WO2024091054A1 - Steel section and method for manufacturing same - Google Patents

Steel section and method for manufacturing same Download PDF

Info

Publication number
WO2024091054A1
WO2024091054A1 PCT/KR2023/016829 KR2023016829W WO2024091054A1 WO 2024091054 A1 WO2024091054 A1 WO 2024091054A1 KR 2023016829 W KR2023016829 W KR 2023016829W WO 2024091054 A1 WO2024091054 A1 WO 2024091054A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
section steel
less
temperature
steel
Prior art date
Application number
PCT/KR2023/016829
Other languages
French (fr)
Korean (ko)
Inventor
임영훈
이철원
김재영
전범준
임동현
양호용
주성웅
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Publication of WO2024091054A1 publication Critical patent/WO2024091054A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the present invention relates to section steel and a method of manufacturing section steel.
  • Section steel generally refers to a steel material whose cross-sectional shape varies in various ways. Section steel can be manufactured by hot rolling casts such as blooms, billets, and beam blanks manufactured through continuous casting, and is applied as structural steel such as pillars of large buildings, subways, and bridges. It is also used as temporary material for civil engineering and foundation piles.
  • the TMCP (thermo-mechanical control process) process using QST (Quenching and Self-Tempering), an accelerated cooling facility, is mainly used as a manufacturing method for steel materials that can secure high strength and impact toughness even at low temperatures.
  • the size of the beam blank is relatively small, so when using the TMCP process, cooling may proceed too quickly and there is a risk that the cooling rate may not be precisely controlled.
  • the purpose of the section steel and section steel manufacturing method according to the present invention is to provide a high-performance section steel and section steel manufacturing method that achieves homogenization of the physical properties of the section steel while securing low-temperature impact toughness.
  • the method of manufacturing section steel according to an embodiment of the present invention is (a) 0.04 to 0.14 wt% of carbon (C), 0.10 to 0.55 wt% of silicon (Si), 0.90 to 1.65 wt% of manganese (Mn), and 0.020 wt% of phosphorus (P).
  • Weight% or less sulfur (S) 0.007 weight% or less, aluminum (Al) 0.015 to 0.055 weight%, vanadium (V) 0.010 to 0.080 weight%, titanium (Ti) 0.005 to 0.025 weight%, niobium (Nb) 0.010 to 0.050 % by weight, reheating the steel containing the remaining iron (Fe) and other inevitable impurities to 1150 ⁇ 1300 °C; and (b) rolling the steel, wherein the rolling start temperature is 900 ⁇ 1100 °C and the rolling middle temperature is 850 ⁇ 1300 °C. It includes the step of performing rolling at 1000°C and the rolling end temperature is 800 to 900°C.
  • step (b) coolant is sprayed from an S/C (Selective Cooling) device to control the rolling temperature, but the waiting time is 0 to 120 seconds, the water quantity is 50 to 300 m 3 /hr, and the transfer speed is can be performed under the conditions of 2.0 to 4.0 m/s.
  • S/C Selective Cooling
  • the steel material subjected to step (b) may have a room temperature microstructure in the center containing ferrite and pearlite, and the F.G.S. (Ferrite grain size) may be 10 ⁇ m or less.
  • the steel material that performed step (b) above has a yield strength (YS) of 420 MPa or more, a low-temperature impact toughness at -40°C of 50 J or more, a yield ratio (YR) of 0.90 or less, and an elongation (EL) of 19% or more. You can.
  • the steel material performed in step (b) is manufactured as H-beam steel including a web and a flange, and the yield strength (YS) deviation of the upper and lower parts of the flange based on the web may be 15 MPa or less.
  • the steel material contains 0.1 to 0.2% by weight of silicon (Si), 1.57 to 1.65% by weight of manganese (Mn), 0.015 to 0.021% by weight of aluminum (Al), 0.040 to 0.045% by weight of vanadium (V), and 0.005 to 0.005% by weight of titanium (Ti). It may be 0.008% by weight, and niobium (Nb) may be 0.040 to 0.045% by weight.
  • the section steel according to an embodiment of the present invention contains 0.04 to 0.14 wt% of carbon (C), 0.10 to 0.55 wt% of silicon (Si), 0.90 to 1.65 wt% of manganese (Mn), and 0.020 wt% or less of phosphorus (P).
  • Sulfur (S) 0.007% by weight or less, aluminum (Al) 0.015 to 0.055% by weight, vanadium (V) 0.010 to 0.080% by weight, titanium (Ti) 0.005 to 0.025% by weight, niobium (Nb) 0.010 to 0.050% by weight, remainder It contains iron (Fe) and other inevitable impurities, and the yield strength (YS) satisfies 420 MPa or more.
  • low-temperature impact toughness at -40°C can satisfy more than 50J.
  • a yield ratio (YR) of 0.90 or less can be satisfied.
  • the elongation (EL) may be 19% or more.
  • the shape of an H-beam steel including a web and a flange
  • the yield strength (YS) deviation of the upper and lower parts of the flange with respect to the web may be 15 MPa or less.
  • the room temperature microstructure in the center includes ferrite and pearlite, and the F.G.S. (Ferrite grain size) may be 10 ⁇ m or less.
  • the steel material contains 0.1 to 0.2 wt% of silicon (Si), 1.57 to 1.65 wt% of manganese (Mn), 0.015 to 0.021 wt% of aluminum (Al), 0.040 to 0.045 wt% of vanadium (V), and 0.005 wt% of titanium (Ti).
  • Si silicon
  • Mn manganese
  • Al aluminum
  • V vanadium
  • Ti titanium
  • niobium (Nb) may be 0.040 ⁇ 0.045% by weight.
  • the section steel according to an embodiment of the present invention contains 0.04 to 0.14 wt% of carbon (C), 0.10 to 0.55 wt% of silicon (Si), 0.90 to 1.65 wt% of manganese (Mn), and 0.020 wt% or less of phosphorus (P).
  • S Sulfur (S) 0.007% by weight or less, aluminum (Al) 0.015 to 0.055% by weight, vanadium (V) 0.010 to 0.080% by weight, titanium (Ti) 0.005 to 0.025% by weight, niobium (Nb) 0.010 to 0.050% by weight, remainder Contains iron (Fe) and other inevitable impurities, reheats to 1150 ⁇ 1300 °C and then rolls, with rolling start temperature controlled at 900 ⁇ 1100 °C, rolling middle temperature at 850 ⁇ 1000 °C, and rolling end temperature at 800 ⁇ 900 °C. It can be manufactured by this method.
  • coolant is sprayed from the S/C (Selective Cooling) device, with a waiting time of 0 to 120 seconds, a water quantity of 50 to 300 m 3 /hr, and a transfer speed of 2.0 to 4.0 m/hr. It can be manufactured using a method controlled by s.
  • FIG. 1 is a flowchart showing a method for manufacturing section steel according to the present invention.
  • Figure 2 is a diagram showing the S/C device and the section steel used in the section steel manufacturing method according to the present invention.
  • Figures 3(a) to 3(c) are tissue observation photographs of specimens at the center of the flange of section steel according to comparative examples and experimental examples.
  • Figure 3(a) is a photograph of the microstructure according to Comparative Example 1
  • Figure 3(b) is a photograph of the microstructure according to Comparative Example 2
  • Figure 3(c) is a photograph of the microstructure according to Experimental Example 1.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
  • the section steel according to an embodiment of the present invention contains 0.04 to 0.14 wt% of carbon (C), 0.10 to 0.55 wt% of silicon (Si), 0.90 to 1.65 wt% of manganese (Mn), 0.020 wt% or less of phosphorus (P), and sulfur.
  • S 0.007% by weight or less, aluminum (Al) 0.015 to 0.055% by weight, vanadium (V) 0.010 to 0.080% by weight, titanium (Ti) 0.005 to 0.025% by weight, niobium (Nb) 0.010 to 0.050% by weight, remaining iron (Fe) and other inevitable impurities, and the yield strength (YS) satisfies 420 MPa or more.
  • the yield strength (YS) may mean the yield strength at room temperature.
  • the silicon (Si) is 0.1 to 0.2% by weight
  • the manganese (Mn) is 1.57 to 1.65% by weight
  • the aluminum (Al) is 0.015 to 0.021% by weight
  • the vanadium (V) is 0.040 to 0.045% by weight.
  • the titanium (Ti) may be 0.005 to 0.008 wt%
  • the niobium (Nb) may be 0.040 to 0.045 wt%.
  • the section steel having the above-described alloy composition can satisfy low-temperature impact toughness at -40°C of 50J or more, yield ratio (YR) of 0.90 or less, and elongation (EL) of 19% or more.
  • the yield strength (YS) at room temperature may be 435 MPa or more, the yield ratio (YR) may be 0.85 or less, and the elongation may be 21% or more. More preferably, the yield strength (YS) at room temperature may be 445 MPa or more, - Low-temperature impact toughness at 40°C can satisfy 160J or more, yield ratio (YR) 0.81 or less, and elongation (EL) 29.9% or more.
  • the section steel has the shape of an H-section steel including a web and a flange, and the yield strength (YS) deviation of the upper and lower parts of the flange with respect to the web may be 15 MPa or less.
  • the yield strength (YS) deviation between the upper and lower parts of the flange may be 12 MPa, more preferably 8 MPa or less.
  • the section steel having the above-described alloy composition includes ferrite and pearlite in the room temperature microstructure at the center, and the F.G.S. (Ferrite grain size) may be 10 ⁇ m or less. More specifically, F.G.S may be 9.5 ⁇ m or less.
  • precipitation strengthening and grain refinement can be achieved through the addition of vanadium (V) and niobium (Nb) in the above-mentioned composition range, and sufficient cooling effect can be obtained.
  • V-Nb composite design high strength, stability, and mass production can be secured compared to conventional 355 MPa yield strength section steel.
  • austenite grain growth can be delayed and welding performance can be improved by adding titanium (Ti) in the above-mentioned composition range.
  • the section steel according to an embodiment of the present invention may contain 0.04% by weight to 0.14% by weight of carbon.
  • the carbon content is less than 0.04% by weight of the total weight, it may be difficult to secure sufficient strength. Conversely, if the carbon content exceeds 0.14% by weight of the total weight, coarse carbides are generated, which may deteriorate impact characteristics and cause problems with deterioration of weldability.
  • Silicon (Si) is added along with aluminum as a deoxidizer to remove oxygen in steel during the steelmaking process. Additionally, silicon can also have a solid solution strengthening effect.
  • Silicon may be added in an amount of 0.10 to 0.55% by weight of the total weight of the section steel according to an embodiment of the present invention. If the silicone content is less than 0.10% by weight of the total weight, the effect of adding silicone cannot be properly achieved. Conversely, if the silicon content exceeds 0.55% by weight of the total weight, adding a large amount may deteriorate the weldability of the steel and cause problems with surface quality by generating red scale during reheating and hot rolling.
  • the section steel according to an embodiment of the present invention may contain 0.90 wt% to 1.65 wt% of manganese, and preferably 1.57 wt% to 1.65 wt%.
  • the manganese content is less than 0.90% by weight of the total weight, the solid solution strengthening effect cannot be sufficiently exerted, and if it exceeds 1.65% by weight, it may combine with sulfur to create MnS inclusions or cause central segregation in the ingot. As a result, the ductility of the section steel may decrease and corrosion resistance may decrease.
  • Phosphorus (P) increases strength through solid solution strengthening and can perform the function of suppressing the formation of carbides.
  • the phosphorus may be added in an amount of 0.020% by weight or less of the total weight of the section steel according to an embodiment of the present invention. If the phosphorus content exceeds 0.020% by weight, inclusions such as tramp elements may be created, which may reduce the ductility of the steel, and there is a problem of low-temperature impact value being lowered due to precipitation behavior.
  • S can improve processability by forming fine MnS precipitates.
  • the sulfur may be added in an amount of 0.007% by weight or less of the total weight of the section steel according to an embodiment of the present invention. If the sulfur content exceeds 0.007% by weight, inclusions such as tramp elements are generated, which may impair the ductility, toughness and weldability of the steel, and lower the low-temperature impact value.
  • Aluminum (Al) is added in the steelmaking process as a deoxidizer to remove oxygen in steel.
  • AlN can precipitate in steel and contribute to grain refinement.
  • the aluminum may be added at an amount of 0.015 to 0.055% by weight of the weight of the section steel according to an embodiment of the present invention, and preferably at an amount of 0.015 to 0.021% by weight. If the aluminum content is less than 0.015% by weight, the deoxidation effect is insufficient, and if it exceeds 0.055% by weight, it makes playing difficult, reducing productivity, and forms alumina (Al 2 O 3 ), a non-metallic inclusion, which reduces ductility and toughness. There may be a problem.
  • Vanadium (V) has a large carbide-forming ability, so it creates fine-grained carbides, which has the effect of refining the structure of steel and increasing strength by forming precipitates during rolling.
  • the amount of precipitation can be controlled according to the amount of nitrogen added.
  • vanadium can contribute to improving strength by acting as a pinning agent on grain boundaries.
  • the vanadium may be added at an amount of 0.010 to 0.080% by weight of the weight of the section steel according to an embodiment of the present invention, and preferably at an amount of 0.040 to 0.045% by weight. If the vanadium content is less than 0.010% by weight, it is difficult to sufficiently secure the above effect. On the other hand, if the vanadium content exceeds 0.080% by weight, there may be a problem in that low-temperature impact toughness deteriorates.
  • Titanium (Ti) can produce Ti(C, N) precipitates with high high temperature stability. As a result, the growth of austenite grains is hindered during welding, thereby refining the structure of the weld zone, thereby improving the toughness and strength of the steel.
  • the titanium may be added at an content ratio of 0.005 to 0.025% by weight of the weight of the section steel according to an embodiment of the present invention, and preferably at an content ratio of 0.005 to 0.008% by weight. If the titanium content is less than 0.005% by weight, it is difficult to sufficiently secure the above effect. On the other hand, if the titanium content exceeds 0.025% by weight, the low-temperature impact toughness of the steel may be reduced by generating coarse precipitates.
  • Niobium is an element that, when dissolved in an austenite structure, suppresses grain growth and creates a fine grain size.
  • recrystallization can be delayed by allowing the steel to quickly reach below the non-recrystallization temperature (Tnr).
