Figure 5.
  • the method provided by the embodiment of this application specifically includes the following steps:
  • Step 510 The first node obtains the first information.
  • Step 520 Determine the probability that the first signal uses the second channel access method according to the first information.
  • the probability corresponds to the number of retransmissions of the first signal by the first node; the correspondence between the number of retransmissions of the first signal and the probability Relationships are determined based on system configuration, preconfiguration, or predefined rules.
  • the first information includes the number of retransmissions of the first signal by the first node, and the first node determines the one-to-one corresponding use of the first signal based on the channel access priority level of the number of retransmissions of the first signal.
  • the probability of the second type of signal access mode, and the corresponding relationship between the probability and the number of retransmissions of the first signal of the first node may be determined by system configuration, preconfiguration, or predefined rules. Further, in some embodiments, the fewer the number of retransmissions of the first signal of the first node, the higher the probability that the first signal uses the second type of access method.
  • FIG. 6 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application, so as to include the first signal associated with the first node through the transmission situation of the first signal. Taking the number of retransmissions of the service channel as an example, see Figure 6.
  • the method provided by the embodiment of the present application specifically includes the following: Next steps:
  • Step 610 The first node obtains the first information.
  • Step 620 Determine the probability that the first signal uses the second channel access method according to the first information.
  • the probability corresponds to the number of retransmissions of the service channel associated with the first signal of the first node; the service channel associated with the first signal.
  • the corresponding relationship between the number of retransmissions and the probability of a business channel is determined based on system configuration, preconfiguration, or predefined rules.
  • the first signal includes the number of retransmissions of the traffic channel associated with the first signal of the first node, and the first node determines that there is a one-to-one corresponding second number of retransmissions of the traffic channel associated with the first signal.
  • the probability of the channel access mode, and the corresponding relationship between the probability and the number of retransmissions of the service channel associated with the first signal can be determined by system configuration, preconfiguration, or predefined rules. In some embodiments, the fewer the number of retransmissions of the traffic channel associated with the first signal of the first node, the higher the probability that the first signal uses the second type of access method.
  • FIG. 7 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application, so that the transmission situation of the first signal includes the location of the first signal of the first node. Taking the group as an example, see Figure 7.
  • the method provided by the embodiment of this application specifically includes the following steps:
  • Step 710 The first node obtains the first information.
  • Step 720 Determine the probability that the first signal uses the second channel access method according to the first information.
  • the probability corresponds to the group of the first signal of the first node in a one-to-one correspondence.
  • the corresponding relationship between the group of the first signal and the probability is based on the system. Configuration, preconfiguration, or predefined rule determination.
  • the first signal includes the group in which the first signal of the first node is located, and the first node determines the probability that there is a second channel access mode corresponding to the group in which the first signal is located, and the probability is equal to
  • the corresponding relationship of the group in which the first signal of the first node is located may be determined by system configuration, preconfiguration, or predefined rules. It can be understood that if the first signals are in different groups, the probabilities of the corresponding second channel access modes may be different.
  • FIG. 8 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application, so that the transmission situation of the first signal includes the location of the first signal of the first node. Taking the relative position within the group as an example, see Figure 8.
  • the method provided by the embodiment of the present application specifically includes the following steps:
  • Step 810 The first node obtains the first information.
  • Step 820 Determine the probability that the first signal uses the second channel access method according to the first information.
  • the probability corresponds to the relative position of the first node in the group where the first signal is located; within the group where the first signal is located.
  • the corresponding relationship between the relative position and the probability is determined according to the system configuration, pre-configuration, or predefined rules.
  • the first signal includes the relative position within the group where the first signal of the first node is located, and the first node determines that there is a one-to-one corresponding second channel connection with the relative position within the group where the first signal of the first node is located.
  • the probability of entering the mode, and the corresponding relationship between the probability and the relative position in the group where the first signal of the first node is located can be determined by system configuration, preconfiguration, or predefined rules. It can be understood that, when the first signal is located at different relative positions within the group, the corresponding probabilities of the second channel access mode may be different. It can be understood that the groups in which the first signals are located may be different or the same.
  • the probabilities of the second channel access modes corresponding to the first signals at the same relative positions in different groups may be the same, or the probabilities of the first signals in different groups may be the same.
  • the probabilities of the second channel access modes corresponding to the first signals at relative positions may be different.
  • FIG. 9 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application, so as to include feedback of the first signal of the first node through the transmission situation of the first signal. Taking timing as an example, see Figure 9.
  • the method provided by the embodiment of this application specifically includes the following steps:
  • Step 910 The first node obtains the first information.
  • Step 920 Determine the probability that the first signal uses the second channel access method according to the first information.
  • the probability corresponds to the feedback timing of the first signal of the first node; the corresponding relationship between the feedback timing of the first signal and the probability is based on the system Configuration, preconfiguration, or predefined rule determination.
  • the first signal includes the feedback timing of the first signal of the first node, and the first node determines the probability that there is a one-to-one corresponding second channel access method with the feedback timing of the first signal of the first node.
  • the corresponding relationship between the probability and the feedback timing of the first signal of the first node may be determined by system configuration, preconfiguration, or predefined rules. In some embodiments, the closer the feedback opportunity is to the last transmission time of the first signal, the higher the probability of the corresponding second channel access mode may be.
  • the above-mentioned first information may include multiple first signal transmission situations, and the probability of the second channel access mode may be jointly determined through multiple first signal transmission situations. See Figure 10.
  • the current PSFCH channel access method is determined based on the relative position of the current PSFCH feedback opportunity among the multiple PSFCH feedback opportunities corresponding to the PSSCH. The closer the PSFCH feedback opportunity of the first node is In the last feedback opportunity, the higher the probability of using the second channel access method, the lower the corresponding probability of using the first channel access method.
  • the corresponding relationship between the feedback opportunity of PSFCH and the probability of the second channel access mode can be as shown in Table 1 below:
  • the channel access mode of the PSFCH corresponding to the PSSCH can be determined according to the number of retransmissions of the PSSCH. The closer the PSSCH transmission is to the maximum number of transmissions, the higher the number of retransmissions of the PSSCH. The higher the probability that the PSFCH uses the second channel access method to access the channel, the corresponding lower the probability that the first channel access method is used.
  • the current channel access method of PSSCH can be determined based on the number of retransmissions of the current PSSCH. The closer the PSSCH transmission is to the maximum number of transmissions, the PSSCH uses the second channel access method. The higher the probability of using the first channel access method, the lower the probability of using the first channel access method.
  • the probability of using the second channel access mode may also be associated with the PSFCH.
  • PSSCH or Channel Access Priority Class (CAPC) of PSSCH correspond to each other.
  • PSSCH CAPCs correspond to the probability combinations of different PSFCH second channel access methods or to the probabilities of different PSSCH second channel access methods. .
  • the higher the CAPC level of the PSSCH the greater the probability that the PSSCH uses the second channel access method.
  • one PSSCH transmission corresponds to three PSFCH transmission opportunities as an example.
  • the corresponding relationship between the probability of PSFCH accessing the channel using the second channel access method can be as shown in Table 4 below:
  • the probability of using the second channel access method for channel access of the PSFCH is determined based on the number of retransmissions of the PSSCH and the CAPC of the PSSCH.
  • the number of retransmissions of the PSSCH and the CAPC are related to the probability. The corresponding relationship can be shown in Table 5 below, where PSSCH can be retransmitted up to 2 times.
  • the probability of using the second channel access method for channel access of PSSCH is determined based on the current number of retransmissions of PSSCH and the CAPC of PSSCH, and the corresponding relationship between the number of retransmissions of PSSCH and CAPC and the probability. It can be shown in Table 6 below, where PSSCH can be retransmitted up to 2 times.
  • the probability that the access mode of the S-SSB signal is the second channel access mode can be determined based on the group in which the S-SSB is located and the time domain transmission opportunity. , the closer to the last transmission opportunity, the higher the probability that the access mode of the S-SSB signal is the second channel access mode, and correspondingly, the lower the probability that the access mode is the first channel access mode.
  • the resources corresponding to S-SSB in the system can be grouped, and different groups can correspond to different probabilities.
  • the probability and grouping of S-SSB using the second type channel access method to access the channel can be as shown in Table 7.
  • the aforementioned probability determination method includes configuration, pre-configuration, or system pre-definition.
  • the transmission situation of the second signal includes at least one of the following:
  • the channel occupancy rate counted by the first node is the channel occupancy rate counted by the first node.
  • the transmission situation of the second signal can be compared with the threshold value to determine the way in which the first signal of the first node accesses the channel. It can be understood that according to the transmission situation of the second signal, Depending on the included parameters, the threshold value may have different meanings. For example, the threshold value compared with the channel busy rate counted by the first node may be different from the threshold value compared with the channel occupancy rate counted by the first node.
  • determining the channel access method of the first signal of the first node based on the first information includes at least one of the following:
  • the channel access method of the first signal is the second channel access method
  • the total transmission duration meets the threshold value, and the channel access method of the first signal is the second channel access method
  • the number of sub-channels used meets the threshold, and the channel access method of the first signal is the second channel access method;
  • the number of time slots used meets the threshold value, and the channel access method of the first signal is the second channel access method
  • the number of resource block sets meets the threshold value, and the channel access mode of the first signal is the second channel access mode;
  • the channel access method of the first signal is the first channel access method
  • the total transmission duration does not meet the threshold value, and the channel access method of the first signal is the first channel access method
  • the number of sub-channels used does not meet the threshold, and the channel access mode of the first signal is first channel access. Way;
  • the number of time slots used does not meet the threshold, and the channel access mode of the first signal is the first channel access mode
  • the number of resource block sets does not meet the threshold, and the channel access mode of the first signal is the first channel access mode
  • the threshold value is determined based on system configuration, preconfiguration, or predefined rules.
  • the first signal can use the second channel access method to access the channel.
  • the first signal can use the first channel access method to access the channel, that is, The number of transmissions, the total transmission duration, the number of sub-channels used, the number of time slots used, and the number of resource block sets of the signal/channel sent by the first node using the second channel access method during the observation time do not meet the respective corresponding thresholds. , and/or, at least one of the number of transmissions, the total transmission duration, the number of subchannels used, the number of time slots used, and the number of resource block sets of the signal/channel sent by the first node using the second channel access method within the observation time.
  • the first signal can access the channel using the first channel access method, where the threshold value can be determined by system configuration, preconfiguration, or predefined rules, and satisfying the threshold value can include Greater than or equal to the threshold value, less than or equal to the threshold value, greater than the threshold value, less than the threshold value, etc.
  • Figure 12 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application.
  • the transmission situation of the second signal includes the transmission of the second signal sent by the first node using the second channel access method within the observation time. Taking the number of signal/channel transmissions, total transmission duration, number of subchannels used, number of time slots used, number of resource block sets and other information as an example, see Figure 12.
  • the method provided by the embodiment of the present application specifically includes the following steps:
  • Step 1010 The first node obtains the first information.
  • Step 1020 If at least one of the number of transmissions, the total transmission duration, the number of subchannels used, the number of time slots used, and the number of resource block sets meets the threshold value, the channel access mode of the first signal is the second channel access mode.