  • Tnr non-recrystallization temperature
  • it is effective in improving strength through precipitation strengthening by reacting with carbon and promoting the creation of fine carbides.
  • it can reduce the impact properties of the steel.
  • the section steel according to an embodiment of the present invention may contain 0.01 to 0.05% by weight of niobium, and preferably 0.040 to 0.045% by weight.
  • niobium if niobium is added in less than 0.01% by weight of the total weight, the effect of adding niobium cannot be properly exhibited, and if it is added in a large amount exceeding 0.05% by weight, the shock absorption energy of the steel can be reduced.
  • the niobium content is 0.040 to 0.045% by weight, the effect of adding niobium described above can be maximized while the reduction in the shock absorption energy of the steel can be minimized.
  • the section steel according to an embodiment of the present invention may contain 110 to 120 ppm of nitrogen.
  • the section steel according to an embodiment of the present invention contains 0.04 to 0.14 wt% of carbon (C), 0.10 to 0.55 wt% of silicon (Si), 0.90 to 1.65 wt% of manganese (Mn), and 0.020 wt% or less of phosphorus (P).
  • coolant is sprayed from the S/C (Selective Cooling) device shown in FIG. 2, with a waiting time of 0 to 120 seconds, a water quantity of 50 to 300 m 3 /hr, and a transfer speed of 0 to 120 seconds. It can be manufactured by controlling the speed from 2.0 to 4.0 m/s.
  • S/C Selective Cooling
  • the section steel containing the above-described alloy composition and manufactured by the above-described method can satisfy low-temperature impact toughness at -40°C of 50J or more, yield ratio (YR) of 0.90 or less, and elongation (EL) of 19% or more.
  • the yield strength (YS) at room temperature may be 435 MPa or more
  • the yield ratio (YR) may be 0.85 or less
  • the elongation may be 21% or more.
  • the yield strength (YS) at room temperature may be 445 MPa or more
  • - Low-temperature impact toughness at 40°C can satisfy 160J or more, yield ratio (YR) 0.81 or less, and elongation (EL) 29.9% or more.
  • the section steel has the shape of an H-section steel including a web and a flange, and the yield strength (YS) deviation of the upper and lower parts of the flange with respect to the web may be 15 MPa or less.
  • the yield strength (YS) deviation between the upper and lower parts of the flange may be 12 MPa, more preferably 8 MPa or less.
  • section steel having the above-described alloy composition and manufactured by the above-described method may have a room temperature microstructure at the center containing ferrite and pearlite (F+P), and the F.G.S. (Ferrite grain size) may be 10 ⁇ m or less. More specifically, F.G.S may be 9.5 ⁇ m or less.
  • the section steel according to an embodiment of the present invention can implement a high-performance section steel and section steel manufacturing method that secures low-temperature impact toughness, minimizes temperature deviation, and achieves homogenization of physical properties.
  • precipitation strengthening and grain refinement can be achieved through the addition of vanadium (V) and niobium (Nb) in the above-mentioned composition range and control of the temperature in the middle of rolling through a S/C (Selective Cooling) device, and an accelerated cooling effect can be obtained.
  • V vanadium
  • Nb niobium
  • S/C Selective Cooling
  • austenite grain growth can be delayed and welding performance can be improved by adding titanium (Ti) in the above-mentioned composition range.
  • the method of manufacturing section steel according to an embodiment of the present invention includes (a) a reheating step and (b) a rolling step, as shown in FIG. 1.
  • a reheating step and (b) a rolling step, as shown in FIG. 1.
  • a rolling step as shown in FIG. 1.
  • Aha the method of manufacturing section steel will be described in detail with reference to FIGS. 1 and 2.
  • the steel contains 0.04 to 0.14 wt% of carbon (C), 0.10 to 0.55 wt% of silicon (Si), 0.90 to 1.65 wt% of manganese (Mn), 0.020 wt% or less of phosphorus (P), and 0.007 wt% of sulfur (S).
  • Al aluminum
  • Al 0.015 ⁇ 0.055% by weight
  • vanadium (V) 0.010 ⁇ 0.080% by weight
  • the remaining iron (Fe) and other inevitable A step of containing impurities and reheating the steel to 1150 to 1300° C. is performed.
  • the steel material is rolled, with the starting temperature of rolling being 900 to 1100°C, the middle temperature of rolling being 850 to 1000°C, and the rolling ending temperature being 800 to 900°C.
  • the section steel 10 can implement a high-performance section steel and section steel manufacturing method that secures low-temperature impact toughness, minimizes temperature deviation, and achieves homogenization of physical properties by securing the target microstructure and grain size. You can.
  • precipitation strengthening and grain refinement can be achieved and an appropriate cooling effect can be obtained through the addition of vanadium (V) and niobium (Nb) in the above-mentioned composition range and control of the temperature during rolling.
  • V vanadium
  • Nb niobium
  • austenite grain growth can be delayed and welding performance can be improved by adding titanium (Ti) in the above-mentioned composition range.
  • the steel material of the above composition is reheated at 1150°C or higher. If the reheating temperature is lower than 1150°C, the solid solution of various carbides may not be sufficient, and the segregated components may not be distributed sufficiently evenly during the continuous casting process. Additionally, the reheating temperature may not exceed 1300°C. If the reheating temperature exceeds 1300°C, coarse austenite grains may be formed, making it difficult to secure strength, and increased heating costs and time may lead to increased manufacturing costs and reduced productivity.
  • the steel may be manufactured through a continuous casting process after obtaining molten steel of a desired composition through a steelmaking process.
  • the steel may be, for example, a beam blank, but is not necessarily limited thereto.
  • the composition range of the steel is more preferably 0.1 to 0.2% by weight of silicon (Si), 1.57 to 1.65% by weight of manganese (Mn), 0.015 to 0.021% by weight of aluminum (Al), and 0.040 to 0.045% by weight of vanadium (V).
  • %, titanium (Ti) may be 0.005 to 0.008 wt%, and niobium (Nb) may be 0.040 to 0.045 wt%.
  • coolant is sprayed from the S/C (Selective Cooling) device 100 shown in FIG. 2 to control the above-mentioned rolling intermediate temperature, with a waiting time of 0 to 120 seconds and a quantity of 50 to 50 seconds. It can be performed at 300 m 3 /hr and the transfer speed is 2.0 ⁇ 4.0 m/s.
  • the TMCP process is mainly used to ensure high-strength impact toughness, but one embodiment of the present invention is used in medium-sized or small-sized manufacturing processes without accelerated cooling facilities such as QST equipment in the TMCP process.
  • a S/C (Selective Cooling) device 100 can be used along with a CM (Continuous Mill).
  • the QST equipment is characterized by not only a side cooler, but also an upper cooling box and a lower cooling nozzle. Since it uses high-pressure coolant, the cooling speed is fast and it is used for large-sized section steel.
  • the S/C device 100 as shown in FIG. 2, it consists only of the side cooler 110 and the lower cooling nozzle 120, so it has the advantage of easier cooling rate and temperature control.
  • the steel material that has undergone the rolling step according to the above process conditions has a room temperature microstructure in the center containing ferrite and pearlite, but the F.G.S. (Ferrite grain size) may be 10 ⁇ m or less, and as shown in FIG. 2, the web 11 In the H-beam 10 including the flange 12, the F.G.S grain size deviation of the upper part 12a and the lower part 12b of the flange 12 based on the web 11 may be reduced.
  • the target microstructure and grain size can be secured, and a high-strength section steel can be manufactured.
  • the steel that performed the rolling step (b) according to the above process conditions has a yield strength (YS) of 420 MPa or more, a low-temperature impact toughness at -40°C of 50 J or more, a yield ratio (YR) of 0.90 or less, and an elongation ( EL) may be 19% or more.
  • the steel material that has performed the rolling step (b) according to the above process conditions is manufactured as H-beam steel 10 including a web 11 and a flange 12, and the flange (
  • the yield strength (YS) deviation between the upper part 12a and the lower part 12b of 12) may be 15 MPa or less.
  • Table 1 below shows the main alloy element composition (unit: weight %) of this experimental example and comparative example
  • Table 2 shows the process conditions for manufacturing the specimens of this experimental example and comparative example (temperature unit: °C, time unit: sec) , S/C quantity unit: m 3 /hr, speed unit: m/s)
  • Table 3 shows the results of measuring the mechanical properties of the specimen implemented according to the process conditions in Table 2.
  • a beam blank with the composition shown in Table 1 was manufactured using an electric furnace and then hot rolled to produce H-beam steel with a flange thickness of 15 mm.
  • Process conditions are reheating temperature 1150 ⁇ 1300°C, waiting time 0 ⁇ 120 seconds, rolling start temperature 900 ⁇ 1100°C, rolling middle temperature 850 ⁇ 1000°C, rolling end temperature 800 ⁇ 900°C, S/C quantity 50 ⁇ 300 m 3 /hr, the transfer speed was in the range of 2.0 to 4.0 m/s, and Table 2 lists the process conditions under which the actual experimental data was obtained.
  • the physical properties to be targeted in the experimental example are tensile strength (TS) of 500 to 660 MPa, room temperature yield strength (YS) of 420 MPa or more, elongation (EL) of 19% or more, and yield ratio (YR) of 90% or less -40
  • TS tensile strength
  • YS room temperature yield strength
  • EL elongation
  • YR yield ratio
  • the goal was to observe low-temperature impact toughness at °C of 50J or more based on the flange part, and in the case of microstructure, F+P (composite structure of ferrite and pearlite) with a grain size of 10 ⁇ m or less in the deep part.
  • the goal was to reduce the deviation of room temperature yield strength (YS) to 15 MPa, preferably 12 MPa or less, at the top and bottom of the flange.
  • Comparative Example 1 has a difference in composition compared to Experimental Example 1, and there is a difference in whether the rolling temperature is controlled or cooled using the S/C device 100 shown in FIG. 2.
  • Figure 3(a) is a photograph of the microstructure according to Comparative Example 1
  • Figure 3(c) is a photograph of the microstructure according to Experimental Example 1.
  • the composition range of vanadium and niobium was set to 0.035 to 0.039% by weight, and the actual experimental data included 0.036% by weight of vanadium and 0.035% by weight of niobium; The temperature was controlled without using a separate device.
  • the composition range of vanadium and niobium was aimed to be 0.040 to 0.045% by weight, and the actual experimental data included 0.040% by weight of vanadium and 0.044% by weight of niobium, and the S/C device was used.
  • the rolling intermediate temperature was controlled using the process conditions shown in Table 2.
  • Experimental Example 1 has a yield strength (YS) deviation of 8MPa and an impact toughness deviation of 21J between the top and bottom of the flange, which are significantly smaller than Comparative Example 1, and the grain size of the microstructure As expected, the deviation is small and both the top and bottom of the flange are within 10 ⁇ m, so it can be seen that the physical property deviation has been improved.
  • Comparative Example 1 has a difference in composition compared to Experimental Example 1, but the temperature control or cooling in the middle of rolling using the S/C device 100 shown in FIG. 2 is the same.
  • Figure 3(b) is a microstructure photograph according to Comparative Example 2
  • Figure 3(c) is a microstructure photograph according to Experimental Example 1.
  • the composition range of vanadium and niobium was aimed to be 0.040 to 0.045% by weight, and the actual experimental data included 0.040% by weight of vanadium and 0.044% by weight of niobium, and the S/C device was used.
  • the rolling intermediate temperature was controlled using the process conditions shown in Table 2.
  • the room temperature yield strength (YS) of Comparative Example 2 is 432 MPa (top of flange) and 419 MPa (bottom of flange), and the room temperature yield strength (YS) of Experimental Example 1 is 447 MPa (top of flange) and 455 MPa (bottom of flange). It can be seen that it is smaller than (bottom), and in particular, the yield strength of the bottom of the flange of Comparative Example 2 is less than 420 MPa.
  • Comparative Example 2 not only exceeded 10 ⁇ m at 10.0 ⁇ m and 10.6 ⁇ m at the top and bottom of the flange, respectively, but also the deviation was 0.6 ⁇ m, which was larger than that of Experimental Example 1.
  • section steel and section steel manufacturing method according to an embodiment of the present invention, as confirmed in the data of Experimental Example 1, it has excellent quality by securing the target high strength, low-temperature impact toughness, microstructure, and grain size, and the upper part of the flange It is possible to realize high-performance, deep-sea special section steel with uniform quality and little variation in physical properties of the upper and lower parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A method for manufacturing a steel section, according to an embodiment of the present invention, comprises the steps of: (a) reheating steel to 1150-1300 °C, the steel comprising 0.04-0.14 wt% of carbon (C), 0.10-0.55 wt% of silicon (Si), 0.90-1.65 wt% of manganese (Mn), 0.020 wt% or less of phosphorus (P), 0.007 wt% or less of sulfur (S), 0.015-0.055 wt% of aluminum (Al), 0.010-0.080 wt% of vanadium (V), 0.005-0.025 wt% of titanium (Ti), 0.010-0.050 wt% of niobium (Nb), and the remainder of iron (Fe) and other inevitable impurities; and (b) rolling the steel, wherein the rolling start temperature is 900-1100 °C, the rolling medium temperature is 850-1000 °C, and the rolling end temperature is 800-900 °C. Accordingly, it is possible to realize a high-performance steel section which achieves uniform physical properties while securing low-temperature impact toughness and a method for manufacturing the steel section.

Description

형강 및 형강 제조 방법Section steel and section steel manufacturing method
본 발명은 형강 및 형강 제조방법에 관한 것이다.The present invention relates to section steel and a method of manufacturing section steel.
형강은 일반적으로 단면 형상이 다각적으로 변화를 가지는 강재를 의미한다. 형강은 연속 주조로 제조된 블룸(Bloom), 빌렛(Billet), 빔블랭크(Beam blank) 등의 주편을 열간 압연함으로써 제조될 수 있으며, 대형 건축물의 기둥과 같은 구조용 강재로 적용되거나, 지하철, 교량 등의 토목용 가설재와 기초용 말뚝으로도 적용되고 있다.Section steel generally refers to a steel material whose cross-sectional shape varies in various ways. Section steel can be manufactured by hot rolling casts such as blooms, billets, and beam blanks manufactured through continuous casting, and is applied as structural steel such as pillars of large buildings, subways, and bridges. It is also used as temporary material for civil engineering and foundation piles.
최근에는 해양 플랜트 산업이 발전함에 따라, 해양 구조물용 강재 분야에서도 경량 및 고강도를 가지면서, 특히 -40℃이하에서도 외부 충격에 견딜 수 있는 저온 충격 인성이 보증된 형강에 대한 수요가 증가하고 있다.Recently, as the marine plant industry develops, the demand for section steel with light weight and high strength and guaranteed low-temperature impact toughness that can withstand external impacts even below -40℃ is increasing in the field of steel materials for marine structures.
저온에서도 고강도 충격인성을 확보할 수 있는 강재의 제조 방법으로는 가속냉각 설비인 QST(Quenching and Self-Tempering)를 이용한 TMCP(thermo-mechanical control process) 공정이 주로 사용되고 있다.The TMCP (thermo-mechanical control process) process using QST (Quenching and Self-Tempering), an accelerated cooling facility, is mainly used as a manufacturing method for steel materials that can secure high strength and impact toughness even at low temperatures.
하지만, TMCP 공정을 이용하여 열간압연을 실시할 경우 결정립 미세화 효과를 얻을 수 있으나, 형강의 3차원적인 형상과, 플랜지 및 웹의 두께 차이에 의한 온도 편차 및 냉각 중 변형이 발생하는 문제가 있다.However, when hot rolling is performed using the TMCP process, a grain refinement effect can be obtained, but there are problems with temperature deviation and deformation occurring during cooling due to differences in the three-dimensional shape of the section steel and the thickness of the flange and web.
뿐만 아니라, 중형 또는 소형 규격의 형강을 제조하는 과정에서는 빔블랭크의 사이즈가 상대적으로 작기 때문에, TMCP 공정을 이용하는 경우 냉각이 지나치게 빠르게 진행될 수 있고, 냉각 속도가 정밀하게 컨트롤되지 않을 우려가 있다.In addition, in the process of manufacturing medium- or small-sized section steel, the size of the beam blank is relatively small, so when using the TMCP process, cooling may proceed too quickly and there is a risk that the cooling rate may not be precisely controlled.
따라서, 저온 충격 인성을 확보하면서, 변형 및 물성 편차의 발생을 최소화할 수 있는 고강도 형강 및 그 제조방법에 대한 요구가 증대되고 있다.Accordingly, the demand for high-strength section steel and its manufacturing method that can minimize the occurrence of deformation and physical property deviation while ensuring low-temperature impact toughness is increasing.
상술한 종래 기술의 문제점을 해결하기 위하여, 본 발명에 따른 형강 및 형강 제조방법은 저온 충격 인성을 확보하면서, 형강의 물성 균질화를 달성한 고성능 형강 및 형강 제조방법을 제공하는 것에 그 목적이 있다.In order to solve the problems of the prior art described above, the purpose of the section steel and section steel manufacturing method according to the present invention is to provide a high-performance section steel and section steel manufacturing method that achieves homogenization of the physical properties of the section steel while securing low-temperature impact toughness.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems of the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
본 발명의 일 실시 예에 따른 형강 제조방법은 (a) 탄소(C) 0.04 ~ 0.14 중량%, 실리콘(Si) 0.10 ~ 0.55 중량%, 망간(Mn) 0.90 ~ 1.65 중량%, 인(P) 0.020 중량% 이하, 황(S) 0.007 중량% 이하, 알루미늄(Al) 0.015 ~ 0.055 중량%, 바나듐(V) 0.010 ~ 0.080 중량%, 타이타늄(Ti) 0.005 ~ 0.025 중량%, 니오븀(Nb) 0.010 ~ 0.050 중량%, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 강재를 1150 ~ 1300 ℃로 재가열하는 단계 및 (b) 상기 강재를 압연하되, 압연 시작 온도는 900 ~ 1100 ℃, 압연 중간 온도는 850 ~ 1000℃, 압연 종료 온도는 800 ~ 900 ℃ 로 수행하는 단계를 포함한다.The method of manufacturing section steel according to an embodiment of the present invention is (a) 0.04 to 0.14 wt% of carbon (C), 0.10 to 0.55 wt% of silicon (Si), 0.90 to 1.65 wt% of manganese (Mn), and 0.020 wt% of phosphorus (P). Weight% or less, sulfur (S) 0.007 weight% or less, aluminum (Al) 0.015 to 0.055 weight%, vanadium (V) 0.010 to 0.080 weight%, titanium (Ti) 0.005 to 0.025 weight%, niobium (Nb) 0.010 to 0.050 % by weight, reheating the steel containing the remaining iron (Fe) and other inevitable impurities to 1150 ~ 1300 ℃; and (b) rolling the steel, wherein the rolling start temperature is 900 ~ 1100 ℃ and the rolling middle temperature is 850 ~ 1300 ℃. It includes the step of performing rolling at 1000°C and the rolling end temperature is 800 to 900°C.
또한, 상기 (b) 단계에서 상기 압연 중간 온도를 제어하기 위해 S/C (Selective Cooling) 장치에서 냉각수를 분사하되, 대기시간은 0 ~ 120초, 수량은 50 ~ 300 m3/hr, 이송속도는 2.0 ~ 4.0 m/s 의 조건으로 수행할 수 있다.In addition, in step (b), coolant is sprayed from an S/C (Selective Cooling) device to control the rolling temperature, but the waiting time is 0 to 120 seconds, the water quantity is 50 to 300 m 3 /hr, and the transfer speed is can be performed under the conditions of 2.0 to 4.0 m/s.
또한, 상기 (b)단계를 수행한 강재는 중심부의 상온 미세조직이 페라이트, 펄라이트를 포함하되, F.G.S(Ferrite grain size)는 10 ㎛ 이하일 수 있다.In addition, the steel material subjected to step (b) may have a room temperature microstructure in the center containing ferrite and pearlite, and the F.G.S. (Ferrite grain size) may be 10 ㎛ or less.
또한 상기 (b) 단계를 수행한 강재는 항복강도(YS)가 420 MPa 이상, -40℃에서의 저온충격인성이 50J 이상, 항복비(YR)가 0.90 이하, 연신율(EL)이 19% 이상일 수 있다.In addition, the steel material that performed step (b) above has a yield strength (YS) of 420 MPa or more, a low-temperature impact toughness at -40°C of 50 J or more, a yield ratio (YR) of 0.90 or less, and an elongation (EL) of 19% or more. You can.
상기 (b) 단계를 수행한 강재는 웹과 플랜지를 포함하는 H 형강으로 제조되되, 상기 웹을 기준으로 상기 플랜지의 상부와 하부의 항복강도(YS) 편차는 15 MPa 이하일 수 있다.The steel material performed in step (b) is manufactured as H-beam steel including a web and a flange, and the yield strength (YS) deviation of the upper and lower parts of the flange based on the web may be 15 MPa or less.
또한 상기 강재는 실리콘(Si) 0.1 ~ 0.2 중량%, 망간(Mn) 1.57 ~ 1.65 중량%, 알루미늄(Al) 0.015 ~ 0.021 중량%, 바나듐(V) 0.040 ~ 0.045 중량%, 타이타늄(Ti) 0.005 ~ 0.008 중량%, 니오븀(Nb) 0.040 ~ 0.045 중량%일 수 있다.In addition, the steel material contains 0.1 to 0.2% by weight of silicon (Si), 1.57 to 1.65% by weight of manganese (Mn), 0.015 to 0.021% by weight of aluminum (Al), 0.040 to 0.045% by weight of vanadium (V), and 0.005 to 0.005% by weight of titanium (Ti). It may be 0.008% by weight, and niobium (Nb) may be 0.040 to 0.045% by weight.
본 발명의 일 실시예에 따른 형강은, 탄소(C) 0.04 ~ 0.14 중량%, 실리콘(Si) 0.10 ~ 0.55 중량%, 망간(Mn) 0.90 ~ 1.65 중량%, 인(P) 0.020 중량% 이하, 황(S) 0.007 중량% 이하, 알루미늄(Al) 0.015 ~ 0.055 중량%, 바나듐(V) 0.010 ~ 0.080 중량%, 타이타늄(Ti) 0.005 ~ 0.025 중량%, 니오븀(Nb) 0.010 ~ 0.050 중량%, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하고, 항복강도(YS)는 420 MPa 이상을 만족한다.The section steel according to an embodiment of the present invention contains 0.04 to 0.14 wt% of carbon (C), 0.10 to 0.55 wt% of silicon (Si), 0.90 to 1.65 wt% of manganese (Mn), and 0.020 wt% or less of phosphorus (P). Sulfur (S) 0.007% by weight or less, aluminum (Al) 0.015 to 0.055% by weight, vanadium (V) 0.010 to 0.080% by weight, titanium (Ti) 0.005 to 0.025% by weight, niobium (Nb) 0.010 to 0.050% by weight, remainder It contains iron (Fe) and other inevitable impurities, and the yield strength (YS) satisfies 420 MPa or more.
또한, -40℃에서의 저온충격인성은 50J 이상을 만족할 수 있다.Additionally, low-temperature impact toughness at -40°C can satisfy more than 50J.
또한, 항복비(YR) 0.90 이하를 만족할 수 있다.Additionally, a yield ratio (YR) of 0.90 or less can be satisfied.
또한, 연신율(EL)은 19% 이상일 수 있다.Additionally, the elongation (EL) may be 19% or more.
또한, 웹과 플랜지를 포함하는 H 형강의 형상을 가지되, 상기 웹을 기준으로 상기 플랜지의 상부와 하부의 항복강도(YS) 편차는 15 MPa 이하일 수 있다.In addition, it has the shape of an H-beam steel including a web and a flange, and the yield strength (YS) deviation of the upper and lower parts of the flange with respect to the web may be 15 MPa or less.
또한, 중심부의 상온 미세조직은 페라이트, 펄라이트를 포함하되, F.G.S(Ferrite grain size)는 10 ㎛ 이하일 수 있다.In addition, the room temperature microstructure in the center includes ferrite and pearlite, and the F.G.S. (Ferrite grain size) may be 10 ㎛ or less.
또한, 상기 강재는 실리콘(Si) 0.1 ~ 0.2 중량%, 망간(Mn) 1.57 ~ 1.65 중량%, 알루미늄(Al) 0.015 ~ 0.021 중량%, 바나듐(V) 0.040 ~ 0.045 중량%, 타이타늄(Ti) 0.005 ~ 0.008 중량%, 니오븀(Nb) 0.040 ~ 0.045 중량%일 수 있다.In addition, the steel material contains 0.1 to 0.2 wt% of silicon (Si), 1.57 to 1.65 wt% of manganese (Mn), 0.015 to 0.021 wt% of aluminum (Al), 0.040 to 0.045 wt% of vanadium (V), and 0.005 wt% of titanium (Ti). ~ 0.008% by weight, niobium (Nb) may be 0.040 ~ 0.045% by weight.
본 발명의 일 실시예에 따른 형강은, 탄소(C) 0.04 ~ 0.14 중량%, 실리콘(Si) 0.10 ~ 0.55 중량%, 망간(Mn) 0.90 ~ 1.65 중량%, 인(P) 0.020 중량% 이하, 황(S) 0.007 중량% 이하, 알루미늄(Al) 0.015 ~ 0.055 중량%, 바나듐(V) 0.010 ~ 0.080 중량%, 타이타늄(Ti) 0.005 ~ 0.025 중량%, 니오븀(Nb) 0.010 ~ 0.050 중량%, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하고, 1150 ~ 1300 ℃로 재가열한 후 압연하되, 압연 시작 온도는 900 ~ 1100 ℃, 압연 중간 온도는 850 ~ 1000℃, 압연 종료 온도는 800 ~ 900 ℃ 제어하는 방법으로 제조할 수 있다.The section steel according to an embodiment of the present invention contains 0.04 to 0.14 wt% of carbon (C), 0.10 to 0.55 wt% of silicon (Si), 0.90 to 1.65 wt% of manganese (Mn), and 0.020 wt% or less of phosphorus (P). Sulfur (S) 0.007% by weight or less, aluminum (Al) 0.015 to 0.055% by weight, vanadium (V) 0.010 to 0.080% by weight, titanium (Ti) 0.005 to 0.025% by weight, niobium (Nb) 0.010 to 0.050% by weight, remainder Contains iron (Fe) and other inevitable impurities, reheats to 1150 ~ 1300 ℃ and then rolls, with rolling start temperature controlled at 900 ~ 1100 ℃, rolling middle temperature at 850 ~ 1000 ℃, and rolling end temperature at 800 ~ 900 ℃. It can be manufactured by this method.
또한, 상기 압연 중간 온도를 제어하기 위해 S/C (Selective Cooling) 장치에서 냉각수를 분사하되, 대기시간은 0 ~ 120초, 수량은 50 ~ 300 m3/hr, 이송속도는 2.0 ~ 4.0 m/s로 제어하는 방법으로 제조할 수 있다.In addition, to control the temperature in the middle of rolling, coolant is sprayed from the S/C (Selective Cooling) device, with a waiting time of 0 to 120 seconds, a water quantity of 50 to 300 m 3 /hr, and a transfer speed of 2.0 to 4.0 m/hr. It can be manufactured using a method controlled by s.
본 발명의 일 실시예에 따르면, 저온 충격 인성을 확보하면서, 물성 균질화를 달성한 고성능 형강 및 형강 제조방법을 구현할 수 있다.According to an embodiment of the present invention, it is possible to implement a high-performance section steel and a method for manufacturing section steel that achieves homogenization of physical properties while securing low-temperature impact toughness.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명에 따른 형강 제조방법을 도시한 순서도이다.1 is a flowchart showing a method for manufacturing section steel according to the present invention.
도 2는 본 발명에 따른 형강 제조방법에서 사용되는 S/C 장치와 형강을 도시한 도면이다.Figure 2 is a diagram showing the S/C device and the section steel used in the section steel manufacturing method according to the present invention.
도 3(a) 내지 도 3(c)는 비교예 및 실험예에 따른 형강의 플랜지(Flange) 중심부 시편의 조직관찰 사진이다. 상세하게는 도 3(a)는 비교예 1에 따른 미세조직 사진이고, 3(b)은 비교예 2에 따른 미세조직 사진이고, 도 3(c)는 실험예 1에 따른 미세조직 사진이다.Figures 3(a) to 3(c) are tissue observation photographs of specimens at the center of the flange of section steel according to comparative examples and experimental examples. In detail, Figure 3(a) is a photograph of the microstructure according to Comparative Example 1, Figure 3(b) is a photograph of the microstructure according to Comparative Example 2, and Figure 3(c) is a photograph of the microstructure according to Experimental Example 1.