  • the threshold value may include the number of transmissions, the total duration of transmission, the number of sub-channels used, the number of time slots used, resources
  • the number of source block sets respectively meets their respective corresponding thresholds. For example, at least one of the number of transmissions, the total transmission duration, the number of subchannels used, the number of time slots used, and the number of resource block sets is greater than or equal to the corresponding thresholds. value, or at least one of the number of transmissions, total transmission duration, number of subchannels used, number of time slots used, and number of resource block sets is less than or equal to the respective corresponding threshold values.
  • Step 1030 If the number of transmissions, the total transmission duration, the number of subchannels used, the number of time slots used, and the number of resource block sets do not meet the threshold, the channel access mode of the first signal is the first channel access mode.
  • the channel access mode of the first signal is the first channel access mode.
  • the threshold value may include the number of times of transmission, the total duration of transmission, the number of sub-channels used, the number of time slots used, and the number of resource block sets that do not meet the respective corresponding requirements.
  • Threshold values for example, at least one of the number of transmissions, the total transmission duration, the number of sub-channels used, the number of time slots used, and the number of resource block sets are each less than the corresponding threshold value, or the number of transmissions, the total transmission duration, the number of sub-channels used At least one of the number of channels used, the number of time slots used, and the number of resource block sets is greater than their respective corresponding thresholds.
  • PSFCH, S-SSB, PRS, CSI-RS, PSCCH or PSSCH can count all side link signals sent by the terminal in the second channel access mode within a period of time before transmission/ Information such as the number of transmissions, total transmission duration, number of subchannels used, number of time slots used, number of resource block sets, etc. of the channel must be at least among the number of transmissions, total transmission duration, number of subchannels used, number of time slots used, and number of resource block sets.
  • PSFCH, S-SSB, PRS, CSI-RS, PSCCH or PSSCH use the second channel access method to access the channel, Otherwise, PSFCH, S-SSB, PRS, CSI-RS, PSCCH or PSSCH uses the first channel access method to access the channel.
  • Figure 13 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application. Taking the transmission situation of the second signal including the signal occupancy time of the second signal of the first node as an example, see Figure 13.
  • the method provided by the embodiment of this application specifically includes the following steps:
  • Step 1110 The first node obtains the first information.
  • Step 1120 The transmission time of the first signal belongs to the channel occupancy time of the second signal of the first node before the first signal of the first node, and the channel access mode of the first signal is the second channel access mode.
  • the channel access mode of the first signal when the transmission time of the first signal is within the channel occupancy time of the second signal of the first node transmitted before the first signal, the channel access mode of the first signal may be the second channel access mode.
  • Step 1130 The transmission time of the first signal does not belong to the channel occupancy time of the second signal of the first node before the first signal of the first node, and the channel access mode of the first signal is the first channel access mode.
  • the channel access mode of the first signal may be the first channel access mode.
  • Figure 14 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application. Taking the transmission situation of the second signal including the signal occupancy time of the second signal of the second node as an example, see Figure 14.
  • the method provided by the embodiment of this application specifically includes the following steps:
  • Step 1210 The first node obtains the first information.
  • Step 1220 The transmission time of the first signal belongs to the channel occupancy time of the second signal of the second node before the first signal of the first node, and the channel access mode of the first signal is the second channel access mode.
  • the channel access method of the first signal may use the second channel access method.
  • Step 1230 The transmission time of the first signal does not belong to the channel occupancy time of the second signal of the second node before the first signal of the first node, and the channel access mode of the first signal is the first channel access mode.
  • the channel access method of the first signal may use the first channel access method.
  • the base station uses a downlink control information (DCI) to schedule the transmission of multiple PSSCHs of the terminal equipment and/or the PSSCH associated
  • DCI downlink control information
  • the first transmitted signal or channel successfully accesses the channel using the first channel access method or the second channel access method, and the transmission time of the next transmitted signal or channel is still the same as the previous transmitted signal.
  • the next transmitted signal or channel uses the second channel access method for channel access; otherwise, the next transmitted signal or channel uses the first channel access method for channel access.
  • the transmission of multiple PSSCHs of the terminal device and/or the transmission of multiple PSFCHs associated with the PSSCH the first transmitted signal or channel The channel is successfully accessed using the first channel access method or the second channel access method. If the transmission time of the next transmitted signal or channel is still within the COT of the previously transmitted signal or channel, then the next transmitted signal or channel The second channel access method is used for channel access. Otherwise, the next transmitted signal or channel is channel accessed using the first channel access method.
  • Figure 15 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application. Taking the transmission situation of the second signal including the signal occupancy time of the second signal of the second node as an example, see Figure 15.
  • the method provided by the embodiment of this application specifically includes the following steps:
  • Step 1310 The first node obtains the first information.
  • Step 1320 The channel access priority level of the first signal satisfies the channel access priority level of the second signal of the second node before the first signal of the first node, and the channel access mode of the first signal is the second channel. Access method.
  • the channel access priority level of the first signal satisfies the channel access priority level of the second signal of the second node, and the satisfaction may include that the channel access priority level of the first signal is greater than or equal to The channel priority level of the second signal of the second node, or the channel access priority level of the first signal is less than or equal to the channel priority level of the second channel of the second node; when the channel access priority level of the first signal When the channel priority level is greater than or equal to the channel priority level of the second signal of the second node, or the channel access priority level of the first signal is less than or equal to the channel priority level of the second channel of the second node, you can It is determined that the first signal accesses the channel using the second channel access method.
  • Step 1330 The channel access priority level of the first signal does not meet the channel access priority level of the second signal of the second node before the first signal of the first node, and the channel access mode of the first signal is the first Channel access method.
  • the channel access priority level of the first signal does not satisfy the channel access priority level of the second signal of the second node.
  • the dissatisfaction may include that the channel access priority level of the first signal is smaller than that of the second node.
  • the channel priority level of the second signal, or the channel access priority level of the first signal is greater than the channel priority level of the second channel of the second node; if not satisfied, it can be determined that the first signal uses the first Channel access mode access the channel.
  • Figure 16 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application. Taking the second signal transmission situation including channel occupancy as an example, see Figure 16 for the method provided by an embodiment of the present application. Specifically, it includes the following steps:
  • Step 1410 The first node obtains the first information.
  • Step 1420 The channel occupancy rate counted by the first node meets the threshold value, and the channel access mode of the first signal is the second channel access mode.
  • the first signal may access the channel using the second channel access method. It can be understood that in the embodiment of the present application, the satisfaction may include that the channel occupancy rate counted by the first node is greater than or equal to the threshold value, or that the channel occupancy rate counted by the first node is less than or equal to the threshold value, and the threshold value can be determined by Determined based on system configuration, preconfiguration, or predefined rules.
  • Step 1430 The channel occupancy rate counted by the first node does not meet the threshold value, and the channel access mode of the first signal is the first channel access mode.
  • the first signal may access the channel using a first channel access method.
  • the dissatisfaction may include that the channel occupancy rate counted by the first node is less than or equal to the threshold value, or the channel occupancy rate counted by the first node is greater than or equal to the threshold value.
  • the threshold value may be determined according to system configuration, preconfiguration, or Defined by predefined rules.
  • Figure 17 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application. Taking the transmission situation of the second signal including the channel busy rate as an example, see Figure 17, which is provided by an embodiment of the present application. The method specifically includes the following steps:
  • Step 1510 The first node obtains the first information.
  • Step 1520 The channel busy rate counted by the first node meets the threshold value, and the channel access mode of the first signal is the second channel access mode.
  • the first signal when the channel busy rate counted by the first node meets the threshold value, the first signal can access the channel using the second channel access method.
  • the satisfaction may include that the channel busy rate counted by the first node is greater than or equal to the threshold value, or the channel busy rate counted by the first node is less than or equal to the threshold value.
  • the threshold value may be determined according to the system configuration, preconfiguration, or preset value. Define the rules for sure.
  • Step 1530 The channel busy rate counted by the first node does not meet the threshold value, and the channel access mode of the first signal is the first channel access mode.
  • the first signal when the channel busy rate counted by the first node does not meet the threshold value, the first signal may access the channel using the first channel access method.
  • the satisfaction may include that the channel busy rate counted by the first node is less than or equal to the threshold value, or the channel busy rate counted by the first node is greater than or equal to the threshold value.
  • the threshold value may be determined according to the system configuration, preconfiguration, or preset value. Define the rules for sure.
  • the channel busy rate includes at least one of the following:
  • the frequency domain statistical range of the channel busy rate is the frequency domain range of the side link resource pool
  • the frequency domain statistical range of the channel busy rate is the frequency domain range of the resource block set where the first signal is located;
  • the time domain statistics range of the channel busy rate is the configured, preconfigured or valid time slot within a predetermined time window
  • the time domain statistics range of the channel busy rate is the valid symbols within a configured, preconfigured or predetermined time window.
  • the channel busy rate statistics include at least one of the following:
  • non-3GPP system channels/signals can be excluding PSCCH, PSSCH, S-SSB, PSFCH, physical uplink control channel (Physical Uplink Control Channel, PUCCH), and physical uplink shared channel (Physical Uplink Shared Channel (PUSCH), Physical Random Access Channel (PRACH), Sounding Reference Signal (SRS), Physical Downlink Control Channel (PDCCH), Physical Downlink Shared Channel ( Channels defined by 3GPP systems such as Physical Downlink Shared Channel (PDSCH), CSI-RS, SSB, PRS, Remote Interference Management-Reference Signal (RIM-RS), and Cyclic Prefix Extension (ECP) Or the channel/signal after the signal.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Random Access Channel
  • SRS Sounding Reference Signal
  • PDCCH Physical Downlink Control Channel
  • PDCCH Physical Downlink Shared Channel
  • PSCH Physical Downlink Shared Channel
  • CSI-RS Physical Downlink Shared Channel
  • SSB CSI-RS
  • PRS Remote Interference Management-
  • Figure 18 is an example diagram of a method for determining a side link channel access method provided by an embodiment of the present application. Referring to Figure 18, it can be done before the transmission of PSFCH, S-SSB, PSCCH or PSSCH. The channel occupancy rate is counted within a period of time. If the channel occupancy rate is lower than the threshold, PSFCH, S-SSB, PSCCH or PSSCH uses the second channel access method to access the channel. Otherwise, the first channel access method is used to access the channel.
  • the channel busy rate can be counted within a period of time before the transmission of PSFCH, S-SSB, PSCCH or PSSCH. If the channel busy rate is lower than the threshold, PSFCH, S-SSB, PSCCH or PSSCH, etc. use the third Use the second channel access method to access the channel, otherwise use the first channel access method to access the channel.
  • Figure 19 is a flow chart of a method for determining a side link channel access method provided by an embodiment of the present application, so that the transmission situation of the second signal includes the second signal of the second node before the first signal of the first node. Taking the channel occupancy time as an example, see Figure 19.
  • the method provided by the embodiment of this application specifically includes the following steps:
  • Step 1610 The first node obtains the first information.
  • Step 1620 The transmission time of the first signal is within the channel occupancy time of the second signal of the second node before the first signal of the first node, and the first node does not share the channel occupancy time.
  • the channel access method of the first signal It is the first channel access mode, and the transmission of the second signal does not affect the channel listening counter of the first node in the first channel access mode.
  • the transmission time of the first signal is within the channel occupancy time of the second signal of the second node.
  • the first node does not share the channel occupancy time.
  • the first signal uses the first channel access method for channel access.
  • the transmission of the second signal does not affect the first channel of the first node
  • the counter for channel listening in access mode is decremented.