본 명세서에서, 어떤 구성요소(또는 영역, 층, 부분 등)가 다른 구성요소 "상에 있다", "연결된다", 또는 "결합된다"고 언급되는 경우에 그것은 다른 구성요소 상에 직접 배치/연결/결합될 수 있거나 또는 그들 사이에 제3의 구성요소가 배치될 수도 있다는 것을 의미한다. In this specification, when a component (or region, layer, portion, etc.) is referred to as being “on,” “connected to,” or “coupled to” another component, it is directly placed/on the other component. This means that they can be connected/combined or a third component can be placed between them.
동일한 도면부호는 동일한 구성요소를 지칭한다. 또한, 도면들에 있어서, 구성요소들의 두께, 비율, 및 치수는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.Like reference numerals refer to like elements. Additionally, in the drawings, the thickness, proportions, and dimensions of components are exaggerated for effective explanation of technical content.
"및/또는"은 연관된 구성들이 정의할 수 있는 하나 이상의 조합을 모두 포함한다.“And/or” includes all combinations of one or more that the associated configurations may define.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Terms such as first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
또한, "아래에", "하측에", "위에", "상측에" 등의 용어는 도면에 도시된 구성들의 연관관계를 설명하기 위해 사용된다. 상기 용어들은 상대적인 개념으로, 도면에 표시된 방향을 기준으로 설명된다.Additionally, terms such as “below,” “on the lower side,” “above,” and “on the upper side” are used to describe the relationship between the components shown in the drawings. The above terms are relative concepts and are explained based on the direction indicated in the drawings.
다르게 정의되지 않는 한, 본 명세서에서 사용된 모든 용어 (기술 용어 및 과학 용어 포함)는 본 발명이 속하는 기술 분야의 당업자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 또한, 일반적으로 사용되는 사전에서 정의된 용어와 같은 용어는 관련 기술의 맥락에서 의미와 일치하는 의미를 갖는 것으로 해석되어야 하고, 이상적인 또는 지나치게 형식적인 의미로 해석되지 않는 한, 명시적으로 여기에서 정의된다.Unless otherwise defined, all terms (including technical terms and scientific terms) used in this specification have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. Additionally, terms such as those defined in commonly used dictionaries should be interpreted as having meanings consistent with their meanings in the context of the relevant technology, and unless interpreted in an idealized or overly formal sense, are explicitly defined herein. do.
"포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. Terms such as “include” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but do not include one or more other features, numbers, or steps. , it should be understood that it does not exclude in advance the possibility of the existence or addition of operations, components, parts, or combinations thereof.
이하, 도면을 참조하여 본 발명의 실시 예가 상세히 설명될 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
형강section steel
본 발명의 일 실시예에 따른 형강은 탄소(C) 0.04 ~ 0.14 중량%, 실리콘(Si) 0.10 ~ 0.55 중량%, 망간(Mn) 0.90 ~ 1.65 중량%, 인(P) 0.020 중량% 이하, 황(S) 0.007 중량% 이하, 알루미늄(Al) 0.015 ~ 0.055 중량%, 바나듐(V) 0.010 ~ 0.080 중량%, 타이타늄(Ti) 0.005 ~ 0.025 중량%, 니오븀(Nb) 0.010 ~ 0.050 중량%, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하고, 항복강도(YS)는 420 MPa 이상을 만족한다. 여기서 항복강도(YS)는 상온에서의 항복강도를 의미할 수 있다.The section steel according to an embodiment of the present invention contains 0.04 to 0.14 wt% of carbon (C), 0.10 to 0.55 wt% of silicon (Si), 0.90 to 1.65 wt% of manganese (Mn), 0.020 wt% or less of phosphorus (P), and sulfur. (S) 0.007% by weight or less, aluminum (Al) 0.015 to 0.055% by weight, vanadium (V) 0.010 to 0.080% by weight, titanium (Ti) 0.005 to 0.025% by weight, niobium (Nb) 0.010 to 0.050% by weight, remaining iron (Fe) and other inevitable impurities, and the yield strength (YS) satisfies 420 MPa or more. Here, the yield strength (YS) may mean the yield strength at room temperature.
보다 바람직하게는, 상기 실리콘(Si)은 0.1 ~ 0.2 중량%, 상기 망간(Mn) 1.57 ~ 1.65 중량%, 상기 알루미늄(Al)은 0.015 ~ 0.021 중량%, 상기 바나듐(V)은 0.040 ~ 0.045 중량%, 상기 타이타늄(Ti)은 0.005 ~ 0.008 중량%, 상기 니오븀(Nb)은 0.040 ~ 0.045 중량%일 수 있다.More preferably, the silicon (Si) is 0.1 to 0.2% by weight, the manganese (Mn) is 1.57 to 1.65% by weight, the aluminum (Al) is 0.015 to 0.021% by weight, and the vanadium (V) is 0.040 to 0.045% by weight. %, the titanium (Ti) may be 0.005 to 0.008 wt%, and the niobium (Nb) may be 0.040 to 0.045 wt%.
상술한 합금 조성을 갖는 형강은, -40℃에서의 저온충격인성은 50J 이상, 항복비(YR) 0.90 이하, 연신율(EL)은 19% 이상을 만족할 수 있다. The section steel having the above-described alloy composition can satisfy low-temperature impact toughness at -40°C of 50J or more, yield ratio (YR) of 0.90 or less, and elongation (EL) of 19% or more.
바람직하게는, 상온에서의 항복강도(YS)는 435MPa 이상, 항복비(YR) 0.85 이하, 연신율은 21% 이상일 수 있으며, 보다 바람직하게는, 상온에서의 항복강도(YS)는 445MPa 이상, -40℃에서의 저온충격인성은 160J 이상, 항복비(YR) 0.81 이하, 연신율(EL)은 29.9% 이상을 만족할 수 있다.Preferably, the yield strength (YS) at room temperature may be 435 MPa or more, the yield ratio (YR) may be 0.85 or less, and the elongation may be 21% or more. More preferably, the yield strength (YS) at room temperature may be 445 MPa or more, - Low-temperature impact toughness at 40°C can satisfy 160J or more, yield ratio (YR) 0.81 or less, and elongation (EL) 29.9% or more.
또한, 상기 형강은 웹과 플랜지를 포함하는 H 형강의 형상을 가지되, 상기 웹을 기준으로 상기 플랜지의 상부와 하부의 항복강도(YS) 편차는 15 MPa 이하일 수 있다. 바람직하게는, 상기 플랜지의 상부와 하부의 항복강도(YS) 편차는 12MPa, 더욱 바람직하게는 8MPa 이하일 수 있다.In addition, the section steel has the shape of an H-section steel including a web and a flange, and the yield strength (YS) deviation of the upper and lower parts of the flange with respect to the web may be 15 MPa or less. Preferably, the yield strength (YS) deviation between the upper and lower parts of the flange may be 12 MPa, more preferably 8 MPa or less.
또한, 상술한 합금 조성을 갖는 형강은 중심부의 상온 미세조직이 페라이트, 펄라이트를 포함하되, F.G.S(Ferrite grain size)는 10 ㎛ 이하일 수 있다. 보다 상세하게는, F.G.S는 9.5 ㎛ 이하일 수 있다.In addition, the section steel having the above-described alloy composition includes ferrite and pearlite in the room temperature microstructure at the center, and the F.G.S. (Ferrite grain size) may be 10 ㎛ or less. More specifically, F.G.S may be 9.5 μm or less.
이로써, 본 발명의 일 실시예에 따른 저온 충격 인성을 확보하면서, 형강의 물성 균질화를 달성한 고성능 형강 및 형강 제조방법을 구현할 수 있다.As a result, it is possible to implement a high-performance section steel and a section steel manufacturing method that achieves homogenization of the physical properties of the section steel while securing low-temperature impact toughness according to an embodiment of the present invention.
특히, 상술한 조성범위의 바나듐(V), 니오븀(Nb)의 첨가를 통해 석출강화 및 결정립 미세화를 달성하고, 충분한 냉각 효과를 얻을 수 있다. 또한, V-Nb 복합설계를 통해 종래의 항복강도 355MPa급 형강 대비, 고강도, 안정성 및 양산성을 확보할 수 있다.In particular, precipitation strengthening and grain refinement can be achieved through the addition of vanadium (V) and niobium (Nb) in the above-mentioned composition range, and sufficient cooling effect can be obtained. In addition, through V-Nb composite design, high strength, stability, and mass production can be secured compared to conventional 355 MPa yield strength section steel.
또한, 상술한 조성범위의 타이타늄(Ti) 첨가를 통해 오스테나이트 결정립 성장 지연 및 용접성능을 향상할 수 있다.Additionally, austenite grain growth can be delayed and welding performance can be improved by adding titanium (Ti) in the above-mentioned composition range.
이하에서는, 본 발명의 일 실시예에 따른 형강에 포함되는 각 합금 원소의 역할 및 함량에 대해 상세히 설명한다.Hereinafter, the role and content of each alloy element included in the section steel according to an embodiment of the present invention will be described in detail.
탄소(C)Carbon (C)
탄소는 강의 강도를 높이는데 가장 효과적이며 중요한 원소로, Nb, Ti 등과 반응하여 미세한 탄화물 생성을 촉진시킴으로써, 석출강화를 통한 강도 향상에 효과적으로 기여한다. 따라서, 본 발명의 일 실시예에 따른 형강은 탄소가 0.04 중량% ~ 0.14 중량% 포함될 수 있다.Carbon is the most effective and important element in increasing the strength of steel. It reacts with Nb, Ti, etc. to promote the creation of fine carbides, effectively contributing to improving strength through precipitation strengthening. Therefore, the section steel according to an embodiment of the present invention may contain 0.04% by weight to 0.14% by weight of carbon.
즉, 탄소의 함량이 전체 중량의 0.04 중량% 미만일 경우 충분한 강도를 확보하는데 어려움이 따를 수 있다. 반대로, 탄소의 함량이 전체 중량의 0.14 중량%를 초과할 경우에는 조대한 탄화물이 생성되어 충격특성을 떨어뜨릴 수 있으며, 용접성 저하 문제를 가져올 수 있다.In other words, if the carbon content is less than 0.04% by weight of the total weight, it may be difficult to secure sufficient strength. Conversely, if the carbon content exceeds 0.14% by weight of the total weight, coarse carbides are generated, which may deteriorate impact characteristics and cause problems with deterioration of weldability.
실리콘(Si)Silicon (Si)
실리콘(Si)은 알루미늄과 함께 제강공정에서 강 중의 산소를 제거하기 위한 탈산제로 첨가된다. 또한, 실리콘은 고용강화 효과도 가질 수 있다. Silicon (Si) is added along with aluminum as a deoxidizer to remove oxygen in steel during the steelmaking process. Additionally, silicon can also have a solid solution strengthening effect.
실리콘은 본 발명의 일 실시예에 따른 형강의 전체 중량의 0.10 ~ 0.55 중량%의 함량비로 첨가될 수 있다. 실리콘의 함량이 전체 중량의 0.10 중량% 미만일 경우에는 실리콘 첨가 효과를 제대로 발휘할 수 없다. 반대로, 실리콘의 함량이 전체 중량의 0.55 중량%를 초과하여 다량 첨가 시 강의 용접성을 저하시키며, 재가열 및 열간압연 시에 적 스케일(red scale)을 생성시킴으로써 표면품질에 문제를 줄 수 있다.Silicon may be added in an amount of 0.10 to 0.55% by weight of the total weight of the section steel according to an embodiment of the present invention. If the silicone content is less than 0.10% by weight of the total weight, the effect of adding silicone cannot be properly achieved. Conversely, if the silicon content exceeds 0.55% by weight of the total weight, adding a large amount may deteriorate the weldability of the steel and cause problems with surface quality by generating red scale during reheating and hot rolling.
망간(Mn)Manganese (Mn)
망간은 고용강화 원소로써 강도확보에 기여할 뿐만 아니라 강의 경화능을 향상시킬 수 있다. 또한, 강의 내산성과 내산화성을 저해하나, 펄라이트가 미세해지고 페라이트를 고용강화시킴으로써 항복강도를 향상시킨다. 따라서, 본 발명의 일 실시예에 따른 형강은 망간이 0.90 중량% ~ 1.65 중량% 포함될 수 있으며, 바람직하게는 1.57 중량% ~ 1.65 중량%로 포함될 수 있다.As a solid solution strengthening element, manganese not only contributes to securing strength but can also improve the hardenability of steel. In addition, it impairs the acid resistance and oxidation resistance of steel, but improves yield strength by making pearlite finer and strengthening ferrite in solid solution. Therefore, the section steel according to an embodiment of the present invention may contain 0.90 wt% to 1.65 wt% of manganese, and preferably 1.57 wt% to 1.65 wt%.
망간의 함량이 전체 중량의 0.90 중량% 미만일 경우, 고용 강화의 효과를 충분히 발휘할 수 없으며, 1.65 중량%를 초과할 경우, 황과 결합하여 MnS 개재물을 생성시키거나 또는 잉곳에 중심편석을 발생시킬 수 있고 이에 따라 형강의 연성이 저하되고 내부식성이 저하될 수 있다.If the manganese content is less than 0.90% by weight of the total weight, the solid solution strengthening effect cannot be sufficiently exerted, and if it exceeds 1.65% by weight, it may combine with sulfur to create MnS inclusions or cause central segregation in the ingot. As a result, the ductility of the section steel may decrease and corrosion resistance may decrease.
인(P)Phosphorus (P)
인(P)은 고용 강화에 의해 강도의 강도를 높이며, 탄화물의 형성을 억제하는 기능을 수행할 수 있다. 상기 인은 본 발명의 일 실시예에 따른 형강의 전체 중량의 0.020중량% 이하의 함량비로 첨가될 수 있다. 인의 함 량이 0.020중량%를 초과하는 경우에는 트램 원소(Tramp element)로서 개재물 등을 생성하여 강의 연성을 떨어뜨릴 수 있으며, 석출거동에 의해 저온 충격치가 저하되는 문제가 있다.Phosphorus (P) increases strength through solid solution strengthening and can perform the function of suppressing the formation of carbides. The phosphorus may be added in an amount of 0.020% by weight or less of the total weight of the section steel according to an embodiment of the present invention. If the phosphorus content exceeds 0.020% by weight, inclusions such as tramp elements may be created, which may reduce the ductility of the steel, and there is a problem of low-temperature impact value being lowered due to precipitation behavior.
황(S)Hwang (S)
황(S)은 미세 MnS의 석출물을 형성하여 가공성을 향상시킬 수 있다. 상기 황은 본 발명의 일 실시예에 따른 형강의 전체 중량의 0.007중량% 이하의 함량비로 첨가될 수 있다. 황의 함량이 0.007중량%를 초과할 경우, 트램 원소(Tramp element)로서 개재물 등을 생성하여 강의 연성 인성 및 용접성을 저해하고, 저온 충격치를 저하시킬 수 있다.Sulfur (S) can improve processability by forming fine MnS precipitates. The sulfur may be added in an amount of 0.007% by weight or less of the total weight of the section steel according to an embodiment of the present invention. If the sulfur content exceeds 0.007% by weight, inclusions such as tramp elements are generated, which may impair the ductility, toughness and weldability of the steel, and lower the low-temperature impact value.
알루미늄(Al)Aluminum (Al)
알루미늄(Al)은 강 중의 산소를 제거하기 위한 탈산제로 제강 공정에 첨가된다. 또한, AlN으로 강 중에 석출하여 결정립 미세화에 기여할 수 있다. 상기 알루미늄은 본 발명의 일 실시예에 따른 형강 중량의 0.015 ~ 0.055 중량%의 함량비로 첨가될 수 있으며, 바람직하게는 0.015 ~ 0.021 중량%의 함량비로 첨가될 수 있다. 알루미늄의 함량이 0.015중량% 미만이면 탈산효과가 미흡하고, 0.055중량%를 초과하면 연주에 어려움이 있어 생산성을 떨어뜨리며, 비금속개재물인 알루미나(Al2O3)를 형성하여 연성 및 인성이 저하되는 문제점이 있을 수 있다.Aluminum (Al) is added in the steelmaking process as a deoxidizer to remove oxygen in steel. In addition, AlN can precipitate in steel and contribute to grain refinement. The aluminum may be added at an amount of 0.015 to 0.055% by weight of the weight of the section steel according to an embodiment of the present invention, and preferably at an amount of 0.015 to 0.021% by weight. If the aluminum content is less than 0.015% by weight, the deoxidation effect is insufficient, and if it exceeds 0.055% by weight, it makes playing difficult, reducing productivity, and forms alumina (Al 2 O 3 ), a non-metallic inclusion, which reduces ductility and toughness. There may be a problem.
바나듐(V)Vanadium (V)
바나듐(V)은 탄화물 형성능이 커서 미립탄화물을 만들어 강의 조직을 미세화시키고, 압연 중 석출물을 형성하여 강도를 증가시키는 효과가 있으며, 특히, 질소 첨가량에 따라 석출량을 제어할 수 있다. 또한, 바나듐은 결정립계에 피닝으로 작용하여 강도 향상에 기여할 수 있다. Vanadium (V) has a large carbide-forming ability, so it creates fine-grained carbides, which has the effect of refining the structure of steel and increasing strength by forming precipitates during rolling. In particular, the amount of precipitation can be controlled according to the amount of nitrogen added. Additionally, vanadium can contribute to improving strength by acting as a pinning agent on grain boundaries.
상기 바나듐은 본 발명의 일 실시 예에 따른 형강 중량의 0.010 ~ 0.080 중량%의 함량비로 첨가될 수 있으며, 바람직하게는 0.040 ~ 0.045 중량%의 함량비로 첨가될 수 있다. 바나듐의 함량이 0.010 중량% 미만이면 상기 효과를 충분히 확보하기 어렵다. 반면에, 바나듐의 함량이 0.080 중량%를 초과하면 저온충격인성이 저하되는 문제점이 있을 수 있다.The vanadium may be added at an amount of 0.010 to 0.080% by weight of the weight of the section steel according to an embodiment of the present invention, and preferably at an amount of 0.040 to 0.045% by weight. If the vanadium content is less than 0.010% by weight, it is difficult to sufficiently secure the above effect. On the other hand, if the vanadium content exceeds 0.080% by weight, there may be a problem in that low-temperature impact toughness deteriorates.
타이타늄(Ti)Titanium (Ti)
티타늄(Ti)은 고온안정성이 높은 Ti(C, N) 석출물을 생성시킬 수 있다. 이로써, 용접시 오스테나이트 결정립 성장을 방해하여 용접부의 조직을 미세화시켜, 강의 인성 및 강도를 향상시킬 수 있다. 상기 티타늄은 본 발명의 일 실시 예에 따른 형강 중량의 0.005 ~ 0.025 중량%의 함량비로 첨가될 수 있으며, 바람직하게는 0.005 ~ 0.008 중량%의 함량비로 첨가될 수 있다. 상기 티타늄의 함량이 0.005 중량% 미만일 경우 상기 효과를 충분히 확보하기 힘들다. 반면에, 상기 티타늄의 함량이 0.025 중량%를 초과하는 경우, 조대한 석출물을 생성시킴으로써 강의 저온충격인성을 저하시킬 수 있다.Titanium (Ti) can produce Ti(C, N) precipitates with high high temperature stability. As a result, the growth of austenite grains is hindered during welding, thereby refining the structure of the weld zone, thereby improving the toughness and strength of the steel. The titanium may be added at an content ratio of 0.005 to 0.025% by weight of the weight of the section steel according to an embodiment of the present invention, and preferably at an content ratio of 0.005 to 0.008% by weight. If the titanium content is less than 0.005% by weight, it is difficult to sufficiently secure the above effect. On the other hand, if the titanium content exceeds 0.025% by weight, the low-temperature impact toughness of the steel may be reduced by generating coarse precipitates.
니오븀(Nb)Niobium (Nb)
니오븀은 오스테나이트 조직에 고용될 경우, 결정립 성장을 억제시키며 미세한 결정립 크기를 갖게 하는 원소이다. 특히, 강이 재결정 정지온도(non-recrystallization temperature, Tnr) 이하에 빠르게 도달하도록 하여 재결정을 지연시킬 수 있다. 또한 탄소와 반응하여 미세한 탄화물 생성을 촉진시킴으로써 석출 강화를 통한 강도 향상에 효과적이다. 그러나 과도하게 첨가될 경우 강의 충격 특성을 감소시킬 수 있다. Niobium is an element that, when dissolved in an austenite structure, suppresses grain growth and creates a fine grain size. In particular, recrystallization can be delayed by allowing the steel to quickly reach below the non-recrystallization temperature (Tnr). In addition, it is effective in improving strength through precipitation strengthening by reacting with carbon and promoting the creation of fine carbides. However, if added excessively, it can reduce the impact properties of the steel.
따라서 본 발명의 일 실시예에 따른 형강은 니오븀이 0.01 ~ 0.05 중량%로 포함될 수 있으며, 바람직하게는 0.040 ~ 0.045 중량%로 포함될 수 있다. 즉, 니오븀이 전체 중량의 0.01 중량% 미만일 경우 상기 니오븀의 첨가 효과를 제대로 발휘할 수 없으며, 0.05 중량% 초과하여 다량 첨가 시, 강의 충격흡수에너지를 감소시킬 수 있다. 한편, 니오븀의 함량이 0.040 ~ 0.045 중량%인 경우 상술한 니오븀의 첨가 효과를 극대화하면서, 강의 충격흡수에너지 감소를 최소화할 수 있다.Therefore, the section steel according to an embodiment of the present invention may contain 0.01 to 0.05% by weight of niobium, and preferably 0.040 to 0.045% by weight. In other words, if niobium is added in less than 0.01% by weight of the total weight, the effect of adding niobium cannot be properly exhibited, and if it is added in a large amount exceeding 0.05% by weight, the shock absorption energy of the steel can be reduced. On the other hand, when the niobium content is 0.040 to 0.045% by weight, the effect of adding niobium described above can be maximized while the reduction in the shock absorption energy of the steel can be minimized.
질소(N)Nitrogen (N)
극히 미량으로도 강의 기계적 성질에 큰 영향을 미치며, 인장강도, 항복강도를 증가시키는 반면 연신율을 저하시킬 수 있다. 다만, 질소를 과도하게 추가하면 용접부 인성이 저하되고, 충격치가 저하될 수 있다. 본 발명의 일 실시예에 따른 형강은 질소를 110 ~ 120 ppm 포함할 수 있다.Even in extremely small amounts, it has a significant impact on the mechanical properties of steel and can increase tensile strength and yield strength while decreasing elongation. However, if nitrogen is added excessively, the toughness of the weld zone may decrease and the impact value may decrease. The section steel according to an embodiment of the present invention may contain 110 to 120 ppm of nitrogen.
한편, 본 발명의 일 실시예에 따른 형강은 탄소(C) 0.04 ~ 0.14 중량%, 실리콘(Si) 0.10 ~ 0.55 중량%, 망간(Mn) 0.90 ~ 1.65 중량%, 인(P) 0.020 중량% 이하, 황(S) 0.007 중량% 이하, 알루미늄(Al) 0.015 ~ 0.055 중량%, 바나듐(V) 0.010 ~ 0.080 중량%, 타이타늄(Ti) 0.005 ~ 0.025 중량%, 니오븀(Nb) 0.010 ~ 0.050 중량%, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하고, 1150 ~ 1300 ℃로 재가열한 후 압연하되, 압연 시작 온도는 900 ~ 1100 ℃, 압연 중간 온도는 850 ~ 1000℃, 압연 종료 온도는 800 ~ 900 ℃ 제어하는 방법으로 제조한다.Meanwhile, the section steel according to an embodiment of the present invention contains 0.04 to 0.14 wt% of carbon (C), 0.10 to 0.55 wt% of silicon (Si), 0.90 to 1.65 wt% of manganese (Mn), and 0.020 wt% or less of phosphorus (P). , sulfur (S) 0.007% by weight or less, aluminum (Al) 0.015 to 0.055% by weight, vanadium (V) 0.010 to 0.080% by weight, titanium (Ti) 0.005 to 0.025% by weight, niobium (Nb) 0.010 to 0.050% by weight, It contains the remaining iron (Fe) and other inevitable impurities, and is reheated to 1150 ~ 1300 ℃ and then rolled. The rolling start temperature is 900 ~ 1100 ℃, the middle rolling temperature is 850 ~ 1000 ℃, and the rolling end temperature is 800 ~ 900 ℃. Manufactured using a controlled method.
또한, 상기 압연 중간 온도를 제어하기 위해 도 2에 도시된 S/C (Selective Cooling) 장치에서 냉각수를 분사하되, 대기시간은 0 ~ 120초, 수량은 50 ~ 300 m3/hr, 이송속도는 2.0 ~ 4.0 m/s로 제어하는 방법으로 제조할 수 있다. S/C 장치에 대해서는 아래의 형강 제조방법에서 상세히 설명하기로 한다.In addition, in order to control the intermediate rolling temperature, coolant is sprayed from the S/C (Selective Cooling) device shown in FIG. 2, with a waiting time of 0 to 120 seconds, a water quantity of 50 to 300 m 3 /hr, and a transfer speed of 0 to 120 seconds. It can be manufactured by controlling the speed from 2.0 to 4.0 m/s. The S/C device will be described in detail in the section steel manufacturing method below.
상술한 합금 조성을 포함하고, 상술한 방법에 의해 제조되는 형강은, -40℃에서의 저온충격인성은 50J 이상, 항복비(YR) 0.90 이하, 연신율(EL)은 19% 이상을 만족할 수 있다. 바람직하게는, 상온에서의 항복강도(YS)는 435MPa 이상, 항복비(YR) 0.85 이하, 연신율은 21% 이상일 수 있으며, 보다 바람직하게는, 상온에서의 항복강도(YS)는 445MPa 이상, -40℃에서의 저온충격인성은 160J 이상, 항복비(YR) 0.81 이하, 연신율(EL)은 29.9% 이상을 만족할 수 있다.The section steel containing the above-described alloy composition and manufactured by the above-described method can satisfy low-temperature impact toughness at -40°C of 50J or more, yield ratio (YR) of 0.90 or less, and elongation (EL) of 19% or more. Preferably, the yield strength (YS) at room temperature may be 435 MPa or more, the yield ratio (YR) may be 0.85 or less, and the elongation may be 21% or more. More preferably, the yield strength (YS) at room temperature may be 445 MPa or more, - Low-temperature impact toughness at 40°C can satisfy 160J or more, yield ratio (YR) 0.81 or less, and elongation (EL) 29.9% or more.
또한, 상기 형강은 웹과 플랜지를 포함하는 H 형강의 형상을 가지되, 상기 웹을 기준으로 상기 플랜지의 상부와 하부의 항복강도(YS) 편차는 15 MPa 이하일 수 있다. 바람직하게는, 상기 플랜지의 상부와 하부의 항복강도(YS) 편차는 12MPa, 더욱 바람직하게는 8MPa 이하일 수 있다.In addition, the section steel has the shape of an H-section steel including a web and a flange, and the yield strength (YS) deviation of the upper and lower parts of the flange with respect to the web may be 15 MPa or less. Preferably, the yield strength (YS) deviation between the upper and lower parts of the flange may be 12 MPa, more preferably 8 MPa or less.
또한, 상술한 합금 조성을 갖고, 상술한 방법에 의해 제조되는 형강은 중심부의 상온 미세조직이 페라이트, 펄라이트(F+P)를 포함하되, F.G.S(Ferrite grain size)는 10 ㎛ 이하일 수 있다. 보다 상세하게는, F.G.S는 9.5 ㎛ 이하일 수 있다.In addition, the section steel having the above-described alloy composition and manufactured by the above-described method may have a room temperature microstructure at the center containing ferrite and pearlite (F+P), and the F.G.S. (Ferrite grain size) may be 10 ㎛ or less. More specifically, F.G.S may be 9.5 μm or less.
이로써, 본 발명의 일 실시예에 따른 형강은 저온 충격 인성을 확보하면서, 온도편차를 최소화하고 물성 균질화를 달성한 고성능 형강 및 형강 제조방법을 구현할 수 있다.As a result, the section steel according to an embodiment of the present invention can implement a high-performance section steel and section steel manufacturing method that secures low-temperature impact toughness, minimizes temperature deviation, and achieves homogenization of physical properties.