  • 3GPP signals/channels include: PSCCH/PSSCH/S-SSB/PSFCH/PUCCH/PUSCH/PRACH/SRS, PDCCH/PDSCH/CSI-RS/SSB/PRS/RIM-RS and ECP, etc., which can be used by terminal equipment (User Equipment, UE) identifies or predicts the channel/signal defined by the 3GPP system.
  • terminal equipment User Equipment, UE
  • the side link channel or signal before the side link channel or signal is transmitted, if there is a COT shared by other known 3GPP system signals/channels, and the side link channel or signal is transmitted within the shared COT, then Regardless of the CAPC of the current transmission and the CAPC of the transmission that shares the COT, the side link channel or signal can continue to use the shared COT, and the side link channel or signal can access the channel using the second channel access method.
  • Figure 20 is a schematic structural diagram of a device for determining a side link channel access method provided by an embodiment of the present application. It can execute the method for determining a side link channel access method provided by any embodiment of the present application, and has the corresponding execution method. functional modules and beneficial effects.
  • This device can be implemented by software and/or hardware, and is generally integrated in a terminal device. See Figure 20.
  • the device specifically includes: an information acquisition module 101 and a mode determination module 102.
  • the information acquisition module 101 is used for the first node to acquire the first information.
  • the mode determination module 102 is configured to determine the channel access mode of the first signal of the first node according to the first information.
  • the first information is obtained through the information acquisition module, and the mode determination module determines the channel access mode of the first signal based on the first information, thereby accurately determining the channel access mode of the side link and improving the channel access success rate.
  • the first information in the device includes at least one of the following: transmission status of the first signal, transmission status of the second signal, and whether the first signal corresponding to the transmission status of the first signal uses the second channel access method. Probability; wherein, the first signal includes the to-be-transmitted channel/signal of the first node, and the second signal includes the transmitted channel/signal of the first node and the transmitted channel/signal of the second node.
  • the transmission situation of the first signal in the device includes at least one of the following:
  • the signal type of the first signal of the first node wherein the signal type includes at least one of PSCCH/PSSCH, S-SSB, PSFCH, and CSI-RS;
  • the channel access priority level of the first signal of the first node is the channel access priority level of the first signal of the first node
  • the channel access priority level of the traffic channel associated with the first signal of the first node is the channel access priority level of the traffic channel associated with the first signal of the first node
  • the number of retransmissions of the traffic channel associated with the first signal of the first node is the number of retransmissions of the traffic channel associated with the first signal of the first node
  • the feedback timing of the first signal of the first node is the feedback timing of the first signal of the first node.
  • the mode determination module 102 is specifically configured to: determine the probability that the first signal uses the second channel access mode according to the first information, and the probability is related to the probability of the first signal of the first node. There is a one-to-one correspondence between signal types; the correspondence between the signal type of the first signal and the probability is determined according to system configuration, preconfiguration, or predefined rules.
  • the mode determination module 102 is specifically configured to: determine the probability that the first signal uses the second channel access mode according to the first information, and the probability is consistent with the first information in the first information.
  • the channel access priority level of the node's first signal has a one-to-one correspondence; the corresponding relationship between the channel access priority level of the first signal and the probability is determined according to system configuration, preconfiguration, or predefined rules.
  • the mode determination module 102 is specifically configured to: determine the probability that the first signal uses the second channel access mode according to the first information, and the probability is associated with the first signal of the first node.
  • the channel access priority level of the business channel corresponds one to one;
  • the corresponding relationship between the channel access priority level of the service channel associated with the first signal and the probability is determined according to system configuration, preconfiguration, or predefined rules.
  • the mode determination module 102 is specifically configured to: determine the probability that the first signal uses the second channel access mode according to the first information, and the probability is related to the probability of the first signal of the first node.
  • the number of retransmissions corresponds to one-to-one; the correspondence between the number of retransmissions of the first signal and the probability is determined according to system configuration, preconfiguration, or predefined rules.
  • the mode determination module 102 is specifically configured to: determine the probability that the first signal uses the second channel access mode according to the first information, and the probability is associated with the first signal of the first node. There is a one-to-one correspondence between the number of retransmissions of the service channel associated with the first signal and the probability. The correspondence between the number of retransmissions of the service channel associated with the first signal and the probability is determined based on system configuration, preconfiguration, or predefined rules.
  • the mode determination module 102 is specifically configured to: determine the probability that the first signal uses the second channel access mode according to the first information, and the probability is consistent with the location of the first signal of the first node. There is a one-to-one correspondence between the groups; the corresponding relationship between the group where the first signal is located and the probability is based on the system Configuration, preconfiguration, or predefined rule determination.
  • the mode determination module 102 is specifically configured to: determine the probability that the first signal uses the second channel access mode according to the first information, and the probability is consistent with the location of the first signal of the first node. There is a one-to-one correspondence between the relative positions within the group; the correspondence between the relative position within the group where the first signal is located and the probability is determined based on system configuration, preconfiguration, or predefined rules.
  • the mode determination module 102 is specifically configured to: determine the probability that the first signal uses the second channel access mode according to the first information, and the probability is related to the probability of the first signal of the first node. There is a one-to-one correspondence between feedback timings; the correspondence between the feedback timing of the first signal and the probability is determined based on system configuration, preconfiguration, or predefined rules.
  • the transmission situation of the second signal in the device includes at least one of the following:
  • the channel occupancy rate counted by the first node is the channel occupancy rate counted by the first node.
  • the mode determination module 102 is specifically used for at least one of the following:
  • the number of transmissions meets a threshold value, and the channel access mode of the first signal is the second channel access mode;
  • the total transmission duration meets a threshold value, and the channel access mode of the first signal is the second channel access mode;
  • the number of sub-channels used meets a threshold value, and the channel access mode of the first signal is the second channel access mode;
  • the number of time slots used meets a threshold value, and the channel access mode of the first signal is the second channel access mode;
  • the number of resource block sets meets a threshold value, and the channel access mode of the first signal is the second channel access mode;
  • the number of transmissions does not meet the threshold value, and the channel access mode of the first signal is the first channel access mode
  • the total transmission duration does not meet the threshold value, and the channel access mode of the first signal is the first channel access mode
  • the number of sub-channels used does not meet the threshold, and the channel access mode of the first signal is the first channel access mode
  • the number of time slots used does not meet the threshold value, and the channel access mode of the first signal is the first channel access mode
  • the number of resource block sets does not meet the threshold value, and the channel access mode of the first signal is the first channel access mode
  • the threshold value is determined based on system configuration, preconfiguration, or predefined rules.
  • the mode determination module 102 is specifically configured to: determine the channel access mode of the first signal of the first node according to the first information, including: the transmission time of the first signal belongs to the first signal.
  • the channel occupancy time of the second signal of the first node before the first signal of a node, the channel access mode of the first signal is the second channel access mode; the transmission time of the first signal does not belong to the third
  • the channel occupancy time of the second signal of the first node before the first signal of a node, and the channel access mode of the first signal is the first channel access mode.
  • the mode determination module 102 is specifically configured to: the transmission time of the first signal belongs to the channel occupancy time information of the second signal of the second node before the first signal of the first node, and the The channel access mode of a signal is a second channel access mode; the transmission time of the first signal does not belong to the channel occupancy time information of the second signal of the second node before the first signal of the first node, so The channel access method of the first signal is a first channel access method.
  • the mode determination module 102 is specifically configured to: the channel access priority level of the first signal satisfies the channel access priority level of the second signal of the second node before the first signal of the first node. Enter the priority level, the channel access mode of the first signal is the second channel access mode; the channel access priority level of the first signal does not satisfy the second channel access mode before the first signal of the first node.
  • the channel access priority level of the node's second signal, and the channel access mode of the first signal is the first channel access mode.
  • the mode determination module 102 is specifically configured to: the channel occupancy rate counted by the first node meets a threshold value, and the channel access mode of the first signal is the second channel access mode; If the channel occupancy rate counted by a node does not meet the threshold value, the channel access mode of the first signal is the first channel access mode.
  • the mode determination module 102 is specifically configured to: the channel busy rate counted by the first node meets a threshold value, and the channel access mode of the first signal is the second channel access mode; If the channel busy rate counted by a node does not meet the threshold value, the fixed channel access mode of the first signal is the first channel access mode.
  • the channel busy rate in the device includes at least one of the following:
  • the frequency domain statistical range of the channel busy rate is the frequency domain range of the side link resource pool
  • the frequency domain statistical range of the channel busy rate is the frequency domain range of the resource block set where the first signal is located;
  • the time domain statistical range of the channel busy rate is a valid time slot within a configured, preconfigured or predetermined time window
  • the time domain statistical range of the channel busy rate is configured, preconfigured or valid symbols within a predetermined time window.
  • the statistics of the channel busy rate in the device include at least one of the following:
  • the mode determination module 102 is specifically configured to: the transmission time of the first signal is located within the channel occupancy time of the second signal of the second node before the first signal of the first node, and the The first node does not share the channel occupancy time, the channel access mode of the first signal is the first channel access mode, and the transmission of the second signal does not affect the first channel access of the first node. Mode of channel listening counter decremented.
  • Figure 21 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device includes a processor 40, a memory 41, an input device 42 and an output device 43; the number of processors 40 in the electronic device may be one or more ,
  • Figure 21 takes a processor 40 as an example; in electronic equipment, the processor 40, memory 41, input device 42 and output device 43 can be connected through a bus or other means.
  • a bus connection is taken as an example.
  • the memory 41 can be used to store software programs, computer executable programs and modules, such as the modules corresponding to the device for determining the side link channel access mode in the embodiment of the present application (information acquisition module 101 and Mode determination module 102).
  • the processor 40 executes software programs, instructions and modules stored in the memory 41 to execute various functional applications and data processing of the electronic device, that is, to implement the above-mentioned method of determining the side link channel access mode.
  • the memory 41 may mainly include a stored program area and a stored data area, where the stored program area may store an operating system and at least one application program required for a function; the stored data area may store data created according to the use of the electronic device, etc.
  • the memory 41 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the memory 41 may further include memory located remotely relative to the processor 40, and these remote memories may be connected to the electronic device through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the input device 42 may be used to receive input numeric or character information and generate key signal inputs related to user settings and function control of the electronic device.
  • the output device 43 may include a display device such as a display screen.
  • Embodiments of the present application also provide a storage medium containing computer-executable instructions, which when executed by a computer processor are used to perform a method for determining a side-link channel access mode.
  • the method includes:
  • the first node obtains the first information
  • the channel access mode of the first signal of the first node is determined according to the first information.
  • the present application can be implemented with the help of software and necessary general hardware. Of course, it can also be implemented with hardware, but in many cases the former is a better implementation. . Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk.
  • ROM read-only memory
  • RAM random access memory
  • FLASH flash memory
  • hard disk or optical disk etc.
  • a computer device which can be a personal computer, server, or network device, etc.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may consist of multiple
  • the physical components execute cooperatively.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, a digital signal processor, or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit .
  • a processor such as a central processing unit, a digital signal processor, or a microprocessor
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, Electrically Erasable Programmable Read-Only Memory (EEPROM), flash memory or other memory technologies, and portable compact disc read-only memory (Compact Disc Read-Only Memory, CD-ROM), Digital Video Disc (DVD) or other optical disk storage, magnetic cassette, tape, disk storage or other magnetic storage device, or any other device that can be used to store the desired information and can be accessed by a computer medium.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种边链路信道接入方式的确定方法、电子设备和存储介质,其中,该方法包括:第一节点获取第一信息;根据所述第一信息确定所述第一节点的第一信号的信道接入方式。本申请实施例通过准确确定信道接入方式,降低信道接入失败率,可提高通信质量。

Description

边链路信道接入方式的确定方法、电子设备和存储介质 技术领域
本申请涉及一种无线通信技术领域,尤其涉及一种边链路信道接入方式的确定方法、电子设备和存储介质。
背景技术
目前第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)版本18(Release-18,R18)立项了边链路(SideLink,SL)在非授权频谱上通信被称为SL-U,但是非授权频谱上可以存在其他设备,诸如,新空口在非授权频谱(New Radioin Unlicensed Spectrum,NR-U)系统设备、无线保真(WIreless Fidelity,WIFI)系统设备、蓝牙系统设备等。SL-U设备在传输之前需要进行信道先听后发(Listen Before Talk,LBT),在确定信道空闲时才可以发射信号,从而避免系统内或系统间的通信干扰。通常3GPP系统在非授权频谱上的LBT方式包括两种,即基于负载的设备(Load Based Equipment)和基于帧的设备(Frame Based Equipment,FBE)。其中的LBE通常使用的信道接入方式包括两类:第一信道接入方式(type1)和第二信道接入方式(type2)。其中,第一信道接入方式需要在传输前完成一段时间的信道监听,当信道在该段时间内持续空闲时,可以认为第一信道接入方式成功,设备可以接下来发射信道/信号;而第二信道接入方式适用于一些特殊的信号传输,或信道占用时间(Channel Occupancy Time,COT)内的信号传输,其中,COT指设备使用第一信道接入方式成功接入信道之后,则认为设备初始化了一个COT,在COT内的传输则可以不再使用信道监听时间比较长的第一信道接入方式。SL-U系统可以采用第一信道接入方式以及第二信道接入方进行信道接入,但是由于SL-U中存在没有基站调度或者有基站调度但是基站工作在授权频谱,无法协助用户设备(User Equipment,UE)进行侦听或占用信道,导致现有的SL UE信道接入成功率较低。
发明内容
本申请实施例的主要目的在于提供了一种边链路信道接入方式的确定方法、电子设备和存储介质,以确定边链路的信道接入方式,提高信道接入成功率。
本申请实施例提供了一种边链路信道接入方式的确定方法,其中,该方法包括:
第一节点获取第一信息;
根据所述第一信息确定所述第一节点的第一信号的信道接入方式。
本申请实施例还提供了一种电子设备,其中,该电子设备包括:
至少一个处理器;
存储器,用于存储至少一个程序;
当所述至少一个程序被所述至少一个处理器质性,使得所述至少一个处理器实现如本申请实施例中任一所述的边链路信道接入方式的确定方法。
本申请实施例还提供了一种计算机可读存储介质,其中,该计算机可读存储介质存储有至少一个程序,所述至少一个程序被所述至少一个处理器执行,以实现如本申请实施例中任一所述的边链路信道接入方式的确定方法。
附图说明
图1是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图2是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图3是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图4是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图5是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图6是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图7是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图8是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图9是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图10是本申请实施例提供的一种边链路信道接入方式的确定方法的示例图;
图11是本申请实施例提供的一种边链路信道接入方式的确定方法的示例图;
图12是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图13是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图14是本申请实施例提供的一种边链路信道接入方式的确定方法的流程 图;
图15是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图16是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图17是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图18是本申请实施例提供的一种边链路信道接入方式的确定方法的示例图;
图19是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图;
图20是本申请实施例提供的一种边链路信道接入方式的确定装置的结构示意图;
图21是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
应当理解,此处所描述的具体实施仅仅用于解释本发明,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”后缀仅为了有利于本申请的说明,其本身没有特有的意义,因此,“模块”、“部件”或“单元”可以混合地使用。
图1是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,本申请实施例可以适用于边链路无线通信中信道接入方式确定的情况,该方法可以由本申请实施例中的边链路信道接入方式的确定装置来执行,该装置可以通过软件和/或硬件的方式实现,并一般集成在终端中,参见图1,本申请实施例提供的方法具体包括如下步骤:
步骤110、第一节点获取第一信息。
其中,第一节点可以是执行本申请实施例方法的用户设备,第一信息可以是第一节点获取到的用于确定待发射信道或待发射信号的信息,可以包括第一信号的传输情况以及第二信号的传输情况。
在本申请实施例中,第一节点可以获取用于确定第一信号的信道接入方式的第一信息。
步骤120、根据第一信息确定第一节点的第一信号的信道接入方式。
具体的,可以按照第一信息确定第一信号接入信道的信道接入方式,该信道接入方式可以包括第一信道接入方式和第二信道接入方式,其中,第一信道接入方式需要在传输前完成一段时间的信道侦听,当信道持续空闲时,可以认为第一信道接入方式(type1)成功接入信道,设备可以接下来发射信号/信道,信道监听时间通常与待传输的信号或者业务的信道接入优先级(Channel Access Priority Class,CAPC)相关,一般来说,业务或者信号的优先级越高,需要的信道监听时间就越短,越容易成功接入信道发射数据。而第二信道接入方式适用一些特殊的信号传输,或者COT内的信号传输,COT指设备使用type1成功接入信道之后,则认为设备初始化了一个COT,在COT内的传输则可以不再使用信道监听时间比较长的type1方式,type2信道接入方式包括type 2A,type2B,type2C三种。其中type2A要求当前传输与之前的传输之间的间隙(gap)为25us,type2B要求当前传输与之前的传输之间的gap为16us,type2C要求当前传输与之前的传输之间的gap为不超过16us,type 2A/type2B/type2C三种方式分别对应传输之前的LBT只需要分别监听25us,16us或者不监听信道三种情况。
本申请实施例,通过第一节点获取第一信息,根据第一信息确定第一信号的信道接入方式,实现准确确定边链路的信道接入方式,提高信道接入成功率。
在一些实施例中,第一信息包括以下至少之一:第一信号传输情况,第二信号传输情况,第一信号传输情况对应的第一信号使用第二信道接入方式的概率;其中,所述第一信号包括第一节点的待发射信道/信号,所述第二信号包括第一节点的已发射信道/信号和第二节点的已发射信道/信号。
在一些实施例中,第一信号传输情况包括以下至少之一:
第一节点的第一信号的信号类型,其中,信号类型包括物理边连璐控制信道(Physical Sidelink Control Channel,PSCCH)/物理边连璐共享信道(Physical Sidelink Shared Channel,PSSCH),侧链路同步信号块(Sidelink Synchronization Signal Block,S-SSB),物理边链路反馈信道(Physical Sidelink Feedback Channel,PSFCH),信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS),定位参考信号(Positioning Reference Signal,PRS)中至少之一;
第一节点的第一信号的信道接入优先级等级;
第一节点的第一信号关联的业务信道的信道接入优先级等级;
第一节点的第一信号的重传次数;
第一节点的第一信号关联的业务信道的重传次数;
第一节点的第一信号所在的组;
第一节点的第一信号所在的组内的相对位置;
第一节点的第一信号的反馈时机。
在一些实施例中,图2是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第一信号传输情况包括第一节点的第一信号的信号类型为例,参见图2,本申请实施例提供的方法具体包括如下步骤:
步骤210、第一节点获取第一信息。
步骤220、根据第一信息确定第一信号使用第二信道接入方式的概率,概率与第一节点的第一信号的信号类型一一对应;第一信号的信号类型与概率的对应关系根据系统配置、预配置、或者预定义规则确定。
其中,第二信道接入方式可以适用于特殊信号的传输,或者COT内的信号传输,第二类型信道接入方式包括type 2A,type2B,type2C三种。其中type2A要求当前传输与之前的传输之间的gap为25us,type2B要求当前传输与之前的传输之间的gap为16us,type2C要求当前传输与之前的传输之间的gap为不超过16us,type 2A/type2B/type2C三种方式分别对应传输之前的LBT只需要分别监听25us,16us或者不监听信道三种情况。第一信号的信号类型可以包括PSCCH/PSSCH,S-SSB,PSFCH,PRS,CSI-RS中至少之一。
在本申请实施例中,第一信息中包括第一节点的第一信号的信号类型,第一节点通过第一信号的信号类型确定第二类型信道接入方式的概率,该概率与第一信号的信号类型存在一一对应关系,该对应关系可以由系统配置、预配置、或者预定义规则确定。进一步的,对应关系中,信号类型对应的信号传输越紧急,则该信号类型对应的第二类型信道接入方式的概率则越高。
在另一些实施例中,图3是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第一信号的传输情况包括第一节点的第一信号的信道接入优先级等级为例,参见图3,本申请实施例提供的方法具体包括如下步骤:
步骤310、第一节点获取第一信息。
步骤320、根据第一信息确定第一信号使用第二信道接入方式的概率,概率与第一信息中第一节点的第一信号的信道接入优先级等级一一对应;第一信号的信道接入优先级等级与概率的对应关系根据系统配置、预配置、或者预定义规则确定。
在本申请实施例中,第一信息中包括第一节点的第一信号的信道接入优先级,第一节点通过该信道接入优先级等级确定一一对应的第一信号使用第二类信号接入方式的概率,该概率与信道接入优先级等级的对应关系可以由系统配 置、预配置、或者预定义规则确定。进一步的,在一些实施例中,信道接入优先级等级越高,则第一信号使用第二类接入方式的概率越高。
在另一些实施例中,图4是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第一信号的传输情况包括第一节点的第一信号关联的业务信道的信道接入优先级等级为例,参见图4,本申请实施例提供的方法具体包括如下步骤:
步骤410、第一节点获取第一信息。
步骤420、根据第一信息确定第一信号使用第二信道接入方式的概率,概率与第一节点的第一信号关联的业务信道的信道接入优先级等级一一对应;第一信号关联的业务信道的信道接入优先级等级与概率的对应关系根据系统配置、预配置、或者预定义规则确定。
具体的,第一信息中包括第一信号关联的业务信道的信道接入优先级等级,第一节点通过该第一信号关联的业务信道的信道接入优先级等级确定一一对应的第一信号使用第二类信号接入方式的概率,该概率与第一信号关联的业务信道的信道接入优先级等级的对应关系可以由系统配置、预配置、或者预定义规则确定。进一步的,在一些实施例中,第一信号关联的业务信道的信道接入优先级等级越高,则第一信号使用第二类接入方式的概率越高。
在另一些实施例中,图5是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第一信号的传输情况包括第一节点的第一信号的重传次数为例,参见图5,本申请实施例提供的方法具体包括如下步骤:
步骤510、第一节点获取第一信息。
步骤520、根据第一信息确定第一信号使用第二信道接入方式的概率,概率与第一节点的第一信号的重传次数一一对应;第一信号的重传次数与概率的对应关系根据系统配置、预配置、或者预定义规则确定。
在本申请实施例中,第一信息包括第一节点的第一信号的重传次数,第一节点通过第一信号的重传次数的信道接入优先级等级确定一一对应的第一信号使用第二类信号接入方式的概率,该概率与第一节点的第一信号的重传次数的对应关系可以由系统配置、预配置、或者预定义规则确定。进一步的,在一些实施例中,第一节点的第一信号的重传次数越少,则第一信号使用第二类接入方式的概率越高。
在另一些实施例中,图6是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第一信号的传输情况包括第一节点的第一信号关联的业务信道的重传次数为例,参见图6,本申请实施例提供的方法具体包括如 下步骤:
步骤610、第一节点获取第一信息。
步骤620、根据第一信息确定第一信号使用第二信道接入方式的概率,概率与第一节点的第一信号关联的业务信道的重传次数一一对应;第一信号关联的业务信道的业务信道的重传次数与概率的对应关系根据系统配置、预配置、或者预定义规则确定。
在本申请实施例中,第一信号包括第一节点的第一信号关联的业务信道的重传次数,第一节点确定与第一信号关联的业务信道的重传次数存在一一对应的第二信道接入方式的概率,该概率与第一信号关联的业务信道的重传次数的对应关系可由系统配置、预配置、或者预定义规则确定。在一些实施例中,第一节点的第一信号关联的业务信道的重传次数越少,则第一信号使用第二类接入方式的概率越高。
在另一些实施例中,图7是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第一信号的传输情况包括第一节点的第一信号所在的组为例,参见图7,本申请实施例提供的方法具体包括如下步骤:
步骤710、第一节点获取第一信息。
步骤720、根据第一信息确定第一信号使用第二信道接入方式的概率,概率与第一节点的第一信号所在的组一一对应;第一信号所在的组与概率的对应关系根据系统配置、预配置、或者预定义规则确定。
在本申请实施例中,第一信号包括第一节点的第一信号所在的组,第一节点确定与第一信号所在的组存在一一对应的第二信道接入方式的概率,该概率与第一节点的第一信号所在的组的对应关系可由系统配置、预配置、或者预定义规则确定。可以理解的是,第一信号位于不同的组,对应的第二信道接入方式的概率可以不同。
在另一些实施例中,图8是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第一信号的传输情况包括第一节点的第一信号所在的组内的相对位置为例,参见图8,本申请实施例提供的方法具体包括如下步骤:
步骤810、第一节点获取第一信息。
步骤820、根据第一信息确定所述第一信号使用第二信道接入方式的概率,概率与第一节点的第一信号所在的组内的相对位置一一对应;第一信号所在的组内的相对位置与概率的对应关系根据系统配置、预配置、或者预定义规则确定。
具体的,第一信号包括第一节点的第一信号所在的组内的相对位置,第一节点确定与第一节点的第一信号所在的组内的相对位置存在一一对应的第二信道接入方式的概率,该概率与第一节点的第一信号所在的组内的相对位置的对应关系可由系统配置、预配置、或者预定义规则确定。可以理解的是,第一信号位于组内的不同相对位置,对应的第二信道接入方式的概率可以不同。可以理解的是,第一信号位于的组可以不同也可以相同,例如,在不同组的相同相对位置的第一信号对应的第二信道接入方式的概率可以相同,或者,在不同组的相同相对位置的第一信号对应的第二信道接入方式的概率可以不同。
在另一些实施例中,图9是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第一信号的传输情况包括第一节点的第一信号的反馈时机为例,参见图9,本申请实施例提供的方法具体包括如下步骤:
步骤910、第一节点获取第一信息。
步骤920、根据第一信息确定第一信号使用第二信道接入方式的概率,概率与第一节点的第一信号的反馈时机一一对应;第一信号的反馈时机与概率的对应关系根据系统配置、预配置、或者预定义规则确定。
在本申请实施例中,第一信号包括第一节点的第一信号的反馈时机,第一节点确定与第一节点的第一信号的反馈时机存在一一对应的第二信道接入方式的概率,该概率与第一节点的第一信号的反馈时机的对应关系可由系统配置、预配置、或者预定义规则确定。在一些实施例中,反馈时机越接近第一信号的最后发送时间,则对应的第二信道接入方式的概率可以越高。
在一些示例性的实施方式中,上述第一信息中可以包括多种第一信号传输情况,可以通过多种第一信号传输情况共同确定第二信道接入方式的概率,参见图10,对于PSSCH对应的多次时域不连续的PSFCH反馈机会,根据当前PSFCH反馈机会在PSSCH对应的多次PSFCH反馈机会中的相对位置确定当前PSFCH的信道接入方式,第一节点的PSFCH的反馈机会越接近最后一次反馈机会,使用第二信道接入方式的概率越高,对应使用第一信道接入方式的概率就越低。
在一些实施例中,PSFCH的反馈机会与第二信道接入方式的概率的对应关系可以如下表1所示:
表1

在另一些实施例中,可以通过PSSCH对应的PSFCH的信道接入方式,可以根据PSSCH的重传次数确定PSSCH对应的PSFCH的信道接入方式,在PSSCH传输越接近最大传输次数,则PSSCH对应的PSFCH使用第二信道接入方式接入信道的概率就越高,对应使用第一信道接入方式的概率就越低。
在一些实施例中,PSSCH最大2次重传为例,PSSCH的重传次数与PSSCH的第二信道接入方式的概率的对应关系可以如下表2所示:
表2
在一些实施例中,对于确定PSSCH传输使用的信道接入方式,可以根据当前PSSCH的重传次数确定当前PSSCH的信道接入方式,在PSSCH传输越接近最大传输次数,则PSSCH使用第二信道接入方式接入信道的概率就越高,对应使用第一信道接入方式的概率就越低。
在一些实施例中,PSSCH最大2次重传为例,PSSCH的重传次数与PSSCH的第二信道接入方式的概率的对应关系可以如下表3所示:
表3
在一些实施例中,使用第二信道接入方式的概率还可以与PSFCH关联的 PSSCH或者PSSCH的信道接入优先级(Channel Access Priority Class,CAPC)对应起来,不同的PSSCH的CAPC对应不同PSFCH第二信道接入方式的概率组合或者对应不同的PSSCH第二信道接入方式的概率。
在一些实施例中,PSFCH对应的PSSCH的CAPC等级越高,则PSFCH使用第二信道接入方式接入信道的概率越大。
在另一些实施例中,PSSCH的CAPC等级越高,则PSSCH使用第二信道接入方式的概率越大。
在一些实施例中,一个PSSCH传输对应3个PSFCH传输机会为例,在考虑CAPC时,PSFCH使用第二信道接入方式接入信道的概率的对应关系可以如下表4所示:
表4
在另一些实施例中,对于PSSCH对应的PSFCH反馈机会,根据PSSCH的重传次数以及PSSCH的CAPC确定PSFCH的信道接入使用第二信道接入方式的概率,PSSCH的重传次数和CAPC与概率的对应关系可以如下表5所示,其中,PSSCH最大2次重传。
表5

在另一个实施例中,对于PSSCH传输,根据当前PSSCH的重传次数和PSSCH的CAPC确定PSSCH的信道接入使用第二信道接入方式的概率,PSSCH的重传次数和CAPC与概率的对应关系可以如下表6所示,其中,PSSCH最大2次重传。
表6

在一些实施例中,对于S-SSB信号的多次时域发送机会,可以根据S-SSB所在的分组以及时域发送机会确定S-SSB信号的接入方式为第二信道接入方式的概率,在越接近最后一次发送机会时,S-SSB信号使用接入方式为第二信道接入方式的概率越高,对应的,接入方式为第一信道接入方式的概率就越低。参见图11,系统内S-SSB对应的资源可以进行分组,不同分组可以对应不同的概率,S-SSB使用第二类型信道接入方式接入信道的概率和分组可以如下表7。
表7
在一些实施例中,前述的概率的确定方法包括配置,预配置,或者系统预定义。
在另一些实施例中,第二信号的传输情况包括以下至少之一:
第一节点的第一信号之前的第一节点的第二信号的信道占用时间;
第一节点的第一信号之前的第一节点的第二信号的信道接入优先级等级;
第一节点的第一信号之前的第二节点的第二信号的信道占用时间;
第一节点的第一信号之前的第二节点的第二信号的信道接入优先级等级;
第一节点在观察时间内使用第二信道接入方式发送的信号/信道的发射次数;
第一节点在观察时间内使用第二信道接入方式发送的信号/信道的发射总时长;
第一节点在观察时间内使用第二信道接入方式发送的信号/信道的子信道使用数目;
第一节点在观察时间内使用第二信道接入方式发送的信号/信道的时隙使用数目;
第一节点在观察时间内使用第二信道接入方式发送的信号/信道的资源块集数目;
第一节点统计的信道忙率;
第一节点统计的信道占用率。
在本申请实施例中,可以通过第二信号的传输情况分别与门限值进行比较从而确定第一节点的第一信号接入信道的方式,可以理解的是,根据第二信号的传输情况中包括的参数的不同,门限值可以具有不同的含义,例如,与第一节点统计的信道忙率比较的门限值可以与第一节点统计的信道占用率比较的门限值不同。
在一个示例性的实施方式中,根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括以下至少之一:
发射次数满足门限值,第一信号的信道接入方式为第二信道接入方式;
发射总时长满足门限值,第一信号的信道接入方式为第二信道接入方式;
子信道使用数目满足门限值,第一信号的信道接入方式为第二信道接入方式;
时隙使用数目满足门限值,第一信号的信道接入方式为第二信道接入方式;
资源块集数目满足门限值,第一信号的信道接入方式为第二信道接入方式;
发射次数不满足门限值,第一信号的信道接入方式为第一信道接入方式;
发射总时长不满足门限值,第一信号的信道接入方式为第一信道接入方式;
子信道使用数目不满足门限值,第一信号的信道接入方式为第一信道接入 方式;
时隙使用数目不满足门限值,第一信号的信道接入方式为第一信道接入方式;
资源块集数目不满足门限值,第一信号的信道接入方式为第一信道接入方式;
其中,门限值根据系统配置、预配置、或者预定义规则确定。
在本申请实施例中,在第一节点在观察时间内使用第二信道接入方式发送的信号/信道的发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目中一种或多种满足各自对应的门限值,和/或,第一节点在观察时间内使用第二信道接入方式发送的信号/信道的发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目共同满足门限值时,第一信号可以使用第二信道接入方式接入信道,否则,第一信号可以使用第一信道接入方式接入信道,也即,第一节点在观察时间内使用第二信道接入方式发送的信号/信道的发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目均不满足各自对应的门限值,和/或,第一节点在观察时间内使用第二信道接入方式发送的信号/信道的发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目中至少之一不满足共同对应的门限值,则第一信号可以使用第一信道接入方式接入信道,其中,门限值可以为系统配置、预配置、或者预定义规则确定,满足门限值可以包括大于或等于门限值、小于或等于门限值、大于门限值、小于门限值等。
图12是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第二信号的传输情况包括第一节点在观察时间内使用第二信道接入方式发送的信号/信道的发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目等信息为例,参见图12,本申请实施例提供的方法具体包括如下步骤:
步骤1010、第一节点获取第一信息。
步骤1020、发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目中至少之一满足门限值,第一信号的信道接入方式为第二信道接入方式。
在本申请实施例中,在观察时间内的第二信道接入方式发送的信号/信道的发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目中至少一种满足门限值时,确定第一信号的信道接入方式为第二信道接入方式,该门限值可以包括发射次数、发射总时长、子信道使用数目、时隙使用数目、资 源块集数目中分别满足各自对应的门限值,例如,发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目中至少之一分别大于或等于各自对应的门限值,或者,发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目中至少之一分别小于或等于各自对应的门限值。
步骤1030、发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目均不满足门限值,第一信号的信道接入方式为第一信道接入方式。