특히, 상술한 조성범위의 바나듐(V), 니오븀(Nb)의 첨가 및 S/C(Selective Cooling) 장치를 통한 압연 중간 온도 제어를 통해 석출강화 및 결정립 미세화를 달성하고, 가속냉각 효과를 얻을 수 있다. 또한, V-Nb 복합설계를 통해 종래의 항복강도 355MPa급 형강 대비, 고강도, 안정성 및 양산성을 확보할 수 있다.In particular, precipitation strengthening and grain refinement can be achieved through the addition of vanadium (V) and niobium (Nb) in the above-mentioned composition range and control of the temperature in the middle of rolling through a S/C (Selective Cooling) device, and an accelerated cooling effect can be obtained. there is. In addition, through V-Nb composite design, high strength, stability, and mass production can be secured compared to conventional 355 MPa yield strength section steel.
또한, 상술한 조성범위의 타이타늄(Ti) 첨가를 통해 오스테나이트 결정립 성장 지연 및 용접성능을 향상할 수 있다.Additionally, austenite grain growth can be delayed and welding performance can be improved by adding titanium (Ti) in the above-mentioned composition range.
형강 제조방법Section steel manufacturing method
본 발명의 일 실시예에 따른 형강 제조방법은 도 1에 도시된 바와 같이 (a) 재가열 단계, (b) 압연 단계를 포함한다. 아하에서는 도 1 및 도 2를 참조하여 형강 제조방법에 대해 상세히 설명한다.The method of manufacturing section steel according to an embodiment of the present invention includes (a) a reheating step and (b) a rolling step, as shown in FIG. 1. In Aha, the method of manufacturing section steel will be described in detail with reference to FIGS. 1 and 2.
먼저 강재는, 탄소(C) 0.04 ~ 0.14 중량%, 실리콘(Si) 0.10 ~ 0.55 중량%, 망간(Mn) 0.90 ~ 1.65 중량%, 인(P) 0.020 중량% 이하, 황(S) 0.007 중량% 이하, 알루미늄(Al) 0.015 ~ 0.055 중량%, 바나듐(V) 0.010 ~ 0.080 중량%, 타이타늄(Ti) 0.005 ~ 0.025 중량%, 니오븀(Nb) 0.010 ~ 0.050 중량%, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하고, 상기 강재를 1150 ~ 1300 ℃로 재가열하는 단계를 수행한다. 다음으로, 상기 강재를 압연하되, 압연 시작 온도는 900 ~ 1100 ℃, 압연 중간 온도는 850 ~ 1000℃, 압연 종료 온도는 800 ~ 900 ℃ 로 수행한다.First, the steel contains 0.04 to 0.14 wt% of carbon (C), 0.10 to 0.55 wt% of silicon (Si), 0.90 to 1.65 wt% of manganese (Mn), 0.020 wt% or less of phosphorus (P), and 0.007 wt% of sulfur (S). Hereinafter, aluminum (Al) 0.015 ~ 0.055% by weight, vanadium (V) 0.010 ~ 0.080% by weight, titanium (Ti) 0.005 ~ 0.025% by weight, niobium (Nb) 0.010 ~ 0.050% by weight, the remaining iron (Fe) and other inevitable A step of containing impurities and reheating the steel to 1150 to 1300° C. is performed. Next, the steel material is rolled, with the starting temperature of rolling being 900 to 1100°C, the middle temperature of rolling being 850 to 1000°C, and the rolling ending temperature being 800 to 900°C.
이로써, 본 발명의 일 실시예에 따른 형강(10)은 목표 미세조직 및 결정립도륵 확보함에 따라, 저온 충격 인성을 확보하고, 온도편차를 최소화하며 물성 균질화를 달성한 고성능 형강 및 형강 제조방법을 구현할 수 있다.As a result, the section steel 10 according to an embodiment of the present invention can implement a high-performance section steel and section steel manufacturing method that secures low-temperature impact toughness, minimizes temperature deviation, and achieves homogenization of physical properties by securing the target microstructure and grain size. You can.
특히, 상술한 조성범위의 바나듐(V), 니오븀(Nb)의 첨가 및 압연 중간 온도 제어를 통해 석출강화 및 결정립 미세화를 달성하고, 적절한 냉각 효과를 얻을 수 있다. 또한, V-Nb 복합설계를 통해 종래의 항복강도 355MPa급 형강 대비, 고강도, 안정성 및 양산성을 확보할 수 있다. 또한, 상술한 조성범위의 타이타늄(Ti) 첨가를 통해 오스테나이트 결정립 성장 지연 및 용접성능을 향상할 수 있다.In particular, precipitation strengthening and grain refinement can be achieved and an appropriate cooling effect can be obtained through the addition of vanadium (V) and niobium (Nb) in the above-mentioned composition range and control of the temperature during rolling. In addition, through V-Nb composite design, high strength, stability, and mass production can be secured compared to conventional 355 MPa yield strength section steel. Additionally, austenite grain growth can be delayed and welding performance can be improved by adding titanium (Ti) in the above-mentioned composition range.
이하에서는 본 발명의 일 실시예에 따른 형강 제조방법에 대해 상세히 설명한다.Hereinafter, a method for manufacturing section steel according to an embodiment of the present invention will be described in detail.
먼저 재가열하는 단계에서는 상기 조성의 강재를 1150 ℃ 이상에서 재가열한다. 재가열 온도가 1150 ℃보다 낮을 경우, 각종 탄화물의 고용이 충분하지 않을 수 있으며, 연속주조공정 시 편석된 성분들이 충분히 고르게 분포되지 않을 수 있다. 또한, 재가열 온도는 1300℃를 초과하지 않을 수 있다. 만약 재가열 온도가 1300℃를 초과할 경우, 조대한 오스테나이트 결정립이 형성되어 강도확보가 어려울 수 있으며, 가열 비용 및 시간의 증대로 인해 제조비용의 상승 및 생산성 저하 문제를 가져올 수 있다.First, in the reheating step, the steel material of the above composition is reheated at 1150°C or higher. If the reheating temperature is lower than 1150°C, the solid solution of various carbides may not be sufficient, and the segregated components may not be distributed sufficiently evenly during the continuous casting process. Additionally, the reheating temperature may not exceed 1300°C. If the reheating temperature exceeds 1300°C, coarse austenite grains may be formed, making it difficult to secure strength, and increased heating costs and time may lead to increased manufacturing costs and reduced productivity.
한편, 상기 강재는 제강 공정을 통해 소망하는 조성의 용강을 얻은 다음, 연속주조공정을 통해 제조될 수 있다. 상기 강재는 예를 들어 빔 블랭크(beam blank)일 수 있으나 반드시 이에 제한되는 것은 아니다.Meanwhile, the steel may be manufactured through a continuous casting process after obtaining molten steel of a desired composition through a steelmaking process. The steel may be, for example, a beam blank, but is not necessarily limited thereto.
한편 상기 강재의 조성범위는 보다 바람직하게는, 실리콘(Si) 0.1 ~ 0.2 중량%, 망간(Mn) 1.57 ~ 1.65 중량%, 알루미늄(Al) 0.015 ~ 0.021 중량%, 바나듐(V) 0.040 ~ 0.045 중량%, 타이타늄(Ti) 0.005 ~ 0.008 중량%, 니오븀(Nb) 0.040 ~ 0.045 중량%일 수 있다. 이로써, 플랜지 상하단의 상온 항복강도 및 저온 충격인성의 편차를 더욱 감소시킬 수 있으며, 미세조직 결정립도를 10 ㎛ 이하로 확보할 수 있다.Meanwhile, the composition range of the steel is more preferably 0.1 to 0.2% by weight of silicon (Si), 1.57 to 1.65% by weight of manganese (Mn), 0.015 to 0.021% by weight of aluminum (Al), and 0.040 to 0.045% by weight of vanadium (V). %, titanium (Ti) may be 0.005 to 0.008 wt%, and niobium (Nb) may be 0.040 to 0.045 wt%. As a result, the deviation in room temperature yield strength and low temperature impact toughness of the upper and lower ends of the flange can be further reduced, and the microstructure grain size can be secured to 10 ㎛ or less.
(b) 압연 단계에서는 상술한 상기 압연 중간 온도를 제어하기 위해 도 2에 도시된 S/C (Selective Cooling) 장치(100)에서 냉각수를 분사하되, 대기시간은 0 ~ 120초, 수량은 50 ~ 300 m3/hr, 이송속도는 2.0 ~ 4.0 m/s의 조건으로 수행할 수 있다.(b) In the rolling step, coolant is sprayed from the S/C (Selective Cooling) device 100 shown in FIG. 2 to control the above-mentioned rolling intermediate temperature, with a waiting time of 0 to 120 seconds and a quantity of 50 to 50 seconds. It can be performed at 300 m 3 /hr and the transfer speed is 2.0 ~ 4.0 m/s.
고강도 충격인성을 보증하기 위해서는 TMCP 공정이 주로 사용되나, 본 발명의 일 실시예는 TMCP 공정의 QST설비와 같은 가속냉각 설비가 없는 중형 또는 소형 규격에 사용되는 것으로, 중형 또는 소형 규격의 제조 공정에서는 CM(Continuous Mill)과 함께 S/C(Selective Cooling) 장치(100)를 이용할 수 있다.The TMCP process is mainly used to ensure high-strength impact toughness, but one embodiment of the present invention is used in medium-sized or small-sized manufacturing processes without accelerated cooling facilities such as QST equipment in the TMCP process. A S/C (Selective Cooling) device 100 can be used along with a CM (Continuous Mill).
QST 설비의 경우, 사이드 쿨러뿐 아니라, 상부 냉각 박스 및 하부 냉각 노즐로 이루어지는 것이 특징이며, 고압의 냉각수를 이용하므로 냉각속도가 빨라 대형 규격의 형강에 이용된다. 반면 S/C 장치(100)의 경우, 도 2에 도시된 바와 같이, 사이드 쿨러(110)와 하부 냉각 노즐(120)로만 이루어져 냉각 속도 및 온도 컨트롤이 보다 용이한 이점이 있다.The QST equipment is characterized by not only a side cooler, but also an upper cooling box and a lower cooling nozzle. Since it uses high-pressure coolant, the cooling speed is fast and it is used for large-sized section steel. On the other hand, in the case of the S/C device 100, as shown in FIG. 2, it consists only of the side cooler 110 and the lower cooling nozzle 120, so it has the advantage of easier cooling rate and temperature control.
CM 장치의 경우, 연속적으로 압연기에 H 형강 제품이 물려있기 때문에 형강의 상부에 냉각수가 고여있고 공기중에 노출되며, 그로 인해 압연온도 편차 및 형강(10)의 플랜지(12) 상부(12a)와 하부(12b)의 물성 편차를 야기하게 된다. 이를 개선하기 위해 S/C 장치(100) 및 상기 S/C 장치(100)의 운전 조건을 통해 하부를 집중 냉각하고, 냉각 온도 및 속도를 정밀하게 제어하여 온도편차 및 물성 균질화, 일부 물성 향상 효과를 얻을 수 있다.In the case of the CM device, since H-beam products are continuously attached to the rolling mill, coolant accumulates in the upper part of the beam and is exposed to the air, resulting in rolling temperature deviation and the upper (12a) and lower portions of the flange (12) of the beam (10). This causes deviation in the physical properties of (12b). In order to improve this, the lower part is intensively cooled through the S/C device 100 and the operating conditions of the S/C device 100, and the cooling temperature and speed are precisely controlled to homogenize temperature deviation and physical properties, and improve some physical properties. can be obtained.
이처럼 상기 공정 조건에 따라 압연 단계를 수행한 강재는 중심부의 상온 미세조직이 페라이트, 펄라이트를 포함하되, F.G.S(Ferrite grain size)는 10 ㎛ 이하일 수 있으며, 도 2에 도시된 바와 같이 웹(11)과 플랜지(12)를 포함하는 H형강(10)에서 웹(11)을 기준으로 플랜지(12)의 상부(12a)와 하부(12b)의 F.G.S 결정립도 편차가 감소할 수 있다. 이처럼, 본 발명의 일 실시예에 따른 형강 제조방법에 의한 경우, 목표 미세조직 및 결정립도를 확보할 수 있으며, 고강도의 형강을 제조할 수 있다.In this way, the steel material that has undergone the rolling step according to the above process conditions has a room temperature microstructure in the center containing ferrite and pearlite, but the F.G.S. (Ferrite grain size) may be 10 ㎛ or less, and as shown in FIG. 2, the web 11 In the H-beam 10 including the flange 12, the F.G.S grain size deviation of the upper part 12a and the lower part 12b of the flange 12 based on the web 11 may be reduced. In this way, in the case of the section steel manufacturing method according to an embodiment of the present invention, the target microstructure and grain size can be secured, and a high-strength section steel can be manufactured.
또한, 상기 공정 조건에 따라 (b) 압연 단계를 수행한 강재는 항복강도(YS)가 420 MPa 이상, -40℃에서의 저온충격인성이 50J 이상, 항복비(YR)가 0.90 이하, 연신율(EL)이 19% 이상일 수 있다. 이처럼, 본 발명의 일 실시예에 따른 형강 제조방법에 의한 경우, 저온에서 충격 인성이 확보된 고성능 형강을 제조할 수 있다.In addition, the steel that performed the rolling step (b) according to the above process conditions has a yield strength (YS) of 420 MPa or more, a low-temperature impact toughness at -40°C of 50 J or more, a yield ratio (YR) of 0.90 or less, and an elongation ( EL) may be 19% or more. In this way, by using the section steel manufacturing method according to an embodiment of the present invention, high-performance section steel with impact toughness secured at low temperatures can be manufactured.