具体的,在观察时间内的第二信道接入方式发送的信号/信道的发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目均不满足门限值时,确定第一信号的信道接入方式为第一信道接入方式,该门限值可以包括发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目中均不满足各自对应的门限值,例如,发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目中至少之一分别小于各自对应的门限值,或者,发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目中至少之一分别大于各自对应的门限值。
在一些示例性的实施方式中,PSFCH、S-SSB,PRS,CSI-RS,PSCCH或PSSCH在发射前的一段时间内,可以统计终端所有以第二信道接入方式发送的边链路信号/信道的发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目等信息,在发射次数、发射总时长、子信道使用数目、时隙使用数目、资源块集数目中至少之一分别低于各自的门限或者他们中至少之一的组合低于一个门限的情况下,PSFCH、S-SSB,PRS,CSI-RS、PSCCH或PSSCH使用第二信道接入方式接入信道,否则,PSFCH、S-SSB,PRS,CSI-RS,PSCCH或PSSCH使用第一信道接入方式接入信道。
图13是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第二信号的传输情况包括第一节点的第二信号的信号占用时间为例,参见图13,本申请实施例提供的方法具体包括如下步骤:
步骤1110、第一节点获取第一信息。
步骤1120、第一信号的传输时间属于第一节点的第一信号之前的第一节点的第二信号的信道占用时间,第一信号的信道接入方式为第二信道接入方式。
在本申请实施例中,在第一信号的传输时间在第一信号之前发射的第一节点的第二信号的信道占用时间内,第一信号的信道接入方式可以为第二信道接入方式。
步骤1130、第一信号的传输时间不属于第一节点的第一信号之前的第一节点的第二信号的信道占用时间,第一信号的信道接入方式为第一信道接入方式。
具体的,在第一信号的传输时间不在第一信号之前发射的第一节点的第二信号的信道占用时间内,第一信号的信道接入方式可以为第一信道接入方式。
图14是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第二信号的传输情况包括第二节点的第二信号的信号占用时间为例,参见图14,本申请实施例提供的方法具体包括如下步骤:
步骤1210、第一节点获取第一信息。
步骤1220、第一信号的传输时间属于第一节点的第一信号之前的第二节点的第二信号的信道占用时间,第一信号的信道接入方式为第二信道接入方式。
在本申请实施例中,在第一信号的传输时间位于在第一信号之前第二节点传输的第二信号的信道占用时间内,第一信号的信道接入方式可以使用第二信道接入方式。
步骤1230、第一信号的传输时间不属于第一节点的第一信号之前的第二节点的第二信号的信道占用时间,第一信号的信道接入方式为第一信道接入方式。
具体的,在第一信号的传输时间不位于在第一信号之前第二节点传输的第二信号的信道占用时间内,第一信号的信道接入方式可以使用第一信道接入方式。
在一个示例性的实施方式中,在边链路传输的模式1的情况下,基站一个下行链路控制信息(Downlink Control Information,DCI)调度终端设备的多个PSSCH的传输和/或PSSCH关联的多个PSFCH的传输,第一个传输的信号或信道使用第一信道接入方式或第二信道接入方式成功接入信道,在下一次传输的信号或信道的传输时间还在前一次传输的信号或信道的COT内,则下一次传输的信号或信道使用第二信道接入方式对进行信道接入,否则,则下一次传输的信号或信道使用第一信道接入方式进行信道接入。
在另一个示例性的实施方式中,在边链路传输的模式2的情况下,终端设备的多个PSSCH的传输和/或PSSCH关联的多个PSFCH的传输,第一个传输的信号或信道使用第一信道接入方式或第二信道接入方式成功接入信道,在下一次传输的信号或信道的传输时间还在前一次传输的信号或信道的COT内,则下一次传输的信号或信道使用第二信道接入方式对进行信道接入,否则,则下一次传输的信号或信道使用第一信道接入方式进行信道接入。
图15是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第二信号的传输情况包括第二节点的第二信号的信号占用时间为例,参见图15,本申请实施例提供的方法具体包括如下步骤:
步骤1310、第一节点获取第一信息。
步骤1320、第一信号的信道接入优先级等级满足第一节点的第一信号之前的第二节点的第二信号的信道接入优先级等级,第一信号的信道接入方式为第二信道接入方式。
在本申请实施例中,第一信号的信道接入优先级等级满足第二节点的第二信号的信道接入优先级等级,该满足可以包括第一信号的信道接入优先级等级大于或等于第二节点的第二信号的信道优先级等级,或者,第一信号的信道接入优先级等级小于或等于第二节点的第二信道的信道优先级等级;在第一信号的信道接入优先级等级大于或等于第二节点的第二信号的信道优先级等级,或者,第一信号的信道接入优先级等级小于或等于第二节点的第二信道的信道优先级等级的情况下,可以确定第一信号使用第二信道接入方式接入信道。
步骤1330、第一信号的信道接入优先级等级不满足第一节点的第一信号之前的第二节点的第二信号的信道接入优先级等级,第一信号的信道接入方式为第一信道接入方式。
具体的,第一信号的信道接入优先级等级不满足第二节点的第二信号的信道接入优先级等级,该不满足可以包括第一信号的信道接入优先级等级小于第二节点的第二信号的信道优先级等级,或者,第一信号的信道接入优先级等级大于第二节点的第二信道的信道优先级等级;在不满足的情况下,可以确定第一信号使用第一信道接入方式接入信道。
图16是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第二信号传输情况包括信道占用率为例,参见图16,本申请实施例提供的方法具体包括如下步骤:
步骤1410、第一节点获取第一信息。
步骤1420、第一节点统计的信道占用率满足门限值,第一信号的信道接入方式为第二信道接入方式。
在本申请实施例中,在第一节点统计的信道占用率第一节点统计的信道占用率大于或等于门限值,或第一节点统计的信道占用率小于或等于门限值的情况下,第一信号可以使用第二信道接入方式接入信道。可以理解的是,本申请实施例中满足可以包括第一节点统计的信道占用率大于或等于门限值,或第一节点统计的信道占用率小于或等于门限值,该门限值可以由根据系统配置、预配置、或者预定义规则确定。
步骤1430、第一节点统计的信道占用率不满足门限值,第一信号的信道接入方式为第一信道接入方式。
在本申请实施例中,在第一节点统计的信道占用率不满足门限值的情况下, 第一信号可以使用第一信道接入方式接入信道。该不满足可以包括第一节点统计的信道占用率小于或等于门限值,或第一节点统计的信道占用率大于或等于门限值,该门限值可以由根据系统配置、预配置、或者预定义规则确定。
图17是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第二信号的传输情况包括信道忙率为例,参见图17,本申请实施例提供的方法具体包括如下步骤:
步骤1510、第一节点获取第一信息。
步骤1520、第一节点统计的信道忙率满足门限值,第一信号的信道接入方式为第二信道接入方式。
在本申请实施例中,在第一节点统计的信道忙率满足门限值的情况下,第一信号可以使用第二信道接入方式接入信道。该满足可以包括第一节点统计的信道忙率大于或等于门限值,或第一节点统计的信道忙率小于或等于门限值,该门限值可以由根据系统配置、预配置、或者预定义规则确定。
步骤1530、第一节点统计的信道忙率不满足门限值,第一信号的信道接入方式为第一信道接入方式。
在本申请实施例中,在第一节点统计的信道忙率不满足门限值的情况下,第一信号可以使用第一信道接入方式接入信道。该满足可以包括第一节点统计的信道忙率小于或等于门限值,或第一节点统计的信道忙率大于或等于门限值,该门限值可以由根据系统配置、预配置、或者预定义规则确定。
在一些实施例中,信道忙率包括以下至少之一:
信道忙率的频域统计范围为边链路资源池频域范围;
信道忙率的频域统计范围为第一信号所在资源块集的频域范围;
信道忙率的时域统计范围为配置,预配置或者预定的一个时间窗口内的有效时隙;
信道忙率的时域统计范围为配置,预配置或者预定的一个时间窗口内的有效符号。
在另一些实施例中,信道忙率的统计包括以下至少之一:
在统计时间窗内的时域资源和频域资源上统计能量大于门限的时隙数目与所述统计时间窗内总时隙数目的比值;
在统计时间窗内的时域资源和频域资源上统计能量大于门限的符号数目与所述统计时间窗内总符号数目的比值;
在统计时间窗内时域资源上的目标能量中大于门限的时隙数目与所述统计时间窗内总时隙数目的比值,其中,所述目标能量为统计时间窗内非3GPP系统信道/信号占据的能量。
在本申请实施例中,非3GPP系统信道/信号可以为总能量中去除PSCCH、PSSCH、S-SSB、PSFCH、物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理随机接入信道(Physical Random Access Channel,PRACH)、探测参考信号(Sounding Reference Signal,SRS)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、CSI-RS、SSB、PRS、远程干扰管理参考信号(Remote Interference Management-Reference Signal,RIM-RS)以及循环前缀扩展(Cyclic Prefix Extension,ECP)等3GPP系统定义的信道或者信号后的信道/信号。
在一些实施例中,图18是本申请实施例提供的一种边链路信道接入方式的确定方法的示例图,参见图18,可以在PSFCH、S-SSB、PSCCH或PSSCH等发射前的一段时间窗内统计信道占用率,信道占用率低于门限,PSFCH、S-SSB、PSCCH或PSSCH等使用第二信道接入方式接入信道,否则使用第一信道接入方式接入信道。
在另一些实施例中,可以在PSFCH、S-SSB、PSCCH或PSSCH等发射前的一段时间窗内统计信道忙率,信道忙率低于门限,PSFCH、S-SSB、PSCCH或PSSCH等使用第二信道接入方式接入信道,否则使用第一信道接入方式接入信道。
图19是本申请实施例提供的一种边链路信道接入方式的确定方法的流程图,以通过第二信号的传输情况包括第一节点的第一信号之前的第二节点的第二信号的信道占用时间为例,参见图19,本申请实施例提供的方法具体包括如下步骤:
步骤1610、第一节点获取第一信息。
步骤1620、第一信号的传输时间位于第一节点的第一信号之前的第二节点的第二信号的信道占用时间内,且第一节点不共享信道占用时间,第一信号的信道接入方式为第一信道接入方式,且第二信号的传输不影响第一节点的第一信道接入方式的信道侦听的计数器递减。
在本申请实施例中,第一信号的传输时间位于第二节点的第二信号的信道占用时间内,第一节点不共享该信道占用时间,第一信号使用第一信道接入方式进行信道接入,在这种情况下,第二信号的传输不影响第一节点的第一信道 接入方式的信道侦听的计数器递减。
在一些实施例中,边链路信道或者信号在传输之前,如果有其他已知的3GPP系统信号/信道传输,且边链路信道或信号不能共享该信号的COT时,其他已知的信道/信号的传输不影响边链路信道/信号使用第一信道接入方式时信道侦听的计数器递减。其中,3GPP信号/信道包括:PSCCH/PSSCH/S-SSB/PSFCH/PUCCH/PUSCH/PRACH/SRS、PDCCH/PDSCH/CSI-RS/SSB/PRS/RIM-RS以及ECP等可以被终端设备(User Equipment,UE)识别或者预知的3GPP系统定义的信道/信号。
在另一些实施例中,边链路信道或者信号在传输之前,如果有其他已知的3GPP系统信号/信道分享出来的COT,且边链路信道或信号传输在分享出来的COT之内,则无论当前传输的CAPC和分享COT的传输的CAPC的高低,边链路信道或信号都可以继续使用分享出来的COT,边链路信道或信号可以使用第二信道接入方式接入信道。
图20是本申请实施例提供的一种边链路信道接入方式的确定装置的结构示意图,可执行本申请任意实施例所提供的边链路信道接入方式的确定方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现,一般集成在终端设备,参见图20,该装置具体包括:信息获取模块101和方式确定模块102。
信息获取模块101,用于第一节点获取第一信息。
方式确定模块102,用于根据所述第一信息确定所述第一节点的第一信号的信道接入方式。
本申请实施例,通过信息获取模块获取第一信息,方式确定模块根据第一信息确定第一信号的信道接入方式,实现准确确定边链路的信道接入方式,提高信道接入成功率。
在一些实施例中,装置中第一信息包括以下至少之一:第一信号的传输情况,第二信号的传输情况,第一信号的传输情况对应的第一信号使用第二信道接入方式的概率;其中,所述第一信号包括第一节点的待发射信道/信号,所述第二信号包括第一节点的已发射信道/信号和第二节点的已发射信道/信号。
在一些实施例中,装置中第一信号的传输情况包括以下至少之一:
所述第一节点的第一信号的信号类型,其中,所述信号类型包括PSCCH/PSSCH,S-SSB,PSFCH,CSI-RS中至少之一;
所述第一节点的第一信号的信道接入优先级等级;
所述第一节点的第一信号关联的业务信道的信道接入优先级等级;
所述第一节点的第一信号的重传次数;
所述第一节点的第一信号关联的业务信道的重传次数;
所述第一节点的第一信号所在的组;
所述第一节点的第一信号所在的组内的相对位置;
所述第一节点的第一信号的反馈时机。
在一些实施例中,方式确定模块102具体用于:根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号的信号类型一一对应;所述第一信号的信号类型与所述概率的对应关系根据系统配置、预配置、或者预定义规则确定。
在一些实施例中,方式确定模块102具体用于:根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一信息中所述第一节点的第一信号的信道接入优先级等级一一对应;所述第一信号的信道接入优先级等级与所述概率的对应关系根据系统配置、预配置、或者预定义规则确定。
在一些实施例中,方式确定模块102具体用于:根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号关联的业务信道的信道接入优先级等级一一对应;
所述第一信号关联的业务信道的信道接入优先级等级与所述概率的对应关系根据系统配置、预配置、或者预定义规则确定。
在一些实施例中,方式确定模块102具体用于:根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号的重传次数一一对应;所述第一信号的重传次数与所述概率的对应关系根据系统配置、预配置、或者预定义规则确定。
在一些实施例中,方式确定模块102具体用于:根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号关联的业务信道的重传次数一一对应;所述第一信号关联的业务信道的业务信道的重传次数与所述概率的对应关系根据系统配置、预配置、或者预定义规则确定。
在一些实施例中,方式确定模块102具体用于:根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号所在的组一一对应;所述第一信号所在的组与所述概率的对应关系根据系统 配置、预配置、或者预定义规则确定。
在一些实施例中,方式确定模块102具体用于:根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号所在的组内的相对位置一一对应;所述第一信号所在的组内的相对位置与所述概率的对应关系根据系统配置、预配置、或者预定义规则确定。
在一些实施例中,方式确定模块102具体用于:根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号的反馈时机一一对应;所述第一信号的反馈时机与所述概率的对应关系根据系统配置、预配置、或者预定义规则确定。
在一些实施例中,装置中第二信号的传输情况包括以下至少之一:
所述第一节点的第一信号之前的第一节点的第二信号的信道占用时间;
所述第一节点的第一信号之前的第一节点的第二信号的信道接入优先级等级;
所述第一节点的第一信号之前的第二节点的第二信号的信道占用时间;
所述第一节点的第一信号之前的第二节点的第二信号的信道接入优先级等级;
所述第一节点在观察时间内使用第二信道接入方式发送的信号/信道的发射次数;
所述第一节点在观察时间内使用第二信道接入方式发送的信号/信道的发射总时长;
所述第一节点在观察时间内使用第二信道接入方式发送的信号/信道的子信道使用数目;
所述第一节点在观察时间内使用第二信道接入方式发送的信号/信道的时隙使用数目;
所述第一节点在观察时间内使用第二信道接入方式发送的信号/信道的资源块集数目;
所述第一节点统计的信道忙率;
所述第一节点统计的信道占用率。
在一些实施例中,方式确定模块102具体用于以下至少之一:
所述发射次数满足门限值,所述第一信号的信道接入方式为第二信道接入方式;
所述发射总时长满足门限值,所述第一信号的信道接入方式为第二信道接入方式;
所述子信道使用数目满足门限值,所述第一信号的信道接入方式为第二信道接入方式;
所述时隙使用数目满足门限值,所述第一信号的信道接入方式为第二信道接入方式;
所述资源块集数目满足门限值,所述第一信号的信道接入方式为第二信道接入方式;
所述发射次数不满足门限值,所述第一信号的信道接入方式为第一信道接入方式;
所述发射总时长不满足门限值,所述第一信号的信道接入方式为第一信道接入方式;
所述子信道使用数目不满足门限值,所述第一信号的信道接入方式为第一信道接入方式;
所述时隙使用数目不满足门限值,所述第一信号的信道接入方式为第一信道接入方式;
所述资源块集数目不满足门限值,所述第一信号的信道接入方式为第一信道接入方式;
其中,所述门限值根据系统配置、预配置、或者预定义规则确定。
在一些实施例中,方式确定模块102具体用于:根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括:所述第一信号的传输时间属于所述第一节点第一信号之前的第一节点的第二信号的信道占用时间,所述第一信号的信道接入方式为第二信道接入方式;所述第一信号的传输时间不属于所述第一节点的第一信号之前的第一节点的第二信号的信道占用时间,所述第一信号的信道接入方式为第一信道接入方式。
在一些实施例中,方式确定模块102具体用于:所述第一信号的传输时间属于所述第一节点的第一信号之前的第二节点的第二信号的信道占用时间信息,所述第一信号的信道接入方式为第二信道接入方式;所述第一信号的传输时间不属于所述第一节点的第一信号之前的第二节点的第二信号的信道占用时间信息,所述第一信号的信道接入方式为第一信道接入方式。
在一些实施例中,方式确定模块102具体用于:所述第一信号的信道接入优先级等级满足所述第一节点的第一信号之前的第二节点的第二信号的信道接 入优先级等级,所述第一信号的信道接入方式为第二信道接入方式;所述第一信号的信道接入优先级等级不满足所述第一节点的第一信号之前的第二节点的第二信号的信道接入优先级等级,所述第一信号的信道接入方式为第一信道接入方式。
在一些实施例中,方式确定模块102具体用于:所述第一节点统计的信道占用率满足门限值,所述第一信号的信道接入方式为第二信道接入方式;所述第一节点统计的信道占用率不满足门限值,所述第一信号的信道接入方式为第一信道接入方式。
在一些实施例中,方式确定模块102具体用于:所述第一节点统计的信道忙率满足门限值,所述第一信号的信道接入方式为第二信道接入方式;所述第一节点统计的信道忙率不满足门限值,所述第一信号的定信道接入方式为第一信道接入方式。
在一些实施例中,装置中信道忙率包括以下至少之一:
所述信道忙率的频域统计范围为边链路资源池频域范围;
所述信道忙率的频域统计范围为第一信号所在资源块集的频域范围;
所述信道忙率的时域统计范围为配置,预配置或者预定的一个时间窗口内的有效时隙;
所述信道忙率的时域统计范围为配置,预配置或者预定的一个时间窗口内的有效符号。
在一些实施例中,装置中信道忙率的统计包括以下至少之一:
在统计时间窗内的时域资源和频域资源上统计能量大于门限的时隙数目与所述统计时间窗内总时隙数目的比值;
在统计时间窗内的时域资源和频域资源上统计能量大于门限的符号数目与所述统计时间窗内总符号数目的比值;
在统计时间窗内时域资源上的目标能量中大于门限的时隙数目与所述统计时间窗内总时隙数目的比值,其中,所述目标能量为所述统计时间窗内非3GPP系统信道/信号占据的能量。
在一些实施例中,方式确定模块102具体用于:所述第一信号的传输时间位于所述第一节点的第一信号之前的第二节点的第二信号的信道占用时间内,且所述第一节点不共享所述信道占用时间,所述第一信号的信道接入方式为第一信道接入方式,且所述第二信号的传输不影响所述第一节点的第一信道接入方式的信道侦听的计数器递减。
图21是本申请实施例提供的一种电子设备的结构示意图,该电子设备包括处理器40、存储器41、输入装置42和输出装置43;电子设备中处理器40的数量可以是一个或多个,图21中以一个处理器40为例;电子设备中处理器40、存储器41、输入装置42和输出装置43可以通过总线或其他方式连接,图21中以通过总线连接为例。
存储器41作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的边链路信道接入方式的确定装置对应的模块(信息获取模块101和方式确定模块102)。处理器40通过运行存储在存储器41中的软件程序、指令以及模块,从而执行电子设备的各种功能应用以及数据处理,即实现上述的边链路信道接入方式的确定方法。
存储器41可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器41可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器41可进一步包括相对于处理器40远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置42可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。输出装置43可包括显示屏等显示设备。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种边链路信道接入方式的确定方法,该方法包括:
第一节点获取第一信息;
根据所述第一信息确定所述第一节点的第一信号的信道接入方式。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
值得注意的是,上述装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由多个物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、便携式只读光盘存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (23)

  1. 一种边链路信道接入方式的确定方法,包括:
    第一节点获取第一信息;
    根据所述第一信息确定所述第一节点的第一信号的信道接入方式。
  2. 根据权利要求1所述方法,其中,所述第一信息包括以下至少之一:所述第一信号的传输情况,第二信号的传输情况,所述第一信号的传输情况对应的所述第一信号使用第二信道接入方式的概率;其中,所述第一信号包括所述第一节点的待发射信道/信号,所述第二信号包括所述第一节点已发射信道/信号和第二节点已发射信道/信号。
  3. 根据权利要求2所述方法,其中,所述第一信号的传输情况包括以下至少之一:
    所述第一节点的第一信号的信号类型;
    所述第一节点的第一信号的信道接入优先级等级;
    所述第一节点的第一信号关联的业务信道的信道接入优先级等级;
    所述第一节点的第一信号的重传次数;
    所述第一节点的第一信号关联的业务信道的重传次数;
    所述第一节点的第一信号所在的组;
    所述第一节点的第一信号所在的组内的相对位置;
    所述第一节点的第一信号的反馈时机。
  4. 根据权利要求1所述方法,其中,所述根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括:
    根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号的信号类型一一对应;
    所述第一信号的信号类型与所述概率的对应关系根据系统配置、预配置、或者预定义规则确定。
  5. 根据权利要求1所述方法,其中,所述根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括:
    根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一信息中所述第一节点的第一信号的信道接入优先级等级一一对应;
    所述第一信号的信道接入优先级等级与所述概率的对应关系根据系统配 置、预配置、或者预定义规则确定。
  6. 根据权利要求1所述方法,其中,所述根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括:
    根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号关联的业务信道的信道接入优先级等级一一对应;
    所述第一信号关联的业务信道的信道接入优先级等级与所述概率的对应关系根据系统配置、预配置、或者预定义规则确定。
  7. 根据权利要求1所述方法,其中,所述根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括:
    根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号的重传次数一一对应;
    所述第一信号的重传次数与所述概率的对应关系根据系统配置、预配置、或者预定义规则确定。
  8. 根据权利要求1所述方法,其中,所述根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括:
    根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号关联的业务信道的重传次数一一对应;
    所述第一信号关联的业务信道的业务信道的重传次数与所述概率的对应关系根据系统配置、预配置、或者预定义规则确定。
  9. 根据权利要求1所述方法,其中,所述根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括:
    根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号所在的组一一对应;
    所述第一信号所在的组与所述概率的对应关系根据系统配置、预配置、或者预定义规则确定。
  10. 根据权利要求1所述方法,其中,所述根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括:
    根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号所在的组内的相对位置一一对应;
    所述第一信号所在的组内的相对位置与所述概率的对应关系根据系统配 置、预配置、或者预定义规则确定。
  11. 根据权利要求1所述方法,其中,所述根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括:
    根据所述第一信息确定所述第一信号使用第二信道接入方式的概率,所述概率与所述第一节点的第一信号的反馈时机一一对应;
    所述第一信号的反馈时机与所述概率的对应关系根据系统配置、预配置、或者预定义规则确定。
  12. 根据权利要求2所述方法,其中,所述第二信号的传输情况包括以下至少之一:
    所述第一节点的第一信号之前的所述第一节点的第二信号的信道占用时间;
    所述第一节点的第一信号之前的所述第一节点的第二信号的信道接入优先级等级;
    所述第一节点是第一信号之前的所述第二节点的第二信号的信道占用时间;
    所述第一节点的第一信号之前的所述第二节点的第二信号的信道接入优先级等级;
    所述第一节点在观察时间内使用所述第二信道接入方式发送的信号/信道的发射次数;
    所述第一节点在观察时间内使用所述第二信道接入方式发送的信号/信道的发射总时长;
    所述第一节点在观察时间内使用所述第二信道接入方式发送的信号/信道的子信道使用数目;
    所述第一节点在观察时间内使用所述第二信道接入方式发送的信号/信道的时隙使用数目;
    所述第一节点在观察时间内使用所述第二信道接入方式发送的信号/信道的资源块集数目;
    所述第一节点统计的信道忙率;
    所述第一节点统计的信道占用率。
  13. 根据权利要求12所述方法,其中,所述根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括以下至少之一:
    所述发射次数满足门限值,所述第一信号的信道接入方式为所述第二信道接入方式;
    所述发射总时长满足门限值,所述第一信号的信道接入方式为所述第二信道接入方式;
    所述子信道使用数目满足门限值,所述第一信号的信道接入方式为所述第二信道接入方式;
    所述时隙使用数目满足门限值,所述第一信号的信道接入方式为所述第二信道接入方式;
    所述资源块集数目满足门限值,所述第一信号的信道接入方式为所述第二信道接入方式;
    所述发射次数不满足门限值,所述第一信号的信道接入方式为第一信道接入方式;
    所述发射总时长不满足门限值,所述第一信号的信道接入方式为第一信道接入方式;
    所述子信道使用数目不满足门限值,所述第一信号的信道接入方式为第一信道接入方式;
    所述时隙使用数目不满足门限值,所述第一信号的信道接入方式为第一信道接入方式;
    所述资源块集数目不满足门限值,所述第一信号的信道接入方式为第一信道接入方式;
    其中,所述门限值根据系统配置、预配置、或者预定义规则确定。
  14. 根据权利要求12所述方法,其中,所述根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括:
    所述第一信号的传输时间属于所述第一节点的第一信号之前的所述第一节点的第二信号的信道占用时间,所述第一信号的信道接入方式为所述第二信道接入方式;
    所述第一信号的传输时间不属于所述第一节点的第一信号之前的所述第一节点的第二信号的信道占用时间,所述第一信号的信道接入方式为第一信道接入方式。
  15. 根据权利要求12所述方法,其中,所述根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括:
    所述第一信号的传输时间属于所述第一节点的第一信号之前的所述第二节点的第二信号的信道占用时间,所述第一信号的信道接入方式为所述第二信道接入方式;
    所述第一信号的传输时间不属于所述第一节点的第一信号之前的所述第二节点的第二信号的信道占用时间,所述第一信号的信道接入方式为第一信道接入方式。
  16. 根据权利要求12所述方法,其中,所述根据所述第一信息确定所述第一节点的第一信号的信道接入方式,包括:
    所述第一信号的信道接入优先级等级满足所述第一节点的第一信号之前的所述第二节点的第二信号的信道接入优先级等级,所述第一信号的信道接入方式为所述第二信道接入方式;
    所述第一信号的信道接入优先级等级不满足所述第一节点的第一信号之前的所述第二节点的第二信号的信道接入优先级等级,所述第一信号的信道接入方式为第一信道接入方式。
  17. 根据权利要求12所述方法,其中,所述根据所述第一信息确定所述第一信号的信道接入方式,包括:
    所述第一节点统计的信道占用率满足门限值,所述第一信号的信道接入方式为所述第二信道接入方式;
    所述第一节点统计的信道占用率不满足门限值,所述第一信号的信道接入方式为第一信道接入方式。
  18. 根据权利要求12所述方法,其中,所述根据所述第一信息确定所述第一信号的信道接入方式,包括:
    所述第一节点统计的信道忙率满足门限值,所述第一信号的信道接入方式为所述第二信道接入方式;
    所述第一节点统计的信道忙率不满足门限值,所述第一信号的定信道接入方式为第一信道接入方式。
  19. 根据权利要求18所述方法,其中,所述信道忙率包括以下至少之一:
    所述信道忙率的频域统计范围为边链路资源池频域范围;
    所述信道忙率的频域统计范围为所述第一信号所在资源块集的频域范围;
    所述信道忙率的时域统计范围为配置,预配置或者预定的一个时间窗口内的有效时隙;
    所述信道忙率的时域统计范围为配置,预配置或者预定的一个时间窗口内的有效符号。
  20. 根据权利要求18所述方法,其中,所述信道忙率的统计包括以下至少之一:
    在统计时间窗内的时域资源和频域资源上统计能量大于门限的时隙数目与所述统计时间窗内总时隙数目的比值;
    在统计时间窗内的时域资源和频域资源上统计能量大于门限的符号数目与所述统计时间窗内总符号数目的比值;
    在统计时间窗内时域资源上的目标能量中大于门限的时隙数目与所述统计时间窗内总时隙数目的比值,其中,所述目标能量为所述统计时间窗内非第三代合作伙伴计划3GPP系统信道/信号占据的能量。
  21. 根据权利要求12所述方法,其中,所述根据所述第一信息确定所述第一信号的信道接入方式,包括:
    所述第一信号的传输时间位于所述第一节点的第一信号之前的所述第二节点的第二信号的信道占用时间内,且所述第一节点不共享所述信道占用时间,所述第一信号的信道接入方式为第一信道接入方式,且所述第二信号的传输不影响所述第一节点的第一信道接入方式的信道侦听的计数器递减。
  22. 一种电子设备,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-21中任一所述方法。
  23. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-21中任一所述方法。
PCT/CN2023/109323 2022-07-28 2023-07-26 边链路信道接入方式的确定方法、电子设备和存储介质 WO2024022385A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210899990.1A CN115843122A (zh) 2022-07-28 2022-07-28 边链路信道接入方式的确定方法、电子设备和存储介质
CN202210899990.1 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024022385A1 true WO2024022385A1 (zh) 2024-02-01

Family

ID=85574786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109323 WO2024022385A1 (zh) 2022-07-28 2023-07-26 边链路信道接入方式的确定方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN115843122A (zh)
WO (1) WO2024022385A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115843122A (zh) * 2022-07-28 2023-03-24 中兴通讯股份有限公司 边链路信道接入方式的确定方法、电子设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113207188A (zh) * 2019-07-31 2021-08-03 Oppo广东移动通信有限公司 一种信息传输方法、电子设备及存储介质
WO2022046441A1 (en) * 2020-08-28 2022-03-03 Qualcomm Incorporated Prioritized channel access for sidelink communication in shared channel
CN114258150A (zh) * 2020-09-25 2022-03-29 维沃移动通信有限公司 信道接入选择方法、装置、通信设备及可读存储介质
WO2022147797A1 (zh) * 2021-01-08 2022-07-14 Oppo广东移动通信有限公司 信道接入方法及设备
CN115843122A (zh) * 2022-07-28 2023-03-24 中兴通讯股份有限公司 边链路信道接入方式的确定方法、电子设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113207188A (zh) * 2019-07-31 2021-08-03 Oppo广东移动通信有限公司 一种信息传输方法、电子设备及存储介质
WO2022046441A1 (en) * 2020-08-28 2022-03-03 Qualcomm Incorporated Prioritized channel access for sidelink communication in shared channel
CN114258150A (zh) * 2020-09-25 2022-03-29 维沃移动通信有限公司 信道接入选择方法、装置、通信设备及可读存储介质
WO2022147797A1 (zh) * 2021-01-08 2022-07-14 Oppo广东移动通信有限公司 信道接入方法及设备
CN115843122A (zh) * 2022-07-28 2023-03-24 中兴通讯股份有限公司 边链路信道接入方式的确定方法、电子设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on NR-based Access to Unlicensed Spectrum; (Release 16)", 3GPP TR 38.889, no. V1.0.0, 30 November 2018 (2018-11-30), pages 1 - 120, XP051590972 *

Also Published As

Publication number Publication date
CN115843122A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
TWI713403B (zh) 業務傳輸的方法和裝置
US20220304059A1 (en) Method and Apparatus for Sharing Channel Occupancy Time on Unlicensed Spectrum
US11039448B2 (en) Resource scheduling method and apparatus
CN108811116B (zh) 传输控制信道的方法、网络设备、网络控制器和终端设备
WO2021020350A1 (en) Power management for integrated access and backhaul networks
EP3432674A1 (en) Data transmission method, network device and terminal device
WO2020258335A1 (zh) 控制资源配置、确定方法及装置、通信设备及存储介质
WO2021056471A1 (en) Method and apparatus for uplink data transmission or reception
WO2019028771A1 (zh) 传输数据的方法和终端设备
JP2022526707A (ja) ネットワークノード、ユーザ装置(ue)、及びネットワークノードによるueのスケジューリングのための関連する方法
CN110100399B (zh) 信道检测机制的确定方法、装置、设备及存储介质
CN115362738A (zh) 用于传送uci的pusch的装置和方法
WO2020186489A1 (zh) 信道检测机制的确定方法、装置、设备及存储介质
EP3723312A1 (en) Method, apparatus and system for feedback
WO2024022385A1 (zh) 边链路信道接入方式的确定方法、电子设备和存储介质
TW202019205A (zh) 一種資源配置方法及裝置、終端
US10560979B2 (en) Measurement result reporting method, method for counting by timer, apparatus, and user equipment
JP2024516949A (ja) サイドリンクフィードバックリソースの決定方法、端末及びネットワーク側機器
EP3363243B1 (en) Method and network node for managing a transmission power parameter for a d2d link
US11528714B2 (en) Data transmission method and apparatus
WO2020057259A1 (zh) 竞争窗大小调节方法和设备
EP3958595A1 (en) Communication method and apparatus
WO2018076361A1 (zh) 上行传输方法、终端设备和接入网设备
WO2021073446A1 (zh) 时域资源的确定方法和设备
WO2017124937A1 (zh) 数据传输的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845593

Country of ref document: EP

Kind code of ref document: A1