또한 상기 상기 공정 조건에 따라 (b) 압연 단계를 수행한 강재는, 웹(11)과 플랜지(12)를 포함하는 H 형강(10)으로 제조되되, 상기 웹(11)을 기준으로 상기 플랜지(12)의 상부(12a)와 하부(12b)의 항복강도(YS) 편차는 15 MPa 이하일 수 있다. 이처럼, 본 발명의 일 실시예에 따른 형강 제조방법에 의한 경우, 종래 대비 균질한 품질과 안정적 물성을 확보하여 품질 및 양산성을 개선할 수 있다.In addition, the steel material that has performed the rolling step (b) according to the above process conditions is manufactured as H-beam steel 10 including a web 11 and a flange 12, and the flange ( The yield strength (YS) deviation between the upper part 12a and the lower part 12b of 12) may be 15 MPa or less. In this way, in the case of the section steel manufacturing method according to an embodiment of the present invention, quality and mass production can be improved by securing uniform quality and stable physical properties compared to the prior art.
비교예 및 실험예Comparative and experimental examples
이하 본 발명의 이해를 돕기 위해 바람직한 비교예 및 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.Below, preferred comparative examples and experimental examples are presented to aid understanding of the present invention. However, the following experimental examples are only intended to aid understanding of the present invention, and the present invention is not limited by the following experimental examples.
아래의 표 1은 본 실험예 및 비교예의 주요 합금 원소 조성(단위: 중량%)을 나타낸 것이며, 표 2는 본 실험예 및 비교예의 시편을 제조하는 공정 조건(온도 단위: ℃, 시간 단위: sec, S/C 수량 단위: m3/hr, 속도 단위: m/s)을 나타낸 것이며, 표 3은 표 2의 공정 조건에 따라 구현된 시편의 기계적 물성을 측정한 결과를 나타낸 것이다. 표 1의 조성을 갖는 빔블랭크를 전기로를 이용하여 제조한 후 열간압연을 거쳐 플랜지(Flange)부 두께 15mm의 H형강을 제조하였다.Table 1 below shows the main alloy element composition (unit: weight %) of this experimental example and comparative example, and Table 2 shows the process conditions for manufacturing the specimens of this experimental example and comparative example (temperature unit: ℃, time unit: sec) , S/C quantity unit: m 3 /hr, speed unit: m/s), and Table 3 shows the results of measuring the mechanical properties of the specimen implemented according to the process conditions in Table 2. A beam blank with the composition shown in Table 1 was manufactured using an electric furnace and then hot rolled to produce H-beam steel with a flange thickness of 15 mm.
공정 조건은 재가열 온도 1150~1300℃, 대기시간 0~120초, 압연 시작온도 900~1100℃, 압연중간온도 850~1000℃, 압연종료온도 800~900℃, S/C 수량 50~300 m3/hr, 이송속도 2.0~4.0 m/s의 범위에서 진행하였으며, 표 2는 실제 실험 데이터가 확보된 공정 조건을 기재하였다. 이를 통해 실험예에서 목표하고자 하는 물성은 인장강도(TS) 500~660 MPa, 상온 항복강도(YS)는 420MPa 이상, 연신율(EL)은 19% 이상, 항복비(YR)는 90% 이하 -40℃에서의 저온 충격인성은 플랜지부 기준 50J 이상이고, 미세조직의 경우 심부에서 결정립도는 10 ㎛ 이하인 F+P(페라이트와 펄라이트의 복합조직)이 관찰되는 것을 목표로 하였다. 또한 상온 항복강도(YS)의 편차가 Flange 상단과 하단에서 15 MPa, 바람직하게는 12 MPa 이하로 감소하는 것을 목표로 하였다.Process conditions are reheating temperature 1150~1300℃, waiting time 0~120 seconds, rolling start temperature 900~1100℃, rolling middle temperature 850~1000℃, rolling end temperature 800~900℃, S/C quantity 50~300 m 3 /hr, the transfer speed was in the range of 2.0 to 4.0 m/s, and Table 2 lists the process conditions under which the actual experimental data was obtained. Through this, the physical properties to be targeted in the experimental example are tensile strength (TS) of 500 to 660 MPa, room temperature yield strength (YS) of 420 MPa or more, elongation (EL) of 19% or more, and yield ratio (YR) of 90% or less -40 The goal was to observe low-temperature impact toughness at ℃ of 50J or more based on the flange part, and in the case of microstructure, F+P (composite structure of ferrite and pearlite) with a grain size of 10 ㎛ or less in the deep part. In addition, the goal was to reduce the deviation of room temperature yield strength (YS) to 15 MPa, preferably 12 MPa or less, at the top and bottom of the flange.
Figure PCTKR2023016829-appb-img-000001
Figure PCTKR2023016829-appb-img-000001
Figure PCTKR2023016829-appb-img-000002
Figure PCTKR2023016829-appb-img-000002
Figure PCTKR2023016829-appb-img-000003
Figure PCTKR2023016829-appb-img-000003
비교예 1 및 실험예 1Comparative Example 1 and Experimental Example 1
표 1 내지 표 3을 참조하면 비교예 1은 실험예 1과 비교하여 조성계에 차이가 있으며, 도 2에 도시된 S/C 장치(100)를 이용한 압연 중간 온도 제어 또는 냉각 여부에 차이가 있다. 도 3(a)은 비교예 1에 따른 미세조직 사진이고, 도 3(c)는 실험예 1에 따른 미세조직 사진이다.Referring to Tables 1 to 3, Comparative Example 1 has a difference in composition compared to Experimental Example 1, and there is a difference in whether the rolling temperature is controlled or cooled using the S/C device 100 shown in FIG. 2. Figure 3(a) is a photograph of the microstructure according to Comparative Example 1, and Figure 3(c) is a photograph of the microstructure according to Experimental Example 1.
먼저 표 1을 참조하면, 비교예 1의 경우 바나듐과 니오븀의 조성 범위를 0.035 ~ 0.039 중량%로 설정하고자 했으며, 실제 실험 데이터의 값은 바나듐이 0.036 중량%, 니오븀이 0.035 중량%가 포함되었고, 별도의 장치를 사용하지 않고 온도를 제어하였다.First, referring to Table 1, in the case of Comparative Example 1, the composition range of vanadium and niobium was set to 0.035 to 0.039% by weight, and the actual experimental data included 0.036% by weight of vanadium and 0.035% by weight of niobium; The temperature was controlled without using a separate device.
한편 실험예 1의 경우 바나듐과 니오븀의 조성 범위를 0.040 ~ 0.045 중량%로 목표하고자 했으며, 실제 실험 데이터의 값은 바나듐이 0.040 중량%, 니오븀이 0.044 중량%가 포함되었고, S/C 장치를 이용하여 표 2에 나타난 공정 조건으로 압연 중간 온도를 제어하였다.Meanwhile, in the case of Experimental Example 1, the composition range of vanadium and niobium was aimed to be 0.040 to 0.045% by weight, and the actual experimental data included 0.040% by weight of vanadium and 0.044% by weight of niobium, and the S/C device was used. The rolling intermediate temperature was controlled using the process conditions shown in Table 2.
표 3 및 도 3을 참조하면, 실험예 1은 플랜지 상단과 하단의 항복강도(YS) 편차가 8MPa, 충격인성의 편차가 21J로 비교예 1에 비해 현저히 작은 것을 확인할 수 있고, 미세조직의 결정립도 역시 편차가 작으며 플랜지 상단과 하단이 모두 10 ㎛ 이내이므로, 물성 편차가 개선된 것을 확인할 수 있다.Referring to Table 3 and Figure 3, it can be seen that Experimental Example 1 has a yield strength (YS) deviation of 8MPa and an impact toughness deviation of 21J between the top and bottom of the flange, which are significantly smaller than Comparative Example 1, and the grain size of the microstructure As expected, the deviation is small and both the top and bottom of the flange are within 10 ㎛, so it can be seen that the physical property deviation has been improved.
비교예 2 및 실험예 1Comparative Example 2 and Experimental Example 1
표 1 내지 표 3을 참조하면, 비교예 1은 실험예 1과 비교하여 조성계에 차이가 있으나, 도 2에 도시된 S/C 장치(100)를 이용한 압연 중간 온도 제어 또는 냉각 여부는 동일하다. 도 3(b)은 비교예 2에 따른 미세조직 사진이고, 도 3(c)는 실험예 1에 따른 미세조직 사진이다.Referring to Tables 1 to 3, Comparative Example 1 has a difference in composition compared to Experimental Example 1, but the temperature control or cooling in the middle of rolling using the S/C device 100 shown in FIG. 2 is the same. Figure 3(b) is a microstructure photograph according to Comparative Example 2, and Figure 3(c) is a microstructure photograph according to Experimental Example 1.
먼저 표 1을 참조하면, 비교예 2의 경우 바나듐과 니오븀의 조성 범위를 0.035 ~ 0.039 중량%로 설정하고자 했으며, 실제 실험 데이터의 값은 바나듐이 0.037 중량%, 니오븀이 0.036 중량%가 포함되었고, S/C 장치를 이용하여 표 2에 나타난 공정 조건으로 압연 중간 온도를 제어하였다.First, referring to Table 1, in the case of Comparative Example 2, the composition range of vanadium and niobium was set to 0.035 to 0.039% by weight, and the actual experimental data included 0.037% by weight of vanadium and 0.036% by weight of niobium; The rolling intermediate temperature was controlled using the S/C device under the process conditions shown in Table 2.
한편 실험예 1의 경우 바나듐과 니오븀의 조성 범위를 0.040 ~ 0.045 중량%로 목표하고자 했으며, 실제 실험 데이터의 값은 바나듐이 0.040 중량%, 니오븀이 0.044 중량%가 포함되었고, S/C 장치를 이용하여 표 2에 나타난 공정 조건으로 압연 중간 온도를 제어하였다.Meanwhile, in the case of Experimental Example 1, the composition range of vanadium and niobium was aimed to be 0.040 to 0.045% by weight, and the actual experimental data included 0.040% by weight of vanadium and 0.044% by weight of niobium, and the S/C device was used. The rolling intermediate temperature was controlled using the process conditions shown in Table 2.
표 3을 참조하면, 비교예 2는 상온 항복강도(YS)가 432 MPa(플랜지 상단), 419 MPa(플랜지 하단)로 실험예 1의 상온 항복강도(YS) 447MPa(플랜지 상단), 455MPa(플랜지 하단)보다 작고, 특히 비교예 2의 플랜지 하단 항복강도는 420MPa에 못 미치는 것을 확인할 수 있다. 또한, 비교예 2의 플랜지 상단과 하단의 항복강도(YS) 편차는 13MPa, 충격인성의 편차는 62J로 실험예 1의 항복강도(YS) 편차 8MPa, 충격인성 편차 21J에 비해 현저히 큰 것을 확인할 수 있다. 따라서, 실험예 1의 경우 비교예 2와 비교할 때 항복강도(YS) 및 충격인성의 물성 값이 더욱 우수할 뿐 아니라, 편차 또한 작은 것을 확인할 수 있다.Referring to Table 3, the room temperature yield strength (YS) of Comparative Example 2 is 432 MPa (top of flange) and 419 MPa (bottom of flange), and the room temperature yield strength (YS) of Experimental Example 1 is 447 MPa (top of flange) and 455 MPa (bottom of flange). It can be seen that it is smaller than (bottom), and in particular, the yield strength of the bottom of the flange of Comparative Example 2 is less than 420 MPa. In addition, it can be seen that the yield strength (YS) deviation between the top and bottom of the flange in Comparative Example 2 is 13MPa and the impact toughness deviation is 62J, which is significantly larger than the yield strength (YS) deviation of 8MPa and impact toughness deviation of 21J in Experimental Example 1. there is. Therefore, in the case of Experimental Example 1, it can be confirmed that not only are the physical properties of yield strength (YS) and impact toughness better than Comparative Example 2, but also the deviation is small.
한편, 미세조직의 결정립도의 경우 비교예 2는 플랜지 상단과 하단에서 각각 10.0 ㎛, 10.6 ㎛으로 10 ㎛를 초과하였을 뿐 아니라, 편차 또한 0.6 ㎛으로 실험예 1에 비해 큰 것을 확인할 수 있다.Meanwhile, in the case of the grain size of the microstructure, Comparative Example 2 not only exceeded 10 ㎛ at 10.0 ㎛ and 10.6 ㎛ at the top and bottom of the flange, respectively, but also the deviation was 0.6 ㎛, which was larger than that of Experimental Example 1.
따라서, 본 발명의 일 실시예에 따른 형강 및 형강 제조방법의 경우, 실험예 1의 데이터에서 확인한 바와 같이 목표하는 고강도, 저온 충격인성, 미세조직 및 결정립도를 확보함에 따라 우수한 품질을 갖고, 플랜지 상부와 하부의 물성 편차가 적은 균일한 품질의 고성능의 심해용 특수 형강을 구현할 수 있다.Therefore, in the case of the section steel and section steel manufacturing method according to an embodiment of the present invention, as confirmed in the data of Experimental Example 1, it has excellent quality by securing the target high strength, low-temperature impact toughness, microstructure, and grain size, and the upper part of the flange It is possible to realize high-performance, deep-sea special section steel with uniform quality and little variation in physical properties of the upper and lower parts.
이상과 같이 본 발명에 따른 바람직한 실시예, 실험예 및 비교예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.As described above, preferred embodiments, experimental examples, and comparative examples according to the present invention have been examined, and the fact that the present invention can be embodied in other specific forms in addition to the above-described embodiments without departing from the spirit or scope of the relevant technology It is self-evident to those with ordinary knowledge. Therefore, the above-described embodiments are to be regarded as illustrative and not restrictive, and thus the present invention is not limited to the above description but may be modified within the scope of the appended claims and their equivalents.
[부호의 설명][Explanation of symbols]
S10: 재가열 단계S10: Reheating step
S20: 압연 단계S20: rolling step
10: 형강10: section steel
11: 웹11: web
12: 플랜지12: Flange
12a: 플랜지 상부12a: Top of flange
12b: 플랜지 하부12b: Flange lower part
100: S/C 장치100: S/C device
110: 사이드 쿨러110: Side cooler
120: 하부 냉각 노즐120: Lower cooling nozzle

Claims (15)

  1. (a) 탄소(C) 0.04 ~ 0.14 중량%, 실리콘(Si) 0.10 ~ 0.55 중량%, 망간(Mn) 0.90 ~ 1.65 중량%, 인(P) 0.020 중량% 이하, 황(S) 0.007 중량% 이하, 알루미늄(Al) 0.015 ~ 0.055 중량%, 바나듐(V) 0.010 ~ 0.080 중량%, 타이타늄(Ti) 0.005 ~ 0.025 중량%, 니오븀(Nb) 0.010 ~ 0.050 중량%, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 강재를 1150 ~ 1300 ℃로 재가열하는 단계; 및(a) Carbon (C) 0.04 to 0.14% by weight, silicon (Si) 0.10 to 0.55% by weight, manganese (Mn) 0.90 to 1.65% by weight, phosphorus (P) 0.020% by weight or less, sulfur (S) 0.007% by weight or less , Aluminum (Al) 0.015 ~ 0.055% by weight, Vanadium (V) 0.010 ~ 0.080% by weight, Titanium (Ti) 0.005 ~ 0.025% by weight, Niobium (Nb) 0.010 ~ 0.050% by weight, the remaining iron (Fe) and other inevitable impurities. Reheating the steel containing to 1150 ~ 1300 ℃; and
    (b) 상기 강재를 압연하되, 압연 시작 온도는 900 ~ 1100 ℃, 압연 중간 온도는 850 ~ 1000℃, 압연 종료 온도는 800 ~ 900 ℃ 로 수행하는 단계를 포함하는 형강 제조방법.(b) Rolling the steel material at a starting temperature of 900 to 1100°C, a middle rolling temperature of 850 to 1000°C, and a rolling end temperature of 800 to 900°C.
  2. 제1항에 있어서,According to paragraph 1,
    상기 (b) 단계에서,In step (b) above,
    상기 압연 중간 온도를 제어하기 위해 S/C (Selective Cooling) 장치에서 냉각수를 분사하되, 대기시간은 0 ~ 120초, 수량은 50 ~ 300 m3/hr, 이송속도는 2.0 ~ 4.0 m/s의 조건으로 수행하는 형강 제조방법.To control the temperature in the middle of rolling, coolant is sprayed from an S/C (Selective Cooling) device, with a waiting time of 0 to 120 seconds, a water quantity of 50 to 300 m 3 /hr, and a transfer speed of 2.0 to 4.0 m/s. A method of manufacturing section steel that is carried out under certain conditions.
  3. 제1항에 있어서,According to paragraph 1,
    상기 (b)단계를 수행한 강재는 중심부의 상온 미세조직이 페라이트, 펄라이트를 포함하되,The steel material that performed step (b) above has a room temperature microstructure in the center containing ferrite and pearlite,
    F.G.S(Ferrite grain size)는 10 ㎛ 이하인 형강 제조방법.F.G.S (Ferrite grain size) is a method of manufacturing section steel of 10 ㎛ or less.
  4. 제1항에 있어서,According to paragraph 1,
    상기 (b) 단계를 수행한 강재는,The steel that performed step (b) above is,
    항복강도(YS)가 420 MPa 이상, -40℃에서의 저온충격인성이 50J 이상, 항복비(YR)가 0.90 이하, 연신율(EL)이 19% 이상인 형강 제조방법.A method of manufacturing section steel with a yield strength (YS) of 420 MPa or more, a low-temperature impact toughness at -40°C of 50 J or more, a yield ratio (YR) of 0.90 or less, and an elongation (EL) of 19% or more.
  5. 제1항에 있어서,According to paragraph 1,
    상기 (b) 단계를 수행한 강재는,The steel that performed step (b) above is,
    웹과 플랜지를 포함하는 H 형강으로 제조되되, 상기 웹을 기준으로 상기 플랜지의 상부와 하부의 항복강도(YS) 편차는 15 MPa 이하인 형강 제조방법.A method of manufacturing a section steel made of H-beam including a web and a flange, wherein the yield strength (YS) deviation of the upper and lower parts of the flange based on the web is 15 MPa or less.
  6. 제1항에 있어서,According to paragraph 1,
    상기 강재는,The steel,
    실리콘(Si) 0.1 ~ 0.2 중량%, 망간(Mn) 1.57 ~ 1.65 중량%, 알루미늄(Al) 0.015 ~ 0.021 중량%, 바나듐(V) 0.040 ~ 0.045 중량%, 타이타늄(Ti) 0.005 ~ 0.008 중량%, 니오븀(Nb) 0.040 ~ 0.045 중량%인 형강 제조방법.Silicon (Si) 0.1 to 0.2% by weight, manganese (Mn) 1.57 to 1.65% by weight, aluminum (Al) 0.015 to 0.021% by weight, vanadium (V) 0.040 to 0.045% by weight, titanium (Ti) 0.005 to 0.008% by weight, Method for manufacturing section steel containing 0.040 to 0.045% by weight of niobium (Nb).
  7. 탄소(C) 0.04 ~ 0.14 중량%, 실리콘(Si) 0.10 ~ 0.55 중량%, 망간(Mn) 0.90 ~ 1.65 중량%, 인(P) 0.020 중량% 이하, 황(S) 0.007 중량% 이하, 알루미늄(Al) 0.015 ~ 0.055 중량%, 바나듐(V) 0.010 ~ 0.080 중량%, 타이타늄(Ti) 0.005 ~ 0.025 중량%, 니오븀(Nb) 0.010 ~ 0.050 중량%, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하고,Carbon (C) 0.04 to 0.14% by weight, silicon (Si) 0.10 to 0.55% by weight, manganese (Mn) 0.90 to 1.65% by weight, phosphorus (P) 0.020% by weight or less, sulfur (S) 0.007% by weight or less, aluminum ( Al) 0.015 to 0.055% by weight, vanadium (V) 0.010 to 0.080% by weight, titanium (Ti) 0.005 to 0.025% by weight, niobium (Nb) 0.010 to 0.050% by weight, and the remaining iron (Fe) and other inevitable impurities. ,
    항복강도(YS)는 420 MPa 이상을 만족하는 형강.A section steel that satisfies the yield strength (YS) of 420 MPa or more.
  8. 제7항에 있어서,In clause 7,
    -40℃에서의 저온충격인성은 50J 이상을 만족하는 형강.A section steel that satisfies the low-temperature impact toughness of 50J or more at -40℃.
  9. 제7항에 있어서,In clause 7,
    항복비(YR) 0.90 이하를 만족하는 형강.Section steel that satisfies the yield ratio (YR) of 0.90 or less.
  10. 제7항에 있어서,In clause 7,
    연신율(EL)은 19% 이상인 형강.Section steel with an elongation (EL) of 19% or more.
  11. 제7항에 있어서,In clause 7,
    웹과 플랜지를 포함하는 H 형강의 형상을 가지되, 상기 웹을 기준으로 상기 플랜지의 상부와 하부의 항복강도(YS) 편차는 15 MPa 이하인 형강.A section steel having the shape of an H-beam including a web and a flange, wherein the yield strength (YS) deviation of the upper and lower parts of the flange with respect to the web is 15 MPa or less.
  12. 제7항에 있어서,In clause 7,
    중심부의 상온 미세조직은 페라이트, 펄라이트를 포함하되, F.G.S(Ferrite grain size)는 10 ㎛이하인 형강.A section steel whose room temperature microstructure in the center contains ferrite and pearlite, but whose F.G.S (Ferrite grain size) is 10 ㎛ or less.
  13. 제7항에 있어서,In clause 7,
    상기 실리콘(Si) 0.1 ~ 0.2 중량%, 망간(Mn) 1.57 ~ 1.65 중량%, 알루미늄(Al) 0.015 ~ 0.021 중량%, 바나듐(V) 0.040 ~ 0.045 중량%, 타이타늄(Ti) 0.005 ~ 0.008 중량%, 니오븀(Nb) 0.040 ~ 0.045 중량%인 형강.Silicon (Si) 0.1 to 0.2% by weight, manganese (Mn) 1.57 to 1.65% by weight, aluminum (Al) 0.015 to 0.021% by weight, vanadium (V) 0.040 to 0.045% by weight, titanium (Ti) 0.005 to 0.008% by weight. , section steel containing 0.040 to 0.045% by weight of niobium (Nb).
  14. 탄소(C) 0.04 ~ 0.14 중량%, 실리콘(Si) 0.10 ~ 0.55 중량%, 망간(Mn) 0.90 ~ 1.65 중량%, 인(P) 0.020 중량% 이하, 황(S) 0.007 중량% 이하, 알루미늄(Al) 0.015 ~ 0.055 중량%, 바나듐(V) 0.010 ~ 0.080 중량%, 타이타늄(Ti) 0.005 ~ 0.025 중량%, 니오븀(Nb) 0.010 ~ 0.050 중량%, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하고,Carbon (C) 0.04 to 0.14% by weight, silicon (Si) 0.10 to 0.55% by weight, manganese (Mn) 0.90 to 1.65% by weight, phosphorus (P) 0.020% by weight or less, sulfur (S) 0.007% by weight or less, aluminum ( Al) 0.015 to 0.055% by weight, vanadium (V) 0.010 to 0.080% by weight, titanium (Ti) 0.005 to 0.025% by weight, niobium (Nb) 0.010 to 0.050% by weight, and the remaining iron (Fe) and other inevitable impurities. ,
    1150 ~ 1300 ℃로 재가열한 후 압연하되, 압연 시작 온도는 900 ~ 1100 ℃, 압연 중간 온도는 850 ~ 1000℃, 압연 종료 온도는 800 ~ 900 ℃ 제어하는 방법으로 제조하는 형강.Section steel manufactured by reheating to 1150 ~ 1300 ℃ and then rolling, with the rolling start temperature controlled at 900 ~ 1100 ℃, the rolling middle temperature at 850 ~ 1000 ℃, and the rolling end temperature at 800 ~ 900 ℃.
  15. 제14항에 있어서,According to clause 14,
    상기 압연 중간 온도를 제어하기 위해 S/C (Selective Cooling) 장치에서 냉각수를 분사하되, 대기시간은 0 ~ 120초, 수량은 50 ~ 300 m3/hr, 이송속도는 2.0 ~ 4.0 m/s로 제어하는 방법으로 제조하는 형강.To control the temperature in the middle of rolling, coolant is sprayed from an S/C (Selective Cooling) device, with a waiting time of 0 to 120 seconds, a water quantity of 50 to 300 m 3 /hr, and a transfer speed of 2.0 to 4.0 m/s. Section steel manufactured using a controlled method.
PCT/KR2023/016829 2022-10-28 2023-10-27 Steel section and method for manufacturing same WO2024091054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220141009A KR20240059920A (en) 2022-10-28 2022-10-28 Section steel and method for manufacturing section steel
KR10-2022-0141009 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024091054A1 true WO2024091054A1 (en) 2024-05-02

Family

ID=90831336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016829 WO2024091054A1 (en) 2022-10-28 2023-10-27 Steel section and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20240059920A (en)
WO (1) WO2024091054A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271754A (en) * 1992-03-25 1993-10-19 Nippon Steel Corp Manufacture of controlled rolling steel plate excellent in toughness
EP1501951B1 (en) * 2002-05-08 2006-08-30 AK Steel Properties, Inc. Method of continuous casting non-oriented electrical steel strip
KR20120000770A (en) * 2010-06-28 2012-01-04 현대제철 주식회사 H-steel for building structure and method for producing the same
CN104032217A (en) * 2014-06-19 2014-09-10 马钢(集团)控股有限公司 Hot-rolled H-shaped steel, and application and production method thereof
KR101748968B1 (en) * 2015-12-24 2017-06-20 현대제철 주식회사 Shape steel and method of manufacturing the shape steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271754A (en) * 1992-03-25 1993-10-19 Nippon Steel Corp Manufacture of controlled rolling steel plate excellent in toughness
EP1501951B1 (en) * 2002-05-08 2006-08-30 AK Steel Properties, Inc. Method of continuous casting non-oriented electrical steel strip
KR20120000770A (en) * 2010-06-28 2012-01-04 현대제철 주식회사 H-steel for building structure and method for producing the same
CN104032217A (en) * 2014-06-19 2014-09-10 马钢(集团)控股有限公司 Hot-rolled H-shaped steel, and application and production method thereof
KR101748968B1 (en) * 2015-12-24 2017-06-20 현대제철 주식회사 Shape steel and method of manufacturing the shape steel

Also Published As

Publication number Publication date
KR20240059920A (en) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2016104975A1 (en) High-strength steel material for pressure container having outstanding toughness after pwht, and production method therefor
WO2017111510A1 (en) Non-magnetic steel material having excellent hot workability and manufacturing method therefor
WO2015099373A1 (en) Ultrahigh-strength welded structural steel having excellent toughness in welding heat-affected zones thereof, and production method therefor
WO2018074887A1 (en) High-strength reinforcing steel and method for manufacturing same
WO2018004297A1 (en) High strength steel plate having excellent low yield ratio characteristics and low temperature toughness and method for manufacturing same
WO2018117646A1 (en) Thick steel sheet having excellent cryogenic impact toughness and manufacturing method therefor
WO2021091138A1 (en) Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
WO2018117450A1 (en) Sour-resistant heavy-walled steel material having excellent low-temperature toughness and post-heat treatment characteristics and method for manufacturing same
WO2018117700A1 (en) High-strength high-toughness thick steel sheet and manufacturing method therefor
WO2018117614A1 (en) Ultra-thick steel material having excellent surface part nrl-dwt properties and method for manufacturing same
WO2012043984A2 (en) Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
WO2018117507A1 (en) Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing same
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2019132262A1 (en) High-strength structural steel material having excellent fatigue crack propagation inhibitory characteristics and manufacturing method therefor
WO2017111345A1 (en) Low-yield-ratio type high-strength steel, and manufacturing method therefor
WO2022139191A1 (en) Highly thick steel material having excellent low-temperature impact toughness and manufacturing method therefor
WO2019124814A1 (en) Steel sheet having excellent hydrogen induced cracking resistance and longitudinal strength uniformity, and manufacturing method therefor
WO2020130436A2 (en) High-strength structural steel having excellent cold bendability, and manufacturing method therefor
WO2020111891A1 (en) High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor
WO2024091054A1 (en) Steel section and method for manufacturing same
WO2024091057A1 (en) Steel section and steel section manufacturing method
WO2022131783A1 (en) Thick steel plate having high-strength and high-ductility, and manufacturing method therefor
WO2018117727A1 (en) Thick steel plate having excellent low-temperature impact toughness and ctod characteristic and manufacturing method therefor
WO2023113219A1 (en) Steel material having high strength and excellent impact toughness, and manufacturing method therefor
WO2022131608A1 (en) Ultrathick steel plate having excellent low-temperature impact toughness and method for manufacturing same